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Abstract

Multilevel (hierarchical) modeling is a generalization of linear and generalized linear mod-
eling in which regression coefficients are themselves given a model, whose parameters are also
estimated from data. We illustrate the strengths and limitations of multilevel modeling through
an example of the prediction of home radon levels in U.S. counties. The multilevel model is
highly effective for predictions at both levels of the model but could easily be misinterpreted for
causal inference.
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1 Introduction

Multilevel modeling is a generalization of regression methods, and as such can be used for a variety

of purposes, including prediction, data reduction, and causal inference from experiments and obser-

vational studies (see Kreft and De Leeuw, 1998, Snijders and Bosker, 1999, Raudenbush and Bryk,

2002, and Hox, 2002, for recent reviews). Compared to classical regression, multilevel modeling is

almost always an improvement, but to different degrees: for prediction, multilevel modeling can be

essential, for data reduction it can be useful, and for causal inference it can be helpful.

We illustrate the strengths and limitations of multilevel modeling through an example of the

prediction of home radon levels in U.S. counties.

2 Multilevel modeling for estimating home radon levels

Background and model

Radon is a carcinogen—a naturally occurring radioactive gas whose decay products are also radio-

active—known to cause lung cancer in high concentration, and estimated to cause several thousand

lung cancer deaths per year in the United States. The distribution of radon levels in U.S. homes varies

greatly, with some houses having dangerously high concentrations. In order to identify the areas
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with high radon exposures, the Environmental Protection Agency coordinated radon measurements

in a random sample of over 80,000 houses throughout the country.

To simplify the problem somewhat, our goal in analyzing these data was to estimate the distri-

bution of radon levels in each of the approximately 3000 counties in the U.S., so that homeowners

could make decisions about measuring or remediating the radon in their houses based on the best

available knowledge of local conditions. For the purpose of this analysis, the data were structured

hierarchically: houses within counties. (If we were to analyze multiple measurements within houses,

there would be a three-level hierarchy of measurements, houses, and counties.)

In performing the analysis, we had an important predictor—whether the measurement was taken

in a basement. (Radon comes from underground and can enter more easily when a house is built

into the ground.) We also had an important county-level predictor—a measurement of soil uranium

that was available at the county level. We fit a model of the form,

yij ∼ N(αj + βxij , σ2

y), for i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(γ0 + γ1uj , σ2

α), for j = 1, . . . , J. (1)

where yij is the logarithm of the radon measurement in house i within county j, xij is an indicator

for whether the measurement was taken in a basement, and uj is the log uranium level in county j.

The errors with variance σ2

y in the first line of (1) represent “within-county variation,” which in this

case includes measurement error, natural variation in radon levels within a house over time, and

variation between houses (beyond what is explained by the basement indicator). The errors with

variance σ2

α in the second line represent variation between counties, beyond what is explained by

the county-level uranium predictor. The hierarchical model allows us to fit a regression model to

the individual measurements while accounting for systematic unexplained variation among the 3000

counties.

Equivalently, the model can be written as a single-level regression with correlated errors:

y ∼ N(γ01 + γ1Gu + βx, σ2

yI + σ2

αGGT ),

where G is the n × J matrix of county indicators.

The model can be expanded in many ways, most naturally by adding more predictors at the

individual and county levels, and by allowing the slope β as well as the intercept α to vary by

county. For the purposes of this paper, however, model (1) is general enough. We further simplify

by focusing on a subset of our data—the 919 houses from the state radon survey of the 85 counties

of Minnesota (Price, Gelman, and Nero, 1996). We fit the model using hierarchical Bayes methods
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Figure 1: Multilevel (partial pooling) regression lines y = aj +βx fit to radon data from Minnesota,
displayed for eight counties j with a range of sample sizes. Light-colored dotted and solid lines show
the complete-pooling and no-pooling estimates. The x-positions of the points are slightly jittered to
improve visibility.

(e.g., Gelman et al., 2003). The posterior density is simply,

p(α, β, γ, σy , σα|y, x, u) ∝
J∏

j=1

nj∏

i=1

N(yij |αj + βxij , σ2

j )
J∏

j=1

N(αj | γ0 + γ1uj, σ2

α), (2)

where N(·|M, S2) represents the normal density function with mean M and standard deviation S,

and assuming a uniform prior distribution on γ, σy, σα, which is reasonable given that the number

of counties J is large (Gelman, 2005).

Data reduction: estimating associations

Figure 1 displays the estimated multilevel model for a selection of 8 of the 85 counties in Minnesota,

along with the completely-pooled and unpooled regression line for each county. (The completely-

pooled line is y = α+βx, with a common line for all counties, and the unpooled lines are y = αj +βx,

with the 85 αj ’s estimated by least squares.)

Compared to the two classical estimates (no pooling and complete pooling), the inferences from

the multilevel models are more reasonable. At one extreme, the complete-pooling method gives

identical estimates for all counties, which is particularly inappropriate for this application, whose

goal is to identify the locations in which residents are at high risk of radon. At the other extreme, the

no-pooling model overfits the data, for example giving an implausibly high estimate of the average

radon levels in Lac Qui Parle County, in which only two observations were available.

Although the specific assumptions of model (1) could be questioned or improved, it would be
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Figure 2: Estimated county coefficients αj (±1 standard error) plotted vs. county-level log uranium
measurement uj, along with the estimated multilevel regression line α = γ0 + γ1u. The county
coefficients roughly follow the line but not exactly; the deviation of the coefficients from the line is
captured in σα, the standard deviation of the errors in the county-level regression.

difficult to argue against the use of multilevel modeling for the purpose of estimating radon levels

within counties.

Another advantage of multilevel modeling for this application is that it allows us to study the

relation of the county parameters to county-level predictors—in this case, the uranium measurement,

as displayed in Figure 2. It would be possible to estimate this second-level relation using classical

regression—first fitting the no-pooling model to estimate the αj ’s and then fitting county-level

regression to the α̂j ’s. The multilevel model has the appeal of fitting the two levels together, and

can actually be implemented using a Gibbs sampler alternating between the data-level and county-

level regression steps. So the point here is not whether the estimates are identified as “multilevel”

but whether they take into account the estimation uncertainty of the αj ’s, as is done in Figure 1 by

shrinking toward the complete-pooling estimate.

Prediction

Perhaps the clearest advantage of multilevel models comes in prediction. In our example, we can

predict the radon levels for new houses in an existing county, or for a new county. (Since we actually

have data on all 85 counties in Minnesota, that would be a new county in a neighboring state.)

We can use cross-validation to formally demonstrate the benefits of multilevel modeling. We

perform two cross-validation tests: first removing single data points and checking the prediction

from the model fit to the rest of the data, then removing single counties and performing the same

procedure. For each cross-validation step, we compare complete-pooling, no-pooling, and multilevel

estimates. Other cross-validation tests for this example were performed in Price, Nero, and Gelman
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(1996).

When removing individual data points and re-fitting each model, the root-mean-squared cross-

validation prediction errors are 0.84, 0.86, and 0.79 for complete pooling, no pooling, and multilevel

modeling. (In making this comparison, we exclude measurements which, when removed, make the

no-pooling model impossible to fit. For example, see Figure 1: if either of the houses in Lac Qui

Parle County or the no-basement house in Aitkin County is removed, then it would not be possible

to estimate the regression slope from that county’s data alone.)

When removing entire counties one at a time, we summarize by the errors of the predicted county

mean responses (given the county-level uranium and the basement information for the houses in the

excluded county). The root-mean-squared predictive errors at the county level are 0.50 and 0.40

for complete pooling and multilevel modeling, respectively. (Cross-validation cannot be performed

at the county level for the no-pooling model since it is does not allow a county’s radon level to be

estimated using data from other counties.)

The multilevel model gives more accurate predictions than the no-pooling and complete-pooling

regressions, especially when predicting group averages.

Causal inference

We now consider our model as an observational study of the effect of basements on home radon levels.

The study includes houses with and without basements throughout Minnesota. The proportion of

homes with basements varies by county (see Figure 1), but a regression model should address that

lack of balance by separately estimating county and basement effects. (As noted earlier, we set aside

the possibility that basement effects might vary by county.) The estimated coefficient β in model (1)

is 0.67 (with a standard error of 0.06), implying that, within any given county, houses with basements

have typical radon levels exp(0.67) = 2.0 times higher than houses without. (Measurements are

made in the lowest living area of the house. The “basement effect” on living-area radon levels thus

includes differences between houses explainable by having a basement, as well as differing radon

concentrations among levels of a house. For our purposes here we combine these effects.)

So far, so good. However, a complication arises if we consider the possibility of correlation be-

tween the individual-level predictor, x, and the county-level error, αj − γ0 − γ1uj (see, for example,

Woolridge, 2001, for a discussion of this sort of correlation in multilevel models). By simply mul-

tiplying the likelihood and prior densities in (1), the posterior density (2) implicitly assumes the

county errors are independent of x. We can allow for possible dependence by including x̄j , the

average of x within county j (that is, the proportion of basements in the houses in county j in the
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dataset), into the group-level regression:

αj ∼ N(γ0 + γ1uj + γ2x̄j , σ2

α), for j = 1, . . . , J.

The new group-level coefficient γ2 is estimated at −0.39 (with a standard error of 0.20), implying

that, all other things equal, counties with more basements tend to have lower baseline radon levels.

For the radon problem, the county-level basement proportion is difficult directly to interpret as a

predictor, and we consider it a proxy for underlying variables (for example, the type of soil that is

prevalent in the county).

In other settings, especially in social science, individual averages that are used as group-level

predictors are often interpreted as “contextual effects.” For example, the presence of more basements

in a county would somehow have a radon-lowering effect. This makes no sense here, but it serves as

a warning that, with identical data of a social nature (for example, consider substituting “income”

for “radon level” and “ethnic minority” for “basement” in our study), it would be easy to leap to a

misleading conclusion and find contextual effects where none necessarily exist.

This is related to the “ecological fallacy” studied in geography (see Wakefield, 2003, for a recent

review with many references), in which group-level correlations can be mistakenly attributed to

individual-level causes—but our setting is slightly different in that both individual and group-level

data are available. The available data are modeled correctly but the group-level coefficient γ2 can be

misinterpreted causally. This is related to the problem in meta-analysis that between-study variation

is typically observational even if individual studies are randomized experiments (see Rubin, 1989,

and Gelman, Stevens, and Chan, 2003).

3 Discussion

Multilevel modeling is an increasingly popular approach to modeling hierarchically-structured data,

outperforming classical regression in predictive accuracy. This is no surprise, given that multilevel

modeling includes least-squares regression as a special case. One intriguing feature of multilevel

models is their ability to separately estimate the predictive effects of an individual predictor and

its group-level mean, which are sometimes interpreted as “direct” and “contextual” effects of the

predictor. As we have illustrated in this paper, these effects cannot necessarily be interpreted

causally for observational data, even if these data are a random sample from the population of

interest. Our analysis arose in a real research problem (Price, Nero, and Gelman, 1996) and is not a

“trick” example. The houses in the study were sampled at random from the counties of Minnesota,

and there were no problems of selection bias.
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