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Abstract

We present a generalization of patterns as used in definitions in functional languages,
called application patterns. They consist of a function applied to arguments. While
matching such a pattern against an actual argument, inverse functions are used to find
the binding of variables to values. Application patterns are universal in the sense that
they include list, tuple, algebraic and n+k patterns.

1 INTRODUCTION

Pattern matching plays an important role in functional programming. By using
patterns the readability of a definition as well as the structure of a program may
be improved. Standard patterns include variables, constants, the wildcard pattern,
patterns for tuples, lists, algebraic constructors, etc. Such patterns match against
the structure of an argument, in such a way that lazy evaluation remains possible.

In addition, there are n+k-patterns. The nature of these is somewhat different
from the ones above, they do not match against the syntactical structure of an
actual argument, but against its semantics (assuming the standard implementation
of natural numbers). A pattern n+k, where k is a constant, matches against an
actual argument a, if a can be considered as the result of applying the function
λx.x+k to some value b. If so, then n is bound to b. Clearly, b can be calculated by
applying the inverse function λx.x−k to a.

We call a pattern such as n+k an application pattern since it consists of a func-
tion (+) applied to some arguments (n and k). In this paper we describe application
patterns in general, and we show that known (compound) patterns can be expressed
as application patterns. Furthermore, we present an algorithm which matches an
application pattern against an actual argument, and which binds variables to values.

We stipulate that matching an application pattern like f x y against an actual
argument is based on the semantics of a function and an argument, i.e. the values
for x and y are found by applying inverse functions of f to the actual argument
(assuming that these inverses exist).

Patterns are subject of several discussions (see e.g. the Haskell mailing list), but
as far as the authors of the present papers are aware, no proposals have been made



in the direction of application patterns. One paper that we know of is by Tullsen
(2000), which in a restricted sense uses inverse functions. In that paper inverses
of algebraic constructors are used, but not for functions in general. Besides, the
content of Tullsen’s paper is aimed at developing “a simplification of patterns that
make them first class language constructs”.

In Gofer some work is done in matching patterns of generalizations of the form
c*n+k (Tony Davy, n.d., as cited in Jones, 1991). That is a specific case of what
we discuss in general.

Quite some work has been done in the field of automatic computation of a
function’s inverse (esp. Abramov and Glück (2002) and Plasmeijer et al. (2005)),
but that is not a topic of the present paper. In this paper we assume that it is the
responsibility of the programmer to make sure that the necessary inverses do exist,
either in the standard library or in the program being compiled.

2 GENERAL FORM OF APPLICATION PATTERNS

Suppose

double_a :: [char] -> [char]

is a function which should double a string when all characters in that string are
equal to the character ’a’, return the string itself when all characters are equal to
any other character, and yield the empty string otherwise. Thus,

double_a "aaa" =⇒ "aaaaaa"

double_a "bbb" =⇒ "bbb"

double_a "abc" =⇒ ""

One possible way to define the function double_a is as follows:

double_a [] = []
double_a (x:xs) = x:xs ++ x:xs, if and (map (=’a’) (x:xs))

= x:xs , if and (map (=x) xs)
= "" , otherwise

However, observe that the argument is tested for consisting of equal characters.
Thus, the question is whether the argument can be considered as a result of a repeat
function. Then, using application patterns, double_a could also be defined in a
shorter and better readable way:

double_a (rep ’a’ n) = rep ’a’ (2*n)
double_a (rep x n) = rep x n
double_a _ = ""

In this definition rep is a standard function which returns a list of copies of its first
argument, where the length of this list is indicated by the second argument of rep.

Calling the function double_a with actual argument "aaa", the first pattern,
rep ’a’ n, matches "aaa", and n is bound to 3. The string "bbb" does not



match the pattern in the first clause and thus the second clause is tried, leading
to the bindings of x to ’b’ and n to 3. Note that the case of the empty string is
automatically covered by the application pattern.

Application patterns also allow for nested patterns, as in

double_a (rep ’a’ (n+1)) = . . . n . . .

The general form of an application pattern is

fun pat1 pat2 · · · patn

where fun is an existing function, and each pati can be any pattern, including an
application pattern. Note that algebraic patterns, including lists and tuples, are just
a specific case of application patterns.

In the general form of an application pattern, the function fun may be a prede-
fined function, or defined by the programmer. However, in order for the pattern to
match, the function fun should have appropriate inverses in the sense described be-
low. Then the values to which the variables in the pattern will be bound are found
by choosing the adequate inverse function and applying that to the actual argument.
In the example above, two inverses of the function rep are needed:

• one should find n, given that the character of which the actual argument is of
a specific form (in this case it should be an ’a’),

• the other should reconstruct both x and n from the actual argument (if pos-
sible).

Clearly, there is a third variant of an inverse function for rep, not needed in the
definition of double_a:

• find the character x, given that the length of the actual argument is given.

3 INVERSE FUNCTIONS

Let f be a function of type A → B. It is well known that if f is injective, then the
inverse f−1 exists and is of type B→ A. However, it is not so clear how to deal with
possible inverse function(s) of f in case f is a function of several arguments as in
the case of rep above. Of course, rep is of type A -> (Nat->[A]), and thus the
standard inverse would be of type (Nat->[A]) -> A. But in the example given
above two different inverses of rep are needed, the first yielding a value of type
Nat, the second of type (A,Nat).

Thus, we need a generalized form of inverse functions. Consider a function

f :: A1 → A2 → ··· → An → B

with
f x1 x2 · · · xn = expr



Let i1, . . . , ik be a sublist of the indices 1, . . . ,n, and let j1, . . . , jm be the remaining
indices, where both sublists of indices are in increasing order. We call a function
f c
i1,...,ik of type

f c
i1,...,ik :: A j1 → ··· → A jm → (Ai1 , . . . ,Aik)→ B

such that
f c
i1,...,ik x j1 · · · x jm (xi1 , . . . ,xik) = f x1 x2 · · · xn

a cousin with respect to i1, . . . , ik of the function f . Thus the only difference be-
tween a function f and a cousin f c

i1,...,ik is that the latter groups the arguments
xi1 , . . . ,xik into a tuple and takes that tuple as its last argument.

A generalized inverse of f with respect to i1, . . . , ik, denoted as f−1
i1,...,ik , is a

function with type

A j1 → ··· → A jm → B → (Ai1 , . . . ,Aik)

such that
f−1
i1,...,ik x j1 · · · x jm y = (xi1 , . . . ,xik)

if and only if
f c
i1,...,ik x j1 · · · x jm (xi1 , . . . ,xik) = y

i.e. if and only if
f x1 x2 · · · xn = y

For a generalized inverse f−1
i1,...,ik of f it holds that

f−1
i1,...,ik x j1 · · · x jm = ( f c

i1,...,ik x j1 · · · x jm)−1

Thus, the generalized inverse function f−1
i1,...,ik yields values for the variables on

the positions i1, . . . , ik, given that the parameters on the other positions are known.
Clearly, since functions need not be injective, not all generalized inverses will exist
for all sequences of indices.

As described in the example of double_a in section 2, generalized inverse
functions are used to resolve application patterns that are used in a program. It is
the responsibility of the programmer to make sure that the relevant inverse func-
tions do exist. If some inverse function is not present in the prelude of the system,
or if it can not be generated automatically, the programmer has to write it himself.
For that we introduce the backtic notation: the notation f−1

i1,...,ik for a generalized
inverse function can be written as

f‘[ i1−1,· · ·,ik−1 ]

where each index is decremented by one, since in computer science it is custom to
start counting at zero instead of one.

This notation is meant for the programmer to write his own definitions of gen-
eralized inverse functions. Hence f‘[ i1−1,· · ·,ik−1] should be considered as a



(systematic) name in itself, i.e. the backtick is not an operator which yields inverse
functions.

In the case of the pattern rep x n, as in (see section 2)

double_a (rep x n) = . . .

the different variants of these inverses may be defined as follows (for an alternative
definition, see section 4):

rep‘[0,1] :: [A] -> (A, Nat)
rep‘[0,1] [] = error "type of list elements ambiguous"
rep‘[0,1] (x:xs) = (x, #(x:xs)) , if and (map (=x) xs)

rep‘[0] :: Nat -> [A] -> A
rep‘[0] n [] = error "type of list elements ambiguous"
rep‘[0] n (x:xs) = x , if and (map (=x) xs)

/\ #(x:xs) = n

rep‘[1] :: A -> [A] -> Nat
rep‘[1] a xs = #xs , if and (map (=a) xs)

Note that definitions for both rep‘[0] and rep‘[1] can be derived automatically
when rep‘[0,1] is given, e.g.

rep‘[0] n (rep m x) = x , if m=n

In this definition, bindings for m and x are yielded by rep‘[0,1].
Note that these definitions do not contain an otherwise guard. The role of

otherwise would be to express that the inverse is not defined, and we choose
to leave it out. By this construction an application pattern can be refutable. In
section 6 these functions will be rewritten so that failure to meet with any of the
given guards will result in a pattern miss.

With the above definitions of the various inverses of rep, the following uses
lead to the intended answers:

rep‘[0,1] "aaa" =⇒ (’a’,3)

rep‘[1] ’a’ "aaa" =⇒ 3

rep‘[0] 3 "aaa" =⇒ a

As an example of a function for which not every generalized inverse exists, con-
sider the function

minus x y = x - y

Clearly, the inverse function minus‘[0,1] does not exist, since any given number
n may be decomposed in an infinite number of ways into two numbers whose
difference is n. However, the inverses for both individual positions minus‘[0]
and minus‘[1] do exist.



For many other functions (partial) inverses can be defined, e.g. for +, -, *, /,
ˆ, eˆ, ln, sin, cos, tan, arcsin, arccos, arctan, prime, fac, ++, index,
rep, itoa, code, decode, lines and unlines. Moreover, for constructors of
algebraic types the inverses follow trivially from the type definition in which they
are introduced.

4 WHERE CLAUSES

In the above, patterns were used solely on parameter positions in function defini-
tions. Here we discuss how to use them in let and where clauses. Consider an
alternative definition for rep‘[0,1]

rep‘[0,1] [x] = (x,1)
rep‘[0,1] (x:y:tail) = (x,n) , if x=y /\ y=z

where
rep z (n-1) = y:tail

In the where clause the application pattern rep z (n-1) will bind z and n to
their values such that they can be used in the defining expression. This pattern
needs the generalised inverse function rep‘[0,1] in order to be resolved. That is
precisely the function which is defined here. Thus, this definition of rep‘[0,1]
is recursive.

However, the use of application patterns within where clauses is ambiguous.
Instead of reading rep z (n-1) as a pattern, it might as well be read as a local
definition of rep.

Therefore we introduce a syntactical means to indicate which parameters get
their value from the context. In the case of the pattern rep z (n-1) the only
ambiguity arises for the role of rep. We write

. . . where
ˆrep z (n-1) = . . .

to indicate that rep is an existing function. The expression thus has to be read as
a pattern by which the variables z and n have to be bound. The same ambiguity is
present in n+k patterns.

The ˆ notation allows for the possibility to bind other parameters in a pattern
by a definition in the context, as in

. . . where
z = . . .
ˆrep ˆz (n-1) = . . .

Here, the z in the pattern gets its value from the pattern in the global function
definition, such that only the variable n has to be bound by matching the pattern to
the right hand side. Note that in nested patterns, such as n-1 in the example above,
no ambiguity can arise.



With respect to operators the ˆ prefix notation would lead to undesirable con-
structions as in xˆ:xs and nˆ+5. Therefore we propose that infix definitions of
these operators require special syntactic sugar, so that in their ordinary use (binding
variables) the ˆ character can be omitted. For example, in Haskell this ambiguity
for operator symbols is solved by putting brackets around the expression.

5 SOME EXAMPLES

Using the application pattern, function definitions become more readible if some
trivial operation must be performed on an argument first, as in

f1 (sin alpha) = . . . alpha . . .
f2 (2*n) = . . . n . . .
f3 (itoa s) = . . . s . . .
f4 (ln x) = . . . x . . .

For example, if f1 is applied to an actual argument a, the function sin‘[0]—
that can be pre-defined as the arcsin function—is applied to a and the result bound
to alpha. Note that f1 is only defined for values between -1 and 1, inclusive.
Likewise, the functions f2, f3 and f4 use, when applied to an actual argument,
the inverse functions *‘[1], itoa‘[0] and ln‘[0] in order to bind n, s and x,
respectively. These inverse function definitions are trivial, by the use of division,
atoi and exp functions.

As another example, consider the function upperLeft, which finds the upper
left corner of the rectangle determined by a list of points in the two dimensional
plane.

upperLeft :: [(Float, Float)] -> (Float, Float)
upperLeft (zip (xs,ys)) = (min xs, max ys)

In this example the pattern zip (xs,ys) splits the actual argument (a list of
(x,y)-coordinates) into a list of x-coordinates xs, and a list of y-coordinates ys.

Yet another application is simple string parsing. Let join2 and join3 be func-
tions that join two and three lists, respectively.

join2 x y = x ++ y
join3 x y z = x ++ y ++ z

The generalized inverses for join2 can be defined as

join2‘[0] y s
= reverse q, if y = reverse p
where
(p, q) = split (#y) (reverse s)

join2‘[1] x s
= q, if p = x



where
(p, q) = split (#x) s

Thus, for example,

join2‘[0] "de" "abcde" =⇒ "abc"

join2‘[1] "abc" "abcde" =⇒ "de"

Moreover, for join3 generalized inverses join3‘[0,2] and join3‘[1] can be
defined as well, but we will omit them here for brevity.

Note that join2‘[0] might also have been defined using the application pat-
tern, so that the symmetry between the definitions of join‘[0] and join‘[1]

becomes more apparant.

reverse‘[0] z = reverse z

join2‘[0] x s
= q, if p = x
where
(reverse p, reverse q) = split (#x) (reverse s)

One nice application of join2 and join3 would be an extended use of list pat-
terns. For example, a function that would ‘parse’ a pair of numbers can now be
specified as

parsePair :: [Char] -> (Nat, Nat)
parsePair ("(" ++ itoa x ++ "," ++ itoa y ++ ")") = (x, y)

Clearly, the use of ++ does not work directly, but using join2 and join3 this
pattern can automatically be rewritten as

parsePair (join2 "("
(join3 (itoa x)

","
(join2 (itoa y)

")" )))
= (x, y)

so that x and y are bound using application patterns.
Note, however, that in general this rewriting causes that the “first” match is

chosen for string arguments, i.e. the first occurrence of a separator symbol such as
a comma is chosen to match the pattern.

6 TRANSLATION ALGORITHM

In this section we show how to translate application patterns to traditional patterns,
in combination with guards and where clauses.



First we remark that, since application patterns must be refutable, the transla-
tion algorithm first automatically rewrites an inverse function definition so that its
result is of the maybe type:

data Maybe a = Just a | Nothing

This rewriting ∗ is informally specified by
f‘[a1,· · ·,ak] x1 · · · xm f‘[a1,· · ·,ak] x1 · · · xm

= v1, if g1 = Just v1, if g1
...

... ∗=⇒
...

...
= vn, if gn = Just vn, if gn

= Nothing, otherwise

where the final otherwise clause on the right-hand side is omitted if the last guard
gn on the left-hand side is otherwise.

For example, in the case of the definitions of join2‘[0] and join2‘[1] we
get (note that here the otherwise clause is filled in):

join2‘[0] y s
= Just (reverse q), if y = reverse p
= Nothing, otherwise
where
(p, q) = split (#y) (reverse s)

join2‘[1] x s
= Just q, if p = x
= Nothing, otherwise
where
(p, q) = split (#x) s

We only describe the results of the algorithm on an example, we don’t give the
translation in detail. It will be described in more detail by Oosterhof (2005, Up-
coming).

Suppose a function f is defined as follows (x, y, v and w are variables; c is
a constant expression; e0, e1 and e2 are expressions containing the indicated vari-
ables):

f (g x (h y c)) = e0(v,w)
where
ˆk v w = e1(x,y)

f (u:us) = e2(u,us)

The first clause contains three (nested) application patterns, using the functions g,
h and k. Thus, these functions plus their appropriate inverses should exist.

First we concentrate on the first clause of f, the second clause is postponed until
later. The translation starts with generating variables (say p0 and p1) to represent
the application patterns. The values to which the variables in the original pattern
have to be bound, are then produced by applying the appropriate inverses of the



functions g and h in the pattern to these newly introduced variables. This yields
the matching variables m0 and m1. This is done in a where clause. That gives:

f p0 = e0(v,w) , if m0 ˜= Nothing
∧ m1 ˜= Nothing

where
m0 = g‘[0,1] p0
Just (x,p1) = m0

m1 = h‘[0] c p1
Just y = m1

m2 = k‘[0,1] e1(x,y)
Just (v,w) = m2

Note that m0 is of the Maybe type, so first it should be clear that it is not Nothing,
before its values can be extracted. Then its second value, p1, stands for the inner
application pattern h y c, so the procedure is repeated for an inverse of h.

Note that the matching variable m2 may also be Nothing. We might add a
guard m2˜=Nothing, but that would mean that the decision whether an argument
matches a pattern would depend on an undefined result in a where clause. We feel
that this is the wrong choice. Hence, the last two lines in the definition above might
be replaced by one line

Just (v,w) = k‘[0,1] e1(x,y)

If the right hand side leads to an undefined result, this gives a run time error.
At this point we remark that instead of choosing h‘[0] we also might have

chosen h‘[0,1]. In that case two values y and z would have been yielded in m1,
and an extra guard would have been necessary to check whether z=c (compare
the automatic generation of rep‘[0] in section 3). This depends on the inverse
functions that are available in the program, the essential point being that at least
values for the formal parameters (in this case, only y) have to be yielded. Our
algorithm chooses one of those variants of the inverse functions which at least
yields values for the required variables in the pattern.

The second clause in the definition of f contains the standard pattern u:us. For
consistency reasons, we translate such patterns to corresponding application pat-
terns. In this case the obvious translation is

cons u us

and the relevant inverse of cons is defined as

cons‘[0,1] xs = (hd xs, tl xs), if xs ˜= []

Thus, the translation of the second clause of f becomes:



f p = e2(u,us) , if m ˜= Nothing
where
m = cons‘[0,1] p
Just (u,us) = m

However, since the translation of the first clause of f resulted in a clause with a
variable pattern, the second clause became unreachable. Thus, all clauses in the
definition of f have to be combined into one clause in the translated definition.
Besides, a final otherwise clause that throws a runtime exception is added to
indicate missing cases.

The translation of the total definition of f now becomes:

f p = e0(v,w) , if m0 ˜= Nothing
∧ m1 ˜= Nothing

= e2(u,us) , if m3 ˜= Nothing
= error "missing case" , otherwise
where
m0 = g‘[0,1] p
Just (x,p’) = m0

m1 = h‘[0] c p’
Just y = m1

Just (v,w) = k‘[0,1] e1(x,y)

m3 = cons‘[0,1] p
Just (u,us) = m3

Clearly, while joining different clauses in the definition of f into one clause, one
has to be careful to avoid name clashes. However, that is an administrative job, and
not the most interesting part of the algorithm. Therefore we skip it here.

One topic that deserves special attention is to what extent the use of applica-
tion patterns preserves lazyness. Since application patterns are based on semantic
values and not on syntactic structure, it might be so that an argument has to be
evaluated fully in order to decide whether it matches a given pattern or not. In the
translation algoritm we presented here, we used the Maybe type to translate defi-
nitions using application patterns to definitons using inverse functions in a where
clause. The outcome of this was compared to the value Nothing. Since a value of
the form Just . . . need not be evaluated fully in order to decide that it is not equal
to Nothing, it is our impression that application patterns can be evaluated lazily.
However, this is a point of future research.

7 FURTHER GENERALIZATION

A further generalization of application patterns may use them to extract any para-
meter from the actual argument, i.e. to yield bindings of parameters to values that



are not necessarily extracted by using inverse functions. Then the programmer has
the ultimate freedom to write his own patterns and choose those parts of the actual
argument that he needs. For example, suppose a programmer wants to write a func-
tion rep1 that takes a list as argument, and returns a list consisting of repetitions
of the first element. The length of the returned list should be the same as the length
of the argument.

rep1 "abc" =⇒ "aaa"

Using application patterns, the function rep1 may be defined as follows:

rep1 (foo x n) = rep x n

where foo is any name that suits the programmer, and which indicates that only
the first element (bound to x) and the length (bound to n) of the actual argument are
needed. The programmer then has the obligation to write the function foo‘[0,1],
called an extraction function since it need not be an inverse function:

foo‘[0,1] xs = (hd xs, #xs), if xs ˜= []

Note that foo itself need not be an existing function.
Besides, a programmer may decide it is safe to assume that the actual argument

is a proper result of an existing function, say rep, and only wants to bind the
variable. Then the corresponding extraction functions of rep can shortly be defined
as:

rep‘[0,1] (r:rs) = (r, 1+#rs)

rep‘[0] _ (r:_) = r

rep‘[1] _ rs = #rs

For semantic reasons, however, care has to be taken with giving names to functions
in such cases.

One application is the extraction function

check‘[1] checkIt v = v, if checkIt v

that allows for guards in function arguments. For example, the power function for
integers can be specified by

power b 0 = 1
power b (check (<0) x) = 1 / (power b (-x))
power b (x+1) = b * power b x

where its definion’s three clauses show examples of an ordinary constant pattern,
an application pattern with the extraction function check‘[1] and an application
pattern that uses the inverse addition function +‘[0], respectively.



8 FUTURE RESEARCH

The use of patterns described above suggests a style of “programming by equa-
tions”, i.e. definitions take the form of general equations where solving such equa-
tions results in binding variables to values. One additional aspect of such equations
is that the same variable may occur more than once in a pattern, and solving them
may require a step by step approach. For example, applying a function like

f (x-a) ((a+y)*a) (a+x) (x+3) = x + y + 2 * a

to four actual arguments leads to the bindings of a, x and y. Here, first x has to be
solved through the fourth argument. Then a can be solved through the first argu-
ment by using the value of x. Next, y can be solved through the second argument
by using the value of a. Finally it must be checked whether the third argument
equals a+x.

We have built a runtime pattern matcher that can already do this; it seems an
interesting question whether this can be extended to compile time pattern matching.
This would provide a general solution for such equation style programming. An
inherent drawback of this approach, however, is that the guarantee of lazyness of
in-order matching of the arguments is lost and becomes the sole responsibility of
the programmer. Ways around this drawback are subject of further research also.
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