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AMPERE’S LAW

by

Kirby Morgan

1. Usefullness

Ampere’s law is a part of Maxwell’s equations: it relates magnetic
fields to electric currents that produce them.1 Using Ampere’s law, you
can determine the magnetic field associated with a given current or the
current associated with a given magnetic field, providing there is no time-
changing electric field present. Ampere’s law is particularly useful in
situations where there exists a high degree of geometrical symmetry, just
as is the case with Gauss’s law.2 Fortunately, many applications have
such symmetry.

2. The Law

2a. The Integral Relationship. Gauss’s law and Ampere’s law have
some similarities, although Gauss’s law involves a surface integral,

Gauss’s law:

∮

S

~E · d~S = 4πkeQS ,

1See “Maxwell’s Equations” (MISN-0-146).
2See “Gauss’s Law and Spherically Distributed Charges” (MISN-0-132).

B
`

C
`

d
`
l

Figure 1. An in-
tegration path C in
a magnetic field B.
The associated cur-
rents are not shown.
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current

in “-” direction

current

in “+” direction

Figure 2. A right-hand rule assigns a sign to each current
bounded by the loop C.

while Ampere’s law involves a “line integral”:3

Ampere’s law:

∮

C

~B · d~̀= 4πkmIC . (1)

Here:

• km is the “magnetic force constant.”

•
∮

C
denotes integration along a closed imaginary line C.4 The closed

imaginary line for any particular problem is usually called the in-
tegration “loop” or “path” for that problem. The line must pass
through the point where you want to know the magnetic field.

• IC denotes the net electric current passing through any (imaginary)
surface whose boundary is the same closed line C used in

∮

C
(see

Fig. 1).5

• d` is an infinitesimal element of length along the integration line.

• The direction of integration around the line is arbitrary, but once
taken it fixes the direction of current that must be called positive.
The relevant rule will be taken up later.

3See the Appendix of this module for a discussion of line integrals.
4The word “closed” means that the line has no end so it must be a closed loop.
5All surfaces bounded by the same line give the same value for IC .
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Figure 3. ~B and d~̀ are both
tangent to C, the circular inte-
gration path.

2b. Determining Signs (±). The algebraic sign (±) of any current
enclosed by the integration loop in Ampere’s law is determined by a right-
hand rule:

A current is taken to be positive if it points in the direction of the
thumb on the right hand when the fingers of that hand encircle the
loop in the direction that the line integral is taken (see Fig. 2). If it
is in the opposite direction, the current must be taken as negative.

3. Simple Applications

3a. Magnetic Field Near a Long Thin Wire. The magnetic field
~B at some point in space, associated with a current I in a long straight
wire, can be calculated using Ampere’s law. The integration path we
choose is a circle, centered on the wire (see Fig. 3) and going through the

point where we wish to know ~B. By symmetry, we expect the magnetic
field to have the same magnitude at all points on the circle and we expect
the magnetic field to be tangent to the circle at each point on that circle.6

Since d~̀ is also tangent to the circle, ~B · d~̀= B d` and the loop integral
is simply B

∮

d` and
∮

d` is just the circumference of the circle. Calling
the radius of the circle r, which is also the distance from the wire to the
point where we wish to know ~B, Ampere’s law gives:

(B)(2πr) = 4πkm I , (2)

6See “The Magnetic Field of a Current: The Ampere-Laplace Equation” (MISN-0-
125) for a proof that this is so.
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r
`

R
`

surface

of wire

Figure 4. Circular path of integra-
tion for a current uniformly distributed
throughout the cross section.

so:

B = 2km

(

I

r

)

. (long straight wire) . (3)

If the wire is not infinitely long, and no wire is, this value of B is accurate
to the extent that r is much less than the distance from the field-point to
either end of the wire.7

3b. B Outside a Long Cylindrical Conductor. Ampere’s law can
be used to show that the magnetic field at points outside a long circular
cylinder carrying a current uniformly distributed over its cross section is
the same as if all the current were concentrated in a line along the axis.
For points outside the cylinder, a circular path of integration will enclose
all of the current and, again by symmetry, ~B and d~̀ are parallel. By the
same analysis that was used for the long wire, we find:

B = 2km

(

I

r

)

; r > R , (4)

where r is the distance from the center of the wire and R is the radius of
the cylinder.

3c. B Inside a Long Cylindrical Conductor. The magnetic field
at a point inside a cylindrical conductor carrying a current depends on
how the current is distributed. If it is uniformly distributed over its cross
section and a circular path of integration is again chosen (see Fig. 4), the
fraction of the current enclosed by the path will be πr2/πR2, so that
Ampere’s law gives:

(B)(2πr) = 4πkmI

(

πr2

πR2

)

, (5)

7See “Gauss’s Law Applied to Cylindrical and Planar Charge Distributions” (MISN-
0-133) for the electrostatic equivalent, a line of fixed charge, where the “much less than”
condition is also discussed.
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Figure 5. Rectangular in-
tegration path for the infinite
plane of wires.

Figure 6. The mag-
netic field outside a
solenoid of finite length.

or

B = 2km

(

I r

R2

)

. (6)

Note that the magnetic field is linearly proportional to r, the distance of
the field point from the axis.

Note: For the case where the current resides only on the surface of the
cylinder, no current would be enclosed by the integration path and the
magnetic field would be zero at all points inside such a “surface conduc-
tor.”

3d. Infinite Plane of Adjacent Wires. Ampere’s law can be used to
find the magnetic field due to a conductor consisting of an infinite plane
of adjacent wires. The wires are infinitely long (or are long enough to be
regarded as such) and each carries a current I. By symmetry, you would

expect ~B to be parallel to the plane: then a rectangular integration path
of length ` which extends a distance d on each side of the plane would
be a good choice (see Fig. 5). Along the sides of the path, normal to the

plane, ~B is perpendicular to d~̀ so
∫

~B · d~̀ is zero there. Then Ampere’s
law yields:

∮

~B · d~̀= 2B` = 4πkmn`I , (7)

where n is the number of wires per unit length and n` is the total number
enclosed. Solving for B gives:

B = 2πkmnI . (8)
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x x x x x x x x x

l

Figure 7. The integration path for
a very long solenoid having B = 0
outside.

This equation indicates that the field associated with an infinite plane of
current is independent of the distance from the plane.

4. Example Devices

4a. The Solenoid. A solenoid is a tightly wound cylindrical helix
of current-carrying wire, used to make an electrical signal cause a one-
directional mechanical force (for example, operating a plunger). Solenoids
are frequently encountered in science and technology; there are at least
several in every car. The magnetic field inside a solenoid can be easily
found using Ampere’s law. The external magnetic field due to a solenoid of
finite length is quite similar to that of a bar magnet (see Fig. 6). However,
if the solenoid is very long, (i.e., if its length is much greater than its
radius), the field outside is essentially zero, and inside the solenoid it is
uniform and parallel to the solenoid’s axis (see Fig. 7).8

4b. Calculating the Field of a Solenoid. The magnitude of ~B inside
a solenoid can be found by applying Ampere’s law to the rectangular
integration path shown in Fig. 7. Outside the solenoid ~B is zero. Inside,
~B is at right angles to the ends of the rectangle so the only non-zero
contribution to the integral is along the length ` that is inside the solenoid.
Therefore:

∮

C

~B · d~̀= B` . (9)

8Look at the solenoid in Fig. 6 and notice that the magnetic field lines are much
more dense inside the solenoid than outside it. Imagine making the solenoid longer
and longer, during which the density inside remains constant but the density outside
becomes more and more sparce.
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Figure 8. A toroid.
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Figure 9. The circular
path of integration in-
side a toroid.

The net current through the rectangle is n`I, where n is the number of
turns per unit length over the entire length `. Ampere’s law then gives
for the magnetic field:

B = 4πkmnI , (solenoid) (10)

indicating a uniform field.

4c. The Toroid. A toroid is a solenoid that has been bent into a
circle, assuming the space-saving shape of a doughnut (see Fig. 8). The
magnetic field inside a toroid carrying a current I can be found using
Ampere’s law. By symmetry, the magnetic field is tangent to the circular
integration path shown in Fig. 9. Therefore:

∮

C

~B · d~̀= (B)(2πr) , (11)

and the enclosed current is NI, where N is the total number of turns on
the solendoid. Then:

B = 2km

(

NI

r

)

. (12)

Notice that, unlike the solenoid, the magnetic field inside the toroid is
not constant over the cross section of the coil but varies inversely as the
distance r. For points outside a toroid, it can be shown that the field is es-
sentially zero if the turns of wire are very close together. Help: [S-1]
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j
`

ds

n̂

Figure 10. The current density ~j is not always
along the normal n̂ to an arbitrary surface ele-
ment dS.

5. Using Current Density

5a. Introduction. Just as it is often useful to use the concept of
charge density in electrostatics, in magnetics we often use the concept of
current density. Charge density is a scalar and has three varieties: linear,
surface and volume. Current density is a vector and has one variety.
Current density has a non-zero value only at those space-points where
there are charges flowing so there is an electric current: it is the net
amount of charge going through the space-point per unit time, per unit
area perpendicular to the direction of the current. The direction of the
current density vector is the direction of the electric current at the space-
point in question. The universal symbol for the current density is ~j(~r),
where the argument indicates that the current density may change as one
moves from one space-point to another.9

5b. The Current Through a Surface. We now assume we know
the current density ~j at various space-points of interest and we want to
find the IC used in Ampere’s law, Eq. (1). We start with ~j at the point
of a surface element dS having a normal unit vector n̂. We want to know
how much current dI is passing through this element of surface. Since ~j
is the current per unit area normal to the current, we must multiply by
an element of area dA normal to the current (see Fig. 10). If we know dS,
n̂S , and ĵ, we can get dA by (see Appendix B):

dA = ĵ · n̂ dS .

Substituting dI = jdA we get:

dI = ~j · n̂ dS . (13)

For the special case of a uniform current flowing perpendicular to a plane
surface of area A, the equation simplifies to I = jA; a simple statement

9Of course ~j may also be a function of time but we are not dealing with that case
here.

12



MISN-0-138 9

C

a

r
b

Figure 11. A hollow conducting
cylinder with a non-uniform current
density j = k/r.

that the current is the current density times area.

Finally, we integrate both sides of Eq. (13) to get:

IC =

∫

S

~j · n̂ dS . (14)

5c. Ampere’s Law in Terms of the Current Density. Ampere’s
law may be rewritten in terms of the current density, using Eqs. (1) and
(14), giving:

∮

C

~B · d~̀= 4πkm

∫

S

~j · n̂ dS . (15)

Here C is the closed path around the perimeter of the surface S.

5d. Example: Hollow Conducting Cylinder. What is the mag-
netic field at points inside a hollow conducting cylinder which is made
such that its current density varies inversely as the distance from the cen-
ter of the cylinder? The conductor is shown in Fig. 11 and the current
density in this problem is:

j =
k

r
; a < r < b , (16)

where k is a constant. If a circular integration path is chosen, the current
enclosed by it, the right side of Eqs. (1) and (15), is:

IC =

∫ r

a

k

r′
2πr′ dr′ = 2πk(r − a) . a < r < b Help: [S-2] (17)

Ampere’s law then gives:

B = 4πkmk

(

r − a

r

)

, a < r < b (18)
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for the magnetic field within the conducting material. Help: [S-3]
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Glossary

• Ampere’s law: the integral form of one of Maxwell’s equations:

∮

C

~B · d~̀= 4πkmIC .

It relates the integral of the magnetic field around a closed loop to the
net current flowing through any surface bounded by the integration
loop. Ampere’s law is universally true, but is useful only when there is
a high degree of symmetry.

• current density: a vector whose magnitude at a space point is the
current per unit area normal to the direction of the current at that
point and whose direction is the direction of the current at that point.

• line integral: the integral of a function along a specified path in
space. In Ampere’s law one evaluates the line integral of the tangential
component of the magnetic field around a closed path that: (i) goes
through the point at which one wishes to know the magnetic field; and
(ii) is such that it has a constant value for the integrand so the integral
can be performed trivially.

• solenoid: a tightly wound cylindrical helix of current-carrying wire.

• toroid: a solenoid bent into the shape of a doughnut.

14
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A. Line Integrals

a

b

1 2 3 . . .

B
^

i

q

Dli

`

Figure 12.

The line integral
∫ b

a

~B · d~̀,

for the path shown above, can be approximated by dividing the path into
many small segments ∆~̀i and for each segment the product

Bi cos θi ∆`i

can be found. Here Bi cos θi is the component of ~B tangent to the curve.
The integral can be calculated approximately by summing these segments’
terms, for example, on a computer. However, the exact value of the line
integral is given by the limit:

∫ b

a

~B · d~̀= lim
n→∞

∑

i=1

Bi cos θi ∆`i .

If a is joined to b, the path becomes closed and the resultant integral
∮

C

~B · d~̀

is around the “closed path” C. Often, the calculation of this integral is
highly simplified by utilizing a path that takes advantage of symmetries
in the problem. Two examples of such simplifications are:

(i) ~B is constant and always tangent to the path:

∫ b

a

~B · d~̀=

∫ b

a

B d` = B

∫ b

a

d` = B`ab ,
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where `ab is the length of the path from a to b.

(ii) ~B is always perpendicular to the path:

∫ b

a

~B · d~̀= 0 .

B. Projection of an Area

If a planar (flat) area S is projected onto another plane, the area A
on the projected-onto plane is given by:

A = ĵ · n̂ S . (19)

Here n̂ is a unit vector normal to the plane
of the original area and ĵ is a unit vector
normal to the projected-onto plane (see
the sketch). This is entirely equivalent to
the statement that the areas are related by
the cosine of the angle between the planes
(again see the sketch):

ĵ
n̂

S

A q

A = S cos θ . (20)

By “projection” we mean that from every point on the periphery of
the original area S we drop a perpendicular to the projected-onto plane.
The locus of those points on the projected-onto plane define the periphery
of the projected area A.

Equations (19)-(20) are easily proved by considering infinitesimally-
wide straight line elements of the area A that are normal to the line of
intersection of the two planes. For each such element there is a projection
of it onto the projected-onto plane, and the areas of the two elements are
obviously related by the cosine of the angle between the planes. Since the
areas themselves are simply the integrals of the infinitesimal areas, and
since the angle between the planes is independent of where one is in one of
the areas, the cosine can be pulled outside the integral and Eqs. (19)-(20)
are proved.

If the area S is curved (non-planar) then Eqs. (19)-(20) apply only
to infinitesimal areas (which can be considered to be planar for these

16
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purposes):
dA = ĵ · n̂ dS .
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PROBLEM SUPPLEMENT

Note: Problems 8, 9, and 10 also occur in this module’s Model Exam.

1. Three infinitely long parallel wires each carry a current I in the
direction shown below. What is

∫

~B ·d` for each of the three paths C1,
C2, and C3?

x

x

C1

C3

C2

2. The magnetic field in a certain region of space is given by

~B = A0xx̂

where A0 = 3T/m, x is the x-coordinate of the point, and
x̂ is a unit vector in the x-direction. In this region, con-
sider a rectangular path in the x-y plane whose sides are
parallel to the x and y axes respectively as shown below.

C

BA

Dy = 3m

y = 1m

x = 1m x = 5m

a. Evaluate the line integral of ~B from A to B.

b. Do the same along the line from B to C.

18



MISN-0-138 PS-2

c. For C to D.

d. For D to A.

e. Evaluate the
∫

~B · d` around this closed path.

f. Determine the net current that must be crossing the x-y plane
through the rectangle ABCD.

3. A long cylindrical conductor of radius R has a uniform current density
~j spread over its cross section. Determine the magnetic field produced
at points r < R and r > R and sketch the magnitude of ~B as a
function of r.

4. A very long non-conducting cylinder has N conduct-
ing wires placed tightly together around its circumfer-
ence and running parallel to its axis as shown below:

R

If each wire carries a current I, find the magnetic field at points
inside and outside the cylinder.

5.

a

b

A hollow cylindrical conductor of radii a and b has a current I uni-
formly spread over its cross section.

19
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a. Show that the magnetic field inside the conductor (a < r < b) is:

B =
2kmI

(

r2 − a2
)

(b2 − a2) r

b. Express B in terms of the current density j.

c. Show that when a → 0 you get the same answer as in problem 3.

6. A long coaxial cable consists of two concentric conduc-
tors. The outside conductor carries a current I equal to
that in the inside conductor, but in the opposite direction.

a

c

b

Find the magnetic field at these points:

a. inside the inner conductor (r < a),

b. between the conductors (a < r < b),

c. inside the outer conductor (b < r < c), and

d. outside the cable (r > c).

7.
Uniform current density j

`

directed out of the page

to ¥½t

An infinite, plane, conducting slab of thickness t carries a uniform
current density of j amperes per square meter directed out of the
page in the above diagram.

20
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a. Apply Ampere’s law to determine the magnetic field at a height h
above the center line of the slab for h > t/2. Explain carefully how
you make use of symmetry in setting up your integration path.

b. Suppose your integration path had been a rectangular loop with
two sides parallel to the slab surface (as you must have used), but
with one parallel path a distance h above the center line and the
other a distance h′ below the center line (both h and h′ are greater
than t/2). Explain in this case, and without prior knowledge of

your final answer, why Ampere’s law cannot tell you ~B at points
h above the slab. Then show how the use of symmetry arguments
solves the problem.

c. Use the answer to part (a) and Ampere’s law to determine the
magnetic field at points a distance y below the surface of the slab,
inside the material. What is the field at the center line? Sketch
the direction of the field at various points inside the slab.

8.

C

BA

D
3.0

y(m)

1.0

1.00 x(m) 5.0

B = 1.0× 101 x̂ teslas everywhere.

In a certain region of space, the magnetic field intensity is uniform
and has the value of 10 teslas directed in the positive x-direction at
every point in the region. In this region consider a rectangular path
in the x-y plane from point A to point B parallel to the x-axis, B to
C parallel to the y-axis and D back to A parallel to the y-axis (see
the sketch above).

a. Evaluate the line integral of ~B from A to B. [N]

b. Do the same for the line from B to C. [B]

c. Do the same for the line from C to D. [I]
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d. Do the same for the line from D to A. [P]

e. Evaluate the loop integral
∫

~B ·d` for this closed path. Use the results
of parts (a)-(d) to find your answer. [J]

f. From your answer to part (e), determine the net current that must
be crossing the x-y plane through this rectangle ABCD. [A]

9. Repeat Problem 8, parts (a) through (f) for the case where the mag-
netic field in this region is now given by

~B(x, y) = (A0 +A1y) x̂

where A0 = 2.0T, A1 = 0.50T/m and y is the y-coordinate of the
point.

a. [C]

b. [K]

c. [O]

d. [M]

e. [H]

f. [L]

10.

Path 2

Path 1

R

rB B

rA

A

R = radius of the cylindrical conducting wire

j = the current per unit area (distributed uniformly) directed into
the page

rA = the distance from the center to point A outside the conductor
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rB = the distance from the center to point B inside the conductor.

Path 1 (solid line) is a circular path surrounding the cylinder concen-
tric with the cylindrical conductor passing through point A.

Path 2 (dashed line) is an arbitrary path surrounding the conductor,
also passing through point A.

a. What is
∫

~B · d` for each of the paths 1 and 2? [F]

b. Explain how symmetry enables you to evaluate ~B at point A only
if you use path 1. [G]

Brief Answers:

1. Circular path: Net current = I

∮

C1

~B · d~̀= 4πkmI

Rectangular Path: Net Current = I + (−I) = 0

∮

C1

~B · d~̀= 0

Irregular Path: Net Current = I − I − I = −I

∮

C1

~B · d~̀= −4πkmI

2. a. 36mT

b. zero

c. −36mT

d. zero

e. zero

f.
∮

~B · d~̀= 0 so I = 0 through rectangle ABCD.

3. r < R: B = 2πkmjr

r > R: B = 2πkm
jR2

r
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4. r < R: B = 0

r > R: B = 2km
NI

r

5. B = 2πkmj

(

r2 − a2

r

)

6. a. r < a: B = 2km
Ir

a2

b. a < r < b: B = 2km
I

r

c. b < r < c: B = 2km
I

r

(

c2 − r2

c2 − b2

)

d. r > c: B = 0

7. a.
C

BA

D

t

h

h

Symmetry tells you that the field, at all points on the line CD, has
the same value directed to the left and this is also the same as the
field at all points on line AB (but there, directed to the right).

B = 2πkmjt ,

independent of h if h > t/2 (the slab is infinitely long).
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b. If the distance below the center line had been h′ in the sketch [see
part (a)], then Ampere’s law would give you Bx+B ′x = 4πkmjtx,
where B′ is the field value at points h′ below the center line. Only
if h = h′ can you argue that B = B′ [as in part (a)] and then
determine B.

c.

Q

P

z

y

B(at P ) = 4πkmj

(

t

2
− y

)

directed to the left.

B(at the center line) = 0.

B(at Q) = 4πkmj

(

t

2
− z

)

directed to the right.

Both y and z are less than t/2.

A. A zero net current.

B. Zero

C. +1.0× 101 Tm

F. Because both paths completely encircle the current,
∫

~B · d` is
(4πkmjπR

2) for both path 1 and path 2.

G. For path 1, symmetry tells you that B is the same (and tangent to the
path) at every point on the path, so

∮

~B · d~̀= B

∮

d` = 2πrB = 4πkmjπR
2,

so at point A:

B = 2πkm
jR2

r

H. −4.0Tm
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I. −4.0× 101 Tm Help: [S-4]

J.
∮

~B · d~̀= 0 around the closed path.

K. Zero

L. 3.2× 106A, directed into the page.

M. Zero

N. 4.0× 101 Tm

O. −14Tm

P. Zero
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-4c)

xxx
x

x
x

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x x x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
xx

For any shaped path enclosing the entire toroid, the net current is zero.
By Ampere’s law,

∮

C

~B · d~̀= 0 ,

which implies B = 0 since the path is arbitrary.

S-2 (from TX-4e)

I =
∫

S
~j · n̂ dS with ~j =

k

r
r̂, giving:

I =
∫ 2π

0

∫ r

a

(

k

r′

)

r̂ · (r̂)r′ dr′ dθ

= 2πk
∫ r

a

(

1

r′

)

r′ dr′

= 2πk
∫ r

a
dr′ = 2πkr′|

r

a = 2πk(r − a).
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S-3 (from TX-4e)
∮

~B · d~̀= 4πkmI

(B)(2πr) = 8π2kmk(r − a)

B = 4πkmk

(

r − a

r

)

S-4 (from PS-problem 8)

An integral is just the limit of a sum:

∮

~B · d~̀= lim
∆~̀→0

∑

~B ·∆~̀ .

Note that ~B ·∆~̀ is negative along the part of the path labeled C → D.
Therefore the sum is negative for that part of the path and hence so is
the path integral for that segment of the path.
To do it formally, note that along that part of the path we have:

d~̀= −x̂d`

and
~B = x̂B

so:

∫ D

C

Bx̂ · (−x̂d`) = −B

∫ D

C

d` = +B

∫ D

C

dx = B

∫ 1.0m

5.0m

dx = −4.0Bm .
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MODEL EXAM

1.

C

BA

D
3.0

y(m)

1.0

1.00 x(m) 5.0

B = 10 x̂ teslas everywhere.

In a certain region of space, the magnetic field intensity is uniform
and has the value of 10 teslas directed in the positive x-direction at
every point in the region. In this region consider a rectangular path in
the x-y plane from point A to point B parallel to the x-axis, B to C
parallel to the y-axis and D back to A parallel to the y-axis (see the
sketch above).

a. Evaluate the line integral of ~B from A to B.

b. Do the same for the line from B to C.

c. Do the same for the line from C to D.

d. Do the same for the line from D to A.

e. Evaluate
∫

~B · d` around this closed path. Use the results of parts
(a)-(d) to find your answer.

f. From your answer to part (e), determine the net current that must be
crossing the x-y plane through this rectangle ABCD.

2. Repeat Problem 1, parts (a) through (f) for the case where the mag-
netic field in this region is given by

~B = (A0 +A1y) x̂

where A0 = 2T, A1 = 0.5T/m and y is the y-coordinate of the point.
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3.

Path 2

Path 1

R

rB B

rA

A

R = radius of the cylindrical conducting wire

j = the current per unit area (distributed uniformly) directed into the
page

r = the distance from the center to point A outside the conductor

r = the distance from the center to point B inside inside the conductor.

Path 1 (solid line) is a circular path surrounding the cylinder concentric
with the cylindrical conductor passing through point A.

Path 2 (dashed line) is an arbitrary path surrounding the conductor,
also passing through point A.

a. What is
∫

~B · d` for each of the paths 1 and 2?

b. Explain how symmetry enables you to evaluate ~B at point A only
if you use path 1.

Brief Answers:

1. See Problem 8 in this module’s Problem Supplement

2. See Problem 9 in this module’s Problem Supplement

3. See Problem 10 in this module’s Problem Supplement
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