AspectJ2EE = AOP + J2EE

Towards an Aspect Based, Programmable and Extensible
Middleware Framework

Tal Coheri and Joseph (Yossi) Gil

{ctal, yogi }@cs.technion.ac.il
Department of Computer Science
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract. J2EE is a middleware architecture augmented with supporting tools
for developing large scale client/server and multi-tier applications. J2EE uses En-
terprise JavaBeans as its component model. The realization of these components
by a J2EE application server can benceptuallydecomposed into distinct as-
pects such as persistence, transaction management, security, and load balancing.
However, current servers do not employ aspect-oriented programming in their
implementation. In this paper, we describe a new aspect language, AspectJ2EE,
geared towards the generalized implementation of J2EE application servers, and
applications within this framework. AspectJ2EE can be easily employed to ex-
tend the fixed set of services that these servers provide with new services such as
logging and performance monitoring. Eviéer-cutting concerndike encryption,

data compression, and memoization can be added while avoiding the drags of
cross-cutting and scattered code.

AspectJ2EE is less general (and hence less complicated) than AspectJ, yet
demonstrably powerful enough for the systematic development of large scale
(and distributed) applications. The introductionpaframeterized aspectaakes
aspects in AspectJ2EE more flexible and reusable than aspects in AspectJ.
AspectJ2EE also generalizes the process of binding services to user applications
in the application server into a novdeploy-timeweaving of aspects. Deploy-

time weaving is superior to traditional weaving mechanisms, in that it preserves
the object model, has a better management of aspect scope, and presents a more
understandable and maintainable semantic model.

1 Introduction

The termenterprise applicationss used to describe the large-scale software programs
used to operate and manage large organizations. The world’s largest and most important
software systems are enterprise applications; this includes the programs used to run
government organizations, banks, insurance companies, financial institutes, hospitals,
and so forth. Enterprise applications make the world go around.

* Contact author
** Research supported in part by the IBM faculty award

In many cases, enterprise applications are based on a heterogeneous platform
configuration, connecting various independent systems (ctifles) into a coherent
whole. The various tiers of an enterprise application can include, e.g., legacy main-
frame servers, dedicated database servers, personal computers, departmental servers,
and more.

The core functionality served by enterprise applications is often quite simple. It does
not involve overly elaborate computation or pose complex algorithmic demands. How-
ever, developing enterprise applications is considered a daunting task, due to orthogonal
requirements presented by most of these applications: uncompromising reliability, un-
yielding security, and complete trustworthiness.

The staggering demand for rapid development of enterprise applications initiated
a series of component-basadddleware architecturesA prime example of these,
and emphasizing client/server and multi-tier structuregaisa 2, Enterprise Edition
(J2EE) [1] which uses Enterprise JavaBeans (EJB) [2] as its component model.

Aspect-oriented programming (AOP) [3], the methodology which encapsulates the
code relevant to any distinct non-functional concerragpectmodules, can also be
thought of as answering the same demand [4, 5]. As it turns out, the functionality of
J2EE application servers can benceptuallydecomposed into distinct aspects such as
persistence, transaction management, security, and load balancing. The effectiveness of
this decomposition is evident from Kim and Clarke’s case study [6], which indicates that
the EJB framework drastically reduces the need for generic AOP language extensions
and tools.

Yet, as we shall see here, the EJB support for functional decomposition is limited
and inflexible. In cases where the canned EJB solution is insufficient, applications resort
again to a tangled and highly scattered implementation of cross-cutting concerns. Part
of the reason is that current J2EE servers do not employ AOP in their implementation,
and do not enable developers to decompose new non-functional concerns that show up
during the development process.

A natural quest then is for a harmonious integration of middleware architectures
and AOP. Indeed, there were several works on an AOP-based implementation of J2EE
servers and services (see e.g., the work of Choi [7]).

The new approach and main contribution of this paper is in drawing from the lessons
of J2EE and its implementation to design a new AOP language, AspectJ2EE, geared
towards the generalized implementation of J2EE application servers and applications
within this framework. In particular, AspectJ2EE generalizes the process of binding
services to user applications in the J2EE application server into a depéby-time
weaving mechanism. Deploy-time weaving is superior to traditional weaving mecha-
nisms in that it preserves the object model, has a better management of aspect scope,
and presents a more understandable and maintainable semantic model.

As a consequence of its particular weaving method, and of staying away from spe-
cialized JVMs and bytecode manipulation for aspect-weaving, AspectJ2EE is similar
to, yet (slightly) less general than, thepectJprogramming language [8]. Neverthe-
less, standing on the shoulders of the J2EE experience, we can argue that AspectJ2EE
is highly suited to systematic development of enterprise applications. Perhaps the main
limitation of AspectJ2EE when compared to Apsect] is that it does not directly support

field read and write join points, and hence cannot be employed for low-level debugging
or nit-picking logging. If however the design of a software solution is such that the
management of a certain field can be decomposed into several aspects, then this field
can be realized as a J2E#ribute with join points at its retrieval and setting.

The semantic model of applying an aspect to a class in AspectJ2EE is shown to be
conceptually similar to the application of a generic type definition to a class, yielding
a new type. This has both theoretical and practical implications, since maintaining the
standard object model makes AspectJ2EE easier to understand and master, a crucial
consideration for the widespread adoption of any new technology in the field of en-
terprise application developménDespite the similarities, we show that AspectJ2EE
aspects are more flexible and expressive than generics when used to extend existing
types.

AspectJ2EE also introducgmrameterized aspect3hese constructs, combined
with AspectJ2EE’s aspect binding language, make aspects in AspectJ2EE more
reusable than AspectJ aspects.

We stress that unlike previous implementations of aspects within the standard object
model, AspectJ2EE does not merely support “before” and “after” advices and “method
execution” join points. AspectJ2EE supports “around” advices, and a rich set of join
points, including control-flow based, conditional, and object- and class-initialization.

Using AspectJ2EE, the fixed set of standard J2EE services is replaced by a library of
core aspects. These services can be augmented with new ones, such as logging and per-
formance monitoring. Moreover, the AspectJ2EE language has specific support for the
composition of aspects that are scattered across programtiérsutting concernjs
such as encryption, data compression, and memoization.

Terminology. The article assumes basic familiarity with standard AOP terms, in-
cludingjoin point (a well-defined point in the program’s executiopintcut(a spec-
ification of a set of join points)advice(code that is added at specified join points),
weaving(the process of applying advices to join points), asgect(a language con-
struct containing advices).

Outline. Section 2 makes the case for AspectJ2EE by explaining in greater detail
how J2EE services can be thought of as aspects. Discussing the benefits of using AOP
for these services, we present the main points in which the design of AspectJ2EE is
different than standard AOP. The deploy time weaving strategy is discussed in Sect. 3.
Section 4 shows how the AspectJ2EE approach introduces AOP into the OOP model
without breaking it. Section 5 introduces some of the fine points and innovations in the
language, and discusses implementation details. Section 6 lists several possible innova-
tive uses for AspectJ2EE, some of which can lead to substantial performance benefits.
Section 7 concludes.

! Historically, the developers of enterprise applications are slow to adopt new technologies; a
technology has to prove itself again and again, over a long period of time, before the main-
tainers of such large-scale applications will even consider adopting it for their needs. It is not
a coincidence that many large organizations still use and maintain software developed using
some technologies, such as COBOL [9], that other sectors of the software industry view as
thoroughly outdated.

2 The Case for AOP in J2EE

2.1 J2EE Services as Managers of Non-Functional Concerns

Ideally, with the J2EE middleware framework (and to a lesser extent in other such
frameworks), the developer only has to implement the domain-spéciiness logic

This “business logic” is none other than what the AOP community éatistional con-

cerns The framework takes charge of issues such as security, persistence, transaction
management, and load balancing which are handlesebyicesprovided by theEJB
container[10, Chap. 2]. Again, these issues are none other timamfunctional con-
cernsin AOP jargon.

Suppose for example that the programmer needs data objects whose state is mir-
rored in persistent storage. This storage must then be constantly updated as the object
is changed during its lifetime, and vice versa. Automatic updates can be carried out
by the Container-Managed Persisten¢€EMP) service of the EJB container. To make
this happen, the objects should be defineatiatity beand2, Chap. 10]. Bean types
are mapped to tables in a relational database with an appropriate XML configuration
file. Thisdeployment descriptdile also maps each bean attribute (persistent instance
variable) to a field of the corresponding table.

Another standard J2EE service is security, using an approach knowtedsased
security Consider, for example, a financial software system with two types of users:
clients and tellers. A client can perform operations on his own account; a teller can per-
form operations on any account, and create new accounts. By setting the relevant values
in the program’s deployment descriptor, we can limit the account-creation method so
that only users that were authenticated as tellers will be able to invoke it.

Other services provided by the EJB container handle issues such as transaction
management and load balancing. The developer specifies which services are applied
to which EJB. Deployment descriptors are used for setup and customization of these
services. Thus, J2EE reduces the implementation of many non-functional concerns into
mere configuration decisions; in many ways, they turn mdn-concerns

And while this work focuses on EJBs, the J2EE design guideline, according to
which the developer configures various services via deployment descriptors, is not lim-
ited to EJBs only. It is also used in other parts of the J2EE platform. For example,
servlets (server-side programs for web servers) also receive services such as security
from their container, and access to specific servlets can be limited using role-based
security. This is also true for Java Server Pages (JSPs), another key part of the J2EE ar-
chitecture. Hence, in our financial software example, certain privileged web pages can
be configured so that they will be only accessible to tellers and not to clients.

The various issues handled by EJB container services were always a prime target
for being implemented as aspects in AOP-based systems [11, pp. 13-14]. For example,
Soareset. al. [4] implement distribution, persistence and transaction aspects for soft-
ware components using AspectJ. Security was implemented as an aspect by. Hao
al. [5]. The use of aspects reduces the risk of scattered or tangled code when any of
these non-functional concerns is added to a software project.

Conversely, we find that J2EE developers, having the benefit of container services,
do not require as much AOP. Indeed, Kim and Clarke [6] present a case study where

they investigate the relevance of AOP to J2EE developers. The case study comprised of
an e-voting system which included five non-functional concerns: (1) persistent storage
of votes, (2) transactional vote updates, (3) secure database access, (4) user authentica-
tion, and (5) secure communications using a public key infrastructure [6, Table 1]. Of
these five non-functional concermst oneremained cross-cutting or introduced tan-

gled code. The first three were handled by standard J2EE services, configured by setting
the proper values in the deployment descriptors. The last two were properly modular-
ized into a small number of classes (two classes in each case) with no code replication
and no tangled code.

The implementation of services in J2EE also includes sophisticated mechanisms for
combining each of the services, as configured by the deployment descriptors, with the
user code. We will discuss these mechanisms, which can be though of as the equiva-
lent of aspect weaving, in detail below (Sect. 3). Suffice to say at this point that the
combination in J2EE is carried out without resorting to drastic means such as byte code
patching and code preprocessing—means which may break the object model, confuse
debuggers and other language tools, and even obfuscate the semantics.

2.2 Limitations of the Services-Based Solution

Even though the J2EE framework reduces the developer’s need for AOP tools, there are
limits to such benefits. The reason is that although the EJB container is configurable,
it is neither extensible nor programmable. Pichler, Ostermann, and Mezini [12] refer to
the combination of these two problemslask of tailorability.

The container isiot extensiblén the sense that the set of services it offers is fixed.
Kim and Clarke [6] explain why supporting logging in the framework would require
scattered and tangled code. In general, J2EE lacks support for introducing new services
for non-functional concerns which are not part of its specification. Among these con-
cerns, we mention memoization, precondition testing, and profiling.

The container isiot programmablén the sense that the implementation of each of
its services cannot be easily modified by the application developer. For example, current
implementations of CMP rely on a rigid model for mapping data objects to a relational
database. The service is then useless in the case that data attributes of an object are
drawn from several tables. Nor can it be used to define read-only beans that are mapped
to a database view, rather than a table. The CMP service is also of no use when the
persistent data is not stored in a relational database (e.g., when flat XML files are used).

Any variation on the functionality of CMP is therefore bg-implementatiorof
object persistence, using what is calB€an-Managed Persisten¢BMP). BMP sup-
port requires introducing callback methods (calléecycle methodin EJB parlance)
in each bean. MethogibLoad() (ejbStore()) for example is invoked whenever
memory (store) should be updated.

The implication is that the pure business logic of EJB classes is contaminated with
unrelated 1/0O code. For example, the tutorial code of Bo@offal. [13, Chap. 5],
demonstrates a mixup in the same bean of SQL queries and a Java implementation
of functional concern. Conversely, we find that the code in charge of persistesueg-is
teredacross all entity bean classes, rather than being encapsulated in a single cohesive
module.

Worse, BMP may lead to codangling Suppose for example that persistence is
optimized by introducing a “dirty” flag for the object’s state. Then, each business logic
method which modifies state is tangled with code to update this flag.

Similar scattering and tangling issues rise with modifications to any other J2EE ser-
vice. In our financial software example, a security policy may restrict a client to transfer
funds only out of his own accounts. The funds-transfer method, which is accessible for
both clients and tellers, acts differently depending on user authentication. Such a policy
cannot be done by setting configuration options, and the method code must explicitly
refer to the non-functional concern of security.

To summarize, whenever the canned solutions provided by the J2EE platform are
insufficient for our particular purpose, we find ourselves facing again the problems
of scattered, tangled and cross-cutting implementation of non-functional concerns. As
Duclos, Estublier and Morat [14] stateclearly, the ‘component’ technology introduced
successfully by EJB for managing non-functional aspects reaches its'limits

2.3 Marrying J2EE with AOP

Having exposed some of the limitations of J2EE, it is important to stress that the frame-
work enjoys extensive market penetration, commanding a multi-billion dollar mar-
ket [15].

In contrast, AOP, with its elegant syntax and robust semantics, did not find its place
yet in mainstream industrial production. It is only natural then to seek a reconcilia-
tion of the two approaches, in producing an aspect based, programmable and extensible
middleware framework. Indeed, Pichket: al. call for “a marriage of aspects and com-
ponents” [12, Sect. 4].

Obviously, each of the services that J2EE provides should be expressed as an aspect.
The collection of these services will be tbere aspect librarywhich relying on J2EE
success, would not only be provably useful, but also highly customizable. Developers
will be able to add their own aspects (e.g., logging) or modify existing ones, possibly
using inheritance in order to re-use proven aspect code.

The resulting aspects could then be viewed as stand-alone modules that can be re-
used across projects. Another implication is that not all aspects must come from a single
vendor; in the current J2EE market, all J2EE-standard services are provided by the J2EE
application server vendor. If developers can choose which aspects to apply, regardless
of the application server used, then aspects implemented by different vendors (or by the
developers themselves) can all be used in the same project.

Choi [7] was the first to demonstrate that an EJB container can be built from the
ground up using AOP methodologies, while replacing services with aspects which exist
independently of the container. The resulting prototype server, califlallows de-
velopers to add and remove aspects from the container, changing the runtime behavior
of the system.

Release 4.0 of JBoss [16], an open-source application server which implements the
J2EE standard, supports aspects with no language extensions [17]. Aspects are imple-
mented as Java classes which implement a designated interface, while pointcuts are
defined in an XML syntax. These can be employed to apply new aspects to existing

beans without introducing scattered code. Standard services however are not imple-
mented with this aspect support.

Focal to all this prior work was the attempt to make an existing widespread frame-
work more robust using AOP techniques. In this research, we propose a new approach to
the successful marriage of J2EE and AOP in which the design of a new AOP language
draws from the lessons of J2EE and its programming techniques. The main issues in
which the AspectJ2EE language differs from AspectJ are:

1. Aspect targetsAspectJ can apply aspects to any class, whereas in AspectJ2EE as-
pects can be applied tenterprise beansnly. In OOP terminology these beans
are the core classes of the application, each of which represents one component of
the underlying data model. As demonstrated by the vast experience accumulated
in J2EE, aspects have great efficacy precisely with these classes. We believe that
the acceptance of aspects by the community may be improved by narrowing their
domain of applicability, which should also benefit understandability and maintain-
ability.

2. Weaving methodNeaving the base class together with its aspects in AspectJ2EE
relies on the same mechanisms employed by J2EE application servers to combine
services with the business logic of enterprise beans. This is carried out entirely
within the dominion of object oriented programming, using the standard Java lan-
guage, and an unmodified Java virtual machine (JVM). In contrast, different ver-
sions of AspectJ used different weaving methods relying on preprocessing, spe-
cialized JVMs, and dedicated byte code generators, all of which deviate from the
standard object model.

3. Aspect parametrizatiorAspects in AspectJ2EE can contain two types of parame-
ters that accept values at the time of aspect application: abstract pointcut definitions,
and field values. Aspects that contain abstract pointcut definitions can be applied
to EJBs, by providing (in the EJBs deployment descriptor) a concrete definition
for each such pointcut. This provides significant flexibility by removing undesired
cohesion between aspects and their target beans, and enables the development of
highly reusable aspects. It creates, in AspectJ2EE, the equivalent of Caesar’s [18]
much-touted separation between aspect implementation and aspect binding. Field
values, the other type of aspect parameters, also greatly increase aspect reusability
and broaden each aspect’s applicability.

4. Support for tier-cutting concern#&spectJ2EE is uniquely positioned to enable the
localization of concerns that cross not only program modules, but program tiers
as well. Such concerns include, for example, encrypting or compressing the flow
of information between the client and the server (processing the data at one end
and reversing the process at the other). Even with AOP, the handling of tier-cutting
concerns requires scattering code across at least two distinct program modules. We
show that using AspectJ2EE, many tier-cutting concerns can be localized into a
single, coherent program module.

3 Deployment and Deploy-Time Weaving

Weavingis the process of inserting the relevant code from various aspects into desig-
nated locations, known gsin points in the main program. In their original presenta-
tion of AspectJ [8], Kiczalest. al.enumerate a number of weaving strategiespect
weaving can be done by a special pre-processor, during compilation, by a post-compile
processor, at load time, as part of the virtual machine, using residual runtime instruc-
tions, or using some combination of these approattessch of which was employed
in at least one aspect-oriented programming language implementation.

As noted before, AspectJ2EE uses its own pecuéaploy-time weavingtrategy.
In this section we motivate this strategy and explain it in greater detail.

3.1 Unbounded Weaving Considered Harmful

All weaving strategies mentioned in the quote above transgress the boundaries of the
standard object model. Patching binaries, pre-processing, dedicated loaders or virtual
machines, will confuse language processing tools such as debuggers, and may have
other adverse effects on generality and portability.

However, beyond the intricacies of the implementation, weaving introduces a major
conceptual bottleneck. As early as 1998, Walker, Baniassad and Murphy [19] noted the
disconcert of programmers when realizing that merely reading the source of a code unit
is not sufficient for understanding its runtime behatior

3.2 Non-Intrusive Explicit Weaving

The remedy suggested by Constantinides, Bader, and Fayad i\fpeict Moderator
framework [20] was restricting weaving to the dominion of the OOP model. In their
suggested framework, aspects and their weaving are realized using pure object oriented
constructs. Thus, every aspect oriented program can be presented in terms of the famil-
iar notions of inheritance, polymorphism and dynamic binding. Indeed, as V\élkadr
conclude: programmers may be better able to understand an aspect-oriented program
when the effect of aspect code has a well-defined $cope

Aspect Moderator relies on tHerOxY design pattern [21] to create components
that can be enriched by aspects. Each core class has a proxy which manages a list of
operations to be taken before and after every method invocation. As a result, join points
are limited to method execution only, and oblgfore () andafter () advices can
be offered. Another notable drawback of this weaving strategy is thaeipkcit, in
the sense that every advice has to be manually registered with the proxy. Registration
is carried out by issuing a plain Java instruction—there are no external or non-Java
elements that modify the program'’s behavior. Therefore, long, tiresome and error-prone
sequences of registration instructions are typical to Aspect Moderator programs.

2 Further, Laddad [11, p. 441] notes that in AspectJ the runtime behavior cannot be deduced even
by readingall aspects, since their application to the main code is governed by the command
by which the compiler was invoked.

The Aspect Mediatoframework, due to Cohen and Hadad [22], ameliorates the
problem by simplifying the registration process, and each of the registration instruc-
tions. Still, their conclusion is that the explicit weaving code should be generated by an
automatic tool from a more concise specification. The AspectJ2EE language processor
gives this tool, which generates the explicit registration sequence out of an AspectJ-like
weaving specification.

We stress that AspectJ2EE does not use any of the obtrusive weaving strategies
listed above. True to the spirit of Aspect Mediator, it employs a weaving strategy that
does not breakhe object model. Instead of modifying binaries (directly, or by pre-
processing the source code), AspectJ2EE generates new classes that inherit from, rather
than replace, the core program classes. Aspect application is carried out by subclassing,
during the deployment stage, the classes that contain the business logic.

3.3 J2EE Deployment as a Weaving Process

Deployments the process by which an application is installed on a J2EE application
server. Having received the application binaries, deployment involves generating, com-
piling and adding additional support classes to the application. For example, the server
generatestubandtie (skeleton) classes for all classes that can be remotely accessed, in
a manner similar to, or even based on, thmote method invocatiofiRMI) compiler,

rmic [23]. Even though some J2EE application servers (e.g., JBoss [16]) generate sup-
port class binaries directly (without going through the source), these always conform to
the standard object model.

Figure 1 compares the development cycle of traditional and J2EE application. We
see in the figure that deployment is a new stage in the program development process,
which occurs after compilation but prior to execution. It is unique in that although new
code is generated, it is not part of the development, but rather of user installation.

(a) Traditional program development steps

Write Compile Execute
Program

\[Developer’s role]—-/ [User's role
(b) J2EE program development steps
Program
T [Deweloper'srole—— \[Usersrole——

Fig. 1. (a)the development steps in a traditional applicati@) the development steps in a J2EE
application.

Deployment is the magic by which J2EE services are welded to applications. There-
fore, the generation of sub- and support classes is governed by deployment descriptors.

The idea behind deploy-time weaving is to extend this magic, by placing rich AOP se-
mantics in government of this process. Naturally, this extension also complicates the
structure and inter-relationships between the generated support classes.

To better understand plain deployment, consider first Figure 2, which shows the
initial hierarchy associated with aft\ccouNT CMP bean. This bean will serve as a
running example for the rest of this article. While technically, it is defined as a CMP
entity EJB, we shall see later that the use of AspectJ2EE completely blurs the lines
between CMP and BMP entity beans, and between entity beans in general and session
beans (both stateful and stateless). The nature of each bean is derived simply from the
aspects that are applied to it.

InterfaceAccount is written by the developer in support of the remote interface to
the bead. This is where client-accessible methods are declared.

«interface» «interface» «interface»
javax.ejb.EJBHome javax.ejb.EntityBean javax.ejb.EJBObject
«interface» AccountBean «interface»
AccountHome Account
+create() : Account - +withdraw()
+findByPrimaryKey() : Account :::Sg;iat‘(ﬂ)’() +deposit()
+getld() Stnng JOT TP, +getBalance() : float
+setid()
+getBalance() : float
+sotBalance() ...
+ejbLoad()
+ejbStore()
+ejbCreate()
+ejbActivate()
+ejbPassivate()
+ejbRemove()
+setEntityContext()
+unsetEntityContext()

Fig. 2. Classes created by the programmer for definingtbeouNT EJB.

The developer’s main effort is in coding the abstract chessountBean . The first
group of methods in this class consists the implementation of business logic methods
(deposit() andwithdraw() in the example).

In addition to regular fields, an EJB hatiributes which are fields that will be gov-
erned by the persistence service in the J2EE server. Each atttbuteis represented
by abstract setter and getter methods, cafled Attr () andget Attr () respec-
tively. Attributes are not necessarily client accessible. By examining the second group
of methods in this class, we see tllatcOUNThas two attributesd (the primary key)

% For the sake of simplicity, we assume tatCOUNT has a remote interface only, even though
since version 2.0 of the EJB specification [2], beans can have either a local interface, a remote
interface, or both.

andbalance . From theAccount interface we learn thadl is invisible to the client,
while balance is read-only accessible.

The third and last method group comprises a long list of mundane lifecycle meth-
ods, such asjbLoad() andejbStore() , most of which are normally empty when
the CMP service is used. Even though sophisticated IDEs can produce a template im-
plementation of these, they remain a developer’s responsibility, contaminating the func-
tional concern code. Later we shall see how deploy-time weaving can be used to remove
this burden.

InterfaceAccountHome declares &AcCTORY [21] of this bean. Clients can only
generate or obtain instances of the bean by using this interface.

Concrete classes to implemekxtcountHome , Acount andAccountBean are
generated at deployment time. The specifics of these classes vary with the J2EE imple-
mentation. Figure 3 shows some of the classes generated by IBM’s WebSphere Appli-
cation Server (WAS) [24] version 5.0 when deploying this bean.

«interface» «interface» «interface»
javax.ejb.EJBHome Jjavax.ejb.EntityBean javax.ejb.EJBObject
«interface» AccountBean «interface»
AccountHome Account
+create() : Account withdraw() +withdraw()
+findByPrimaryKey() : Account +deposit,
yl ryKey() +deposit() pOsit()

EJSRemoteCMPAccountHome_b7e62f65

+create() : ConcreteAccount_b7e6265
+findByPrimaryKey() : ConcreteAccount_b7e62165

+getid() - String”
+setld()
+getBalance() : float
+setBalance()

iajbloadg)

+ejbStore()
+ejbCreate()
+ejbActivate()
+ejbPassivate()
+ejbRemove()
+setEntityContext()
+unsetEntityContext()

«creates»

ConcreteAccount_b7e62f65

-id : String
-balance : float

+getld() : String
+setld()
+getBalance() : float
+setBalance()

+getBalance() : float

_Account_Stub

+withdraw()
+deposit()
+getBalance() : float

Fig. 3. UML diagram of theAccouNT EJB classes defined by the programmer, and a partial set
of the support classes (in gray) generated by WebSphere Application Server during the deploy-
ment stage.

ConcreteAccount _b7e62f65 is the concrete bean classmplementing the
abstract methods definedAtcountBean as setters and getters for the EJB attributes.
Instances of this class are handed out by cB3SRemoteCMPAccountHome._-
b7e62f65 , which implements the factory interfacAccountHome . Finally,

_Account _Stub is a COBRA-compliant stub class to the bean, to be used by the
bean’s clients.

In support of theAccouNnT bean, WAS deployment generates several additional
classes which are not depicted in the figure: a stub for the home interface, ties for
both stubs, and more. Together, the deployment classes realize various services that the
EJB container provides to the bean: persistence, security, transaction management and
so forth. However, as evident from the figure, all this support is provided within the
standard object oriented programming model.

J2EE application servers offer the developer only minimal control over the gener-
ation of support classes. AspectJ2EE however, gives a full AOP semantics to the de-
ployment process. With deploy-time weaving, the main code is unmodified, both at the
source and the binary level. Further, the execution of this code is unchanged, and can
be carried out on any standard JVM.

AspectJ2EE does not impose constraints on the base code, other than some of the
dictations of the J2EE specification [2,10] on what programmers must, and must not, do
while defining EJBs. These dictations are that attributes must be represented by abstract
getter and setter methods, rather than by a standard Java class member; that instances
must be obtained via the Home interface, rather than by directly invoking a constructor
or any other user-defined method; business methods must fiioiabe or static
and so forth.

4 An OOP-Compliant Implementation of AOP

Having described deployment as a weaving process, we are ready to explain how As-
pectJ2EE is implemented without breaking the object model.

Figure 4 shows how the application of four aspects toAlle OUNT bean is real-
ized. Comparing the figure to Fig. 3 we see that the definition of @dlassuntBean
is simplified by moving the lifecycle methods to a newly defined clagsAccount -
_Lifecycle . In AspectJ2EE the programmer is not required to repeatedly write token
implementations of the lifecycle methods in each bean. Instead, these implementations
are packaged together in a standaifdcycle aspect. ClasddvAccount _Life-
cycle realizes the application of this aspect to our bean.

In general, for each application of an aspect to a class the deploy tool gener-
ates amadvised classso called since its generation is governed by the advices given
in the aspect. There are three other advised classes in the figdvéccount -
_Persistence , AdvAccount _Security and AdvAccount _Transactions
which correspond to the application of aspeBtsrsistence , Security and
Transactions to ACCOUNT.

The sequence of aspect applications is translated into a chain of inheritance starting
at the main bean class. Theot advised classs the first class in this chairmA@v-
Account _Lifecycle in the example), while théerminal advised class the last
(AdvAccount _Transactions in the example). Fields, methods and inner classes
defined in an aspect are copied to its advised cladsised methodm this class are
generated automatically based on the advices in the aspect.

«interface» «interface» «interface»
 javax.ejb.EJBHome javax.ejb.EntityBean Jjavax.ejb.EJBObject
«interface» AccountBean «interface»
AccountHome Account
s Al ith
:;;?Blf/gﬁmﬂg;() : Account :ggggs:ﬁ‘(')"o :vdv:pg:tgo
. +getBal: B
L% vgetid) : Sting getBalance() : float
rvyem— +sati)
< rome +getBalance() : float
+setBalance() _Account_Stub
+create() : AdvAccount_Transactions
+findByPrimaryKey() : AdvAccount_Transactions +withdraw()
T +deposit()
«creat?s» +getBalance() : float
!
i
1
NZ
AdvA t_Ti ti AdvA t_Security AdvAccount_Persi: AdvA t_Lifecycl
-context : TransactionContext -principle : String -conn : Connection -id : String
-modes : Hashtable -requiredRole : String -dirty : boolean -balance : float
-reentrant : String +AdvAccount_Security() -primKeyClass : String -ctx : EntityContext
[+AdvAccount_Transactions() +_init() 'zgﬁhﬁzzﬁiﬂi;gmng +AdvAccount_Lifecycle()
+_init() +withdraw() B : +getld() : String
+withdraw() +deposit() +AdvAccount_Persistence() +setld()
+deposit() +_init() +getBalance() : float
+getld() : String +setld() +setBalance()
+setld() +setBalance() +ejbLoad()
+getBalance() : float +ejblLoad() +ejbStore()
+setBalance() +ejbStore() +ejbCreate()
+ejbCreate() +ejbActivate()
+ejbActivate() +ejbPassivate()
+ejbPassivate() +ejbRemove()
+ejbRemove() +setEntityContext()
+unsetEntityContext()
+getEntityContext()

Fig. 4. The class hierarchy of beahccouNT including programmer defined classes and inter-
faces and the support classes (in gray) generated by the AspectJ2EE deployment tool.

The restriction of aspect targets to classes is one of the key features of AspectJ2EE
which made it possible to reifgspect applicatioras a class. In contrast, AspectJ is
inclined to reify eachaspectas a class, with rich and somewhat confusing semantics
of instantiation controlled by a list of dedicated keyworgdsrthis , pertarget ,
percflow , percflowbelow andissingleton).

We note that although all the advised classes are concrete, only instances of the ter-
minal advised class are created by the bean factory (the generated EJB home). In the
figure for example, clasSoncreteRemoteAccountHome creates alACCOUNTS,
which are always instances AflvAccount _Transactions . It may be technically
possible to construct instances of this bean in which fewer aspects are applied. There
are however deep theoretical reasons for preventing this from happening. Suppose that
a certain aspect applies to a software module such as a class or a routine, etc., in all but
some exceptional incarnations of this module. Placing the tests for these exceptions at
the point of incarnation (routine invocation or class instantiation) leads to scattered and
tangled code, and defeats the very purpose of AOP. The bold statement that some ac-
counts are exempt from security restrictions should be made right where it belongs—as
part of the definition of the security aspect! Indeed, J2EE and other middleware frame-

works do not support conditional application of services to the same business logic.
A simple organization of classes in packages, together with Java accessibility rules,
enforce this restriction and prevents clients from obtaining instances of non-terminal
advised classes.

4.1 Aspects as Mixins and Generics

The AspectJ2EE approach draws power from being similar in concept to familiar mech-
anisms such as generics. In this interpretation, adpersistence is a generic class
definition. The application of an aspect to a class is modelled then as the application
of the corresponding generic definition to that class, yielding a concrete, instantiable
class. Thus, cladsifecycle<AccountBean> is the conceptual equivalent of ap-
plying aspectifecycle to AccountBean , class

Persistence<Lifecycle<AccountBean>>

corresponds to the application of aspBetsistence to the result, etc.
The generic declaration of an aspéapect would be written, in JDK 1.5-liké
syntax, as

class Aspect <bean B> extends B { /* ...* }. (1)

The form (1) allows us to draw parallels between the implementation of aspects in As-
pectJ2EE and another very familiar programming construct, namadyns[25]. Cu-

riously, Kiczaleset. al. mention [8, Sect. 7.4] that mixins can be implemented with
aspects. AspectJ2EE in effect shows the converse, namely that aspects can be imple-
mented using a mixin-like mechanism, where the parallel drawn bethefene () |,

after () andaround () advices and variations of overriding: “before” and “after”
demons, and plain refining.

Interestingly, the programming pattern (1) was one of the prime motivations in the
development oMIX GEN [26], a next-generation implementation of generics for Java
and other OO languages. In extrapolating the evolution of generics mechanisms we see
it supporting our embedding of aspects in the object model, while preserving the solid
formal foundation.

4.2 Inheritance of Aspects, Abstract and Parameterized Aspects

Despite the similarities, we note that AspectJ2EE aspects are more flexible and expres-
sive than mixins and generics. The main difference is that the body of an aspect (the
“* ... * "in (1)) may contain a pointcut definition, which may specify e.g., that a
single advice applies to a range. In contrast, generics and mixins implementations do
not allow specialization based on actual parameter.

We therefore rely on the form (1) as a conceptual model, which should help in un-
derstanding the semantics of AspectJ2EE, rather than any means for syntax definition.

* Note that the Java SDK version 1.5 does not actually support this construct; the type parameter
cannot serve as the superclass of the generic type.

This form is beneficial for example in modelling aspect inheritance. An agdeut-
heriting from an aspe@?2 is simply written as

class Al extends A2 { /* ...* }. 2

Furthermore, with this perspective we can easily distinguish between the two kinds
of abstract aspects of AspectJ. Abstractness due to abstract methods is modelled
by prefixing the class definition (1) with keywoabstract . The more interesting
case of abstractness is when a pointcut is declared but not defined. In AspectJ, ab-
stract aspects of this kind must be made concrete by way of inheritance before they are
applied. In contrast, AspectJ2EE coins the tgranameterized aspecfsr these, and
allows missing pointcut definitions to be provided at application time, as modelled by
the following form

class Aspect <B,Py,..., P> extends B { /* ...* } 3)
where eactP;,i = 1, ..., k, is aformal parameter to the aspect representing an abstract
pointcut.

Parameterized aspects are similar to Caepassiveointcuts and advice [12], pro-
viding a separation between aspect implementation and aspect binding and hence enjoy
similar reusability benefits. A typical example is that of a transaction management as-
pect with amabstract pointcut but specific advice for each of the transactional modes
of methods. Such modes in the J2EE standardegaired (method must execute
within a database transaction; if no transaction exists, start eg)iresnew (the
method must execute within a new transaction), etc.

The most crucial advantage of our approach over Caesar’s is that in the sake of
combat against scattered and tangled code problems, we forbid invocation and binding
of aspects at runtime.

Parameterized aspects are not limited to abstract pointcut definitions. An abstract
aspect can also include what can be thought of as an “abstract field"—a field whose
initial value is specified at application time, as modelled by the form

class Aspect <B, P1,...,Pr, V1,...,Vy,> extends B {* ...* } (4)

where eachV;,i = 1,...,n, is aformal parameter to the aspect representing an abstract
field.

The form (4) makes it possible to apply the same aspect more than once to a single
bean class, with each repeated application providing a distinct new extension. For ex-
ample, consider a parameterized security aspect that accepts two parameters: a pointcut
definition, specifying in which join points in the class should security checks be placed,;
and a field value, specifying the role to require at each of these join points. A single
application of this aspect to the beArkcouNT could look like this:

Security<Account, Pieller, “teller ">

where Pyer IS @ concrete pointcut definition specifying the execution of methods that
require teller authorization. An additional application of the same aspect to the bean
can then be used to specify which methods require client authoriation:

Security<Security<Account, Pieliers “teller ">, Pgjient, “client ">

whereFPgient is also a concrete pointcut definition.

5 The AspectJ2EE Programming Language

In this section we describe the implementation details of AspectJ2EE, and in particular
how aspect application is described and how advice weaving is accomplished by way
of subclassing.

5.1 The Aspect Binding Specification Language

One of the key issues in the design of an AOP language is the binding of aspects to
the core functional code. This binding information includes the specification of the list
of aspects which apply to each software module, their order of application, and even
parameters to this application.

In AspectJ, this binding is specified in a declarative manner. However, the program-
mer, wearing the hat of thapplication assemblej2, Sect. 3.1.2], must take specific
measures to ensure that the specified binding actually takes place, by compiling each
core module with all the aspects that may apply to it. Thus, an aspect with global appli-
cability may not apply to certain classes if these classes are not compiled with it. The
order of application of aspects in AspectJ is governedibglare precedence
statements; without explicit declarations, the precedence of aspects in AspectJ is unde-
fined. Also, AspectJ does not provide any means for passing parameters to the applica-
tion of aspects to modules.

In AspectJ2EE, aspect application is defined per bean class. The application also
allows the application assembler to provide parameters to abstract aspects (including
concrete pointcut definitions and initial field values).

Conceptually, aspect application in AspectJ2EE can be achieved using the generics-
like syntax used in Sect. 4. However, when a large number of aspects is applied to a
single bean (as is common in enterprise applications), the resulting syntactic constructs
can be unwieldy. Hence, AspectJ2EE employs a semantically equivalent syntax based
on XML deployment descriptors, following the tradition of using deployment descrip-
tors to specify the application of services to EJBs in J2EE. Listing 1 gives an example.

As in the J2EE specification, be#fCccouNT is defined by thecentity> XML
element, and internal elements suchcaeme> specify the Java names that make this
bean. In our extension of the deployment descriptor syntax, there is a new XML ele-
ment,<aspect> , for each aspect applied to the bean. Hpeintcut> elementis
used for binding any abstract pointcut, and thalue> element for specifying the
initial value of fields.

As can be seen in the listing, four aspects are applied to our lhé&eoycle
Persistence , Security , andTransactions . All four aspects are drawn from
theaspectj2ee.core aspect library. Deploying this bean would result in the set of
support classes depicted in Fig. 4.

The order of aspect specification determines the precedence of their application.
Therefore, AspectJ2EE does not recognize the AspectJ stateledate prece -
dence . The AspectJ2EE approach is more flexible, since it allows the developer to
select a different order of precedence for the same set of aspects when applied to differ-
ent beans, even in the same project. Intra-aspect precedence (where two or more advice
from the same aspect apply to a single join point) is handled as per regular AspectJ.

Listing 1. A fragment of an EJB’s deployment descriptor specifying the application of aspects to
the ACCOUNT bean.
<entity id= “Account ">

<ejb-name >Account </ejb-name >
<home>aspectj2ee.demo.AccountHome </home >

<remote >aspectj2ee.demo.Account </remote >
<ejb-class >aspectj2ee.demo.AccountBean <lejb-class >
<aspect >
<aspect-class >aspectj2ee.core.Lifecycle <laspect-class >
<laspect >
<aspect >
<aspect-class >aspectj2ee.core.Persistence <laspect-class >
<value name= “primKeyClass ”>java.lang.String </value >

<value name= “primKeyField ">id </value >
<value name= “fieldMap ”>id:ID,balance:BALANCE </Ivalue >

</aspect >
<aspect >
<aspect-class >aspectj2ee.core.Security </aspect-class >
<pointcut name= “secured ”>execution(*(..)) </pointcut >
<value name= “requiredRole " >User </value >
</aspect >
<aspect >
<aspect-class >aspectj2ee.core.Transactions <laspect-class >
<value name= “reentrant ">false </value >
<pointcut name= “requiresnew ”>execution(deposit(..)) ||
execution(withdraw(..)) </pointcut >
<pointcut name= “required ”>execution(*(..)) && !requiresnew() </pointcut >
<laspect >
<lentity >

Note thatAcCOUNT can be viewed as an entity bean with container-managed per-
sistence (CMP EJB) simply because it relies on the core persistence aspect, which paral-
lels the standard J2EE persistence service. Should the developer decide to use a different
persistence technique, that persistence system would itself be defined as an AspectJ2EE
aspect, and applied 'cCOUNT in the same manner. This is parallel to bean-managed
persistence beans (BMP EJBSs) in the sense that the persistence logic is provided by the
application programmer, independent of the services offered by the application server.
However, it is completely unlike BMP EJBs in that the persistence code would not be
tangled with the business logic and scattered across several bean and utility classes. In
this respect, AspectJ2EE completely dissolves the distinction between BMP and CMP
entity beans.

5.2 Implementing Advice Using Deploy-Time Weaving

AspectJ2EE supports each of the join point kinds defined in AspectJ, excéptrfdr

ler andcall . We shall now describe how, for each supported type of join point,
advice can be woven into the entity bean code.

Execution Join Points. The execution (methodSignature) join point is de-
fined when a method is invoked and control transfers to the target method. AspectJ2EE
captureexecution join points by generating advised methods in the advised class,
overriding the inherited methods that match the execution join point. Consider for
example the advice in Listing 2 (a), whose pointcut refers to the execution of the
deposit() method. This is defore () advice which prepends a printout line to
matched join points. When applied /&CCOUNT, only one join point, the execution

of deposit() , will match the specified pointcut. Hence, in the advised class, the
deposit() method will be overridden, and the advice code will be inserted prior to

invoking the original code. The resulting implementatiodeposit() inthe advised
class appears in Listing 2 (b).

Listing 2. (a) Sample advice fodeposit() execution, angb) the resulting advised method.

(a) before (float ~amount): execution (deposit(float)) && args (amount) {
System.out.printin(“Depositing " + amount);

(b) void deposit(float amount) {
System.out.printin(“Depositing " + amount);
super .deposit(amount);

Recall that only instances of the terminal advised class exist in the system, so ev-
ery call to the advised methodé€posit() in this example) would be intercepted
by means of regular polymorphism. Overriding and refinement can be used to im-
plementbefore () , after () (includingafter () returning and after ()
throwing), andaround () advice. Witharound () advice, theproceed key-
word would indicate the location of the call to the inherited implementation.

The example in Listing 3 demonstrates the supportdfer () throwing
advice. The advice, listed in part (a) of the listing, would generate a printout if the
withdraw() method resulted in amsufficientFundsException . The ex-
ception itself is re-thrown, i.e., the advice does not swallow it. The resulting advised
method appears in part (b) of the listing. It shows refter () throwing advice
are implemented by encapsulating the original implementatioririn dcatch block.

Listing 3. (a) Sampleafter () throwing advice, applied to a method execution join point,
and(b) the resulting advised method.

(a) after () throwing (InsufficientFundsException ex)
throws InsufficientFundsException:
execution (withdraw(..)) {
System.out.printin(“Withdrawal failed, exception message:
+ ex.getMessage());

throw ex;
}
(b) void withdraw(float amount) throws InsufficientFundsException {
try
super .withdraw(amount);
catch (InsufficientFundsException ex) {
System.out.printin(“Withdrawal failed, exception message:
+ ex.getMessage());
throw ex;
}

The execution join point cannot refer fivate or static methods, since
the invocation of these methods cannot be intercepted using polymorphism. The As-
pectJ2EE compiler issues a warning if a pointcut matches only the execution of such
methods.
Constructor Execution Join Points. The constructor execution join point in AspectJ
is defined using the same keyword as regular method execution. The difference lies in

the method signature, which uses the keywoedy to indicate the class’s constructor.
For example, the pointcetxecution (*. new(..)) would match the execution of
any constructor in the class to which it is applied.

Unlike regular methods, constructors are limited with regard to the location in the
code where the inherited implementaticuger ()) must be invoked. In particular,
the invocation must occur before any field access or virtual method invocation. Hence,
join points that refer to constructor signatures can be advised, but any code that executes
before the inherited constructdrdfore () advice, or parts ohround () advice that
appear prior to the invocation pfoceed ()) must adhere to these rules.

An around () advice for constructor execution that does not contain an invocation
of proceed () would be the equivalent of a Java constructor that does not invoke
super () (the inherited constructor). This is tantamount to having an implicit call to
super () , and is possible only if the advised class contains a constructor that does not
take any arguments.

It is generally preferable to affect the object initialization process simply defining a
constructor in the aspect, rather than by applying advice to constructor execution join
points.

Class Initialization Join Points. EJBs must not contain read/write static fields, making
static class initialization mostly mute. Still, tttaticinitialization (type -
Signature) join point can be used (withfter () advice only), resulting in a static
initialization block in the advised class.

Field Read and Write Access Join PointsField access join points match references

to and assignments of fields. In AspectJ2EE, field access join points apply tatEJB
tributesonly. Recall that attributes are not declared as fields; rather, they are indicated
by the programmer using abstract getter and setter methods in the bean class. These
methods are then implemented in the concrete bean class (in J2EE) or in the root ad-
vised class (in AspectJ2EE).

If no advice is provided for a given attribute’s read or write access, the respective
method implementation in the root advised class would simply read or update the class
field. The field itself is defined also in the root advised class. However, an attribute can
be advised usingefore () , around () andafter () advice, which would affect
the way the getter and setter method are implemented.

Remote Call Join Points.Theremotecall join point designator is a new keyword
introduced in AspectJ2EE. Semantically, it is similar to Aspeadls join point des-
ignator, defining a join point at a method invocation site. However, it only applies to
remote calls to various methods; local calls are unaffected.

Remote call join points are implemented by affecting the stub generated at deploy
time for use by EJB clients (such a&ccount _Stub in Fig. 4). For example, the
around () advice from Listing 4 (a) adds printout code both before and after the
remote invocation oAccount.deposit() . The generated stub class would include
adeposit() method like the one shown in part (b) of that listing. Since the advised
code appears in the stub, rather than in a server-side class, the output in this example
will be generated by the client program.

Listing4. (a) Sample advice for a methodtemotecall join point, and(b) the resulting
deposit() method generated in the RMI stub class.

(a) around (): remotecall (* * Account.deposit(..))

System.out.printin(“About to perform transaction. ");
proceed ();
System.out.printin(“Transaction completed. ");

(b) public void deposit(float arg0) {

System.out.printin(“About to perform transaction. ");
/I ... normal RMI/IIOP method invocation code ...
System.out.printin(“Transaction completed. ")

Remote call join points can only refer to methods that are defined in the bean’s
remote interface. Advice usimgmotecall can be used to localize tier-cutting con-
cerns, as detailed in Sect. 6.

5.3 Control-Flow Based Pointcuts

Aspectd includes two special keyworddlow and cflowbelow , for specifying
control-flow based limitations on pointcuts. Such limitations are used, for example, to
prevent recursive application of advice. Both keywords are supported by AspectJ2EE.
The manner in which control-flow limitations are enforced relies on the fact that
deployment can be done in a completely platform-specific manner, since at deploy time,
the exact target platform (JVM implementation) is known. Different JVMs use different
schemes for storing a stack snapshot in instances gftteelang.Throwable
class [27] (this information is used, for example, by the metjaagh.lang.Ex -
ception.printStackTrace()). Such a stack snapshot (obtained via an instance
of Throwable , or any other JVM-specific means) can be examined in order to test for
cflow /cflowbelow conditions at runtime.

5.4 The Core Aspects Library

AspectJ2EE’s definition includes a standard library of core aspects. Four of these as-
pects were used in theccounNTexample, as shown in Fig. 4. Here is a brief overview
of these four, and their effect on the advised classes:

1. The aspectj2ee.core.Lifecycle aspect (used to generated the root ad-
vised class) provides a default implementation to the J2EE lifecycle methods.
The implementations oetEntityContext() , unsetEntityContext ,
andgetEntityContext() maintain the entity context object; all other meth-
ods have an empty implementation. These easily-available common defaults make
the development of EJBs somewhat easier (compared to standard J2EE develop-
ment); the user-provideficcountBean class is now shorter, and contains strictly
business logic methogls

5 The fact that the fields used to implement the attributes, and the concrete getter and setter
method for these attributes, appeaAidvAccount _Lifecycle (in Fig. 4) stems from the
fact that this is the root advised class, and is not related thifeeycle aspect per se.

2. The aspectj2ee.core.Persistence aspect provides a CMP-like persis-
tence service. The attribute-to-database mapping properties are detailed in the pa-
rameters passed to this aspect in the deployment descriptor. This aspect advises
some of the lifecycle methods, as well as the attribute setters (for maintaining a
“dirty” flag), hence these methods are all overridden in the advised class.

3. The aspectj2ee.core.Security aspect can be used to limit the access to
various methods based on user authentication. This is a generic security solution, on
par with the standard J2EE security service. More detailed security decisions, such
as role-based variations on method behavior, can be defined using project-specific
aspects without tangling security-related code with the functional concern code.

4. Finally, the aspectj2ee.core.Transactions aspect is used to provide
transaction management capabilities to all business-logic methods. The parameters
passed to it dictate what transactional behavior will be applied to each method.

6 Innovative Uses for AOP in Multi-Tier Applications

The use of aspects in multi-tier enterprise applications can reduce the amount of cross-
cutting concerns and tangled code. As discussed in Sect. 2, the core J2EE aspects were
shown to be highly effective to this end, and the ability to define additional aspects (as
well as alternative implementations to existing ones) increases this effectiveness and
enables better program modularization.

But AspectJ2EE also allows developers to confront a different kind of cross-cutting
non-functional concerns: aspects of the software that are implemented in part on the
client and in part on the server. Here, the cross-cutting is extremely acute as the con-
cern is implemented not just across several classes and modules, but literally across
programs. We call theger-cutting concerns

The remainder of this section shows that a number of several key tier-cutting con-
cerns can be represented as single aspect by usingrti@ecall join point desig-
nator. In each of these examples, the client code is unaffected; it is the RMI stub, which
acts as a proxy for the remote object, which is being modified.

6.1 Client-Side Checking of Preconditions

Method preconditions [28] are commonly presented as a natural candidate for non-
functional concerns being expressed cleanly and neatly in aspects. This allows precon-
ditions to be specified without littering the core program, and further allows precondi-
tion testing to be easily disabled.

Preconditions should normally be checked at the method execution point, i.e., in
the case of multi-tier applications, on the server. However, a precondition defines a
contract that binds whoever invokes the method. Hence, by definition, precondition
violations can be detected and flagged at the invocation point, i.e., on the client. In a
normal program, this matters very little; but in a multi-tier application, trapping failed
preconditions on the client can prevent the round-trip of a remote method invocation,
which incurs a heavy overhead (including communications, parameter marshaling and
un-marshaling, etc.).

Listing 5 presents a simple precondition that can be applied tAtt®UNT EJB:
neitherwithdraw() nor deposit() are ever supposed to be called with a non-
positive amount as a parameter. If such an occurrence is dete®eg@ndition -
FailedException is thrown. Using two named pointcut definitions, the test is ap-
plied both at the client and at the server.

In addition to providing a degree of safety, such aspects decrease the server load by
blocking futile invocation attempts. In a trusted computing environment, if the precon-
ditioned methods are invoked only by clients (and never by other server-side methods),
the server load can be further reduced by completely disabling server-side tests.

Listing 5. An aspect that can be used to apply precondition testing (both client- and server-side)
to theACCOUNTEJB.

public aspect EnsurePositiveAmounts {
pointcut clientSide(float amount):
(remotecall (public void Account.deposit(float)) ||
remotecall (public void Account.withdraw(float))) && args (amount);

pointcut serverSide(float — amount):
(execution (public void Account.deposit(float)) ||
execution (public void Account.withdraw(float))) && args (amount);

before (float amount): clientSide(amount) || serverSide(amount) {
if (amount <= 0.0)
throw new PreconditionFailedException(“Non-positive amount: ”+amount);
}

When using aspects to implement preconditions, always bear in mind that precon-
ditions test for logically flawed states, rather than states that are unacceptable from a
business process point of view. Thus, preventing the withdrawal of excessive amounts
should not be defined as a precondition, but rather as pavitbfiraw() ’s imple-
mentation.

6.2 Symmetrical Data Processing

By adding code both at the sending and receiving ends of remotely-invoked methods,
we are able to create what can be viewed as an additional layer in the communication
stack. For example, we can add encryption at the stub and decryption at the remote tie,
for increased security; or we can apply a compression scheme (compressing information
at the client, decompressing it at the server) to reduce the communications overhead,;
and so forth.

Consider an EJB representing a university course, with the medugister()
accepting &/ector of names of studentsSfring s) to be registered to that course.
The aspect in Listing 6 shows how the remote invocation of this method can be made
more effective by applying compression. Assume that the €GasspressedVector
represents ¥ector in a compressed (space-efficient) manner. Applying this aspect to
the CourRsSEEJB would result in a new methorkgisterCompressed() , added
to the advised class. Unlike most non-public methods, this one would be represented in
the class’s RMI stub, since it is invoked by code that is included in the stub itself (that
code would reside in the advised stub for thgister() method).

Listing 6. An aspect that can be used for sending a compressed version of an argument over the
communications line, when applied to td®@URSEEJB.

public aspect CompressRegistrationList
around (Vector v): remotecall (public void register(Vector)) && args (v) {
CompressedVector cv = new CompressedVector(v);

registerCompressed(cv);

void registerCompressed(CompressedVector cv) {
Vector v = cv.decompress();
register(v);

Compression and encryption can be applied not only for arguments, but also for re-
turn values. In this case, the aspect shouldafiex () returning advice for both
theremotecall andexecution join points. Advice forafter () throwing
can be used for processing exceptions (which are often information-laden, due to the
embedded call stack, and would hence benefit greatly from compression).

6.3 Memoization

Memoization (the practice of caching method results) is another classic use for aspects.
When applied to a multi-tier application, this should be done with care, since in many
cases the client tier has no way to know when the cached data becomes stale and should
be replaced. Still, it is often both possible and practical, and using AspectJ2EE it can
be done without changing any part of the client program.

For example, consider a session EJB that reports international currency exchange
rates. These rates are changed on a daily basis; for the sake of simplicity, assume that
they are changed every midnight. The aspect presented in Listing 7 can be used to
enable client-side caching of rates.

7 Conclusions and Future Work

We believe that AspectJ2EE opens a new world of possibilities to developers of EJB-
based applications, allowing them to extend, enhance and replace the standard services
provided by EJB containers with services of their own. EJB services can be distributed
and used across several projects; libraries of services can be defined and reused.

Aspects in AspectJ2EE are less general, and have a more defined target, than their
AspectJ counterparts. Also, even though the same aspect can be applied (possibly with
different parameters) to several EJBs, each such application can only affect its specific
EJB target. Therefore, we expect AspectJ2EE aspects should be more understandable,
and the woven programs more maintainable.

By using deploy-time weaving, AspectJ2EE allows the programmer’s code to be
advised without being tampered with. Programmers can define methods that will pro-
vide business functionality while being oblivious to the various services (transaction
management, security, etc.) applied to these methods.

And in addition to the familiar services provided by EJB containers, AspectJ2EE
aspects can be used to unscatter and untangle tier-cutting concerns, which in many
cases can improve an application server’s performance.

Listing 7. An aspect that can be used for caching results from a currency exchange-rates EJB.

public aspect CacheExchangeRates {
class CacheData { int year; int dayOfYear; float value; }

Hashtable cache = new Hashtable();

pointcut clientSide(String currencyName):
remotecall (public float getExchangeRate(String)) && args (currencyName);

around (String currencyName): clientSide(currencyName) {
Calendar now = Calendar.getinstance();
int currentYear = now. get (Calendar.YEAR);
int currentDayOfYear = now. get (Calendar.DAY _OF.YEAR);

/I First, try and find the value in the cache
CacheData cacheData = (CacheData) cache. get (currencyName);
if (cacheData != null) && currentYear = cacheData.year &&
currentDayOfYear == cacheData.dayOfYear)
return cacheData.value; // Value is valid; no remote invaocation

float result = proceed (currencyName); // Normally obtain the value
/I Cache the value for future reference

cacheData = new CacheData(); cacheData.year = currentYear;
cacheData.dayOfYear = currentDayOfYear; cacheData.value = result;

cache.put(currencyName, cacheData);

Work is currently underway to implement AspectJ2EE as a new deployment process
for the IBM WebSphere Application Server, version 5.0. We will then use AspectJ2EE
to define every service currently provided by WebSphere as an aspect. Ideally, the result
would be a standard-compliant J2EE server that can easily be extended using Aspect-
Oriented Programming concepts.

References

1. Shannon, B., Hapner, M., Matena, V., Davidson, J., Davidson, J., Cable, L.: Java 2 Platform,
Enterprise Edition: Platform and Component Specifications. Addison-Wesley (2000)

2. DeMichiel, L.G., Yalginalp, L.U., Krishnan, S.: Enterprise JavaBeans specification, version
2.0. http://java.sun.com/j2ee/ (2001)

3. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proceedings European
Conference on Object-Oriented Programming. Volume 1241. Springer-Verlag, Berlin, Hei-
delberg, and New York (1997) 220-242

4. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence aspects with
AspectJ. In: Proceedings of OOPSLA02, Object Oriented Programming Systems Languages
and Applications, ACM Press (2002)

5. Hao, R., Boloni, L., Jun, K., Marinescu, D.C.: An aspect-oriented approach to distributed
object security. In: Proceedings of The Fourth IEEE Symposium on Computers and Com-
munications, IEEE Press (1999)

6. Kim, H., Clarke, S.: The relevance of AOP to an applications programmer in an EJB envi-
ronment. First International Conference on Aspect-Oriented Software Development (AOSD)
Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS)
(2002)

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Choi, J.P.: Aspect-oriented programming with Enterprise JavaBeans. In: 4th International

Enterprise Distributed Object Computing Conference (EDOC 2000), IEEE Computer Soci-
ety (2000) 252-261

. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview

of AspectJ. Lecture Notes in Computer Scie@6&2(2001) 327-355

. American National Standards Institute, Inc.: Programming language — COBOL, ANSI

X3.23-1985 edition (1985)

Shannon, B.: Java 2 platform enterprise edition specification, v1.3. http://java.sun.com/-
j2ee/1.3/download.html#platformspec (2001)

Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning, Green-
wich (2003)

Pichler, R., Ostermann, K., Mezini, M.: On aspectualizing component models. Software —
Practice and Experien@&3 (2003) 957-974

Bodoff, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., Stearns, B.: The J2EE Tutorial.
Addison-Wesley (2002)

Duclos, F., Estublier, J., Morat, P.: Describing and using non functional aspects in component
based applications. In: Proceedings of the 1st International Conference on Aspect-Oriented
Software Development (AOSD 2002). (2002) 22—-26

Weinschenk, C.: The application server market is dead; long live the application server
market. http://www.serverwatch.com/tutorials/article.php/2234311 (2003)

JBoss Group: JBoss product homepage. http://www.jboss.org/ (2003)

Burke, B., Brock, A.: Aspect-oriented programming and JBoss. http://www.onjava.com/-
Ipt/a/3878 (2003)

Mezini, M., Ostermann, K.: Conquering aspects with Caesar. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD 2003), ACM
Press (2003)

Walker, R.J., Baniassad, E.L.A., Murphy, G.C.: An initial assessment of aspect-oriented
programming. In: IEEE International Conference on Software Engineering (ICSE). (1999)
120-130

Constantinides, C.A., Elrad, T., Fayad, M.E.: Extending the object model to provide explicit
support for crosscutting concerns. Software — Practice and ExpeBr{ig02) 703—-734
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing. Addison-Wesley (1995)

Cohen, T., Hadad, E.: An enhanced framework for providing explicit support for crosscutting
concerns in object-oriented languages. Submitted to Software — Practice and Experience
(2004)

Sun Microsystems, Inc.: rmic - the Java RMI compiler. http://java.sun.com/j2se/1.4.2/docs/-
tooldocs/solaris/rmic.html (2003)

IBM Corp.: IBM WebSphere Application Server product family homepage. http://www-
3.ibm.com/software/infol/websphere/index.jsp?tab=products/appserv (2003)

Bracha, G., Cook, W.: Mixin-based inheritance. In Meyrowitz, N., ed.: Proceedings of
the Conference on Object-Oriented Programming: Systems, Languages, and Applications /
Proceedings of the European Conference on Object-Oriented Programming, Ottawa, Canada,
ACM Press (1990) 303-311

Allen, E., Bannet, J., Cartwright, R.: A first-class approach to genericity. In: Proceedings
of OOPSLA03, Object Oriented Programming Systems Languages and Applications, ACM
Press (2003)

Chan, P., Lee, R., Kramer, D.: The Java Class Libraries. 2 edn. Volume 1. Addison-Wesley
(1998)

Meyer, B.: Object-Oriented Software Constructioff. @dn. Prentice-Hall (1997)

