BPELJ: BPEL for Java
A Joint White Paper by BEA and IBM
March 2004

Authors

Michael Blow (BEA)
Yaron Goland (BEA)
Matthias Kloppmann (IBM)
Frank Leymann (IBM)
Gerhard Pfau (IBM)

Dieter Roller (IBM)
Michael Rowley (BEA)

Copyright Notice

© Copyright BEA Systems, Inc. and International Business Machines Corp 2004. All rights reserved.

No part of this document may be reproduced or transmitted in any form without written permission from
BEA Systems, Inc. (“BEA”) and International Business Machines Corporation (“IBM”).

This is a preliminary document and may be changed substantially over time. The information contained in
this document represents the current view of IBM and BEA on the issues discussed as of the date of
publication and should not be interpreted to be a commitment on the part of IBM and BEA. All data as
well as any statements regarding future direction and intent are subject to change and withdrawal without
notice. This information could include technical inaccuracies or typographical errors.

The presentation, distribution or other dissemination of the information contained in this document is not a
license, either express or implied, to any intellectual property owned or controlled by IBM or BEA and\or
any other third party. IBM, BEA and\or any other third party may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The
furnishing of this document does not give you any license to IBM's or BEA's or any other third party's
patents, trademarks, copyrights, or other intellectual property.

The information provided in this document is distributed “AS 1S” AND WITH ALL FAULTS, without any
warranty, express or implied. IBM and BEA EXPRESSLY DISCLAIM ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR

TITLE. IBM and BEA shall have no responsibility to update this information.

IN NO EVENT WILL IBM OR BEA BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO
ANY USE OR DSTRIBUTION OF THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

BEA is a registered trademark of BEA Systems, Inc.
IBM is a registered trademark of International Business Machines Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both. Other company, product, or service names may
be trademarks or service marks of others.

Page 1 of 24



Table of Contents

gLl 18 o1 o o TP ORPRR 3
= 010 PR 6
1T 0] 1= £ 9
Binding XML Variabl€S 10 JAVA........coeiiiieiiiiesiecie ettt nne s 10
Variabl@S With JAVA TYPES ... .ecieieeieee ettt e sttt et e te e sae e teeneesseeteeneesneenseans 11
(@707 070 |1 110 ] SRRSO 12
N o] o @0 o 11 0] TSP UTURT PR TRPR 13
JAVA PAINEL LINKS.... oottt sttt st b e et e se e be et e saeesreense e 13
Using Partner LinkS from SNIPPELS........ooeeeiiericie sttt s sse e sneenne s 15
BPEL CorrelationS With JAVA.........cooiiiiiiieieiesiesie et sae e nne s 16
Snippet ACCESS IO COrrelalion SELS........cceiieieeiereeie e sre e 17
Callback Objects as an Alternative to Correlation SELS.........ccoveevereineenenie e 18
BPELJ @S Java Class ANNOELION .......cc.cieeieiieiesiesie ettt st s 18
Java Deadline and DUration EXPrESSIONS.........couiuiieereriieriesieeie e sies e s ssessseeee e 20
DAAIINES. ...ttt bttt ettt b e bbbt neas 20
[0 = 1o TSP PR TR 20

[ LS 1ol (= o (0] USSR 20
L= 0= o (0] SRR 21
Fault Handlers in ACID SCOPES........cieerieeienieerieeeeseesseeeeseesseseesseessesseessesssessesssesssesseesses 22

(@0 070! 1015 o o SRS 22
ACKNOWIEOGEIMENTS......c.eeiieiteeie ettt st e s re et et esse e aeesaesaeeteeneesaeenseeneenseensenns 23
Appendix 1: ChangeST0 BPEL .........cocci it 24

Page 2 of 24



Introduction

The Web Services Business Process Execution Language (BPEL) is a programming language for
specifying business processes that involve Web services. BPEL is especialy good at supporting
long-running conversations with business partners. Even before the standard is formally released
it is becoming clear that BPEL will be the most widely adopted standard for business processes
involving Web services.

BPEL is geared towards “programming in the large”, which supports the logic of business
processes. These business processes are self-contained applications that use Web services as
activities that implement business functions. BPEL does not try to be a general-purpose
programming language. Instead, it is assumed that BPEL will be combined with other languages,
which are used to implement business functions (“programming in the small”).

This white paper proposes a combination of BPEL with Java, named BPEL J, that allows these
two programming languages to be used together to build complete business process applications.
By enabling BPEL and Javato work together, BPELJ alows each language to do what it does
best.

The following is atable that lists the kinds of tasks that are best suited to BPEL 's strengths along
side of alist of some of the tasks within a process that would be best accomplished with Java.

BPEL

Java

Describe the logic of business processes
Maintain multiple long-running units of
execution that are also interruptible
Selectively compensate completed
activities of long-running units of

execution in case of failures

Resume work where left because of failures
to minimize work to be redone

Route incoming messages to the right place
within the right process

Accept one of avariety of possible
expected incoming message types.

Define a set of activities that should occur
at adesignated time and in pre-defined
order.

Send messages to Web services.

Cdculate avalueto be inserted into a
document.

Construct a document to be sent to aweb
service using information from other
documents and variables.

Deconstruct a document that has arrived —
finding important values, converting them
and then inserting them into other
documents.

Calculate avalue that will be used to affect
the flow of control within the business
process (e.g. loops and branches)

Perform side-effects without having to
create Web services

BPEL J enables Java and BPEL to cooperate by allowing sections of Java code, called Java
snippets, to be included in BPEL process definitions. Snippets are expressions or small blocks of
Java code that can be used for things such as: loop conditions, branching conditions, variable
initialization, Web service message preparation, logic of business functions etc. BPELJ

Page 3 of 24



introduces a few minor changes to BPEL aswell as several extensionsin order to fit BPEL and
Java conveniently together. (The changesto BPEL are listed in the appendix.) However, if any
of these changes are not accepted, BPELJ will use existing features of BPEL, with a somewhat
more awkward result.

BPEL J extensions are introduced via extension points defined in the BPEL standard to provide
the new functionality. A BPELJ process will execute on any platform that supports the BPELJ
extensionsto BPEL. Note especially, that BPELJ does not include any extensions that are
required for all BPELJ processes, so any BPEL processis avalid, executable BPELJ process.

In addition to making it possible to use Java to do the computational work of a business process,
BPEL J also makesit possible to use BPEL to orchestrate long-running interactions with J2EE
components. Thereisalot of businesslogic that is currently deployed in Java components and
BPEL J makes it possible to create business processes that include these components as well as
Web services within the same business process. So, for example, consder the simple business
process picture below. In this process, the white boxes are for web service invocations and the
shaded boxes are invocations of Java methods. The box with dashed lines represents an activity
that contains a snippet of embedded Java code. This example process will be explained in more
detail below.

Page 4 of 24



Receive Price
Check Request

Lookup Price

Lookup Tax Rate L ookup Discount

Publish Inquiry Event

Return Response

BPEL 1.1 introduced the concept of a partner link type that can be added to aWSDL file to
declare the interfaces that two collaborating business partners can expect from each other. These
partner link types make use of WSDL port types as the means of specifying interfaces. A BPEL
process declares the long running conversations that it expects to be involved in by defining
partner linksthat use these types. In order to allow processes to use Javaresources in addition to
Web services, BPELJ makes it possible to create partner link types whose interfaces are defined
using Javainterfaces rather than WSDL port types. Partner links within a BPELJ process that
make use of these new partner link types are referred to as Java partner links.

One of the primary differences between a Javainterface and a Web service port type is that the
methods of a Java interface can accept arbitrary Java objects as parameters, whereas a Web
service is defined to accept XML. In order to make effective use of Java partner links, a process
must be able to prepare Java objects that can be passed as input parameters and to be able to
accept Java objects as return values. BPELJ accomplishes this by allowing process variables to
be declared using Java interface types, in addition to the XML Schema types and WSDL
message types that BPEL uses for variables. A snippet within a BPELJ process can then create a
Javainstance, assign it to a BPEL J variable, call a number of its methods to properly prepare it,
and then send the object as a parameter to a method provided by a Java partner link. The object

Page 5 of 24



that is sent as the return value of the method can then be stored in another variable, prior to its
use elsewhere in the process.

A BPELJ process definition may be a stand-alone document or it may be embedded within a
Javafile as an annotation of a Java class. Annotations of classes appear within block comments
above the class declaration, although in JZSEi 1.5 and future versions of Java, it will be possible
to specify such annotations with an explicit syr‘tax that does not require the annotation to bein a
comment. When a BPELJ process is defined in the annotation of a class the classisreferred to
asaprocess class. There are no restrictions on the interface of the process class and there are
also no resulting restrictions on the BPEL J process definition. Snippets in such a BPELJ process
have access to the package visible fields and methods of the process class for any variable
defined to be of that class.

Example

The example process pictured in the introduction is a process to provide product price checks.
There are no branches or loops in the process, but the process does make use of a mix of Web
service partner links, Java partner links, in-lined Java snippets. Here iswhat each step does:

1. Receive Price Check Request: receives the Web service request that initiates the process.

2. Lookup Price: looks up the price from a backend Web service.

3. Lookup Tax Rate and L ookup Discount: Two parallel activities— one that |ooks up the tax
rate for the customer's state by calling a method on an EJB and the other that looks up the
customer'sdiscount. The state of the customer is accessed using X Path.

4. Add Tax: isan activity that contains in-line Java code (referred to as a snippet activity). It
multiplies the subtotal by the tax rate and sets the total in the response.

5. Publish Inquiry Event: publishes the response that will be sent to the customer (which
includes information about the request) to a JMS topic whose purpose is to publicize the fact
that a customer islooking up the price of a product, for any person or system that might care
to track such inquiries.

6. Return Response: sends the response document to the customer viaaWeb service call.

The BPELJ for this example looks like the following:

<process nanme="Pri ceQuote" expressionLanguage="http://jcp.org/java"
bpel j : package="com nycom processes"
xm ns="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- process/ "
t ar get Namespace="http:// mycom com bp/ Pri ceQuot e"
xm ns: bpel j ="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness- pr ocess/j ava"
xm ns: pg="http:// mycom com ws/ ext ernal / Pri ceQuot e" >

<part ner Li nks>
<partnerLink name="client" partnerLinkType="pq: pri ceQuot eLT" myRol e="provi der"
part ner Rol e="requestor"/>
<part ner Li nk name="backend" partnerLi nkType="pq: pri ceQuot eLT" nyRol e="request or"
part ner Rol e="provi der"/ >
<part nerLi nk name="r at eLookup" partnerLi nkType="bpel j: com mycom ej b. Rat eLookup"/ >
<part ner Li nk narme="i nqui ryTopi c"
part ner Li nkType="bpel j : j avax. j ns. Topi cPubl i sher"/>
</ part ner Li nks>

<vari abl es>
<vari abl e nane="request" type="pq: pri ceRequest"/>

Page 6 of 24



<vari abl e name="response" type="pq: pri ceResponse"/ >

<vari abl e nane="t axRate" type="xsd:float"/>

<vari abl e name="di scount" type="xsd:float"/>

<vari abl e name="j nsMessage" type="bpelj:javax.ns. Text Message"/>
</vari abl es>

<correl ati onSet s>
<correl ati onSet name="client"
al gorithm="http://sonest andards. or g/ ast andar d/ nechani sni'/ >

</ correl ati onSet s>

<sequence>
<recei ve nane="Recei ve Price Check Request" partnerlLink="client"
oper ati on="request Pri ceASync" createl nstance="true" >
<correl ations>
<correlation set="client" initiate="yes"/>
</correl ati ons>
<out put part="request" variabl e="request"/>
</recei ve>
<i nvoke nanme="Lookup Price" partnerLink="backend" operation="requestPriceSync">
<i nput part="request" vari abl e="request"/>
<out put part="response" vari abl e="response"/>
</i nvoke>
<fl ow>
<i nvoke nane="Lookup Tax Rate" partnerLink="taxLookup"
oper ati on="| ookupTaxRat e" >
<i nput part="request" vari abl e="request">
<I— get the state from"request" and pass just that. -->
<query expressi onLanguage="http://w3c. org/ xpat hl. 0" >
[/ buyer/ addr ess/ st at e
</ query>
</i nput >
<out put vari abl e="t axRate"/>
</i nvoke>
<i nvoke nane="Lookup Di scount Rate" partnerLink="ratelLookup
oper ati on="1 ookupDi scount " >
<i nput part="request" variabl e="request"/>
<out put part="response" vari abl e="di scount"/>
</ i nvoke>
</fl ow>
<bpel j : sni ppet nane="Cal cul ate Total ">
<bpel j : code>
response. set TaxRat e(t axRat e) ;
response. set Di scount (di scount. getRRate());
float subtotal = response.getSubtotal ();
subtotal = subtotal * (1 — discount.getRate());
response. set Subt ot al (subtotal ) ;
float taxes = subtotal * taxRate
float total = subtotal + taxes;
response. set Tax(t axes);
response. set Total (total);
/| Prepare the text nmessage to be sent in the next activity.
j msMessage = p_i nquiryTopi c. get Sessi on() . creat eText Message(response) ;
</ bpel j : code>
</ bpel j : sni ppet >
<i nvoke nanme="Publish I nquiry Event" partnerLink="inquiryTopic"
oper ati on="publ i sh">
<i nput part="nessage" vari abl e="j msMessage"/>
</i nvoke>
<i nvoke nanme="Return Response" partnerLink="client" operation="returnResponse">
<correl ations>
<correlation set="client" initiate="no"/>
</correl ati ons>

Page 7 of 24



<i nput part="response" vari abl e="response"/>
</i nvoke>
</ sequence>
</ pr ocess>

The top of this business process starts with two attributes of note:

1. expressionLanguage="http://jcp.org/java", which saysthat any expressions that don't
say otherwise are written in Java.

2. Dbpel j: package="com mycom processes", which saysthat any embedded Java code should
be considered to be in the com nycom pr ocesses package.

The <par t ner Li nks> section includes two partner links ("r at eLookup” and "i nqui r yTopi c")
that are for interacting with Javaresources. Ther at eLookup partner link isfor an EJB, while
thei nqui ryTopi c isaJMStopic. Both of these partner links only specify asingle role (since
there are no asynchronous callbacks), so they can be specified by only naming the Javainterface
of the onerole.

Thelast variable in the <var i abl es> section isnamed "j nsMessage”. Itstypeisastandard
JMS TextMessage object, which is specified by using a QName with a prefix that identifies the
bpel j : namespace, and alocal part that is specifiesaclass ("bpel j :j avax.j ms.Text Message").

All of the invoke activities use a proposed new BPEL syntax that alows for the assignment of
input message parts and output message parts using <i nput > and <out put > child elements of
invoke. Thisismore convenient than creating and populating temporary variables that hold
WSDL message types, and also makes it possible to use the same syntax to pass multiple
parameters to a Java method when the invoke is for a Java partner link.

The "Lookup Tax Rate" invoke activity isthe first activity that calls a Java method. In this case,
the <i nput > element uses an XPath expression to lookup a string representing the state of the
customer, which it passesin to the | ookupTaxRat e method of ther at eLookup EJB.

Following the flow thereis a<bpel j :sni ppet > activity. ThisisaBPELJ specific activity that is
composed of in-line Java code. The code can access al of the BPEL variables that are in scope
at the location of the activity. BPEL variables that are defined with XML types are mapped to
Javafor the sake of the snippet code using SDO (although the XML binding technology can be
changed by using an xni Bi ndi ng attribute).

The snippet activity ends with aline that sets the value of thej msMessage BPEL variable by
using a simple Java assignment statement. That variable isthen used by the last invoke activity
to publish the message to a IM S topic.

These are afew of the things that can be done with BPELJ. Therest of the paper will describe
al of these, aswell as other constructs, in more detail.

Page 8 of 24



Snippets

Java snippets are Java expressions or statement blocks that are embedded in a BPEL process
definition. Snippet code may assume that it is running in a J2EE container. Snippets may be
used:
as the body of snippet activities;
for variableinitialization;
anywhere BPEL expressions may be used (the following is from the BPEL spec):
0 Boolean-valued expressions (transition conditions, join conditions, while condition, and
switch cases)
0 Deadline-valued expressions ("until" attribute of onAlarm and wait)
0 Duration-valued expressions ("for" attribute of onAlarm and wait)
0 General expressions (assignment)

Snippets have access to all variables that are in scope at the location of the snippet. The variables
are represented as regular Java variables. Changing such a variable within a snippet causes the
variable to be changed in the process once the snippet is compl ete.

Snippets also have access to partner links and correlation sets and the status of incoming links as
if they were local variables. Each of these constructs will be covered in later sections.

Hereis an example snippet that is simpler than the example in the introduction. It smply reads
two BPEL variables (t axRat e and subt ot al ) and then setsa variable called sal esTax.

<vari abl es>
<vari abl e name="t axRate" type="xsd:fl oat">
<vari abl e nane="subtotal " type="xsd: fl oat">
<vari abl e nane="sal esTax" type="xsd: fl oat">
</vari abl es>

<bpel j : sni ppet >
<bpel j : code>
sal esTax = subtotal * taxRate;

</ bpel j : code>
<bpel j : sni ppet >

Because the variables are represented as local variables, thereis no problem if there are BPEL
variables of the same name in different scopes. Variable names are disambiguated by applying
BPEL’ s scoping rules at the location of the snippet. The types of the variables will be based on
the XML binding technology that isin scope, which is discussed more in the section below titled
"Binding XML Variablesto Java'. The example above assumes that simple types from XML
Schema are mapped to Java types according to the rules defined by SDO.

In the example above the Java code is inside of a new kind of BPEL activity called a snippet
activity. Since <bpel j : sni ppet > isaBPEL activity, in addition to having a<bpel j : code>
child element, it can have other standard BPEL standard elements, such as <t ar get > element or
aj oi nCondi ti on attribute.

Page 9 of 24



A snippet activity contains a snippet that is a statement block that does not return avalue.
Snippet activities are generally used to perform simple transformations and mappings. More
advanced functions are usually implemented as separate services and accessed via BPEL Partner
Links or Java Partner Links, as discussed later in this document. However, there are many
places within BPEL J where snippets may be used where they must return avalue. One such
placeisvariableinitialization. A different process that needs to compute salestax could possibly
doitright in theinitialization of the sal esTax variable. If you assume that the subt ot ot al and
t axRat e variables are defined in an outer scope, such an initialization snippet might look like
this.

<vari abl es>
<vari abl e nane="sal esTax" type="xsd: fl oat">
<bpel j : val ue>
subtotal * taxRate
</ bpel j: val ue>
</vari abl e>
</vari abl es>

In the exampl e above the value was defined with an expression. Snippets that return values are
written as Java expressions, by default. However, if statements are required, the snippet may be
defined with ast yl e="bl ock" attribute, in which case the snippet should contain a statement
block that returnsavalue. Although it isn’'t necessary for the above example, if it were written
out using the block style, it would look like this:

<vari abl es>
<vari abl e nane="sal esTax" type="xsd: fl oat">
<bpel j : val ue styl e="bl ock">
float tax = subtotal * taxRate
return tax
</ bpel j: val ue>
</vari abl e>
</vari abl es>

Each Java snippet is conceptually mapped to a separately generated method. This means that
variables that are defined in one snippet cannot be seen by another snippet. It also meansthat a
return Statement within a snippet only causes the snippet to return. It does not cause any
change to the control flow of the process. Thisisadifferent model from that used by the Java
Server Pages specification (JSP).

A BPELJ<process> element may include abpel j : package attribute that contains a Java
package name. If it does, the snippets of the process are considered to be in the Java package
identified by the attribute, so they may access the package visible Java constructs from that
package.

Binding XML Variables to Java

XML variables are mapped to Java using according to the XM L-to-Java binding technol ogy
specified with the bpel j : xnl Bi ndi ng attribute on the variable declaration; or, to affect all
variablesin the process, the attribute may be specified on the process element itself. Hereisan
example that shows a process that sets the process-wide default XML binding to DOM Leve 3,

Page 10 of 24



and then uses that default for thej usti fi cati onDoc variable, but overrides that XML binding
to be JAXB 2.0 for the po variable.

<process name="purchaseO der Process" bpelj:xm Bi ndi ng="bpel j : DOVB" ...>
<vari abl es>
<vari abl e nane="justificati onDoc" type="Ins:justificationDocument"/>
<vari abl e name="po" type="I|ns: POVsg" bpelj:xm Bi ndi ng="Dbpel j : JAXB20"/ >
</vari abl es>
<sequence>

éhbelj:snippet>
<bpel j : code>
/1 Get the approver using JAXB accessor

Approver approver = po.get Approver();
/l Get the approver's conments in the justification doc using DOM

NodeLi st commrent NodeLi st =
justificationDoc. get El enent sByTagNane("appr over Comrent ") ;

</ bpel j : code>
</ bpel j : sni ppet >
</ sequence>
</ process>

Variables with Java Types

BPEL currently allows variables to be defined using WSDL message types or XML schema
element definitions or XML schema simple types. BPELJ addsto this the ability to specify
variables whose types are defined using Java classes or interfaces. Java simple types are not
added, since they would duplicate the functionality already provided by ssmple XML schema
types. Variablesthat hold arbitrary Javatypes can only be used by Java snippets or for callsto
Java partner links. They cannot be used by non-Java aware aspects of the process. So, for
example, they cannot be assigned to WSDL message parts. However snippets may use data from
Java-typed variables to set the contents of XML-typed variables.

BPELJ also makes it possible to initialize any variable using a Java snippet. Variables of Java
types that are not explicitly initialized are implicitly initialized to null. Initialization of avariable
occurs when the scope containing the variable declaration isfirst entered. In the case of process-
level variables initialization happens when the process first starts. When multiple variables are
defined for the same scope, the variables are initialized in the order they are defined. The
initialization code for variables may access variables in enclosing scopes as well as previously
declared variables of the same scope.

The following example shows three variables defined. Thecust oner variableisinitialized to
null. Theor der St at usTopi c isinitialized with a snippet that calls a method on aj ndi Cont ext
variable from an outer scope. Theshi pper variableisthen initialized with a snippet that creates
anew object instance, using the or der St at usTopi ¢ variable aswell asashi pper | D variable
that was also from an outer scope.

<vari abl es>
<vari abl e nane="custonmer" type="java:com nycom Cust omer"/>

Page 11 of 24



<vari abl e nane="order St at usTopi c" type="java:javax. | ns. Topi c">
<bpel j : val ue>
(Topi c) j ndi Cont ext . | ookup("or der St at usTopi c");
</ bpel j : val ue>
</vari abl e>
<vari abl e nane="shi pper" type="java: com nycom Shi pper ">
<bpel j : val ue>
new Shi pper | npl (shi pper| D, order StatusTopi c)
</ bpel j : val ue>
</vari abl e>
<vari abl es>

The only requirement on the Java types that may be used for Java variablesis that they must
implement the Serializable interface. The objects that are contained within Java variables are
persisted with the business process, using the object’s serialization as its persistent representation.
When a snippet calls a method on an object or passes an object to another method the process
must persist any changes that are made to the object.

Conditions

One of the most common uses for snippets is for specifying Boolean conditions for BPEL
constructs that require them, such as: while conditions, switch case conditions, transition
conditions and join conditions. In the following example, alist of itemsis assumed to have been
returned from some Java component asaj ava. util . Col | ecti on. If the component that
returned the list of items were aweb service, it would probably return an XML document, but
when Java components are used it ismore likely that the list is returned as a Java collection. The
while loop that follows uses an iterator to access al of the | t emaobjects in the collection, so the
loop makes use of thei t er. hasNext () method asitsloop condition.

<process ... expressionLanguage="http://jcp.org/java">
<vari abl es>
<vari abl e name="iter" type="java:java.util.lterator">

<bpel j : val ue>i temns. getlterator()</bpelj:val ue>
</vari abl e>
<vari abl e nane="item' type="java:comacne.ltenl/>
</vari abl es>
<whi | e>
<condi ti on>iter.hasNext()</condition>
<sequence>
<bpel j : sni ppet >
<bpel j:code>item = (ltemiter.next(); </bpelj:code>
</ bpel j : sni ppet >

In this example the <condi t i on> element does not need to be specially marked as containing a
Java snippet. Thisis because the expr essi onLanguage attribute of the process specifies that all
expressions will use Java, unless they specify otherwise. If the expressionLanguage in the
process had been something other than Java, then it would have been possible to put the

expr essi onLanguage=" http://jcp.org/java" attribute on the condition element itself.

Page 12 of 24



Join Conditions

Join conditions may also be specified with snippets. Such conditions also have access to the link
status of incoming links. The status of each incoming link is represented as alocal Boolean
variable whose name is the name of thelink. Thefollowing is part of the examplethat isused in
the BPEL specification to introduce join conditions. Sincethisisin the BPEL specification, it
uses X Path 1.0 to represent the join condition.

<i nvoke nane="settl eTrade"
<condi ti on>bpws: get Li nkSt at us(' buyToSettl e') and
bpws: get Li nkSt at us(' sel | ToSettl e')</condition>
<target |inkNanme="buyToSettle"/>
<target |inkNanme="sell ToSettl|e"/>
<sour ce |inkNanme="toBuyConfirm'/>
<source |inkNane="toSel | Confirni/>
</invoke>

The following is an example of the same join condition using a Java snippet to specify the join
condition.

<i nvoke nanme="settl eTrade">
<j oi nCondi ti on>buyToSettl e && sell ToSettl e</j oi nConditi on>
<target |inkName="buyToSettle"/>
<target |inkNanme="sell ToSettl|e"/>
<source |inkNanme="t oBuyConfirni/>
<source |inkNanme="t oSel | Confirni/>
</i nvoke>

BPEL only allows the XPath expressions that are within join conditions to access link status.
The XPath cannot access BPEL variables or any other aspect of the process state. The same
restriction applies to snippets used within join conditions. The snippets expressions can only
access the Boolean parameters that represent the status of incoming links.

Java Partner Links

BPEL J makes it possible to define partner link types that use Java interfaces instead of WSDL
port types as the means of specifying the types of the partners. Aswith regular partner links,
Java partner links may be used by the process both to invoke the operations of a partner as well
as to receive operation requests from partners. Java partner links make it possible for a BPEL
process to use Java components in addition to Web services, along with the ability to pass any
serializable Java object as an operation parameter or return value.

Specifying a Java partner link typeis donein aWSDL file, as with other partner link types, but
the roles are defined using fully qualified class names to define their types. Hereis an example
of such apartner link definition.

Port Type Definition in WSDL

<pl nk: par t ner Li nkType nanme="Pur chasi ngLT">
<pl nk: rol e nane="sel l er">

Page 13 of 24



<pl i nk: port Type name="bpel j:comthem Seller"/>
</ pl nk: rol e>
<pl nk: rol e name="buyer">
<pl i nk: port Type nane="bpel j: com us. Buyer"/>
</ pl nk: rol e>
</ pl nk: part ner Li nkType>

The declaration of a partner link that uses a Java partner link type cannot be distinguished from a
regular partner link type. So it might look like this.

<part ner Li nks>
<part ner Li nk nane="pur chasi ng"
part ner Li nkType="1 ns: Pur chasi ngLT"
nyRol e="buyer "
part ner Rol e="sel |l er"/>
</ part nerLi nks>

Web service partner links can be defined with only one role when there is no need for
asynchronous messages to be sent to the initiating partner. The sameistrue for Java partner
links. Inthiscase, BPELJalowsthe part ner Li nk to specify itSpar t ner Li nkType with a
reference to the Javainterface of the onerole (thisis the style used in the introductory example).

<part ner Li nks>
<part ner Li nk nane="purchasi ng" partnerLinkType="bpelj:comthem Seller"/>
</ par t ner Li nks>

The object that implements the interface specified in a Java partner link may be in the same VM
as the business process or it may be remote (an EJB, for example). If it isremote, parameters are
passed using RMI calling semantics (Java serialization, by value). Otherwise, parameters are
passed using Java method invocation semantics (by reference).

An <i nvoke> that uses a Java partner link passes parameters with child <i nput > elements. The
input element is a proposed extension to BPEL itself, asitsvalueis not limited to BPELJ. The
following Web service uses an invoke call with <i nput > elements to pass two variables, one for
each part of the input message:

<i nvoke partnerLi nk="Purchasi ng" operation="initiatePurchase">
<i nput part="Requisition" variable="req"/>
<i nput part="PO"' vari abl e="po"/>

</invoke>

This syntax has the advantage that it can be used, without modification, to invoke Java methods
through Java partner links. While the use of <i nput > elementsis merely a convenience for Web
service invocations (since it saves the step of creating a message variable), it is necessary for
Javainvocations. Java partner links are defined in terms of Java interfaces, so there are no
WSDL message types defined for them. Consequently, it is not possible for a Java <i nvoke> to
use asingle BPEL i nput Vari abl e attribute to refer to a variable that contains al of the
parameters.

Page 14 of 24



The child <i nput > elements for a Java invoke must be listed in the same order as the parameters
of the method being called. The part names, if they are specified, must be the same as the names
of the parameters in the method definition. An input element may specify a query to be run
against the variable before passing it as a parameter by specifying the query in a<quer y> child
element. Itisalso possibleto passarole of apartner link by specifying both apart ner Li nk and
arol e attribute, instead of avari abl e attribute.

Using Partner Links from Snippets

In addition to BPEL variables, snippets may also reference partner links asif they were local
variables to the snippets whose name is the name of the partner link prefixed by "p_". The name
has to be prefixed because partner links can have the same names as variables. A partner link is
an object with accessors for the link’s par t ner Rol e and nyRol e, where only the partner role
may be changed. If prefixing the partner link name with "p_" causesit to collide with another
name that is in scope, then the partner link is not available to the snippet. Hereisthe API for a
partner link:

public interface PartnerlLink<PartnerType, M/Type>

{
M/Type get MyRol e();
Part ner Type get PartnerRol e();
voi d set Part ner Rol e( Part ner Type partner);

}

The interface is written using J2SE 1.5 generics because it helps document the intent of the API.
The W Type generic parameter is the interface that is defined for nyRol e of this partner link.
Similarly, the Par t ner Type generic parameter is the interface defined for the partner role. For
WSDL -based partner links, both of these generic parameters are a mapping of the

EndPoi nt Ref er ence XML element to Java using the xmiBinding of the process. ThisAPI in
J2SE 1.4 and earlier would just use Object in the places where the generic parameters are used.

The following is an example that compares an invoke on a Java partner link asit is accomplished
with an <i nvoke> activity with the same invoke performed within a snippet.

Invoking from an <i nvoke> activity
<i nvoke partnerLi nk="purchasi ng" port Type=" "
operation="initiatePurchase">
<i nput part="Requisition" variable="req"/>
<i nput part="PO' vari abl e="po"/>
</invoke>

I nvoking from a snippet
<bpel j : sni ppet >
<bpel j : code>
p_pur chasi ng. get Partner Rol e().initiatePurchase(req, po);
</ bpel j : code>
<bpel j : sni ppet >

Page 15 of 24



Both forms are useful. The snippet form will typically be used from within hand-generated code,
where the call itself islikely to bein the midst of other code. The <i nvoke> activity formis
more likely to be used by tools, since its use is much more constrained and thus more amenable
to being mapped to GUI constructs.

The partner role of a partner link may be assigned either by configuring the BPEL J process, or
may be set at runtime using either an <assi gn> activity, or may be set from within a snippet.
Assigning the partner role from within a snippet can be accomplished by calling the

set Part ner Rol e() method of the partner link variable. Note that, unlike variables, smply
assigning an object to a partner link variable is not allowed.

Variables that hold Java objects have methods that can be called from within snippets and Java
partner link variables have methods that can also be called, but the two constructs are different.
Hereisalist of the differences:
It is possible to receive a message from a Java partner link, but not from a Java variable.
Java partner links can be assigned through external configuration, whereas Java variables
must be assigned by the process.
Java partner links have an externally managed lifecycle. In other words, it is not possible for
aprocess to create the object that implements a Java partner link, but it is possible for it to
create objects that are stored in Java variables.

BPEL Correlations with Java

BPEL provides a correlation set mechanism that can be used for routing messages to the right
location within a process. Invokes through Java partner links can almost use the BPEL
mechanism without modification. However, BPEL's correlation sets make use of property aias
definitions, where the property aiasis defined on a message type. Java partner links do not have
message types, so there needs to be some other way of specifying the property aliases.

The solution isto allow property aliases to be defined for XML Schema types and Java interface
types in addition to message types. Properties on Javatypes can be defined either with a snippet,
or with XPath. XPath can be defined to run on a Java object by assuming that each Java object
represents an XML node with a child element for each JavaBean-style accessor. Below are three
property alias definitions, all three of which are based on a PurchaseOrder.

Property Aliason an XML Schema type using XPath

<bpel j : propertyAli as propertyNanme="PO D' type="I|ns: PurchaseOrder"/>
<bpel j : query>// PO D</ bpel j : query>

</ bpel j: propertyAl i as>

Property Alias on a Java class using XPath

<bpel j : propertyAl i as propertyNanme="PO D' type="hbpelj:com ne. Pur chaseOrder"/>
<bpel j : query>// PO D</ bpel j : query>

</ bpel j: propertyAlias>

Property Aliason a Java class using a snippet

Page 16 of 24



<bpel j : propertyAl i as propertyNanme="PO D' type="hbpelj:com ne. PurchaseOrder"/>
<bpel j : extract Val ue arg="po">

po. get PO D()
</ bpel j : extract Val ue>

</ bpel j : propertyAl i as>

Because none of these property aliases is defined on a message type, the use of the property
aliases hasto differ from standard BPEL as well, since the par t s must be specified at the place
where the correlation set isreferenced. Hereis an example that defines a correlation set that uses
the POID property and then uses it for an invoke.

<correl ati onSet s>
<correl ati onSet name="PurchaseOrder" properties="PO D'/ >
</correl ati onSet s>

<i nvoke partnerLi nk="pur chasi ng" port Type="j ava: com mycom Buyer"
operation="initiatePurchase">
<i nput part="poPart" vari abl e="po"/>
<correl ati ons>
<correl ati on set="PurchaseOrder" initiate="yes" pattern="out"
parts="poPart" >
</correl ati ons>
</i nvoke>

The only thing that is not standard BPEL in the above example is the part attribute specified in
the correlation element. BPEL doesn't need it because the parts are specified in the
propertyAlias definition.

In the future, we expect that BPEL will introduce the concept of opaque correlations whose
values are chosen by the execution framework. |If the above example used such an opague
correlation, then the only difference would be that the corr el at i onSet definition would have an
opaque="true" attribute rather than aproperti es attribute. Thisway no property or property
aliases would need to be defined.

Snippet Access to Correlation Sets

Aswith partner links, snippets may access correlation sets asif they were local variables whose
name is the name of the correlation set, prefixed by "c ". Object referenced by the correlation
set variable would be have the following interface.

public interface Correl ati onSet

{

public void initialize(java.util.Mp propertyVal ues);
public Object getProperty(String propertyNane);
}

The initialize method can only be called on correlation sets that have not already been initialized

(either by BPEL or by Java). The correlation set variables cannot be the target of an assignment,
nor can the properties of a correlation set be changed from a snippet. The object returned by the

Page 17 of 24



getProperty call isthe Java object for the property's XML value, according to the XML binding
that isin scope.

Callback Objects as an Alternative to Correlation Sets

Instead of using correlation sets, Java partners can communicate back to the process by taking
advantage of the fact that the nyRol e attribute of a Java partner link holds an object that can be
used as a callback object. ThenyRol e object has the following properties:

It implements the myRole interface for that partner link

It can be passed remotely

Callson it are guaranteed to be routed to the right BPEL J process instance

We expect that this should be the most efficient way to send a message to a process from a Java
partner. A callback object cannot, however, be used to initiate conversations. It also cannot
route to a specific internal scope of a process, since its scope is the same as the scope of the
partner link.

This following example shows an invoke to a Java partner. It passesthe nyRol e endpoint of the
Buyer partner link as the first parameter, which is then used by the Java partner to send back

subsequent messages.

<i nvoke partnerLi nk="purchasi ng" operation="initiatePurchase">
<i nput part="cal | back" partnerLi nk="purchasing" rol e="buyer"/>
<i nput part="poPart" vari abl e="po"/>

</invoke>

This example implements the initiatePurchase operation and sends back an asynchronous
PurchaseOrderResponse.

package com sel |l er
public class Sellerlnpl inplenments Seller

public void initiatePurchase(com buyercom Buyer buyer Cal | back
Pur chaseOr der po)
{

POResponse response = processPurchaseO der (po);
buyer Cal | back. accept POResponse(response) ;

}
Hereisthe BPEL J that receives the response.

<recei ve partnerLink="purchasi ng" port T Type="java: com buyer com Buyer "
oper ati on="accept POResponse" >
<out put part="poResponse" vari abl e ="poResp”/>
</receive>

BPELJ as Java Class Annotation

Snippets work best only for small amounts of code, where each code snippet only needs to be
used in asingle place in the process. However, sometimes processes need to have somewhat

Page 18 of 24



more complex Java code associated with them or there is Java code that needs to be used in more
than one place in a process.

In both of these cases, the right solution is to introduce new methods. One possible solution to
thiswould be to create a new class for such methods that is completely independent of the
BPELJ process. However, code in the snippets and code in the external methods may be
intended to be understood together, so introducing atotally separate class does not recognize this
close association. If the BPELJis defined in the annotation of a class (referred to as a process
class), then the association is much more explicit.

A BPELJ process that isin the annotation of a process class would have the following effects on
the BPEL J:

1) The name attribute of the BPELJ process could be left unspecified and the process would get
the same name as the process class.

2) The Javaimport statements of the process class would also apply to the BPELJ, so they don't
have to be repeated there.

3) The snippet code in the BPEL J would be considered to be in the same package as the process
class, soif avariable is declared to be of the process class, the snippets could use package visible
methods on that variable.

Thefollowing is a simple example that shows a BPEL J process as an annotation of a process
class.

/**
* @pel j: process process::
* <process name="purchaseO der Process" ...>

* <vari abl es>

* <vari abl e nane="sel f" type="bpel|j: PurchaseO der Process" >
& <bpel j : val ue>new Pur chaseOr der Process() </ bpel j : val ue>
& </vari abl e>

* <vari abl e nane="po" type="I|ns: POvessage"/ >

* <vari abl e nane="subtotal " type="xsd:int"/>

* </ vari abl es>

= <sequence>

*

* <bpel j : sni ppet >

* <bpel j : code>

* subtotal = sel f.comput eSubt ot al ( po) ;

& </ bpel j : code>

& </ bpel j : sni ppet >

* </ sequence>

* </ process>

**/
public class PurchasOrderProcess inplements Serializable
{
i nt conput eSubt ot al (PurchaseOr der po)
{
i nt subt ot al
/1 code that computes the subtotal
return subt ot al
}

Page 19 of 24



Java Deadline and Duration Expressions

For the same reasons that we expect that BPEL conditions syntax will be changed so that the
condition is specified in an element rather than an attribute, we aso expect that deadline and
duration expressions will also be specified by an element.

Deadlines

When the expressionLanguage is Java, BPEL's <until> element should contain a snippet that
returns an object of type java.util.Calendar. Hereisan example.

<wai t >
<until >
/1 uses a BPEL variable nane "policy"
new java. util. Cal endar (policy. get Deadl i ne())
</until>
</ wai t >

Durations

When the expressionLanguage is Java, BPEL's <for> element should contain a snippet that
returns String. The string should contain the lexical representation of the XML Schema duration
type. The following example waits 12 hours.

<wai t >
<f or>
"PT12H'
</for>
</ wai t >

As with other places where snippets can be used as expressions, the <unt i | > and <f or >
elements may have abpelj:st yl e="bl ock" attribute declaration, in which case the snippet
should contain a statement block that ends with areturn of the appropriate type, rather than an
expression.

Faults and Exceptions

Code called from a Java snippet may generate a BPEL fault by throwing a

javax.bpelj.BPEL JException exception. The constructor of this exception requires the QName
of the BPEL fault that should be thrown. The exception may also, optionally, contain an object
to represent the fault data.

<scope>
<f aul t Handl er s>
<cat ch faul t Name="I| ns: cannot Conpl et eOrder" faultVariable="f">
<l-- Do sonething else -->
</ catch>
</ faul t Handl er s>
<bpel j : sni ppet >
<bpel j : code>

Page 20 of 24



QNane gnanme =
new QNane("htt p:// manuf act uri ng. or g/ wsdl / pur chase"
"cannot Conpl et eOr der ") ;
/1 A generated class for a fault message docunent. ..
Faul t MessageDoc faul t Msg =
new Faul t MessageDoc("We cannot conpl ete your order");
t hrow new j avax. bpel j . BPELJExcepti on(gnane, fault MsQg);
</ bpel j : code>
</ bpel j : sni ppet >
</ scope>

However, BPEL J does not require that all Java faults be explicitly transated into a
javax.bpelj.BPEL JException. Doing so would require too much boilerplate code around every
snippet. Instead, any Java exception that propagates into the BPEL J process other than the
BPEL JExceptions are mapped into a single designated fault whose nameisbpel j : fault. The
fault data for thisfault is the original Java exception object.

BPEL matches catch statements to faults by matching both the faults QName and the type of the
fault variable. BPELJ extendsthisin the natural way, to allow Java type matching semantics
when matching fault variable types with fault data. The following example shows multiple catch
clauses that differ only in the Javatype of the fault variables. The first fault variable whose type
can contain the type of the exception object that is the fault datais the catch clause that will be
run. Inthiscase, the AccessControl Except i on extends Securi t yExcepti on, S0 the first catch
clause will run.

<scope>
<vari abl es>
<vari abl e nane="securityException" type="java.l ang. SecurityException"/>
<vari abl e nane="ot her Excepti on" type="j ava. | ang. Thr owabl e"/ >
</vari abl es>
<f aul t Handl er s>
<catch faul t Name="bpelj:fault" faultVariabl e="securityException">
<l-- Handl e the security exception -->
</ cat ch>
<catch faul t Name="bpelj:fault" faultVariabl e="other Excepti on">
<I-- Handl e any other kind of exception. -->
</ cat ch>
</ faul t Handl er s>
<bpel j : sni ppet >
<bpel j : code>
t hrow new j ava. security. AccessControl Excepti on();
</ bpel j : code>
</ bpel j : sni ppet >
</ scope>

Transactions

Customers use J2EE application servers for building robust applications. One aspect of
robustness is the support of ACID transactions. Consequently, BPEL J extends BPEL by adding
support of ACID transaction to business processes. For that purpose, scopes can be flagged with
an attribute: aci d="t r ue" to designate the scope as requiring an ACID transaction. Thistype

Page 21 of 24



of scopeis called an ACID scope. An acid scope has al of the properties of a serializable scope,
as defined in BPEL, but adds the constraint that the BPEL process state will not be persisted until
the ACID scope ends. ACID scopes aso allow external Java resources to be included in the
transaction of the process.

As with serializable scopes, a scope that has been marked with acid="true’ may have child scopes
but those child scopes must not be marked with acid="true’. Child scopes of an ACID scope
implicitly run within the same physical transaction than the scope declaring aci d='t r ue'

Receive, pick and wait activities are not, in general, allowed within an ACID scope. However,
exactly one receive activity or exactly one pick activity can be used as the first activity of an
ACID scope. Inthiscasethe ACID transaction starts when receiving the message expected by
the receive or pick, or when the onAlarm handler of the pick activity is triggered.

Non-transactional invokes may be forced to be part of atransaction by including them in an
ACID scope. However, there is no guarantee that the compensation handler for such an invoke
will be called if the transaction aborts after the invoke has completed. It isrecommended that
invokes be used inside transactions only when they are known to be at |east idempotent, since the
likelihood that the invoke getsretried is high. To be safe, it should also be acceptable if the
process that caused the invoke gets rolled back and never successfully completes. Thusthe
service may have been called one or more times by a process that does not (due to rollbacks)
think that the service has ever been called.

In the future, we expect that when BPEL integrates the work of WS-AtomicTransaction it will be
possible to get truly ACID transactions that include calls to web services.

Fault Handlers in ACID Scopes

The fault handler of an ACID scope is run within the same transaction as the scope. The default
fault handler rolls back the ACID transaction, which triggers retry. A custom fault handler
commits when leaving the fault handler, which istrue even if the fault handler throws another
fault.

In case of arollback the transaction isretried. To avoid aretry loop an additional attribute

ret ryCount onthe scopeisrequired, e.g., ret ryCount =5. When the scope has been retried
more then r et r yCount timesthen a BPELJfault "aci dScopeRet r yCount Exceeded"” isthrown.
Ther et ryCount attribute may also be specified on the <pr ocess> element, in which case it
appliesto all scopesthat do not overrideit.

Conclusion

BPEL J makes use of BPEL 's extensibility mechanismsin order to allow developersto create
business processes that use a mix of Web services and Javaresources. It also makesit possible
to use Java as alanguage for calculations and data manipulation, so that asingle file can contain
complete and cohesive description of an entire business process.

Page 22 of 24



Acknowledgements

The authors wish to acknowledge the contributions from the following people:
Don Ferguson (IBM), Dieter Koenig (IBM), Martin Nally (IBM), Rich Rollman (BEA), Doug
Wilson (IBM).

Page 23 of 24



Appendix 1. Changes to BPEL

1. BPEL currently does not allow new activity typesto be added, so it is not currently possible
to have abpel j : sni ppet element that istreated like a BPEL activity (e.g. can be the target
of links). If this cannot be changed, BPEL J could overload the BPEL <enpt y> activity,
although such an approach is much less desirable.

2. BPEL does not currently allow <i nvoke> activities to specify input message parts with a
<i nput > child elements, nor does it allow output parts to be handled with <out put > child
elements. This capability can also be accomplished by introducing a new scope that defines
atemporary variable, assignsit, and then usesit. However, using such a pattern would be
much more difficult to use and understand than having <i nput > and <out put > elements.

3. This paper briefly refersto the concept of a opaque correlation, which we think should be
added to BPEL. If it isnot added we believe that any BPEL process would be more difficult
to use, not just BPEL J processes (Issue 96).

4. The examplesin this paper assume that the portType attribute of BPEL <invoke> is made
optional. Itisnot realy necessary, sinceit isimplied by the partnerLink specified. By
leaving it off, the fact that a partnerLink is a Java partnerLink isinvisible at the <invoke>
call.

Page 24 of 24



