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SUMMARY SYMBOLS

The boundary-layer equations are developed in general for the c; = mass fraction of component 4
case of very high speed flight where the external flow is in a dis- Cpi = specific heat per unit mass at constant pressure of
sociated state. In particular the effects of diffusion and of atom component ¢, Eq. (19)
recombination in the boundary layer are included. It is shown < = &p/Cpwy Eq. (A-11)
that at the stagnation point the equations can be reduced exactly &p defined by Eq. (19)
to a set of nonlinear ordinary differential equations even when the G = recombination rate parameter, Eq. (57)
chemical reactions proceed so slowly that the boundary layer is G = hkp/CpuTs
not in thermochemical equilibrium. [ defined by Eq. (A-14)

Two methods of numerical solution of these stagnation point 4 defined by Eqgs. (A-4), and (A-7)
equations are presented, one for the equilibrium case and the D = diffusion coefficient

other for the nonequilibrium case. Numerical results are cor- DT = thermal diffusion coefficient
related in terms of the parameters entering the numerical formu- e defined by Eq. (A-13)
lation so as not to depend critically on the physical assumptions e; = internal energy per unit mass of component ¢
made. f defined by Eq. (24)
For the nonequilibrium boundary layer, both catalytic (to F defined by Eq. (A-9)
atom recombination) and noncatalytic wall surfaces are con- g defined by Eq. (25)
sidered. A solution is represented which shows the transition h enthalpy per unit mass of mixture, Eq. (16)

from the “frozen’ boundary layer (very slow recombination ks = perfect gas enthalpy per unit mass of component 7,
rates) to the equilibrium boundarylayer (fast recombinationrates). Eq. (10)
A recombination rate parameter is introduced to interpret the ki = heat evolved in the formation of component ¢ at
nonequilibrium results, and it is shown that a scale factor is in- 0°K. per unit mass
volved in relating the equilibrium state of a boundary layer on b 40 = dissociation energy per unit mass of atomic products,
bodies of different sizes. Eq. (59)

It is concluded that the heat transfer through the equilibrium hp = average atomic dissociation energy times atom mass
stagnation point boundary layer can be computed accurately by fraction in external flow, Eq. (61)
a simple correlation formula [see Eq. (63)] and that the heat k = thermal conductivity
transfer is almost unaffected by a nonequilibrium state of the K = recombination rate constant, Eq. (50)

= dissociation rate constant, Eq. (51)
defined by Egs. (33), (A-5), and (A-9)
= D;pép/k, Lewis Number

boundary layer provided the wall is catalytic and the Lewis K,

!

L;

L, = D;Tpc,/k, thermal Lewis Number
L

M

Number near unity.
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R; = gas constant of component 1

R = gas constant of mixture

® = universal gas constant

s defined by Eq. (27)

T = absolute temperature

Ty = vibrational temperature for molecules, taken as 800°
K.

= x component of velocity

9 = v component of velocity

W, = mass rate of formation of component 7 per unit
volume and time

x = distance along meridian profile

¥ = distance normal to the surface

ay, defined by Eq. (A-5)

Bi, B2 defined by Eq. (A-7)

T, Y2 defined by Eq. (A 6)

7 defined by Eq. (22)

[ defined by Eq. (26)

“ = absolute viscosity

» = kinematic viscosity

3 defined by Eq. (23)

b = mass density

o = Prandt]l Number ¢,u/k, taken as 0.71 in numerical

calculations

P = dissipation function
Subscripts

A = atom

7 = ¢th component of mixture

¢ = external flow conditions

w = wall

s = stagnation point in external flow

M = molecule

m = mixture

E = equilibrium

(1) INTRODUCTION

HE PROCESS of aerodynamic heat transfer at hyper-
Tsonic velocities is complicated by two features not
normally present at low velocities. The first is the
possible dissociation and ionization of air due to high
static temperatures encountered where the air is de-
celerated by shock waves, by viscous forces in the
boundary layer, or at a stagnation point. Because dis-
sociation and ionization {and their reverse processes,
recombination) proceed at finite rates, thermochemical
equilibrium is not necessarily achieved throughout the
flow field, and such rates are therefore an essential in-
gredient of the flow process. Secondly, diffusion of
atoms and ions, which subsequently recombine with a
high specific energy release, may appreciably add to the
heat transferred by mnormal molecular conduction.
While there may be other physical phenomena also
present, such as radiative effects, it is the purpose of the
present analysis to include only the two effects pre-
viously noted in an otherwise classical viscous flow
problem.

Some aspects of this problem have already received
attention. Moore! considered a dissociated laminar
boundary layer on a flate plate in air with a local com-
position determined by the thermochemical equi-
librium—i.e., a recombination rate constant sufficiently
great to maintain local equilibrium. Hansen? noted
that Moore had miscalculated the Prandtl Number for
dissociated air and an analysis similar to Moore’s but

following Hansen’s suggestion was made by Romig and
Dore.? Beckwith* considered the heat transfer to the
stagnation region of a blunt nosed body, using integral
methods.®* Crown® also considered the stagnation
point problem, using a modified Crocco method for
solving the boundary-layer equations. Finally, Mark®
treated the stagnation point equilibrium boundary
layer with variable fluid properties.t

In all these analyses no detailed distinction is made
between the roles of atomic diffusion and molecular
conduction in transporting energy to the wall.] If one
considers the energy transport through a motionless
dissociated gas with temperature and concentration
gradients, the energy flux is approximately

g = kgrad T + ha°Dp grad ¢4

where % is the ordinary thermal conductivity, T is the
temperature, k4% is the dissociation energy per unit
mass of atomic products, D is the atomic diffusion co-
efficient, p the density, and ¢4 the atomic mass fraction.
The first term is the usual transport of kinetic, vibra-
tional and rotational energy and the second is the
transport of potential (recombination) energy. Even
in the “equilibrium” boundary layer, the latter term
should be taken into account in the energy equation,
and will constitute a significant contribution where the
atom concentration and diffusional velocities are
noticeable.

These distinctions were first pointed out by Fay.!?
Subsequently, Lees’ considered in detail the laminar
heat-transfer problem in dissociated air, including the
effects of atomic diffusion, and suggested several ap-
proximations to facilitate the solution of the boundary-
layer equations. He considered the limiting extremes
of the recombination rate constant which (as discussed
below) lead to simpler solutions than the general case,
and suggested expressions for the heat transfer for both
cases. Similar arguments, but in less detail, are ad-
vanced by Kuo.!*

Apart from the physical mechanism of heat transfer,
there are several relevant aerodynamic considerations,
the foremost of which is the question of shock-wave
boundary-layer interaction at a sharp leading edge.
From a mechanical point of view, it does not appear
possible to maintain sharp leading edges with their
attendant high heat-transfer rates, so that a finite
radius of curvature appears mandatory. Under these
conditions a distinct layer will exist independent of the
detached bow shock wave if the boundary-layer thick-
ness is much less than the shock detachment distance.

* It is noted that the variation of viscosity through the bound-
ary layer, which materially affects the heat-transfer rate, cannot
be accounted for by the integral method.

t For a more detailed discussion of numerical results, see Fay,
Riddell, and Kemp.1?

t Crownp for example, assumes that the potential energy of
dissociation (which is actually carried by diffusion of atoms) is
transported in the same manner as the internal energy of the
molecules, which implies equal diffusivities of molecules and
atoms.
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Since the former varies as the inverse square root of the
Reynolds Number and the latter is independent of
Reymnolds Number, there is a minimum Reynolds Num-
ber below which the shock wave and boundary layer
merge. However, since low Reynolds Numbers at hy-
personic velocities can only be attained by reducing the
density (and hence increasing the mean free path), this
limit may not be reached before free molecule flow en-
sues. It thus appears that stagnation point boundary
layers are quite relevant to hypersonic continuum
flows.

Boundary layers at locations other than the stagna-
tion point are also of interest, but will not be considered
herein in detail. There are certain difficulties inherent
in such solutions when the recombination rate is finite
which will be discussed more fully below.

For any boundary-layer calculation, the behavior of
the free stream outside the boundary layer must be
known. If the boundary-layer thickness is small com-
pared with the nose (and also detached shock wave)
radius of curvature, then only fluid which has passed
through the normal shock wave close to the axis (or
plane) of symmetry will enter the boundary layer, and
this constitutes the “free stream.” If it is assumed that
this stream has attained thermochemical equilibrium
by the time it reaches the stagnation point, then the
free-stream conditions for the stagnation point bound-
ary layer are those of an equilibrium gas. This would
appear to be the case most likely to be encountered.®

Whether the free stream in regions other than the
stagnation point remains at equilibrium again depends
upon the recombination rate since, in flowing to regions
of lower pressure, the gas is expanded and cooled.
Again, there will be no general solution which will in-
clude all possible situations.

The two extremes of recombination rate give rise to
simpler solutions than the general case. For suf-
ficiently small recombination rate, the concentration of
atoms (or ion pairs) is determined by the diffusive flow
from the free stream to the wall where recombination
would occur, and would bear no relation to the thermo-
chemical equilibrium concentration corresponding to
the local temperature. In such a ‘“frozen” boundary
layer, the temperature and concentration distributions
are practically independent of one another. On the
other hand, for a sufficiently large recombination rate,
constant thermochemical equilibrium would prevail
throughout and either the temperature or concentration
distribution is a sufficient description of the thermody-
namic state of the boundary layer. It is, therefore, to
be expected that the distribution of atoms in the

* The time for the gas to come to equilibrium behind the
normal shock wave depends upon the kinetics of the dissociation
process. Itismerely noted here thatimmediately behind the shock
wave, before dissociation begins, the translational temperature is
extremely high and thereby promotes high dissociation rates.
Even at high temperatures equilibrium may not be attained soon
enough if the density is sufficiently low, but this would probably
occur only near the free molecule flow regime.

“frozen” and “equilibrium” boundary layers will be
quite different.

Despite the importance of the processes of dissocia-
tion and recombination in determining the thermody-
namic state of the air throughout the flow field, their
effect on heat transfer is secondary. This is most easily
seen by again considering the heat flux through a stag-
nant gas as given above, and replacing grad T by
(1/¢,) grad k, where £ is the perfect gas enthalpy. If we
also make the approximation that Dpc,/k (Lewis
number) is unity, the heat flux becomes

g = (k/c,) grad (B + caha®

that is, the heat flux is determined by the chemical en-
thalpy (perfect gas enthalpy plus enthalpy of forma-
tion) difference between free stream and wall. Whether
atoms recombine in the boundary layer or on the wall
makes no great difference since the energy is conducted
about as readily by normal conduction as by diffusion
when the Lewis Number is approximately one. On
the other hand, if the heat transfer is to be known more
exactly, then such relevant effects as variation of trans-
port coefficients with temperature, variation in heat
capacities, actual Lewis Number, etc.,, must be ac-
counted for properly. It will be seen that it is the in-
fluence of these effects which constitutes the principal
departure from an extrapolation of the classical theory.

Since a considerable fraction of the heat may be
transported by atomic diffusion toward the wall fol-
lowed by recombination on the surface, it would be
possible to eliminate this fraction of the heat transfer by
using a noncatalytic surface. However, such a scheme
is useful only if the atoms do not first recombine in the
gas before reaching the wall. The flight conditions
under with the gas phase recombination is slow enough
to permit atoms to reach the wall, and the resulting heat
transfer with both catalytic and noncatalytic surface,
have been determined for the stagnation point flow.

For a discussion of experimental techniques and re-
sults of shock tube measurements of stagnation point
heat transfer in dissociated air, see reference 15.

(2) LamMiNAR BOUNDARY-LAYER EQUATIONS IN A
D1ssOCIATED GAS

The general equation of continuity for any species ¢ is
. — —
le{P((] + Qi)Ci} = W (0
where p is the mixture deusity, ¢; is the mass fraction of

species 7, w; is the mass rate of formation of species 7

per unit volume, _cf is the mass averaged velocity and ¢;
the diffusional velocity of species ¢ measured with re-

spect to ? ?1 may be given by
¢ = —(Di/c)grade, — (D", /T grad T (2)
where D; and D,T are, respectively, the molecular and

thermal diffusion coefficients of species ¢, and T is the
temperature. The first term on the right of Eq. {2) is
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due to concentration diffusion and the second is due to
thermal diffusion (pressure diffusion is neglected).

The use of the gradient of mass fraction instead of
mole fraction is particularly useful since, in the case of a
bimolecular mixture, D; becomes the bimolecular diffu-
sion coefficient (Dj;) which is practically independent
of composition. For multicomponent mixtures, the
diffusional velocity of any one component depends, in
general, upon the concentration gradients of all the com-
ponents, and a method for determining the diffusional
velocities has been suggested by Hirschfelder, Curtiss,
and Bird.® In such a case Eq. (2) is not exact (except
for equal diffusivities and molecular weights of all com-
ponents), but is a useful approximation. A dissociated
gas (such as air) in which all the molecules (or atoms)
have nearly the same molecular weight and probably
similar collision diameters may be considered primarily
a two-component mixture with atoms and molecules as
species, for which Eq. (2) is adequate.

In order to conserve mass in any chemical change it is
necessary that

and from the definition of the mass averaged velocity it
follows that

Zqici =0 (4)

Hence, Eq. (1) summed over all species gives the usual
form for the continuity equation,

div (pg) = 0 (5)

The energy equation may be written for a moving
element of fluid

pq- grad(Zce;) = div(k grad T) —
div(Zpq k) + Swhd + pdivg + & (6)

where ¢;, h;, and A are, respectively, the specific in-
ternal energy, enthalpy, and heat of formation of
species ¢, k is the thermal conductivity for transport
of kinetic, rotational, and vibrational energy, p is the
pressure, and & is the dissipation function.

The first term on the right of Eq. (6) is the internal
energy increase due to normal heat conduction, the
second that due to fluid diffusing across the boundary
of the element, the third that due to chemical reaction,*
and the fourth and fifth that due to the work of the
pressure and the viscous forces, respectively.

It will be assumed that the gas is a mixture of perfect
gases, so that for each component

pi = Pz'szT (7)

where R; is the gas constant for species 7, and for the
mixture

p = pRT (8
where the gas constant for the mixture (R,) is given by
* The heat of formation %;° may be taken as zero for the

molecules and negative for the atoms, in which case the enthalpy
k [see Eq. (16)] is always positive.

Rm = ECiRi (9)

It then follows that the enthalpy and internal energy
are related by

By combining Egs. (5) and (7) through Eq. (10) with
Eq. (6), the steady-state energy equation reduces to

pq-grad(Scihy) = div(k grad T —
Epa,:clhl) + Ewihio + -(})-grad p + e} (11)

A further simplification occurs by combining Egs. (1)
and (11) to eliminate the term Zw;h°:

p?-grad{zci(hi — 0} = divikgrad T —
Zpgicdhs — h®)} + ¢-grad p + & (12)

By making the usual boundary-layer assumptions,
Egs. (1), (5), and (12) reduce to the following form for a
body of revolution, if the boundary-layer thickness is
small compared with the radius of curvature and centrif-
ugal forces are neglected:1

(pru)z + (prv)y, = 0 (13)
pucy + pvcy = {DiPCiw + DiTPCiTu/T}y + w; (14)
puh, + pvh, = (BT,), + up, +

ﬂ(uz/)2 + {EDip(hi - hio)cill +

EDiTPCi(hi - hio)Ty// }y (15)

where 7 is the radial distance of the body surface from

the axis of revolution, # and v are the velocity com-

ponents in the x and y directions (tangential and normal

to the surface, respectively), u is the absolute viscosity,
and the enthalpy for the mixture is

b= Zc(hi — b (16)
The corresponding equation of motion is
puty + pvu, = —pr + (uny), (17)

Since the transport coefficients are, in general, func-
tions of temperature and composition, it may be de-
sirable to use T rather than % as the dependent variable
in the energy equation. Noting that %, is a function of
temperature alone, we have

grad h ={Eci(dhi/dT)} grad T +
Z(h; — b0 grad ¢; (18)

Letting
&y == Zci(dhi/dT) = Zcicps (19)

where ¢,; is the constant pressure specific heat for
translation, rotation, and vibration, the energy equa-
tion (15), in combination with Eq. (14), becomes

el puT: + T} =
(kTy)y + ups + p(u,)? + Zw,(hd® — he +
2cpi(Dipey + DifpeT,/T)T, (20)

For a gas at equilibrium, on the other hand, it is found

t Subscripts x# and ¥ (or ¢ and y below) are used to denote par-
tial differentiation.
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more convenient to use the enthalpy as a variable rather
than temperature, in which case by combining Egs. (17)
and (18) with Eq. (15), we obtain

pu (b + u2/2), + pv(h + u?/2), = {(k/G,) X
(b + u2/2)}, + {(1/2) [ — */6)1(u?),}, +
{E[Dip - (k/c-p)](hi - hiO)Cw +
2D e/ TY(hi — hOT,}, (21)

Eqgs. (13), (14), (17), and (20) or (21) thus constitute
the system whose solution is required.

(3) SIMILAR SOLUTIONS

As is usual in boundary-layer problems, one first
seeks solutions of restricted form which permit reducing
exactly the partial differential equations to ordinary
differential form. An easily recognizable case is that of
the stagnation point flow, where, because of symmetry,
all the dependent variables are chosen to be functions of
y alone, except # which must be taken proportional to x
times a function of y. This also appears to be the only
case for which exact ordinary differential equations
may be obtained regardless of the recombination rate.
For the flat plate and cone, exact solutions exist only
for the extreme values of the recombination rate con-
stant, that is, when the boundary lavyer is either
“frozen” or in the thermodynamic equilibrium.

For all other cases, certain degrees of approximation
are required. Following standard procedures, one first
tries solutions for which the velocity and enthalpy pro-
files remain similar to themselves, at least for an ap-
preciable distance along the body. Such “locally
similar’”’ approximate solutions may be obtained for the
“frozen’” or “equilibrium” boundary layer, and also for
an arbitary recombination rate in certain restricted
cases.

The existence of a finite recombination rate is not the
only hindrance to obtaining exact solutions in regions
other than the stagnation point. In general, the varia-
tion of the velocity, thermodynamic variables and trans-
port coefficients in the free stream and along the wall of
the body of arbitrary shape preclude exact solutions
(except for the cone and flat plate). An important
aspect of the locally similar solutions is a proper ac-
counting for these variations such that the heat transfer
may be determined for any point of the body of arbi-
trary (but regular) shape. Although this problem will
not be treated in this paper, we will start with a trans-
formation suitable for locally similar solutions.

With this in mind, we choose the following transfor-
mation of the independent variables x and y, which in-
cludes the usual Howarth and Mangler transformations,
as proposed by Lees.”

7= (rus/\/29) f " ody (22)*

(= f Puofhastho? *dx (23)*
0

where %, 1s the velocity at the outer edge of the bound-
ary layer. In addition, the following dimensionless de-
pendent variables are chosen:

offon=u/us f= [ @iomdn (29

g = (h+ w*/2)/h, (25)
0 =T/T, (26)
5; = €i/Cs 27)

where the subscript e refers to values in the local free
stream, and s to values in the free stream at the stagna-
tion point. Substituting in Eqs. (13), (14), (17), (20),
and (21), there results

v = —r  (NV2Efe + /208 + V28 fune] (28)
(/o) (Lisiy + Li"58,/0)1, + fsin + [28w:/ prrci(dE/dx)] = 28(fy55e — fesen) + 2fps:ld(In c,)/d(In )] (29)
U ydn F [on + 2[d(n w.)/d(In £)1[(pe/p) — f2] = 28(fof e — fefow) (30)

[(c-p/c_pu) (1/0')57,],7 + (c_p/c_pw)fer) + E[Zsz/pue(dg/dx)][(kzo - hi)/épre] + (ue2/c‘pre)lfnn2 +
2(Cp1/Co) (€1el/ ) (Lisiy + LiT58,/6)8, = fl 2(C,/Em)01d(In T.)/d(In £)] +
(2 EmTe)(pe/ p) [d(In we) /d(In £)1} + 26,/ Em) (S0 — f)  (31)

[/ 0)galy + fen + /B (1 — Vo f b +

(W) 2ciw/h) s — BO(Li — Vsiy + L758,/01}, = 26(fogr — fegy)  (32)

where 1= pu/ puttw

and where ¢ and L; are the Prandtl Number (¢,u/k) and
Lewis Number (D,p¢,/k), respectively. The subscript w
refers to values of the variables at the wall.

For the dependent variables f, g, 6, and s; to be func-
tions of 5 alone, it is first necessary that the thermody-
namic state variables be unchanging in the free stream
and along the wall as £ increases, a condition satisfied
at a stagnation point, or along a cone or flat plate. It
is further necessary that the source term—i.e., the term

involving w,—in Egs. (29) and (31) depend upon 7
alone. Since the chemistry of the recombination proc-
ess 1s believed to depend only upon the local thermody-
namic variables—that is, w; is a function of p, 7, and
s—this second condition may be satisfied in three dif-
ferent ways: (a) w; = 0 (frozen boundary layer), (b)
ud(ln £)/dx = constant, which is satisfied at a stagna-
tion point, or (¢) the recombination rate is sufficiently

* For two-dimensional flows let r = constant.
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large to maintain thermodynamic equilibrium,* in
which case w; is determined through Eq. (29) from the

solution of Eqs. (28), (30), and (32).
For the stagnation point, then, Egs. (29) to (32) re-
duce to

(/o) (Lisiy + LTs:To/ T 1, + Fsin + {2(du./dx)} —(wy/pcis) = 0 (34)
Uado + S + /D (0s/0) = 1,2} = 0 (35)
[(c-p/c—pw> (l/o'> ]q + (Ep/épw)fen + {Q(due/dx>s} _lz(wi/P) [(hzo - hi)/EPwTs] -+

2(cpi/Cou) (Cist/ ) (Lisiy + LiTSien/e)nen =0 (36)

[/ Vg, + fo, + (/) Zlewlhs — B /h] (L — 1)ssy + LiTs:6,/8}), = 0 (87

where it has been assumed that #? < A,.

For a “locally similar” solution away from the stagna-
tion point it is required that the terms on the right-hand
side of Egs. (29) through (32) all be negligible compared
with those on the left, and thus the equations may be
integrated with respect to 9. The dependence upon §
of f, g, 6, and s, is thereby implicitly determined by the
variation of p, T, s;, u, and the transport coefficients in
the free stream and along the wall, this variation being
determined by the aerodynamics of the external flow.

For Newtonian flow the distribution around the
body of the relevant quantities is easily found, all quan-
tities except du,/dx being determined by the local body
slope— i.e., local pressure. Since du,/dx depends upon
the pressure gradient and hence body curvature in the
meridian plane, there is introduced an extra parameter
in the locally similar solutions. Lees” points out that in
the equation of motion (30) the pressure gradient affects
only a single term, that this term is generally small, and
that neglecting this term in the equation of motion will
only slightly affect the solutions for g, 6, and s;. This
appears to be a greatly desirable simplification in de-
termining the heat transfer at other than the stagnation
point.

The use of locally similar solutions can only be justi-
fied a posteriori in each particular case by determining
from such a solution the magnitude of the terms in
Egs. (29) through (32) which were neglected. Pre-
sumably an iterative scheme could be devised to im-
prove on such solutions. It does not appear possible to
formulate a general criterion for determining the limit
of applicability of the locally similar solutions except a
loose physical argument that conditions in the free
stream and along the body must change only slightly in
a distance of many boundary-layer thicknesses.

(4) HeEAT TRANSFER

The local heat-transfer rate to the body ¢ is deter-
mined by the sum of the conductive and diffusive trans-
ports, the latter being included only when the atoms
recombine on the wall. Thus,

g = [kQT/29)]y=0 + [Zp(h; — 10 X
{Dy(dc,/dy) + (DTc/T)RT/9)} l,=0 (38)

* Strictly speaking, the fluid cannot be exactly in thermody-
namic equilibrium, for if this were so, there could be no net rate
of change of composition following a particle path. For large
enough rate constants, the fluid will be very close to equilibrium.

or
g = [(k/&)(0h/dy)]y=0 + [Z(k/Cp)(h: — B) X

{(Zi = Dcy/0y) + Lo/ T)OT/0p)} ]y=0  (39)
In terms of the dimensionless temperature and en-

thalpy distributions, this becomes

q = (7’kwpw“eTe/'\/27€){0n + Ze,e X
[(hi — 70/ (Lsiy + L s8,/0)} =0 (40)

Qr

g = (7kwpwuehs/v§£ Epw) X
{g, + Zcw[(hs — B /h,] X
[(Ls — Dsiy + LiTs8,/61} =0 (41)

For stagnation point heat transfer we note that

7’pwue/\/§£ = { (2/Vw) (due/dx)s} 12 (42)

where », is the kinematic viscosity at the wall.

It is also possible to define local Nusselt and Reynolds
Numbers based on the local coordinate x. Thus, de-
finingt

N% - gxc—pw/kw(h's - hw) (43)
Re = ux/vy (44)

the heat transfer at the stagnation point may be written
as

qg = (Nu/\/ﬁe>'\/pwﬂw(due/dx)s[(hs -

where

Nu/'\/ﬁ = ['\/é C_prs/(hs - hw)] X
{077 + Eczs[(hl - hzo)/c-st] X
(Lisiy + LiTs:6,/6)} =0 (46)1

Nu/v/Re = [v/2/(1 — g)] X
{g,, + ECiszi - hio)/hs] X
[(Ls — Vsiy + Li"s8,/01} =0 (46b)]

It should be emphasized that the heat transfer is in-
dependent of the particular choice of reference density
and viscosity (puu,) which appears in the definition of
Eq. (23). The use of wall values of p and g for this pur-

ho)/c]  (45)

t It is clear from the expressions {(40) and (41) that the enthalpy
difference between wall and free stream, not the temperature
difference, is the proper “driving force’” for heat transfer.

1 For conical or flat plate flows, the factor /2 in Eq. (46)
should be replaced by +/. 3/2 or 1/ V' 2, respectively, when the
reference dimensions for Nu and Re are the distances from the
apex or leading edge, respectively, measured along the surface,
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pose is merely a convenience, but a logical choice in that
it ensures that / = 1 [Eq. (33)] at the wall {(y = 0).
However, another choice, such as free-stream p and u, or
even pu equal to an arbitrary function of x, could also be
used. In each such case, however, the solutions of the
boundary-layer equations give different g(y), 6(y), etc.
It is clear from an examination of these equations that
each such solution may be transformed into another by
a simple change of scale of # and f defined by

V Putin 1 = N/ poido 1o 47
V puti f = N/ potto fo (48)

and
g(n) = 2o(/ potio/ puis M), et (49)

and where pou, is the new reference value used in defining
n0. As a consequence the heat transfer [see Egs. (38)
and (39)] can be seen to be independent of the choice of
Poko-

On the other hand, if one attempts to estimate g,(0)
for the case of pu not constant from a solution for pu
constant,® which is the problem considered by Lees,’
the reference state (pouo) 1s quite relevant since by its
proper (and arbitrary) selection the wall gradient of g
may be made to equal numerically that for the case of
pu constant. A discussion of this point has been given
by Probstein,® and by Fay, Riddell, and Kemp.!?

(5) TRANSPORT PROPERTIES

To obtain a numerical solution of the boundary-layer
equations it is necessary to know the viscosity, Prandtl
Number, Lewis Number, and thermal diffusivity as
functions of the local temperature, density, and com-
position. For the high temperatures under considera-
tion, these properties have been estimated, T the principal
uncertainty resulting from lack of knowledge of
atom-molecule interaction potentials. The particular
results of this study which are pertinent to the bound-
ary-layer calculation may be summarized as follows.

(a) The viscosity of equilibrium air, determined by
assuming that all particles possess the same interaction
potentials, does not vary more than 10 per cent from
Sutherland’s formula below 9,000°K.

(b) Both Prandtl and Lewis Numbers do not change
appreciably with temperature (below 9,000°K.), the
value of the latter being uncertain, but estimated as
about 1.4.

In light of the uncertainties in viscosity and Lewis
Number, it is clear that the calculated heat transfer
using these estimates is also uncertain. However, the
numerical solutions of the boundary-layer equations
may be obtained for a range of possible Lewis Number
and viscosity variation, such solutions being generally
valid when expressed explicitly in terms of the property

* As, for example, the solutions of Cohen and Reshotko.1®
1 These estimates were made by Dr. S. Penner of California
Institute of Technology and M. M. Litvak of Cornell University.

variations. Thus for the numerical solutions, the
Prandtl Number was held fixed at 0.71, the Lewis Numn-
ber was assumed constant through the boundary layer
at values ranging from one to two, and the viscosity
variation was determined by Sutherland’s law for the
equilibrium air and as calculated by Penner and Litvak
for nonequilibrium composition. I

It is easily shown that thermal diffusion is unimpor-
tant for the equilibrium boundary layer at stagnation
temperatures less than 10,000°K. For the frozen
boundary layer this is no longer necessarily the case;
however, thermal diffusion was neglected in all the
numerical solutions reported in this paper.

(6) RECOMBINATION RATE

As suggested by Davidson,** the recombination rate
of atoms is determined by a three-body collison:

atom - atom - particle — molecule + particle

For this process the rate of disappearance of atoms may
be written as

dN4/dt = —KN2NT-15 (50)

where the temperature dependence is as suggested by
Davidson, who also estimated K;715 to be 5 X 10™*
cc.? mole~? sec.™! for oxygen recombination when 7" =
300°K.Tf N4 and N are the number of moles per cm.?
of atoms and particles, respectively.

Atoms will be produced by the reverse of the above
reaction, so that the net rate of production may be
written as

dN/dt = —KN2NT-15 4+ Ko(T)NuN  (51)

Since under equilibrium conditions, there is no net pro-
duction of atoms, K»(7") may be solved for in Eq. (51)
in terms of the equilibrium atom and molecule concen-
trations which would exist at the local temperature I°
and pressure. Substituting this value of K, in Eq. (51),
there results

dNA/dt = —KiNS2NT-18 X
{1 — (Nu/Naw) Nax/ NP (52)

where the subscript E refers to the concentrations which
would exist at thermodynamic equilibrium at the local
pressure and temperature, and NV, is the number of
moles of molecules per cm?.

Considering a gas mixture of diatomic molecules of

1 Results of the experiments of reference 15 indicate good
agreement with the present estimates of transport properties with
Prandt] Number 0.71 and Lewis Number 1.4.

** Dr. Norman Davidson, California Institute of Technology
(private communication).

11 Recent experiments reported by J. Camm and J. Keck (see
Bulletin of the American Physical Society, Series 11, Vol. 2, No. 4,
p. 216, 1957) indicate that the recombination rate at 6,000°K.
may be higher than that obtained by extrapolating Davidson’s
estimate to such a temperature. There is nothing known con-
cerning this rate at the low wall temperatures pertinent to the
boundary-layer problem.
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molecular weight M and atoms of weight 3//2, the atom
mass fraction and total density are, respectively,

ca = Na/(Na + 2Nu) (53)
and p = M(Ny + Na/2) (54)

The net mass rate of formation of atoms (w,) may now
be determined in terms of these quantities to give

(2K T8 M) X (55)
[(1 + ca)(ca® — cau?)/(1 — car?)]

Neglecting the term (1 — caz?), which does not vary
by 25 per cent in the cases considered, the relevant
source term in the diffusion equation (34) for atoms re-
duces to

{2(duo/dx),} wi/p) = — [KipTy 55/ ®¥du,/dx)] X
{6-35(ca® — cax®/(1 + ca)} (56)

where ® is the universal gas constant. The coefficient
of the term in braces on the right of Eq. (56) contains
all the dimensional effects of the finite recombination
rate problem, and will be termed the recombination rate
parameter (C;)—i.e.,

Cr= Kip Ty 3R *(du,/dx) 67)

The term (du,/dx),~' is approximately the time for a
particle in the free stream to move a distance equal to
the nose radius, and thus also the time for a particle to
diffuse through the boundary layer at the stagnation
point. The factor which multiplies it in Eq. (57) is the
reciprocal of the lifetime of an atom, so that the recom-
bination rate parameter is the ratio of the diffusion
time to the lifetime of an atom. Because the diffusion
time contains the body nose radius while the lifetime
does not, a scale effect is introduced by the chemical
change which is not accounted for in the Reynolds
Number. Thus, similar flows require equal Reynolds
Numbers and recombination rate parameters.

A term similar to the left side of Eq. (56) appears in
the energy equation (36) except that it is multiplied by
a dimensionless dissociation energy. A part of this
term, Zw,h,, is negligible since Zw; = 0 and %; per unit
mass for vibrationally excited molecules and atoms are
nearly equal, being in the ratio 9/10.

(7) NUMERICAL SOLUTIONS

The boundary-layer equations derived above [Egs.
(34) through (37)] can be put in a form suitable for
numerical integration. The details of how this was
done are given in the Appendix. Numerical solutions
were obtained by use of an IBM 650 digital computer.

Many combinations of the parameters ¢, L, and C;
are possible, as well as extreme ranges in the free-stream
(stagnation point) and wall boundary values. It was
therefore decided to restrict the solutions to the follow-
ing values:

(a) ¢ = 0.71
by L =1.014,20; LT =0

()0 G <=

(d) Stagnation point conditions corresponding to ther-

modynamic equilibrium at velocities between 5,800

ft. per sec. and 22,800 ft. per sec. and at altitudes of

25,000 ft. to 120,000 ft. (Equilibrium air properties

were determined from the tables prepared by the

National Bureau of Standards!!.)

(e) Wall temperatures from 300° K. to 3,000°K.

Wherever possible, only one parameter or boundary
condition was varied in a series of calculations in order
to determine its individual effect. It was not believed
necessary to establish such effects for all possible com-
binations of the remaining parameters. Tables giving
the values of the parameters and the boundary condi-
tions for each computation may be obtained directly
from the authors.

The heat-transfer parameter (Nu/+/Re) determined
from each integration depends not only upon the
parameters and boundary values of the dependent
variables involved, but also upon the assumed variation
of viscosity with temperature and composition. In ad-
dition, further simplifications as explained below for the
individual cases were also made. In order to make the
results less dependent upon the specific assumptions
made, the heat-transfer parameter was numerically
correlated with the parameters and boundary values in
what seemed to be a suitable manner. Itis believed that
not too widely different assumptions would give results
which would fall within the same correlation.

(8) THE EQUILIBRIUM BOUNDARY LAYER

A first series of equilibrium boundary layers was
computed by solving Egs. (35) and (37) simultaneously
(hereafter denoted as Method 1). The solution requires
specifying py/p and I = pu/puu, as functions of g,
typical variations of these quantities being shown in
Fig. 1. The calculated values at various altitudes of
interest are compared with the fitted curves used in the
computing program, from which it was concluded that
there was a negligible effect of altitude variation on these
functions. Specific details of the method of calculation
are given in the Appendix. It was found that moderate
changes in the distribution for identical end values re-
sulted in negligible changes in the heat-transfer par-
ameter.

For L; = 1, the equations are similar in form to those
solved by Cohen and Reshotko,!? and become identical
at low enough stagnation temperatures when / is ap-
proximately constant. Solutions were obtained for the
range of velocities and wall temperatures given above,
and the heat-transfer parameter was found to depend
only upon the total variation in pu across the boundary
layer, in accordance with the relation

Nu/\/m = 0‘67(ps#s/pwﬂw)0'4 (58)

The numerical correlation leading to Eq. (58) is shown
in Fig. 2. The solution of Cohen and Reshotko!'? for
! = 1 is also plotted, after correcting for Prandtl Num-
ber by multiplying their result by (0.71)%4,
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Frc. 1. Variation of pu/pemw and ps/p through a stagnation
point boundary layer, shown as a function of enthalpy ratio g.
Stagnation conditions are for a flight velocity of 19,700 ft. per
sec. at various altitudes. 7, = 300°K.

An alternative procedure for the equilibrium bound-
ary layer is to solve Eqs. (34), (35) and (36) simultane-
ously (hereafter denoted as Method 2). An appreciable
simplification results if we consider air to be composed
of only ‘“‘air” molecules and ‘“‘air” atoms having an
average heat of formation given by

hat = Z ¢ (—hP)/ = ¢y (59)

atoms atoms

where the summation extends over atomic oxygen and
nitrogen only. Thus only one diffusion equation (34) is
needed for the diffusion of air atoms. With this simpli-
fication the equilibrium boundary layer may be treated
by eliminating the term involving w; between Eq. (34)
and (36). A solution is then possible when ¢, and / are
specified as functions of s4 and 6, and s, is specified as
a function of 8 through the known equilibrium atom
fraction as a function of temperature. (Details of the
approximations made are given in the Appendix.)

This alternative solution was found to give very
closely the same results as the Method 1 for a Lewis
Number of unity, and the results are compared with
Eq. (58) in Fig. 2. For a Lewis Number of unity,
Method 2 is believed to be less accurate than Method 1,
since it involves more approximations to the real gas
properties.

For other values of the Lewis Number, the effect of
Lewis Number on the heat-transfer parameter was found
by Method 2 to be best given by

(Nu/\/Re)/(Nu/~/Re)p =1 = 1 +
@ — 1) (hp /) (60)

where the “dissociation enthalpy’” %p is defined as

hD =2 Cis<_hi0> = hAO Z Cis (61)

atoms

i.e., hp is the dissociation enthalpy per unit mass of air
in the external flow. The numerical results are plotted
in Fig. 3 for comparision with Eq. (60).

It was also possible to determine the effect of Lewis
Number from the Method 1 computations by evaluat-
ing the additional term in Eq. (37) involving (L — 1)
from the equilibrium properties of air. (The approxi-
mation for this evaluation is discussed in the Appendix.)
Two such cases were computed, and the results are
plotted in Fig. 8 for comparison with Eq. (60). While
there is some disagreement with the results of Method 2,
it is not too unreasonable considering the many different
approximations involved in fitting curves to the func-
tions /, ¢, etc. It is the authors’ opinion that the
Method 2 solutions give a better indication of the Lewis
Number effect for the equilibrium boundary layer, as
embodied in Eq. (60). However, for Lewis Number
unity the effect of pu variation is believed to be better
given by the results of Method 1 [Eq. (58)], so that the
total effect may be obtained by combination of Egs.
(58) and (60) in the form

Nu/\/Re = 0.67(psus/ puptn)®* X
{1+ (L% — )(ho/k)}  (62)

The stagnation point heat-transfer rate for ¢ = 0.71
thus becomes, by virtue of Eq. (45),*

q = 0'94(pw#zu)0'l<l)s#s)0’4 X
{14 @052 — V)(hp/hy)} (s — hu)V/(@u/dx),  (63)

It is interesting to note that the external flow proper-
ties are much more important than the wall values in
determining the heat-transfer rate, so that the uncer-
tainty in the heat transfer is about 40 per cent of the un-

* For ¢ not equal to 0.71, it is recommended that the factor
0.94 be replaced by (0.76 ¢70:6).
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F1c. 2. Correlation of the heat-transfer parameter Nu/\/@
as a function of the pu ratio across the boundary layer, ps,us/ Pkt
for the equilibrium stagnation point boundary layer with L = 1.
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certainty in the external viscosity. The physical reason
for the importance of the external viscosity is that the
growth of the boundary layer, and hence the heat trans-
fer to the wall, depends mostly upon the external proper-
ties. The analogy with turbulent boundary layers is
easily seen.

For a modified Newtonian flow, the stagnation point
velocity gradient is

(due/dx)s = (I/R)\/2(Ps - Pm)/Ps (64)

where R is the nose radius and p., is the ambient pres-
sure.

(9) THE “FROZEN’ BOUNDARY LAYER

When atomic gas phase recombination is negligible
(C = 0), atoms diffusing from the free stream will
reach the wall. If the wall is noncatalytic to surface
recombination, the atom fraction at the wall will build
up to the free-stream value. On the other hand, if the
wall is catalytic, the atom concentration will be reduced
to its equilibrium value at the wall temperature. Inter-
mediate cases of wall catalyticity are of course possible,
but only these extremes were computed.

Eqgs. (34), (35), and (36) were solved with C; = 0 for
various stagnation conditions and Lewis Numbers as
discussed in the Appendix (Method 2).

For Lewis Number unity, the effect of the pu varia-
tion was very close to that found for the equilibrium
boundary layer by Method 2, and could suitably be ex-
pressed by Eq. (58). For other values of L, the de-
pendence could best be given by*

(Nu/~/Re)/(Nu/~/Re)p 1 = 1 +
(L% — 1)(hp/hs) (65)

The calculated values are compared with Eq. (65) in
Fig. 4.

The difference in the exponent of L for the frozen as
compared with the equilibrium boundary layer [Eqgs.
(60) and (65)] is quite certain since exactly the same
property variations were used in both cases, and also
seems reasonable in view of the greater importance of
diffusion throughout the whole of the frozen boundary
layer. It can be seen, however, that for a Lewis Num-
ber not too far from unity there is little difference in
heat transfer for the frozen as opposed to the equi-
librium boundary layer.

A few cases for noncatalytic wall were also com-
puted. The resultant heat-transfer parameter could be
given approximately by Eq. (62) with L = 0—i.e., the
heat transfer becomes proportional to 4, — hp.

A comparison of the distributions of enthalpy, tem-
perature, and atom concentration for an equilibrium
and a frozen boundary layer with identical catalytic
wall and free-stream conditions is shown in Figs. 5 and 6.
Both cases give very nearly the same heat transfer;
however, the enthalpy distributions are slightly different
(since L = 1.4) and the temperature and concentration

* Note that Lees [see reference 7, Eq. (19)] suggested that, for
the frozen boundary layer, the exponent of L in Eq. (65) be 2/3.

distributions are markedly different, as is the mechanism
of heat transfer.

(10) FINITE RECOMBINATION RATE

This most general case was solved using Method 2
with values of the recombination rate parameter (Cy)
varying from zero (frozen) to infinity (equilibrium).
As for the frozen boundary layer, the wall may be either
catalytic or noncatalytic, and both of these alternatives
were calculated. It is to be expected, of course, that for
large values of C; (near equilibrium) there should be
little effect of wall catalysis, since few atoms reach the
wall.

The heat-transfer parameter for one flight condition
and wall temperature is plotted in Fig. 7 for the com-
plete range of C;. The solid lines are the total heat
transfer for both catalytic (upper curve) and non-
catalytic (lower curve) surfaces. For the catalytic wall,
the fraction of heat transfer by conduction alone is
shown by the dotted curve, so that the freezing of the
boundary layer as recombination slows down (C; de-
creasing) is easily evident.

For either wall condition, C; must change by a factor
of 10* in order for the boundary layer to change from
substantially frozen to equilibrium throughout. Within
this region of variation of Cj, the boundary layer will be
partly frozen (near the outer edge) and partly in equi-
librium (near the wall). Since the recombination term
[Eq. (56)] varies as 7733, and the temperature changes
by a factor of twenty between wall and external flow
for the case considered, large variations in the recom-
bination rate are possible across the boundary layer,
thus permitting it to be partly frozen and partly in
equilibrium.

For the noncatalytic wall, the distributions of atom
mass fraction for several recombination rate parameters
are shown in Fig. 8. For () very large, no atoms reach
the wall, all having recombined in the gas. For lower
values of (i, some atoms reach the wall and, because
none recombine on the wall, a finite atom concentration
builds up. For C; approaching zero, there is no re-
combination and hence no concentration gradients
exist.

It can be seen in Fig. 7 that a much lower value of C;
is necessary to ‘‘freeze’” the boundary layer when a
noncatalytic wall is used than would be the case other-
wise. This is caused by the ‘“damming up”’ of the atoms
at the noncatalytic wall, resulting in greater recombina-
tion because of high local concentrations.

From Egs. (67) and (63) it can be seen that, for a
given flight velocity (hence T5), C; varies as the square
of the stagnation point density (and thus for strong
shock waves, as the square of the ambient density), and
also as the nose radius. Thus the boundary layer
would become frozen at a high enough altitude, this
altitude being less for small nose radii than for large.
In order to change from a frozen to an equilibrium
boundary layer, C; must change by 104 and thus the
density by 10?, which is an altitude change of about
100,000 ft.
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(11) CoNCLUSIONS

The laminar stagnation point heat transfer in disso-
ciated air can be given by Egs. (63) and (65) for the
equilibrium and frozen boundary layers, respectively.
These results were computed for a Prandtl Number of
0.71 and for a Lewis Number which was constant
throughout the boundary layer.

The major deviation in the heat-transfer parameter
from the low temperature, perfect gas value is due to the
variation of pu across the boundary layer. The heat
transfer {Eq. (63)] is mainly dependent upon the value
of pu at the outer edge of the boundary layer.

If the wall catalyzes atomic recombination, the total
heat transfer is not much affected by a nonequilibrium
state of the boundary layer if the Lewis Number is near
unity.

If the wall is noncatalytic, the heat transfer may be
appreciably reduced when the boundary layer is frozen
throughout—i.e., when the recombination reaction
time becomes much longer than the time for a particle
to diffuse through the boundary layer. Since the ratio
of these times depends upon altitude and nose radius,
there is a scale effect which determines the chemical
state of the boundary layer.

APPENDIX—DETAILS OF THE NUMERICAL SOLUTIONS

Method 1

The momentum equation for the stagnation point
boundary layer is given by Eq. (35)—namely,

Uandn + S + (/2D [(0s/p) — 71 =0 (A-1)

If thermal diffusion is neglected (i.e., LT = 0) then
the energy equation in terms of the enthalpy becomes,
from Eq. (37),

[([/o)g,)n + fen +
{(U/)Zleshs — RO /BJ(Li — Dsi}, = 0 (A-2)

or
[(l/o‘)(l + d)gn]v) +fgn =0 (A'3)
where

d

I

el — BO)/B(L; — 1)(0s;/0g),

— (L — D20 — 1)(dcs/Oh), } (A-4)

where the subscript p denotes that the differentiation is
at constant pressure and it is assumed L; = L = con-
stant for all species.

In Method 1, which is suitable only for the equi-
librium boundary layer, Eqs. (A-1) and (A-3) were
solved simultaneously with the boundary conditions

g(0) = gu, glw) =1

The functions I, p;/p and d were evaluated from the
calculated equilibrium properties of air!! and by taking
the viscosity to vary according to Sutherland’s formula
[see Section (5) above]. For given external (stagnation

point) flow conditions these quantities were plotted as
functions of g. For numerical computation it was con-
venient to use analytic expressions of the following
form:

1= pu/putiy = (a1/Vg) — (ae/g) (A-5)
ps/p=1— (1l —g — v(1 —g* (A-6)
d = (L - 1>2(h'i - hio)(aci/ak)p = ,316-62“ (A'7)

The constants «, v, 8 in each expression were deter-
mined by fitting these expressions to the equilibrium air
calculations (see Fig. 1).

Numerical solutions for this problem were obtained
on an IBM 650 computer. The method of solution was
to pick values of f,,(0) and g,(0) and integrate the
equations directly, recording the resultant asymptotic
values of f, and g for large values of 5. After three
such integrations an interpolation will produce better
values of f,,(0) and g,(0). The interpolation procedure
was repeated until the required conditions at “infinity”
were met—i.e., f, = 1 and g = 1. This interpolation
was made an integral part of the numerical program so
by starting with three initial guesses for f,,(0) and g,(0)
the program would run automatically to completion.

It should be noted that Egs. (A-1) and (A-3) are
formally identical with the stagnation point equations
solved by Cohen and Reshotko!? except for the function
d [Eq. (A-4)]. If L = 1, however, d = 0; thus by
specifying L = 1, ¢ = 1,/ = 1 and p,/p = g, the stag-
nation point solutions given by Cohen and Reshotko
could be duplicated. (A table giving the specific values
of the parameters for which solutions were obtained by
the method described above may be obtained directly
from the authors.)

Method 2

This method is a more general formulation in that it
allows computation of the nonequilibrium boundary
layer. As may be expected, however, it involves more
approximations than the rather straightforward proce-
dure of Method 1.

In the nonequilibrium case, the concentration of the
various species is not determined by the enthalpy and
the (known) pressure. It is necessary, therefore, to
add a continuity equation for each species. Further-
more, it is convenient to express the thermodynamic
properties in terms of the temperature and the con-
centrations of the species. The energy equation should,
therefore, be written in terms of the temperature. To
make this problem tractable it was assumed that air is
a diatomic gas composed of “air’”’ molecules and “‘air”
atoms with properties properly averaged between oxy-
gen and nitrogen. The dissociation energy of an air
atom was taken to be the average dissociation energy in
the external flow [see Eq. 59)]. With this assumption
the problem is reduced to the simultaneous solution of
three equations (momentum, energy and atom con-
centration) and the thermodynamic properties are to be
expressed in terms of the temperature and atom concen-
tration.
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The momentum equation is still Eq. (A-3), with
po/p = [(1 + ca)/(1 + cas)]0 (A-8)
1= pu/puto = [L/(1 + c)I*0u/0)F(6) (A-9)
where
F(8) = (T6/300)**[413/(T % + 113)] +
3.7(T¥/10,000)2 — 2.35(T,6/10,000)*

and the stagnation temperature T is given in degrees
Kelvin. The function F(9) is a fitted curve giving the
temperature dependence of the viscosity under the as-
sumption that the atoms and molecules have the same
collision cross-sections.

The energy equation in terms of the temperature is,
from Eq. (36) with L,T = 0,

[(61/0')0,,],, + cfoﬂ + (1/0')01, X
E(cpi/épw)Ltcissin + {2(due/dx)s} “1X
Z(wi/p) [(hL — h:)/CpuTs] = 0 (A-10)
where ¢ =Cp/Cpn

With the assumption of a simple diatomic gas and taking
L; = L = constant, the third term may be rewritten as

(Ll/o‘)o,,CA,,[(CpA - CpM)/C_pw]

and the fourth term, using Egs. (56), (57), and (61),
and taking k4 = k5, becomes

Cl(hb/éprs)[(cA2 - CAE2)/03'5(1 + CAs)]
Now cou = (®R/M{(7/2) + e~ T/ D7

where the exponential is the vibrational heat capacity
and Ty = 800°K. for air; also

cra = (5/2)[®/(M/2)]

Hence,
€ =2Cy/Cm = (10/T)ca + {1 + (2/7)e” P} (1 — ¢4)
(A-11)
(cpA - CpM)/Epw = (3/7) - (2/7)6—(”/0)2 (A—12)

For computation then the energy equation becomes
[(cl/d)8,], + ¢ff, + e(Ll/e)b,c4, + C:Com = 0 (A-13)
where

I = pu/puio = [1/(1 + ca)*(8/6) F(6),
see Eq. (A-9)

(Cpa = Cont)/Cpw = (3/7) — (2/7)e~"OV/O"

¢ =&/t = (10/T)cs +

{1 + (2/7)6—(9V/0)’} (1 —_— )
C: = parameter, see Eq. (57)
C: = hp/¢pTs = parameter, see Eq. (61)

m = (ca® — cax®/0%%(1 + ca)

The equilibrium atom mass fraction c g can be deter-
mined from reference 11. For computation c4xr was
approximated by

C(1-1/6)

Cam = Ca (A-14)

where C; is a constant.

The continuity equation for atoms was written in
terms of the atom mass fraction ¢4 instead of the nor-
malized atom mass fraction s. Thus Eq. (34) becomes

[(IL/a)cAﬂ]ﬂ + fCAq -
{2(du./dx)} —1Z(w,/p) = 0 (A-15)

or
[(UL/o)can]y + feay, — Com = 0 (A-16)

Method 2 for the nonequilibrium boundary layer is
the simultaneous solution of Egs. (A-1), (A-13) and
(A-16) with the boundary conditions

6(0) = 6, 6(») =1

c4(0) = 0 for catalytic wall } ca(®) = ca

€4,(0) = 0 for noncatalytic wall

Solutions were obtained on a digital computer using an
iterative procedure similar to that used in Method 1.
The limiting case of the equilibrium boundary layer
was obtained by Method 2 by eliminating the term Cymn
between Eqs. (A-13) and (A-16) and solving the result-
ing equation simultaneously with Eq. (A-1), taking the
equilibrium atom concentration as a known quantity in
the form of Eq. (A-14). The limiting case of the frozen
boundary was obtained by putting C; = 0.*
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