ECE 4270 Fundamentals of Digital Signal Processing

Lecture 21: Block Convolution

School of Electrical and Computer Engineering Georgia Institute of Technology Summer 2004

ECE 4270 B. H. Juang Copyright 2004

Summer 2004

Summer 2004

Lecture #21, Slide #1

In a Circular (Aliased) Convolution, Some Parts of the Output Equal the Linear Convolution, and Some Don't ...

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #2

Linear Convolution Example Again

Aliased Convolution - 1

 If we tried to implement the convolution on the previous slide by multiplying the L-point DFTs of the two sequences, the output would be the linear convolution, but repeated (aliased) every L samples:

$$\tilde{x}_3[n] = \sum_{r=-\infty}^{\infty} x_3[n-rN] = x_3[n \text{ modulo } N] = x_3[((n))_N]$$

 If we examine the values in the principal interval of n=0,...,L-1, what do we find?

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #4

Aliased Convolution - 3

Another way to view it: the second block of L samples is aliased back onto the first block of L samples

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #6

Aliased Convolution - 4

ECE 4270 B. H. Juang Copyright 2004

Summer 2004

If the DFT is big enough, namely $N \ge L + P - 1$, then the "aliasing" simply overlaps zeroes onto the principal interval

Lecture #21, Slide #7

Terminology: Fast Convolution

 $y[n] = \sum_{n=0}^{L+P-2} x[m] h[n-m]$

 Or by computing the DFT of each sequence, multiplying DFTs, and computing the inverse DFT of the product:

$$y[n] = DFT_N^{-1} \{ DFT_N(x[n]) \bullet DFT_N(h[n]) \} \quad N \ge L + P - 1$$

 The latter approach is called "fast convolution" because (assuming FFTs are used), it often requires fewer multiplications

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #8

Filtering Long Sequences

- Sometimes we want to filter a sequence that is very long
 - could save up all the samples, then either
 - » do a really long time-domain convolution, or
 - » use really big DFTs to do it in the frequency domain
 - but big DFTs may become impractical; besides
 - we get long *latency*: we have to wait a long time to get any output
- Sometimes we want to filter a sequence of indefinite length
 - and then even the methods above don't work

Summer 2004

Summer 2004

ECE 4270 B. H. Juang Copyright 2004

Lecture #21, Slide #9

Using Linearity to Filter a Long Signal - 1

 Any long sequence can be broken up into shorter blocks:

Summer 2004

ECE 4270 B. H. Juang Copyright 2004

Lecture #21. Slide #10

Using Linearity to Filter a Long Signal - 2

- We can then perform a linear operation on the long signal by
 - performing it on each of the shorter segments, and
 - combining them, using linear shift-invariance, to form the complete output signal
- Specifically, for linear filtering:

$$x[n] = \sum_{r=0}^{\infty} x_r [n - rL] \to y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} y_r [n - rL]$$
$$y_r[n] = x_r[n] * h[n]$$

Block Convolution - Overlap Add Method

ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #11

Summer 2004

ECE 4270 B. H. Juang Copyright 2004

Lecture #21, Slide #12

Segmenting the Input in OLA

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #13

Filtering the Segments

- The Overlap-Add (OLA) method calls for filtering each segment separately, then adding the results
- The filtering of the individual segments can be done by any legitimate means
 - time-domain convolution

Summer 2004

- frequency domain "fast convolution" using DFTs (implemented with the FFT algorithm)
 - » DFT size N should be at least L+P-1 so that you get a linear convolution result for each individual segment

Putting the Output Pieces Together

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #14

Block Filtering with Circular Convolution

- Alternatively, we can use a smaller DFT and allow the convolution of the segments to be circular instead of linear
 - $-N = \max\{L,P\}$
 - fewer multiplications per DFT this way
- We saw earlier that in this case, only some of the output values of the circular convolution are equal to samples of the linear convolution
- The Overlap-Save (OLS) method of block convolution uses circular convolutions and retains only the "good" samples to build up the output

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #16

Linear Convolution Example Again

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #17

Aliased Convolution - 1

 If we tried to implement the convolution on the previous slide by multiplying the L-point DFTs of the two sequences, the output would be the linear convolution, but repeated (aliased) every L samples:

$$\tilde{x}_3[n] = \sum_{r=-\infty}^{\infty} x_3[n-rN] = x_3[n \text{ modulo } N] = x_3[((n))_N]$$

 If we examine the values in the principal interval of n=0,...,L-1, what do we find?

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #18

Aliased Convolution - 2

ECE 4270 B. H. Juang Copyright 2004

Summer 2004

Summer 2004

Lecture #21, Slide #19

ECE 4270 B. H. Juang Copyright 2004

Lecture #21, Slide #20

OLS Method - Segmenting the Input

Efficient Computation of the DFT: The Fast Fourier Transform, or FFT

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #22

Computation Required

- We'll count complex multiplies; the number of complex adds is about the same
- Let μ(N) be the number of multiplies needed to compute an N-point DFT using an FFT algorithm, and let β(N) be the number of multiplies needed to compute an N-point DFT in brute-force fashion
- · Thus we start with

$$\beta(N) = N^2$$

The Goal of "the" FFT Algorithm ...

- ... is to compute the DFT of size N with significantly fewer than N^2 complex multiplications and additions
- To accomplish this, researchers have come up with entire families of fast algorithms; these are <u>collectively</u> referred to as "the" fast Fourier transform (FFT) algorithm
- The first (or at least most timely) FFT algorithm was published by Jim Cooley and John Tukey in 1965 and is now referred to as the radix-2 Cooley-Tukey FFT algorithm
 - this is the main version we will consider ...

Computation of the DFT

 In order for the DFT to be useful for linear filtering, nonlinear filtering, spectrum analysis, etc., we need efficient computation algorithms for

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \quad k = 0, 1, \dots, N-1$$

• Using the above directly requires N complex multiplications and N-I complex additions for each of the N DFT values $\Rightarrow \beta(N) = N^2$ complex multiplications. For example,

$$N = 1024 \implies \beta(1024) \approx 10^6$$

Summer 2004 ECE 4270 B. H. Juang Copyright 2004

Lecture #21, Slide #2

, Slide #25			