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In a Circular (Aliased) Convolution, Some
Parts of the Output Equal the Linear
Convolution, and Some Don’t ...
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Linear Convolution Example Again
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Aliased Convolution - 1

 If we tried to implement the convolution on the
previous slide by multiplying the L-point DFTs of the
two sequences, the output would be the linear
convolution, but repeated (aliased) every L samples:

%,[n]= Y x,[n—rN]=x,[n modulo N]=x,[((n)),]
» |f we examine the values in the principal interval of
n=0,...,L-1, what do we find?
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Aliased Convolution - 2
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Aliased Convolution - 3
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Aliased Convolution - 4
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Terminology: Fast Convolution

* We can accomplish the convolution of two finite-
length sequences by computing the convolution sum
directly: LiP=2

y[n]= 2 x[m]h[n—m]
n=0

» Or by computing the DFT of each sequence,
multiplying DFTs, and computing the inverse DFT of
the product:

y[n])= DFT,'{DFT,(x[n])e DFT,(h[n])} N>L+P-1
» The latter approach is called “fast convolution”

because (assuming FFTs are used), it often requires
fewer multiplications
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Filtering Long Sequences

+ Sometimes we want to filter a sequence that is very
long

— could save up all the samples, then either
» do a really long time-domain convolution, or

» use really big DFTs to do it in the frequency
domain

— but big DFTs may become impractical; besides
— we get long latency: we have to wait a long time to

Using Linearity to Filter a Long Signal -1

* Any long sequence can be broken up into shorter

blocks:
o dai i eae! “11 W

--men.

Julwi*

get any output x[n+rL 0<n<L-1
« Sometimes we want to filter a sequence of indefinite otherwise
length
— and then even the methods above don’t work x[n]= Z [n—rL]
r=0
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Using Linearity to Filter a Long Signal - 2

* We can then perform a linear operation on the long
signal by

— performing it on each of the shorter segments, and

— combining them, using linear shift-invariance, to
form the complete output signal

» Specifically, for linear filtering:

x[n]= 3 x,[n—rL]—> yln] = x[n]*h{n] = 3 y,[n—rL]

Block Convolution - Overlap Add Method

hin]

sl = 3 x,ln—rL]—> yln]=x[n]*hin]= 3 y,[n—rL]

r=0 r=0 r=0 r=0
nl=x n*hn X[n+rL], 0<n<L-1 _
Ypln]=x,[n]*hln] x.[n]= Sy nl=x[n]*hn]
0, otherwise
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Segmenting the Input in OLA

Putting the Output Pieces Together
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Filtering the Segments

* The Overlap-Add (OLA) method calls for filtering each
segment separately, then adding the results

* The filtering of the individual segments can be done by
any legitimate means
— time-domain convolution

— frequency domain “fast convolution” using DFTs
(implemented with the FFT algorithm)

» DFT size N should be at least L+P-1 so that you get
a linear convolution result for each individual
segment

Block Filtering with Circular Convolution

* Alternatively, we can use a smaller DFT and allow the
convolution of the segments to be circular instead of
linear

— N=max{L,P}
— fewer multiplications per DFT this way

+ We saw earlier that in this case, only some of the output
values of the circular convolution are equal to samples
of the linear convolution

* The Overlap-Save (OLS) method of block convolution
uses circular convolutions and retains only the “good”
samples to build up the output
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Linear Convolution Example Again
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Aliased Convolution - 1

 If we tried to implement the convolution on the
previous slide by multiplying the L-point DFTs of the
two sequences, the output would be the linear
convolution, but repeated (aliased) every L samples:

x;[n]= Z x;[n—rN]=x;[n modulo N] = x;[((n)),]
* |f we examine the values in the principal interval of
n=0,...,L-1, what do we find?
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Aliased Convolution - 2
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OLS Method - Segmenting the Input
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OLS Method - Extracting the Output
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Computation Required

» We’'ll count complex multiplies; the number of
complex adds is about the same

» Let 1(N) be the number of multiplies needed to
compute an N-point DFT using an FFT
algorithm, and let A(N) be the number of
multiplies needed to compute an N-point DFT in
brute-force fashion

* Thus we start with

The Goal of “the” FFT Algorithm ...

» ... is to compute the DFT of size N with significantly fewer
than N? complex multiplications and additions

* To accomplish this, researchers have come up with entire
families of fast algorithms; these are collectively referred
to as “the” fast Fourier transform (FFT) algorithm

» The first (or at least most timely) FFT algorithm was
published by Jim Cooley and John Tukey in 1965 and is
now referred to as the radix-2 Cooley-Tukey FFT
algorithm

— this is the main version we will consider ...
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Computation of the DFT

* In order for the DFT to be useful for linear filtering,
nonlinear filtering, spectrum analysis, efc., we need
efficient computation algorithms for

N-1
X[k1=Y x[n¥y" k=0,1,---,N-1
n=0
» Using the above directly requires N complex
multiplications and N-1 complex additions for each
ofthe NDFT values = pB(N)= N2 complex
multiplications. For example,

N=1024 = p(1024)~10°
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