
Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #1

ECE 4270
Fundamentals of Digital Signal Processing

Lecture 21:
Block Convolution

School of Electrical and Computer Engineering
Georgia Institute of Technology

Summer 2004

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #2

In a Circular (Aliased) Convolution, Some
Parts of the Output Equal the Linear

Convolution, and Some Don’t …

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #3

Linear Convolution Example Again

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #4

Aliased Convolution - 1

• If we tried to implement the convolution on the
previous slide by multiplying the L-point DFTs of the
two sequences, the output would be the linear
convolution, but repeated (aliased) every L samples:

• If we examine the values in the principal interval of
n=0,…,L-1, what do we find?

3 3 3 3[] [] [modulo] [(())]N
r

x n x n rN x n N x n
∞

=−∞

= − = =∑%

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #5

Aliased Convolution - 2

(only considering
n=0,…,L-1)

The first P-1 values
are aliased!

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #6

Aliased Convolution - 3

Another way to
view it: the
second block of
L samples is
aliased back
onto the first
block of L
samples

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #7

Aliased Convolution - 4

If the DFT is big
enough, namely
N≥L+P-1, then
the “aliasing”
simply overlaps
zeroes onto the
principal interval

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #8

Terminology: Fast Convolution
• We can accomplish the convolution of two finite-

length sequences by computing the convolution sum
directly:

• Or by computing the DFT of each sequence,
multiplying DFTs, and computing the inverse DFT of
the product:

• The latter approach is called “fast convolution”
because (assuming FFTs are used), it often requires
fewer multiplications

[] [] []
2

0

L P

n
y n x m h n m

+ −

=

= −∑

() (){ } 1][][][1 −+≥•= − PLNnhDFTnxDFTDFTny NNN

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #9

Filtering Long Sequences
• Sometimes we want to filter a sequence that is very

long
– could save up all the samples, then either

» do a really long time-domain convolution, or
» use really big DFTs to do it in the frequency

domain
– but big DFTs may become impractical; besides
– we get long latency: we have to wait a long time to

get any output
• Sometimes we want to filter a sequence of indefinite

length
– and then even the methods above don’t work

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #10

Using Linearity to Filter a Long Signal - 1

• Any long sequence can be broken up into shorter
blocks:

0
[] []r

r
x n x n rL

∞

=

= −∑

[], 0 -1
[]

0, otherwiser

x n rL n L
x n

+ ≤ ≤
= 


x2[n]

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #11

Using Linearity to Filter a Long Signal - 2

x[n] = xr[n − rL]
r=0

∞
∑ → y[n] = x[n]∗h[n] = yr[n − rL]

r=0

∞
∑

yr[n] = xr[n]∗h[n]

• We can then perform a linear operation on the long
signal by
– performing it on each of the shorter segments, and
– combining them, using linear shift-invariance, to

form the complete output signal
• Specifically, for linear filtering:

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #12

Block Convolution - Overlap Add Method

x[n] = xr[n − rL]
r=0

∞
∑ → y[n] = x[n]∗h[n] = yr[n − rL]

r=0

∞
∑

yr[n] = xr[n]∗h[n]
[], 0 -1

[]
0, otherwiser

x n rL n L
x n

+ ≤ ≤
= →


Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #13

Segmenting the Input in OLA
[], 0 -1

[]
0, otherwise r

x n rL n L
x n

+ ≤ ≤
= 


x[n] = xr[n − rL]
r=0

∞
∑

nn−P+1 m

x1[m]

nn−P+1

h[n − m]

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #14

Putting the Output Pieces Together

yr[n] = xr[n]∗h[n]y[n] = yr[n − rL]
r=0

∞
∑

L

2L

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #15

Filtering the Segments

• The Overlap-Add (OLA) method calls for filtering each
segment separately, then adding the results

• The filtering of the individual segments can be done by
any legitimate means
– time-domain convolution
– frequency domain “fast convolution” using DFTs

(implemented with the FFT algorithm)
» DFT size N should be at least L+P-1 so that you get

a linear convolution result for each individual
segment

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #16

Block Filtering with Circular Convolution

• Alternatively, we can use a smaller DFT and allow the
convolution of the segments to be circular instead of
linear
– N = max{L,P}
– fewer multiplications per DFT this way

• We saw earlier that in this case, only some of the output
values of the circular convolution are equal to samples
of the linear convolution

• The Overlap-Save (OLS) method of block convolution
uses circular convolutions and retains only the “good”
samples to build up the output

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #17

Linear Convolution Example Again

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #18

Aliased Convolution - 1

• If we tried to implement the convolution on the
previous slide by multiplying the L-point DFTs of the
two sequences, the output would be the linear
convolution, but repeated (aliased) every L samples:

• If we examine the values in the principal interval of
n=0,…,L-1, what do we find?

3 3 3 3[] [] [modulo] [(())]N
r

x n x n rN x n N x n
∞

=−∞

= − = =∑%

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #19

Aliased Convolution - 2

(only considering
n=0,…,L-1)

The first P-1 values
are aliased!

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #20

OLS Method - Segmenting the Input

n P=n−P+1
1n L= −

Notice the
overlapping
segments of

the input

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #21

OLS Method - Extracting the Output

The first P-1
samples of each
filtered block are

aliased!

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #22

Efficient Computation of the DFT:
The Fast Fourier Transform, or FFT

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #23

Computation Required

• We’ll count complex multiplies; the number of
complex adds is about the same

• Let µ(N) be the number of multiplies needed to
compute an N-point DFT using an FFT
algorithm, and let β(N) be the number of
multiplies needed to compute an N-point DFT in
brute-force fashion

• Thus we start with
() 2N Nβ =

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #24

The Goal of “the” FFT Algorithm ...

• … is to compute the DFT of size N with significantly fewer
than N2 complex multiplications and additions

• To accomplish this, researchers have come up with entire
families of fast algorithms; these are collectively referred
to as “the” fast Fourier transform (FFT) algorithm

• The first (or at least most timely) FFT algorithm was
published by Jim Cooley and John Tukey in 1965 and is
now referred to as the radix-2 Cooley-Tukey FFT
algorithm
– this is the main version we will consider …

Summer 2004 ECE 4270 B. H. Juang Copyright 2004 Lecture #21, Slide #25

Computation of the DFT

• In order for the DFT to be useful for linear filtering,
nonlinear filtering, spectrum analysis, etc., we need
efficient computation algorithms for

• Using the above directly requires N complex
multiplications and N-1 complex additions for each
of the N DFT values complex
multiplications. For example,

2()N Nβ⇒ =

61024 (1024) 10N β= ⇒ ≈

1,,1,0][][
1

0
−==∑

−

=

NkWnxkX
N

n

kn
N L

