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In a Circular (Aliased) Convolution, Some 
Parts of the Output Equal the Linear 

Convolution, and Some Don’t …
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Linear Convolution Example Again
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Aliased Convolution - 1

• If we tried to implement the convolution on the 
previous slide by multiplying the L-point DFTs of the 
two sequences, the output would be the linear 
convolution, but repeated (aliased) every L samples:

• If we examine the values in the principal interval of 
n=0,…,L-1, what do we find?
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Aliased Convolution - 2

(only considering
n=0,…,L-1)

The first P-1 values 
are aliased!
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Aliased Convolution - 3

Another way to 
view it: the 
second block of 
L samples is 
aliased back 
onto the first 
block of L
samples
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Aliased Convolution - 4

If the DFT is big 
enough, namely 
N≥L+P-1, then 
the “aliasing”
simply overlaps 
zeroes onto the 
principal interval
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Terminology: Fast Convolution
• We can accomplish the convolution of two finite-

length sequences by computing the convolution sum 
directly:

• Or by computing the DFT of each sequence, 
multiplying DFTs, and computing the inverse DFT of 
the product:

• The latter approach is called “fast convolution” 
because (assuming FFTs are used), it often requires 
fewer multiplications
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Filtering Long Sequences
• Sometimes we want to filter a sequence that is very 

long
– could save up all the samples, then either

» do a really long time-domain convolution, or
» use really big DFTs to do it in the frequency 

domain
– but big DFTs may become impractical; besides
– we get long latency: we have to wait a long time to 

get any output
• Sometimes we want to filter a sequence of indefinite 

length
– and then even the methods above don’t work
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Using Linearity to Filter a Long Signal - 1

• Any long sequence can be broken up into shorter 
blocks:
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Using Linearity to Filter a Long Signal - 2

x[n] = xr[n − rL]
r=0

∞
∑ → y[n] = x[n]∗h[n] = yr[n − rL]

r=0

∞
∑

yr[n] = xr[n]∗h[n]

• We can then perform a linear operation on the long 
signal by
– performing it on each of the shorter segments, and
– combining them, using linear shift-invariance, to 

form the complete output signal
• Specifically, for linear filtering:
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Block Convolution - Overlap Add Method

x[n] = xr[n − rL]
r=0
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Segmenting the Input in OLA
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Putting the Output Pieces Together

yr[n] = xr[n]∗h[n]y[n] = yr[n − rL]
r=0
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Filtering the Segments

• The Overlap-Add (OLA) method calls for filtering each 
segment separately, then adding the results

• The filtering of the individual segments can be done by 
any legitimate means
– time-domain convolution
– frequency domain “fast convolution” using DFTs

(implemented with the FFT algorithm)
» DFT size N should be at least L+P-1 so that you get 

a linear convolution result for each individual 
segment
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Block Filtering with Circular Convolution

• Alternatively, we can use a smaller DFT and allow the 
convolution of the segments to be circular instead of 
linear
– N = max{L,P}
– fewer multiplications per DFT this way

• We saw earlier that in this case, only some of the output 
values of the circular convolution are equal to samples 
of the linear convolution

• The Overlap-Save (OLS) method of block convolution 
uses circular convolutions and retains only the “good” 
samples to build up the output
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Linear Convolution Example Again
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Aliased Convolution - 1

• If we tried to implement the convolution on the 
previous slide by multiplying the L-point DFTs of the 
two sequences, the output would be the linear 
convolution, but repeated (aliased) every L samples:

• If we examine the values in the principal interval of 
n=0,…,L-1, what do we find?
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Aliased Convolution - 2

(only considering
n=0,…,L-1)

The first P-1 values 
are aliased!
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OLS Method - Segmenting the Input

n P=n−P+1
1n L= −

Notice the 
overlapping 
segments of 

the input
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OLS Method - Extracting the Output

The first P-1
samples of each 
filtered block are 

aliased!

Summer 2004 ECE 4270  B. H. Juang     Copyright 2004 Lecture #21, Slide #22

Efficient Computation of the DFT:
The Fast Fourier Transform, or FFT
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Computation Required

• We’ll count complex multiplies; the number of 
complex adds is about the same

• Let µ(N) be the number of multiplies needed to 
compute an N-point DFT using an FFT 
algorithm, and let β(N) be the number of 
multiplies needed to compute an N-point DFT in 
brute-force fashion

• Thus we start with
( ) 2N Nβ =
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The Goal of “the” FFT Algorithm ...

• … is to compute the DFT of size N with significantly fewer 
than N2 complex multiplications and additions

• To accomplish this, researchers have come up with entire 
families of fast algorithms; these are collectively referred 
to as “the” fast Fourier transform (FFT) algorithm

• The first (or at least most timely) FFT algorithm was 
published by Jim Cooley and John Tukey in 1965 and is 
now referred to as the radix-2 Cooley-Tukey FFT 
algorithm
– this is the main version we will consider …
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Computation of the DFT

• In order for the DFT to be useful for linear filtering, 
nonlinear filtering, spectrum analysis, etc., we need 
efficient computation algorithms for

• Using the above directly requires N complex 
multiplications and N-1 complex additions for each 
of the N DFT values                              complex 
multiplications. For example,
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