Proceedings of the
GCC Developers Summit

May 25-27, 2003
Ottawa, Ontario
Canada






Contents

Optimizing for Space: Measurements and Possibilities for Improvement 7

Arpad Beszédes

GCC Compile Server 21

Per Bothner

Fortran 95 support in GCC 35
Paul Brook

A New Loop Optimizer for GCC 43
Zdenék Dvorak

Mudflap: pointer use checking for C/C++ 57

Frank Ch. Eigler

Alias Analysis for Intermediate Code 71

Sanjiv K. Gupta

Porting GCC to the AMDG64 Architecture 79
Jan HubicCka
Porting to 64-bit Linux systems 107

Andreas Jaeger

Architecture for a Next Generation GCC 121

Chris A. Lattner

The finite state automaton based pipeline hazard recognizer and instruction scheduler
in GCC 135

Vladimir N. Makarov



Design and implementation of the graph coloring register allocator for GCC

Michael Matz

GENERIC and GIMPLE: A new tree representation for entire functions

Jason Merrill

Tree SSA — A New Optimization Infrastructure for GCC

Diego Novillo

Porting GCC to the IBM S/390 platform

Hartmut E. Penner

Building and Using a Cross Development Tool Chain

Robert Schiele

Optimal Stack Slot Assignment in GCC

Naveen N.S. Sharma

How to Get the Best from g++

Nathan Sidwell

StackGuard: Simple Buffer Overflow Protection for GCC

Perry M. Wagle

A Maintenance Programmer’s View of GCC

Zachary Weinberg

151

171

181

195

213

223

229

243

257



Conference Organizers

Andrew J. HuttonGCC Summit
Stephanie Donovaiinux Symposium
C. Craig Rossl.inux Symposium

Review Committee

Toshiyasu MoritaHitachi America

Steve EllceyHewett Packard Company
Janis JohnsonBM

Richard HendersorrRed Hat, Inc.
Paul JY LahaieSteamballoon, Inc.
Andrew J. HuttonGCC Summit

Proceedings Formatting Team

John W. LockhartRed Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.






Optimizing for Space:
Measurements and Possibilities for Improvement

Arpad Beszédes, Tamas Gergely, Tibor Gyimothy, Gabor Loki, and Laszl6 Vidacs
Research Group on Atrtificial Intelligence

University of Szeged
Aradi vértanuk tere 1., H-6720 Szeged, Hungary, +36 62 544126
{beszedes,gertom,gyimi,alga,lac}@cc.u-szeged.hu , http://gcc.rgai.hu/
Abstract 1 Introduction

GCC is increasingly used as a cross-compiler
to produce programs for embedded systems.
Although performance in terms of speed is also
important, in many cases the amount of con-
sumed resources (memory, energy, etc.) plays
GCC'’s optimization for space seems to havean even greater role in the case of devices with
been often neglected, in favor of performancdimited resources. So, when GCC is used to
tuning. With this work we aim at determin- build these software, the code produced should
ing the weakpoints of GCC concerning its opti-be as small as possible. Indeed, GCC is able to
mization capability for space. We compare (1)optimize for space but, alas, it seems that this
GCC with two non-free ARM cross-compiler objective was often neglected when designing
toolchains, (2) how GCC evolved from releaseand implementing various code generation and
3.2.2 to version 3.3, and (3) two runtime li- optimization algorithms [1, 5]. We may con-
braries for the Linux kernel. All tests were per- clude the same when we consider the fact that
formed using the C front end and for the ARM beside the vital regression testing methods and
target both as standalone and as Linux executahe results of several benchmark suites avail-
bles. The test suite is comprised of applica-able on GCC web pages [9, 8, 3], no word is
tions from well-known benchmark suites suchspoken about benchmarkirgde sizeIn fact,
as SPEC and Mediabench. An optimal comawere unable to find any related publication at
bination of compiler (and linker) options with all which deals with the assessment of compil-
respect to minimal code size is elaborated agrs’ capabilities for space optimization.
well. We conclude that GCC 3.3 steadily im- _ _
proves with respect to version 3.2.2 and that itVith this work we attempted to determine the
is only about 11% behind a high-performanceVéakpoints of GCC concerning its optimiza-
non-free compiler. At the same time, we werelion capability for space. We present the results
able to document a number of issues that de@f Our assessments where we compared:
serve further investigation in order to improve
code generation for space. » GCC for standalone executable with two
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non-free ARM cross-compiler toolchains, actual results for standalone executables and
Linux libraries, respectively. Finally, in Sec-

« How GCC evolved from release 3.2.2 totion 6 we summarize our conclusions and give
version 3.3, and our view on the possibilities for improving

GCC.
* Two runtime libraries for GNU/Linux,

glibc [2] and i Clibc [7]. _
2 Measurement Environment

All tests were performed using the C frontF Il th biecti ¢ . tioati
end and for the ARM target (both for stan- orafl Inree objectives ot ourinvestigation pre-
sented in the previous section, we have set up

dalone and Linux executables) as this combi- mon m rfement environment. It con
nation is one of the most frequently used nowa? COMMON measurement environment. 1t con-
ists of a collection of test programs that are

days for embedded applications. A testbed wagd"> . . :
utilized with applications from various well suitable for compiling and measuring code size

known benchmark suites. for a_LII C(_)mpilers and ponfigurat_ions under in-
vestigation. The environment is able to per-

We did our best to discover the optimal com-form these measurements and present the data
bination of compiler (and linker) options with in a simple form ready for further processing.
respect to minimal code size; we elaborate odn addition, it also facilitates the execution of
the relevant ones for GCC and propose a set ghe executable programs.
options to extend the default settings for code
size. With this option set an improvement of2.1 Compiler Toolchains
nearly 5% was achieved.

, o , In each experiment we employed C as the
In the investigation we included both the Ob'source language and the chosen target architec-

ject sizes produced by the compiler and theture was ARM (32-bit ARM instruction set).
linked executable sizes to see what effect therwo types of target code were used: stan-

runtime libraries had on the overall linked COdedanne programs (that run on the hardware

size. Comparing only object sizes, 0Ne NONyishq it an operating system) and Linux tar-

free compiler is about 11% better than GCC,get for the ARM architecture (for GCC com-
but in the case of executables this ratio rises t?)iler arm-elf  and arm-linux  machines

32%. respectively). The following toolchains were

We investigated the generated code by Gc¢iSed for the measurements:

more thoroughly and finally we document sev-

eral issues that deserve further investigation in * GCC 3.2.2 version with newlib version
order to improve code generation for space.  1.10.0 [6] for standalone target (with
These include the lack of interprocedural op-  binutils version 2.13)

;ur?lzatlons, t.hcta :lc_aquwteﬁ ur(;llt. at atgme E[:ompl- * GCC 3.3 prerelease snapshot (2003-04-
ation, more intefligent handling 6Ls , €tc. 14) with the same newlib and binutils

Ir_1 Section 2 we describe our measurement en- | o version 3.2.2 with glibc version
vironment and methodology. Section 3 deals 2.2.5 [2] for Linux target

with GCC’s different compiler options and

there also we give our proposal for the best « GCC 3.3 prerelease snapshot (2003-04-
combination. Sections 4 and 5 present the  14) with glibc version 2.2.5
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« GCC version 3.2.2 with:Clibc version | Testproject] files | lines|  bytes| exec.|
0.9.15 [7] bzip2 1| 4250 121,279 1
catdvi 6 770 24,332 1
flex 21| 19,571| 530,312 1
g721 8| 1,725| 46,980 2
gsm 29 | 5982 182,809 1
» Two non-free compilers for ARM archi- | jpeg 84 | 34,181 1,150,110 6
tecture configured as standalone targets| Mcf , gg 323;‘ 2?32%3 1

. . mpeg2enc ; '
These_ will l?e denoted b_Qompller 1§1nd osdemo 147 | 68434| 1.925 141 1
Compiler 2in the following dISCUSSIO!’IS. parser 18| 11,391| 356,526 1
The former useslf output format, while sed 20| 12,393| 365,886 1
the latter producesoff files. P3szogr 1 48 1,568 1
_3szog 1 48 1,419 1
abc 1 17 443 1
arg 1 25 390 1
datum 1 48 870 1
The switches that control optimization for | eltelt 1 32 939 1
space were turned on for all toolchains. In | €ndian L 18 258 1
dditi | furth . both geometry 1 435 11,869 1
a ition, severa urther options (_ oth com- | | voszt 1 50 1121 1
piler and linker) that enable or disable cer- | minimax 1 52 1,444 1
tain code optimization and/or generation algo- | static 1 35 460 1
rithms were also set that resulted the most com-_szinusz 1 52 1372 1

pact code size. The combination of these extra

options was determined by trial and error, andrhe first column shows the number of files that
for GCC toolchains we elaborate on these inconstitute the test project, the second one gives
Section 3. the total number of program lines, and the third

For each GCC toolchain the runtime IibrariesCOIumn gives the size of the source code in
bytes. In the last column the number of exe-

were compiled using thg same options as forcutables that are built from the test project is
the test programs. (Neither of the two non-

. : . ) shown.
free compilers libraries were prepared in such

way.) The use of such libraries has an effec|| test programs were compiled to produce
where the executables are compared, becaugge object files and the given executable pro-
the overall code size incorporates library codeyrams were prepared by linking. These ob-

as well. jects and the linked executables for each of
the toolchain under investigation were used for
measurement.

2.2 Testbed

In the following for each measurement the
small programs (the last 12) are treated jointly

The testbed used in the experiments consists @Nd are denoted by “small.”

two parts: small example programs and real ap-

plications from several well-known benchmark2-3 Measurement Method

suites (GNU applications, SPEC CPU2000

[10], MediaBench [4]). In the following table The way to measure the size of the generated
some information is given about the sizes of thecode (i.e. its compactness) is not always trivial.
test programs: As obvious, we chose to investigate the final
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binary machine code (instead of, for exampleyuntime libraries are used for the two cases (i.e.
the assembly code). in the case of GCC, newlib and glibc).

Objects and executables. The granularity of One would expect that with objects there
the code was a further aspect: should we meashould be no difference at all. However, some
sure the function sizes individually, the objectminor impact of the library is still noticeable.
code for a complete compilation unit, or inves-The library headers should contain the same
tigate the size of the linked executable? In thisstandard prototypes (e.g. standard functions),
paper we present the results for the latter twdout the difference comes from the different im-
because in certain environments both can be irplementation of some features. For example,
teresting. When we compare the object sizesome standard names can be implemented us-
the effectiveness of the compiler proper is acing macros and function calls as well.

tually compared,while in the second case the

whole compiler toolchain is assessed including='€ay, then, measuring the size of the exe-
the compiler, the linker and libraries as well. Cutables incorporates a much greater impact of

This is because the size of a linked progranjr'he library code. Itis apparently measurable on
depends on the size of the libraries and a|S§tandanne executables. However, the situation

how they are processed by the linker. HenceP&comes more complicated when we investi-

in this paper we mostly rely on comparing ob-gate _ex_ecutabl(_es built for Linux. The reason
jects which is more informative with regard to fOr this is that Linux executables do not embed
a compiler's optimization capability for space. the library code, but they maintain only ref-

erences to the so-called shared objects, which
In order to get the best possible results wherare linked at runtime. (Even if static linking
measuring executables, we also built the liis used some functionality will still be imple-
braries of GCC toolchains with the same flaganented in the operating system rather than the
as the test sources. With the libraries of the tweexecutable.) We present some results for Linux
non-free compilers we were not able to do theexecutables in Section 5.

same. _ o
Sections. Another problem was deciding

Standalone and Linux programs. Another which parts of the generated files we should
dimension of the categorization we investi-take into account (obviously the size of the
gated was both kinds of targets: standalone exsinary file is not relevant because of various
ecutables (i.e. for without an operating systemheaders, etc.). The generated program code
and executables built for a specific operatingconsists of many parts; instructions, data and
system (in our case GNU/Linux). Although the so on, which are generally separate in a binary
same compiler is used with the same settingdile (in the sectiony. However, in many cases
the resulted binaries generally contain severahese parts can be intermixed (e.g. executable
notable differences: a few in the case of ob-code can contain embedded data). In addi-
jects and a significant difference with executa-tion, several other sections are generally also
bles. These are mostly due to different exejput into the binary file, which are of no inter-
cutable production and to the fact that differentest with respect to the size of the code. These
include the debug sections, symbol tables, etc.

INote, that the library implementation still has a min-
imal impact on the object sizes because of the libraryThe different types of object fileself and

hgaders, which are also translated by the compller. Con-oﬁ ) can have different kinds of sections
sider for example, that macros can be used to implemen

function-like behavior. and, what is more, the different compilers may
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use various strategies for laying out code angrogramcoffdump extracts the sizes of the
data into sections. More specifically, differ- sections frontoff files, but not in a summa-
ent compilers may split some code into sev+ized form. Fortunately, altoff files contain
eral sections, or put other things together in on@lmost the same sections and have the same
section. For exampleglf files contain one names. We examined what kind of data was
(or more) initialized read-write data section(s),contained in the sections, and counted the re-
while coff files contain program code that quired sizes by hand. (Fortunately, only one of
will initialize the data at runtime. So no com- the non-free compilers uses this format, with
mon handling could be used and the combinaall other toolchains including GCC we were
tion of the sections to be incorporated in theable to extract code sizes automatically.)

measurements needed to be determined sepa- _ _ _
rately for each toolchain. Execution. The measurement environment is

capable for executing the built programs us-
In each case we summarized the size of onlyng a simulator for standalone programs and
those sections that contains generated coden ARM-based hardware device with Linux
that is directly used by the program. Thesesystem for Linux binaries. We ran the pro-
are the sections that contain executable codgrams and checked their outputs for validating
and constant- or initialized read-write programthe compiler toolchain with components of dif-
data. Note, however, that executable code anfirent versions, and for verifying the correct-
constant data cannot always be clearly sepaiess of various compiler option combinations.
rated (there are constant data items which ar&éhroughout our measurements only those con-
“hidden” in the executable code) so we handldigurations were used that produced correct and
them together during the comparison. running programs.

We experimented with two kinds of section _ _ _
combinations: (1) the size of sections contain3 Compiler and Linker Options
ing program code or constant data (referred

to as “read-only sections”) and (2) the sizéyjith each toolchain investigated we sought to
of sections that contain any kind of programsing the pest possible combination of options
data, which also includes read-write data (re'vvith respect to code size. In general, compil-

ferred to as “all sections”). We decided to fol- o1 hrovide a special optimization option that
low the second approach because it seemed {Rtrcts them to optimize for space rather than

be the most reasonable because of the abovgs, speed. With GCC, this option is the switch
mentioned various types of handling of initial- .}ed-0Os . ’

ized read-write data.

Measurement tools. When assessing both the 3-1  Best Options for Space in GCC

object and executable sizes #lé andcoff

files needed to be investigated. To this end difCommonly, -Os is used internally in GCC

ferent methods for extracting the section size$o enable or disable certain optimization algo-

were employed because of the different binaryithms, but generally any part of the compiler

formats. The prograrsize (part ofbinutils)  proper can depend on this option and perform

is a suitable tool for extracting the size of thedifferently when space is the concern. How-

mentioned sections froralf files. We were ever, there are a number of other compiler op-

unaware of any similar tool faroff files. The tions (mostly related to optimization) which
have a notable effect on the size of the gen-
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erated code. By experimenting with these op} Compiler Option 32133
tions we found thatOs alone does not pro- | ©° yes | yes
duce the minimal code for our testbed. Hence no-apes-irame yes| yes
uce X N ; i -fomit-frame-pointer yes | yes
we determined the combination of options on ffunction-sections yes | yes
top of-Os, which proved to be the best on our| -fdata-sections yes | yes
testbed -fno-force-mem yes | yes
-fno-force-addr yes | yes

The following table summarizes the final ']‘:”0"”“”9'f“”0t'°”5 yes | yes
choice of options, which we used in all our| V'@ no | yes
) ) ) -fbranch-probabilities yes | yes
trials (except where menthned_ _otherW|se) finline-limit=1 yes | yes
(Note, that some of these are implicitly enabled -fno-schedule-insns yes | yes
or disabled by-Os,* therefore we supply the | -fno-optimize-sibling-calls yes| yes
options later in the command-line so that they -no-if-conversion no | yes
will be overridden.) -fno-thread-jumps yes | yes
) -fno-hosted yes | yes

Some options were not available in GCC 3.2

releases, evidently they were left out in the

cases when this release was measured. We will
20ne option belongs to this set if it produces an over-yse the notatiompt-1 for the best options for

all gain with respect to the defauds , so it may happen 3 5 o andpt-2for the best options for 3.3.
that in some cases it performs worse. It may also hap-

pen that one option combined with another one degradeﬂirhe option-mno-apcs-frame is specific to

the overall result, but of course, we could not try every
combination of the options available, the ARM target. We also used another ARM-

3This is the list taken from the GCC 3.3 sources: ~ SPecific option-mno-thumb-interwork
to tell the compiler that we were generating for

just 32-bit ARM instruction set.

-falign-functions -falign-jumps

-falign-labels -falign-loops Two interesting options areffunction-

-fbranch-probabilities -fcaller-saves sections  and-fdata-sections which
-fcprop-registers -fcrossjumping . .
fese-follow-jumps -fese-skip-blocks generate only one function/data per section
-fdefer-pop and this helps the linker to omit the unused

-fdelete-null-pointer-checks
-fexpensive-optimizations -fforce-mem
-fgcse -fif-conversion

-fif-conversion2 -floop-optimize
-fno-merge-constants
-fno-reorder-blocks
-foptimize-sibling-calls -fpeephole2
-fregmove -freorder-blocks
-freorder-functions

functions/data from the executable. Generally
speaking, they do not influence the object sizes,
but the executables may become smaller.

Another notable option isfno-inline-
functions  which disables the automatic in-
lining of GCC. In general, automatic inlining
performs very badly with respect to code size

-frerun-cse-after-loop

-frerun-loop-opt -fstrength-reduce
-fstrict-aliasing -fthread-jumps
options that depend on a define:
-fdelayed-branch -fomit-frame-pointer
-fschedule-insns
-fschedule-insns-after-reload

and it could be made more intelligent.

The linker also has a number of options that
were worth experimenting with. We deter-
mined the following combination which pro-
duced an overall smaller code than the default:
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Linker Option 3.2 Other Optimization Options

-0 2

-gcl-sectlons There are high number of optimization options
-relax . (starting in-f ) in GCC that can be given on
-no-whole-archive

command-line (170+). Most of them have a bi-
nary state and so a correspondHfigo- XXX
is also normally present. We examined all

The options listed _above produc_ed, on OUL, ailable options in GCC 3.3 but of course,
testbed, an overall improvement in code size

of 4.78% with respect to using oris . Fig- We could not try all of the possible combina-

tions, so we followed a simple approach in that
ure 1 shows the results separately for each pro Pie app

gram. To obtain the relevant data we used th an option (both the enabling and disabling ver-

. ions) was added to the list of good options if

GCC 3.3 Snap.ShOt with onlyOs tu_rned_on it brought improvement over the defau®s .
and compared it to the same compiler with ad-, . ~. : .
An individual option was tried separately from

ditional options from the table above (averagethe others rather than by cumulating them. The

object sizes of test projects in standalone tarfinal result is given in the previous section.

get). The total sizes of the test projects is given

with the project's name in bytes. Many of the investigated options had some
problems or did not yield improvements and
hence they were ignored. In the following
we categorize these options rather than listing
them all (they can be found in the GCC man-
ual). Those options that are not mentioned here
did not improve the code (the correctness of the
output was not verified either).

120.00%
100.00% -

80.00% 4
60.00% -
40.00% A
20.00% 4

0.00% +—=%

S B (D
q;,;‘a% &

% SRR IR\ AN
6@(\\0\%&\&@(;&6;&@5’ $ &5&\& e®q}\ &qﬁ‘ ¢ 0&&
& & Combined use.The  following  options
[ GCC-3.3 newlib (-Os) 8 GCC-3.3 newlib (opt-2)] separately produced certain im-
. . . provements, but their combined
Figure 1: The effect of additional compiler op-
9 P P effect was not better on average:

tions -ffast-math -ffreestanding

-fno-builtin -fno-inline

We can see from the above plot that every test
program has benefited from these options, es-
pecially the bigger ones (excefix , which

is probably due to the fact that it contains un-
commonly large amount of data).

-fno-sched-interblock
-fno-sched-spec
-fsched-spec-load
-fvolatile-static

In Section 5 we present some data which showEarameterized options. For  this work we

that a marked improvement in library size can
also be achieved using this options set.

Due to the above results we propose to add
these to the default operation @ds in future
releases of GCC (at least for the ARM target).

were not able to include the investigation
of those options that accept some param-
eters (i.e. not a binary). This parameter
is generally a number but in some cases
it can be a string. We only investi-
gated  -finline-limit= number
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which showed a minor improve-
ment. The following options were
settings:

default
number
number
number
number

left with their
-falign-functions=
-falign-labels=
-falign-loops=
-falign-jumps=
-fcall-used- number
-fcall-saved- number
-fdiagnostics-show-
location=  string
-fmessage-length=
-fsched-verbose= number
-fstack-limit-register= number
-fstack-limit-symbol= string
-ftls-model= number .

-ffixed-
number

Invalid generated code. The options listed

number

-fno-dump-translation-unit
-fno-dump-tree -fno-fixed
-fno-function-sections
-fno-inline-limit
-fno-message-length
-fno-pretend-float
-fno-sched-verbose
-fno-stack-limit-register
-fno-stack-limit-symbol
-fno-tabstop
-fno-template-depth
-fpreprocessed -fpretend-float
-fprofile -fprofile-arcs
-fsched-verbose -fshort-enums
-fssa -fstack-limit
-fsyntax-only -ftabstop
-ftemplate-depth

here always produced smaller code, but
these codes could not be correctly exe-

cuted on GCC 3.3: -fshort-double
-fsingle-precision-constant
-funsafe-math-optimizations .

Compiler and Toolchain Com-
parisons

These should be investigated for possible

bugs in GCC.

Irrelevant option. Some options are ei-

ther not implemented in GCC

small code.
ing: -fallow-single-precision
-fcall-saved -fcall-used
-fconstant-string-class
-fdiagnostics-show-location
-fdump-tree -ffixed
-finline-functions

-finline-limit
-finstrument-functions
-fleading-underscore
-fmessage-length
-fno-allow-single-precision
-fno-call-saved -fno-call-used
-fno-constant-string-class
-fno-diagnostics-show-location
-fno-dump-class-hierarchy

In this section we present the results of a com-
parison of the sizes of objects and executa-
bles of GCC configured for a standalone target
with two non-free compilers. The two com-

or they did produce some extremely pilers shall remain anonymous, which will be

These are the follow-

referred to asCompiler 1and Compiler 2 In
both cases the best configuration of compiler
options was used for code size. In the diagrams
opt-1 denotes the best options for GCC 3.2.2
andopt-2the best options for 3.3.

A comparison of objects is more informative
with regard to a compiler’s optimization capa-
bility for space, because in this case no pre-
generated code of libraries or startup routines
are included.

All sizes comprise of the program section sizes
(as described in Section 2.3), and we present
these in a relative form: with respect to GCC
3.3 snapshot with our option-set (elaborated in
Section 3).
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In Figure 2 the average achievement of the C %%

. . . . . 40.00% -
compilers is shown in terms of object size. The , .
values are computed as the sum of the sizes of ., -

all objects of the test programs, and are shown

4.1 Compiler Results on Objects
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\DGCC»&S newlib (opt-2) 8 Compiler 1 @ Compiler 2\

100.00% 1 100.00% 98.17%

Figure 3: Individual compiler results for ob-
jects

80.00% -

60.00% -

40.00% -

objects. We performed this comparison for
standalone executable images, which means
that apart from the application objects, the li-
[EGCC 3.3 newib (opt-2) S Compiler 1 & Compiler 2] brary code and the effectiveness of the linker is

) _ _ also incorporated in these number.
Figure 2. Average compiler results for objects

In Figure 4 the average result of executable

As can be seerCompiler 1provides the best sizes is shown. We computed the average val-
results andCompiler 2is still better than GCC. ues in the same way as for the objects, so they
The gain in size achieved bgompiler 1is are simple sums of the program section sizes in
11.48% and 1.83% bgZompiler 2relative to  the executables. Relative values are shown as

the size of the objects compiled with GCC. ~ Well with respect to GCC.

20.00%

0.00%

The same measurement is shown in more de®*%*
tail in Figure 3. It shows the effect of the C 100.00% -
compilers separately for the different test pro- ..,
grams. The sizes of the objects are summarized

per test project (which is shown in parentheses**”*
after the project name at the bottom of the dia- 40.00% |
gram in bytes). 20.00%

100.00%

85.89%

The optimization capabilities of the compilers °%*
seems to be similar for each test projegam- [GGC-3.3 newllh {opt-2) W Gompler 1 8 Gompiler 2
piler 1 produces the smallest code; the sizes o
the result ofCompiler 2are between the sizes
of the output ofCompiler 1land GCC.

If:igure 4: Average toolchain results for exe-
cutables

We can observe that the ranking of the
4.2 Toolchain Results on Executables toolchains regarding code size in this compari-

son has not changed with respect to investigat-
We also investigated the difference in the gening only the compilers. The differences are, at
erated code size of the executable files usinghe same time, more significant than in the case
the same environment and options as for the@f objects comparison (about twice as much).
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Apparently, the reason for this is twofold: the5 Results for Linux Libraries

tools use different implementations of standard

C runtime libraries and the linkers may also be- . .

have differently. It is an open question whethel’o‘pa_rt from using as a cross-c_ompller gen-

the difference in the libraries causes a biggeFratlng stgndalone executable images, GCC
difference or it is the linker that is responsible's also widely used to generate programs

(e.g. by performing different optimizations at for GITIdU/tI)_inux. I;e_r(;ce We_thought th?‘t
link time). Whatever the case, the comparisoﬂt_ wou € a good idea 1o Investigate the
zes of the generated objects and executa-

of the executables is not as a good measure | in thi I In th
the toolchains as a comparison of the objects i es in ( IS cased as (\3N§CI n i ese ?X_
a measure of the compilers, because the implé2erlmen S we used a complier: contg-

mentation of the libraries is also an importantureOI for thearm-llnux-elf target Wlth
factor, which is included in the result, the same environment and compiler options

as for the standalone target (the only ex-
In Figure 5 the same measurement is showgeption being that we needed to omit the
in more detail individually for the various ex- -ffunction-sections option of GCC
ecutables. The sizes of the executables argecause it caused some problems when execut-
summarized per test project (which is showning the programs on a Linux system). In this
in parentheses after the executable name at tre@se we employed the commonly used GNU
bottom of the diagram in bytes). library glibc [2].

The Linux executables are not comparable with
a standalone configuration (namely, with the
GCCarm-unknown-elf  target or with the
two non-free compilers). This is because Linux
uses shared objects that are linked at runtime
to the executable (see Section 2.3). Neverthe-
less, objects should be comparable. Our re-
MRNENNEN  sults showed that the objects for Linux target
FLF T have a smaller code size than objects for stan-

140.00%
120.00%
100.00%
80.00%
60.00%
40.00%
20.00%
0.00% M

) = 5\ N 2 N o\ )} N
S 5 B 5 9
FEFEEFFEFEELE LS
S ¢ S & P F S & P @ H
FEL ST FL TS TS dalone target (by 8.35% with GCC 3.2.2 on our
IS} & <

testbed). By examining the compiled objects
we found that the size differences were primar-

Figure 5: Individual toolchain results for exe- ily due to the different implementation of the
cutables library headers.

‘DGCC-S,B newlib (opt-2) 8 Compiler 1 £ Compiler 2\

5.1 (glibc vs.uClibc

As can be seen, the ranking of the three

toolchains does not always show the same orAlas we could not find any other compiler
der as in the average case, but we can see thtolchain (either free or non-free) that was able
Compiler 1lis still in all but one cases much to generate for Linux target. Only theClibc
better than GCGCompiler 2produced both the toolchain [7] could serve as a comparison ba-
worse and the best results: there are cases whers. However it also uses the GCC compiler, so
this tool had the largest code, but there are alsi really compares two implementations of the
cases where it seems to be the best tool. standard C runtime libraries.
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We performed all measurements on the testbefhctor: all tools work with their own implemen-
and investigated the sizes of the objects anthtion, and this difference is also included in
executables as well. We used GCC versiorthe result.

3.2.2 because the later versions (3.3 snapshots

and the active development 3.4) are not sup?/e managed to narrow the gap between a high-

ported by xClibc. With glibc- and ;Clibc- performance non-free compiler and GCC 3.3

based toolchains we used the same compildfSing our own set of compiler options from
options that we found to be best for size with1-71% t0 11.48% measured on objects for a

the standalone target (as described in Sectiopfandalone target. However, this number is
3). It is interesting to note that compiling nearly double when we consider executables.

the libraries using our combination of options 1 NiS suggests that not only GCC needs im-
brought a significant improvement in library provgment, but the associated libraries as well
size with respect to the default settings: 3.2204iN this case newlib).

for glibc and 2.04% fop.Clibc (computed for
shared object binaries and not for static li-
braries).

Things get more complicated if we wish to
compare toolchains configured for Linux target
and not for standalone. This is because Linux

An interesting observation was that th€libc ~ US€S shared objects that are linked at runtime.

toolchain generally produces a slightly larger!n this case the only reasonable thing is to mea-
code size (1 or 2% at most) than GCC withSure the size of the corresponding libraries.
glibc. We do not present the actual results herd-0r €xample, we found that the total size of
Rather it is more interesting to look at the dif- #Clibc,—an alternative library to glibc—is far
ference in the sizes of the actual libraries. €SS than glibc (only one fifth).

We measured the total code section sizes fotg_1
all the generated library files. On average
the pClibc library was smaller by 80.58%
(1.94MB vs. 0.38MB) for the shared object bi- In the previous sections we presented the re-
naries, and was smaller by 59.49% (1.59MBsults of measurements with the latest snapshot
vs. 0.64MB) for static libraries counting sim- of GCC 3.3 version. We performed the same
ply the sum of all sections in all of the library experiments with version 3.2.2 as well (which
files. is the last official release at the time of writ-
ing) and found that prerelease 3.3 has improved
_ slightly in terms of optimizing for space. In
6 Conclusion: Improvements and this section we summarize the results of our
Limitations measurements of what are the exact improve-
ments.

Improvement of Prerelease 3.3

Assessing a compiler’s effectiveness in opti-The average difference between object sizes
mizing for space poses a number of difficulties.generated by GCC 3.2.2 and the 3.3 snapshot
Based on our measurement results presented @onfigured for standalone (with newlib) is only

previous sections, we can say that the most re3.31%. With both configurations we used the

liable way is to compare the section sizes conbest compiler options, where some options are
taining program code and data in objects rathenew to 3.3 and therefore not present in mea-
than executables. This is because the implesurements with 3.2.2 (see Section 3). Figure 6
mentation of the libraries is also an importantshows the same separately for each program of
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the testbed. We made some investigations to found out
what enhancements in GCC 3.3 caused this
improvement in code size. There are a num-
ber of minor issues that could probably ac-
count for this, like some smaller optimizer im-
provements and target specific optimizations.
However, we think that the major factor was

110.00%

105.00% -

100.00% -

S & P DS PP PP P DO the introduction of the new register allocation
&FE g’:ﬁ&@% eb\“:@\“‘b@@b ISP algorithm. In fact, by disablingfnew-ra
& O Qi&&e Tee et ¢ in GCC 3.3, the difference of 0.31% between
[GCC-3.2.2 newib (opt-1) S GCC-3.3 newib (opt-2)] 3.2.2 and 3.3 using the best options disappears
and GCC 3.3 becomes to produce larger code
Figure 6: Improvement of GCC 3.3 by 0.29% on average!

Overall, no extraordinary improvement can bes.2 Remaining Problems
seen from this diagram and, in fact, the biggest

program even shows that the older GCC gen- looki t th ted code |
erates smaller code. The difference is slightly)3y ooking at the generated code n more

larger in the case of executables; (itis 1.86% orgemth’ V\f’eGné?:n?r?id to I'g%nm;{nsfv\?rzl i\r’:’eai('
average measured under the same conditions Qints o at could be improve ©

for objects), which can also be attributed to the re(;ljo %?nizgtgsaanégissoen;pgg égdﬁr}ﬁ;gmr
library code which is incorporated into the ex- Jroup . . :
ecutable. that are due toits architecture and logic of com-

pilation. Some of them may not be solved or at
We also investigated the amount of improve-least with very high effort. In the following we
ment that can be achieved with Linux libraries.summarize the main issues for providing some
We prepared the glibc binaries using GCcCstarting point to future improvements.
3.2.2 and 3.3 snapshot using the best option
and found that with the new version the library . )
was 0.95% smaller, which is similar to what Wef[ran_slates one funct|on_at atime and_ therefore
t misses the opportunity of performing such

got for object sizes above. Figure 7 shows thig: MISses : :
improvement for each library component optimizations that rely on seeing all functions
' of a compilation unit at the same time. With

110.00% version 3.4 there was recently added the possi-
105.00% 1 bility for unit at a time compilation, but its uti-
lization in optimization has not yet been fully

100.00% -
95.00% | achieved. If this feature is fully implemented
oo NANNNANNARNANNARRA in GCC, it would enable, for example, the shar-

S . : I
Unit at a time compilation. GCC generally

S OLP PP PO DD D SRS D ing of global variables, the elimination of un-
S FEEETEFIELELL i i i
S 08 5 0 8 S P used static functions, and the sharing of com-
oV & P W @ TS S S 9 ; i
N sl TS NS mon data among functions (when the function-
&7 &S S NI o . . .
A ° & per-section option is not used).

[ GCC-3.2.2 glibc (opt-1) MGCC-3.3 glibc (opt-2)]

_ More intelligent -Os. Generally, wherOs
Flgure 7. Improvement of GCC 3.3 measureqs turned on it meansO2 with some addi-

on glibc tional optimization algorithms being implicitly
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enabled. In addition, any part of GCC can optimal, especially when jump tables are
check for the state of this option. However, the used.

semantics of this option could be further im- _

proved. First, a more careful selection of algo- * RTL code generation from trees can be
rithms that need to be enabled could be imple- ~ Made more optimal than that for the cur-
mented, similar to those proposed in Section 3. fent naive preorder walk.

This could be further enhanced using the pos-
sibility for target-specific configuration of this
switch. Furthermore, ifOs could act as an
orthogonal option to other levels of optimiza-
tion, it would offer for an even more flexible
configuration.

» Automatic function inlining does not
seem to take into account when code size
is the objective rather than speed. In this
case only those functions should be in-
lined, which produce smaller code than
calling the function.

Interprocedural optimizations. Due to the
above-mentioned missing unit at a time com-
pilation, no interprocedural optimization algo-
rithms could be used. A number of existing
algorithms could be extended to interprocedu-
ral operation, which would undoubtedly pro- Library issues. Although the inadequacies of
duce significant improvement, e.g. interpro-library implementations are not the subject of
cedural dead-code elimination and redundanthis article, we would like to remind the reader
code elimination [1, 5]. Even some evidently of the fact that the library headers indeed have
redundant code constructs are currently genesome impact on the size of the generated code,
ated by GCC. Consider, for example, the fol-which we elaborate in Section 2.3. Another in-
lowing code and notice that the call to functionteresting observation of ours was that a lot of

* In ARM target, multiple variable load and
save instruction are generated only for
simple cases.

foo will be superfluously generated: space could be saved if some operators could
be implemented by a library function call. For
int a,b: example, if integer division and modulo opera-
int foo(int x) { return x; } tors ( and% would have a corresponding li-
void bar() { brary function then for targets where these op-
a = 1 erations are not part of the instruction set, a
b = foo(a); simple call would be generated instead of the
} inline implementation of the division. Natu-

rally, this would require that all library imple-

. . . mentations provide such builtin functions for
Minor optimization issues. Here we list sev- .
certain commonly-used operators.

eral minor issues that are related to some opti-
mization algorithm (or are possibly specific for _
ARM target). 6.3 Conclusion

We have seen that GCC is getting better and
better with regard to code size. The latest
version 3.3 (using an optimal combination of
options) is only 11.48% worse than a high-
» The organization of the generated code foperformance non-free compiler. In Figure 8 we
theswitch statement can be made moresummarize the results of our measurements.

* The organization of loops is sometimes
too complicated with redundant condition
checking at higher optimization levels.
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B GCC-3.2.2 (-Os) to
GCC-3.3 (-Os)

GCC-3.3 (-Os) to
GCC-3.3 (opt-1)

GCC-3.3 (opt-1) to
GCC-3.3 (opt-2)

82.15%

Figure 8: Summary of improvements

In this diagram we can observe (1) how much
improvement version 3.3 brings witls only
(0.3%), (2) the effect of a combination of op-
tions that we suggest ove©s measured on
GCC 3.3 (4.15%) and (3) the effect of some
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The way thegcc user-level program invokes
other programs (such &£1, as, andld ) to
compile programs has changed little over the
years. Except for the recent integration of the
C pre-processarpp with the compiler proper
ccl, it works very much like the original Bell
Labs K+R C compiler: Theycc driver runs

a freshccl /cclplus /... executable for each
source C/C++/... program that needs to be
compiled, reading a single input source file,
and writing a single assembler output file.

This model has (at least) two big disadvan-
tages:

» Compiling or re-compiling many files is
slow. Most obviously there is the the over-

* The can be more than one input files to
a compilation, and they are compiled to-
gether to a single output file. It can create
tree representation for all the input files,
and delay code generation and optimiza-
tions such as inlining until it has read all
the input files.

» The compiler can be invoked iserver
mode in which case it enters a loop, wait-
ing for compilation requests. Each re-
guest specifies the name of one or more
input files to compile, and the name of
a requested output assembler file. When
the compiler is done with one file, it does
some cleaning up, and then waits for the
next compilation request.

head of repeatedly creating a fresh exeyye il primarily discuss the latter server

putable. Even more significant is that eaChmode, but multiple-file-compilation is relevant
included header file has to be re-read fromm this discussion because both mechanisms re-

scratch for eac_h main file. This is a big quire changing the logic and control flow in the
problem especially for C++, and has Ieadcompiler proper.

to work-arounds like pre-compiled header
files. The compile server compiles multiple source
files, without any extrdork ing or exec ing.
When compiling a source file the com- This provides some speedup, and so does hav-
piler has no knowledge of what is in othering to only once initialize tables and built-in
source files. This limits the opportunities declarations. However, the substantial speed-
for “cross-module” (or “whole-program”) up comes from processing each header file only
optimization, such as inter-module inlin- once. The current work concentrates on front-
ing. ends that make use opplib ,i.e. the C fam-

ily of languages. The goal is to achieve per-

formance comparable or better than with pre-

The compile server project improves on theseeompiled headers, but without having to create

problems as follows:

or manage PCHSs. You are also a lot more flex-
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ible in terms of order of reading header files.Handling multiple input files is valuable, but
Specifically, the goal is to avoid re-parsing thedoesn’t help much with interactive develop-
same header files many time, by re-using thenent, where there are typically many frequent
tree nodes over multiple compilations. Similardebug-edit-compile cycles. It would speed
ideas can benefit other languages (such as Javidiings up if the compiler could remember state
that import declarations from external modulesfrom previous compiles between compilations.
(or classes). Another issue concerns existingakefile

) _ _ _ scripts, which often use a separgiec com-
This paper describes highly experimentaly,ang for each source files. Therefore we need
work-in-progress. The current prototype han-yp actuakerver which sits around in the back-
dI_e_s C tolerably well, and handles some NONyround waiting for compilation requests. We
trivial C++ packages. want to use the existingcc command-line in-
)terface so we don’'t have to re-write existing

akefile s, except that an environment vari-
able or a single flag will request thgtc use a
compile server. Then you can just do:

The compile server (as currently implemented
uses the same working directory and comman
line flags (such ad and-D) for all compila-
tion requests.

make CC='gcc --server
1 Invoking the compiler

2 Server protocol

The gcc user-level driver takes a command

line with some number of flags, one or moreThe server uses Unix domain sockets to com-
input file names, and optionally an output file municate with its clients. Using TCP/IP would
name. It uses a fairly complex set of rules tobe more general, and would be needed for a
select which other applications it needs to runproject where compilations are distributed to
One of these is the compiler “proper”, which different machines. However, there are a num-
for C is theccl program. The driver executes ber of existing projects and products that do
ccl once for each C input file name, creatingdistributed builds, and that is not the focus or
an assembler file each time. The driver maygoal of this project, so far. (Distributed com-
then invoke the assembler once for each assermpilation based on the compile server code may
bly file, creating relocatable binary files, which be an interesting future project.)

may then be linked together forming an exe-

cutable or a shared library. Unix domain sockets are more efficient that

TCP/IP sockets, and are a good match for a
One part of this project is to change tgec  non-distributed compile server. Domain sock-
driver so that when it is asked to compile multi- ets are bound to file names in the local file
ple C source files it just caticl once, passing system. Each compilation uses the current
all the input files names tocl . The latter also  working directory to resolve file names, so it
had to be changed so it could handle multiplenakes sense for the server to bind itself to a
input file names, compile them all, and createsocket in the current directory. (A future ver-
a single output file. This potentially speeds upsion might be able to change working directo-
compilation time, but more importantly it en- ries for different compilations.) For thecl
ables cross-module optimizations such as intereompiler, the server listens on a socket bound
module inlining. to ./.ccl-server
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The server is started by addiAfgerver  to source file to compile. There can by mul-
theccl /cclplus /... command line. All op- tiple S commands in a row, in which case
tions are otherwise as normal, except you leave  all of the input files are compiled, produc-
out the names of the input and output files. The  ing a single output file.

server does éisten , and enters a loop us-

ing accept to wait for connections. For each O (“output”) Followed by a file name argu-
connection, it enters another loop, waiting for ~ ment, which is the name of the output as-
server commandsEach command is a single sembler file. The file names from previous
line, starting with acommand letter Follow- S commands (since the laStcommand)
ing the command is a sequence of zero or more  are all compiled to produce the named
quoted string arguments. The quote character ~ output assembler file.

can be any byte: using a single qudté is

human readable, but thgeee driver uses nul _ _ .
bytes\000'  since they cannot appear in ar- The server currently writes out diagnostics to

guments. Following the arguments isanewlinéts standard error, _but it _should instead send
character that terminates the command. them back to the client using the socket, so the

client can write out diagnostics on its standard
The following server commands are or will be error.

supported: .
The client is either thgcc command, or some

IDE. It could also be an enhancedake. It
F (“flags”) Set or reset the command-line callssocket , and then attempts twnnect
flags. (This is notimplemented at the timeto "./.gcc-server" . If there is no server
of writing.) It is followed by zero or more running, it starts up a server, and tries again.
nul-terminated flag values, terminated by(This part has not yet been implemented.)
a newline. Do not use this to set input or

output file names. For example: If the gcc command is asked to compile mul-
tiple source files, it only opens a connection to
FA0-l/usr/include\0\0-DDEBUG=11010-02\0\n the server once, and only sends a siffgt®m-

mand. If a-o option is specified (aneE is
T (“timeout”) Followed by an integer in mil- not specified) then.(a.s an opt!mlzatlon) we can
havegcc do a multi-file compile, specifying a

liseconds. Sets the time-out duration. If . , . i .
No requests come in during that time, thesmgIeOoutput file but multipleS input files.

server exits. If the timeout is 0, the server
exits immediately. 3 Initialization

| (“invalidate”) Followed by a list of nul-
terminated filenames. Any cached datalnitializing the compiler is relatively straight-
for the named files are invalidated. Can beforward when compiling a single file. But a
used by an IDE when an include file hasserver needs three levels of initialization:
been edited. (The server can alsat
the files, but it may be more efficient to

avoid that.) 1. Initialization that only needs to be done
once. For example creating the builtin
S (“source”) Followed by a file name argu- type nodes, and declaring builtin

ment, which is the name of an input functions.
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2. Initialization that needs to be done foris

important, because thepp_reader

each compilation request (i.e. for eachmaintains a lot of state, including a cache of
output file). For example opening the as-header file contents, that we want to preserve
sembler output file, and initializing vari- across compilations. In fact, a simple compile
ous data structures used by the compileserver that only preserves the contents of

back-end.

header files is one option for a less ambitious

compile server.

3. Initialization that needs to be done for
each input file. For example making
available any macros defined witfD 4
command-line flags - even if a previous
source filetundef 'dit. Also clearing out

Caching text vs tokens vs trees

The fundamental design question for a compile

any top-level declarations left over from server is what state to save between compila-

previous source files.

tions. Three options come to mind:

The historical code base has a number of as- ¢ Preserving header file text is easy to im-

sumptions and dependencies that are no longer
appropriate with the compile server. We
interface between the language-independent
toplev.c  and the language front-ends uses
callback functions that needed some changing:
The call-backs and functions that do one-time-
only initialization use the wordhitially ,
while the init is used for initialization
that is done once per compilation request.
For example the modified file-common.c
contains bothc_common_initially and
c_common_init

In general, we want to do as much as possible
in initially functions rather thannit
functions. The obvious reason is to avoid re-
doing work needlessly, but there is a more im-
portant reason: The goal of the compile server
is to save and re-use trees across compilations.
These will make use of various builtin trees,
such asinteger_type_node If these
builtins get re-defined, then any trees that make
use of them will become invalid.

The CPP functions make use of a
cpp_reader structure that maintains
the state of the pre-processor. The global
parse_in s initialized to acpp_reader

instance allocated aitially -time. This

plement, especially aspplib  already
has a cache that does this. We just need to
tweak things a little bit. This is especially
useful if the OS is slow in handling file
lookup, doesn’t handle memory-mapped
files, or doesn’t do a good job buffering
files. Otherwise, the benefit should be mi-
nor. However, it is a modest change which
should be easy to implement.

We can also preserve the raw token
streams in the header files, before macro-
expansion.  This allows macros that
expand differently for different compi-
lations. However, we'd have to use
some new data structure for preserving
the tokens, and then feed them back to
cpplib Any performance advantage
over preserving text is likely to be mod-
est, and unlikely to justify the rather rad-
ical changes tapplib  that would seem
to be required.

Preserving the post-macro-expansion to-
ken stream seems more promising. Sav-
ing and later replaying the token stream
coming out ofcpplib  doesn’t appear to
be very difficult, and would save the time
used for re-reading and re-lexing header
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files, though it would not save the time times without guards, or because we’re pro-
spent on parsing and semantic analysiscessing a new main file. The goal of the com-
On the other hand consistency checks angile server is to minimize re-parsing text. In-
dealing with some of the ugly parts of the stead, we want toe-usea file or portion of
languages and the compiler are simpler. a file, which means we want to achieve the
_ semantic effects of parsing (typically creating
* The best performance gain comes fromynq adding declarations into the global scope),
saving and re-using the tree nodes afyithout actually scanning or parsing the text.
ter parsing and name lookup. This as-\e say that weprocessa file or a portion of

sumes that (normally) a header file con-gne 1o mean either parsing or re-using it.
sists mainly of declarations (including

macro definitions), and the “meaning” of We will later discuss how we can determine

these declarations does not change acrosshen it is ok to re-use (a part of) a file, and

compilations. That “meaning” may de- we have to re-parse it, but first let us consider
pend on declarations in other header filesgranularity of re-parsing: When we need to re-
but the “meaning” of those declarations is parse, how much should we re-parse? The fol-
also constant. (The C++ language specifilowing approaches seem possible:

cation enshrines something similar in the

one-definition rule.
) 1. Re-read the entire header file. This is con-

Thus if we parse a declaration in a header ceptually simple, since deciding whether
file, the result normally is a decl node or to re-use or re-parse is decided when we
a macro. Re-parsing the same header file  gee antinclude . This avoids any com-
will result in an equivalent decl node or plications about managing and seeking to
macro. So instead of re-parsing and cre- 3 position within a file. However, this is
ating new nodes, we can just skip parsing  not a major benefit, given thapplib ~ al-

and re-use the old one. ready caches entire header files, and seek-
A difficultly in re-using trees is determin- ing within a buffer is trivial. The prob-
ing when it is actually safe and correctto  lem with this approach is that handling

do so, and when we have to re-parse the  conditionals within a header file is diffi-
header file. Another complication is that cult. We have to decide at the beginning
the compiler modifies and merges trees of the file whether any of it is invalid, and
after-the-fact in various ways. We will whether any conditional compilation di-
discuss these issues below. rectives may “go the other way” compared
to when we originally parsed the file. This
is doable, but non-trivial. Also, this ap-
proach may be excessively conservative,

5 Granularity of re-parsing in that we have to invalidate too much.

2. Re-read a header file fragment between
We say that a header file or portion of one any pre-processor directives. Each header
is parsed when actual characters are lexed, file is cached in a buffer. (This is not
parsed, and semantic actions performed. Afile  new with the compile server.) When a
or portion of one ige-parsedwhen the same header file is re-used, we read from the
text is parsed a second or subsequent time, ei- saved buffer. Pre-processor directives (in-
ther because the same file is included multiple  cluding conditionals) are handled in the

The current prototype takes this approach.
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normal way, by reading from the buffer. #if M1
However, if the fragment following a di- D1;

rective (or the beginning of file) is valid, #endif
we we just restore its declarations, and#if M2
skip ahead to the next directive (or end ofD2

file). This approach has the big advantagefendif
that we can use the existing code for eval-
Have the disadvantage (hat e have to reF/€a0e GUaIds (as shown below o protected
parse and re-evaluate directives, but sim&9ainst r_nultlple Inclusion) are no prqblem
plicity and consistency probably is more when using fragments. The processing of

valuable. There is also a simplification tr;]e #'nCIUdﬁ ﬁlnd the hﬁader guard doefsnt
because fragments (unlike header files)C ange when the complie server uses irag-
don’t nest. ments - the only difference is how it handles

. . ) the body of the header file.
This is what is currently implemented.

3. Re-read a header file fragment betweensifndef H
conditional compilation directives. Itis a gdefine  H
refinement of the previous option, except o
that#define (and#undef ) are treated genif
as part of a fragment, rather than delim-
iting fragments. A big advantage is that
we can re-use macro definitions, without6 ~Entering and exiting fragments
having to re-parse them.

| think this may be the best approach, butThe ~ pre-processer ~ uses  callsbacks
| haven't explored it yet. enter_fragment  and exit_fragment
to let the language-front-end know about the

4. Re-read just an individual declaration.start and end of fragments. These are bounds
The problem with this is that we need to : 9 '
to the functioncb_enter_fragment and

maintain some amount of state with each ) )
. cb_exit_fragment in c-common.c .
fragment, and the cost goes up if we make™ =" —

the fragments too small: There are uUsu-The preprocessor maintains a cache of header
ally lots of declarations. The advantage offjles, including their text. Each header file
smaller fragments is that there is less tog|gq gets atruct cpp_fragment chain.
re-parse when a declaration becomes ina new cpp_fragment  is created whenever
valid, which reduces the chance of othercppjih  starts processing a fragment and there
declarations becoming invalid. However, jgn't already acpp_fragment  for that loca-
we expect that this will not compensatetion, This is done at the start of a header file,
for the extra overheads, so we have notinyng after each preprocessor directive. (We will
vestigated this option. probably change the code so thadefine
and#undef do not delimit fragments.) If the
Using fragments as the unit of re-parsing letdanguage-specific callback returns non-NULL,
us handle cases like this easily, where we cathen the fragment has to be (re-)parsed nor-
re-useD1, even if we later find out we have to mally. The preprocessor remember the re-
re-parseD2: turned pointer, and it is passed back on subse-
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guententer_fragment calls for the same /* Define flags,
cpp_fragment . which depends on word. */
- extern word flags;

If cb_enter_fragment returns NULL, it
means the fragment can be re-used. The

preprocesor skips ahead to the end of the\ssyme the first time weinclude hi.h |
fragment, ignoring anything skipped. Thep1 is true, soword and flags are de-
cb_enter_fragment  will have performed  fineq. AssumeM1lis false the next time we
any semantic actions for the fragment, suchyinclude hi.h , so we get the other defi-
restoring declarations into the top-level scope.pition of word . Thus the saved definition of
flags , which depended on the old definition
of word , needs to be invalidated, and we have
ﬁO re-parse the fragment definiflggs

At the end of a fragmentcpplib calls
the exit_fragment callback, which per-
forms any language-specific actions needed

this fragment is a candidate for future re-useyye can use a conservative approximation of
Note thatexit_fragment is not called if pe depends-on set. For example, we can for
enter_fragment  returned NULL. each header file remember the set of other
header files it uses, where a header file uses
some other header file if any declaration de-
fined in the former header file uses any dec-
laration in the latter header file. We can also
Before we can re-use a saved fragment, weemember dependencies at the level of header
need to determine if the declarationsde- file fragments_ This is the issue of the gran-
pends orhave changed, When a declaration isylarity of remembered dependencies (which
parsed, identifiers appearing in it (such as pais related to but distinct from the granularity
rameter type names) are resolved using othesf re-parsing). It actually has two parts: Is
declarations, macros, and other dependencieg. depends-on-set a set of declarations, frag-
So conceptually for each declaration we musinents, or files? How many depends-on-sets

remember the set of other declarations angjo we maintain: One for each declaration, for
“things” that it depends on. This is the former’s each fragment, or for each file?

depends-on-sef pre-condition for re-using a

declaration when compiling a new file is thatAssuming the granularity of re-parsing is a
any declarations it depends on also have beefiagment, then there is no point in maintaining
re-used in the new compilation: A depended-a2 depends-on-set for each declaration. Instead
on declaration must have been processed, d¥€ maintain a depends-on-set for each frag-
else it will not be defined, and it must not havement, which is the union of the depends-on-
been re-parsed, in case that defined the decl&ets of the declarationgrovidedby the frag-
rations to something new. ment.

7 Dependencies

Consider a header filel.h containing: In the current implementation the elements of a
depends-on-set are fragments: l.e. a fragment
has a set of other fragments that provide decla-

it M1 rations it depends on. This is an optimization,
typedef int word; . . .
selse since there is no point in separately remember-

typedef long word; ing more than one declaration from the same
#endif fragment (they will all be valid or all invalid).
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(However, there is a case for making theA global counterc_timestamp is incre-
depends-on-set elements be declarations ratherented on various occasions, and used as a
than fragments, because we then don't have ttclock” for various timestamps. Each fragment
map from a declaration to the fragment thathas two timestampsread_timestamp  is
provided it. The currentimplementation adds aset when the fragment is (re-)parsed, while
field to each declaration that points to the frag-include_timestamp Is set whenever the
ment that declared it, and this is wasteful. (Wefragment is processed (parsed or re-used).
can also get the fragments by mapping baclBoth are set ob_enter_fragment . We
from the declarations line number, but this isalso have a global main_timestamp
slower, even if we change to using the line-mapset whenever we starting compiling a
structures.) However, we still need an efficientnew main file. For a fragment to be
way to determine if a declaration has been revalid (a candidate for re-use), we re-
used. We can do that by looking at the dec-quire that f.include_timestamp <

laration’s name, and verifying that the name’smain_timestamp , otherwise the fragment
global binding is the declaration.) has already been processed in this compila-
tion, and re-processing it is probably an error
we want to catch. We also require that for
each fragment in uses_fragments  (the

For efficiency, a depends-on-set is representeﬁep‘_ands'on'set) that all of the following are
as a vector (currently &REE_VEC but it  TU€:
could be a raw C array). This is more com-

7.1 Implementation details

pact than using a list, but has the complica-
tion that we don’'t know how big an array to
allocate. To avoid excess re-allocation, we use
a global arraycurrent_fragment_deps_

stack (that we grow if needed) and a global
countercurrent_fragment_deps_end ,
This is used for the depends-on-set of the cur-
rent fragment. When we get to the end of the
fragment incb_exit_fragment , we allo-
cate the fragment’s depends-on-set (in the field
uses_fragments ), whose size we now
know, filling it from current_fragment_
deps_stack , and then re-settingurrent_
fragment_deps _end to 0.

u->include_timestamp >=
main_timestamp  (i.e. u has been
processed in this compilation);

that u.read_timestamp !'= 0
been parsed at some point!);

(it has

and that u.read_timestamp <=
f.read_timestamp (the most recent
time u was parsed was before the most
recent time that was parsed—i.e., that
hasn’t been re-parsed since we last used

it).

7.2 Depending on the lack of a definition

We need to avoid adding the same

fragment multiple times to the current one sybtie complication concernegative de-

depend-on-set.
bit in the fragment when we save it in
current_fragment_deps_stack

the bit is set, we don’'t need to add it.
bit is cleared when ibh_exit_fragment
we copy the stack
uses_fragments field.

The

We do that by setling &,endenciesSome code may work one way if
an identifier has no binding and a different way
if it has a binding.

One example (from Geoff Keating): Suppose
into the fragment’sthe tagstruct x
first seen:

is undefined when this is
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/Il in something.h we have the basics of what we need. All that
extern int do_something (struct x *); would need to be added is that when a macro
is used, we note that the current fragment de-

This is legal C, but the parameter type is apends on the fragment containing the macro

“local” (and useless) type, different from any definition.

global struct x . Next, supposestruct  which fragments get processed will also de-
X has been declared (a forward declaration iend on macros, but since conditional compi-

enough) the next time this fragment is pro-|ation directives are always re-evaluated, this is
cessed. In that case the parameter type qfot a problem.

do_something is the globalstruct x
and so the meaning afo_something has g1 pepending on lack of a macro bindings
changed. However, the dependency checking

discussed about will not catch this, since the\Ne also have the issue of negative dependen-

first time something.h  was included there . : .
cies for macros: A fragment will use an iden-

was nothing for it depend on. This IOartlcmartifier, and if later that identifier is bound to a

problem will cause a warning to be written out . : :
the first time. and we can at the same time in.Macro: then the fragment will be invalid. Con-

validate the current fragment (disabling futureSIOIer a header fila.h :
re-use).

extern int i, j;
However, there may be more complex prob- J

lems involving negative dependencies, for ex-
ample involving C++ function overloading. and a header filb.h :

8 Macro dependencies inline int foo() { return i; }

The meaning of a fragment may also dEpen%upposéilel c
on the definition of macros. Consider the fol- '
lowing:

does this:

#include "a.h"

#include "b.h"
char buffer[BUFSIZ];

andfile2.c does this:
If the macroBUFSIZ changes, then the the

type ofbuffer is different, so the containing

fragment would have to be invalidated. #include "a.h"
#define int size t
The implementation does not yet check for#define i j

macro re-definitions. #include "b.h"

Assuming we change the implementation so

that macro definitions are part of fragments,n filel.c the fragmentb.h depends on
and we still store dependencies in terms ofa.h , since it used . But the meaning of frag-
fragments depending on other fragments, thementb.h infile2.c is very different.
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The obvious solution is for every fragment to also need space for a list header in each frag-
maintain a set of identifiers that the fragmentanent, but it may be possible to share with some
depends on not being bound to macros, and tother list.). However, the rare cases get handled
check this list on fragment re-use. However,without excessive cost.

this is quite expensive, as fragments will often

use many non-macro identifiers. Below, is a . . .
less expensive (unimplemented) solution. 9 Saving and restoring bindings

8.2 Checking lack of macro bindings While a fragment is being parsed, each lan-

guage front-end is responsible for remember-
Here is one solution, that is inexpensive in theing the bindings (declarations etc) that are be-
common case. For each identifier we add twang created, so they can be restored if the frag-

bits: ment is re-used. The code for this is relatively

independent of the rest of the compile server

unsigned used_as_nonmacro : 1; code, so it can be written without understand-
unsigned also_used_as_macro : 1; ing the details of the server.

_ o Each binding that needs to be remem-
When an identifier is referenced, and thergyereq is added to the globdtagment

is no macro definition for it (i.e.#define bindings_stack , which is (currently)

stremp strcmp - doesn’t count), then we 5 TREE VEC How much of the stack
set the used_as_nonmacro _blt. This is g currently used is given by the global
permanent—we never reset it. fragment_bindings_end . There

If an identifier with theused_as_nonmacro a.re _ helper  functions note._frz';lgment_

bit gets#define d as a macro, then we also binding_1 -, note_fragm.ent_bmdmg_z '

set thealso_used_as_macro  bit (which is and note_fragment_blndlng_B _to add
also permanent). We also invalidate all frag-trees to the stack. What is added is up to the

ments. We can do this by setting this global (Orfrogt-efnci;h wef Il give fxsmp!tesf later. tAt the
field in cpp_reader ): end of the fragment,ch_exit_fragmen

will allocate a TREE_VECwhose length is
fragment_bindings_end , assign that to
the fragmentdindings field, and copy that

_ _ many elements fronfragment_bindings_
to c_timestamp . This forces all fragments siack .

to be re-read the next time they are needed.

int first_valid_fragment_timestamp;

If a fragment is re-used, thenb_enter_
If an identifier is referenced, and it has thefragment will call the language-specific func-
also_used_as_macro  bit set, then we add tjon restore_from_fragment . This is re-
it to a list belonging to the current fragment. Sponsib|e for going through tnﬂndings ar-
Then the next time the fragment is neededray and restoring the bindings.
to check validity we check the macro state of
identifier on that list. The C language front-end currently does the

following:
This implementation has the advantage that the

common case is cheap, not requiring any ex-
tra state except two bits per identifier. (We < pushdecl calls note_fragment_
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binding_1 , passing it the declaration 10 Modification-in-place of trees

that ispushdecl ’s argument.

* pushtag calls note_fragment_

As the compilation proceeds, the compiler

binding 1 , passing it theTREE_LIST sometimes modifies existing declarations. This

that is used to link the type into the tag
scope. This is called when the tag is
declared, including forward declarations.

e finish_struct and finish_enum
both callnote_fragment_binding_3 ,
passing it the struct/union/enum type,
the field list or enum values list, and
the type size. This is called when a
struct/union/enum tag type is defined.

To restore the bindings when re-using a
fragment, the function restore_from_
fragment in c-decl.c  just loops through
thebindings TREE_VEC .

* If the element is a declaration, it set the
IDENTIFIER_GLOBAL_VALUE of the
declaration’s name to point to the decla-
ration, and chains it into theames list
of thecurrent_binding_level

o If the element is aTREE_LIST, we
know it was created bypushtag . So
we chain it into thetags list of
the current_binding_level . We
also null out the TYPE_FIELD and
TYPE_SIZE fields of the tag type, so
don't get complaints if there is a later
start_struct . This restores a tag
type declaration.

* If the element is a type node, then it must
have been created binish_struct
or finish_enum , and must be fol-
lowed by a fields and a size node. Set
theTYPE_FIELDS and theTYPE_SIZE
fields of the type to those values. This re-
stores a tag type definition.

causes some difficulties. Some examples:

* When the C or C++ front-end sees a dec-

laration with the same name as a pre-
vious declaration in the same scope, it
calls the functionduplicate_decls

to compare the old and new declarations.
This happens most frequently when the
old declaration is a forward or tentative
declaration. If the declarations match,
duplicate_decls may merge the in-
formation from the new declaration into
the old declaration, and then discard the
new declaration. If the old declaration
was in a header file that the compile server
re-uses, then it will incorrectly also con-
tain the information from the new decla-
ration.

In C++ functions may be overloaded.
When a new function declaration over-
loads an older function declaration, the
latter is converted to a special overload
declaration. When a header file contain-
ing that declaration is re-used, we may in-
advertently also get overloaded functions
that aren’t supposed to be visible. This
may effect overload resolution, or cause
future incorrect error messages.

A header file may contain a tentative

structure declaration (such asruct

T), and a different header file may con-

tain a definition of thestruct  with all

the fields. We need to be careful that re-
using the former does not re-use the latter.
Worse, some C programs may re-use the
same structure tag for incompatible types.
(This is poor style and rare, but we should

at least detect it.)
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Most of these merging operations are in prac- #define SI_KERNEL SI_KERNEL
tice harmless, or at least will very rarely cause %
problems, though they may cause some errors
to no.t be propgrly detected. Sometimes th his causes a problem#fdefine is the end
merging operations can be handled by specia .
) . ) ; of a fragment, since then we get a bunch of
code, or it may be possible to “clean up” the :
. . fragments that are not self-contained. If for
compiler to avoid them. However, there are so
. . . some reason some but not all of these frag-
many places in the compiler that modify older =
ents get invalidated and have to be re-parsed,
tree nodes that we need a general frameworgl

' |
for dealing with them. Such a framework is an en the parser will get very confused!

undo buffer This particular case is not a problem if we im-
plement the model thatdefine is part of a
fragment, rather than delimiting one, as | think
we should. Another and more general solution
 to invalidate a fragment if it starts or ends
not at top level: l.e. nested inside some other
declaration or scope. We discuss this next.

Whenever the compiler destructively modifies
a tree node that “belongs” to some “other”
header fragment, then it needs to append to
global undo buffer enough information to undo
the modification. Before starting to compile a
new main file, the compiler runs through the
undo buffer in inverse order, undoing the re-
membered modifications. This allows frag-
ment re-use to push the associated declarations

without contamination from other fragments. . . _
Many systems (including GNU/Linux and

Implementation of the undo buffer has justDarwin) have code like the following (in
started, so | don’t know how will it will work <netinet/ip.h> ):

in practice, or how much undo information is
likely to be needed.

11.2 Conditional compilation inside declara-
tions

struct timestamp

{
. . u_int8_t len;
11 Some complications uints_t ptr:
#if _ BYTE_ORDER == __ LITTLE_ENDIAN
Vari | licati unsigned int flags:4;
arious unusual cases cause complications. unsigned int overflow:4:
#elif _ BYTE_ORDER == __ BIG_ENDIAN
11.1 Nested #define inside declarations unsigned int overflow:4;
unsigned int flags:4;
#else
On GNU/Linux <bits/siginfo.h> CON-  # error "Please fix <bits/endian.h>"
tains: #endif
u_int32_t data[9];
h
enum
{
SI_ASYNCNL = -6, This particular case should not be a problem in
# g?f'g?G%—ASYNCNL SI_ASYNCNL practice, since the value of BYTE_ORDER
# define SI’_SIGIO SI_SIGIO is presumably not going to change. However,

itis possible that the first or last fragment might
SI_KERNEL = 0x80 becomes invalidated for some reason, causing
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the non-conditional parts to get re-parsed. Intifdef _ cplusplus
that case, we need to make sure that the condextern "{"

tional parts also get invalidated and re-parsedfendif

(The converse could also be true, though I

don’t see how that could happen.) This causes the following to nested syntacti-

cally. However, we don’'t want it to cause fol-

A general solution uses aurrently_ : _ :
lowing fragments to be invalidated!

nested variable. Itis incremented when start-
ing a declaration (such as an enum, classgy namespaces.may have similar issues.
template, or inline function), and decremented

when exiting the declaration. Hurrently

) o . 11.4 Types defined in multiple locations
nested is positive when eithech_enter_

fragment or cb_exit_fragment is called, . .
then the fragment is invalidated, disabling fu-The C sta}ndard requires that betitdio.h> ,
ture re-use and<stdlib.h> definesize_t . The trick

is to do this without a duplicate definition if
This should be safe, but not ideal, stsuct both are included. One common solution (used
timestamp would be needlessly invalidated. on Darwin and other *BSD system) is to define
It would be better (though unimplemented) tosize_t in both headers, but use guards:
treat all the fragments that contain a part of
struct timestamp as a single unit. A 4def size t defined
fragment grougs a minimal sequence of frag- #define  size t defined
ments in the same header file such that itypedef _ SIZE TYPE size_t:
currently _nested is true at the end of #endif
one fragments then it and the following frag-
ment are both in the group. A fragment “fol-
lows” another if it is the next fragment pro-
cessed during a single processing of its file. For
simplicity, we require that there be no macro#include <stdio.h>
definitions or undefinitions within the fragment #include <stdlib.n>
group. When we parse the fragment group, we
remember all the conditionals. We treat thegndp.c has:
fragment group as a single fragment with a sin-
gle constructed compound conditional. When _
we process the group the next time, we eval#!nCIUOIe <Std!'b'h>
. o include <stdio.h>
uate this compound conditional at the start o
the group. If it matches, we use the fragments
declarations like a normal re-use. If it does notln this case the dependencies might prevent
match, we re-parse the fragments as multipleis from re-using the cached definition of
normal fragments. size_ t . Worse, definitions that depend on
size_t also have to be invalidated. Note that
this is not a problem of the correctness of the
11.3 Other non-nesting compile server, only its performance.

Now suppos@.c has

C++ has a “one-definition rule” that requires
One common example of non-nesting: that each type declaration etc only a single



34 ¢ GCC Developers Summit

definition: If different compilation units see 12 Results and conclusions
different definitions, they must be token-by-

token the same. In practice this usually meang,, compile server has been used to compile
they are in the same header file, but as in thggys ot related C files (some Apple Carbon
size_t e_xample, that is not strlc_tl;_/_requwed. files) and C++ (parts of the Octave mathemati-
However, if there are multiple definitions, they cal library). The preliminary results have been
will have inconsistent source lines. If you aSkimpressive with speeds-ups of 3x or more
anllDE fo_rS|ze_t _’S definition, it V\a” not be However, there are a number of constructs that
able to give a unique answer. ThiS SUGQEStg e ot handled correctly, some planned fea-
tha_ta_lgood rule of design is the “extended ONCures (such as the undo buffer) have not been
def|n|t|(_)n_ _rule : The_re should _°”'Y be a sin- implemented yet, and for some constructs it is
gle defln_ltlon, at a single location in a unique not clear what the right solution is. So any de-
header file. tailed performance numbers would be prema-

Thesize t definitions violate this extended tUre and misleading.

rule. Therefore, | think the “correct” solution Work continues on the compile server, since
is to fix the headers to not do this. (We can use, . . Apple believe it has great long-term po-

fixincludes ~  to avoid having to change the yo i~ The |atest patches are available by
installed headers, of course.) A simple SO|Ut'0nemaiIing<per@bothner com>

is to create a headeits/size_t.h :
Thanks to the members and management of

#ifndef _SIZE T H the Apple compiler group (including Ted Gold-

#define  SIZE T H stein, Ron Price, Mike Stump, and Geoff Keat-
typedef _ SIZE_TYPE size_t; ing) for discussions and support of this project.
#endif

and then have botstdio.h  andstdlib.h
do#include <bits/size_t.h>

There are other solutions possible, but this
seems the cleanest and simplest. On
GNU/Linux systems using glibc, we have:

# define _ need_size t
# define _ need_NULL
# include <stddef.h>

The magic _ need size 't _  asks
stddef.h to define size_t and noth-
ing else. This satisfies the “extended one-
definition rule”, and | don’t know any reason
why it should cause problems for the compile
server. It is a rather complex mechanism,
though.
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Abstract visions. These are typically named by the year
they were released.

This paper details the current status of Fortrarpgssibly the most significant changes were in-
95 language support in GCC, with reference tqroduced in the Fortran 90 standard. Many new
the future targets and goals of the g95 projectfeatures were introduced, with the aim of en-

Some of the problems encountered and desiggyring the language remained viable for use on
decisions made in the process of interfacingnodern computing systems.

with the GCC backend code generator will also
be discussed. Fortran 90 introduces powerfull array handling
facilities. It allows operations to be performed
. on whole arrays or sections of arrays in a single
1 The Evolution of Fortran expression. From the compiler writer’s view
this is the most complex feature of the language
Fortran is a programming language primarilyfrom, as these must be converted into a collec-
designed for performing computationaly inten-tion of scalar operations. It also provides op-
sive mathematical tasks. Indeed the name itseRortunities for the compiler to apply more ad-
is derived from the words FORmula TRANSsla- Vanced optimization strategies.

tion. The concept of derived types (analagous to C

Common uses include Finite Element andstruct types) was also introduced. While many
Computational Fluid Dynamics codes. Au- Fortran vendors had previously provided ways
thors of Fortran programs are often not pro-0 access and manage dynamically allocated
fessional software developers. It is commonlyStorage areas these were only standardized in
used in academic research situations where tHge Fortran 90 standard.

primary goal is the analysis and solution of theAs well as these additions to the functional ca-
problem,_rather than the development of thepabilities of language, several other syntacti-
software itself.

cal additions were made. These include mod-

Fortran was originally implemented by IBM as ules to aid code modularity and reuse, explicit
an alternative to assembly language for proprocedure prototypes, block based flow control
gramming its 704 systems. The developmen€onstructs and the removal of restrictions on
of the language started in 1954, with a man{he source form imposed by the use of punch
ual published in 1956 (there are rumors thaf@per cards (so-called Hollerith cards).

the first customer got a preview compiler with- Fortran 95 contains mostly minor changes rel-

out manual in December 1955). The first ISOative to Fortran 90, and removes some of the

Fortran Standard was released in 1966. .S'nCFeatures that were deprecated with the advent
then, the standard has undergone four major re-
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of Fortran 90. However the majority of Fortran the meaning of an identifier can only be deter-
77 code is still legal under Fortran 95 rules.  mined from the way it is used. In other cases
the same line of code can have different mean-
ings depending on the context in which it is
encountered. It is possibly to write automat-
ically generated parsers for fortran. However

The existing GNU Fortran compiler is widely these are qute complicated as there is not a
respected, and a very competent compilerclean seperation between lexical, syntactic and
However this is limited to Fortran 77 code. Semantics analysis. G95 uses a hand crafted
Even the author of g77 didn’t believe that onepattern matching parser which often operated
could make a full Fortran 95 compiler based onin a recursive manner.

the existing g77 code. Writing a new frontend . :
g9 g The majority of error checking and name reso-

from scratch means g95 is not restricted by de-

sign decisions made in g77, and is more easil>I,utlon is done in this first pass. During this pro-

able to take advantage of new technologies in_cess a tree structure is contructed to represent

troduced into the common GCC middle- andthe code. Each gtatement IS repre_sented by a
back-ends. node. These are linked together in lists to form

code blocks. These are referenced by flow con-
Thus Andy Vaught created the GNU Fortan ostrol statements. For example an IF statement
project. Initial work concentrated on parsingnode contains pointers to an expression node

and correctly resolving Fortran 95 source codefor the condition, and expression nodes for the
true and ELSE blocks.
Only in June 2002, when the parser and re-

solver were mostly complete, did work begin Constant folding and simplification of intrinsic
on the code generation pass and interfacing téinctions is also performed while building this
the rest of GCC. For this reason g95 is ableree.

to correctly parse and verify almost all Fortran__ . . .
yP fy This tree is then traversed in a second pass

code, however it is only able to generate exe;[ ¢ ¢ hecki ) ¢ implicit t
cutable code for some of it. O periorm type checking, Insert implicit type

conversions where necessary, and to resolve
Work is currently concentrated on implement-overloaded functions. We also resolve calls
ing the few remaining constructs, and comple{0 intrinsic function calls to the corresponding
tion of the 10 and runtime libraries. runtime library function.

2 The g95 project

Steven Bosscher and | created a fork from théifter these two passes, the code tree is fully
original g95 code in January 2003. This is dongesolved, and any errors will already have been
in an attempt to achieve closer integration berejected. The completed tree is passed to the
tween GCC and g95, and to promote a moré€ode generation interface one program unit at

open development environment. a time. A program unit is a module, top level
subroutine or function, or PROGRAM block.

3 The Parser and Resolver The first two passes are now almost complete,
with legal code being parsed correctly. Most

Fort dat t mod illegal code is detected and rejected, however
rortran grammar predates most moderm parsp e are still some constraints which are not
ing techniques. It does not distinguish betweeqemcorced

keywords and identifiers, and in some cases
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4 Interfacing to GCC The same state structure is also used to hold in-
formation needed for the scalarization of array

G95 uses the GCC middle end and back endSXPressions.
to perform code generation and optimization.

It is currently targeted at the tree-ssa branch of

GCC. This uses a language independant, treg Arrays
based intermediate representation of the code.

This is very similar to the tree produced by the

parﬁer, except it can only represents scalar OR1odern computer systems employ a one di-
erations. mensionsal memory space. Higher dimen-

The GCC tree-ssa branch also provides Sioned arrays are transformed into this space by

cleaner seperation between the language sp8Ultiplying the index by the stride, or spacing,

cific fontends and the common backend. PrePeéfween consecutive elements of the corre-

vious versions were still quite closely tied to SPOnding dimension. These values are summed
the C frontend. to obtain the offset of the element relative to the

origin of the array. In g95 two pointers are used
The translation of scalar code is mostly straighto manipulate array data. A pointer to the first
forward. After some initial setup this is simply element of data is required for memory man-
a matter of transcribing the tree from one dataagement when allocating and freeing the array
format to the other. This is done by recursivelydata. To access the array a biased base pointer
walking the code tree, building the equivalentis used. This pointer points to the location of
GCC tree as this is done. element zero of the array. In this way the ar-

_ S ray can be accessed without needing to involve
The main complication is that some expres+ne |ower bound of the array. It may be the

sions require additional code to be associategase that element zero of the array does not ex-
with them. The solution is to use a state strucist This does not matter. as it is only used as a

ture when translating expressions. This statg qa point for the offsets; no non-existing ele-

structure contains the expression itself, and tW@ent of the array is ever referenced.

code blocks. The pre block contains setup code

which must be executed before the expressiofor fully contiguous arrays, where elements of

is evaluated. The post block contains code tdhe array are stored in consecutive memory lo-

clean up after the value is no longer needed. cations, the stride of a dimension is equal to the
size of all lower dimensions. This often speeds

For the majority of sca_lar operations both theup access to the array as these values may be
pre and post blocks will be empty. However,qwn at compile time.

Fortran allows more complex operations which

may require additional code. One example ofThe array descriptors used to pass actual argu-
this is passing the concatenation of two stringsnents (what C calls “parameters”) consist of
as the actual argument of a function. The prea pointer to the first element of the array, the
block will contain code to allocate temporary upper and lower bounds and the stride of each
string storage and perform the concatenationdimension. Array pointer variables are handled
The expression itself will consist of the func- using the same structure. Array sections are ac-
tion call with the temporary as the actual argu-comodated by calculating the origin and strides
ment. The post block will contain code to free to match the section, avoiding the need to make
the temporary storage. temporary copies of the data.
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6 Scalarization The main body of the scalarization loop is gen-
erated using the same routines as are used for

Array expressions introduce significantly com-Scalar expressions. The translation of the ex-
plications. The first problem is that of scalar- Préssion is performed in the same order as the
ization. The Fortran language allows expresinitial walking, so only the next term in the
sions involving operations on sections of arrayélst needs to be examined during the translation
or whole arrays. In practical terms an operatiorP@sSs-

on a whole array is simply a special case of a
array section where the bounds of the secti
are the bounds of the array.

rbperators which have not been marked as
OIgpecific subexpressions are translated in the
normal way after their operands have been

In order to evaluate array expressions it is necProcessed. When a scalar subexpression is
cessary to break them down into a set of scalgieached, the precalculated value is substituted.

operati_ons. This i_s _done by generating lO.OpSWhen array expressions are reached, the im-
gnd using the |mpI|_C|t loop variables as Ir"Jl'cesplicit loop variables are used to index into the
into the array sections. The evaluation of ar-

: Vol st CltWarray to get a single scalar value. The offset
ray eXpressions Involves severalstages and W g scaling factor calculated earlier are used to
passes of the expression tree.

translate from the loop indices to individual ar-

First the expression tree is traversed to idenf@y indices.

tify which terms are scalar, and which are ar"A naive implementation of this algoritm would

?‘equire calculation of the offsets for all array
ifidices on every access. However we traverse

b i il b luated outsid th‘?‘ﬂgher dimension array sections one dimension
Subexpressions will be evaluated outside e, ime  within the inner scalarization loop

scalarization loop, so the operands do not "Cihe offset due to outer dimensions will be con-

quire individual processing. If an operator in- stant. We take advantage of this by calculating
this offset before entering the inner scalariza-
tion loops.

The next task is to evaluate the bounds of the
implicit loops. The array terms in the expres--
sion are examined, and one of these is used to
determine the bounds of the scalarization loop.
Constant bounds are picked by preference ashe Fortran 95 standard specifies that all val-
this gives most potential possibilities for opti- ues on the right hand side of an assignment
mization. All the terms in an array expressionstatement must be evaluated before any assign-
must have the same shape, so the number ofients take place. This is known as the “load-
elements in each dimension can be determinedefore-store” principle. In many cases this re-
from a single term. striction has no impact as the source terms of
) _ the expression and the target variable are not
For each array term an offset and stride relativeq|ated.  However more care must be taken

to the implicit loop are evaluated. It is not nec-yhere both the source and target contain the
cessary to evaluate the upper bound of all thg ;me elements.

array sections, except for runtime error check-
ing purposes. Where the source and target elements are not

is constructed. Operators whose operands a

must be considered by the scalarizer.

Data Dependencies
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identically matched, the order in which the as-9 10 Library
signments are performed may effect the result.

In some cases these data dependencies may pfe |0 Jibrary is currently one of the least com-

resolved by ensuring the assignments are pefate parts of g95. Most of the infrastructure
formed in the correct order. In other cases alor the 1O library is in place, as is parsing of

array temporary is required. format strings. However there is still a signif-

icant quantity of work required before this is

The behaviour of g95 in this area is currently : _ :
quite simplistic. If any unmatched data depen_completed. Formatted 1O of integers is possi-

dencies are detected, or the expression is tople, however 10 of real values is still limited.
complex to determine the exact dependencies,

an array temporary will be used for the whole10  |ncomplete Features
assignment. In this case two sets of scalariza-

tion loops are generated. The first evaluates th
P g ihe WHERE and FORALL constructs only

source expressions, and stores the result in K for simol h data d d
temporary array. The second copies the con\é\;gg egirsilmp & casts Where no fata fependen-

tents of the temporary array to the target array.

There are many optimization techniques thaEI-he WHERE construct performs masked array

can be applied in order to reduce the size Of:lSSlgnments. These are similar to normal array

the temporary required, and to improve mem_assignments except a third array expression is

ory access patterns within scalarized assigngsed as a mask. Only the assignments where

ments. G95 currently only contains a partiaI:he corespofndlngdelement of the mask array is
implementation of the simpler of these. fue are preformed.

The FORALL construct allows assignments to
be performed for all permutations of a set of
loop variables. This is equivalent to enclos-
ing the assignment in multiple DO loops except
Fortran includes many intrinsic functions for that “load-before-store” semantics apply to the
performing common mathematical and arrayentire set of assignments. An array expression
operations, as well as operations on data whicimay be used to mask these assignments. The
are impossible to implement using the Fortrarsituation is further complicated by the ability
language itself. Intrinsic functions and subrou-to nest additional FORALL and WHERE con-
tines are implemented with a combination ofstucts inside a FORALL block.

inline code and runtime library calls.

8 Intrinsic Functions

Arrays of character strings are not imple-
Where inline code is required the expressiormented. Some combinations of derived types
state structure is used to hold the code to band character strings are also incomplete.

execured in order to evaluate the expression. _ o
Large array constructors used as variable ini-

Most of the required library functions have tializers are not implemented. These typically
been implemented. However only the genericcontain large implicit DO loops. The simplest
versions of there have been written. There isolution is to expand these loops at compile
still significant scope for optimized versions totime as we do will small constructors. How-
take advantage of simpler cases, processor spever this process would consume an unreason-
cific features and more advanced algorithms. ably large amount of CPU time and memory.
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The solution is to initialize these variables atINTENT(IN) parameters by value are possible.
runtime. Although these optimizations are not currently
preformed to simplify debugging, they are lik-

) ley to be implemented in future revisions.
11 Extensions y P

By default all array arguments are passed us-

There are several extensions to the Fortran 9'9 an array descriptor. The advantage of this
standard which we would like to see included!S that it allows discontiguous array section to

in g95. The first seven of these will included in P& Passed without requiring an array tempo-

the upcoming Fortran 200x standard. rary. The disadvantage of is that such code
will not be binary compatible with Fortran 77

code compiled by g77 or other Fortran compil-

1. Floating point exception handling ers. To accomodate this, a compile time option
is available to force g95 to use a g77 compat-

2. Allocatable arrays as structure cOmMpos5, calling convention. Procedures which use
nents, dummy arguments, and function "®Yeatures which were not available in Fortran 77
sults. (eg. POINTER arguments or assumed shape

3. Interoperability with the C programming &rrays) are still passed using the default calling
language. convention.

While passing discontiguous arrays may re-

ever if the passed array is heavily used it is ben-
eficial to copy the array data into a contiguous
OpenMP—provides multi-platform array temporary and access it from there. If the
shared-memory parallel programming. array is INTENT(OUT) or INTENT(INOUT)

it may also be neccessary to copy the modified

9. Cray pointers—provides functionality gata back to the original array.
similar to C pointers.

Procedure variables.

4. Parametrized data types. i,
duce the overhead of a procedure call, it intro-

5. Derived type 1/0. duces a penalty every time the parameter is ac-
cessed. This is acceptable if only a small pro-

6. Asynchronous I/O. portion of the passed data is accessed. How-

7.

8.

The default behavior is to automatically add

code to the start of a procedure to test for
12 Calling Conventions discontiguous arrays and repack them, as this

matches the behaviour of most other Fortran

The default behavior of g95 is to pass all ac-COmpilers. Users are able to inhibit this be-
tual arguments by reference. In many cases thid@viour when the cost of repacking the array
is neccessary as procedures may be called vig likley to exceed the increased cost of access-

implicit interfaces. In this case the worst casgNd the array. For cases where the shape of the

not repacked when the first dimension is con-
In some cases, eg. elemental procedures aiguous, as this is unlikley to provide any per-
procedures with assumed shape arguments, &rmance gain.
explicit intarface must always be used. For
these procedures optimizations such as passing



13 Release dates

The tree-ssa branch of GCC is currently slated
for mainline integration in GCC 3.5. The cur-
rent release date for this, and hence the earliest
realistic release date for g95, is late 2004.

G95 only generated its first piece of executable
code in June 2002, and significant progress
has been made since then. It is hoped that by
Q4 2003 g95 will be functionaly complete and
standards compliant.

We believe that all the major obstacles to in-
clusion in the GCC source tree have now been
overcome. Inclusion in a non-release branch of
GCC is expected in the very near future. It is
expected that a seperate parallel development
tree will still be maintained for the convenience
of developers.
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Abstract tions:

One of the most important compiler passes is « Loop invariant motion that moves invari-
a loop optimization. The GCC's current loop ant computations out of loops.

optimizer is outdated and its performance, ro-

bustness and extendibility are unsatisfactory. A * Strength reduction, induction variable
goal of the project is to replace it with a new  €limination and various other manipula-
better one. In this paper we discuss the design tions with induction variables like flttlng

decisions — the choice of used data structures  into machine addressing modes.

and algorithms, usage and updating of auxil-
iary information,. .. Then we describe the cur-
rent state with emphasis on still unsolved prob-
lems and outline the possibilities for further

continuation of the project, including replacing . prefetching of arrays used inside loops to

» Doloop optimization, i.e. usage of low
overhead loop instructions if a target ma-
chine provides them.

the remaining parts of the old optimizer and in- reduce cache miss penalties.
troducing new low-level (RTL based) and high-
level (AST based) optimizations.  Unrolling of loops to reduce loop over-

heads, improve the efficiency of schedul-

) ing and increase sequentiality of a code.
Introduction

. ) We refer to this loop optimizer as the old one
It is generally known that most of the time of j, ihe rest of the paper.

programs is spent in a small portion of code

([HP]). Those small but critical areas usually The importance of loop optimizations has been
consist of loops, therefore it makes sense to execognized for a long time and the old loop
pect the optimizations that directly target loopsoptimizer was added to GCC very early (a
to have a great effect on program performancecopyright notice in thdoop.c file dates it
Indeed optimizations to improve the efficiencyto 1987). The lack of knowledge about the
of scheduling, decrease a loop overhead, opsptimization as well as the lack of computing
timize memory access patterns and exploit gower lead to several design choices that were
knowledge about a structure of loops in vari-unfortunate and today cause the optimizer to be
ous other ways were devised; see [BGS] fomuch less powerful than it could be. They also
a survey. Certainly no seriously meant com-cause other problems concerning its robust-
piler may ignore this. GCC contains a loop ness, extendibility and restrictions imposed on
optimizer that supports the following optimiza- the other optimizers. This lead us to decide to
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replace it by a new one by rewriting some partsupdated correctly, therefore it must be verified
adapting some parts for a new infrastructuran the loop optimizer itself and the offending
and extending it by new important optimiza- loops are ignored. This makes us miss some
tions. We refer to the goal of our efforts as themore optimization opportunities.

new loop optimizer in the rest of this paper. _ _ )
The second problem is the handling of jumps

The paper is structured as follows: In the secinside loops. The global (not specific to a sin-
tion 1 we investigate the structure of the oldgle pass) control flow graph was introduced
loop optimizer and problems with it. In the into GCC very lately (2000), and the loop op-
section2 we discuss goals of the project to re-timizer works over the insn chain only. Con-
place it and the high-level design choices of thesequently the effects of branches are estimated
new loop optimizer. Then we continue by pro- mostly by simple heuristics and results of loop
viding the detailed description of the currentinvariant and induction variable analyses tend
state of the new loop optimizer, including the to be overly conservative.

changes made in the loop analysis. In the fol- o

lowing section3 we describe used data struc-AS & Side issue, the unroller does not update
tures and algorithms to update them. In thetontrol flow graph, forcing us to rebuild it.
sectiord we summarize a status of the project,Th's prevents us to gather a profiling feedback

provide some benchmark results and state odrefore the loop optimizer, as this information
future goals. is stored in control flow graph. Therefore we

cannot use it in the loop optimizer itself and in
o the previous passes (most notably GCSE and
1 The OIld Loop Optimizer loop header duplication).

The unroller uses its own routines to copy the
insn stream, creating an unnecessary code du-
plication with the other parts of the compiler.

The loop optimizer was added to GCC very
early. Due to the lack of a computing power
(and partially also the lack of knowledge) in
those times, it has several features that are quit&ny single of these problems could probably

unusual for modern compilers. be addressed separately by modifying the rele-

: . _ vant code. Considering them together it seems
Firstly the loop discovery is based on notesto be easier to write most of the optimizer

passed from the front-end. This approach iSagain from scratch. Some parts can just be

very fast,. but the con3|dereq Ioops. are the.reédapted for a new infrastructure (the decision
fore required to form a contiguous interval in

the i hai d to fit int taf heuristics and execution parts of the invariant
1€ INSh chain and 1o fitinto one ot & Tew SPe-, i and induction variable optimizations,

.C'al shapes (of course covering all of the mOSEhe whole doloop optimization pass), but the

important cases). The loops created by nOng'greatest part has too deeply inbuilt expecta-

loop constructs (gotos,_ta_ll recursion, .. ) ar ions about a loop shape with respect to the insn
not detected at all. Optimization passes befor%hain to be usable. We discuss the plans con-

the loop optimizer are required to preserve th%erning this rewrite in more detail in the fol-
shape of loops and the placement of loop notesiOWing sections

Most of them fortunately do not modify control
flow graph, but those few that do are compli-The source of other complications is the low
cated and restricted by this need. level of RTL. During the translation to RTL,

. . . . some of the information about possibility to
Additionally sometimes this information is not P y
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overflow and types of the registers is lost and
we are forced to either rediscover it through
nontrivial analysis, use conservative heuristics,
produce a suboptimal code containing unnec-
essary overflow checks or produce a possibly
incorrect code. None of these options is par-
ticularly good. It would also make dependency
analysis quite complicated — it is not present
in GCC yet, and the optimizations that require
it (the loop reorganization, the loop fusion,
...) are missing. While the current project
is mostly RTL based, it will be necessary to
address these issues in near future. There are
already some efforts for moving the relevant
parts of the loop optimizer to the AST level in
progress; for more information see sectibn

2 Overview of The New Loop Opti-
mizer

There are several basic principles we have de-
cided to follow:

» The passes that form the loop opti-
mizer should be completely independent
on each other. They must preserve the
common data structures and it should
be possible to run them any number
of times and in any order (although of
course not all orders are equally effec-
tive). This approach is completely dif-
ferent from the old loop optimizer one —
there the optimizers called each other in
non-transparent manner and most of them
had assumptions about information gath-
ered by the other ones. While this ap-
proach may be slightly more efficient and
perhaps simpler at some places with re-
spect to keeping the information up to date
during transformations, we prefer our ap-
proach due to its cleanness, extendibility
and robustness. We have also initially
made some parts of the optimizer quite

simplistic, and this approach enables us to
replace them later by more involved solu-
tions without greater problems.

We have decided to generally reuse as
much of the existing code as possible
and eventually extend it for our purposes,
rather than creating our own variations
of the existing code. Most importantly
we used thecfglayout.c code for
duplicating basic blocks (this should re-
place two instances of a similar code,
one in unroll.c and the other one
in jump.c ) and of course the existing
cfgloop.c  code for a loop analysis (af-
ter significant changes described below).
We are also currently using the code from
simplify-rtx.c when computing a
number of iterations of a loop. In this
case we were unfortunately forced to start
working on an alternative RTL simplifi-
cation code for this purpose. The reason
is that the goal osimplify-rtx.c is

in some sense opposite to what we would
need. While we need to simplify the
RTL expressions into a simple canonical
shape simplify-rtx.c code tries to
transform it so that it is efficiently com-
putable. Some of the manipulations it
does for this purpose (expressing multi-
plication through shifts) make it unsuit-
able for our needs, and some conversion
we need to do (using distributive law on
products of sums) make the resulting code
possibly much less efficient than the orig-
inal one. The two approaches do not seem
to fit together very well.

As much of the information as possi-
ble should be kept up to date at any
given time. This concerns mostly com-
plicated operations over loops (unrolling,
unswitching, ...), where we express them
as a composition of simpler operations
that preserve the consistent state rather
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than making them at once and updating
the structures afterwards. This makes
the code a bit slower, but much easier to
understand and debug (many bugs were
caught early due to a possibility to check

a consistency after every step).

The optimizer itself consists of the initializa-
tion, several optimization passes and the final-
ization. The finalization part is trivial, just
releasing the allocated structures. In the fol-
lowing paragraphs we examine the remaining
phases in a greater detail.

The initialization and finalization parts are
placed inloop-init.c . During the initial-
ization, we calculate the following information
(that is kept up to date till the finalization):

Figure 1. Creating nested loops from loops
with shared header.

* A dominator relation is computed. The
dominators are used to define and find
natural loops and we use them during
loop transformations for several purposes,
most importantly during the simple loop
analysis to determine expressions (condi-
tions) that are executed (tested) in every it-
eration of the loop. Also we need them to
be able to update the loop structure when
parts of the code are removed. The de-
cision to keep the dominator relation al-
ways up to date turned out to be some-
what disputable. Having them ready at all
times is convenient and makes the parts
where they are used quite simple, but up-
dating them is relatively non-trivial and
quite costly. Most of their usages would
be simple to replace without using them
at a little extra cost, but their usage during

the removal of a code seems to be CruClalFigure 2: Merging loops with a shared header.

» Natural loops are found. The natural loop
is defined as a part of a control flow graph
that is dominated by the loop’s header
block and backreachable from one of the
edges entering the header, called the latch
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edge. Note that this definition makes it
possible for several loops to share the
same header block. We do not want to
have to handle them specially, so we split
the loop header in this case. There are
two ways to split the header (figurds
and 2) — one of them merges the loops
together, while the other one creates the
nested loops. It is impossible to recog-
nize which of these cases matches the re-
ality just from a control flow graph, and
even looking at the source code does not
help too much (this kind of loops is often
created by continue statements, and it is
hard to recognize what behavior describes
this situation better). If we have a profile
feedback available, we use it to determine
whether one of the latch edges is much
more frequent than the other ones, i.e. ifit
behaves like an inner loop, and create the
inner loop in this case (this is sometimes
called the commando loop optimization).
Otherwise we just merge the loops.

cfg_layout_initialize is called
to bring the instruction chain into a shape
that is more suitable for the transforma-
tions. This function removes the uncondi-
tional jumps from the instruction stream
(the information about them is already
included in the control flow graph) and
makes it possible to reorganize and ma-
nipulate basic blocks in much easier man-
ner.

Loops are canonicalized so that they have
simple preheaders and latches. By this we
mean that:

— Every loop has just a single entry
edge and the source of this entry
edge has exactly one successor.

— The source of latch edge has exactly
one successor.

This makes moving a code out of the loop

easier, as there is exactly one place where
it must be put to (the preheader) and we
can put it there without a fear that it would
be executed if we do not enter the loop. It
also removes the singular case of a loop
that consists of just one block. A quite im-
portant fact is that the loop latch must now
belong directly to the loop (i.e. it cannot
belong to any subloop) and the preheader
belongs directly to the immediate super-
loop of the loop (it could belong to a sib-
ling loop if it had more than one succes-
sor).

The irreducible regions are marked. A re-
gion of a control flow graph is considered
irreducible if it is strongly connected and
has more than one entry block (i.e. it con-
tains a depth first search back edge, but
the destination block of this edge does not
dominate its source, so the region fails to
be a natural loop). The irreducible re-
gions are quite infrequent (it is impossi-
ble to create them in structured languages
without use of a goto statement or a help
of the compiler), but we must be able to
handle them somehow. In the new loop
optimizer they are mostly ignored, just
taking them into account during various
analyses. The information about them is
quite easy to keep up to date unless we
affect their structure significantly. This
may occur in very rare cases during the
unswitching or the complete unrolling. In
some of these cases we have resigned on
updating the information and rather re-
compute them from scratch — it is quite
fast (just a depth first search over a con-
trol flow graph) and much less error prone
than to attempt to handle the case that we
would not be able to test properly (it is
almost impossible to construct a suitable
testcase).
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The optimization passes are placed in sepa-
rate files. The currently available optimization
passes are:

» Loop unswitching (in
loop-unswitch.c ) — if there is a
condition inside a loop that is invariant,
we may create a duplicate of the loop,
put a copy of the condition in front of
the loop and its duplicate that chooses
the appropriate loop and optimize the
loop bodies using the knowledge of a
result of this condition. There are a few
points worth the attention. The first is
a code growth — if there is a loop with
k unswitchable conditions, we end up
with 2% duplicates of the loop. This is
not really a problem in practice — the
opportunities for unswitching are rare.
Also in most of the cases when we have
more than one unswitchable condition
per loop the values tested in them are
identical and they are therefore eliminated
already during the first unswitching. (Just
for sure the number of unswitchings per
loop is limited). The other is testing for
invariantness of the condition. As the new
loop optimizer is placed after GCSE (and
also the old loop optimizer's invariant
motion), it is sufficient to just test that
the arguments of the condition are not
modified anywhere inside the loop.

» Loop unrolling and loop peeling (placed
in loop-unroll.c ). While it would
correspond more to our philosophy to
have this pass split into several ones, the
code and computation sharing between
them is so large that it would be impracti-
cal. Anyway they are still completely in-
dependent and they could be split with a
little effort. We perform the following op-
timizations:

— Elimination of loops that do not roll

at all — this is somewhat exceptional,
as this does not increase code size (in
fact it decreases it). For this reason
we perform this transformation even
for non-innermost loops, unlike the
other ones.

Complete unrolling of loops that it-
erate a small constant number of
times (a loop is eliminated in this
case too, but at the cost of a code size
growth).

Unrolling loops with a constant
number of iterations—we may peel
a few iterations of the loop and thus
ensure that the loop may only exit in
a specified copy, therefore enabling
us to remove now useless exit tests.
For most of the loops we leave the
exit in the last copy of the loop
body—the exit is usually placed at
the end of loop body, and all copies
may be merged into a single block
in this case. In the rare cases when
this is not true we leave the exit in
the first copy—in this case it is a
bit easier to handle loops of a form
for (i=a; i < a+100; i++) ,
where the number of iterations may
be either100 or 0 (in the case of an
overflow).

Unrolling loops for that the num-
ber of iterations may be determined
in runtime — the situation is similar
here, except that the number of it-
erations to perform before entering
the unrolled loop body must be de-
termined in runtime. The number
of iterations to be performed is cho-
sen through a switch statement-like
code.

According to some sources ([DJ]),
in both of these cases it is prefer-
able to place the extra iterations af-
ter the loop instead due to a better
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alignment of data (this might also be
important if we were doing autovec-
torisation). This can only be done
if the loop has just a single exit and
modifications of the loop are more
complicated. Also handling of over-
flows and other degenerate cases be-
comes much harder. It could how-
ever be done for constant time iterat-
ing loops with a little effort.

— Unrolling of all remaining loops —
this transformation is a bit contro-
versial. The gains tend not to be
large (scheduling may be improved
and rarely some computations from
two consecutive iterations may be
combined together), and sometimes
we even lose efficiency (due to neg-
ative effects of a code growth to
instruction caches and an increased
number of branches to branch pre-
diction). We only do this if specif-
ically asked to, and even then only if
the loop consists of just a single ba-
sic block.

— Loop peeling — the situation is simi-
lar (additionally we hope that the in-
formation about initial values of reg-
isters can be used to optimize the
few first iterations specially). We
gain most for loops that do not iter-
ate too much (optimally we should
not even enter the loop). To ver-
ify this, we use a profile feedback
and therefore perform this transfor-
mation only if it is present.

As was already mentioned, we perform
these transforms on innermost loops only.
This is not a principal restriction (the

passes are written so that they handle
subloops), but the ratio of a code size
growth to a performance gain is bad then,
and also duplicated subloops would be

more difficult for branch prediction in
processors.

The old loop unroller also performs the in-

duction variable splitting to remove long

dependency chains created by unrolling
that negatively impact scheduling and
other optimization passes. We instead
leave this work to the webizer pass that
is much more general.

There are three basic problems to solve.
Firstly there is the code growth. All of
the unrolling-type transformations natu-
rally increase a code size. While the
greater number of unrollings generally in-
creases effect of the optimization, it also
increases a pressure on code caches. It
is therefore important to limit the code
growth. There are adjustable thresholds
that limit the size of resulting loops as
well as the maximal number of unrollings.
We also use a profile feedback to optimize
only relevant parts and try to limit trans-
formations for that gains are questionable
in cases when we believe that they might
spoil the code instead (for example the
loop peeling is not performed without a
profile feedback that would suggest that
the loop does not roll too much).

A more appropriate solution might be a
loop rerolling pass run after scheduling
that would revert the effects of a loop un-
rolling in case we were not able to get any
benefits from it.

Secondly we need the analysis to deter-
mine a number of the loop’s iterations.

Currently we use a simplistic analysis that
for each exit from the loop that domi-

nates the latch (i.e. is executed in every
iteration) checks whether the exit condi-
tion is suitable — i.e. if it is comparison

where one of the operands is invariant in-
side the loop and the other one is set at
exactly one instruction that is executed ex-
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actly once per loop iteration. For such
condition we then check whether the vari-
able is increased by constant and attempt
to find its initial variable in an extended
preheader of the loop (i.e. basic blocks
that necessarily had to be executed before
entering the loop). Using the simplifica-
tion machinery fronsimplify-rtx.c

we then determine the number of itera-
tions. This turns out to be sufficient in
most cases, but things like multiple in- 3
creases of the induction variable prevents
us from detecting the variable. Also often
the initial value of the variable is assigne
to it earlier, preventing us from recogniz-
ing the loop as iterating a constant numbe
of times. Induction variables that iterate in

a mode that is narrower than their naturalthe

with the transfer. This adaptation of the
pass is still only present on rtlopt-branch,
due to a bad interaction with the new loop
optimizer. This is caused by a overly
simplistic induction variable analysis used
and should be solved by the improved in-
duction variable analysis that is currently
being written.

The Data Structures

d!n this section, we discuss the structure to rep-
resent the loops as well as other auxiliary data
sStructures used in the new loop optimizer. We
also describe the algorithms used to update
m.

mode are not handled, which causes proby . consider a loopt a subloopof a loop B

lems on some of the 64 bit architectures;
where int type is represented this way. We,

if a set of basic blocks inside the loopis a
strict subset of a set of basic blocks inside the

are_currentlywor_king on the full induction loop B. Because we have eliminated the loops
variables analysis that solves all of thesg,ih, shared headers, the Hasse diagram of a

problems.

partial ordering of loops by the subset relation

Thirdly we must decide how much we is a forest. To make some of the algorithms
want to unroll the loop. Currently we take more consistent, we add an artificial root loop
into account just a code growth, thus weconsisting of the whole function body (with an

unroll the bigger loops less times.

For entry block as a header and an exit block as a

constant times iterating loops we also at-latch). We maintain this loop tree explicitly.
tempt to adjust the number of unrollings For each of the nodes of the tree we remem-
so that the total size of the code is mini- ber the corresponding loop’s header and latch.

mal.

In other cases we use the heuristidBut we do not remember the set of basic blocks

that says that it is good to unroll number that belong to it — if we need to enumerate the
of times that is a power of two (because ofwhole loop body, we use a simple backward
better alignments and other factors). Sealepth first search from its latch, stopping at its
the sectiond for discussion of the possi- header.

ble extensions of this scheme and the esti-
mation of gains obtainable by using some
better methods.

To be able to test for the membership of a ba-
sic block to the loop we maintain the informa-

tion about the innermost loop that each basic
Doloop optimization — this pass is just block belongs to. To speed up the testing for
an adaptation of the old loop optimizer's a not necessarily immediate membership to a
doloop pass that was written by Michaelloop (i.e. including membership to any subloop
Hayes. The structure of the pass was quit®f the loop), we also maintain the depth in the
clear and there were no major problemsloop tree and an array of parents for each node
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in the loop tree. Maintaining the arrays of par-some perhaps less theoretically nice but more
ents enables us to respond to these queries practical (e.g. a depth first search numbering
a constant time, but makes speed of all upwith holes).

dates proportional to the depth of the tree. This ) _ _ )
works well in the practice, as the tree is usuallyJPdating of the dominators in general is not

quite shallow and the structure of a loop tree®aSy- During the transformations we perform
does not change very often. we are usually able to handle it by using the

fact that they are of a special kind (respecting
Updating the loop tree is straightforward dur-the loop structure that itself reflects the struc-
ing the control flow graph transformations weture of dominators). In a small portion of cases
use. Most of the optimizations do not changewhen we are not able to do it (or the rules to
the structure at all. The exception is the loopdetermine how the dominators change would
unrolling and peeling type transformations if be too complicated) we use a simple iterative
some subloops are duplicated (it cannot reallyapproach (similar to [PM]) to update the domi-
occur just now because we optimize only in-nators in the (usually) small set of basic blocks
nermost loops, but the code can handle this sitwhere they could be affected. As already men-
uation for case we changed this decision) or théioned before, we also consider not keeping the
unrolled loop is removed, but all of these caseslominators at all and solving the cases when
are easy to handle. Note that some of thenthey are currently used without them.
may create new loops if irreducible regions are _ ) _ )
present. We ignore these newly created |Oopg'he irreducible regions are determllned as
(still having them marked as irreducible) — this Strongly connected components of a slightly al-
is conservatively correct and this situation is sd€"€d control flow graph. For each loop we cre-

rare that it does not deserve any other specidt€ @ fake node. Entry edges of the loops are
handling. redirected to these nodes, exit edges are redi-

rected to lead from them — this ensures that
As described in the previous section, there ar¢he parts of the irreducible regions that pass
two further pieces of information we keep up-through some subloop are taken into account
to-date — the dominators of basic blocks andnly in the outer loop. We remember this in-
the information about irreducible regions. formation through flag placed on the edges that
) _are a part of those strongly connected compo-
We represent the dominators as the iNyents This is sufficient to update the informa-
branching of immediate dominators. We rep-on effectively during the most of the control

resent this in-branching using ET-trees. Thisq,y graph transformations. The only difficult

structure was chosen due to its flexibility — 550 is when a loop that is a part of an irre-
it enables us to perform all relevant opera-q,ciple area is removed. We would have to
tions asymptotically fast (updates and querieg, qpagate the information about irreducibility

for dominance in logarithmic time, finding the through the remnant of its body then. While
nearest common dominator of a set of blocks; ~qu1d be done. it would be quite difficult

and enumerating all blocks that are immedi, pangle all problems (subloops, other irre-
ately dominated by a given block in a time pro-y,cible regions). Instead, we simply remark
portional to the size of the relevant set imes &y jrreducible regions using the algorithm de-
polylogarithmic time). The multiplicative con- g¢yihed above (this situation is quite rare and

stants however turned out to be quite high angj,o algorithm is sufficiently fast anyway).
we are considering replacing the structure by
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Estimated Estimated

Base Base Base Peak Peak Peak
Benchmarks | Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 306 458 1400 291 480*
175.vpr 1400 452 310 1400 452 310*
176.gcc 1100 306 360 1100 299 368*
181.mcf 1800 821 219 1800 815 221*
186.crafty 1000 174 574 1000 174 575*
197.parser 1800 534 337 1800 534 337*
252.eon 1300 201 648 1300 199 652*
253.perlbmk 1800 338 533 1800 335 538*
254.gap 1100 280 393 1100 277 398*
255.vortex 1900 414 459 1900 410 464*
256.bzip2 1500 431 348 1500 428 351*
300.twolf 3000 902 333 3000 878 342*
Est. SPECint_base2000 398
Est. SPECint2000 403

Base flags: -O2 -march=athlon -malign-double -fold-unroll-loops
Peak flags: -O2 -march=athlon -malign-double -funroll-loops

Figure 3: SPECint2000 results for rtlopt-branch on Athlon, 1.7 GHz

Estimated Estimated

Base Base Base Peak Peak Peak
Benchmarks | Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 621 225 1400 605 232
175.vpr 1400 857 163 1400 854 164
176.gcc 1100 624 176 1100 618 178
181.mcf 1800 1354 133 1800 1361 132
186.crafty 1000 285 350 1000 275 364
197 .parser 1800 930 194 1800 932 193
252.eon 1300 321 405 1300 331 393
253.perlbmk 1800 538 335 1800 556 324
254.gap 1100 426 258 1100 420 262
255.vortex 1900 817 233 1900 810 235
256.bzip2 1500 770 195 1500 774 194
300.twolf 3000 1709 176 3000 1699 177
Est. SPECint_base2000 224
Est. SPECint2000 225

Base flags: -O2 -march=athlon -fold-unroll-loops
Peak flags: -O2 -march=athlon -funroll-loops

Figure 4: SPECIint2000 results for mainline on Duron, 800 MHz
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4 The Current State And Further
Plans

might be partially caused by absence of the we-
bizer pass in mainline. We are currently inves-

tigating other reasons.

Everything described above in the paper (ex- € interesting problem with the new loop un-
cept for the doloop optimizer adaptation) is al-foller is determining whether and how much
ready merged in the GCC mainline and will We should unroll or peel a given loop. There
be in GCC 3.4. The new loop unroller in &re several possible criterion:

connection with webizer and other improve-
ments present on rtlopt-branch outperforms the
old one on i686 and even without the webizer
the results are comparable (see figustesnd

4 for results on SPECInt2000 testsuite). Its
simple procedure to count the number of it-
erations beats the old loop optimizer's one (it
detects52 loops as iterating a constant num-
ber of times on the gap benchmark compilation
as opposed t89 loops the old loop optimizer
did). The total number of loops detected is a bit
surprisingly almost the same3292 by the old
loop optimizer,3298 by the new one — writers
of GCC have apparently done very good job
in keeping the front-end information about the
loops accurate.

We are still quite far from our final goal —
fully replacing and removing the old loop op-
timizer. What remains is to replace or adapt
induction variable optimizations (the invariant
motion can be solved by GCSE instead) and to
solve the problems described below.

While the results from i686 look quite promis-
ing, the new loop optimizer has problems on
the other architectures. Some of the 64-bit
architectures must represent 32-bit integers as
subregs of 64-bit registers. The simplistic anal-
ysis to determine a number of iterations of the
loops is not yet able to handle this case, so the
unroller is useless here. This should be solved
by introducing the new induction analysis that
is needed to replace the induction variable op-
timization parts anyway.

On some other architectures quite important
performance regressions were reported. They

» To decide whether to optimize at all, we

use a profile feedback. Not optimizing in
cold areas reduces the code growth a lot.
To decide whether to peel or to unroll, we
try to estimate the number of iterations of
a loop using the feedback and to peel a
sufficient number of iterations from a loop
so that the loop is not entered at all most of
the times. We also measure histograms of
first few iterations of the loops and use it
to determine this more precisely on rtlopt-
branch, but the effects are not significant.

The effects on instruction cache seem to
be quite important. There are some works
describing how to take them into account
([HBK]), but they would require a global
program analysis and it seems question-
able whether they would be useful at all.
For now we cannot do anything but to at-
tempt to limit the code size growth.

Similarly duplication of loops whose bod-
ies contain many branches may also affect
the performance negatively, as the created
jumps increase the pressure on the CPU’s
branch prediction mechanisms. Some-
times these jumps may also may behave
less predictably than the original ones.

* From a scheduling point of view, it would

make sense to prefer unrolling loops that
contain instructions with long latencies. It

might also be useful to take a register al-
location into account, attempting to min-

imize the number of registers needed for
computing simple recurrences.
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Currently we use only a very simple heuristics ¢ autovectorisation, i.e. usage of SIMD in-
to take some of the effects mentioned above  structions on arrays processed in loops.
into account. To estimate the possible gains of

using better methods, we wrote a code that ata| of those (and several other less impor-

tempts to determine the best possible numbe, ) gntimizations require a dependency anal-
of unrollings for each of the loops. It adds 2ysis to determine whether it is indeed possi-
code _for each Of the Iqops that measures hBie 1o reorganize computations as needed. It
total time spent inside it. Then farbetween would be pretty painful to determine this on the
1 and some upper bound, we unroll all lo0pSpy) jevel, as information about types of vari-
i times and gather the profiling data. Finally opjeq i almost lost here (partially recoverable
we choose the best of these times for every,,, irough a complicated analysis) and so is
loop as the right number of iterations t0 Un-gome of the information about overflows. Also
r_o_II. This is far from optimal (the added pro- the loop reorganization needed would be quite
filing code changes the performance characterc-omplicateol on the RTL level. This makes

istics of a compiled program a lot and the opti-ihem more suitable for the AST level. We hope
mal numbers are also dependent on how oth% be able to start a work on them in a few
loops are unrolled, so measuring them when all,, ) ihs

are unrolled the same number of times is not

completely right), still we achieved about 2% Other optimizations should be better done on

speedup on SPEC2000 this way on i686. AST level from similar reasons, including a
) o part of induction variable optimizations that

Adapting the rest of old loop optimizer seemsge5 ot yse a machine specific information

to be quite straightforward now. New induc- e a knowledge of addressing modes etc.)
tion variable analysis pass is just being teSteémd possibly unrolling and unswitching. There
on rtlopt-branch, the next step is either to use itdre already some efforts for moving the rel-
to produce induction variable descriptions SUit'evant parts of the loop optimizer to the AST
able for the old induction variable optimization level in progress (Pop Sébastian have recently

pass, or (more likely) to write a new one, heav-,ytereq the loop recognition code to work both
ily reusing the parts of the old one. on RTL and AST levels).

There are additional loop optimizations that
should be added to GCC, including Acknowledgments

* loop reorganization that makes accesses e project is based on the GCC code written
arrays more sequential by swapping an ory,, yndreds of volunteers. The most of contri-
der of nested loops if possible. butions to the loop analysis code we have built

« loop fusion that joins adjacent loops thatUPOn were by Daniel Berlin, Michael Hayes

iterate the same number of times (perhap@"d Michael Matz. Part of the new loop op-
timizer was written during the “Infrastruktura

after a small adjustment), to reduce an ras TR AT
overhead of loop creating instructions. ~ Pro profilemrizene optimalizace v GCC” (*In-
frastructure for profile driven optimizations in
* loop splitting that inversely splits the GCC”) software project at Charles University,
loops into several smaller ones if we know Prague ([DHNZ], [DHNZ-doc]) together with
that we are able to optimize them betterJosef Zlomek, Pavel Nejedly and Jan Hika
this way. under leadership of David Bednarek and later
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continued with support of Suse Labs. | would[PM] Paul W. Purdom, Jr. , Edward F. Moore,

also like to thank Richard Henderson for pro- Immediate predominators in a directed
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Mudflap:
Pointer Use Checking for C/C++
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Abstract known by every C/C++ programmer. Access-
ing freed objects, going past buffer boundaries,

Mudflap is a pointer use checking technd_dereferencing\IULLor other bad pointers, can
ogy based on compile-time instrumentation. [t€ach result in a spectrum of effects, from
transparently adds protective code to a variety0thing, through random glitches and outright
of potentially unsafe C/C++ constructs that de-crashes, to security breaches. Such bugs can
tect actual erroneous uses at run time. Théhduce hard-to-debug delayed failures. Many
class of errors detected includes the most conf€cent security vulnerabilities of operating sys-
mon and annoying types: NULL pointer deref- t€ms result from simple stack-smashimgfter
erencing, running off the ends of buffers andOVerrunerrors, where pointers go beygnd their
strings, leaking memory. Mudflap has heuris-POunds to corrupt memory, under the influence
tics that allow some degree of checking everPf malevolentinput.

if only a subset of a program’s object module

: SThere exist several technologies for catching
are instrumented.

pointer use errors. They have distinct ap-
proaches and capability/performance tradeoffs.
1 Motivation For example, from a debugging point of view,
it is better to catch the memory corruption at
the moment it occurs, because context will be

C, and to a lesser extent C++, are sometimegeash and available. On the other hand, for se-

jovially re}fe”efj to as a “portable assembly ¢ ity hrotection of a deployed program, it may
language.” This means that they are portablge enough to catch an error just in time to pre-

across platforms, but are low level enothventabreach,which might be much later.
to comfortably deal with hardware and raw

bits in memory. This makes them particularly A large class of pointer use errors relates to
suited for writing systems software such as opheap allocation. Writing past the end of a heap
erating systems, databases, network serversbject, or accessing a pointer afterfrae

and data/language processors. These types chn sometimes be detected with nothing more
software are notorious for pointer-based datahan a library that replaces the standard li-
structures and algorithms, which C/C++ makebrary’s heap functionsnfalloc , free , etc.).
easy to express. However, the runtime modeThe Electric Fencepackage, for example, can
of C/C++ does not include any checking of manage heap objects that carefully abut inac-
pointer use, so errors can easily creep in.

Htp://ftp.perens.com/pub
Several kinds of pointer use errors are widelyElectricFence/
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cessible virtual memory pages. A buffer over-arrays and is checked before a function returns.
run there causes an instant segmentation faulhis is light-weight and reasonably effective,

Some libraries provide a protected paddingout provides no general protection for pointer
area around buffers. This padding is fillederrors or debugging assistance.

with code that can be periodically checked for

changes, so program errors can be detected &f'€ valgrind p_ackag“'eis a simulation-based
a coarser granularity. tool for detecting a broad class of pointer

use errors. It contains a virtual machine that
The bounded-pointers GCC extensioad- tracks processor operations, including mem-
dresses pointer errors by replacing simpleory loads and stores and even register arith-
pointers with a three-word struct that also con-metic, to check operations for validity. While
tains the legal bounds for that pointer. Thisit works on unmodified executables, this simu-
changes the system ABI, making it necesdation process is quite slow.

sary to recompile the entire application. The _ _ _
bounds are computed upon assignment fronl N€ Purify packageis a well-known propri-

the address-of operator, and constructed foft@ry package for detecting memory errors.
system calls within an instrumented version ofurify works by batch instrumentation of ob-
the standard library. Each use of the pointer id€Ct files, reverse-engineering patterns in ob-
quickly checked against its own bounds, and€Ct code that represent compiled pointer op-
the application aborts upon a violation. Be-€rations, and replacing them with a mixture of
cause there is no database of live objects, aff!line code and calls into a runtime library.
instrumented program can offer no extra infor-

mation to help debug the problem. 2 How Mudflap Works

The gcc-checker extensibaddresses pointer
errors by mapping all pointer manipulation Mudflap works by inserting a pass into GCC'’s
operations, and all variable lifetime scopeshormal processing sequence. It comes after
to calls into a runtime library. In this @ language frontend, and before the optimiz-
scheme, the instrumentation is heavy-weighters, RTL expanders, and backend. It takes a
but the pointer representation in memory refestricted form of GCQrees which are sim-
mains ABI-compatible. It may be possible toilar to abstract syntax parse trees, as input.
detect the moment a pointer becomes invalidt looks for tree nesting patterns that corre-
(say, through a bad assignment or increment)spond to the potentially unsafe source-level
before it is ever used to access memory. pointer operations. These constructs are re-
placed with expressions that normally evaluate
The StackGuard GCC extensformddresses to the same value, but include parts that refer
stack smashing attacks via buffer overruns. lto libmudflap, the mudflap runtime. The com-
does this by instrumenting a function to rear-pjler also adds instrumentation code associated

range its stack frame, so that arrays are placegith some variable declarations.
away from vulnerable values like return ad-

dresses. Further guard padding is added arounthe purpose of this instrumentation is to assert
a validity predicate at the use (dereferencing)

/ Z_httﬁi//?cc-gnu-Ofg/pfojeCtS/bp of a pointer. The predicate is simply whether
main.htm

3http://www-ala.doc.ic.ac.uk/ phjk Shttp://developer.kde.org/ sewardj/
/BoundsChecking.html Shttp://www.rational.com/products

4http://immunix.org/stackguard.html /purify_unix/
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or not the memory region being referenced iscally rotated in order to move nodes for popu-
recognized by the runtime as legal. If not, alar objects nearer to the root. There is a sepa-

violation is detected. rate fixed-size array listing recently deallocated
objects, used only during the performance-
2.1 Object database insensitive processing of violation messages.

o _ During program startup, some selected objects
As a prerequisite for evaluating memory ac-yre inserted into the database as specél
cesses, the runtime needs to maintain @ccesgegions. These represent address ranges
database of valid memory objects.  ThiSynat are certainly out-of-bounds for all instru-
database includes several bits of information,gnteq programs, like th&lULL area, and
about each object, which may be retained folgome |ibmudflap internal variables. Violations
some time even after it is deallocated. are always signaled when such objects are ac-

cessed by instrumented code.

» address range

* name, declaration source file, line number

* storage type (stack/heap/static/other)

* access statistics

+ allocation timestamp and stack backtrace

* deallocation timestamp and stack back-
trace

In order to update and search the objec.2 Lookup cache
database, libmudflap exports a number of func-

tions to be called by the inserted instrumen-

tation. These basic ones include one to as-

sert that a given access is valid, and a pair

to add/remove a memory object to/from the

database. These functions are passed pointer

and size pairs plus some parameters to classify

or decorate accesses and objects. For exam-

ple, for a stack-based variable that may have

pointer-based accesses would have a “registef? Order to hasten the database lookup, some-
call at the point of entry into its scope, and thing which needs to be done many times, lib-
a corresponding “unregister’ call when con-Mudflap maintains &bokup cache This cache

trol leaves the scope. For heap-based variS compact global direct-mapped array, indexed

able, these calls would be performed withinUSiNg @ simple hash function of the pointer
hooked allocation and deallocation primitives.Value. Each entry in the cache specifies a mem-
For static variables, register calls are done earl{"y @ddress range that is currently valid to ac-

during program startup, and the effort of an un-C€SS: If an inline check of the cache for a given
register is not wasted during shutdown. access is successful, the application avoids the

call into libmudflap for the full-blown check-
The database happens to be stored as a binaing routine. Though the code may look compli-
tree, naturally ordered based on the addressesated, it compiles down to a surprisingly small
of live objects. Its internal nodes are periodi-number of instructions.
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/* uintptr_t: an integral type for
pointers */
struct __mf_cache { uintptr_t low,
high; };

struct __mf _cache
__mf_lookup_cache [];

uintptr_t _ mf_lc_mask;

unsigned char _ mf_lc_shift;

[* an approximation */
inline void

INLINE_CHECK (T* ptr, size t sz, ...

{

uintptr_t low = ptr;

uintptr_t high = low + sz - 1;

unsigned idx =
(low >>  mf Ic_shift) &
__mf_lc_mask;

struct __mf _cache *elem =
& _ mf_lookup_cache [idx];

tire function that resembles an abstract syntax
tree. Expressions like the above are encoded in
a web of nodes of GCCBee type structure.

Mudflap traverses a function tree in program
order, looking for certain pointer- or array-
related constructs. These tree nodes are modi-
fied in place, replacing the simple pointer ex-
pressions with a GCGtatement expression
that evaluates to the same value, but includes
a call to the inline check routine outlined
above. Shown in GCC’s extended syntax,
the expressiorp->f is changed roughly to

({check (p, ..); p:h->f

This in-place modification scheme sup-
ports recursion for nested constructs like

if (eIem->IOW_ > low || ptr->array[i]->field . Here, two
;‘fg:éfh(p; hg‘) \ separate checks would be emitted: one for
, » SZ ) the elementptr->arrayfi] , and another

, , _ to follow that pointer. The checks are per-
As with any caching scheme, choosing approtormed in natural program order. Alternately,

priate parameters (timaaskandshiftvalues) is - g,ch nested constructs might be presented to

a challenge. libomudflap has defaults SUitabl‘?nudflap already decomposed into an equiv-

for mixed sizes of objects, which can be over-5jent sequence of simpler expressions by the
ridden by the user. In addition, when the run-gmpPLES transformations.

time detects excessive cache misses, it adap-
tively tunes the cache parameters to better fiTable 1 shows the primitive expression patterns
recent access patterns. For example, if acmudflap intercepts, and what address range is
cesses to small individual objects dominate, thehecked for each. For indirect accesses into
current heuristic tends to decrease shift vallarger compound objects, the checked range
ues. That way, more of the lower-order bits oftypically begins at the address of the outer-
the raw pointers remain to pick distinct cachemost compound object, and ends by including
lines. Section 3.1.4 lists libmudflap optionsthe specific field or element being referenced.
that affect the lookup cache. This way, the checked base value for similar
accesses into the same structure or array can
be constant, and take more benefit from the
lookup cache. Notice that the checked range
doesnotextend to include the entire compound
Unsafe pointer expressions are easy to reco®bject. This is because it is legal to allocate
nize when looking at C/C++ code. Systemat-
ically, most*p, p->f , anda[n] expression Statement expressions are a GCC extension that al-
patterns need to be checked. Because mudflésﬂ"/s a brace-enclosed blqck to be trefited as an expres-
. . . ion. The last statement in the block is used as the ex-
operates in the middle of the compiler, we CaN~ ession value.
not look for such patterns in the source. In-  8np://gcc.gnu.org/projects
stead, we are given a representation of an eritree-ssa/

2.3 Instrumented expressions
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slightly less memory for a variable-sized struc-the enc®

ture than the rawizeof |, aslong as the unal-

located elements at the end are never accesseff€ Use this construct in mudflap by inserting
GCC's own source code does this frequently. ©N€ of these special try/finally tree patterns be-
hind every declaration in need of lifetime in-

_ strumentation. The statement-list is the re-
2.4 Instrumented declarations mainder of the original function, past the dec-
laration in question, plus a register call for

As discussed above, libmudflap’s objectthe decla!red object. The cleanup st_atement is
an unregister call for the same object. The

database is kept up-to-date partly using instru- . )
) e . above function becomes the following, render-

mentation that tracks the lifetime of interest-. : : .

. ) . Ing TRY_FINALLY_EXPRIin a Java-like way:

ing memory objects. Some of these objects

are variables declared aito or static char *foo (unsigned i) {

and have their addresses taken (or are indexed- char array [10];

into). For exampl_e, in the code segm_ent be- mf_register (array, 10, ..):

low, thearray variable needs to be registered array [i] = 'a;

with libmudflap (so thgi] indexing can be return & array [i];

checked), but only for the duration of its scope } finally {

(so that the returned pointer is invalid to deref- ~ —mf_unregister (array, 10, ...)

erence later). ) }

char *foo (unsigned i) {
char array [10];
array [i] = 'a’
return & array [i];

Mudflap also emits instrumentation to track the
lifetime of some objects in the global scope:
variables declared within file scope, or de-
claredstatic  within a function. This is done

} by intercepting assembler-related functions in
Tracking the lifetime of variables in a scopegcc/varasm.c . It turns out at some liter-
is tricky because control can leave a scopéls like strings are like local static variables
in several places. (Grossly, it might evenin this respect, so they too are registered. In
enter in several places usingpto .) The each case, a list of declarations is accumu-
C++ constructor/destructor mechanism prodated until the end of the compilation unit. At
vides the right model for attaching code tothat point a single dummyonstructorfunc-
object scope boundaries. Luckily, GCC pro-tion is synthesized, containing a long list of
vides the necessary facilities even to trees that_mf_register  calls. The linker arranges
come from the C frontend. There are sev-to call this and all other constructor functions
eral variants: th€ LEANUP_EXPRode type, early during the program startup.

and the more moderiRY_FINALLY_EXPR

Both tree types take a block (a statement listp.5 Library interoperability

and another statement @eanup as argu-

ments. The former is interpreted as a Sequence . Jbove mechanisms are sufficient for
of statements such as any that follow a decla-

) s : checking pointer operations that are within an
ration within a given scope/block. The latter ap P

. instrumented compilation unit. However, it is
is a statement that should be evaluated when- P

ever the scope is exited, whether that happens sygwever, abrupt exit from a scope vidangjmp
by break , return , or just plain falling off is not specifically handled at this time.
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Sample declarations:

struct k {
int a; /* offset 0 size 4 */
char b; /* offset 4 size 1 */

};, [* size 8 */

int *iptr;

struct k *Kkptr;

char cbuf [];

short smtx [6][4];

int i, j;
expression tree structure check range

base| size

*iptr INDIRECT_REF(iptr) iptr 4
*kptr INDIRECT_REF(kptr) kptr | 8
kptr->a COMPONENT_REF(INDIRECT_REF(kptr),a) kptr | 4
kptr->b COMPONENT_REF(INDIRECT_REF(kptr),b) kptr |5
cbuffi] ARRAY_REF(cbuf,i) cbuf | i+l
smtx]i][j] ARRAY_REF(ARRAY_REF(smtx,i),]) smtx | 8*+2*j+2

Table 1: Pointer expressions and their checked address ranges

often not possible to recompile an entire ap+ectivesimplied by mudflap, with libmudflap
plication, including the system libraries, with names. This way, only instrumented object
mudflap instrumentation. This means that seviiles are affected. Figure 2.5 shows a sample
eral aspects of interoperability need to be adef this type of wrapper function in libmudflap.

dressed. ) , ,
In another scenario, an uninstrumented library

Most C/C++ programs make use of standardnay return to an instrumented caller some
library functions (e.g.strcpy ) that manip- memory allocated from a shared heap. These
ulate buffers given pointers. Typically, thesememory regions should be registered with lib-
libraries are not instrumented by mudflap, somudflap, so that the instrumented code can
they trust their arguments and don't performbe allowed to use them. Intercepting calls
pointer checking. An erroneous program carike malloc using preprocessor macros is
pass invalid pointers to these libraries, and bynot possible, since we are dealing with pre-
pass mudflap protection. libmudflap containscompiled objects. We must intercept them
functions that interpose as a variety of suchat link time. Suitable mechanisms are avail-
system library routines (though many more areable: symbol wrappindfor static linking with

yet to come). Each interposing function checksGNU Id) or symbol interpositionfor shared
given buffer/length arguments, then jumps tolibraries). libmudflap contains a protection
the original system library. In this case, in- mechanism to handle the case where a reen-
terposition is performed by replacing systemtrant libomudflap=s-system-library-libmudflap
library function names, vigreprocessor di- call chain might occur.
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void * WRAPPED_memmem (const void *haystack, size t haystacklen,
const void *needle, size_ t needlelen)

{
INLINE_CHECK (haystack, haystacklen, — MF_CHECK_READ, "memmem haystack");

INLINE_CHECK (needle, needlelen, _ MF_CHECK_READ, "memmem needle");
return memmem (haystack, haystacklen, needle, needlelen);

}

size_t WRAPPED fread (void *ptr, size_t size, size_t nmemb, FILE *stream)

{
INLINE_CHECK (ptr, size * nmemb, _ MF_CHECK_WRITE, "fread buffer");

INLINE_CHECK (stream, 1, _ MF _CHECK_ READ, "fread stream");
return fread (ptr, size, nmemb, stream);

}

Figure 1: Sample libmudflap stdlib function wrappers

In yet another scenario, an uninstrumented li- factor | description ¢ polarity)

brary may return to an instrumented caller a 1 | rare pointer manipulation

value that points to some valid static data in few large arrays _ _

the library. This could include objects as mun- few addressed variables in scope
dane as string literals. In this case, no link-time number cruncher

function interception can work, since these ng ggjee/gt;aﬁ]hv\?;ﬁ:gggt“res
addresses are taken without reference to sys- non-changing access patterns
tem functions. In order to tell automatically

~NOoO ok WN

whether such a pointer is valid or not, lib- application factors in effect| slowdown

mudflap usesheuristics These heuristics are + | - build | run

checked when an access check is initially de- BYT'Z(;‘;;ECU gg 11’32;15;7 34-15 35-)5
: . . spec zipg 2, ,3,4,6,

termined as a violation. They may look at other Spec2000 mef | 1.7 e | 105

auxiliary platform-dependent data like the pro-
gram’s segment boundaries, stack pointer, antdlable 2: Performance factors and overall mea-
the like, to make a guess. Heuristics may be insured slowdowns

dividually enabled or disabled at run time. See

section 3.1.3 for more details.

jects tracked in the database, and their rates of
change. Table 2 lists some of these. A few
selected applications have been built with and
without mudflap instrumentation, then run to
Mudflap instrumentation and runtime costs ex-estimate the slowdowrl8. Table 2 also lists
tra time and memory. At build time, the com- some applications, their performance factors,
piler needs to process the instrumentation codexnd associated slowdowns for a default mud-
When running, it takes time to perform the flap build and run.

checks, and memory to represent the object

database. The behavior of the application has a

strong impact on the run-time slowdown, af- 0we used an x86 Linux host with ample memory, the

fecting the lookup cache hit rate, the over-same mudflap-capable compiler, and same optimization
all number of checks, and the number of ob-evels and linking modes.

2.6 Performance
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2.7 Future an extra compiler optionfmudflap ) to ob-
jects to be instrumented; one links with the
Mudflap development is ongoing; we antici- S2Me option, plus perhapstatic . One

pate several improvements. Significant per@y run such a program by just starting it as

formance benefits may arise from changing'Su@

the instrumentation code (mainly for pointer, the default configuration,
checks), and functionality and performance
benefits from the runtime.

a mudflap-
protected program will print detailed violation
messages tetderr . They are tricky to de-

We currently instrument each occurrence of0de€ atfirst. Figure 5 in the Appendix contains
a pointer dereference, even if that samé* Sample message, and its explanation.

pointer/size pair has been “recently” checked.
Such checks could be eliminated if the com-3.1 Runtime options
piler could prove that a subsequent check is

redundant with respect to an earlier one. Exjinmydflap observes an environment variable

tending from_this, it may be possible to ag-MUDFLAP_OPTIONSt program startup, and
gregate multiple checks based on the samgy acts a list of options. Include the string

pointer or array - imagine sequences of state_-he|p in that variable, and libmudflap will

ments that accesgtr->fieldl through  print out all the options and their default val-

ptr->field5 . The compiler could create a ;o5 The display at the time of this writing is
single large check near the beginning of a ba- shown in Figure 5 in the Appendix. The next
sic block, and eliminate subsequent checks fogqtions describe the options in groups.

the same pointer/array. Some checks could be
moved out of loops. In exchange for signifi-
cantly better performance, such optimizations o .
could detect pointer use errors out of progran‘?'l'1 Violation handling
sequence.
The -viol- series of options control what
Possible future Iibmudflap enhancements i”1ibmudflap should do when it determines a vi-
clude support for multithreaded applications,qation has occurred. Thenode- series con-

growing the list of hooked functions to include {515 whether liomudflap should be active.
more of the system libraries and system calls,

more libmudflap entry points for use in an em-
bedded system without a kernel, a better GDB

) \ viol-nop Do nothing. The program may
interface, and general tuning.

continue with the erroneous access. This
may corrupt its own state, or libmudflap’s.
3 Using Mudflap -viol-abort Call abort() , requesting a
core dump and exit.
-viol-segv Generate &IGSEGV, which a
Using mudflap is intended to be easy. One program may opt to catch.
builds a mudflap-protected program by addingviol-gdb ~ Create a GNU debugger session

on this suspended program. The debugger
1IA large check would cover the maximal referenced P p d dat bggt] "
range, including the last referenced field for a pointer, Process may examine program data, buti

or the largest index for an array. This may require value needs to quit in order for the program to
range propagation or similar analysis. resume.
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-mode-nop Disable all main libmudflap long-running program.
functions. Since these calls are still tab--trace-calls Print a line of text to
ulated if using-collect-stats , but stderr  for each libmudflap function.
the lookup cache is disabled, this mode is-verbose-trace Add even more tracing
useful to count total number of checked of internal libmudflap events.
pointer accesses. -verbose-violations Print details of
-mode-populate Act like every libmud- each violation, including nearby recently
flap check succeeds. This mode merely  valid objects.
populates the lookup cache but does notpersistent-count=N Keep the de-

actually track any objects. Performance scriptions of N recently valid (but now
measured with this mode would be a deallocated) objects around, in case a

rough upper bound of an instrumented later violation may occur near them. This
program running an ideal libmudflap im- is useful to help debug use of buffers after
plementation. they are freed.
-mode-check  Normal checking mode. -abbreviate Abbreviate repeated detailed
-mode-violate Trigger a violation for ev- printing of the same tracked memory ob-
ery main liomudflap call. This is a dual of ject.
-mode-populate , and is perhaps use- -backtrace=N  Save or print N levels of
ful as a debugging aid. stack backtrace information for each allo-

cation, deallocation, and violation.
-wipe-stack Clear each tracked stack ob-
3.1.2 Extra checking and tracing ject when it goes out of scope. This can be
useful as a security or debugging measure.

A variety of options add extra checking and"WiPe-heap Do the same for heap objects

tracing. being deallocated. _
-free-queue-length=N Defer an inter-
ceptedfree for N rounds, to make sure
-collect-stats Print a collection of that immediately followingnalloc calls

statistics at program shutdown. These will return new memory. This is good for
statistics include the number of calls to the finding bugs in routines manipulating list-
various main libomudflap functions, and an or tree-like structures.

assessment of lookup cache utilization. -crumple-zone=N Create extra inaccessi-

-print-leaks At program shutdown, print ble regions of N bytes before and after
a list of memory objects on the heap that each allocated heap region. This is good
have not been deallocated. for finding buggy assumptions of contigu-

-check-initialization Check that ous memory allocation.
memory objects on the heap have beeninternal-checking Periodically tra-

written to before they are read. Figure 5 verse libmudflap internal structures to
explains a violation message due to this assert the absence of corruption.
check.
-sigusrl-report Handle signal
SIGUSR1 by printing the same sort
of libmudflap report that will be printed
at shutdown. This is useful for moni-
toring the libmudflap interactions of a
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3.1.3 Heuristics undertaken only if-collect-stats sug-

gests unreasonably many cache misses, or the
As discussed in Section 2.5, libmudflap con-application’s working set changes much faster
tains several heuristics that it may use wherPr slower than the defaults accommodate.

it suspects a memory access violation. These

heuristics are only useful when running a hy--age-tree=N

brid program that has some uninstrumented
parts. Memory regions suspected valid by
heuristics are given the specigliessstorage
type in the object database, so they don't in-
terfere with concrete object registrations in the
same area.

-heur-proc-map On Linux systems, the
special file/proc/self/map contains
a tabular description of all the virtual
memory areas mapped into the running
process. This heuristic looks for a match-
ing row that may contain the current ac-
cess. If this heuristic is enabled, then
(roughly speaking) libmudflap will permit
all accesses that the raw operating sys-
tem kernel would allow (i.e., not earn a
SIGSEGV).

-heur-start-end Permit accesses to the
statically linked text/data/bss areas of the
program.

-heur-stack-bound Permit accesses
within the current stack area. This is

3.2

-lc-shift=N

-lc-adapt=N

For tracking a currenivork-

ing setof tracked memory objects in the
binary tree, libmudflap associatedize-
nessvalue with each object. This value is
increased whenever the object is used to
satisfy a lookup cache miss. This value is
decreased every N misses, in order to pe-
nalize objects only accessed long ago.

-lc-mask=N  Set the lookup cache mask

value to N. It is best if N i2M™ — 1 for

0 < M <10.

Set the lookup cache shift
value to N. N should be just a little
smaller than the power-of-2 alignment of
the memory objects in the working set.
Adapt the mask and shift pa-
rameters automatically after N lookup
cache misses. The adaptation algorithm
uses the working set as identified by tree
aging. Set this value to zero if hard-coding
them with the above options.

Introspection

useful if uninstrumented functions passlibmudflap provides some additional services

local variable addresses to instrumented© applications or developers trying to debug
functions they call. them. Functions listed in thaf-runtime.h

-heur-argv-environ This option adds header may be called from an application, or
the standard C startup areas that contaifnteractively from within a debugging session.
theargv andenviron strings to the ob-

ject database. __mf_watch Given a pointer and a size, lib-

mudflap will specially mark all objects
overlapping this range. When accessed in
the future, a special violation is signaled.
This is similar to a GDB watchpoint.

There are some other parameters available to_mf_unwatch Undo the above marking.
tune performance-sensitive behaviors of lib- mf report  Printareportjustlike the one
mudflap. Picking better parameters than de-  possibly shown at program shutdown or
fault is a trial-and-error process and should be  upon receipt oSIGUSRL

3.1.4 Tuning



___mf_set_options Parse a given string
as if it were supplied at startup in the
MUDFLAP_OPTION®nvironment vari-
able, to update libmudflap runtime op-
tions.
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5 Availability

The source code of GCC with mudflap ex-
tensions, and of libmudflap, are available
from the author, or by anonymous CVS.
See http://gcc.gnu.org/projects

[tree-ssa/ for instructions.
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mudflap violation 3 (check/read): time=1049824033.102085 ptr=080c0Occ8 size=1

This is the third violation taken by this program. It was attempting to read a single-byte object with base @d8te0cc8 . The timestamp
can be decoded as 102 ms affele Apr 8 13:47:13 2003  viactime .

pc=08063299 location="nbenchl.c:3077 (SetCompBit)’
nbench [0x8063299]
nbench [0x8062c59]
nbench(DoHuffman+0x4aa) [0x806124a]

The pointer access occurred at the given PC value in the instrumented program, which is associated wittbérefilec  at line 3077, within
functionSetCompBit . (This does not require debugging data.) The following lines provide a few levels of stack backtrace information, including
PC values in square brackets, and sometimes module/function names.

Nearby object 1. checked region begins 8B into and ends 8B into
There was an object near the accessed region, and in fact the access is entirely within the region, referring to its byte #8.

mudflap object 080958b0: name=‘malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=1r/Ow liveness=1

This object was created by timealloc wrapper on the heap, and has the given bounds, and sizehElek part indicates that it has been read
once (this current access), but never written. The liveness part relates to an assessment of how frequently this object has been accessed recently.

alloc time=1049824033.100726 pc=4004e482
libmudflap.so.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

The allocation moment of this object is described here, by time and stack backtrace. If this object was also deallocated, there would be a similar
dealloc clause. Its absence means that this object is still alive, or generally legal to access.

Nearby object 2: checked region begins 8B into and ends 8B into
mudflap object 080c2080: name=‘'malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=306146r/1w liveness=4562
alloc time=1049824022.059740 pc=4004e482
libmudflap.so0.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

Another nearby object was located by libmudflap. This one too wasallbc region, and happened to be placed at the exact same address. It
was frequently accessed.

dealloc time=1049824027.761129 pc=4004e568
libmudflap.so.0(__real_free+0x88) [0x4004e568]
nbench(FreeMemory+0xdd) [0x806a41d]
nbench(DoHuffman+0x654) [0x80613f4]
nbench [0x8051496]

This object was deallocated at the given time, so this object may not be legally accessed any more.
number of nearby objects: 2

No more nearby objects have been found.
The conclusion? Some code on line 307'hbénchl.c is reading a heap-allocated block that has not yet been initialized by being written into.
This is a situation detected by theheck-initialization libmudflap option, referred to in section 3.1.2.

Figure 2. Sample libmudflap violation message, dissected
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This is a GCC "mudflap” memory-checked binary.
Mudflap is Copyright (C) 2002-2003 Free Software Foundation, Inc.

The mudflap code can be controlled by an environment variable:

$ export MUDFLAP_OPTIONS='<options>"’
$ <mudflapped_program>

where <options> is a space-separated list of
any of the following options. Use ‘-no-OPTION’ to disable options.

-mode-nop mudflaps do nothing

-mode-populate mudflaps populate object tree

-mode-check mudflaps check for memory violations [default]
-mode-violate mudflaps always cause violations (diagnostic)

-viol-nop violations do not change program execution [default]
-viol-abort violations cause a call to abort()

-viol-segv violations are promoted to SIGSEGV signals

-viol-gdb violations fork a gdb process attached to current program
-trace-calls trace calls to mudflap runtime library

-verbose-trace trace internal events within mudflap runtime library
-collect-stats collect statistics on mudflap’s operation

-sigusrl-report print report upon SIGUSR1

-internal-checking perform more expensive internal checking

-age-tree=N age the object tree after N accesses for working set [13037]
-print-leaks print any memory leaks at program shutdown

-check-initialization detect uninitialized object reads
-verbose-violations print verbose messages when memory violations occur [default]

-abbreviate abbreviate repetitive listings [default]
-wipe-stack wipe stack objects at unwind

-wipe-heap wipe heap objects at free

-heur-proc-map support /proc/self/map heuristics
-heur-stack-bound enable a simple upper stack bound heuristic
-heur-start-end support _start.._end heuristics
-heur-argv-environ support argv/environ heuristics [default]

-free-queue-length=N queue N deferred free() calls before performing them [4]
-persistent-count=N keep a history of N unregistered regions [100]

-crumple-zone=N surround allocations with crumple zones of N bytes [32]
-lc-mask=N set lookup cache size mask to N (2**M - 1) [1023]
-lc-shift=N set lookup cache pointer shift [2]

-lc-adapt=N adapt mask/shift parameters after N cache misses [1000003]
-backtrace=N keep an N-level stack trace of each call context [4]

Figure 3: List of libmudflap runtime options.
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Abstract mine aliasing between two memory references
if they (i) use distinct offsets from the same

Most existing alias analysis techniques are for_rBeq[lster;l or (||)_|ort1_e of :_hem p(l)lnt_s t?t sta]:ckl.
mulated in terms of high-level language con- ut such compiie ime alias analysis often fails

structs and are unable to cope with pOinteIIO determine aliasing between computed point-

arithmetic. For machines that do not have ’basglr.S and safely assume that these pointers may
+ offset’ addressing mode, pointer arithmetic2''@s-

is necessary to compute a pointer to the desiregl, jjjystrate the computed pointers and aliasing

address. Most state of the art compilers such ASroblem with them, let us consider the follow-
GCC lack the mechanism to determine aliasingng piece of code:

between such computed pointers. Few other

existing alias analysis techniques described for

executable code can handle pointer arithmeti¥oid foo (double *in)
but require large memory when applied to in-{

termediate languages such as RTL. In this pa-  IN[4] += in[3];
per, we describe a method of disambiguating}

the computed pointers within a procedure at the

intermediate code level. The method is Simi-E5r machines that have 'base + offset’ address-
lar to the techniques described for executabkﬁqg for double , GCC generates RTL like
code but requires significantly less amount of ’ ’

memory. We have experimented our method

with the GCC RTL and it reduces the code size’172 = [r170, 32]

of array manipulating benchmarks by approxi-r173 = [r170, 24]

mately 4-7% for the machines that do not have174 = r172 + rl73

'base + offset’ addressing mode. [r170, 32] = r174

1 Introduction in such cases the GCC can successfully deter-

mine that the memory referendes70, 32]

. L . _and[r170, 24] do not alias as they use dis-
Various optimization passes like CSE and in+jnct offsets from the same base register.
struction scheduling rely on alias analysis to

determine the aliasing between two memoryOn machines that do not have ’base + off-
references. Compile time alias analysis inset’ addressing mode fdouble , the compiler
compilers such as GCC can successfully detemwill need to compute the pointers to load and
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store locations. In these cases, the generatetdl A Program Point
RTL will look like,

A program point refers to a point between two

r170 = r160 + 32 instructions[Muchnick]. A program poimtbe-
1171 = r160 + 24 tween instructionsl andI2 is denoted ap(I1,
(172 = [r170] I2),Wherellimmediatgly preced|s.andl2im-
173 = [r171] mediately followsp. Since compilers always
1174 = r172 + ri73 keep a chain of instructions available all the
[r170] = ri74 time, the preceding instructiod is all which

is required to identify a program poipt

Any solution that attempts to disambiguate two
computed pointers should be able to tell the

safe, GCC simply assumes that these computdlPSsible address values represented by each
pointers alias with each other. The problemPOiNter pseudo at each program point. For ex-
with GCC is that it does not have any mech-2Mple, for the pointer pseudos andr2 at
anism to keep track of what address arithmeti@Ven Program pointpl andp2, the solution

have been performed to obtain the compute(ﬁnUSt be able to tell the possible address values
pointersr170 andri7l . represented byl atpl, andr2 atp2

GCC fails to determine aliasing between th
computed pointers170 andrl7l. To be

There are algorithms available to keep track ob.2 mod-k Residues Set
address arithmetic (see [Debray98]); but they

work well only with the executable code since -, compactly storing an address value we
the executable programs have small number of ,\gjger only some fixed number, sayof the
registers (i.e. only hard registers). Time andg, ey hits of the value. This means an abstract

space requirements of such algorithms increasgddress valueal is represented by its mod-k
when we try to use them for intermediate code,oqiqueval mod k (k = 2m). The set of all

such as RTL as there may be large numbegyqiract address values can then be represented
of pseudo registers present in the mtermedlatBy the mod-k residues sét= (0, 1,2, ..., k —

code. This paper describes an alias analysis a}y Since(x mod k) # ((x +6) mod k) ¥ 0 <
gorithm that can be used with the intermediate5 < k , the representation can distinguish be-

code to keep track of the address arithmetic efy oo addresses involving distinct “small” dis-
ficiently. The algorlthm is influenced from the placements (i.e. less thark) from a base reg-
mod-k residue technique for executable codggia

described in [Debray98].

The choice of the valué& is critical for effi-
ciency of the technique. The valledeter-
mines the size of mod-k residues set; the choice
should be made in such a way that it makes
The mod-k residue algorithm maps eachstoring and manipulating mod-k residues sets
pseudo with a set of possible address values &w cost operations. Often, the natural word
each program point. Let us first define somesize of the host machine is a good choice. This
basic terms that are required to discuss the alway we can store a mod-k residue set as a bit
gorithm. The term pseudo means a pseudo regrector in a single machine word. Operations
ister in entire discussion. such as adding a constantto each member

2 Terminology
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of the set can be simply obtained by rotatingpseudal173 at program poinp(12, 13) will be
the bit-vector byc bits. For example, the mod- {NONE, (5)}

k residues set (4, 12) can be represented by a _ _ )
machine word whosé'” and12t" bits are ON  Further we define two special address descrip-

and rest of the bits are OFF. tors, an address descriptpANY, (all)} alias
with everything and the address descriptor

In our implementation experiment with GCC {NONE, (nothing)}alias with nothing.

on host machine x86, we choose the valu& of

as sizeof(int) so that a mod-k residues set ca . .

be stored efficiently in an integer. % Effect of Ind|V|du§1I InStrUCtlon_S
on Address Descriptors: Keeping

2.3 Address Descriptors track of Address Arithmetic

The mod-k residues sets by themselves are nqthe operations performed by an instruction
adequate for cases where we are not able tgodifies certain pseudos; the algorithm defines
predict the actual value of a pseuda@t a pro-  these operations for address descriptors and ap-
gram point. To deal with this problem we ex- plies them to modify address descriptors corre-
tend mod-k residues set to ‘Address Descripsponding to those pseudos. In this section we
tors’. An address descriptor is a pdlr Z},  define assignment, addition, and multiplication
where | is an instruction andZ is @ mod-k operations for address descriptors as they are

residues set. Given an address descrip{o)  the most frequent operations occurring in ad-
={l, Z} for a pseudo , the instruction is the  dress arithmetic.

defining instruction of , andZ denotes the set
of mod-k residues relative to whatever value is3.1  Assignment Instructions
computed by instructioh

Consider an assignment instructibrhaving

The address descriptor of a pseudds com- )
the following form,

puted by analyzing its defining instruction as
per the rules described in section 3. If we can-
not say anything about the value of a pseudd: dest = src

r while analyzing its defining instructioln we

associate the address descriftp(0)} with r. ~ Wheredest is a pseudo andrc could be a
A constantc yields an address descriptor PSeudo or some integer constant.

{NONE, (c mod k)} The address descriptor dést pseudo is eval-

For example consider the following instruc- uated as following:

tions: . .

a) If src is a pseudo and has a valid address de-
11: 1172 = [r170] scriptor, the addre;s descriptorsoé becomes
12: 1173 = & the address descriptor dést .
13: b) If src is a pseudo that does not have a

. valid address descriptor, the address descriptor
The address descriptor of pseud@2 at pro- ¢ jest becomegl,(0)}.

gram pointp(11, 12) will be {I1, (0)} as we can
not say anything about the value df72 af- c¢) If src is a constant integer, address de-
ter instructionll. The address descriptor for scriptor ofdest will be as{NONE, (c mod k)}
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3.2 Addition Instructions scriptor ofdest after this instruction is taken
to be{l, (0)}.
Consider an addition instructionhaving the

. Though semantics for other operations on ad-
following form.

dress descriptors can be defined but above inte-
gral operations suffice in most cases to handle

I dest = srcl + src2 the pointer arithmetic. The address descriptor
of the destination pseudo of an unhandled-
wheredest andsrcl are pseudos anstc2 instructiort | is taken agl,(0)}.

can be a pseudo or an integer constant.
Let {I1, Z1} and {12, Z2} be the address de- .

scriptors ofsrcl andsrc2 respectively. The 4 The Algorithm

address descriptor of pseudest is then eval-

uated as following: The algorithm maps each pseudo with its pos-
sible values (i.e. an address descriptor) at each
program point. Since storing an address de-
scriptor for each pseudo at each program point
will require excessive memory, we compute the
address descriptors of pseudos defined in a ba-

b) Otherwise, we can not say anything abousic block and store them only at the end of

the result of this operation. So the address defhe basic block. Using this saved information,
scriptor ofdest after this instruction is taken ~the address descriptor of a pseudo at a particu-
to be{l, (0)}. lar program point within a basic block can be

obtained by recomputing the address descrip-
tors of the basic block upto that program point.

This recomputing does not take much time as
basic blocks happen to be small in most cases.

a) If 11 = NONE, the address descriptor of
dest becomeql2, Z} (the situation wherd2

= NONE is symmetric). HereZ = {((x +
y) mod k) ¥ x e Z1,y e Z2}.

3.3 Multiplication Instructions

Consider a multiplication instructioh having

the following form, _ _
4.1 Computing Address Descriptors

I: dest = srcl * src2 _ _ _ _
The instructions in a basic block are analyzed

h q q gt as described in section 3 to compute the ad-
w er%deSt an SrdC1 are pseudos a c2 dress descriptors of pseudos defined in that ba-
Ean |1eZa1 psijulzo g ‘En wtegg; conztanl;sic block. The input address descriptors of the

et,{ , 21} and{12, 72} be the address de- pasic block are determined as described in the
scriptors ofsrcl andsrc2 respectively. The g oo tion 4.2, The address descriptors com-
addre_ss descriptor dest is then evaluated as puted in the basic block are then saved at the
following: end of that basic block. This saved list of ad-
a) If 11 = NONE, the address descriptor of dress descriptors at the end of a basic block is

dest becomeg12, Z} (the situation wherd2 calledOUT_LISTof that basic block.

= NONE is symZmetric)Z HereZ = {((= * Storing the address descriptors for all pseudos
y)mod k) VzeZl,yeZ2}. defined in a basic block in th@UT_LISTwill

b) Otherwise, we can not say anything about tjnstruction for which the corresponding address de-
the result of this operation. So the address descriptor operation is not defined




require very large memory (intermediate code
may contain large number of pseudos). Since
most of the defined pseudos are local to a ba-
sic block, they do not contribute to the input
of their successors. To reduce the memory re-
guirements, address descriptors for such pseu-
dos need not be saved in tJT_LIST The

BBO
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At the end of BBO,
A(r100) = {10, (0)}

BB

12: r101 =r100+ 24

At the end of BB2,
A(r101) = {10, (24)}

At the end of BB1,
A(r101) = {10, (8)}

algorithm first identifies all those pseudos that

are being used across basic blocks. We call

such pseudos as “shared pseudos”. The address g3
descriptors for “shared pseudos” only aresaved | ..
at the end of all basic blocks. This saves lot
of memory since there exists usually a small
number of “shared pseudos” in intermediate
code. If a procedure witN basic blocks havR
shared pseudos, the memory required for stor-
ing the address descriptors would RBI(k+w)
bits, wherew is the machine word size in bits.

At the beginning of BB3,
A(r101) = {10, (8)} union {10, (24)}
= {10, (8, 24)}

i At the end of BB3,

A(r102) = {10, (12, 28)}

Notation: A(r) denotes the address descriptor of register 't'

4.2 Propagating Address Descriptors across

Basic Blocke Figure 1: Merging of address descriptors

. . 4.3 Building the Fixed alias analysis Informa-
CFG is used to propagate these descriptors tjon

across basic blocks. Anionoperation is used

to “merge” éhe information ?OT]'ng along the \itiple iterations over the CFG are done till
Incoming edges at vertices in the CFG. Anin-yo aq4ress descriptors of all “shared regis-

put list of address descriptors (we call this aMNars” in a procedure become constant, or in
IN_LIS'I) for a basic block is_formed by doing other words till theOUT_LISTsof all basic
the union of OUT_LISTs of its predecessors. 014 hecome constant. Each iteration com-
Thus if the address descriptors for a pseudo utes theOUT LISTof each basic block us-
being prqpagated along two incoming edges a519 the IN_LIST of the basic block as input.
a vertex n the CFG arfil, Z_l} and{l2, 22}, The OUT_LISTcomputed during the iteration
the r_esultlng address descriptor for pseuds isuniored (as described in subsection 4.2) with
obtained as, the savedOUT _LISTof the previous iteration
and the resultis saved as the cur@hiT_LIST

of the basic block. Another iteration over
CFG is required only if any of th®UT_LISTs
For example, as shown in Figure 1, consider &hange in the current iteration. The required
basic blockBB3 having two predecessoBB1 information for performing alias analysis is
andBB2. If the address descriptors of a pseuddouilt once we have reached this stage where all
rl01l in the OUT_LISTsof BB1 andBB2 are the OUT_LISTsare fixed. This way we have
{10, (8)} and{I0, (24)}, the address descriptor gathered for all “shared pseudos”, all the pos-
of r101 intheIN_LISTof BB3 will be {IO, (8, sible results of operations performed on them
24)}. by all execution paths.

{I,, ' Z1  union 11=12=1.

{ANY, (all)}if I1 # I2.

72} if
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We can describe this in the following pseu-
docode,

do {
out_lists_changed = false;
for each BB in the CFG {
prepare an IN_LIST of BB
by doing union of the
OUT_LISTS of
predecessors of BB;
evaluate OUT_LIST _OF _THIS PASS
using IN_LIST as input;
NEW_OUT_LIST = do union of
OUT_LIST_OF_THIS_PASS
with the SAVED OUT_LIST.
list_changed = false;
if (NEW_OUT_LIST is not
equal to SAVED_OUT_LIST) {
SAVED_OUT_LIST = NEW_OUT_LIST;
list changed = true;
}
out_lists_changed =
out_lists_changed | list_changed;
}

} while (out_lists_changed);

computed pointers can be determined in fol-
lowing steps.

Step 1. Given two computed pointerd and
r2 , we retrieve the program poingsl andp2
whererl andr2 are dereferenced.

To retrieve the program points for these point-
ers a hash table is built at the start of the al-
gorithm. For every pointer, this hash table
records the instruction in which the pointer is
contained. For a pointer, the instruction re-
treived from the hash table gives the preceding
instruction of the program point.

Step 2. Find the basic blocks for the program
pointsplandp2 say they ar&B1 andBB2.

Step 3. Compute thelN_LISTsof BB1 and
BB2 by doing the union of save@UT _LISTs
of their predecessors.

Step 4.Recompute the address descriptfdts
(Z1)} and{I2, (Z2)} of the two pointersl and

To reduce the number of iterations required? &t the desired program poird andp2 by

over CFG, we identify loop counters suchras

r + const and populate their address de-
scriptor in a single pass itself. For example
given a loop counter in RTL below,

0

r+ 2

The address descriptor of pseudois cal-
culated in the first pass itself agNONE,
(0,2,4,6,8,10,12,14)ffor mod-16 alias analy-
sis).

5 Reasoning about alias relation-
ship

Once the required alias information is gen-

traversing within their basic blockBB1 and
BB2.

Step 5. Address descriptorfll, (Z1)} at in-
struction pointpl, and{12, (Z2)} at instruction
point p2 denote disjoint addresses if both the
following conditions are satisfied.

pir=12="r.
i) Z1 intersection Z2 = NULL

Condition (i) ensures that both the program
pointspl andp2 see the same value computed
by instructionl. Condition (ii) then ensures that
relative to this value, the pointet referred at
plis disjoint from the pointer2 referred at

p2.

erated, the aliasing relationship between two
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6 Example o Y
10: r158 =r4
11: r159 =0
Let us describe the entire algorithm with the b 1160 =2

OUT_LIST(BBO) =
A(158) = {10, (0)}
A(159) = {NONE, (0)}
A(160) = {NONE, (2)}

help of the following example function in C,

void foo (double * a)
IN_LIST(BB1) = OUT_LIST(BBO) =

{ A(158) = ({10, (0)}
. . . A(1591) = {NONE, (0)}
Int L ] A(60) = {NONE, (2)}
r160 =r160 + 4
OUT_LIST(BBI) =
- 0: A(158) = {10, (0)}
I = ’ A(159) = {NONE, (0)}
j - 2 A(160) = {NONE, (6)}
IN_LIST(BB2) = OUT_LIST(BBO) union
if (1 ORS00
| ( a)_ A(159) = [NbNE, )}
] =} + 4, e =r1519ALI§)0)={NON L (2,6)}
rl62 =r158 +r161
. . . r163 =r159 + r160
afil] = afi + JJ; 1164 = 1163 * 8
rl65 =r158 +r164
} r166 = [r165]
[r162] =r166
. EXIT
Figure 2 shows the CFG and RTL generated for
SH4 alongwith the address descriptors com- Al 2 adiress desriptor of registr
. . . OUT_LIST(BB) = OUT_LIST of basic block BB
puted by the algorithm. To determine the alias- IN_LIST(BB) = IN_LIST of busic block BB

ing relationship between the computed point-

ersrl65 andrl62 in basic block BB2, their

address descriptors are recomputed using tl‘E_ . : :
IN_LISTof BB2. Applying the rules of Sec- igure 2: address descriptor based alias analy-
tion 3 on BB2 gives the recomputed addres$'®

descriptors of162 andr165 as{l1, (0)} and

{11, (16)}. These address descriptors do nodistinguish between the displacements in the
alias since they follow the rules described inrange{0 < § < k}. For example, ifk=32
step5 of Section 5. then the algorithm will not be able to differenti-
ate between the computed pointers&or9]

and &in[13] . Increasing the value df im-
proves the precision of results obtained but

_ _ _ may also increase the execution time of algo-
The algorithm is not capable of keeping trackjthm.

of contents of memory. Information about a
register is lost if it is saved to memory and
then subsequently restored at a later point3 Experimentation and Results
Also if a register can have different defining

instructions at different predecessors of a CFG _ _ _ )
vertex, the information is lost while merging W& experimented by implementing this algo-
them using theinionoperator. rithm in GCC. Since the compiler was running

on an i686 machine, we chose the value of k as
The precision of results obtained also depend82. We built the cross compiler for ia64-elf tar-
on the value ofk. The algorithm can only getand obtained the data about generated code

7 Drawbacks
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size. Table 1 given below compares the gener-
ated code size for ia64-elf for some of stress-
1.17 files with -O2 option. We also observed
that our implementation increases the compila-
tion time for programs by about 20%.

file size of| size of| %code
name text text size
section | section | decrease
(before) | (after
dcté4.0 | 9808 9568 2.44
Ipc.o 36824 33256 9.68
mdct.o 5936 5488 7.54
polyobj.o| 14840 14360 3.23
layer3.0 | 54760 54344 0.75
tif lzw.o | 24320 24256 0.32
quadrics.p 22000 21840 0.73

Table 1: code size comparison for ia64-elf
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Abstract  One of multiple possible encodings of di-

In this paper we describe our experience from

rect addressing has been changed into in-
struction pointer relative addressing. In-

porting GCC to the AMD64 architecture and struction pointer relative a_ddressing IS
the AMD Opteron processor. Our target was a now-one byte shorter than direct address-
high quality port producing fast code. We dis- N9

cuss decisions taken while designing the Ap- . Default operand size remains 32-bit, how-
plication Binary Interface (ABI) and effect of ever stack manipulation instructions, such
various code optimizations we implemented. as push and pop defaults to 64-bit

We also present several open issues we would  gperand size.
like to solve in the future.

* The immediate operands of instructions
has not been extended to 64 bits to keep

1 AMD64 Instruction Set instruction size smaller, instead they re-

The AMDG64 architecture [AMDG64] is an ex-
tension of x86 instruction set to enable 64-bit
computing while remaining compatible with

Overview main 32-bit sign extended. Addition-
ally the movabs instruction to load ar-

bitrary 64-bit constant into register and
to load/store integer register from/to arbi-
trary constant 64-bit address is available.

existing x86 software. The CPU can operate « Several new instructions have been added
in 64-bit mode, where semantic of several x86 o allow 64-bit conversions of data types.

instructions has been changed. Most notably:

Unlike earlier 64-bit architectures GCC has
« Single byte encoding dhc anddec in- been ported to, some AMD64 features are
structions is no longer available. Insteadunique, such as CISC instruction set, gener-
the opcodes are used to encode a new pr&lly usable IP relative addressing, partial sup-
fix REXwith four one-bit arguments. First port for 64-bitimmediate operands and more.
argument is used to overwrite instruction

operand_size into 64 bits. Other three are, Application Binary Interface

used to increase amount of general pur-

pose registers from 8 to 16. _ ' '
Since GCC has been one of the first compil-

New 64-bit addressing mode is used byers ported to the platform, we had a chance to
default. Prefix is available to overwrite design the processor specific part of the appli-
into 32-bit addressing when needed. cation binary interface [AMD64-PSABI] from
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scratch. In this section we discuss the decispecify optional _int128 instead. At the
sions we made and rationale behind them. Wenoment no library functions to deal with the
also discuss the GCC implementation, as weltype are specified so it's usage in C environ-
as problems we encountered while porting thenent may be uncomfortable. This is something
software. we may consider to address in future extension

o of the ABI document.
Majority of [AMD64-PSABI] has been de-

signed in the early stages of development withiThe size oflong double is 128 bits with
just preliminary implementation of AMDG64 only first 80 bits used to match native x87 for-
support in GCC and no hardware nor simulatomat. The rest is just padding to keep long
available. Thus we had just limited possibili- double values 128-bit aligned so loads and
ties for experiments and most of our decisionsstores are effective. The padding is unde-
has been verified by measuring of executabléined that may bring problems when one is us-
files sizes and number of instructions in them.ing memcmpgo test for equality of twdong

_ double values.
We never made serious study on how these re-

late to the performance, but it may be expected\dditionally we specify _m64 and__m128
that the relation is pretty direct in the cases weypes for SIMD operations.

were interested in. ]
All types do have natural alignment.

([i386-ABI] limits the alignment to 32-bit
that brings serve performance problems when

L. dealing with double , long double
We do use 64-bit pointers ahohg . The type
int is 32-bit. This scheme is known as LP64—rn64 and__m128 types on modern CPU.)

. . It is allowed to access misaligned data of all
model and is used by all 64-bit UNIX ports we types with the exception of m128, since
are aware of.

CPU traps on misaligned 128-bit memory

64-bit pointers bring expansion of the data-2CCESSes.

structures and increase memory consumption

of the applications. A number of 64-bit UNIX

ports also specify a code model with 32-bit

pointers, LP32. Because of large maintenance

cost of extra model (change of pointer size regcc Implementation

quires kernel emulation layer and brings fur-

ther difficulties) and because of support for

native 32-bit applications we decided to con-Our GCC implementation does support
centrate on LP64 support first and implementll specified types with the exception of
LP32 later only if necessary. See also Section_float128 . At the moment GCC is
4.1 for some further discussion. not ready to support two extended floating
point formats having the same size and thus
implementing it would require considerable
effort.

2.1 Fundamental Types

We considered thdéong long type to be
128-bit, since AMD64 has limited support for
128-bit arithmetics (that comes from extending
support for 32-bit arithmetic in 16-bit 8086), The 128-bit arithmetics patterns are also
however there are many programs that do exaot implemented yet so code generated for
pectlong long to be exactly 64-bit, thuswe _ int128 is suboptimal.
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Size Contents Frame push  %rbp Save frame pointer
i i . movq %rsp %rbp  Initialize frame pointer
0-82 | incoming arguments Previous subq  $48%rsp  Allocate stack frame
8 return address pushq %rbx Save non-volatile registers
0,8 | previous%rbp value pushq %r12 clobbered by function
0,8 padding pushq %r13 .
? local data Current o Function body
) . . popg %rl3 Restore registers
? | register spill area popq  %r12
0-4 padding popg  %rbx
0-48| register save area leave Restoré@brbp
0.8 padding and deallocate stack
0,8 padding Allocated ret
0—-8: | outgoing arguments via push

Figure 2: Function Prologue and Epilogue

Figure 1: Stack Frame

Size Contents Frame
0—8: | incoming arguments Previous
2.2 The Stack Frame 8 return address

0,8 | previous%rbp value
Unlike [i386-ABI] we do not enforce any spe-  0-48| register save area

cific organization of stack frames giving com- 0,8 padding Current
piler maximal freedom to optimize function 0-96 va-arg registers
prologues and epilogues. In order to allow ? local data

easy spilling of x87 and SSE registers we do ? | register spill area

specify 128-bit stack alignment at the function 0-8 padding

call boundary, thus function calls may need to 0-82 | outgoing arguments
be padded by one extpaush since AMD64
instruction set naturally aligns stack to 64-bit
boundary only.

Figure 3: Stack Frame in GCC

We additionally specify the red zone of neck for the function call performance. The
128 bytes below the stack pointer function canaMD Opteron CPU can execute stores at the
use freely to save data without allocating therate of two per cycle, while it requires 2 cycles
stack frame as long as the data are not require@ compute newsrsp value inpush andpop
to survive function call. operations so the sequencepafsh andpop

. gperations executes 4 times slower.
The sample stack frame organization based on

extending the usual 1A-32 coding practice towe reorganized the stack frame layout to al-
64-bit is shown at Figure 1, the sample pro-|ow shorter dependency chains in the prologues
logue code is shown at Figure 2. and epilogues as shown on Figure 3. To save
and restore registers we commonly use the se-
guence ofmov instructions and we do allocate
whole stack frame, including outgoing argu-
ment area, using singub opcode as shown
We found the use of frame pointer andin Figure 4. AMD Opteron processor executes
push /pop instructions to be common bottle- the prologue in 2 cycles, while the usual pro-

GCC Implementation
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movg  %rbx,-24(%6rsp)  Save registers tion such aslloca call. This always result
0, - . . .
mgxq ;‘ﬁg égf/;’és‘;) in one extra general purpose register available
0 ) 0 . .
g P and fewer instructions executed.

subg  $72%rsp Allocate stack frame

Function body . . .
movq  48Qersp).drbx  Restore registers Contrary to the instruction counts, eliminat-
movg  56Q6rsp),%r12 ing of frame pointer may result in larger code,
movqg  64Q6rsp),%r13 becausésorsp relative addressing encoding is
addq  $72%brsp Deallocate stack frame gne pyte longer thaforbp relative one. Thus

ret it may be profitable to not eliminate frame

pointer when function do contain many refer-
Figure 4. GCC Generated Prologue and Epiences to the stack frame. Command line option
logue -fno-omit-frame-pointer can be used

to force use of frame pointer in all functions.

For 64-bit code generation omitting frame
pointer results in both smaller and faster code
on the average (Tables 7, 8, 9 and 10). In

Unfortunately the produced code is considerfN€ contrary, for 32-bit code generation it re-

ably longer—the size opush instruction is Sults in code size growth (Tables 11 and 12).
1 byte (2 bytes for extended register), Wh”eThls_ is caused _by the fact that mcre_ased regis-
the size ofmov is at least 5 bytes. In order ter file and register argument passing conven-
to reduce the expenses, GCC does use prdOns eliminated vast majority Qf stack. frame

file information to use short sequences in theccesses produced by the 32-bit compiler.

cold function. Additionally it estimates num- |0 Gee stack frame layout the register save

f functi q | | q .rlarea and local data are reordered to reduce
of tunction and use slow prologues and €pl-, ey of instruction wherpush instruc-

logues when it exceeds given threshold (20 iNsions are used to save registers — the stack

structions for each saved register). frame and outgoing arguments area alloca-

We found heuristics choosing between fastion/deallocation can be done at once using sin-
and short prologues difficult to tune—the Ioro_gle sub/add instruction. The disadvantage
logue/epilogue size is most expensive for smallS thatleave can not be used to deallocate
functions where it also should be as fast as posstack frame in combination witpush and
sible. As can be seen in the Table 7, the dePOP instructions. In our benchmarks the new
scribed behavior results in about 1% speeduf@PProach brought noticeable speedups for 32-
at the1.1% code size growth (“prologues us- Pit code, howgver it is difficult to rgpeat the
ing moves” benchmark). Bypassing the heuris__benchmarks since the prologue/epilogue cpde
tics and using moves for all prologues results ifS deépendent on the new stack frame organiza-
additional speedup of 1% and additional 1.19¢'0n and would require some deeper changes to
code size growth (“all prologues using moves”Work in the original scheme again.

benchmark). The heuristics works better with
profile feedback (Table 9). This is something
we should revisit in the future.

logue (Figure 2) requires 9 cycles. Similarly
for the epilogues.

At the moment GCC is just partly taking ad-
vantage of the red zone. We do use red zone
for leaf functions having data small enough to

GCC does always eliminate the frame pointefit in it and for saving some temporarily al-
unless function contain dynamic stack allocalocated data in instruction generation (so the
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sub andadd instructions in Figure 4 would be isters and stack frames. This mechanism is
eliminated for leaf functions). For the benefit very generic and allows compiler to do pretty

of kernel programming (signal handlers mustmuch any optimization on stack layout it is

take into account the red zone increasing stackterested in. In particular we may eliminate

size requirements), optiofino-red-zone stack frame pointer and schedule prologues
is available to disable usage of red zone enand epilogues into the function body.

tirely.
Y The disadvantage is the size of produced infor-

As can be seen in the Tables 7 and 8, reanation and speed of stack unwinding.
zone results in slight code size decrease and

speedups. The effect depends on how many

leaf functions require stack frame. This is un-gcc Implementation

common for C programs, but it happens more

frequently in template heavy C++ code where
function bodies are large due to in-lining (Ta-
bles 10 and 9).

Implementation in GCC was straightforward
as DWARF unwinding was already used for
exception handling on all targets except for
We do not use the red zone for spilling registerdA-64. ~ We extended it by support for

nor for storing local variables in non-leaf func- emitting unwind info accurate at each in-

tions as GCC is not able to distinguish betweerstruction boundary (by default GCC opti-

data surviving function calls and data that doegnize the unwind table in a way so it is ac-

not. Extending GCC to support it may be in-curate only in the places where exceptions
teresting project and may reduce stack usag@ay occur). This behavior is controlled via
of programs, however we have no data on howfasynchronous-unwind-tables

effective the change can be. o
g GCC perform several optimizations on the un-

To further reduce the expenses, GCC doewind table size and the tables are additionally
schedule the prologue and epilogue sequencghortened by assembler, but still the unwind ta-
to overlap with function body. In the future we ble accounts for important portion of image file
also plan to implement shrink-wrapping opti- Size.

mization as the expense of saving up to 6 reg- . .
isters may be considerable. As can be seen in the Table 7 it con-

sumes, at the average, 7.7% of the
stripped program binaries size, so use of
-fno-asynchronous-unwind-tables

o . is recommended for program where unwinding
To allow stack unwinding, we do use additional\yi|| never be necessary.

information saved in the same format as spec-

ified by DWARF debugging information for- The GCC unwind tables are carefully gener-
mat [DWARF2]. Instead ofdebug_frame ated to avoid any runtime resolved relocations
section specified by DWARF we do useto be produced, so with the page demand load-
.eh_frame  section so the data are noting tables are never load into memory when
stripped. they are not used and consume the disc space

only.
The DWARF debugging format defines un- Y

winding using the interpreted stack machineMain problem are the assembly language func-
describing algorithms to restore individual reg-tions. At the present programmer is required

2.3 Stack Unwinding Algorithm
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to manually write DWARF byte-code for any cause of their stack organization and the direc-
function saving register or having nonemptytion flag is defined to be clear.

stack frame in order to make unwinding work.
This is difficult and most of assembly language
programmers are unfamiliar with DWARF. It
appears to be necessary to extend the assem-

bler to support describing of the unwind infor- To pass argument and return values, the regis-
mation using the pseudo-instructions similar toters are used where possible. Registérdi ,
approach used by [IA-64-ABI]. %rsi , %rdx, %rcx, %r8 and%r9 are used

to pass integer arguments. In particular, reg-
ister %rax is not used because it is often re-
quired as special purpose register by IA-32 in-
structions so itis inappropriate to hold function
The decision on split in between volatile (callerarguments that are often required to be kept in
saved) and non-volatile (callee saved) registethe register for a long time. Registé&sxmm~o
presented quite difficult problem. The AMD64 %xmm&are used to pass floating point argu-
architecture have only 15 general purpose regments. x87 registers are never used to pass ar-
isters and 8 of them (so called extended regisgument to avoid need to save them in variadic
ters) requireREXprefix increasing instruction functions.

size. Additionally the register®rax, %rdx, .

%rcx, %rsi and%rdi implicitly used by sev- 10 return values registerbrax, %rdx,

eral IA-32 instructions. We decided to make all XmmO%xmm1%st0 and %stl are used.

of these registers volatile to avoid need to savd "€ Usage ofrax for return value seems to be
particular register only because it is required byconsiderable win even at the expense of extra
the operation. This leaves us with ordtyrbx, movmstructpn needed for functlon§ returning
%rbp and the extended registers available foCOPY Of the firstargument and functions return-

non-volatile registers. Several tests has show/'9 @ggregates in memory via invisible refer-

smallest code to be produced with 6 global reg®NC®-

isters Qorbx, %rbp, %r12-%rl5).

2.5 Argument Passing Conventions

2.4 Register Usage

The aggregates (structures and unions) smaller

Originally we intended to use 6 volatile SSEthan 16 bytes are passed in registers. The
registers, however saving of the registers is dif€CiSion on what register class (SSE, integer

ficult: the registers are 128-bit wide and usu-O" X87) 0 use to pass/return the aggregate is
ally only first 64-bits are used to hold value, sorather complicated; we do pass each 64-bit part

saving registers in the caller is more expensive®f Structure in separate register, with the excep-
tion of __m128 andlong double

We decided to delay the decision until hard- ) . -~
ware is available and run several benchmarkd N€ argument passing algorithm classifies each
with different amount of global registers. We field of the structure or union recursively into

also experimented with the idea of saving onlyone Of the register classes and then merge the

lower half of the registers. Our experiments al-classes that belongs to the same 64-bit part.

ways did lead to both longer and slower code ] € Merging is done in a way so integer class

so in the final version of ABI all SSE registers 'S Preferred when both integer and SSE is used
are volatile. and structure is forced to be passed in memory

when difficult to resolve conflicts appears. The
Finally the x87 registers must be volatile be-aggregate passing specification is probably the
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most complex part of the ABI and we hope thatand code size reductions of the AMDG64 bi-
the benefits will outweight the implementation naries whenmov instructions are used (See
difficulties. For GCC it requires roughly 250 -maccumulate-outgoing-args in the

lines of C code to implement. Table 7, 8, 9, and 10). This is in sharp contrast

o ) _ to IA-32 code generation experience (Tables 11
Arguments requiring multiple registers are g,q 12).

passed in registers only when there are enough
available registers to pass argument as a whol€here are multiple reasons for the image size
in order to simplyva_arg macro implemen- to be reduced. Usage plish instructions in-
tation. creases unwind table sizes (about 3% of the bi-
. _ . . nary size). Most of the functions has no stack
Variable sized arguments (available in GCCqrguments, however they still do require stack
only as GNU extension) are passed by refyame 1o be aligned. This makes GCC to emit
erence and everything else (including aggren,mper of unnecessary stack adjustments. Last
gates) is passed by value. reason seems to be fact that majority of values
passed on the stack are large structures where
_ GCC is not using push instructions at all.
GCC Implementation
2.6 Variable Argument Lists
It is difficult to obtain precise numbers, but it

is clear that the register passing convention igore complex argument passing conventions

one of the most important changes we madgequire nontrivial implementation variable ar-
relative to [i386-ABI] improving both perfor- gument lists. Theva_list  is defined as fol-
mance and code size. The amount of stack maeys:

nipulation is also greatly reduced resulting in
shorter debug information. On the other hand
. typedef struct {
the most complex part, passing of aggregates; . . )

: . ) . unsigned int gp_offset;
has just minor effect on C code. We believe it . . )
will become more important in future for C++ unsigned int fp_offset;

P utu void *overflow_arg_area;

code. - )
void *reg_save_area;

At the moment GCC does generate suboptid vVa_list[1];

mal code in number of cases where aggregate

is passed in the multiple registers — the ag-The overflow_arg_area points to the
gregate is often offload to memory in orderend of incoming arguments area. Field
to load it into proper registers. Beside thatreg _save area points to the start of reg-
GCC should implement all nuances of argu-ister save area.

ment passing correctly.
P J Y Prologue of function then uses 6 integer moves

For functions passing arguments in memoryand 6 SSE moves to save argument registers. In
the stack space is allocated in prologue; dealerder to avoid lazy initialization of SSE unit in
located in epilogue and plaimov operations the integer only programs, hidden argument in
are used to store arguments. This is in contraghe registefoal is passed to functions that may
to common practice to ugmish operation for use variable argument lists specifying amount
argument passing to reduce code size. Despitef SSE registers actually used to pass argu-
that experimental results shows both speedup®ments.
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We decided to use the array containingstrace and Objective C runtime. We may con-
structure forva_list type same way as sider replacing the jump table by single condi-
[PPC-ABI] do to reduce expenses of passingional to avoid such crashes.

va_list  tothe functions — arrays are passed

by reference, while structures by value. This is>€cond important compatibility problems ar-

valid according to the C standard, but bringsiS€S from implicit type promoting. All 64-

unexpected behavior in the following function: Pit targets supported by SuSE Linux do pro-
mote operands to 64-bit values and several

packages depend on it. Most notable exam-

#include <stdarg.h> ple is GNOME. While promoting all function
void t (va_list *); operands to 64-bit would be too expensive, we
void q (va_list a) may consider promoting the operands of vari-
{ adic functions to avoid such compatibility is-
\ t(&a); sues.

2.7 Code Models

The functiont expects address of the first el-

ement in the array, while in the second oneThe 32-bit sign extended immediates and zero
the array argument is merely an shortcut forextending loads of the immediate allows con-
a pointer so it passes pointer to the pointer tosenient addressing of only firgé! bytes of the
the first argument. This unexpected behavioaddress space. The other areas needs to be ad-
did not trigger in Open Source programs sincedressed viaovabs instructions or instruction
these already has been cleaned up to work opointer relative addressing. In order to allow
Power-PC, but has been hit by proprietary softefficient code generation for programs that do
ware vendors who claimed this to be a compileffit in this limitation (almost all programs today)
bug even when GCC correctly emit an warningwe define several code models:

message “passing arg 1 of ‘t’ from incompati-

ble pointer type” .
P yp small All relocations (code and data) are

expected to fit in the firs23' bytes.
This is the default model GCC use.
This code model can be produced via

-mcmodel=small command line op-
The register save area is placed on fixed place tjon.

in stack frame as shown in Figure 3. There is
no particular reason for that, but it was slightly kernel All relocations (code and data) are ex-
easier to implement in GCC. pected to fit in the lase?' bytes. This

_ _ _ is useful for kernel address space to
The computed jump is used in the prologue ot overlap with the user address space.

to save only registers needed. This results  This code model can be produced via

in small savings for programs calling vari- -mcmodel=kernel  command line op-
adic function with floating point operands, but tion.

makes program calling variadic functions us-

ing non-variadic prototypes to crash. Such promedium Code relocations fit in the first3!
grams are not standard conforming, but they  bytes and data relocations are arbitrary.
happen in practice. We noticed the problem for ~ This code model can be produced via

GCC Implementation
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-mcmodel=medium command line op- plicated structure. The AMDG64 instructions
tion. The medium code model has signif- are first decoded and translated into micro op-
icant code size (about 10%) and notice-erations and passed to separate integer and
able performance (about 2%) penalty (sedloating point on chip schedulers. Integer in-
Tables 7, 8, 9 and 10). These penaltiestructions are executed in 3 symmetric pipes
are larger than the authors expectation®f overall depth 11 with usual latency of 1
and probably further improvements to thecycle, while floating point instructions are is-
GCC code generation are possible. sued into 3 asymmetric pipes (first executing
_ . floating point add and similar operations, sec-
large Code_relocatlo_ns and Qata relocatlonsOncl having support for long latency instruc-
are arbitrary. This model is currently not tions and multiple and third executing loads

supported by G_CC as it wogld_require and stores). For more detailed description see
to replace all direct jumps via indirect also [Opteron]

jumps. We don’t expect this model to be

needed in foreseeable future. Large pro-The processor is designed to perform well on

grams can be split into multiple shared li- the code compiled for earlier 1A-32 imple-

braries. mentation and thus has reduced dependency

on CPU model specific optimizations. Still

The position independent code generation cageveral code generation decisions can be opti-
be effectively implemented using the instruc-mized as described in detail in [Opteron]. We
tion pointer relative addressing. We imple-implemented majority of these and here we de-
mented scheme almost identical to 1A-32 po-scribe only those we found most effective.
sition independent code generation practices . :
only replacing the relocations to option globalAS can be seen in the Table 11, enabling AMD

offset table address and index in it by singleOpteron tuning V|afmarch:k8b |mtf)rovisé(|)/n- |
instruction pointer relative relocation. Simi- teger program performance by about o rel-

larly the instruction pointer relative addres:singf‘t';';]3 to com||c)|ler Otpt'.m.'z'n? foI; '3?6' Rglat%e
is used to access static data. o the compiler optimizing for Pentium-Pro the

speedup is only about 1.1%. The optimizations
The resulting code relies on the overall size ofcommon for Pentium-Pro and Opteron include
the binary to be smaller thaz’! bytes. An the scheduling (scheduling for Pentium-Pro
[AMD64-PSABI] extension will be needed in still improves Opteron performance), avoid-
the case this limitation will become a problem.ing of memory mismatch stalls, use of new
The performance penalty ofpic  is about conditional move anfcomi instructions and
6% on AMDG64 compared to 20% on IA-32 -maccumulate-outgoing-args

(see Tables 9, 10, 11 and 12). . . ,
For floating point programs the most impor-

tant optimization is use of SSE instruction
3 Implemented Optimizations set (10%) followed by the instruction schedul-
ing (not visible in the Table 12 because the
In this section we describe target specific opX87 Stack register file does not allow effective
timizations implemented for the first hardware Scheduling, but noticeable in the Table 10).
implementation of AMDG64 architecture — the
AMD Opteron CPU.

The AMD Opteron CPU core has rather com-
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3.1 Integer Code Instruction Selection equivalent. The CPU internally keeps values

in different format depending on how they are
Majority of 1A-32 instructions generated by produced (either single, double precision or in-
today compilers are well implemented in theteger) when register is in wrong format, serve
Opteron core so the code generation is straight€formatting penalty occurs.

forward. In order to eliminate reformatting penalties we

In the Tables 7, 8, 9 and 10, “full sized loadsdo reformat the register explicitly before each
and moves” refers to the transformation of 8-such operation (fortunately the logical opera-
bit and 16-bit loads into zero extensions; use ofions are rare in generated code as they are used
32-bit reg-reg moves for moving 8-bit and 16- for conditional moves and fabs/neg expansion
bit values and symmetric change for SSE. Theéonly) usingmovhlpd . In the future it may
transformation is targeted to avoid hidden debe interesting to implement special pass insert-
pendencies in the on-chip scheduler. The trandng the conversions only when they are actually
formation has important effect for SSE codeneeded as most of th@ovhipd instructions
and smaller but measurable effect on code maemit are redundant. See “partial SSE register
nipulating with 8-bit and 16-bit values. moves” in the Tables 7, 8, 9 and 10 for the com-
parison of this code generation strategy to the

Second important optimization we imple- ysual one recommended by [Pentium4].

mented is elimination of uggush andpop in-

structions as mentioned in Section 2.2 and 2.570r single precision scalars the situation is
different. There is no way conveniently to

Other optimization implemented had just mi-|oad single precision data into memory with-

nor effect on overall performance. out clearing the upper part of registengvips
require 64-bit alignment) and thus we maintain
3.2 SSE floating point arithmetics the whole registers in single precision. In par-

ticular we do usanovss to load values and
Unlike integer unit, the floating point unit has movaps for register to register moves.
longer latencies (majority of simple floating

point operations takes 3 cycles to execute) andNiS ~ scheme  brings  difficulties  with
is more sensitive to instruction choice. cvtsi2ss and similar instructions that

do rewrite the lower part only. In this case
The operations on whole SSE registers are usworps is used first to clear the register. Again
ally more expensive than operations on the 64the large portion okorps instructions issued
bit halves. This holds for the move opera-this way are redundant because the register
tions also, so it is desirable to always use paris already in specified format. The CPU also
tial moves when just part of SSE register isspecial casecvtsd2ss instruction where
occupied (this is common for scalar floatingthe bytes 4-8 of the register are reformatted
point code). In particular it is desirable to useto single precision too, however bytes 8-16
movlpd instead oimovsd to load double pre- remains in the previous format. We risk the
cision values, sincenovsd does clear upper reformatting penalty here, since bytes 8-16 are
half of the registermovsd is the used for reg- rarely in the double precision format because
ister to register moves. This remains the uppeof the use of partial moves described above.
half of register undefined that may cause probWe plan to add an command line option to
lem when the register is used as a whole foforce issuing of the reformatting here. Also
instance for logical operation that has no scalar
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we may reconsider this decision in the casdo be issued to the execution pipes immedi-
we implement the pass for smart placement oétely in the fixed model. This also allows us

reformatting instructions. See Tables 7, 8, %0 omit model of the integer and address gen-
and 10, and benchmark “full sized loads anderation units as never more than 3 instructions
moves” described in Section 3.1. are issued at once.

Most of the stalls the scheduler can avoid are
related to loads and stores. In order to avoid
the stall it is necessary to model the instruc-
Implementation of instruction scheduling wastion latencies and the fact that address operands
difficult for several reasons. The AMD are needed earlier than the data operands. The
Opteron CPU has complicated pipeline ex-Scheduler can reorder the computations so the

panding each operation into multiple micro OIO_data operands are computed in parallel with
erations renaming the register operands and ex2@ds. GCC scheduler does assume that all the
ecuting them separately in rescheduled ordef€Sults must be available in order to instruc-
The available documentation is incomplete andion be issued and thus we reduce the laten-
the effect of instruction scheduling on such ar-C'€S of instructions computing values used as

chitectures does not appear to be well studieddata operands of load-execute instructions by
up to 3 cycles (the latency of address gener-

As can be seen in Table 10, instruction schedulation unit). Even when latencies of majority

ing enabled via-fschedule-insns2 re- instructions are shorter than 3 cycles and thus
mains one of the most important optimizationswe can not reduce the latency enough to com-
we implemented for floating point intensive pensate the load unit latency, this model is ex-
benchmarks. On the other hand the effect isct for the in-order simplification of CPU de-

about 10 times lower than on the in-order Al-scribed above as the instruction computing data
pha CPU (Table 14). operands must be output before load-execute

. instruction itself.
GCC at the present implements only local ba-

sic block scheduling that is almost entirely re-

dundant with the out-of-order abilities of the 4 Experimental Results

CPU. We experimentally implemented an lim-

ited form of trace scheduling and measured an o ,
improvement of additional 1% for the SPECfp. W& present benchmarks of majority opti-
Our expectation is that the more global theMizations discussed. We also present the
GCC scheduler algorithm will be, the less re-S@me benchmarks performed on 1A-32 and
dundancies with out-of-order core will be ap-AlPha system where possible to give an
parent, so the benefits of global algorithmscomparison of effectivity of individual opti-

should be comparable to ones measurable dffizations on these architectures. We hope
in-order CPUs. this to be useful to apply earlier published

results on compiler optimization (such as
Our implementation represents just a simpli-[FDO]) to the new platform and give a
fied model of the real architecture. We modelguide of what optimizations are most im-
the allocations of decoders, floating point unitportant. We also present results with two
(fadd, fmul and fstore), the multiplier and load different optimization levels — the standard
store unit. We omit model of the reorder optimization ¢(O2) used by the majority of
buffers — the micro instructions are assumedlistributions today and aggressive optimiza-

3.3 Scheduling
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tion (-O3 -ftracer -funroll-loops the aggressive optimization settings
-funit-at-a-time with profile feedback) described above.
we found to give best overall SPEC score.

) -~ all prologue using move eliminate use of all
We did use modified prerelease of GCC 3.3 as push and pop operations in the pro-

used by SUSE Linux 8.2 for AMD64. All the_ logues and epilogues except for cases
runs were performed on SuSE Linux on dedi- where single register is saved. See Sec-
cated machines, however important amount of 5, 2.2,

random noise remains (especially for bench-

marks Mesa, Gzip, Perl and Twolf). Due t55ynchronous-unwind-tablesenable pro-
to time limitations the benchmarks were per- duction of DWARFE?2 unwind information.
formed with one iteration only except for the See Section 2.3.

benchmarks in the Table 9 and 10 that were
computed with 3 iterations. Because the runs—fbranch-probabilities
were not done on final hardware and because
we didn’t satisfy the conditions for reportable
runs in all tests, we present relative numbers
only.

enable pro-

file feedback based optimizations. We
implemented majority of transformations
described on [FDO] with the exception
of function in-lining and switch statement

Each table is divided into two sections — first ~ €XPansion.

part includes optimizations enabled by default . , ,

at given optimization level, while the other part -fgcse_ _enable global ppt|m|zers |nclud_|ng

contains optimization that user needs to enable _(Ilm!ted form of) p"_’lrt'al redundancy elim-

by hand either because they are ineffective, ~nation, load motion, constant propaga-
inappropriate for given settings or does not  ton and copy propagation. GCC does

obey the language standards. Each table also ¢Ontain loop invariant hoisting and ex-
contains comparison of two runs with equal  tended basic block based value numbering

settings in the first line to present rough ap- pass making the global optimizers partly

proximation of the noise in the numbers. Both redundant.

performance and sizes of the stripped binaries .

are presented. The numbers always represeff@uess-branch-probability - _
relative speedup (or code size increase) from gnable_optl_mlzatlons d”V?n t_)y sta_tlc pro-
the run with the specified feature disabled file estimation. The profile is _estlmated
to the run with specified feature enabled. by methods ba_sed on _[proflle] when
For instance -fomit-frame-pointer profile feedback is not available.

run in the table 7 compare performance of

_02 -fno-omit-frame-pointer to -finline-functions enable function
-02 -fomit-frame-pointer . The in-lining.
benchmark “standard optimization” compares
.00 t0-02 . -fold-unroll-loops enable old loop
unroller that actually unrolls some loops

The Following benchmarks were performed: on Alpha.

-fomit-frame-pointer enable elimina-
aggressive optimizationcompare perfor- tion of frame pointer by using stack

mance of unoptimized code-Q0) to pointer instead. See Section 2.2.
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-foptimize-sibling-calls once) and use register calling conventions
transform call to leaf function into for static functions on 1A-32. Only effec-
jump. tive for C compiler.

-fpeel-loops enable loop peeling. -funroll-all-loops enable loop un-

. o rolling of all small enough loops in the hot

-fpic  produce position independent code. spots.

See Section 2.7.
-funroll-loops enable loop unrolling

-freorder-blocks enable intra-function
basic block reordering and duplication
based on significantly modified software
trace cache algorithm [STC].

for loops with known induction variable.
While working on the paper we noticed
that our new implementation has impor-
tant flaw avoiding loops from being un-

-fschedule-insns2 enable post-register rolled on Alpha architecture.
allocation local scheduling. See Section

33 -m64 enable 64-bit code generation (used in

comparisons relative to IA-32 code).

-fschedule-insns enable pre-register
allocation region scheduling (not avail-
able for IA-32 and AMDG64).

-mfpmath=sse eliminate use SSE(2) in-
struction set for scalar floating point cal-

culations.
-fstrength-reduce enable strength re-
duction. -mcmodel controls code and data segment
size limits. See Section 2.7.
-fstrict-aliasing enable ANSI-C

-mred-zone enable use of 128 bytes below
stack pointer for local data. See Section
full sized loads and movesavoids use of in- 2.2.

structions initializing just portion of the _ o
destination registers. See Section 3.2 an@artial SSE moves eliminate use ofnovipd

type based aliasing.

31 for double precision loads amdovsd for
register to register moves. See Section
-ftracer enable super-block formation us- 3.2.

ing algorithm similar to [FDO]. The

super-blocks are unified again after opti-Prologue using moveeliminate use of hot
mizations by cross-jumping pass so this ~ Push and pop operations in the pro-
transformation is not used to improve  logues and epilogues. See Section 2.2.
scheduling as commonly described in the L
literature. It is aimed to improve CSE standard optimization compare performance

and other transformation by simplifying gf l:jnopt'im.izec.i code-00) tg the stan-
the control flow. ard optimization settings©2).

-funit-at-a-time enable optimizations
on whole compilation unit. At the mo- 41 RealWorld Performance
ment GCC perform stronger function in-
lining (in-lining of small functions called One of the main goals has been to develop
before defined and static functions calledsystem ready for both enterprise and desktop
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options slowdowh test speedup
fstrict-aliasing gggzﬁ) bootup time -0.9%

- ICt-allasl -1. 0 . 0
-fasynchronous-unwind-tables -0.38% KDE startup from disk 18.1%
-freorder-blocks 0.00% KDE startup from cache 14.6%
-fomit-frame-pointer 0.37%

-mred-zone 0.38% )
-mfpmath=sse 0.75% Table 2: Desktop Performance Relative to 32-
-maccumulate-outgoing-args 0.75% bit System

-foptimize-sibling-calls 0.76%

-fguess-branch-probabilities 1.54% _ _
-fschedule-insns2 2.33% two of them and comparable in bootup times.
-fgcse 6.88% The Table 3 compares compilation of the pack-
-ffast-math -1.88% age gimp

-ftracer 0.00% '

-frename-registers 0.74%  As can be seen on Table 4 the memory con-
-funroll-loops 3.38% . by ab d b
_fpic 3.39% sumption grows up by a o%tas expected, but
“funroll-all-loops 5.3204 due to relative compactness of CISC AMD64
-mcmodel=medium 2.27% instruction set, the increase is much smaller
-foranch-probabilities 142.74%  than one seen after switching to RISC or VLIW

systems.

Table 1: Compilation Time Cost (AMD

In fact Tables 5 and 6 shows decrease in the
Opteron)

code section sizes.

The major growths can be seen in the section
(workstation) use. While the need of 64-bit ad-_eh_frame that is usually not load into the
dressing space for the enterprise is well undermemory and sections related to the dynamic re-
stood, the effect on desktop performance is ofjgcations. According to our benchmarks these
ten discussed. The main drawback of 64-bityre not critical, since dynamic loader is still
system, as discussed in section 2.1 is the ingjightly faster in 64-bit version compared to
creased memory footprint of the programs andyo_pjt.
subsequent slowdown of program startup times
critical for today desktop systems. Overall, we can recommend use of 64-bit sys-
tem instead of 32-bit on AMD64 machines in-
In this section we present few simple benchyended for desktop use as long as memory con-
marks of this phenomenon on SuSE Linux 8.2gymption increased by 25% is not major limita-

Both the 32-bit and 64-bit version of the sys-tion (that is hardly the case for computers sold
tem were installed on the equally sized Relsmday)_

erFS partitions in the default configuration.

The tests were performed in the same order on

both systems with reboots in between. Addi-5 Runtime Library Optimizations
tional packages were installed as needed. We

hope this procedure to minimize amount of theWe made following optimizations to glibc:
noise in the numbers.

The Table 2 compares startup times of several « Assembly optimized math functions
programs. As can be seen, the 64-bit system,
perhaps surprisingly, is significantly faster in « Assembly optimized memcpy and



speedup
test real user system
tar xjf 17.7% 9.8% 4%
Jconfigure -4.3% 0.7% -31%
make 12.9% 19.8%  -39%

Table 3: Gimp Compilation Times Relative to

32-bit System

Table 4: Memory Resources Consumption

test 32-bit 64-bit| increase
konqueror| 14 M 18 M 28%
gimp 86M 99M 15%
mozilla 22M 27 M 22%
section 32-bit 64-bit | increase
text 56216 K 53419 K -5%
.bss 18169 K 21098 K 16%
.data 10239 K 14076 K 37%
.rodata 17543 K 19734 K 12%
.eh_frame 546 K 8269 K| 1414%
rela.plt 358 K 1076 K 200%
.rela.dyn 40 K 126 K 215%
total 80435 K 91141 K 13%
Table 5: Size of Common Binaries
/usr/bin
section 32-hit 64-bit | increase
text 71967 K 67526 K -7%
.bss 33463 K 11557 K -712%
.dynstr 13608 K 13587 K -1%
.rodata 12119 K 12217 K 0%
.dynsym 11424 K 7611 K 66%
.eh_frame 6367 K  12730K 99%
.data 6018 K 9695 K 61%
.rela.dyn 4382 K 12844 K 193%
.plt 3898 K 6499 K 66%
rela.plt 1293 K 3888 K 200%
.got 823 K 1654 K 100%
total 171812 K 198111 K| 15%

in

Table 6: Size of Common Shared Libraries
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memset functions that do use prefetch
and streaming moves for large blocks

* We found malloc implementation in
glibc 2.2 to be bottleneck.malloc in
glibc 2.3 solves this problem.

6 Conclusion

The performance of 64-bit code produced by
GCC is superior to 32-bit for CPU bound inte-
ger and numeric programs (even in comparison
to the best optimizing 32-bit compilers avail-
able).

Most important optimizations include usage
of newly available extended registers, regis-
ter argument passing conventions, use of SSE
for scalar floating point computations and re-
laxed stack frame layout restrictions by using
DWARF2 unwind information for stack un-
winding. The code section of 64-bit binaries
is, on the average, 5% smaller than code sec-
tion of 32-bit binary.

Most noticeable problem is the growth of data

structures caused by 64-bit pointers. This prob-
lem is noticeable as regression in mcf, parser
and gap SPEC2000 benchmarks as well as
about 25% increase in memory overhead of
usual desktop applications and 10% increase of
executable file sizes.

Despite that the overall system performance
seems to be improved even for (nontriv-

ial) benchmarks targeted to measure extra
overhead of increased memory bandwidth,
such as program startup times (0%—-20%
speedup), compilation (12%) or SPEC2000 in-
teger benchmark suite (3.3%). Still it can be
worthwhile to implement LP32 code model to

provide an alternative for memory bound ap-
plications.

The aggressive optimizations in argument
passing conventions also brought several com-
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patibility problems especially when dealing GCC and Binutils ports, co-edited the ABI
with variable argument lists. Other commondocument, realized the AMD Opteron specific
problem is lack of support for DWARF2 in optimizations and some generic ones (unit at
gas assembler making use of assembly funca time mode, profile feedback optimizations
tions in AMDG64 code difficult. framework, tracer). Andreas Jaeger ported
o glibc, provided SPEC2000 testing framework,
By eliminating the common bottleneck of ¢ egited the ABI document, and fixed a num-
IA-32 code (such common memory accesseger of GCC and Binutils bugs. Jakub Jelinek
caused by register starve ISA and argumenfiesigned and implemented the thread local
passing conventions), the code became morgqrage ABI. Michal Ludvig and i Smid re-
sensitive to compiler optimizations. NUM- 5764 the GDB port. Michael Matz worked
ber of optimizations we evaluated are morey the new register allocator and fixed plenty
effective in 64-bit than on 32-bit especially 4t gcc bugs. Mark Mitchell edited the ABI
those improving instruction decoding band-y,cument and set up WWW and CVS for the
width (AMD64 code usually consists of more 4iact. Andreas Schwab and Bo Thorsen fixed
instructions with shorter overall latency), in- 5 humber of problems in the linker and assem-
struction scheduling and those that increasgyer. josef zlomek redesigned the basic block
register pressure. reordering pass and fixed a number of bugs in

In comparison to DEC Alpha EV56 architec- GCC.

ture, AMD Opteron is considerably less sen-anqreas Jaeger and Evandro Menezes also re-

sitive on instruction scheduling and in-lining. \;ewed the paper and helped to clarify it.
The first is caused by out-of-order architecture

and the second probably by smaller L1 cache.
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Table 7: 64-bit SPECint 2000 with Standard Optimization (AMD Opteron)

Table 7: Performance (relative speedups in percent)
options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 tWolbvg
132 0.14 -045 -045 -0.17 019 041 0.11 0.60 0.28 0.27 1043
standard optimization 105.37 82.29 90.55 12.06 87.14 58.23 451.70 97.05 101.18 75.30 142.14 EH4Y
-fguess-branch 440 445 290 0.00 273 019 558 596 743 21.60 2.56 {1460
probabilities
-fschedule-insns2 162 144 240 022 032 078 490 128 -045 434 041 |0D36
-fstrict-aliasing 148 462 1.93 000 368 058 -234 175 0.75 427 479 12849
-mfpmath=sse 193 398 -0.23 0.00 -0.09 -039 211 0.00 181 394 0.27 |0BO6
prologue using move -0.74 0.14 034 000 4.04 098 -043 143 030 571 -0.28 |0A83
full sized loads and moves -1.76 -0.29 -0.46 0.88 0.96 -0.20 24.90 -1.52 -0.45 -1.04 0.97 3623
-fgcse 117 428 -1.77 135 048 138 233 175 -148 155 1.26 (0082
-foptimize 1.62 043 -0.12 0.00 333 0.00 233 -035 151 244 0.27 |0262
sibling-calls
-finline-functions 162 071 0.22 111 032 3.08 030 -1.04 058 -099 221 |0BB5
-fomit-frame-pointer 0.29 158 056 067 5.00 157 -3.03 3.07 -0.60 047 241 {3(189
-freorder-blocks 3.61 -0.29 -057 0.22 231 -0.78 0.72 4.06 0.75 3.45 1.84 {5(BR9
-maccumulate- 192 -058 0.78 045 0.24 -0.39 1.04 -0.12 -0.60 -1.13 0.13 |0®BQ6
outgoing-args
-mred-zone 147 014 135 -023 130 -0.20 -1.73 0.00 -0.30 -0.29 0.55 013
partial SSE moves -0.30 5.89 -0.92 0.00 0.07 0.00 -1.17 0.00 0.00 -0.10 -0.14 {3(BE7
aggressive optimization 6.34 497 881 0.67 129 2543 2414 1229 751 569 5.42 [486%0
-fbranch-probabilities 595 171 7.13 0.22 -0.65 16.76 298 3.90 0.14 6.95 0.27 (34067
-funroll-all-loops 416 042 560 0.00 -428 0.77 1642 402 135 0.57 1.82 |12860
-funroll-loops 3.71 0.28 4.17 0.00 0.08 058 1535 161 135 -478 0.55 |3323
all prologue using move -0.60 0.56 2.38 -0.23 -040 058 3.73 319 -0.15 -429 0.55 |48B85
-ffast-math 1.78 0.28 0.67 0.00 -0.25 -0.20 0.31 -0.81 0.15 267 1.12 |2®48
-frename-registers -0.15 0.56 -0.68 0.00 0.08 058 1.34 -2119 -0.76 -1.25 0.97 |4@B5
-funit-at-a-time 0.89 271 0.79 045 0.72 038 0.00 -047 -045 0.68 0.69 {0®39
-ftracer 312 0.14 157 000 1.13 -020 176 091 -7.81 -3.83 140 |2(tQ3
-cmodel=medium -4.30 -1.00 -0.45 0.00 -10.84 0.00 2.18 -3.57 -5.83 -6.27 -2.23 {0231
-fpic -9.11 -1.72 -1.68 0.89 -18.21 -0.78 -1.36 -16.79 -3.76 -15.16 -6.18 [-16430
Table 7: File size (relative increase of the size of stripped binaries in percent)
options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 tWoItotaI
standard optimization -11.24 -23.04 -23.74 -20.59 -17.13 -13.77 -13.71 -20.00 -36.54 -9.42 -15.83 322231
-maccumulate- -0.42 -4.02 -347 -3.34 -035 -330 -3.15 -3.29 -431 -360 5.16 28125
outgoing-args
-fomit-frame-pointer -0.26 1.72 -1.13 -0.20 0.04 -3.76 -194 -1.24 -1.07 2.08 -0.08 109971
-fstrict-aliasing 0.00 -0.68 -0.15 0.00 0.00 0.00 0.22 0.00 -0.34 -0.66 0.00 150240
-mred-zone 0.00 -0.11 -0.19 0.00 -0.02 0.00 -0.76 0.59 -0.02 0.00 0.00 10:0409
-fschedule-insns2 0.00 0.02 -0.15 0.00 0.01 0.00 0.02 0.00 0.00 0.02 0.00 :0-0M05
-fgcse -0.11 0.04 -0.16 0.19 0.03 0.11 044 0.68 -0.01 -0.68 0.00 1:D005
-foptimize 0.00 -0.03 0.08 0.00 -0.02 0.00 -0.76 0.48 -0.16 -0.01 -0.23 :0-0(03
sibling-calls
partial SSE moves 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 |0.0102
full sized loads and moves 0.00 0.00 004 000 121 0.00 0.00 0.00 0.08 -0.01 0.00 |0.0108
-mfpmath=sse 0.00 -0.64 -0.15 0.00 0.00 0.00 234 -0.01 0.00 0.00 0.00 11.6413
prologue using move -0.11 1.06 101 0.00 126 -0.34 091 0.84 144 255 0.00 |0.1614
-freorder-blocks 7.06 271 443 000 4.05 367 1.07 572 342 560 10.89 |4.229
-finline-functions -0.73 115 885 -0.20 0.24 28.60 0.12 655 337 1.99 29.84 |0.689
-fguess-branch 7.00 441 582 000 360 334 264 6.67 585 874 10.89 |3.9%66
probabilities
-fasynchronous 7.12 1028 7.38 6.31 3.76 17.16 4.83 9.26 9.04 7.88 18.14 |5341
unwind-tables
-fbranch-probabilities -491 -2.07 -220 0.82 0.11 0.02 -244 -3.92 -3.74 -472 -7.30 11815
-funit-at-a-time -22.64 -495 -150 0.00 0.00 0.00 0.00 -0.82 -0.08 -0.01 0.00 0-1M9
-ffast-math 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 -0.68 0.00 -0.02 0.00 |0-0109
-frename-registers 0.00 0.26 097 000 028 0.00 199 068 024 0.04 0.00 |1.838
all prologue using move -0.73 414 114 -096 -0.33 218 135 0.87 160 052 -0.77 |2.387

Table continues on next page] . .




Table 7 Continued—File size (relative increase of the size of stripped binaries in percent)

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twotbtal
-ftracer 0.00 1.27 1.29 0.00 0.13 0.00 250 2.01 246 1.31 0.00 (1536
-funroll-loops 13.30 7.92 3.18 1.34 422 7.11 1.26 2.70 12.57 0.02 9.82 |84/P1
-funroll-all-loops 13.30 9.53 4.29 2450 4.71 1420 1.43 3.38 15.76 0.66 9.82 &4
-fpic 12.11 6.53 3.62 1.14 21.40 9.38 1.92 6.48 1553 9.16 7.06 L6/685
-mcmodel=medium 13.62 8.10 7.10 0.00 17.57 7.44 6.358.29 835 6.64 9.90 133339
aggressive optimization |-14.42 4.03 21.89 5.12 6.44 44.45 -0.47 880 7.38 0.73 40.05 | B193

Table 8: 64-bit SPECfp 2000 with Standard Optimization (AMD Opteron)
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Table 8: Performance (relative speedups in percent)

options \wupwise swim mgrid applu mesa art equake ammp sixtrack \apsitvg
-0.28 -0.13 0.00 0.00 0.23 -2.07 0.14 0.00 0.00 0.00.16
standard optimization 102.22 54.49 633.14 220.37 79.20 22.69 90.76 111.08 204.34 192582
-mfpmath=sse 9.30 0.12 3.31 2.3811.68 10255 0.28 8.32 1153 |61443
-fguess-branch- 762 000 642 278 748 042 -223 -1.27 -029 47275
probabilities
partial SSE moves 286 013 295 321 334 -326 086 311 386 3.33.12
full sized loads and moves 213 026 135 198 6.38 0.69 0.00 2.00 145 1.55.78
-fstrict-aliasing 0.00 0.12 0.00 0.19 222 522 -223 090 0.00 5.08.44
-fschedule-insns2 223 000 772 078 034 -140 -250 090 450 1.01.28
-freorder-blocks 0.97 0.12 0.18 0.1913.09 228 0.28 0.00 -142 0.00.28
-fomit-frame-pointer 251 0.00 453 038 -058 -1.80 -1.13 090 -0.29 3.68.95
prologue using move -3.24 0.00 0.00 0.00 358 069 0.00 -0.14 0.00 0.00.15
-finline-functions 0.13 0.12 0.00 0.19 18 -151 1.84 -0.52 0.28 -0.1@.15
-foptimize 0.82 0.12 0.18 0.19 -0.46 -097 0.00 0.12 0.00 0.00.00
sibling-calls
-mred-zone 0.00 0.00 0.00 0.38 057 097 -2.10 -0.26 0.00 0.16.00
-maccumulate- 0.55 -0.13 0.18 0.00 045 -346 0.00 0.00 -0.29 0.38.16
outgoing-args
-fgcse 137 0.00 -7.19 -5.15 -0.23 0.69 042 -064 -4.14 -2.1371
aggressive optimization 557 -091 6.60 4.26 4.14 -193 796 358 10.63 -2.33.15
-funroll-all-loops 272 -013 188 232 -1.50 558 042 358 -0.29 1.16.58
-funroll-loops 272 000 188 251 -092 267 213 358 -029 1.16.57
-ffast-math 0.81 0.00 0.00 213 126 -3.16 099 474 057 15094
all prologue using move 418 0.00 -0.39 0.19 0.23 -098 1.86 -0.27 1.14 0.30.63
-fbranch-probabilities -3.44 0.12 -0.94 0.38 1514 -140 -0.15 -0.65 0.85 -B.36.15
-funit-at-a-time 0.13 0.12 -0.19 0.00 393 -354 0.14 0.12 0.00 -0.1@.15
-frename-registers -3.54 -0.26 5.66 -0.39 -7.23 -1.11 497 3.46 0.86 -0.38.15
-ftracer -0.82 0.00 0.00 0.00 -2.87 -2.35 -0.15 0.77 0.86 -0.60.64
-cmodel=medium 2.73 -0.26 -0.19 -0.39 -3.69 -0.83 -0.72 -1.03 -14.95 -0.17.90
-fpic 0.95 0.00 0.37 -097 172 -0.29 0.71 -0.13 -20.98 -0D.17.90
File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack | apsital
standard optimization -25.71 -26.52 -36.03 -60.14 -34.62 -15.82 -33.14 -32.33 -38.32 -338385
-maccumulate- -1.63 -0.71 -1.83 -0.71 -340 -2.07 -1.80 -2.77 -1.12 -1.17.89
outgoing-args
-fschedule-insns2 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.02 -043 0.@21
-mred-zone 0.00 0.00 -0.19 -2.31 -0.13 -0.08 -0.14 -0.12 -0.03 -0.1214
-fgcse 0.00 -8.64 -4.00 -10.19 -0.74 191 -0.38 0.00 1.70 -B.€107
Table continues on next page
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Table 8 Continued—File size (relative increase of the size of stripped binaries in percent)

options wupwise swim mgrid applu mesa art equake ammp sixtrack | afusal
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.13 0.07 0.00 -0.05 0.00 0-004
-foptimize 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.04 -0.02 0-:682
sibling-calls

full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.00 040 0.00 0.998
-fomit-frame-pointer 0.00 047 0.75 -197 -0.05 0.39 -0.14 0.37 0.12 5.B43
partial SSE moves 0.00 0.23 0.00 0.71 0.79 0.00 0.00 0.24 0.43 0.8%3
prologue using move -0.28 0.00 0.00 0.11 1.78 0.00 0.00 0.26 -0.02 0.2%3
-freorder-blocks 0.00 047 0.00 0.11 244 000 0.00 262 0.86 1.338
-mfpmath=sse 0.00 2.16 0.00 6.26 -1.57 0.00 -0.14 3.19 2.65 4.3%0
-fguess-branch -0.28 1.43 0.00 -0.36 5.10 12.16 10.56 3.04 0.41 1.299
probabilities

-finline-functions 0.00 0.00 0.00 0.00 5.39 19.96 0.13 042 129 1.BM5
-fasynchronous- 9.34 315 6.75 192 1046 1655 13.01 6.21 1.25 3887
unwind-info

-fbranch-probabilities 0.64 0.15 0.76 0.19 -5.23 0.70 0.61 -2.11 -0.28 -0-Q6b8
-ffast-math 0.00 -0.95 0.00 0.58 -0.83 -13.04 -0.27 -5.57 0.86 0-0(85
-funit-at-a-time 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 -0.03 0.00 0-003
all prologue using move -0.28 140 0.37 129 0.78 -1.02 -0.40 2.26 0.61 1.966
-ftracer 0.00 0.00 0.00 0.00 2.37 0.07 0.00 545 043 3.3%1
-frename-registers 0.00 047 0.00 265 1.78 0.00 0.00 260 2.58 0.2610
-funroll-loops 193 2469 6.32 642 7.95 20.05 0.65 11.14 3.02 68533
-funroll-all-loops 193 2469 7.25 642 8.19 20.05 235 11.14 3.02 pBBI3
-fpic 045 0.23 093 224 592 928 7.71 491 8.04 3.8%1
-mcmodel=medium 0.09 493 0.00 7.49 353 085 1.83 545 24.62 £Al3aEa2
aggressive optimization 71.81 164.20 125.37 57.30 11.28 97.53 52.54 1291 26.21 3645

Table 9: 64-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)

options [ gzip vpr gcc  mcf crafty parser eon  perl gap vortex bzip2 tWolf avg

-0.28 -0.41 0.20 -045 0.00 -0.16 0.00 -0.11 0.84 0.00 0.13 |0.3812
aggressive optimization 112.35 91.73 103.60 14.72 86.01 97.56 589.65 130.46 111.79 74.46 151.98|18&.A1
-fbranch-probabilities 840 262 10.71 0.22 3.38 21.72 27.67 27.67 14.24 10.37 4.39 |-1.889
-fguess-branch
full sized loads and moves 1.00 0.67 -0.53 0.00 097 -048 56.39 1.79 0.71 0.62 0.13 |4.6461
-fbranch-probabilities 2.69 0.00 562 -0.45 262 1985 -0.92 1194 4.06 229 1.07 |0.B177
-mé4 9.90 0.27 3.39 -22.19 42.29 -2.13 4566 0.30 -1.25 6.29 8.28 -13.338
-funroll-loops 169 054 041 0.22 088 141 1694 759 056 1.73 0.93 |4.612
-freorder-blocks 495 122 451 022 389 189 240 1306 -0.56 -142 040 |1.748
-fomit-frame-pointer 0.13 0.00 219 0.44 203 173 231 538 -0.28 108 147 |5.05610
-fstrict-aliasing -0.56 480 082 044 104 189 161 208 172 164 588 |[1.1585
-finline-functions -0.42 054 155 202 186 521 101 -0.31 042 362 313 |2.7585
-ftracer -0.69 -0.27 030 0.00 1.12 0.78 520 393 0.14 0.27 0.53 [4.960
-fschedule-insns2 0.27 262 041 022 424 046 257 155 099 334 161 |0.6447
-mred-zone -042 0.13 061 066 096 031 -1.33 156 -0.56 7.01 -0.14 |[3.5622
-fgcse 270 406 114 -0.23 347 -0.77 -051 -0.82 229 127 0.93 |0.2510
-mfpmath=sse -0.28 248 -052 066 195 0.78 9.05 0.72 0.14 -2.80 -0.14 |1.4210
-frename-registers -0.42 122 -1.13 -045 424 046 -190 -0.72 -097 191 147 |4.8198
-funit-at-a-time -0.56 3,50 -1.23 0.22 1.12 093 0.16 -142 273 3.43 -0.27 |2.6198
prologue using move -0.43 054 106 043 106 079 -275 189 363 6.29 -0.14 0.2686
partial SSE moves -0.29 081 0.10 -044 0.00 063 0.00 0.62 0.00 0.26 -0.40 |4.1B73
-foptimize 0.00 -0.14 061 0.22 09 0.78 196 0.00 -193 -1.86 -0.27 |3.1660

sibling-calls
-maccumulate- -0.28 0.94 -0.11 -0.23 253 046 118 -0.72 243 -0.81 0.13 |0.6B48
Table continues on next page|. .
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Table 9 Continued—Performance (relative speedups in percent)

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolavg

outgoing-args

-fstrength-reduce -0.42 0.26 -1.22 0.00 0.64 0.00 -0.59 -1.81 0.42 4.30 -0.14 {00130

all prologue using move | -1.13 -0.27 -0.32 -0.22 1.28 0.94 6.46 -0.11 154 -1.33 0.39 |00661

-ffast-math -0.28 0.40 -1.24 -0.23 -1.92 0.00 0.08 0.10 0.56 1.34 -0.27 {36B3

-fpeel-loops 0.00 0.13 -1.13 0.22 -1.20 -0.62 0.08 -1.34 -1.69 -3.86 -0.40 ;002B3

-funroll-all-loops 0.00 0.13 0.10 0.00 -0.48 -0.16 -0.84 2.04 -2.12 -5.58 0.26 {71900

-cmodel=medium -5.12 -1.21 -2.97 0.44 -10.61 -0.78 -1.09 0.00 0.28 -4.85 -0.67 {73728

-fpic -12.73 -1.89 -2.36 -0.89 -13.88 -6.96 -4.36 -12.79 -2.11 -18.23 -10.03 |-8.82

File size (relative increase of the size of stripped binaries in percent)

options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 t\{voltotal
aggressive optimization -24.01 -19.87 -6.95 -16.43 -11.81 24.89 -14.11 -12.48 -31.74 -8.77 17.87 136347
-fbranch-probabilities -12.51 -8.07 -5.50 -0.95 -2.64 -255 -5.80 -7.77 -14.58 -5.56 -12.11 -10.240
-maccumulate- -1.79 -155 -2.33 -144 -087 -285 -331 -1.77 -410 -3.78 3.05 11-2%8
outgoing-args
-fgcse 0.73 -1.16 -195 -0.37 -192 -1.27 -0.32 -0.59 -0.38 -0.68 -0.06 13:3R3
-fomit-frame-pointer -1.38 1.02 -0.81 -091 -0.27 -1.20 -1.94 -143 -1.10 141 -0.06 11-P072
-fstrict-aliasing 0.12 -1.14 -0.11 -0.73 0.00 0.36 0.36 -0.58 -0.56 -0.66 0.00 15-:0446
-mred-zone 0.00 -0.06 -0.06 0.00 0.00 0.00 -0.34 -0.04 -0.02 0.12 0.00 :0-0905
-fschedule-insns2 -0.07 -0.06 -0.07 -0.19 0.01 0.07 0.00 -0.01 -0.02 0.00 0.00 004003
-foptimize 0.06 -0.04 0.10 0.00 0.00 -0.04 -0.45 -0.20 0.13 -0.01 -0.06 10-0803
sibling-calls
-fstrength-reduce 0.24 0.11 -0.01 0.18 0.01 0.03 -0.02 0.00 0.10 0.00 0.00 |0.0202
partial SSE moves 0.00 0.27 0.00 0.00 0.00 0.01 0.24 0.00 0.00 0.00 0.00 |0.0103
full sized loads and moves 0.18 0.09 0.17 0.00 0.00 040 0.01 0.00 0.13 0.00 0.00 |0.0710
-mfpmath=sse 0.00 -1.35 -0.05 -0.55 -0.14 -0.08 3.34 -058 0.00 0.00 0.00 :1.8915
prologue using move 0.00 0.07 0.14 0.00 -0.05 040 -0.02 045 0.28 0.37 -0.06 |0.0620
-funroll-loops 173 098 034 397 151 322 028 004 100 0.00 0.00 |0.0/2
-freorder-blocks 0.24 011 105 -055 0.00 -004 020 0.63 036 0.00 0.00 |0.P153
-frename-registers 135 118 126 0.00 147 071 227 067 062 066 0.00 |2.196
-ftracer 0.67 136 157 261 202 229 044 130 1.61 2.01 0.00 |0.8%3
-fbranch-probabilities 6.09 4.09 560 544 6.03 987 -021 390 358 449 778 |3.2740
-fguess-branch
-funit-at-a-time -14.10 2.25 12.02 0.00 2.04 562 0.00 414 6.08 266 7.60 |1.9D4
-m64 16.48 -2.64 8.02 18.47 -19.00 1552 0.25 11.38 9.65 -5.69 8.64 [-33490
-finline-functions 871 7.94 2354 280 351 39.11 -0.09 1196 9.86 4.17 39.65 |212B8
-ffast-math 0.00 -0.02 0.03 0.00 0.00 0.00 0.00 -0.05 0.00 -0.02 0.00 [0.0100
-funroll-all-loops 0.00 0.23 0.04 218 0.00 1.26 0.00 057 0.09 0.00 0.00 :2.9403
-fpic 16.27 4.69 -6.01 0.18 17.87 -21.91 0.96 139 6.50 7.12 -21.77 14038
-fpeel-loops 157 039 035 163 198 580 000 057 096 0.00 0.00 |1.P56
all prologue using move 218 285 130 145 026 263 231 171 295 277 -0.72 |2.691
-mcmodel=medium 1415 9.85 7.56 19.12 1858 795 597 993 990 791 21.15 (12901

Table 10: 64-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)

options \wupwise swim mgrid applu mesa art equake ammp sixtrack \apshvg
1.30 0.00 089 056 -534 -0.28 0.00 -0.13 -1.29 1.20.16
aggressive optimization 101.11 53.87 686.79 225.30 101.38 26.80 100.81 123.51 225.00 188973
-m64 5.00 -0.27 16.25 9.79 28,55 83.54 -1.31 19.17 28.33 2015634
-mfpmath=sse 13.97 0.12 240 2.33 7.04100.28 1.79 16.64 22.22 58380
-fbranch-probabilities -0.83 0.39 10.83 3.96 19.62 2.23 -0.28 6.85 2.24 0.78.98
-fguess-branch
partial SSE moves 158 0.13 218 176 0.70 1.27 -251 3.17 6.14 25474
-fstrict-aliasing 0.13 0.00 0.00 0.00 -090 449 137 5.49 0.00 4.71.73
full sized loads and moves -225 026 331 116 429 240 292 0.86 2.25 0.89.57
-fschedule-insns2 0.13 0.12 13.06 057 -9.93 153 -0.68 5.49 3.71 1.58.41
-ftracer 0.27 0.00 -0.19 -0.19 -285 097 179 1.10 0.00 0.30.15

Table continues on next page} ..
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Table 10 Continued—Performance (relative speedups in percent)

options wupwise swim mgrid applu mesa art equake ammp sixtrack | apsig
-mred-zone -0.95 0.00 -0.19 1.15 -2.32 0.13 1.09 0.00 0.00 0046
prologue using move -1.53 0.13 -0.18 -0.20 0.91 -0.84 -0.14 0.00 0.00 -0086
-frename-registers 0.00 0.00 4.52 -0.76 -12.07 1.83 3.21 1.84 1.39 -031
-fbranch-probabilities -1.61 0.00 -0.37 -0.57 7.36 -0.83 -0.14 -0.49 0.83 -4082
-fomit-frame-pointer -1.08 0.00 0.54 0.95-11.17 -0.69 0.68 0.85 0.00 [-@&2
-finline-functions 0.00 0.12 -0.19 0.00 -12.12 297 123 0.36 -0.28 Q@O7
-maccumulate- 3.20 -0.13 0.00 -0.19 -9.94 -0.70 0.40 -0.13 -0.28 D008
outgoing-args

-freorder-blocks 1.08 0.00 -0.19 -0.19 -11.27 1.11 0.13 1.72 0.00 p@G8
-funroll-loops -2.43 -0.13 0.00 1.34 -11.02 0.83 0.54 3.25 0.00 P48
-foptimize -1.20 0.00 -0.37 0.00 -13.20 0.97 -0.28 -0.49 0.00 0(B23
sibling-calls

-fstrength-reduce -1.85 0.00 -0.37 5.20 -13.15-0.14 0.95 -0.85  1.39 -2D23
-funit-at-a-time -0.96 0.12 -0.19 -0.19 -11.26 0.00 1.09 0.00 0.00 pDER4
-fgcse -1.46 -0.39 -7.52 -4.36 -12.53 1.26 0.40 -0.13 -1.63 -3392
-ffast-math -2.01 0.00 -0.19 1.13 14.99 -0.70 2.16 1.45 -0.83 R2D&6
-fpeel-loops 9.94 0.00 -0.19 0.18 0.00-0.83 -1.22 0.00 0.00 -p.a®&2
-funroll-all-loops -0.41 0.12 0.00 -0.19 0.00 098 -1.49 -0.13 0.00 001716
-fpic 5.42 -0.13 0.00 -0.95 14.84 0.55 -1.76 0.00 -20.67 -0A83
all prologue using move -5.90 0.00 -0.89 -0.39 0.20-0.28 0.54 -0.62 0.00 0Q78
-cmodel=medium -0.54 -0.13 -0.55 -1.71 9.68 -3.19 -1.76 -3.88 -16.53 -1-2P1

File size (relative

increase of the size of stripped binaries in percent)

options \wupwise swim mgrid applu mesa art equake ammp sixtrack \ap;sital
aggressive optimization -16.48 -15.91 -34.31 -57.92 -33.11 8.36 -29.40 -26.61 -36.44 -23422
-fbranch-probabilities 0.55 -8.26 -2.73 -3.79 -12.90 -10.98 -9.59 -7.97 -4.00 -7.9522
-maccumulate- -1.93 -0.62 -1.78 -0.78 -3.49 -0.97 -0.99 -192 -0.80 -1.1B67
outgoing-args
-mred-zone 0.00 -0.22 -0.37 -2.03 -0.77 -0.13 -0.13 -0.03 -0.01 -0.3m30
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.75 6.80 -10.04 0.00 0.00 -D.1®27
-fgcse 0.00 -8.64 -4.00-10.19 -0.74 191 -0.38 0.00 1.70 -3.6107
-fschedule-insns2 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.6@O3
prologue using move -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0®&00
-foptimize 0.00 0.00 -0.37 0.00 -0.18 0.00 0.00 0.00 0.36 0.113
sibling-calls

full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.122 0.00 0.34 0.0817
-freorder-blocks 0.00 0.00 0.00 0.00 0.03 024 049 000 042 -0.0221
-funit-at-a-time 0.00 0.00 0.00 0.00 0.11 0.2 467 185 0.00 0.0D23
-fomit-frame-pointer 870 082 091 -192 -051 -0.73 -0.38 051 0.40 5.13857
-fstrength-reduce 0.00 0.00 0.18 -0.51 0.03 0.00 0.12 0.00 1.20 0.1259
partial SSE moves 0.00 020 0.18 0.39 0.77 0.60 0.00 0.00 0.82 0.2365
-ftracer 11.68 041 -1.26 0.00 0.03 036 087 554 000 0.9270
-funroll-loops 10.37 1433 203 281 003 659 3.06 239 035 P2.9609
-fbranch-probabilities 12.12 1526 2.69 325 0.02 1933 559 865 043 4.€6792
-fguess-branch

-frename-registers 899 082 054 299 238 185 176 2.69 257 1.5853
-finline-functions 0.00 0.00 0.00 0.00 5.92 18.22 494 241 1.27 1.8475
-mfpmath=sse 870 296 203 808 -0.75 659 399 554 528 51372
-m64 45.40 201.01 156.05 26.51 17.41 39.81 27.06 23.41 28.79 32288
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Table 10 Continued—File size (relative increase of the size of stripped binaries in percent)

options wupwise swim mgrid applu mesa  art equake ammp sixtrack | apsial
-ffast-math 0.00 -0.83 0.00 0.94 -0.85 -6.44 -4.84 -8.23  0.40 -0-0831
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.24 0.61 0.00 0.00 0.0001
-fpeel-loops 0.00 0.00 0.00 1.39 0.00 0.36 1.36 0.00 0.00 0.0D7
all prologue using move -0.49 882 1.79 128 222 841 099 215 0.36 4.23%9
-fpic 0.65 -6.38 2.35 1.11 5.32 -3.71 13.13 2.23 6.58 B.821
-mcmodel=medium 0.00 9.45 2.17 7.98 543 10.44 11.27 5.24 23.48 AZ29

Table 11: 32-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 tWoIfavg
1.06 -0.14 042 0.69 0.11 0.00 -0.13 0.20 -0.28 0.85 0.71 [3.82/5
aggressive optimization 96.74 76.81 73.11 14.74 56.38 83.61 349.45 111.06 98.34 71.82 122.25 | 8.A2
-march=i386 tok8 523 841 345 0.17 9.02 6.80 8200 -0.52 041 1478 2.45 |86D8
-fbranch-probabilities 8.34 237 1233 140 425 7.49 1757 1435 899 1275 6.47 |0.BB7
-fguess-branch
-fbranch- 294 041 1033 0.17 291 543 061 882 241 826 645 |0.3B9
probabilities
-fomit-frame-pointer 864 136 0.84 0.17 226 651 073 041 458 266 6.25 [3.326
-fgcse 199 152 -2.27 -069 057 -436 514 800 267 293 186 |2.9877
-finline-functions 090 196 000 284 291 6.62 186 0.82 141 334 1.87 [1.7287
-ftracer 0.15 194 458 -052 -0.34 -223 394 970 013 174 3.05 (0.1778
-fschedule-insns2 230 222 247 -035 232 015 012 187 -069 204 173 |2.1062
-funit-at-a-time -0.60 891 347 -0.18 255 -150 0.12 750 -1.10 1.83 0.28 0.8739
-freorder-blocks 199 068 7.88 -087 352 0.76 -0.37 124 -083 223 201 il1.a®6
-funroll-loops -0.31 -055 0.00 0.34 0.22 -1.79 6.77 072 069 271 114 |3.335
-march=ppro tok8 591 -1.89 237 034 045 -422 263 030 111 038 275 |2.6013
-maccumulate- 0.60 -0.28 0.53 0.00 267 -2.08 595 262 0.27 4.06 1.00 12.058
outgoing-args
-frename-registers -0.30 165 -094 -1.04 068 -2.67 -157 0.00 -0.14 274 085 |5.9975
-foptimize -0.16 0.27 224 034 -034 -193 -121 -011 069 193 0.56 |0.0125
sibling-calls
-fstrict-aliasing 1.07 -1.37 0.21 139 -012 0.00 012 0.10 055 0.09 0.71 |0.B=25
-fstrength-reduce -0.16 054 -0.53 -1.04 057 -251 0.12 0.00 -1.10 -1.14 0.28 |1:D®5
-funroll-all-loops 3.10 -0.28 0.31 -0.87 011 273 049 298 068 114 -0.15 |[1.990
-mfpmath=sse 183 232 1.28 -1.38 0.11 045 036 051 139 094 0.85 |0.82Z/5
-ffast-math -0.31 1.09 063 034 -046 0.15 012 0.72 055 0.86 042 |0.8460
-fpeel-loops 229 0.00 -0.32 -052 0.90 3.17 0.00 0.10 -343 -0.29 0.70 11.PMO
-fpic -20.49 -5.64 -17.55 -3.28 -29.60 -28.19 -10.27 -29.75 -23.00 -35.03 -25.65 1170661
File size (relative increase of the size of stripped binaries in percent)
options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 t\*\ldtbtal
aggressive optimization -18.85 -6.25 3.51 -21.10 2.34 33.46 -4.21 -6.83 -22.83 -2.91 33.80 -24.83
-fbranch-probabilities -14.82 -8.93 -5.82 0.67 -1.96 -3.46 -5.89 -7.95 -14.56 -3.10 -11.81 -1BBV
-fgcse 1.21 -1.15 -1.23 0.00 2.31 -0.93 0.20 052 0.21 0.51 -1.59 {10628
-foptimize 0.07 0.11 0.09 0.00 0.07 0.00 -1.44 0.05 0.01 -0.03 -1.18 160024
sibling-calls
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |0000O
-fstrength-reduce 0.21 0.09 0.02 0.00 0.05 -0.29 0.03 0.09 0.12 0.00 0.00 1001@2
-fschedule-insns2 -0.15 0.21 -0.07 0.00 -0.07 0.00 1.63 -0.02 -0.04 -0.01 0.00 |000B5
-march=ppro tok8 -2.15 1.33 -0.40 0.00 -0.36 0.00 556 -0.29 -0.49 0.10 -1.18 |00340
-funroll-loops 3.06 0.81 0.32 0.00 1.16 291 0.08 0.21 0.88 0.08 2.31 |00:48
-frename-registers 049 048 052 000 051 000 142 081 0.22 0.10 1.02 |00385
-freorder-blocks -0.08 -0.06 1.22 0.00 0.50 -0.03 0.17 0.82 0.29 0.10 0.53 |002@2
-fomit-frame-pointer -1.77 2.89 039 0.00 -0.14 0.77 452 -0.79 0.17 2.38 -2.80 10095
-ftracer 0.00 1.33 1.78 0.00 456 291 0.31 2.07 171 256 0.29 |01380
-fbranch-probabilities 6.98 3.72 6.73 0.67 9.29 9.37 -0.26 4.48 3.81 4.67 6.41 |24333
-fguess-branch
-maccumulate- 129 6.40 6.00 0.00 195 247 0.38 2.07 4.64 19.88 3.13 |&63/
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Table 11 Continued—File size (relative increase of the size of stripped binaries in percent)

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twotbtal
outgoing-args

-funit-at-a-time -11.69 6.01 13.64 0.00 2.27 6.00 0.00 4.45 7.07 2.65 6.53 16368
-march=i386 tok8 143 9.46 9.78 0.00 3.65 6.00 8.00 4.13 6.70 21.21 4.02 |8%34
-finline-functions 10.90 8.91 28.84 0.00 3.79 39.55 0.16 13.26 10.95 4.65 50.44 |U3MB
-ffast-math 0.00 -0.79 0.01 0.00 -0.02 0.00 0.00 -0.13 0.00 -1.23 0.00 ;6@B1
-funroll-all-loops 0.00 0.25 0.05 0.00 0.07 2.83 0.00 0.03 0.07 0.03 1.19 (0@15
-fpeel-loops 219 115 0.39 0.00 281 6.13 0.00 021 0.88 0.02 125 |1BTI2
-fpic 12.59 6.19 -4.89 0.00 14.80 -27.60 10.58 4.43 1.15 1.35 -21.21 | DBt
-mfpmath=sse -0.08 1.15 -0.03 0.00 -0.06 0.00 10.10 0.17 0.00 0.00 1.19 ;11803

Table 12: 32-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)

options \wupwise swim mgrid applu mesa art equake ammp sixtrack \armi'g
0.13 0.00 0.00 -0.21 0.28 257 -0.14 0.00 6.00 0.002
aggressive optimization 77.83 27.22 445.45 148.97 56.22 -30.46 92.25 101.18 122.37 158.68
-march=i386 tok8 6.02 0.00 253 3171331 154 -065 149 -3.05 Pp.241
-fbranch-probabilities 349 039 474 428 072 181 -142 793 -2.16 0.2066
-fguess-branch
-fomit-frame-pointer -0.14 0.12 349 225 932 102 038 029 0.00 1.0%3
-march=ppro tok8 8.34 0.00 0.00 -0.821041 -150 0.26 -0.59 -0.94 -0.620
-fstrength-reduce 10.13 -0.26 146 1.03 -8.02 -154 0.13 0.89 -0.32 3.641
-funroll-loops 393 0.00 000 061 -765 181 052 462 0.95 -0.p136
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 -1.27 -0.13 0.14 0.00 0.000
-frename-registers 0.81 0.12 -0.62 0.00 -5.69 -0.52 198 -0.15 0.63 0-629
-funit-at-a-time 0.13 0.00 0.00 0.00 -5.75 025 225 0.29 0.00 O0-009
-ftracer 1.65 0.00 0.00 0.00 -6.54 051 039 226 -0.32 -D:BB7
-finline-functions 0.00 0.00 0.00 0.00 -7.24 3.70 185 -0.15 0.00 -0-P137
-maccumulate- 220 000 0.20 0.20 -6.37 -0.76 -0.40 0.00 0.00 0-0137
outgoing-args
-foptimize -0.27 0.00 0.00 0.00 -6.44 284 000 0.14 -0.32 0-08B7
sibling-calls
-fschedule-insns2 -0.54 0.13 104 272 -6.49 -026 -1.67 134 -6.48 1:0472
-freorder-blocks 0.68 -0.13 0.20 0.00 -4.78 -1.52 -0.13 1.04 -155 -0:6Z3
-fbranch-probabilities 1.78 0.00 -0.21 -2.80 0.00 -253 0.26 -1.17 -0.63 -2:2P1
-fgcse 221 -0.39 0.20 -2.40 -399 202 -0.13 -0.59 -10.68 D-2043
-mfpmath=sse 243 025 329 -0.21 1253 97.20 -0.14 1.47 1320 @A6A4
-ffast-math 121 025 0.00 204 3.13 -0.26 389 058 -095 3.a94
-fpeel-loops 3.78 0.00 000 225 0.00 051 -0.26 0.00 0.00 0.064
-funroll-all-loops 0.00 0.12 0.00 0.00 0.00 -2.54 -0.26 0.14 0.00 O0-009
-fpic -5.15 0.25 -3.72 346 -043 -1.31 -10.15 -2.36 -11.64 -1-330
File size (relative increase of the size of stripped binaries in percent)
options \wupwise swim mgrid applu mesa art equake ammp sixtrack \apsital
aggressive optimization -3.88 -1.94 -20.88 -25.85 -23.54 14.89 -16.01 -17.99 -17.79 -1118%0
-fbranch-probabilities 0.24 -2.71 0.69 -4.31 -14.27 -7.93 -4.87 -11.72 -4.35 -7.0Q78
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
-march=ppro to-march=k8 0.00 053 0.00 -445 181 0.77 0.10 041 -0.60 0.0D04
-funit-at-a-time 0.00 0.00 0.00 0.00 0.24 0.00 326 043 0.00 0.0014
-freorder-blocks 0.00 0.00 0.00 0.04 0.15 -0.12 0.43 031 0.28 0.0020
-foptimize 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.02 0.23 1.5830
Table continues on next page} ..




GCC Developers Summit 2003 + 103

Table 12 Continued—File size (relative increase of the size of stripped binaries in percent)

options wupwise swim mgrid applu mesa art equake ammp sixtrack | dosal
sibling-calls

-frename-registers 0.00 0.26 0.00 0.04 0.25 0.33 0.65 0.02 0.61 0.038
-ftracer 7.98 0.00 0.00 0.00 0.07 044 0.76 535 0.00 1846
-funroll-loops 5.15 6.26 0.00 1.15 0.06 7.76 1.21 0.43 0.07 2457
-fgcse -1.84 3.89 0.00 -4.45-0.79 0.11 054 0.09 2.85-3076
-fbranch-probabilities 1049 6.75 0.69 1.60-0.55 11.19 258 7.22 0.63 3188
-fguess-branch .

-fschedule-insns2 0.00 0.81 0.00 1.44 063 0.66 132 3.68 253 2.0P0
-fomit-frame-pointer 210 160 0.00 4.64 224 0.00 054 452 1.22 9281
-fstrength-reduce 0.00 -1.33 0.00 31.50 -0.04 -2.69 -0.22 -0.54 4.37 BR14
-finline-functions 0.00 0.00 0.00 0.00 6.28 13.54 6.74 195 1.85 B323
-march=i386 to-march=k8 7.17 -461 0.00 144 6.05 055 0.87 -068 4.19 8235
-maccumulate- 752 191 0.00 0.71 353 123 177 043 6.49 98303
outgoing-args

-ffast-math 0.00 -0.81 0.00 0.23 -1.37 -31.41 -31.50 -6.71 -0.07 -pI789
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.11 0.65 0.00 0.00 0001
-fpeel-loops 0.77 0.00 0.00 0.42 0.00 0.22 1.19 0.00 0.06 0008
-fpic 490 -6.17 0.00 -25.58 9.63 -3.10 2.72 5.98 7.44 -DAU4
-mfpmath=sse 404 7.23 0.00 10.72 253 7.29 8.28 15.12 8.83 6ABB3

Table 13: 64-bit SPECint 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)

options | gzip vpr gcc mef crafty parser eon perl gap vortex bzip2 tiolf avg

0.00 -0.66 0.71 0.00 163 000 0.60 0.00 8.02 5.84 -0.55 |4.71296
aggressive optimization 143.98 77.03 73.26 16.94 105.84 141.75 505.83 119.81 128.84 94.27 180.89171%5.23
-fschedule-insns2 16.23 10.00 1.51 2.20 11.18 2.75 2056 8.84 2.87 3.78 15.38 | 5.838
-fschedule-insns
-funit-at-a-time 142 2.63 3.73 3.67 -2.83 28.33 1857 16.66 0.00 16.42 3.52 |5.3163
-finline-functions 518 263 218 147 1463 31.62 119 8.33 0.00 22.13 4.73 |2.5®84
-fbranch-probabilities 145 758 6.06 2.22 1547 2750 5.03 14.00 2.08 -3.48 0.00 |0.6516
-fguess-branch
-fbranch-probabilities 9.30 266 681 597 -433 2966 -1.18 9.93 422 1751 231 {0.6644
-fschedule-insns2 787 6.16 3.75 072 769 -089 784 738 142 314 7.89 |5.&03
-fomit-frame-pointer 0.00 0.00 294 0.00 534 201 576 7.69 352 318 526 [1.3363
-freorder-blocks 0.71 0.00 2.15 0.00 14.10 131 -6.94 562 352 448 222 |2.@463
-fgcse 542 000 141 0.72 -1.02 -0.65 1486 1.19 209 254 2.82 10.6694
-fif-conversion 296 547 0.00 220 497 0.65 1315 0.00 208 320 -0.56 |1.2161
-fstrength-reduce -3.53 -1.28 144 218 -3.30 -0.65 2230 -296 2.08 -1.87 2.27 [4.0897
-funroll-loops -1.42 0.00 2.18 0.00 2229 0.00 365 -0.60 -1.37 1.87 0.00 $3.8330
-fstrict-aliasing -2.88 4.08 -0.71 0.73 213 8.45 -16.97 434 425 316 4.59 |0.6665
-frename-registers 0.71 064 0.71 -0.72 540 066 573 240 0.68 -1250 -1.11 |3.4465
-foptimize -2.12 0.00 0.71 -1.42 -1480 -0.65 242 -249 068 186 1.11 ;04528
sibling-calls
-ftracer 0.00 -4.55 0.00 -2.16 -12.07 -0.65 3.06 -295 0.00 125 1.11 {72059
-ffast-math -1.44 -3.73 -212 218 7.65 0.00 -1.78 -059 137 8.60 -0.55 [1.3229
-funroll-all-loops 0.70 -0.65 -2.78 0.72 259 130 516 440 0.00 -3.04 0.55 {3.2500
-fpeel-loops 0.00 3.28 -0.71 -143 444 130 -351 -236 0.00 0.61 0.00 {1.3D00
-fold-unroll-loops 0.00 0.64 0.00 0.72 -462 131 1071 3.03 -1.37 -254 -6.63 |0.@00
-fpic 0.00 -2.64 0.00 0.73 -13.23 3.63 -4.10 -0.65 -140 -3.71 5.48 {24505

File size (relative increase of the size of stripped binaries in percent)
options [ gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 t\{voltotal
aggressive optimization -38.22 -29.20 -9.28 -42.75 -28.90 5.66 -49.91 -12.38 -36.23 -17.64 -3.00 {32485
-fbranch-probabilities -10.66 -1.50 -2.43 0.79 -0.71 211 -412 -6.17 0.00 -3.29 -9.80 {5:339
-fomit-frame-pointer -10.98 -3.61 -1.53 0.00 -1.19 -3.23 -7.01 -235 -2.88 -2.10 -1.09 :3-Q164
-fgcse -0.25 -1.53 -1.07 0.00 -0.87 -1.56 -1.29 -0.48 0.08 0.01 -10.13 |0:0B4
Table continues on next page|. .




104 ¢ GCC Developers Summit

Table 13 Continued—File size (relative increase of the size of stripped binaries in percent)

options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 tyotbtal
-fstrict-aliasing 0.03 -1.22 0.00 0.00 -0.07 -0.28 0.26 -0.20 -0.53 -0.26 0.00 :3@28
-freorder-blocks -0.04 0.01 0.31 0.00 -0.43 0.01 -1.35 -0.23 -0.27 0.00 0.00 [6MO9
-foptimize 0.06 -0.01 0.23 0.00 0.00 0.01 -1.26 -0.04 0.10 0.00 0.00 |G@O2
sibling-calls

-frename-registers 0.06 -0.09 0.00 0.00 -0.10 0.02 0.08 -0.09 0.01 -0.03 0.00 |G@O2
-fif-conversion -0.10 -0.19 0.28 0.00 0.15 -0.21 -1.31 0.05 0.04 0.00 0.00 |[6@O1
-fstrength-reduce 0.06 0.33 0.00 0.00 0.23 -0.48 0.05 0.06 0.20 0.01 0.01 |0MO4
-funroll-loops 0.06 0.00 0.27 0.00 0.12 0.34 0.00 0.05 0.00 0.00 0.00 |0@Q@2
-ftracer 0.04 0.63 2.22 0.00 3.66 531 0.11 2.09 -0.11 3.25 0.00 |3199
-funit-at-a-time -20.22 0.29 9.22 0.83 1.09 6.54 -412 422 0.00 -1.08 0.30 2292
-fbranch-probabilities 0.46 461 548 0.79 540 6.52 0.20 4.37 0.06 4.34 0.42 (3390
-fguess-branch

-fschedule-insns2 0.00 424 473 0.00 3.87 0.00 563 3.53 4.29 3.47 0.00 |34i06
-fschedule-insns2 0.00 442 501 0.00 3.87 0.00 7.14 476 525 4.69 0.00 |341T6
-fschedule-insns

-finline-functions 0.47 8.20 23.93 0.79 3.89 43.62 -4.17 14.35 0.00 2.22 52.11 |-P1888
-ffast-math -0.31 -0.09 -0.01 -0.40 -0.06 -0.12 -0.04 -0.01 -0.07 -0.04 -0.12 {0MB4
-funroll-all-loops 0.99 0.31 0.00 0.00 0.43 2.29 0.00 0.11 0.00 0.02 0.00 |0@Q3
-fpeel-loops 12.32 0.57 0.03 0.00 211 6.22 0.00 0.18 0.00 0.04 0.22 |0MA9
-fpic -1.53 1.09 0.12 0.39 1.78 5.18 252 125 1.35 0.21 1.28 |0®92
-fold-unroll-loops 12.39 8.85 -148 0.00 554 561 290 2.75 1359 0.00 11.26 | 92383

Table 14: 64-bit SPECfp 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)

options \Wupwise swim mgrid applu mesa art equake ammp \apa’vg

0.00 -0.75 -0.21 0.00 0.93 0.00 0.83 -0.84 -1.T600
-fschedule-insns2 14.49 10.74 50.22 17.06 28.57 7.60 17.08 24.61 22489
-fschedule-insns
-fschedule-insns2 1.93 0.00 092 3.25 3450 7.73 4.67 5.26 (0.®78
-fstrength-reduce 9.27 0.75 271 488 2.85 1.19 256 0.84 1.&17
-fbranch-probabilities 3.12 0.00 1.44 1.33 14.21 7.10 3.41 -0.83 0.%014
-fguess-branch
-ftracer 1.85 0.00 1.02 0.20 854 1.14 0.82 0.84 6.70936
-fbranch-probabilities 1.85 -0.75 -1.83 0.40 5.85 1.65 8.03 1.69 -1.7456
-funit-at-a-time 248 0.74 -0.21 040 7.25-1.68 10.00 2.56 -3.4556
-fstrict-aliasing 0.00 0.00 -0.21 0.00 2.35-6.56 9.00 0.84 0.9077
-fomit-frame-pointer 2.48 -0.75 -0.41 0.00 4.34-0.58 6.19 0.00 -0.8877
-fgcse 0.60 0.00 0.00 -2.18 3.33 6.50 6.14 0.84 -2.6176
-finline-functions 1.85 -0.75 -0.31 0.20 7.42-9.40 256 0.84 -2.3000
-freorder-blocks 0.00 -0.75 0.00 0.10 4.32-5.24 6.14 -1.64 0.@DOO
-frename-registers 0.60 -1.49 040 040 5.85-1.66 0.82 0.84 -1.7T00
-foptimize -0.61 0.00 -1.42 0.10 2.35-466 521 0.00 -1.7600
sibling-calls
-fif-conversion 0.00 0.00 0.20 0.20 0.94 1.10 4.31 -0.84 -0.90O0
-funroll-loops 0.60 -2.99 -1.01 0.10 1.87-3.98 0.83 0.00 -0.8877
-fold-unroll-loops 6.66 -0.75 0.20 2.43 -36.75 3.48 -4.96 1.66 3308
-ffast-math -0.60 0.00 0.10 0.30 -0.47 290 -5.47 -0.83 -2.4976
-fpic 0.63 0.00 -0.21 0.20 -2.04 2.95 0.00 0.00 0.%000
-funroll-all-loops 0.00 -0.75 0.71 0.70 0.00 7.55 -0.82 -4.17 -1.7T200
-fpeel-loops 3.63 0.00 0.20 6.06 0.00 4.06 -4.14 0.00 0.a076
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File size (relative increase of the size of stripped binaries in percent)

options \Wupwise swim mgrid applu mesa  art equake ammp \atmial
-fbranch-probabilities 0.37 -0.11 0.20 0.15-7.43 -6.42 -0.06 -0.92 -2:4777
-funit-at-a-time 0.37 -0.11 0.20 0.15-7.37 -6.42 0.57 0.03 -2-47/61
-fomit-frame-pointer 0.00 -0.53 -1.53 -0.35 -3.45 -7.19 -2.12 -4.38 -1-:206
-fgcse 0.00 -26.92 0.57 -8.87 -1.06 -7.19 0.25 -0.02 -0-I8€3
-fstrict-aliasing 0.00 0.00 0.00 0.00-0.31 -7.19 -2.17 -0.10 -0:044
-fif-conversion 0.00 -0.21 -0.09 -0.08 -0.22 -0.73 0.05 0.31 -0-0311
-foptimize 0.00 0.00 0.00 0.00 -0.04 0.00 -0.06 -0.01 0Q-:002
sibling-calls

-freorder-blocks 0.00 0.10 0.00 0.02 0.28 -0.19 0.11 -0.43 -0.R7
-funroll-loops 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.000
-frename-registers 0.00 0.10 0.16 -0.08 0.13 0.18 0.22 0.11 -0.8205
-finline-functions 0.37 0.20 0.28 0.13-0.74 19.29 8.46 1.21 -1.809
-ftracer 8.22 0.00 0.08 0.02 0.22 055 0.22 1.01 1.9279
-foranch-probabilities 9.36 0.84 1.36 -1.20 0.00 2.79 0.97 4.33 1.8Q17
-fguess-branch

-fstrength-reduce 750 268 3.28 7.17-0.17 0.00 0.22 0.37 71.24/0
-fschedule-insns2 3.87 247 3.73 6.90 547 3.11 491 597 6.5%4
-fschedule-insns2 3.78 2.47 4.26 11.04 555 3.11 5.66 5.97 6.8725
-fschedule-insns

-fpic -1.98 -0.42 0.24 -2.57 -0.09 2.76 1.10 -1.06 -0-883
-ffast-math -0.21 -2.00 -1.05 -0.97 0.27 0.30 -0.60 -0.76 -0-6117
-fpeel-loops 0.00 0.00 0.00 0.90 0.00 7.73 2.60 0.00 0.010
-funroll-all-loops 0.00 0.00 0.81 0.29 0.00 7.73 1.13 0.37 0.p734
-fold-unroll-loops 2.71 36.40 1556 5.15 4.52 23.73 6.75 15.75 81BY9
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Abstract mary example. Other architectures that the au-
thor has access to and is familiar with are dis-
ussed also. A brief characteristic of these 64-

More and more 64-bit systems are showing” > C :
it Linux platformsg is given in table 1.

up on the market—and developers are portin

their applications to these systems. Most codjjtrerences between platforms and therefore

runs directly without problems—but there is aihe peed to port software can be attributed to
number of sometimes quite subtile problemsy; |east one of:

that developers have to be aware of for portable
programming and porting.

Compiler Different compilers have different
This paper illustrates some problems on port-  behavior. This can mostly be avoided with

ing an application to 64-bit and also shows using the same version of the GNU com-
how use a 64-bit system as development plat-  pilers.

form for both 32-bit and 64-bit code. It will

give hints especially to application and library Application Binary Interfaces (ABI) An

developers on writing portable code using the  ABI specifies sizes of fundamental types,

GNU Compiler Collection. function calling sequence and the object
format. In general the ABI is hidden from

. the developer by the compiler.
1 Introduction per by p

CPU The effect of different CPUs is mainly

With the introduction of AMD’s 64-bit archi- visible through the ABI. The differences
tecture, AMD64, implemented in the AMD visible to developers include little or big
Opteron and Athlon64 CPUs, another 64-bit ~ €ndian, whether the stack grows up or
processor family enters the market and users ~down, or whether the fundamental size is
are going to buy and deploy these systems. A 32-bit or 64-bit.
new architecture offers new challenges for both_ . . : . , .
system developers (compare [JH]) and applicag Library Different C libraries might no_t im-
tion developers. plement the same subset of fun(_:tlons or
have architecture dependent versions. The
This paper will give hints especially to appli- GNU C Library tries to unify this but there
cation and library developers to write portable ~ are always architecture dependent differ-
code and make use of their 64-bit development  ences.
machine. While the paper discusses general 1The only missing 64-bit platforms that | am aware

64-bit and porting problems specific to otherof are MMIX and SuperH SH 5 but there is no Linux
platforms, the AMD64 platform is used as pri- port for them.
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Kernel All access to the Linux kernel is done Programs written in 64-bit mode for AMD
through functions of the C Library. A Opteron take implicitly advantage of this but
newer kernel might have additional func- also of further new features:
tionality that the C Library then can pro-

vide. - 8 additional general purpose and 8 addi-

tional floating point registers
Application developers will mainly have porta-

bility problems due to different CPUs and dif- * RIP addressing (instruction-pointer rela-

ferent ABIs and the discussion here will con-  tive addressing mode) to speed up espe-
centrate on these. cially handling of shared libraries[JH].

The paper is structured as follows: Section * A modern Application Binary Interface
2 mentions why 64-bit programs are advanta-  [AMD64-PSABI].

geous. The following section discusses exe-
cution of both 32-bit and 64-bit programs on
one system and development on such a system.
Section 4 shows how easy porting should be
and then goes into all the subtleties and prob3 64-bit and 32-bit Programs on
lems that nevertheless arise. One System

* A large address space (currently 512 TB
per process).

2 Advantages of 64-bit Programs  The CPU architects of the 64-bit architectures
AMDG64, MIPS64, Sparc64, zSeries and Pow-
push developers to 64-bit programs is the limIhese 64-bit CPUs can execute 32-bit code na-

ited address space. A 32-bit program can onljiVely without any performance penalty. The
address 4 GB of memory. Under a 32-bit x86MOSt solq 64-bit pla_tform is the MIPS architgc-
kernel the available address space is at most 3uré but it—due to its usage nowadays mainly
3 GB (3.5 GB with a special kernel and staticl" €émbedded systems—mainly runs in 32-bit
linking of an application) since the kernel alsoMode. Under Linux the 64-bit platforms Pow-
needs some of that memory. Nowadays alop|i_erPC64 and Sparc64 in general only use a 64-

cations need larger and larger address spac@¥ kermel but have no significant 64-bit appli-

and performance can be greatly improved wittation base.
large caches which is a benefit especially fory

Il these architectures nevertheless share the
databases.

way that their 32-bit support is done. The sup-

Besides larger address space most recent 64-#Prt of two architectures is commonly called
processors introduce additional features overPiarch support and there’s 6‘,!30 the general
the previous processor generation for improve¢©ncept of “multi-arch support.

performance. A 64-bit architecture that can execute 32-bit

As an example the 64-bit AMD Opteron pro- @Pplications natively offers some extra chal-
cessor has some architectural improvements€nges for developers:

like a memory controller integrated into the

processor for faster memory access which < The kernel has to support execution of
eliminates high latency memory structure. both 32-bit and 64-bit programs.
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Architecture uname -m Size Endian Libpath Miscellaneous

Alpha alpha LP64 little lib

AMD64 x86_64 LP64 little lib64 executes x86 code natively

IPF ia64 LP64 little lib executes x86 code via emulation

MIPS64 mips64 LP64 both lib64 executes MIPS code natively

PowerPC64 ppc64 LP64 big lib64 executes PowerPC code natively

Sparc64 sparc64 LP64 big lib64 executes Sparc code natively

PA-RISC64 parisc64 LP64 big — only kernel support, no 64-bit user land,
executes 32-bit PA-RISC code natively

zSeries (s390x) s390x LP64 big lib64 executes s390 code natively

Table 1: 64-bit Linux Platforms

* The system has to be installed in such &.2 Libraries: lib andlib64
way that 32-bit and 64-bit libraries of the

same name can exist on one system.
_ If a system only supports execution of one ar-
* The tool chain should handle developmenichitecture, all libraries will be installed in paths

of both 32-bit and 64-bit programs. ending with/lib  like /usr/lib  and user-
o level binaries in paths ending within , e.g.
3.1 Kemel Implications fusr/bin . But if there’s more than one ar-
chitecture to support, libraries will exist in fla-
The kernel side is not part of this paper butyors for each architecture but with the same
the requirements for the kernel implementatiomame, e.g. there’s bbc.so.6 for 32-bit
should be stated: x86 and one for 64-bit code on an AMD64 sys-
tem. The problem now is where to install these
 Starting of programs for every architec- libraries.

ture supported by the ABI, e.g. for both '
32-bit and 64-bit. Following the example set by the Sparc devel-

opers, all the other 64-bit biarch platforms in-
« System calls for every architecture in astall the 64-bit libraries into paths ending with
way that is compatible to the correspond-/lib64 , e.g./usr/X11R6/lib64 . The
ing 32-bit platform. For example a pro- 64-bit dynamic linker is configured to search
gram that runs on x86 should run onthese library paths. For 32-bit libraries nothing
AMDG64 without any changes. has been changed.

One problem here is thecti() SYS™ This setup has the advantage that packages

tem call which allows to pass any kind build for the 32-bit platform can be installed

of data to the kemel including complex without any change at all. For them everythin
data structures. Since the kernel needs to y 9 ' ything

IS the same as on the corresponding 32-bit plat-
translate these data structures to the sanhe) rm, no paths are changed at all. For exam-

zgrl:](;g:;l (f)or a! ;Lijpﬁto(;:ﬁd baer(;tlte(grl:;?js’ple the binary x86 RPM package of the Acro-
g y PP bat Reader can be installed directly on AMD64

for the primary architecture. This restric- .
. ) . ) systems and works without any change at all.
tion only hits administration programs,

like LVM tools. For 64-bit programs a little bit more work
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is needed since often configure scripts searcB.3.1 The AMDG64, Sparc64 and zSeries
directly the library paths for certain libraries Way

but then find only the 32-bit library in e.g.

lusr/lib or makefiles have paths hard-

coded. Configure scripts created by GNUFor AMD64, Sparc64 and zSeries the compiler

autoconf  offer an option to specify the li- generates by default 64-bit code. To gener-

brary install path directly and if you use RPM, .
you can use for example the following in yourate 32-bit code for x86 (on AMD64) or for

spec file: Sparc (on Sparc64), the compiler switch32

has to be given to GCC. Compilation for 31-
configure --prefix=/usr --libdir=%{_libdir} bit zSeries on a 64-bit zSeries needs-m31

option. The assembler and linker have simi-
Also Idconfig handles both 32-bit lar switches that GCC passes to them. The
and 64-bit libraries in its Configuration Compiler also knows about the default Iibrary
(letc/ld.so.conf ) and cache files Paths,e.glust/lib  vs./usr/lib64  and
(/etc/ld.so.cache ). ldconfig  marks invokes the linker with the right options. An

64-bit libraries in the cache so that the dy-e€xample compile session is given in figure 1.
namic linker can easily detect 32-bit and 64-bit
libraries.
3.3.2 MIPS and its ABIs
3.3 Development for Different ABIs

MIPS does not only support support 32-bit and
GCC can be build as a compiler that support64-bit programs, it also support two different
different ABIs on one platform. Depending on ABIs for 32-bit programs. The three ABIs can
the architecture a number of different ABIs or be summarized as follows:
instruction sets are supported, e.g. for ARM it

is possible to generate both ARM and Thumb_Name ___ Library Path GeC Switch
code. The GNU binutils also support these dif- ©32 (0ld 32-bit) - /lib -mabi=032
ferent ABIs n32 (new 32-bit) /lib32 -mabi=n32

' n64 (64-bit) /b4  -mabi=64

The framework is especially useful for a biarch

compiler and the 64-bit GNU/Linux platforms Note that the Linux Kernel so far supports only
AMD64, MIPS, Sparc64 and zSeries (s390x)the 032 ABI completely, support for the other
have support to generate code not only for théwo is currently been worked on.

64-bit ABI but also for the corresponding 32-

bit (31-bit for zSeries) ABI. The PowerPC64

developers have not yet implemented this in3.3.3 Toolchain

GCC but | expect that they follow the same

road. GCC knows how to invoke assembler and
linker to generate 64-bit or 32-bit code. There-
piler (gee ) is mentioned. The whole discus- fore in general GCC should be just passed the

sion and options are also valid for the othergggéso\?vt;fg;ef%resglrg p(!?stl?gaﬁn?wéggltnog.ca:ln the
compilers in the GNU Compiler Collection: P y

The C++ compiler g++), the Ada compiler binary utilities directly for 32-bit code, there’s

(gnat ), the Fortran77 compileg{7) and the 2Calling these directly might also harm since GCC
Java compilerdcj ). passes extra options to the binary utilities. For example

Note that in the following text only the C com-
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$ gcc hello.c -0 hello64
$ gcc -m32 hello.c -0 hello32
$ file ./hello32 ./hello64
Jhello32: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
Jhello64: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$ Idd ./hello32 ./hello64
Jhello32:
libc.so.6 => /lib/libc.s0.6 (0x40029000)
Nlib/ld-linux.s0.2 => /lib/Id-linux.so0.2 (0x40000000)
Jhello64:
libc.so.6 => /lib64/libc.s0.6 (0x0000002a9566b000)
/lib64/1d-linux-x86-64.s0.2 =>
Nlib64/1d-linux-x86-64.s0.2 (0x0000002a95556000)

$ gce -L Jusr/X11R6/lib -L /usr/X11R6/Iib64 xhello.c -0 xhello64 -1X11
lusr/lib64/gcc-lib/x86_64-suse-linux/3.3/../..1..1..1x86_64-suse-linux/bin/Id:
skipping incompatible /usr/X11R6/lib/libX11l.so when searching for -IX11
$ gcc -m32 -L /fusr/X11R6/lib -L /usr/X11R6/lib64 xhello.c -0 xhello32 -1X11
$ Idd ./xhello64 ./xhello32
Ixhello64:

libX11.5s0.6 => /usr/X11R6/lib64/libX11.s0.6 (0x0000002a9566b000)

libc.s0.6 => /lib64/libc.so0.6 (0x0000002a95852000)

libdl.so.2 => /lib64/libdl.s0.2 (0x0000002a95a94000)

/lib64/1d-linux-x86-64.s0.2 =>

Nlib64/1d-linux-x86-64.s0.2 (0x0000002a95556000)

Ixhello32:

libX11.s0.6 => /usr/X11R6/lib/libX11.s0.6 (0x40029000)

libc.so.6 => /lib/libc.s0.6 (0x400f8000)

libdl.so.2 => /lib/libdl.s0.2 (0x4022e000)

/lib/ld-linux.so0.2 => /lib/ld-linux.s0.2 (0x40000000)

Figure 1: Example Compile Sessions on AMD64

a short list of these options for the GNU binu- versions of a library are installed that have a
tils in table 2. The user can inquiry most of different interface? For example, the 64-bit li-
these options directly with callingcc -v to  brary could be an older version than the 32-bit
print out the commands issued by the compilerlibrary and the newer version has changed data
types or signatures of functions. Since there is
only one include directory for all ABIs (there is
3.3.4 Caveat: Include Files for Multi-Arch ~ No/usr/include64 "), the system adminis-
Compilation trator has to take care that installed header files
are correct for all ABIs and libraries. In the

h for diff worst case the include file has to include sup-
The support for different ABIS on one systems,, 4 ¢+ each ABI using preprocessor condi-

has one problem: What happens if diﬁeremtionals. As an example, the GNU C Library has

the linkerld will not produce correct C++ binaries if qglte afew kernel depepdent mterfaces_that are
not called with the right set of options which GCC doesc_“frerent between architectures. The include
automatically. files for e.g. AMD64 therefore have—where
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Tool Option for 32-bit code

AMDG64 Sparc64 zSeries
ar No option needed
as --32 -32 -m31
gcc,g++,... -m32 -m32 -m31
Id -m elf i386 -m elf32_sparc -m elf_s390
nm No option needed
strip No option needed

Table 2: Options for 32-bit Code Generation on 64-bit Architectures

necessary—constructs like the following (from3.3.6 Changing the Personality
<bits/fcntl.h >):

#include<bits/wordsize.h> The output ofuname -m is used by e.g.

[.] configure  to check for which architecture
#"if WORDSIZE == 64 to build. This can cause problems if you build
4 define O LARGEEILE 0 on a 64-bit system for the corresponding 32-bit
# else - architecture since thatonfigure  might de-

4 define O LARGEEILE 0100000 cide that this is a cross-compilation instead of
# endif - a native compilation. For such cases the out-

put of uname -m, the so called personality,

can be changed with a special system call. The
3.3.5 Debugging personality is inherited by children from their

parents. There exists a user space program to

The GNU Debugger (gdb) is currently getting gza;r\l&%gllea?rsonahty and it can be used e.g.

enhanced to be able to debug a number of dif-

ferent architectures and ABIs. So, in the future,

we could have a GDB that debugs all bina-

ries that can run on one architecture, e.g. both

32-bit x86 and 64-bit programs on AMD64 $ uname -m
systems. Currently this is not possible andX86__64
therefore a separate debugger has to be uséy linux32 bash
for every ABI. For example, SUSE Linux on $ uname -m
AMD64, has agdb binary to debug AMD64 1686
programs and @db32 binary for x86 pro-

grams.

The system tracestrace  has on some archi- 5 create a shell with changed personality for
tectures, e.g. AMD64 and Sparc64 already the,,iiher development.

capability to trace both 32-bit and 64-bit pro-

grams. On other systems both a 32-bit and &he name of the user space program is differ-
64-bit version needs to be put in place with dif-ent on different architectures, the following list
ferent names. contains those names that we are aware of:
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Architecture Personality Tool » Usage of the same functions: The set of
AMD64 linux32 functions is the same in general. Only a
PowerPC64 powerpc32 few functions are architecture specific and
Sparc64 sparc32 those are needed in general to access hard-
zSeries s390 ware which is platform specific.

» A different layout of structures: The C Li-
brary implements the different processor
specific ABIs and therefore structures can
have different length and members.

3.4 Development

So, with the complete toolchain supporting dif-
ferent ABIs, it is now possible to develop both
64-bit and 32-bit programs on one machine.
Instead of having two machines heating thelherefore a program that is written portable,
room, a developer can use only a 64-bit boxwithout reference to platform specific features,

as development machine and still produce andn general can be easily ported from on plat-
test 32-bit code. form to the other, e.g. from 32-bit to 64-bit.

To develop 32-bit code on an AMD64 system,Each .platform has its own special “features,”
the developer has to add the32 optiontothe Mmeaning that some non-portable code works on

compiler flags, no other changes are needed iflll platforms except one. Keeping these prob-
general. lems in mind helps writing portable code and

eases debugging of non-portable code.
For the development of native 64-bit AMD64

code on the same machine, the only chang®ost of the problems arise in C and therefore
might be to change the library path if anotherthis language is used everywhere in this paper.
library path as/usr/lib64 is used. Itis Some of these problems might not arise in C++
even safe to give both the 32-bit and the 64Since C++ has some stricter rules.

bit path, the linker will find the right library . .
directly (but emit warnings) as shown in figure The general problem is that sizes of fundamen-

1 tal types on different platforms, and especially
' between 32-bit and 64-bit platforms, are differ-

_ _ _ _ ent and therefore not all types are interchange-
4 64-bit Porting: Hints and Pitfalls  able.

Porting to a 64-bit system is not a problem4.1 “Portable” x86/AMD64 Inline Assembler
for portable programs. Unfortunately most

programs are not really portable and thereforerhere are some things that can not be done
need to be changed to run correctly on anotheportably in general. One issue is inline assem-
platform. bler. For processors from the same family, like

x86 and AMD64 processors, often assembler
code can be shared. But this is not possible be-
tween different architectures.

The porting effort on GNU/Linux platforms is
lower than e.g. between Unix and GNU/Linux
since all GNU/Linux platforms use the GNU C
Library. The C Library tries to use a common A small example for inline assembler on x86
implementation and headers for all platformsand AMD64 is the following function:

which eases portability. Using the same C Li-

brary cross platforms means: ¥ ffs -- find first set bit in a
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word, counted from least
significant end. */
int
__ffs (int x)
{ .
int cnt, tmp;
/* Count low bits in X; store in
%1.*/
asm ("bsfl %2,%0\n"
"cmovel %1,%0\n"
/* If number was zero, return
-1/
"=&r" (cnt), "=r" (tmp)
Drmt o (x), "1 (1),
return cnt + 1;

}

This would be compiled by GCC for x86 to:

mov $Oxffffffff, Yoeax
mov %eax,%edx
bsf 0x4(%esp),%ecx

cmove %edx,%ecx
mov %ecx,%eax
inc %eax

ret

The assembler for AMDG64 looks like this:

mov $Oxfffffff, Yoeax
mov %eax,%edx
bsf %edi,%ecx
cmove %edx,%ecx
mov %ecx,%eax
inc %eax

ret

This example worked fine sincat is 32-

Using the inline assembler in that function
made it possible for the developer to ignore the
different passing conventions in this example.
For x86 the parameter is passed on the stack
(Ox4(%esp) ) and for AMDG64 in the lower 32
bits of registeRDI (%edi).

4.2 Sizes and Alignment of Fundamental
Datatypes and Structure Layout

On 64-bit platforms pointers and the type
long have a size of 64 bits while the type
int uses 32 bits. This scheme is known as the
LP64 model and is used by all 64-bit UNIX
ports. A 32-bit platform uses the so-called
ILP32 model: int , long and pointers are
32 bits.

The differences in sizes (in bytes) between the
32-bit x86 and the 64-bit AMD64 are summa-
rized in the following table:

Type i386 AMD64
long 4 8
pointer 4 8

long double 12 16

Besides the different sizes of fundamental
types, different ABIs specify also different
alignments. Adouble variable, for example,
is aligned on x86 to 4 bytes but aligned to 8
bytes on AMD64 despite having the same size
of 8 bytes. Structures will therefore have a dif-
ferent layout on different platforms. Addition-
ally some members of structures might be in
a different order or the newer architecture has
additional members that could not have been
added to the older one.

bit on both x86 and AMD64 and the same in-It is therefore important not to hard code any

structions can be used. For datatypesg

this scheme cannot be used since it's 32-bit osizeof

x86 and 64-bit on AMD64. The size édng

long is 64-bit on both architectures but sinceoffsetof

sizes and offsets. Instead the C operator
has to be used to inquire sizes of both
fundamental and complex types. The macro
is available to get the offsets of

AMDG64 has 64-bit registers code can be writ-structure members from the beginning of the

ten that is more efficient.

structure.
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4.2.1 int vs.long or memcpy() are used without a prototype,
the resulting binary might break because of:

Since the sizes aht andlong are the same

on a 32-bit platforms, programmers have of-malloc()  The return value is a 32-bit entity

ten been lazy and usedt andlong inter- and therefore only half of the bits of the

changeably. But this will not work anymore returned address might be stored in the

with 64-bit systems whertong has a larger variable that holds the return value mak-

size thanint . ing the pointer invalid.

A few examples: memcpy() The first two arguments are point-

ers that take the source and target address.
 Due to its size a pointer does not fit into a If, instead of the 64-bit pointers, only the

variable of typent . It fits on Unix into lower 32 bits are passed taemcpy() ,
along variable but thentptr_t type the function will access random memory
from ISO C99 is the better choice. (note this can only happen if the pointer

_ has been assigned to a variablewf and
* Untyped integral constants are of type that variable is used for passing).
(unsigned)int . This might lead to un-

expected truncation, e.g. in the following

snippet of non-portable code: 4.4 Variable Argument Lists

long t = 1 << a; The problem with variable argument lists is the

same problem as with missing function proto-
On both a 32-bit and a 64-bit system thetypes: At the call side an argument is passed to
maximal value for a can be 31, since thea function but the function expects an argument
type ofl<<aisint . To get a shift done of a different size.

in 64-bit (along calculation),1L has to _ . o
be used. If you pass in a 32-bit value, it is normally

passed in 64-bit registers or on the stack as 64-
 The type of identifiers of an enumera- hit value. The question now is what to do with
tion is implementation defined but all con- the unused 32 bits? The 32-bit value can be
stants get the same type. GCC by defaulyzero-extended so that the unused bits are all
gives them typent , unless any of the zero, it can be sign-extended giving all zeros
enumeration constants needs a larger typeér all ones, and it can be left unspecified (as on
AMDG64). If the called function expects now
4.3 Function Prototypes a 64-bit value where it gets a 32-bit value, the
function might not work as expected.

If a function is called in C without function
prototypes, the return valueirg —and that’s

a 32-bit type on all 64-bit Linux platforms.
For arguments the integer promotions are per- < If you pass 32-bit values, like variables of
formed and arguments of tyflwat  are pro- typeint , the called function has to take
moted todouble . out 32-bit values.

The important rules are:

Such a missing prototype can easily lead to a < If the function expects 64-bit values, like
segmentation fault. For examplenifalloc() long or pointers, the caller has to pass
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64-bit values. Note thd is not the same Construct function pointer from data address

as aNULL pointer since those have differ- This will fail since the GP register will
ent sizes. not be setup correctly.
Another topic is usage ofa_lists . You 4.6 Using Bitwidth-Dependent Types Portably

cannot copy variables of this type directly. This

works on those platforms that use a pointer tG5ome applications depend on specific sizes for
implementva_lists  but not on others. Use thejr datatypes. As has been mentioned before,

instead the function-like macna_copy . this cannot be done portably in general. 1SO
C99 introduced a new header fé&dint.h
4.5 Function Pointers that defines datatypes having specified widths

and a corresponding set of macros. The fol-
Often programmers assume that all pointersowing types are also specified:
have the same format but this is not guaranteed

by the ISO C standard. Exact-width integer types Signed  integer

On IPF, PA-RISC and PowerPC64 a pointer to ~ YPes of the formintN_t — (unsigned:
a function and a pointer to an object are repre- ~ UININ_t ) with width N are defined in
sented differently. For example on IPF, afunc- ~ 9eneral with widths 8, 16, 32, or 64. A
tion pointer points to a descriptor containing ~ N32_t is therefore a signed 32-bit
the function address and the value of the GP  INteger.

(global pointer, used with shared libraries) reg-Minimum-width integer types The  types

Ister: int_leastN t for signed and
uint_leastN t for unsigned in-
struct ia64_fdesc { tegers with a width of at least N bits are
uinté4_t func; defined. The widths 8, 16, 32 and 64 are
uinté4_t gp; required to be supported.
b Fastest Minimum-width integer types The
types int_fastN _t for signed and
The GP register needs to be set with the right  yint_fastN_t for unsigned integers
value before calling any function. with width at least N bits are defined as

types that are usually the fastest of all
integer types having at least this width.
Width of 8, 16, 32 and 64 are required to
be supported.

This means the following should not be done
in a portable program:

Compare function pointers Since there can
be more than one descriptor for any func-Integer types holding pointers The integer

tion, different function pointers for the typesintptr_t and uintptr_t can
same function will have different values. hold a pointer, a conversion between
pointer and this integer type is always
Locate function The function pointer will not possible.

point directly to the function, so it cannot
be used easily to find the actual code ofGreatest-width integer types The  integer
the function. typesintmax_t anduintmax_t hold
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any value of any signed/unsigned integerfoo; creates an unsigned variable on some

type. platforms but a signed one on others. If you
use variables of typehar as small integers,

Note that an 1ISO C99 implementation does noyou should specify whether you need a signed

need to implement all of these types. The GNUor an unsigned type. Also comparisons with

C Library implements all of them for all plat- char variables should take this into account,
forms. the following code snippet will not give the de-

- sired outcome ithar is unsigned:
In addition to these types a number of macros

are defined to give the limits of the types. char ¢

Inclusion of the headenttypes.h defines 1f (¢ < 0) i

additional macros for format specifiers both for ~ PUts("Non-ascii character”);

printt  andscanf forthese types, and some

conversion functions liketrtoimax . During compilation GCC should generate
the warning Warning: comparison

s always false due to limited

range of data type ”

An example of the usage of the types and th
format specifier for printing is:

Z:gg:ﬁgg jsr;g?gpﬁim Platforms with an unsigned char type are both
int ' 32-bit and 64-bit versions of S390 and Pow-
main (void) { erPC. GCC has the optiorisigned-char

intmax_t u = INTMAX_MAX; and -funsigned-char to change the

printf("The largest signed integer" Signedness of typd’]ar )

" is: %" PRIIMAX "\n", u);

return O; . . . . .
} 4.9 Evaluation of Floating-Point Arithmetic
4.7 Usingprintf  and scanf A common confusion happens when suddenly

algorithms using floating-point arithmetic give
ISO C99 introduced a few new format speci-different results. The IEEE754 standard de-
fiers to allow printing and scanning of certain fines that the basic operations have to be ex-

types that might have architecture dependentq gyt nevertheless, results might vary be-
size. These ar&pfor printing a pointer value ) '
tween architectures.

and theoZsize modifier for arguments of type

i A le: . ,
size_t N exampie The problem happens with operations of type

float anddouble since on the popular x86

void *n; architecture these operations are evaluated in
printf("p has value %p and " the x87 FPU inong double precision. The
"size %Zd\n", p, sizeof(p)); compiler might choose to leave intermediate
results (with a type ofong double ) in the
4.8 Unsigned and Signed Chars x87 FPU or convert them back to the target

type. Depending when this conversion hap-
The ISO C Standard does not define the signedsens, different rounding errors occur.
ness of the typehar .2 A definition likechar

— _ o A small example to show the differences is:
3Note that this is not a 64-bit problem but it is one

of those differences you'll notice when porting and is therefore worth mentioning.
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#include <stdio.h> -1 Indeterminable.

int

main (void)

{ This problem with different results due to the
float b, c: evaluation of floating-point arithmetic is not a

genuine 64-bit problem but a problem between

b =1/ 3.0f x86 code and all other platforms and therefore
c=b * 30f - 1.0f might hit developers porting from x86 to other
printf ("c: %.20An", c); platforms, e.g. to AMD64.
return O;

} 4.10 Shared Libraries

Compiling and executing this program on anMost architectures have the constraint that
Linux/AMD64 system gives different results shared libraries need to be compiled as PIC-

between 32-bit x86 and 64-bit binaries: code using thefPIC  switch to GCC. Even
for those architectures that allow it, like x86, it

$ gcc t.c -m32 -0 t32 is not desirable to do so since a shared library

$ gcc t.c -0 t64 should live once in the memory and get then

$ /32 shared by all applications using it. But non-

c: 0.00000002980232238770 PIC code cannot be shared.

i;: IQ%AE)OOOOOOOOOOOOOOOOOO Architec_tures_ th_at force to usdPIC for
shared libraries include AMD64, IPF, and PA-
RISC.

Note that the example gives the same results if
compiled with optimization since without opti-
mizationb is stored in memory as tygkoat

but with optimizationb is left in the FPU.

411 How to Check for 64-bit?

, Starting with GCC 3.4all LP64 platforms will
ISO C99 defines  the MACIO define the macros LP64  and_LP64 that
FLT_EVAL_METHOUDOor this in the header cqn pe ysed e.g. in preprocessor defines. Ear-

<floath . lItis setto: lier GCC releases define this macro only on
a few platforms or OSes. For GCC 3.2 and
0 If evaluation is done with the range and pre-3.3, the macros are defined on NetBSD, for
cision of the type. This is the value on IPF (every OS), for PA-RISC (every OS) and

nearly all Linux systems. for AMD64 running Linux (starting with GCC

. . 3.2.3).
1 If evaluation of expressions of tydoat )

anddouble is done to the range and pre- In general it is possible to check for 64-bit with

cision ofdouble and oflong double the architecture builtins of GCC, e.g. with:
to the range and precision dbng
double .

#if defined(__alpha_ )\

. . [|defined(__ia64 )\
2 If all evaluations is done to the range and l[defined(_ppc64. )\

precision of typelong double . This ||defined(__s390x_ )\
is the value on Linux/x86. ||defined(__x86_64 )
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but this needs to be enhanced for each new 6450me developers decide to override the C Li-
bit platform. The better solution is to write brary functions and write their own optimized
portable code that does not need to check formplementation. This works fine for one sys-
architecture details. tem consisting of a specific CPU, a specific C
Library and GCC version. But going to another
4.12 Optimized Functions, Macros, and architecture, better optimizations might be pos-
Builtins sible, e.g. reading 8 bytes at once instead of 4
in strlen , or current code is penalized, e.g.

The GNU Compiler Collection uses the samedlignment is mandatory for 8 byte access.

?hp(-,flrrr?lgfsotnie?jn'nalll'glearg?m:msa bSUtaign:)?hg:SSo, instead of writing something just for one

u N drierent way o program, it should be done in a generic way in
need help from the architecture specific back-GCC or glibc so that all programs can benefit
end. One area were this occurs especially arg o one optimization

builtin functions.

A number of functions in Glibc are written in
hand-optimized assembler for some architec-
tures and where this is not done, a good C im-
plementation is used. On AMD64 the com-
As builtin in GCC The compiler can detect piler has builtins for the common string func-
that e.g. the arguments w&trlen  are tions and also for some mathematical functions
constant and evaluate the function atand usesthem depending on the arguments and
compile time. It can also optimize enabled compiler optimizations, e.gs dis-
the function to an inline function and abled most builtins since they would increase
do a loop instead of calling the ex- size.

ternal strlen function. This can ) ) )
be disabled with-fno-builtin or The pitfalls regarding porting here are that a
_fno-builtin- function . programs does optimizations that are not valid

for a new architecture or does not expect that a

As macro in Glibc The C Library imple- function might be implemented as a macro or

ments a number of functions as macrosbuiltin.

The string inline functions can be disabled

with a definition of __NO_STRING_ 4.13 Useful Compiler Flags

INLINES , some of them are only en-

abled if __ USE_STRING_INLINES is  An incomplete list of GCC compiler flags that

passed. For details check the heademight be useful for porting code:

/usr/include/string.h directly.

Inlining of mathematical functions can

be disabled by defining NO _MATH_

INLINES . Also it is allowed to disable a

specific macro likefundef strlen . -W Enables additional warnings. Some of
them are hard to avoid so this might not
be useful for all code.

A function like strlen  can be implemented
in the following ways:

-Wall Enables a number of default warnings,
should be used for all code

As function in Glibc 1SO C99 forces to im-
plement all required functions as func-
tions. Therefore for examplstrlen -Wmissing-prototypes Warn about missing
will always be in the C Library. prototypes, this is especially important for
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64-bit ports. [Opteron] Software Optimization Guide for
the AMD Opteron™ ProcessprAMD
5 Conclusion (2003).

[AMDG64-PSABI] UNIX System V Application
Despite the different problems we encountered Binary Interface; AMDG64 Architecture

at SUSE while porting to the various 64-bit Processor Supplement, DrafEd. J. Hu-
platforms (first for Alpha, later for IPF, zSeries, bicka, A. Jaeger, M. Mitchell)http:
AMDG64 and PowerPC64), the number of pack- Ihwww.x86-64.0rg , (2003)

ages with actual problems is getting smaller

and smaller since code has less platform spdi386-ABI] UNIX System V Application Bi-

cific assumptions and is more portable. nary Interface; IA-32 Architecture Pro-
cessor Supplemerintel (2000).
Also development of the toolchain has been

improved recently and there is more focus orllSOC99] Programming Languages—C
creating bi-arch toolchains to allow compila- ISO/IEC 9899:1999 (1999)

tion for different ABIs on one system. [IEEE754] IEEE Standard for Bi-

| hope that the problems mentioned and ex- hary  Floating-Point  Arithmetic
plained will help further in writing portable and ANSI/IEEE754-1985 (1985).

efficient code. [JH] Porting GCC to the AMDG64 Architecture
Jan Hubtka, GCC Summit (2003).
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Abstract extreme portability, stability, and because it is
able to compile and optimize several popular

This paper presents a design and impleSOUrce languages (C,'C, Java, etc) to each
mentation of a whole-program interprocedu-tarQEt- Unfortu_nately: despite the success _of
ral optimizer built in the GCC framework. the GCC compiler suite as a whole, the opti-
Through the introduction of a new Ianguage-mization infrastructure is still not competitive
independent intermediate representation, wi'ith commercial compilers.

extend the current GCC architecture to includeoVer the years, the GCC optimizer has evolved

a p0\_/verful mid-level optimi_zer and a_dd_ Iin_k- from compiling a statement at a time, to com-
time interprocedural analysis and optlmlzatlonpiling and optimizing entire functions at a time,

_capabilities. This intermediate representation iha (still very new) support for unit-at-a-time
is an SSA-based, low-level, strongly-typed, ompijation (compiling and optimizing all of

representation which is designed to SUPPOrtye fnctions in a translation unit together). As
both efficient global optimizations and high- the scope for analysis and optimizations in-
level analyses. Because most of the Prografdieases, the compiler is better able to reduce

is available at link-time, aggressive “whole- y,q {ime and space requirements for the gener-
program” optimizations and analyses are possizeq code

ble, improving the time and space requirements

of compiled programs. The final proposed or-This paper proposes the next logical step for
ganization of GCC retains the important fea-the GCC optimizer: extend it to be able to
tures which make it successful today, requiresanalyze and optimizerhole programsat link-
almost no modification to either the front- or time!, enabling new optimizations and making
back-ends of GCC, and is completely compatexisting analyses and optimizations more pow-

ible with user makefiles. erful. For example:
« inlining across translation units
1 Introduction  whole-program alias analysis

* interprocedural register allocation

The GNU Compiler Collection (GCC) [15]is  * interprocedural constant propagation
in many ways the centerpiece of the Free Soft- « data layout optimizations

ware movement. It supports several source lan- , ey ception handling space optimizations
guages and a plethora of back-ends for various 1o capability would be optional and could be en-

targets, providing a unified target for free soft-apjed only when the program is compiled at the4”
ware. GCC has been successful because of itsvel of optimization, for example.
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* sorting initializer priorities at link-time project will be useful to the GCC community,
and are willing to contribute as much code to

mization are to enable powerful transforma-aré planning to have our first public release of
tions while keeping compile times reasonable -LYM, with aliberal license, in the Summer of
and to keep the user-visible development pro2003. However, LLVM will only be discussed

cess unchanged (e.g. user makefiles). wherl it helps c_Iarify the_ id_eas in the proposed
architecture, this paper is intended to be a GCC

The architecture that we propose is based on paper, not an LLVM paper.

new language-independent low-level code rep- _ _ _
resentation that preserves important type in1his paper is organized as follows: Section 2

a low-level, SSA-based representation allowdn detail, including modifications that would
the compiler to perform a variety of optimiza- need to be made to the GCC infrastructure.

tions at compile time, off-loading work from Section 3 describes important aspects of the
the link-time optimizer. However, the link- proposed intermediate representation for the
time optimizer can only perform meaningful SyStém. Section 4 describes LLVM, our ex-

optimizations on the program if it has enough!Sting implementation of the proposed design.
high-level information about the program to Section 5 describes other work related to the

prove that aggressive optimizations are safeProposed design, and Section 6 wraps up the

Because of this, the low-level code represenPaper.

tation is typed (using a language-independent

_construc_tlve type system) and directly exposes High-Level Compiler Architec-
information about structure and array accesses

to the optimizer. ture

The link-time optimizer is designed to c:ombine-l-he proposed high-level architecture is illus-

the tran_slation units of a program _tog_ether anqrated in Figure 1. The essential aspect of this
do the final whole-program optimization. Af-_ design is that it separates the curreat pro-

ter the program is optimized, machine code iSya 1 into two components: a front-end com-
generated at |_|nk-t|me for the _entlre PrograMpiiar and an optimizing linker. The front-

at once, allowing a \_/an_ety of mterproceduralend retains all of the responsibilities of current
low-level code optimizations to be performed. GCC front-ends (preprocessing, lexical anal-

The Low-Level Virtual Machine (LLVM) [10] YSIS: parsing, semantic analysis, etc..) and
is an implementation of the architecture angShould work unmodified in the new system.

intermediate representation [11] described irf\ftér €ach function is parsed and checked

this paper, which allows us to be more Con_for semantic errors it is “expanded” from the

crete when describing aspects of the designlf€€” representation to the new language-

This system has served as the host for seydépendent intermediate representation (de-
eral research projects [7, 13, 12] which requireSC”bEd in Section 3). Once the entire trans-

whole-program information as well as a host'@lion unit has been translated (and if no er-
for a variety of traditional compiler optimiza- OrS have occurred), a standard set of mid-level

tions. optimizations are performed on the translated
module. After these optimizations are finished,
We hope that the lessons learned by the LLVMa “.0 ” file is emitted which contains IR assem-



GCC Developers Summit 2003 « 123
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Figure 1: High-Level Compiler Architecture for Whole-Program Optimization

bly code for the representation. in the IR format are present, the entire invoca-

o o . tion of the optimizing linker is skipped.
When the optimizing linker is invoked, it reads

in all of the translated IR files and any li- Another important aspect of the design is how
braries compiled to the intermediate representhe compiler works when whole-program opti-
tation. It links these files together into a single-mization is not enabled. If not enabled, each
file representation of the program, on which ittranslation unit is either compiled a function at
can run whole-program analyses and optimizaa time or a unit at a time (depending on the
tions. Finally, once these analyses and transsetting of the-funit-at-a-time switch),
formations are complete, the GCC back-end ishrough the mid-level optimizer, RTL expan-
invoked to expand the intermediate represension, and code generation phases of the com-
tation into RTL and use the configured targetpiler. This produces a natiyg file, which can
description to produce a native file. be processed with the standard system assem-

L ) bler and linker, as before.
After the optimizing linker produces a na-

tive .s file, the compilation process proceedsFor this approach to be feasible, a large amount
through the standard system assembler andf code must be shared between the optimiz-
linker (to resolve any symbols in libraries thating linker and the compiler front-ends. This

were not available in the IR form), finally pro- can either be accomplished through the use

ducing a native executable. of libraries that are shared between the two
(which would contain the existing GCC back-
2.1 Compatibility and Implementation end, and any shared optimizations on the IR),

or by making both logical pieces be part of the

One of the key features of this design is that jtS@me binary. In either case, the actual orga-

link” models of compilation, and is thus fully Nothave to change in any substantial way.
compatible with existing makefiles. In order

to provide this compatibility, the link phase 2.2 Architectural Issues Affecting Perfor-
of the gcc compiler driver is extended to in- mance

voke the optimizing linker and system assem-

bler (if necessary) during the standard link stedn addition to providing the desired functional-
of the compile process. In this way, any inputity and compatibility with existing systems, it
files that are in the IR format are automaticallyis crucial that the compiler does not slow down
linked together and optimized without interfer- unacceptably — even if whole-program opti-
ing with the compilation and linking of stan- mization is only enabled aD4. In practical
dard translation units and libraries. If no filesterms, this design addresses the issue by per-
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forming as much optimization as possible atSSA-based, strongly-typed representation as
compile time. the sole representation used for the mid-level

) o _ and link-time optimizers. This representation
Any time a source file is changed, it must be re45 5 first-class assembly language, which in-

compiled and the application must be relinked ¢, ges all of the information necessary to rep-

In order to reduce the amount of work that Mustesent the program (and is in fact directly inter-
be done, this design allows most traditional 0pyretaple). Concrete details of the representa-

timizations to be performed in the compiler 5 ysed by LLVM are included in Section 3.2.
front-end stage, rather than requiring all opti-

mization to occur at the link stage (as is com-Using a low-level three-address code represen-
mon for whole-program optimizers). Becausetation based on Static Single Assignment [6]
most aggressive scalar optimizations are perform enables the direct application of many
formed at compile-time, they would not needwell-known and efficient global optimizations.
to be rerun at link time, reducing the time for SSA form permitssparseoptimizations that
compilation. Of course, the compiler perfor- do not, in general, require bit-vector data-flow
mance issue does not even arise unless the usamalysis to compute results. Using a three-
is modifying the program and recompiling at address code representation (as opposed to
-04. an tree structured representation) also makes
transformations easy to develop and reason

Optionally with this design, the compiler could 4t

try to minimize the amount of recompilation
necessary when a change occurs by keepinglany transformations need information about
track of which interprocedural information is the high-level behavior of the program to be
used to modify functions in other translation effective. In order to preserve this informa-
units, building a dependence graph betweetion, we propose that the representation main-
the modules [4]. In practice, however, thistain a strong (but language-neutral) type sys-
would make the compiler much more compli- tem, which captures information about pointer,
cated and prone to subtle bugs that are hard tstructure, and array accesses in the program.
reproduce. We feel that although the cost of reWorking with the LLVM system we find that
compilation is still fairly substantial in our sys- this type information allows for a variety of
tem (native code must be regenerated for théigh-level analyses and transformations [7, 13,
entire application), that the extra complexity 12] while the nature of the low-level repre-
introduced into the compiler must be weighedsentation makes it very easy to manipulate.
against the recompilation time penalties, andAnother advantage of type information is that
thus may be impractical. it makes detecting and understanding bugs in
transformations much easier.

3 Code Representation The goal of the program representation is to en-
able as many different types of optimizations

as possible. Because of this, it is important that
The representation used to analyze and manifthe representation be able to represghparts
ulate the program determines what kinds ofof a program (including global variables, and
transformations are possible and when in thdile scopeasm statements, for example) in a
compilation process they must be performed tdorm that allows transformations to modify it.
be successful. As mentioned earlier, we proAnother useful feature of the representation is
pose using a language-independent, low-level,
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a stable textual format (“assembly language”)LLVM uses a simple constructive type system
that can be read and written by the compilercomposed of primitive types, structures, ar-
Given this, it is trivial to write unit tests for rays, and pointers. Although this is a very sim-
transformations and to debug transformationgle type system, we believe that it contains the
in isolation from the rest of the compiler, and key features necessary for a front-end to lower
the representation can be directly interpretecny high-level type onto it. For example, the
for immediate feedback on a transformation. LLVM C ** front-end lowers classes with in-
heritance into nested structure types. Types are
3.1 Performance Aspects of the Representation very important in the LLVM system, and ev-
erything that can be used as an operand to an

Once the optimizing linker brings together theinstruction has a type.

compiled program into one module, the " Eunctions in LLVM contain a list of basic

terprocedural analysis and optimization pa‘“:’seglocks and each basic block contains a list of

are used to improve the program. Because . : .
b prograr Instructions. LLVM has only 29 instructions,
these passes operate on the entire program at. . : . )
o . which include standard instructions lilead ,
once, however, the efficiency of each analysis o :
T : Xor , set cc, etc and hi instruction for rep-

or optimization is critical. For this reason, sev- .
) . resenting SSA forf Intraprocedural control

eral aspects of the representation are desngm?

. L ow in LLVM is very simple (consisting of
to make these transformations as efficient as . N
possible. conditional branches, unconditional branches,

and theswitch instruction).

In particular, the use of an SSA-based rep-

. . Everything in LLVM is explicit: there are no
resentation allows for efficient, sparse, global . o
o .. . fall-through branches, all address arithmetic is
optimizations, and can make flow-sensitivity

: . exposed (at the level of structures, pointers,
much less important in many analyses (reduc-

ing cost substantially). In addition, the three-anOI arrays), and all references to memory use

. theload andstore instructions. This makes
address code representation has a small merﬂj-e language more uniform and simple to ana-
ory footprint and simple memory ownership lyze and transform

semantics (eliminating the need for it to live on

a garbage collected heap). In our experiencghe getelementptr  instruction in LLVM
with LLVM, code optimizers for a sparse rep- provides the mechanism for structured address
resentation can be several times faster than oRgithmeti®. The getelementptr instruc-
timizations on a dense representation like RTLnon is exacﬂy ana|ogous to sequences of ar-
ray subscript and structure index expressions,
3.2 AConcrete LLVM Example returning the address of the last element in-
dexed. For example, thétmp.1 instruction
Figure 2 gives an example of a C functionin Figure 2(b) firstindexes into th#" element
and the corresponding LLVM module it com-
piles to. The example shows several important 255 ¢-nodes are eliminated during the register al-
aspects of the LLVM representation. In par-location phase of native code generation.
ticular, it gives a simple example of the type 3LLVM code can also cast a pointer to an integer
system, basic instruction flavor, and demon_type, ad_d an arbitrary offset to it, Fhen ga;t it back to a
strates some instructions. More details abou?mz\ter, if unstructlljred.address arithmetic is necessary.
) : The example in Figure 2(a) uses the strange syn-
the LLVM representation can be found in theax T[0].x " instead of using the equivalerf>x ' to
LLVM language reference [11]. make the correspondence more clear.
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typedef struct QuadTree {

double Data;

struct QuadTree %struct.QuadTree = type { double, [4 x %QT*] }

*Children[4]; %QT = type %struct.QuadTree
} QT void %Sum3rdChildren(%QT* %T, double* %Result) {
entry: %V = alloca double i %V is type ’'double*

) ) %tmp.0 = seteq %QT* %T, null ;; type ’'bool

void Sum3rdChildren(QT T, br bool %tmp.0, label %endif, label %else

double xResult) { . . .
else: ;;tmp.1 = &T[0].Children[3] ’Children’ = Field #1

double Ret; %tmp.1 = getelementptr %QT* %T, long 0, ubyte 1, long 3
call void %Sum3rdChildren(%QT* %Child3, double* %V)

} else { %tmp.2 = load double* %V

QT *Child3 = %tmp.3 = getelementptr %QT* %T, long 0, ubyte O

%tmp.4 = load double* %tmp.3
T[O].Children[3]; %tmp.5 = add double %tmp.2, %tmp.4
double V: br label %endif
Sum3rdChildren(Child3, endif: %Ret = phi double [ %tmp.5, %else ], [ 0.0, %entry ]
&v): store double %Ret, double* %Result
' ret void ;; Return with no value

Ret = V + T[0].Data; }
}
xResult = Ret; (b) Corresponding LLVM code

(a) Example function

Figure 2. C and LLVM code for a function

from the pointer, then into the" structure ele- possible to take the address of a virtual register,
ment (the “Children” member), then into the stack memory must be explicitly allocated with
3r? element of the array. Structured addresshe alloca instructior?, and any references
arithmetic exposes the necessary high-level into V must usdoad andstore instructions.
formation about structure and array accesseshis dramatically simplified def-use chain con-
directly to analyses and transformations whichstruction for virtual registers, which would oth-
need it. erwise require some form of alias-analysis to

_ construct.
One important aspect of the LLVM language

is that all references to memory happen withA final example illustrating how LLVM simpli-
load andstore instructions, and that there fies the development of transformations is the
is no “address-of” operation. In LLVM, all ob- operators that it lacks. In particular, LLVM
jects which live in memory (global variables, does not have (or need) any unary operators
functions, the heap, and the stack) are explicer a copy instruction. Instead of providing the
itly allocated and exposed by their address, nostandard negate and bitwise complement unary
their value. In Figure 2, for example, thé operators, LLVM represents these with stan-
variable is required to live in memory so that its o . .
address may be passed into a recursive invoca- SWhen the back-end is invoked, all fixed sized

. . e alloca s in the entry block are treated the same as
tion of Sum3rdChildren . Because it is im- address-exposed automatic variables.
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dard binary operators where one operand is atc.) during compilation. These routines
constant (heg x”="sub 0, x ”and “not build up an LLVM version of the translation
x"=*xor X, -1 7). Thisreduces the depen- unit, which is then written to the.§ ” file
dence on a “canonical form” for the representaall at once (allowing “unit-at-a-time” style
tion and simply reduces the number of instructransformations to be performed from within
tions that need to be handled. GCC in the future).

The lack of a copy instruction is possible Instead of modifying thecl binary to inter-
through the use of SSA form, and because defface directly to the LLVM optimizations writ-
use chains are trivially computed and alwaysen in C"*, ccl directly emits the expanded
available. Any time a copy instruction would code without any optimization at all. When
be inserted (to replace a redundant computahe gcc compiler driver invokes the “assem-
tion for example) it is sufficient to replace any bler”, we actually have it invoke a program
uses of the destination with uses of the sourcealledgccas which parses the LLVM assem-
operand (by following the def-use chains), im-bly file, runs a series of LLVM optimizers on
plicitly performing copy propagation automat- it, then emits a compressed bytecode file (the
ically. This simple feature has actually avoided.o file). The interface t@ccas is intention-
several phase-ordering issues that would otheglly designed to be identical to the interface of
wise require unnecessary passes over the repréite standard systeas tool, to avoid having to
sentation to do copy propagation between othemake changes to spec files.

passes. o
When the user (or a makefile) links the pro-

_ gram using ourgcc compiler driver, it in-
4 LLVM Compiler Infrastructure vokes ourgccld  tool. This tool reads theo
files specified, links in the appropriate byte-

The LLVM Compiler Infrastructure [10] cur- code files from anya files, and then runs a

rently consists of approximately 130,000 linesSeries of interpr(.)ce.dural optimizations on the
of C++ code and a the front-end, which is Program. At this time, we directly emit an

a patch against the mainline GCC CVS tree LLVM bytecode file for the entire program, in-

This code largely implements the design pre_stead of automatically invoking a native code
sented in this paper, although there are somgenerator.

differences. This section _describes these difOnce the program has been optimized and is
ferences, the implementation status of LLVM, gyqijapie in a single bytecode file, there are

some other features of LLVM that make Writ- goera| ways to execute the resultant program.

ing transformations s_impler, _and some insightsi_LV,vI provides a very slow (but portable) ref-

that we have had while working on LLVM. erence interpreter for bytecode files, a Sparc
V9 native code generator, a C back-end, and

4.1 Implementation Status a Just-In-Time (JIT) compiler for the I1A32 ar-
chitecture.

The LLVM C front-end is based on the main- o

line GCC CVS repository. It generates code” large number of LLVM optimizations and

by calling LLVM versions of functions that are @nalyses are available, including passes for:

equivalent to the RTL-expansion routines (e.g.

llvm_expand_expr , llvm_expand_ » Traditional SSA based optimizations:

function_start , make _decl_Ilvm ADCE, GCSE, LICM, PRE, SCCP, in-
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duction variable canonicalization, reasso-4.2 Differences from the Proposal
ciation, value numbering, register promo-

tion, etc. .. The biggest difference between the proposal
and the LLVM implementation is the lack of
an LLVM to RTL conversion pass. For our re-
search purposes, we use a C back-end, which
provides much of the same functionality as a

. full fledges RTL back-end, but is much slower.
post-dominator, and control dependenc

graph related analyses, interval construc-u ?Jr?);%ers;:cliat this component can be added
tion, natural loop construction, CFG sim- b ’

plification, path profiling instrumentation, another big difference between the current im-
etc.... plementation and the proposal is the interface
between theccl program and the mid-level
optimizer. For expediency of implementation
* Interprocedural analyses and transforma-
. : . we currently have the two tools as separate ex-
tions: call graph construction, several in- : ) )
. . ecutables, although this obviously incurs more
terprocedural alias analyses, global vari- 3
able meraina. dead alobal elimination. in- overhead than linking the two components to-
ging. 9 ' " gether. Once the subject of including Ccode

I|n|n_g, Data Structl_Jre Analy_3|s [13], auto- in GCC is better decided, we can look to re-
matic pool allocation [12], interprocedu-

solve this issue.
ral mod/ref, etc. ..

» Control Flow Graph based optimizations
and analyses: critical edge elimination,
loop canonicalization, various dominator,

4.3 Support for Developers

In addition to pure infrastructure, the LLVM One of the strengths of the LLVM infrastruc-
system also provides a large test suite. Théure is that it has some interesting utilities
three main sections of the test suite are théor constructing passes, finding bugs in those
regression tests (which contain thousands opasses, and building a compiler around a se-
tests for transformations and other tools), fealection of these passes. This strength is im-
ture tests (which demonstrate how instructiongortant for two reasons: it allows new people
and idioms are used in LLVM), and programto get into the system and get productive rel-
tests (which compile benchmarks and otheatively fast, and it also allows experienced de-
programs with the various code generators, envelopers to be more productive than they other-
suring that they produce code whose behaviowise would. The mostimportant features are: a
agrees with a native compiler). The LLVM strong consistency checker, a “pass manager,”
web site also hosts a variety of documentatiorand a tool we calbugpoint

describing aspects of the infrastructure. ) ) )
The LLVM infrastructure includes a stringent

LLVM is also still under development. In par- checker for LLVM code, which ensures that
ticular, the C* front-end is nearing comple- type relationships, SSA properties (e.g., all
tion (runtime library support for exception han- definitions dominates their uses), and other
dling is the major missing portion), Sparc V9 LLVM invariants haven’t been violated by a
support for the JIT is in development, and atransformation. This checker is automatically
system for runtime optimization of statically run after passes when in development mode
compiled binaries is in the research phases. to ensure that these passes are not corrupting
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the input for other passes that are run. Addigle function which is being miscompiled. The

tionally, when in development mode, an auto-bugpoint  tool is possible because of the

mated memory leak detector is automaticallynodularity of the pass manager and the abil-
enabled, which detects violations of the LLVM ity to read, write, and modify a representation
representation’s ownership model. This light-of whole programs.

weight checker is implemented using only a

few additions to constructors and destructors, 4 syrprises and Insights from LLVM

for the classes which make up the representa-

tion, no garbage collector is necessary. ) ,
Through the experience of developing LLVM,

The LLVM “Pass Manager’ provides a we have developed several insights which may
structured environment for passes to exbe useful to a broad audience. First, imple-
ecute in. Transformations in LLVM menting a type-safe linker for C is a non-
use a declarative syntax to indicatetrivial exercise. C programs often rely on im-
which other passes are prerequisites (e.golicit prototypes for called functions, or use
break-critical-edges ), which analy- prototypes that are blatantly wrong. We have
ses are required (e.g. natural loop informationglso seen cases where global data is declared
alias analysis, value numbering, interproceduto have different types in different translation
ral mod/ref info, etc.), and which analyses areunits (which, in practice, behaves similarly to
preserved or destroyed by the transformatiom COMMON block in FORTRAN). A normal
being run. This structured pass model makeginary linker does not typically have problems
it easier for developers to fit code into thewith these issues, but they must be handled ex-
system, and it also makes construction of toolglicitly with a type-safe linker. On the other
(e.g. gccas andgccld ) a simple matter hand, this information is often useful to the
of handling command-line arguments andprogrammer, like thelint " tool.

selecting a sequence of passes to run. _ _ ]
When performing interprocedural analysis,

bugpoint , another useful tool, is best de- having as much of the program available as
scribed as an “automated test-case reducerpossible increases the precision of the analy-
Given an LLVM program (or fragment) and a ses. For this reason, we have compiled several
list of passes to run, it attempts to reduce thedibraries to LLVM form that allow them to be
test-case (and list of passes) to the minimunanalyzed and optimized with the program. This
which still exposes a problerbugpoint can  has several interesting consequences: first, the
currently diagnose passes which crash/asselibrary code itself can be specialized and opti-
during optimization and passes which misop-mized with the program (for example, optimiz-
timize the program (by executing the resultanting gsort by inlining the comparison func-
program with a code generator, assuming a ddions, so indirect calls do not need to be used).
terministic progranf) If a test-case causes a Second, this dramatically reduces the need
pass to crashbugpoint is usually able to for ad-hoc annotations on functions indicating
reduce the test-case down to the few LLVM properties such abnst ” and “pure ”. In-
instructions and basic block which cause thestead, simple interprocedural analyses can be
problem. If a pass (or combination of passes)sed, which have the advantage of applying to
miscompiles the test-case, it can isolate a sindser code as well as the built-in functions.

6A third mode, for debugging back-end bugs, is Finally, we have found that investing in mak-
planned. ing the system easier to develop for, and de-
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Source wc -l GCC LLVM Pass Times # LLVM Pass xforms
Filename LOC |CSE1| IC | GER | GCSE| Sum IC | GER | GCSE
combine.c 11103| 0.70s | .431s| .027s| .141s | .599s| 16182 141 | 2734
expr.c 10747| 0.52s | .141s| .009s| .072s | .222s| 6540 41| 2870
cse.c 8779| 0.50s | .187s| .012s| .061s | .260s| 10925 59| 1894
reloadl.c 7117 | 0.37s | .058s| .008s| .034s | .100s|| 5735 86| 1830
c-decl.c 6968 | 0.42s | .022s| .005s| .031s | .058s| 3299 3| 2221
insn-recog.q 6957| 0.34s || .082s| .004s| .090s | .176s|| 5238 0 654
loop.c 6648| 0.33s || .013s| .001s| .003s | .017s| 1671 7 264
c-typeck.c 6604 | 0.46s || .028s| .005s| .026s | .059s| 4481 14| 1993

Table 1: Transformation timings for source files from the SPEC CPU2000 176.gcc benchmark

bug in, has been worth it. In particular, the average of 5 runs with thdtime-report
bugpoint tool can narrow down a test-caseoption and the compiler configured for a
from thousands of lines of C code to a dozen686-pc-linux-gnu target. Thecse 2
lines of LLVM code in a few seconds: doing pass was ignored, the timings just include the
the same manually would takauchlonger. first invocation of thecse pass.

Making the development environment detect o

problems early is also extremely valuable toF0" the LLVM timings, we chose to use a
developers, making them more productive ang®mbination of thelnstruction Combining,
making it easier to bring new people on. HaV_GlobaI ExpressmnRegssoclzla.tlon., anGlocal

ing a modular system also helps keep peopkg:ommon SubexpressiorElimination passes.

from getting overwhelmed when they first start | "€ combination of these three phases is be-
on the project. lieved to be strictly more powerful than the

cse pass. The Instruction Combining pass
supersumes value numbering, constant folding
and trivial dead code elimination phases, plus

) o it performs a variety of transformations similar
The LLVM representation allows for efficient ;' he ccc “combine” pass (described below).

transformations and analyses, both for aggresryg reassociation pass transforms chained oc-
sive interprocedural transformation and tradi-.,rences of commutative operations to pro-

tional optimizations. In order to quantify this ,qie petter code motion. The GCSE pass is
performance, we compared the performance of \,all known technique to remove common

the GCC ‘tse " pass with the performance of g nevnressions. The table shows the execu-
the LLVM transformations closest to it (see i time for each pass as well as the sum of

Table 1). For these tests, we compiled the §pq three. The table also shows the number
largest singlec files in the SPEC CPU2000 ¢ {ransformations that each pass makes (in-

176.gcc benchmark (which is based on theyyctions combined, instructions reassociated,
GCC 2.7.2.2 source code). The numbers wergyon subexpressions deleted).

collected on a 1.7GHz AMD 2100+ Athlon
processor. From the table, we can see that the LLVM op-

o timizations always run in less time than the
The timings for thecse pass were collected oo pass, and with the exception of the “com-

when compiling with GCC 3.2and th®3 0p-  ine ¢ case, took about half as much time. De-
tion. The actual timings were acquired as the

4.5 Optimizer Performance
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spite being faster overall, the LLVM transfor- In contrast, the approach described here im-
mations are more powerful than tbee pass, mediately optimizes and translates the program
which only operates on extended basic blocksto a low-level, but strongly-typed, intermedi-
The slowest individual transformation by far is ate representation which is suitable for opti-
the instruction combination pass, which usesnization both at compile- and link-time. Be-
a work-list driven approach to perform “peep- cause substantial optimization is performed at
hole” style optimization on the SSA graph compile-time, the interprocedural optimizers
(giving it global transformation powers) for a have less work to perform at link-time, re-
large collection of algebraic identities (such asducing the amount of time a recompilation re-
folding “(A — (A&B))” into “(A& ~ B)”),  quires. Previouswork[13, 7, 10, 12] has shown
that thecse pass does not perform. Together,that a low-level representation with type infor-
the three transformations are quite effective. mation can support aggressive high-level anal-

iy : o yses and transformations.
In addition to simple scalar optimizations,

LLVM is designed to support aggressive in- Another successful class of interprocedural op-
terprocedural analyses and optimizations atimizers target very low-level optimizations.
link-time. As an example, we consider the These “smart-linkers” typically operate at the
Data Structure Analysis algorithm, a context-level of the machine code, performing opti-
sensitive flow-insensitive memory analysismizations such as interprocedural register al-
framework. On the same hardware as abovéocation and code layout optimizations [16, 14,
it is capable of analyzing entire programs5]. Although these tools have been success-
in seconds: 2.5s theovray and 1.2s for ful, and require little or no modification to the
the255.vortex  programs, which are about source compiler, they are not capable of per-
136,000 and 67,000 lines of C code respecforming high-level optimizations at all. Also,
tively [13]. Other simpler algorithms may ob- these optimizations can all be performed in our
viously run much more quickly. framework, because code generation occurs for
the entire program at a time, exposing the nec-
essary interprocedural information.

5 Related Work Within the GCC project, several projects in

development or recently merged onto the
mainline are relevant. In particular, the

There is a vast amount of related work on 'nter'ast-optimizer project and itsree-ssa

procgdural op_timization in research and Co_m'subproject aim to improve optimization in
mercial compilers [1, 8, 2, 9, 3]. To avoid Goe py migrating optimizations from the
major changes to the build process, all ofiyget specific RTL representation to a target-
these compilers combine the program togethef, jenendent AST representation. The rep-
at link-time in a very high-level representa- \ogentation proposed in this paper is similar
tion, before any substantial optimization is per-, thetree-ssa ~ GIMPLE representation in

formed. Most often, this representation takeg o ways (both are language-independent,
the form of the source language Abstract Synggp based, and do not allow nested expres-
tax Tree (AST) with source Ianguage-specificsions)’ but they are different in many other
nodes removed. Once the program is COMyyays.
bined at link-time, optimization for the entire

program commences, starting with interproce4n particular, the GIMPLE representation is not

dural optimizations.
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capable of representing the entire translation [2]
unit being compiled: a lot of information about

the program is stored only in global variables,

or are immediately emitted to the output as-
sembly file. Also, the GIMPLE representation
has operations which are closer to the source
level. For example, variable definitions can
have their address taken, which makes the def-[3]
use chain representation much more complex
in the GIMPLE representation. On the other
hand, thetree-ssa  project is much better
integrated into GCC, is written in the C lan-
guage, and does not require the introduction of [4]
a completely new intermediate representation.

6 Conclusion

[5]

This paper presents the design for an aggres-
sive, but realistic, interprocedural optimiza-
tion component for the GNU Compiler Col-
lection. This design is capable of supporting

a broad range of whole-program optimization [6
techniques, is reasonable in terms of compila-
tion time, and has already been implemented.
We hope our efforts will accelerate the process
of making GCC produce code which is more
competitive with commercial compilers, and
perhaps LLVM can be directly adopted as an
optional part of the compiler itself. We encour-
age members of the community who are inter-
ested in the proposed architecture or LLVM it-
self to contact the authors with any feedback,
guestions, or ideas.
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The finite state automaton based pipeline hazard
recognizer and instruction scheduler in GCC
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Abstract tion are available. If at least one of the two con-
ditions is not satisfied, a processor stall might
A new model to describe the pipeline charac-occur and the instruction execution might be
delayed. The delay because the first condition

teristics of processors is proposed in the ar: e
ticle. The model is based on the usage ofs not satisfied is called data delay. The delay

regular expressions. The model is compare&ecause of the second condition is called re-
to the one used in GNU C compiler (GCC) SOurce delay.

fqr ang time. The arti_cle also describes thep special component in an optimized compiler,
pipeline hazard recognizer generated from thegieq the instruction scheduler, is responsi-
new model currently implemented in GCC andye for decreasing the data and resource delays
instruction sch_eduler which uses the plpell_neand (as a consequence) to increase the paral-
hazard recognizer. The currentimplementatiofigjism of instruction execution. It is achieved
of the pipeline hazard recognizer is based ORyainly by changing the original order of in-
the usage otleterministicandnondeterminis- - gu,ctions, although more powerful code trans-
tic finite state automata. formation (like instruction cloning, partial reg-

Examples of usage of the new model theister renaming and forward substitution, and

pipeline hazard recognizer, and the instructiodStruction mutation) could be used. An im-
scheduler based on it are given. Possible futurBOrtant component of the instruction scheduler

directions of developing them to use them forresponsible to find the resource delays is called

different algorithms of instruction scheduling the pipeline hazard recognizer.

and software pipelining are discussed. There is big variety of processors even for one

architecture. Therefore writing the pipeline
Introduction hazard recognizer manually is not wise. This is
especially true for portable compilers. There-
fore many compilers have a model to describe
ipeline characteristics of the target processors
d usually a generator of pipeline hazard rec-

To increase the productivity of computer
systems the modern processors can execu

several instruction simultaneously. It IS 4gnizers. The model language can be a subset
achieved by using several functional unitSytihe compiler implementation language (like

and/or pipelined functional units. Of course thec ,5aq to describe the reservation tables) or a
instruction execution could start only if the in- special language designed for this task.
put data are ready and enough processor func-

tional units necessary for the instruction execu-
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GCC as a compiler ported to most platformscase is the state after increasing the simulated
had such a model and generator for long timeprocessor cycle. Transitions by the arc finally
This model has its drawbacks. It can not accuresult in freeing functional units.

rately describe many modern processors. As a

consequence the generated code is worse thap the instruction scheduler should only_ check
it could be with the same instruction sched-the presence of the arcs marked by the instruc-
uler. The more pipeline irregularity the proces-tion from given state to find a resource de-
sor has, the more is the impact of an instructio@y- After issuing the instruction the instruc-
scheduling inaccuracy. Another drawback istion scheduler should change the current state

the inconvenience of description. The model i® the destination state. If no instruction can be
oriented to describe which instructions a func-SSued, the instruction scheduler should change

tional unit executes instead of the more natytnN€ current state to the destination state into
ral model in which the reservation of the func-Which an arc marked by ‘cycle advancing’ en-
tional units by given instruction is described. ters and increase the simulated processor cycle.

GCC pipeline hazard recognizer is a part of thel NiS @pproach is not new. It has been de-
instruction scheduler itself. It is driven by ta- SCTiPed in [Bala, Proebsting]. What is a re-

bles generated from the description. The table&!ly Néw thing in the approach described in the

are just a simple translation of the description@ticle is usage oélternativesin the reserva-

The more complex the pipeline description is,ioNs- The alternatives can be treatdermin-
the slower the pipeline hazard recognizer is/Stically andnondeterministically

Thg thd‘Tm procegsofr l;eco_mel_s m?]re co(;nplea(he deterministic treatment of the alternative
and the E OW Speed 0 tble PIPEIIN€ hazard recis 14 try the first alternative reservation and, if
ognizer becomes a problem. there is a conflict on any functional unit re-

To solve this drawback, the new model and im-Served by previpusly issued instru(_:ti.on.s, try
plementation of the pipeline hazard recognizefhe next alternative. _The nondete_rmlnlstlc one
have been proposed. The model is based on tHé to try all alternative reservations concur-
usage of regular expressions describing all th&&nty:

reservations of functional units bylnstructlons.-l-he first section of the article describes in

The corresponqmg.implementation of pipelinemore detail the description model and the cor-
hgzard recognizer is based on the usage of fFesponding pipeline hazard recognizer used in
hite state automata. GCC for a long time. It also describes the

Each state of the automaton encodes all currefffrawbacks of such an approach. In the sec-

and planned reservations of functional units®nd section, the proposed model is described.

If there is an arc from one state to another! N€ third section describes the generation of

state marked by an instruction, then the instructh€ Pipeline hazard recognizer from the pro-
tion can be issued in a given state and ther@0s€d model and its interface to the instruction

will be no conflicts on functional unit usage Scheduler. The fourth section contains exam-
with the instructions issued earlier. The desPI€S Of descriptions as deterministic and non-
tination state encodes all current and manne&leterministic ones. The fifth section describes
functional unit reservations after issuing the in-&" @lgorithm, called the first cycle multipass in-
struction. Each state also has an arc marked bgfruction scheduling. The algorithm improves

cycle advancing The destination state in this instruction scheduling by evaluation of more
than one instruction schedule. Usage of the fast
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pipeline hazard recognizer makes it practicalAs an example, consider a classic RISC ma-
In the sixth section, the possible future direc-chine where the result of a load instruction
tions of developing the proposed approach arés not available for two cycles (a single "de-
discussed. lay" instruction is required) and where only
one load instruction can be executed simulta-

1 The old GCC processor pipeline neously. This would be specified as:

description model

(define_function_unit "memory" 1 1
(eq_attr "type" "load") 2 0)}

This section is based on the documenta-

tion of Gee internals [Gee].  Practically all For the case of a floating point function unit
processor parallelism for GCC is describedthat can pipeline either single or double preci-
with the aid of one type of constructions— sion, but not both, the following could be spec-
define_function_unit —in a Gee ma-  ified:

chine description file. Each usage of a func-

tional unit by a class of instructions is spec- (define_function_unit "fp" 1 0

ified with adefine_function_unit

pression (see Table 1).

(define_function_unit NAME MULTIPLICITY SIMULTANEITY

TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])

NAMEis a string giving
the name of the functiona
unit.

MULTIPLICITY is an integer
specifying the number of identica
units in the processor. If more tha
one unit is specified, they will be
scheduled independently.

SIMULTANEITY speci-
fies the maximum num-
ber of instruction that can
be executing in each in
stance of the functional
unit simultaneously.

TEST is an attribute test that se

lects the instructions we are de-

scribing in this definition. Note
that an instruction may use mo
than one functional unit.

READY-DELAYis an in-

number of cycles after
which the result of the
instruction can be useg
without introducing any
stall.

teger that specifies the

ISSUE-DELAY is an integer that|

specifies the number of cycles afte

the instruction matching thEEST
expression begins using this un
until a subsequent instruction ca
begin. A cost ofN indicates an
N-1 cycle delay.

CONFLICT-LIST is an

optional list giving in-

structions with which ad-
ditional conflicts occur.

ex-

>

D

=

it

Table 1:The old description model construction.

(eq_attr "type" "sp_fp") 4 4
[(eq_attr "type” "dp_fp")])
(define_function_unit "fp" 1 0
(eq_attr "type" "dp_fp") 4 4
[(eq_attr "type" "sp_fp")])

A special utility in Gce generates different ta-
bles of bit vectors, macros, and some functions
(mainly for dealing with conflict lists), which
are used by the pipeline hazard recognizer em-
bedded into the instruction scheduler.

The current GCC instruction level parallelism
description model has serious drawbacks. The
biggest one is that the description model is not
powerful enough. Each functional unit is be-
lieved to be reserved at the start of instruction’s
execution. The model also does not permit al-
ternatives in the reservations. This is a big con-
straint for accurate descriptions of modern pro-
cessors. As a consequence of inaccurate de-
scriptions, the machine dependent files of Gcce
contain a lot of code to fix it. For example,
the SPARC machine-dependent files contained
about one thousand lines of C code.

Another important drawback of the model is
the unnatural way of description when a devel-
oper should write a unit and condition which
selects instructions using the unit. My experi-
ence shows that writing all units reservation for
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an instruction (an instruction class) are more
natural.

(define_automaton
AUTOMATON-NAME)

AUTOMATA-NAME a string giv-
ing the name of the automaton.

The pipeline hazard recognizer of resource
delays has a slow implementation. The
Gcce schedulers support structures which de-
scribe the unit reservations. The more com;
plex the pipeline description, the slower the

(define_cpu_unit
UNIT-NAMES
AUTOMATON-NAME)

UNIT-NAMES is a string giving
the names of the functional units.
AUTOMATON-NAMES a string
giving the name of the automaton
to which the unit is bound.

pipeline hazard recognizer. Such implementa
tion would become even slower when we en;
able to reserve functional units not only at the
instruction execution start. The slow imple-
mentation becomes critical for the modern pro-
cessor (especially VLIW and EPIC).

2 The proposed processor pipeline
description model and its imple-
mentation

(define_insn_reservation
INSN-NAME
DEFAULT-LATENCY
CONDITION REGEXP)

DEFAULT-LATENCYs a number
giving the latency time of the in
struction.

INSN-NAME s a string giving an
internal name of the instruction. It
is good practice to use the instru¢-
tion class names as described in the
processor manual.

CONDITION defines what RTL
instructions are described by th
construction.

REGEXRSs a string describing the
reservation of the cpu’s functional
units by the instruction (the syntax
is given in table 3).

[

As the old processor pipeline description, the
proposed pipeline description should be placed

(define_reservation
RESERVATION-NAME
REGEXP)

RESERVATION-NAMES a string
giving the name of REGEXP.

in the machine description files of Gce. There
are several constructions to describe the pra
cessor. The order of all such constructions in
the machine description file is not important.
All constructions are Lisp like construction be-
cause the machine description file has Lisp like

(exclusion_set

UNIT-NAMES UNIT-NAMES)

(presence_set
UNIT-NAMES PATTERNS)
(absence_set

UNIT-NAMES PATTERNS)

UNIT-NAMES is a string giving
names of functional units.

PATTERNSSs a string giving pat-
terns of functional units separate
by a comma. Currently a patter|
is one unit or units separated by
white-spaces.

S o

syntax. Please don't be confused—it is just an

implementation form of the description model. Table 2: The major constructions of the proposed
The syntax of the major constructions is givendescription model.

on Table 2.

SPARC architecture could have one automa-
To describe a processor, first we shouldon for UltraSparcll and another one for Ultra-
define an automaton with the constructionSparclil.

define_automaton We can have more

than one automaton in a machine descriptioy/é could also use more than one automaton
file. All the automata should have uniqueto describe a single processor. Sometimes the

names. The automaton name is used in the co@eénerated finite state automaton used by the

structiondefine_cpu_unit pipeline hazard recognizer is large. If we use

more than one automaton and bind functional
It is good practice to use separate automatonnits to the automata, the summary size of the
to describe a processor of a given architectureautomata is usually less than the size of the sin-
For example, the machine description file forgle automaton.
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Each functional unit used in the description ofAll simple integer instructions can be executed
instruction reservations should be described byn any integer pipeline and their result is ready

the constructionlefine_cpu_unit . in two cycles. The simple integer instructions
_ o are issued into the first pipeline unless it is
The constructiondefine_insn_reserva- reserved, otherwise they are issued into the

tion is the major construction to describe second pipeline. Integer division and multi-

plpellne.characterlstlcs‘ of an instruction. Theplication instructions can be executed only in
reservations are described by regular exprespe second integer pipeline and their results
sions according to the syntax on Table 3. are ready correspondingly in 8 and 4 cycles.
The integer division is not pipelined, i.e. the

subsequent integer division instruction can not
be issued until the current division instruction

finished. Floating point instructions are fully

pipelined and their results are ready in 3 cy-
cles. To describe all of this we could specify

—

- " , is used for describing the stal

regexp = regexp "," oneof .
| oneof of the next cycle in the reserva-
tion.

+ is used for describing a resef-
vation described by the first reg-

allof = allof "+" repeat ular expression and the second
| repeat regular expression etc. (define_cpu_unit "div")
(define_insn_reservation "simple" 2
(eq_attr "cpu” "int")
| is used for describing a resef- "(i0_pipeline|i1_pipeline), (portO|port1)”)
vation described by the first reg- (define_insn_reservation "mult" 4
oneof = oneof "' allof ular expression or the second (eq_attr "cpu” "mult”)
I allof regular expression etc. "i1_pipeline, nothing*2, (portO|port1)”)

(define_insn_reservation "div* 8
(eq_attr "cpu" "div")
* is used for convenience anf 'i1_pipeline, div*7, div + (port0|port1)’)
simply means a sequence (define_insn_reservation “float" 3
repeat = element "' number which the regular expression is (eq_'attr' "cpu” "ﬂoat")
| element repeatedNUMBERtimes  with "_pipeline, nothing, (port0|portl))

cycle advancing (see ).

=]

In our example we see that the unit reserva-

Cpu_unit_name denotes . . . . .
reservation of the named cpb tions for different instructions contain com-
e S Tesamaton name | functional unit.  nothing mon parts. In such case, we can simplify the
| result_name denotes no unit reservations. . . L. L. .
| nothing" pipeline description by defining an abbrevia-
| (" regexp )"

tion by the constructiodefine_reserva-
tion . To simplify the description in our ex-
Table 3:Syntax of the regular expressions.  ample we could use a reservation as follows

(define_reservation “finish" "portO|port1")
define_insn_reservation "simple" 2

As an example, consider a superscalar RIS (eq_attr "cpu" "int")

machine which can issue three instructions "(0_pipeline | i1_pipeline), finish")

(two integer instructions and one floating point

number instruction) on a cycle but can finishSome processors (especially VLIW ones)
only two instructions. To describe this, we de-have many constraints which are quite dif-

fine the following functional units. ficult to describe only by the constructions
mentioned above. The three constructions
exclusion_set , presence_set , and

(define_cpu_unit "i0_pipeline, il1_pipeline") -
(define_cpu_unit "f_pipeline,port0, port1") absence_set make descrlptlon easy.
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The first construction gxclusion_set ) the sake of brevity they are not described in this
means that each functional unit in the firstarticle.

string can not be reserved simultaneously with ) -
a unit whose name is in the second string and* SPecial utility (the generator) generates the

vice versa. For example, the construction is2utomaton based pipeline hazard recognizer in
useful for describing processors (e.g. somé separate fll_e. '!'he instruction scheduler com-
SPARC processors) with a fully pipelined municates W|th it through a procedural inter-

floating point functional unit which can exe- facé. The major procedure gets an automata
cute simultaneously only single precision float-State and an instruction as parameters and re-

ing point instructions or only double precision UrMS information on whether the instruction
floating point instructions. can be issued or not. If it can be issued then

the procedure changes the state to reflect the
The second constructiompresence_set )  instruction issue.

means that each functional unit in the first
string can not be reserved unless at least onléach state of the automaton encodes all current

of the pattern in the second string has been re@nd planned reservations of functional units. If
served. This is an asymmetric relation. FortN€re is an arc to another state marked by an
example, it is useful to description that VLIW instruction, then the instruction can be issued

slotl s reserved after a reservatistotO in the given state and there will be no con-
orslotl is reserved only after slot0  and flicts on functional unit usage with the instruc-

unit b0 reservation. We could describe it by tions issued earlier. The destination state en-

the following constructions: codes all current and planned functional unit
reservations after issuing the instruction. If
(presence_set "slotl” "slot0") the instruction parameter is null, it means that
(presence_set "slotl" "slot0 b0") the simulated processor cycle should be ad-
vanced. Each state has an arc marked by
The third construction gbsence set ) cycle advancing . The destination state

means that each functional unit in the firstin this case is the state after incrementing the
string can be reserved only if each pattern irsimulated processor cycle. Transitions by such
the second string is not reserved. This is ar@rcs result in the freeing of all functional units.
asymmetric relation. For example, it is useful
for description that VLIWslotO can not be
reserved after alotl orslot2 reservation

The DFA pipeline hazard recognizer is be-
lieved to not be as flexible as the old Gcc rec-
or thatslot2 can not be reserved €lotO ?ogrrr:él?i:.)n-rzlc?nlwstgce)t ;“f;mgt: e;a:sC)); tgxgﬁ;[ 'lr:;
and unitbO are reserved oslotl  and unit the generator also :nerates. man otherp r1o
b1 are reserved. We could describe it by thecedl?res like quer ing the reservatign of furl?c
following constructions: . !Ike querying o
tional units for a given automaton state, finding
o . the minimal reservation delay needed to issue
(absence_set "slot2" "slotO, slotl") . . . . .
(absence_set “slot2" "slot0 bo, slotl b1") an instruction in a given state, checking that no

one instruction can be issued in given state and

All functional units mentioned in a set should SO On.

belong to the same automaton. The nondeterministictreatment of alterna-

There are other constructions to describdives means trying all alternatives concurrently.
pipeline characteristics of processors. But for>20me of them may be rejected by reservations
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in the subsequent instructions. Actually, the(define_insn_reservation “int* 1

Tiat ; H (eg_attr "cpu" "int") "lU2 | 1U1")
nondetermlnlstlc_treatment_o_f glternatwers IS define.insn reservation “mult 1
enough to describe deterministic alternatives. (eq_attr "cpu” "mult) "IU1")
For example, let us look at the following reser-
vation with deterministic treatment of alterna-

fives On the other hand we could use nondetermin-

istic treatment in the example too. The result
automaton would be the same. But nondeter-
(define_reservation "deterministic”  "ulu2) ministic treatment could better reflect the pro-
cessor’'s behaviour if the processor had an in-
It means that we reservel and, if itis not pos- struction look ahead buffer to find the best as-
sible (becaUZSGV%/ has bdeen @éfe%dytfhefﬁf\]{e?),signment of functional units to instructions in
we reservel2. We can describe it wi e fol-
lowing constructions the buffer. Another example of usage of the
nondeterministic treatment of alternatives for
(define._reservation "nondeterministic” Itanium and Itanium2 processors is described

"ullu2+ul_present") in the next section.
(presence_set "ul_present" "ul")

Generally speaking, the same processor can be

Here we use a reservation with nondetermindescribed differently. | would distinguish two
istic treatment of the alternative. What vari- Kind of descriptions. One is thetructural de-
ant of alternative should we use? The processcription which describes (almost) all proces-
sors are deterministic devices, so alternative§0rs functional units mentioned in processor’s
should usually be treated deterministicaly (thisdocumentation.  Another onebghavioura)

is the default treatment). Let us look at a duafims to describe only pipeline hazards (some-
instruction issue processor which has two infimes with the aid of non-existing functional
teger units. One integer urlil can execute units). The first one is usually more verbose
any integer instruction and another oigZ)  and the resulting automata are bigger. The sec-
can execute any integer instruction except mulond one is simpler and the resulting automata
tiply. In the first example, the processor alwaysare smaller. But it is better to follow the docu-
issues instructions inttJ1 if it is free. The Mentation (in other words to use a structural

processor could be described by using deterdescription) because it makes understanding

ministic a|ternatives as fo”ows the description eaSier fOI‘ Other peop|e
(define_insn_reservation "int" 1 3 Generation of the pipeline haz-
(eqg_attr "cpu" "int") "lU1 | 1U2") .
(define_insn_reservation "mult"* 1 ard recognizer
(eqg_attr "cpu" "mult") "1U1")

_ Here is a brief description of the phases of the
Actually the processor has a bad design begenerator of pipeline hazard recognizers and
cause if an integer instruction is followed by e more interesting tasks solved by the gener-
multiply instruction the two instructions can 414y First, the generator of pipeline hazard rec-
not be issued simultaneously. The improvedygnizer translates the pipeline description into

processor should always issue an integer iny internal representation.

struction intolU2 if it is not busy. We could

describe this using deterministic alternatives ag hen it checks the correctness of the automa-
follows ton pipeline description. The most nontrivial
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task is to check the correctness of assignments @) retore
of functional units occurring in a reservation
to the automata. There is no such problem for
reservations without alternatives [Bala]. Let us
consider the following description:

next cydle

(define_cpu_unit "div" "div")
(define_cpu_unit "decode" "rest")
(define_insn_reservation "div* 3

(eq_attr "cpu" "div") "decode + div*3")

The corresponding automata are given on Fig-
ure 1. The figure also contains the single au-
tomaton as if all units were assigned to one
automaton. They behave analogously 10 thesjgre 1: The single automaton and the two au-
single automaton with the two functional units ;;mata of the single issue processor.

decode anddiv . It means that transition

marked by an instruction exists in the single _ _ _
automaton if and only if there are transitions Figure 2 contains the single automaton (as if all

marked by the instruction between the correnits were assigned to one automaton) and the
sponding states of all two automata. Instead oforresponding two automata.

changing only one state for a single automa-
ton, the pipeline hazard recognizer changes the

states of the two automata simultaneously. Al- COME
though a number of the states is hidden in the
pipeline hazard interface and there is only one
state in the interface, in reality the interface
state is represented by two states and pipeline
hazard recognizer internally manipulates theé=
states of the two automata.

next cycle
a oyl

Let us consider a more advanced dual instruc-
tion issue processor with a faster division unit.

(define_cpu_unit "decodel" "al")
(define_cpu_unit "div,decode2" "a2")
(define_insn_reservation "div" 2 )
(eq_attr "cpu” "div") Figure 2:The single automaton and the two incor-

"(decodel|decode2) + div*2" .
¢ | ) ) rect automata of the dual issue processor.

For automatal anda2 we have correspond- The two automata are not equivalent to the sin-
ingly the following functional unit reservations gle automata. For example, we could issue
for the instructiordiv any number of division instructions on one cy-
cle according to the two automata. The sim-
q : ple solution of this problem could be the us-
ecodel|nothing . i ]
nothing|decode2 + div*2 age of the requirement to assign all functional
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units occurring in the same reservation to theAfter checking the description, the generator of
same automaton. It is a very severe constrairthe pipeline hazard recognizer creates the au-
to assign functional units to automata whichtomata and, if the alternatives are treated non-
results in the impossibility of decreasing au-deterministicaly, transforms nondeterministic
tomata size in many cases even if we havdinite state automata into deterministic ones.
reservations without alternatives. Instead of it, _

the current implementation uses a less sever@fter creating the automata, the generator does
requirement. If a functional unit reservation @ Minimization of the finite state automata
(div in our example) is present on a partic-t?y merging automqton states ('_ should men-
ular cycle of an alternative for an instruction 10N that Gee experience shows importance of

reservation, then some unit from the same auSOMe preliminary minimization during build-
tomaton must be present on the same cycle fdP'd the automata because even if the minimized
the other alternatives of the instruction reseriS Small the automata before the minimization
vation. The requirement is not too complicated®u!d be huge). The minimization task is a bit
to be understood and it still helps to consider-compl'cated- If we have functional units in the

ably decrease automata size in many cases. LEESCription whose reservation may be queried
us consider the following distributions of the fOr @ given state. Let us consider a processor

functional units (The corresponding automatawith different functional units for multiply and
are given on Figure 3): for the rest of the integer instructions

(define_insn_reservation "int" 1

(eq_attr "cpu" "int") "decode + int")
(define_insn_reservation "mult" 1

(eq_attr "cpu" "mult") "decode + mult")

(define_cpu_unit "decodel,decode2" "al")
(define_cpu_unit "div" "a2")
(define_insn_reservation "div" 2

(eqg_attr "cpu" "div")

"(decodel|decode2) + div*2")
The corresponding automata before and the af-
ter the minimization are given on Figure 4. If
we want to know whether functional umitult
is reserved in the second state of the minimized
automaton, we can not get this information
from just the state. The simplest solution of
the problem could be prohibiting the minimiza-
tion for automata with queried units. Unfor-
tunately such a solution is not reasonable be-
cause automaton minimization is an important
optimization which permits to considerably de-
crease the size of the automata in many cases.
Instead of the simplest approach we use mini-
mization with modified state equivalence. The
new state equivalence takes queried functional
units in the corresponding reservations into ac-
count. This approach still permits to consider-
ably decrease the automata size in many cases.

next cycle

Figure 3: The two correct automata of the dual
issue processor.

We see that the automata on figure 3 behavAfter the minimization, the generator forms ta-
analogously to the single automaton. bles, compresses them by different algorithms
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4 Usage of the proposed model and
the pipeline hazard recognizer

The first public usage of DFA based instruction
scheduling was for UltraSparc. The previous
implementation of the pipeline hazard recog-
nizer contained about 1000 lines of machine-
dependent C code for tuning the old pipeline
hazard recognizer generated from a non-DFA
pipeline description. The DFA description
of Sparc which resulted in all this code has
been gone and the instruction scheduling has
been improved. Table 4 contains a compari-
son of SPECfp95 run a 500 Mhz UltraSparclle
box. The average improvement of EEMBC
[EEMBC] for a 233 Mhz UltraSparcll box was

Figure 4:The automaton before and after the min-
imization.

5.5%.
(like a comb vector algorithm) and outputs | Benchmarks Ratio | Ratio
them (and functions accessing them (including | 101-tomcatv 126) 134
functions which are interface functions of the 182'2\:2?” 229';1 220"71
pipeline hazard recognizer)) into a C file for 104:hydr02d 6:04 6:05
further compilation. 107.mgrid 273! 865
The biggest problem of the usage of the DFA | 110-applu 7.52)| 7.65
approach is the size of the automata. How big ﬁi?r:isd 13'; ﬁ'g
can the automata be? For example, Gcc for In- 145:fppppp 11:0 11:4
tel 1A64 has four automata (two for Itanium 146.waves 147! 150
and two Itanium2) with 24K states and 170K SPECTp95 (Geom, Mearl) 10.4| 10.7

arcs. But this is an extreme case. Itanium and

Itanium2 have extremely complicated pipelineTable 4: Sparc GCC with non-DFA and DFA

characteristics. The IA64 automata are alsgipeline hazard recognizers.

used for VLIW packaging (bundling instruc-

tions). Therefore the 1A64 automata have

many queried units. The usage of a DFA description for SH4 is an
. ) __ example of the importance of accurate pipeline

To solve the big automata size problem, it iSyescriptions for processors which have compli-

better to split an automata into several ones angd;;aq pipeline constraints: such as SH4. Im-

not to use queried units as it was mentioned,oyement of instruction scheduling with the

in above. Now automaton splitting should beppa pipeline hazard recognizer for SLALOM
done manually by assigning functional units topanchmark [Slalom] on a 200Mhz SH4 box
the automata. Automatic splitting of an au-y,45 about 12-13%.

tomaton into several automata with total size
less than the size of the original automaton is & good example of usage oiondeterministic
challenging research work. automata is the description of Itanium and Ita-
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nium2 processors. The IA64 architecture is an
extension of a typical VLIW architecture. In-
structions can only be placed in specific slots
(syllables in 1A64 terminology) of a VLIW in-
struction (bundle in IA64 terminology). To
place an instruction in the current bundle or
the next bundle, sometimes one or tNOPiIn-
structions should be issued first. Gcc already
had pipeline hazard recognizer for the Itanium
processor. It was written manually on C be-
cause the old description model was not pow-
erful enough. The code was big and compli-
cated. It was tuned very well to achieve good
instruction scheduling. The code tried to insert
suchNOPinstructions.

The nondeterministic automaton permits to
easily describe where to insert sublOPin-
structions. The DFA descriptions have bee
written for Itanium and Itanium2 processors.
Each processor has been described by two au-
tomata. The first (nondeterministic) automaton
described the instruction reservations with an
optional issue of one or twbhlOPinstructions
before the instruction. So the pipeline hazard
recognizer followed all possibilities of insert-
ing NOPinstructions. This automaton is used
for the first and second instruction scheduling
in Gee. The second automaton is determinis-
tic. Itis used to bundle instructions on the final
phase of Gce. Bundling instructions is to insert
NOR andtemplate selectorsinsertingNOR
was a dynamic programming algorithm which
tests all alternatives in insertingOR before

the instructions and choses the best ones. It
uses the second automaton and information
about new processor cycle start points prepared
by the previous instruction scheduling. Tem-
plates are defined by querying the functional
units of the second automaton.

Table 6:

Benchmarks Ratio | Ratio
164.gzip 176 | 177
175.vpr 192 | 203
176.gcc 236 | 235
181.mcf 142 | 144
186.crafty 248 | 243
197.parser 168| 171
252.eon 149 | 147
253.perlbmk 201 | 207
254.gap 163| 167
255.vortex 232| 233
256.bzip2 182 | 188
300.twolf 247 | 265
Est.SPECint2000 191 | 195

Benchmarks Ratio | Ratio
164.9zip 345| 361
175.vpr 444 | 454
176.gcc 460 | 477
181.mcf 252 | 249
186.crafty 480 | 497
197.parser 366 | 368
252.eon 274 | 273
253.perlbmk 449 | 463
254.gap 326 | 331
255.vortex 509 | 512
256.bzip2 362 | 376
300.twolf 506 | 559
Est. SPECint2000 388 | 399

Such implementation permitted to speed up alhazard recognizers vs.
Gcce run (with -O2) up to 45% for Itanium. The pipeline hazard recognizer.

code has been improved by 2% (see Table 5)
for SPECInt2000 benchmark on a 733 Mhz Ita-

Itanium Gcc with non-DFA
Itanium2 Gcc

Table 5: Itanium Gcc with non-DFA and DFA
r_Ioipeline hazard recognizers.

pipeline
with DFA



146 « GCC Developers Summit

nium box. cycle. The second highest priority instruction
. . ) might be not issued on the same cycle even if
Unfortunately, there is no implementation of ; -5u1d be issued with the highest priority in-

Gee for Itanium2 using & non-DFA pipeline gy ction. If it happens, the second highest pri-
hazard recognizer. Therefore we could only i instruction will be issued on the next cy-
compare Itanium compiler using the non-DFA o

pipeline hazard recognizer with the Itanium2
compiler using the DFA-pipeline hazard recog-
nizer. The compiler speed up is about 55% foregin _ _ , ,
such a comparison. The SPECINt2000 bench- e s o 0" 2 b6 fesued in State

mark results of Gce (with usage -0O2) on a

function MaxIssues (ReadyArray, var ReadyTry,
State, var Index) : integer

. . X Best := 0;
900Mhz Itanium2 box are given in Table 6.
for i := 0 to length (ReadyArray) do
if not ReadyTry [i] then
. . . Insn := i-th of ReadList;

5 The first cycle multipass instruc- TempState := State;

. . if Insn can be issued in TempState then

tion SChEdUIlng change TempState as if Insn were issued;

ReadyTry [i] = true;
n := MaxIssues (ReadyArray, TempState,

. . Tempindex);
The usage of the fast DFA pipeline hazard if n > 0 || ReadyTry[0]
recognizer permits to implement instruction }Peé‘esq s t;ei‘ fi
scheduling algorithms trying several schedules Best := n;
and choosing the best one. The traditional in- i Index ==
struction scheduling algorithms try only one ReadyTry [i] := false;

instruction schedule. The schedule is chosen "

by a fixed set of heuristics. Usually the ma- end
jor heuristic is a heuristic based on the critical,, ™ 5
path length [Muchnick, Morgan]. This heuris- f ) . .
. . . i C R R Al , S o
tic works fine for classical RISC processors.pegy " oocready (ReadyAray, Sate) : fnen
For super-scalar RISC or VLIW processors, a ReadyTry := array of length (ReadyArray)
. . . . initialized by false;
greedy algorlthm [MUCthk] trylng to Issue if Maxlssues (ReadyArray, ReadyTry,
the maximal number instructions on each pro- State, i) == 0

. then return the first instruction in
cessor cycle might work better. ReadyArray;

else return i-th instruction in ReadyArray;
The first cycle multi-pass instruction schedul- f

ing has been designed to integrate the best of

the both approaches. The idea of the algorithm

is to choose an instruction whose issue can reigure 5: The first cycle multi-pass instruction
sult in the issue of a maximal number of in- scheduling algorithm.

structions on the current simulated processor

cycle. The highest priority instruction should To find the instruction to issue, the algorithm
be among these instructions. In other wordstries permutations of an array of ready instruc-
the algorithm guarantees that the instructiortions sorted by their priorities. The algorithm
with the highest priority will be issued on the might try too many permutations. Therefore
current cycle (although necessarily not the firsthe speed of the pipeline hazard recognizer is
in the cycle). On the other hand, it tries to max-critical. The number of all permutationsig,
imize the number of issued instructions on thewheren is number of the ready instructions.
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This number can be huge and some heuristicgptimal instruction schedule.
are used to limit the processed permutations.

The recursive version of the algorithm (with- 6 FEut directi
out the heuristics) is given in Figure 5. uture directions
The algorithm is written on a Pascal/Modulathe pipeline hazard recognizer based on the

like language. The functioChooseReady  ,1556sed model of description and its DFA im-
gets the array of the ready instructions sorteq,jementation could be developed in the follow-
by their priorities and a DFA state reflecting the;

_ _ ' H%ing ways:
current and future functional unit reservations
and returns a ready instruction which should
be issued. The function calls another func- e The same approach in the implementa-
tion MaxIssues to find the best instruction. tion of the old pipeline hazard recognizer
The recursive functioMaxlssues gets the could be used for an implementation of
ready instruction array, the information about the proposed model. It means a slower but
already issued ready instructions as a boolean = more compact pipeline hazard recognizer.
array, and the current DFA state reflectingissu- ~ Such an implementation could be useful
ing the ready instructions. The functionreturns  for debugging and for complicated cases
the maximal number of instructions which can when the automata are too big.
be issued in the given conditions and the index
of the instruction which should be issued first
to achieve this number. The function checks
only the instruction sequences which contain
the first ready instruction.

e Some optimization algorithms need to de-
fine a DFA state before issuing an in-
struction having a DFA state after issu-
ing the instruction. It is necessary for
trace scheduling [Fisher]. It could be use-

How much can the algorithm improve the ful for VLIW slot assignment (instruction

code? The improvement can be significant es-  bundling) too when we have a final DFA

pecially for VLIW processors. For example, state at the end of the basic block and
the test twolf from SpecInt2000 has been im- we move backward querying functional
proved by 12% for an Intel Itanium2 machine. unit reservations in order to place instruc-
The overall SpecInt2000 has been improved by  tions into VLIW slots. This kind of algo-
2%. It should be mentioned that a modified al- rithm requires reversed automata genera-
gorithm, limiting number of the permutations tion [Bala].

being checked, was used. The modification
was necessary to make the algorithm fast (as
a small fraction of all the instruction scheduler
work time) so as to be practical for use in in-
dustrial compilers.

e Some algorithms need a union of DFA
states. The union of two DFA states
is a DFA state which reflects the union
of functional unit reservations (in other
words, a simultaneous reservation of

The algorithm tries all the possibilities to im- functional units) from the both DFA

prove the schedule in the scope of one proces- states. It is necessary when we need

sor cycle. It can be generalized to improve to know the worst case in a joint point
code in scope of a basic block. So the algo-  of control flow graph. Perfect software
rithm can be considered as an intermediate step  pipelining [Allan] and some interblock in-
in the algorithm making an optimal or close to struction scheduling are such kind of algo-
rithms.
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The union of states is also necessary fomodel for such processors. The single ques-
the most widely used kind of software tion is “is it worth implementing?” From my
pipelining - modulo scheduling [Allan]. point of view, such an accurate description will
To implement modulo scheduling we neednot give significant improvement of instruction
to make a union of the state after instruc-scheduling for the processors. But it could be
tion issue and the states gotten from the ita good research work.

by advancing the simulated processor cy-

cle byll * n , wherell is the initia-

tion interval anch is 1, 2, 3andsoonN 7/ Acknowledgments
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Abstract which doesn't yet hold a value.

The traditional solution is the use of pseudo

_Historically the register aIIocgtor use_d _in GCC registers (pseudoregs). While generating code
's a two phase allocator differentiating be'for the program (if for initial generation or

;[jween,![qf[:al H?nd %Iobal pﬁ?Udg regls(;et:]s, Wp'dbptimization doesn’t matter) the compiler as-
oesntItsell produce spill code, and tNErelorey a5 there is an unlimited set of registers, and

is limited in code quality if spilling is needed. if it needs a new one it simply creates it. Now

This paper describes a new register aIIocato\gve obviously have to create another pass in

for GCC based on graph coloring. Aftera Shortthe compiler (which has to be fairly late in the

overview of the concepts of them in general, 'n'translating process), which creates a mapping

clud‘lng some of.the |mpr9vements (if used. Nirom pseudoregs to hardregs. It is called reg-
the implementation) we discuss the actual im-

I tati t the allocator including desi Ister allocation for obvious reasons. This map-
plementation ot the aflocator Inciuding .es'.gnping must be injective if constrained to all oc-
decisions and justification for them. This in-

. } . . urring set of pseudoregs which are live at the
cludes parts which aren’t explained in the usuagame time (so that each hardreg only contains
scientific papers but needed in a real worldt

. he value for one pseudoreg at a time), which
multi-target allocator. means, that it doesn’t necessarily exist triv-
ially. In that case the register allocator needs
1 Introduction to change the intermediate code to make use

of storage in RAM to hold some of the pseudo

While compiling a program often the need registers at least during a part of their life time,

arises to have a place wherein to store certaifNich we call to spill a pseudoreg to RAM.

values. One example is the storage for the re- o
sult of calculating a common subexpressionl-1 CurrentSituation in GCC

To actually make use of it in the later occu-

rance it must be remembered somewhere. Onghe traditional implementation BCConsists
possibility would be memory, but as the fastestof two passes:

storage for most real machines are CPU reg-

isters, those are the more natural choice. But ¢ The first one allocates hardregs to pseu-
the CPU registers (also hardware registers, or  doregs which are only defined and used in
hardregs) are limited to a comparatively (to the one basic block (called local-alloc). This
amount of available memory) small set, which constraint makes the creation of the live

makes it unlikely to actually find a hardreg range for those pseudoregs trivial (it con-
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sists of the start and end point of it, which it was storage for a pseudo which didn’'t get
corresponds to the first def and last usea hardreg, which further means that it's also
in that block), limits the set of pseudo probable that there isn't any free hardreg. So
regs to deal with to those which alsoreload needs to deallocate some of the cur-
are used in that block, and leads to effi-rently live pseudos in order to free up some
cient algorithms of creating the mapping hardregs. For instance consider this instruc-
to hardregs. tion:

» The second (global-alloc) deals with the
other pseudoregs, which are defined and pl —pl+p2
used in different basic blocks. Their live

range can span multiple blocks, and mosisupposep1 andp?2 didn’t get a hardregs, and
often can not be described simply by theirthe add instruction doesn’t accept memory
borders. This pass allocates hardregs t@perands. Furthermore suppose that there are
those pseudos (it also maintains a conflicho hardregs free during that instruction. Now

graph), constrained to the already done&eload conceptually creates this instruction
allocation for local pseudos. It also caninternally

override decisions of local-alloc if it sees
fit.
[sp+ 4] — [sp+4] + [sp + §]

Both of these passes don’'t change the code. o _ _
Instead they simply produce a mapping (innotlces that it is invalid and creates reload insns

reg_renumber] ) which simply doesn't fqr the memory operands;sp here means ob-
contain a hardreg for a pseudo for which itViously the stack pointer an@dr] means the
wasn't able to find one. Then follows a passMemory at addressdr. The add instruction
calledreload , which uses this mapping to here requires registers as operands, so we need
change the instructions accordingly. Pseudol® Useé some, sajl and /2. The code now
without hardreg get a place on the stack, andP0ks conceptually like:

the instructions are modified to refer to their

memory location. While doing thiseload hl « [sp+ 4]
also performs a validity check against con- h2 — [sp + 8]
straints from the machine description. If this hl < hl + h2
check fails, the operands which were failing [sp+4] — hl

are “reloaded” to make them valid (hence the
name of that pass). This for instance then also )
includes creating explicit load and store in-S° We need to deallocate all pseudos live dur-

structions for those pseudos which have onlynd this insn which formerly used1 or 52.

stack storage, if the insns which used them Dis in turn means that some pseudos now get

can’t deal with memory operands. That is, theStack storage instead of a hardreg, therefore
process of spilling pseudos is implicit in forc- the process of reload needs to be repeated un-
ing instructions to be valid. til it stabilizes (during which more and more

pseudos which initially got a hardreg could be
Those reload instructions themselves also neesbilled again). In an optimizing compilation
register resources. If the reload was caused bseload actually calls back into global-alloc
a stack reference, there is a high possibility thatight before repeating reloading, in the hope,
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that some of the newly spilled pseudos couldng under this model.

get a different hardreg instead of none at all. . .
Note that pseudos not only conflict with other

That the emission of spill code is external topseudos, but also with hardregs. The reasons
the register allocator itself, and that it is donecan be that due to machine constraints some
on a per instruction basis leads to non-optimahardregs are already used in the intermediate
spill code in some situations. This (and cu-representation before register allocation. Or
riosity ;-) lead to the implementation of a more some pseudos only are permitted a certain set
traditional graph coloring register allocator for of hardregs (which can be modeled by making
GCC them conflict with the inverse set). To make
this fit into our model we also include a node
. . for each hardreg into the graph, which already
2 Graph Coloring Register Alloca- are assigned a color; they all conflict with each

tors other.

. . , . ._._Now it's well known that graph coloring is NP-
This section describes graph coloring reglsteEompIete, so a full solution isn’t feasible for a
allocators in general and introduces some im-Compiler We have to implement approximate
provements to the naive first versions. solutions with better runtime behavior.

2.1 AfFirst Version The first thing is to make use of Kempe’s obser-
vation (see [Kempe]), namely that nodes with

As explained above the problem to which wef€Wer thanV neighbors (whereV is the num-
seek a solution is to find a mapping from gber of available colors) can be trivially col-.
set of pseudoregs into a set of hardregs unered. We can remove such nodes from consid-
der the constraint that pseudos simultaneousl§ration, which in turn might make other nodes
live must not be mapped to the same hardregi.ave fewer thanV neighbors. The removed
Or more abstractly the constraint is, that cerN0des are remembered on a stack. The pro-
tain pairs of pseudos may not get the samé&€sS pf pruning the graph in this way is called
hardreg (for whatever reasons). Such pseudc@MPlify. If we managed to empty the whole
are called to be in conflict. The set of con-9raph in this way we can take one node at a
flicts forms a relation over the pseudos, whichtime from the top of stack, put it back into the
is symmetric and irreflexive. The visualization 9raph and trivially color it (it's guaranteed to
of a set together with such a relation is sim-have less thatV neighbors).

ply an undirected graph without loops. TheThere are two reasons why simplifying the
node_s represent the_z pseudoregs,_ the edges tB?aph might not completely empty it. First
conflicts, the graph is called conflict graph. In

ih text of reqister allocati talk ab tit’s only a heuristic, and second the graph it-
€ context of register aflocation We talk aboutgq ¢ might not be colorable witliv colors at
webs, instead of nodes.

all from the beginning. Either way we might
Now the problem is to assign each node &£nd up with an intermediate graph in which all
hardreg such that no neighbor of the node ha80des haveV or more neighbors (those nodes
the same hardreg. This is exactly the for-aré called constrained).

mulation of the graph coloring problem (with To make it simplify-able again we have to

hardregs being our colors), which explains thechange portions of the conflict graph. This is

name for the class of register allocators work-
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build lescing phase.

costs | | spill code 2.2 Improvements

simplify anything spilled

coloring

I

There are various improvements to the above
simple allocator. Namely in how it deals with
copy instructions, in the process of coloring the
graph itself, and how spill code is emitted. I'll
only describe those which are actually imple-

Figure 1: Flow graph of register allocators mented inGCC

After initially building the conflict graph, ad-
done by choosing one of the nodes, the onélition of code often changes it only locally.
with the lowest spill cost, remembering it for Therefore it is not necessary to completely re-
spilling, and remove it from the graph, in much build the graph for each colorization round. In-
the same way as if it were trivially colorable. stead werebuild the conflict graph incremen-
Somewhen this makes other nodes simplifytally, which is much faster, especially if only
able again, and in this manner we continue unfew pseudos were spilled.
til the graph is empty. If there were spilled
node we now add spill code, and repeat the
whole allocation process. The next time theColoring and Copies
conflict graph will be simpler, as all spilled
nodes are now split into several nodes, whos

L . Topy instructions ensure that the two involved
conflicts is only a subset of the original ones. Py

pseudo regs get the same value. Hence they are
This leads to an allocator like in Figure 1. Thenot a cause for a conflict between those two.

build phase analyzes the intermediate reprelO the contrary: if they don't conflict because
sentation of the program and creates the corf other reasons, it even is worthwhile to as-
flict graph. For choosing which nodes to spill Sign them the same hardreg, as by doing that
if the need arises, we have to associate a co$f€ Copy instruction itself becomes redundant.
for spilling to each node, so we can select thd™0r instance in a situation like this:

cheapest. Those are calculateddmgts The
spill code phase is only entered gimplify

) 1+ ...
had to remove some nodes by marking them 52 — pl
as spilled. Otherwise all nodes were simplify-

L . p3 «— pd + pl
able, andcoloring is entered, which pops the
pH «— pd + p2

stack of simplified nodes and colors each one
individually. The simplest (and fasted) mean
to add spill code is to spill at each reference toSuppose thap4 is defined earlier. Normally
a spilled node. Before each use insert a loagl, p2, p3 and p4 all conflict (exceptp3 and
from, and after each defnsert a store to the pl1). But the definition ofp2 is a copy from
memory place allocated for the spilled pseudopl, and there are no other defines for it. o
See [Cha81], although this includes also a coaandp2 don't conflict. Furthermore if we could
ensure that both get the same cojet,would
Idefinition only conflict with two instead of three nodes.
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’ spilled node it also tries to find a free color. If
it succeeds, good, if not, only then is it actually
o ‘ marked for spilling. It often succeeds, namely
in the case, where all the( V) neighbors do
not need all theV colors at the same time (i.e.
° some of them are colored equal).

The above mentioned coalescing, which is
Figure 2: Diamond graph called aggressive because it tries to coalesce alll

copies, sometimes results in a much more con-

strained graph than without coalescing. When
aggressive coalescingAfter building the con- nodes are merged whose conflicts are nearly
flict graph, but before measuring the costs wadisjoint the resulting node will have much
first try to merge all nodes for pseudos whichmore conflict than the nodes individually. Pos-
are involved in one move. Merging them en-sibly more thanV, which makes it a potential
sures, that they will get the same color. It canspill candidate instead of a trivially colorable
only be done if the nodes do not conflict. Theone. It can even make it definitely spill, where
resulting conflicts of the merged node are ob-without coalescing the individual nodes would
viously the union of the individual conflicts. not have been spilled (at the expense of leaving
As merging nodes may prevent other nodes copy instruction around). A solution for this
from being conflict free, nodes associated byis (see also [GA96]):

the most costly moves should be handled first. _
iterated coalescing Two pseudo nodes are

To see a problem in the coloring process lookonly coalesced, if the resulting set of conflicts
at the graph in Figure 2 and suppose therés smaller thanV elements (this is conservative
are only two colors. Here theimplify phase coalescing), and a pseudo to a hardreg node is
doesn't find any node having fewer thavi  only coalesced if all conflicts of the pseudo will
neighbors, and ergo selects one for spilling (thée colored, or conflict already with the hardreg.
rest is then simplified). Now there is definitely This ensures that the graph doesn’t become
spill code added. But there’s a trivial color- more constrained due to coalescing than it was.
ing, namely when nodes andd, resp.b and To not miss to coalesce too many copies coa-
c get the same color. But we can't know if lescing is tried repeatedly between simplifying
this holds, until we actually color the nodes,and choosing potential spill candidates. There
which is only begun when we anyway know, are quite many work lists for nodes and moves,
that we succeeded. That is, the decision to spilhnd the exact circumstances when they change
a node is done too early, which leads us to (setheir state are a bit involved, so interested read-
[Briggs94]): ers are referred to the paper, as this is not any-

o _ ) more the method of choice in my implementa-
optimistic coloring: Instead of marking a 44

node for spilling insimplify we simply also put

such nodes on the stack (they are conceptuallYhe method of iterated coalescing still is a bit
potentially spilled). No matter if there are suchtoo conservative. It effectively ensures that the
nodes or not, we go to thedloring phase. This graph remains at least as colorable after coa-
one works as usual for the stack of nodes. If ilescing, but misses the positive effect which
colors a simplified node it still is guaranteed tocoalescing can sometimes have one coalescing.
get a color. And if it encounters a potentially
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e Q again point to their initial nodes. Conceptu-

ally instead of spilling the node we actually

e ° have split it. But compared to general splitting
Q we know already good split points (namely the

original copy instructions) and don’t even need

e ° to insert them.

(a) (b)
The example of figure 3 shows, that it some-

times is good for colorability if nodes are
Figure 3: Diamond graph with b and c con-merged. It isn’'t necessary that there actually
nected by a move is a copy instruction. This idea is used by:

extended coalescing After aggressive coa-

For instance referring to figure 3(a) if nodes '€scing we also try to merge other nodes if it
and ¢ were coalesced the resulting graph (inl00ks feasible. The candidate pairs are those,
3(b)) is trivially colorable without any poten- Whose one pseudoreg is target and the other is
tial spill. Butb andc wouldn't be coalesced un- Source in the same instruction, and which do

der any conservative scheme (whris two).  Not conflict. Being mentioned in the same in-
In general it holds, that if two nodes are co-Struction makes it probable that the two sets of

alesced, those nodes which conflict with bothconflicts have many elements in common, so
have one conflict less after merging. This isthe merged node will not have that many more
the positive impact. conflicts. If we then are unlucky and can't

color it we unmerge the nodes again and go on.
The problem that iterated coalescing (and con-
servative coalescing) are trying to solve is
to prohibit coalesced nodes from becomingShrinking the Spilled Set
spilled. They do this by limiting merging be-
fore the fact, but that isn't necessary. It wouldgna of the parameters which influences the
be better to only act if the danger of spilling a 5, ;icome of our graph colorizer in any way is
merged node has become real (see [Park]):  the heuristic for choosing the next potential

spill candidate among a set of remaining nodes
(which are all constrained) (the other parame-
ter is which color to choose for a node among
those which are still free). The heuristic best
for one graph may be bad for another one.

optimistic coalescing All moves are aggres-
sively coalesced befosts Then the normal

simplify andcoloring phases are run. When
a node which is a merged node now defi
nitely gets no color (i.e. would be spilled) we

first split the merged nodes into its ingredientst, pecome a bit more independent from that
again, and try to color them individually. All heistic Bernstein et.al. ([Bernstein]) pro-

parts which still need spilling are spilled. From posed abest-of-three strategy. For a set of

the parts which get a color only the most costly e ristics the graph is colored each time from
will be colored right away, the other parts aréihg heginning with one heuristic, and the over-
put under the stack (so they are tried to be coly| cost of all spilled nodes is measured. Then

ored after all the other nodes), as the buildinginly that colorization with the lowest such
of the color stack expected to only color oneqqqt will be used.

node. This splitting of the merge is simply an
undo of the merge operation, i.e. all conflictsThe other parameter is the choice of color
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among the free ones for a certain node. The p3 «— pl + p2
usual choices are first-fit and rotating. An- ... code not changingl or p2
other more complex one ibiased coloring pd — pl + p3
([Briggs92]): the number of choices depends pd «— pd + p2

on how many colors are used by the neighbors,
so one goal for coloring a node would be tolf p3 is spilled andpl andp2 are not, and an
not unnecessarily enlarge this set for the stilladd instruction on registers is cheaper than a
uncolored neighbors of it. For that we look atload from memory, then we can instead recom-
the colored neighbors of all out yet uncoloredpute the value op3 before its use. If we op-
neighbors. Those colors are anyway alreadgrate on SSA form the required analyzation to
unavailable to them, so would be a good choicgrove thaip1 andp2 are not changed during the
for us. lifetime of p3 are relatively easy. Before actu-
ally doing such rematerialization it needs also
to be ensured that the lifetime of the operands
are not extended, i.e. that all operands are live
Cheap Spill Code during the lifetime of the spilled node.

Now we look at this code:
The improvements up to now had the goal to

make the set of spilled nodes as small as possi- code definingy1 andp?2
ble. The next few items deal with emitting the use < pl
cheapest spill code once this set is fixed after use «— p2
one colorization round. use «— pl

: . _ no further use of2
First notice that some pseudo regs contain con-

stants (also values loaded from _argument Stac'éuppose thap1 is spilled and before the first
slots count as constants for this purpose), Ofise yp to its definition are no instruction in
values which are provably constant over thgyhich a pseudoreg dies. Naively there would
lifetime of that pseudo. This make Sp'_”'ng be a load instruction added before each use of
them easy ([Cha81, Briggs92, Briggs94]): ;1 Byt adding it before the first use doesn't
Such pseudos are called help colorability at all. As there are no deaths
5)etween that use and the def the number of
used hardregs remains constant there. Insert-

dng a load is not going to help colorability of

rematerialization:
rematerializable as the expression calculatin
their value at each point during their lifetime
is known, and hence, once they are overwritte
could easily be “rematerialized.” To spill such pl.

nodes instead of inserting load from stack in—thearefore we onlyspill at deaths, we only in-

structions, one inserts the rematerialization in'sert loads if we encounter a death of another
structions (depending on the value,forinstanc%on_spi”ed pseudo. For inserting loads we

load with a constant). Stores are not needed faf 5k hackwards the instruction stream, note
these nodes (as we know their value). Rematq,—vhich nodes need a load, and emit all loads

rializing a node is worthy if it's cheaper to cre- 55 soon as we reach a def (or the basic block
ate these value-load instructions than the MeMyorder).

loads and mem-stores. More advanced meth-
ods of rematerialization also detect expression®f course we don’t emit the loads directly af-
over other pseudoregs, like in this example: ter the death, but instead right before the in-
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struction which most recently used the spilled 1i__ ; i__
pseudos. Otherwise we could end up with code 52 - gz <«
like: pl <— p2+p3
.<—p2
p3 <—rpl
pl — pl + p2
p3 — [sp+4] :
p4 - [Sp + 8] p4 <— pl+p2+p3
ph «— [sp+ 12]
pl «— pl 4+ p3
pl — pl +pd Figure 4. Example for interference region
pl «— pl +p5 spilling
, . | 2
p3, p4 and p5 were spilled, andy2 died at pl < .. 3 < ..
the first shown instruction, where we also in- p2<— ... P2 <—— ...
serted all loads together. So the register pres- pl <—— p2+p3
sure at the second add instruction is still four. p'3<<_—_—1;21
The correct position of the load is right before
their uses, but actually emitting them is only 3
triggered by encountering a death, which then P2 <——[sp+4]

i 4 <— pl+p2+p3
leads to this code: p pl+p2+p

pl = pl+p2 : : :

p3 — [sp+4] Figure 5: Example for interference region

pl — pl +p3 spilling (after inserting loads)

p4 — [sp+ 8§

plL—pl+pd color is in use, we deal with it like described

p5 — [sp+12] above (i.e. waiting for a death and then insert-
pL—pl+p5 ing a load before the using instruction). If on

the other hand its color is currenthot in use
The next improvement igiterference region we mark it specially as potentially needing a
spilling ([Bergner]): if we don't find a color for load. If we go further up and notice a defi-
anode (i.e. it's spilled) we up to now totally re- nition for a node marked in this way, and its
moved that node from the graph (by placing itcolor didn’t become used meanwhile, we sim-
into memory everywhere except for very smallply remove that mark (it's not live before the
ranges around the instructions which neededefinition anyway). If we encounter the use
it). But we also could simply assign any of another (non-spilled) node we set its color
hardreg to this node, and onlgmove the edges as used. If we currently have some potential
to any now really conflicting neighbor. load candidates, whose color now is used, we

_ o ) emit loads for those. This process effectively
Practically this is done by choosing a color foromy adds spill instructions if there is danger

all spilled nodes. While emitting the spill loads ihat two nodes with the same color are live at
we also track all hardregs which are currently;ne same time.

in use. Remember that we walk backwards.
If we encounter a use of a spilled web whoseTo better see the effect look at figure 4 for
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an example situationpl, p2 andp3 all con- there are no references ta (which requires
flict, and we only have two hardregs:l got something like a containment graph, which can
hardregs Op3 hardreg 1 ang2 was spilled. also be used to implement the conflict graph).
We choose hardreg 1 for it. We begin with theThis makes it possible to completely spjit
use in block 3, both colors are needed and aroundp2, so that it isn't anymore live dur-
p3 are used), so we need to insert a load (weéng p2. This even guarantees, that the number
reached the block border). Then we analyzef conflicts for p2 reduces, something which
block 1. Initially hardreg 1 is not useg3 is normal spilling can’'t do generally. The result
not live), so we only marky2 as potentially would then look like:

needing a load. While we go upward hardreg

1 doesn’t become used, but we encounter a def

of p2. So we simply forget about it. In block pl— ...
2 hardreg 1 is used during lifetime p®, but [sp +4] < pl
we don’t encounter a death until the def, so no P2 — ...
load is added here. We end up with the code in ... codel and code2
figure 5. = P2
pl «— [sp+4]
If we had spilled by the former method we also ... code3
had inserted a load into block 1 (if there is any o —pl
death in the “...”). With interference region

spilling we need to insert stores for each defi-
nition which reaches one of the uses for whichNote that the load of1 is not for the later use
a load was added. In the above case after botbf it (like in spilling), but rather because the
defs. lifetime of p2 ended. That is, generally stores

_ for split webs are created before each def of
To further reduce cost of spill code we also doyeps around which they are split. Loads for
web splitting ((Mass]). If we can'tfind a color  {nem are created right after each death of the
for a web, i.e. we are going to split it, we first gpit around webs. A web can also die over a

try if we can split this web around other webs, cartain edge, not only explicitely at a use.
or other webs around that one, in a cheaper way

than splitting. Look at this code: One minor improvement ispill coalescing
([GLnew]): It can happen, that there are un-
coalesced copy instructions remaining, where

1 ..

22 - both pseudos of the copy insn are spilled, but
... code1 without using1 do not conflict. Th_|s would c_:reate a memory-

e memory move which often is less than desir-
... code2 without using1 able. Tr_lerefore we can run an_other aggressive

e 2 coalescing pass for just the spilled webs in or-

 code3 der to remove such copies. This also reduces

e pl the needed frame size a bit.

Another situation which sometimes arises is
Suppose? is spilled (there are other usesdf  helped byspill propagation: There are three
which makes it more costly to spjill thanp2)  pseudospl connected t@2 by a copy ang2
andpl already colored. Now instead of doing connected t@3 by a copy. They don’t conflict,
that, we notice that during the lifetime @2 like here:
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L reference is of course the source code (in files
build | SEEISSIVE ) XIS = cogis = simplify ra*.c, ra.h and pre-reload.* ), and
v ‘ to not obsolete the paper as soon as some parts
o optimize (= pill code it of the allocator are changed we don't follow
coloring  |=o Spi]l set sp]i[ code reoui
the source too closely here.

¢ no color
break merge —

try split nothing 3.1 Constraints Imposed byGCC

spilled

Classes and Constraints

Figure 6: Flow graph of the final allocator
GCCnot only targets an ideal machine with

a set of N completely equivalent registers,
whose instruction set is totally orthogonal,
which doesn’t expect certain conditions from
the operands of instructions, but instead it tar-
gets real machines with sometimes awkward
constraints. The ones which influence the reg-

_ ister allocator are described here.
Now suppose, thatl andp3 were spilled, but

p2 colored. It might be better to also spil2  GCC has the concept ofegister classes

to memory, if then the two copy instructions The set of all hardware registers for a ma-

can be removed by coalescing all three pseudaoghine is divided into named smaller set of

together. In a sense this “propagates” the spiltegisters ALL_REGSfor the whole set and

to a colored pseudo (which initially is counter NONE_REG®r the empty set are defined by

intuitive). all machines). They are not disjoint. The regis-
ter operands of instructions can specify which

The last improvement here &pill coloring:  harq registers they accept by mentioning such
After the set of spilled webs is finalized a col- rggister classes.

oring pass is run on the subgraph induced by
the spilled nodes, with an unlimited number of The instruction templates for a machine can
colors (i.e. when a node doesn’t get a color, thespecify constraints and can consist of more
maximum number is simply incremented and itthan one alternative per template. Each of the
gets the new color). Then a stack slot is allo-nstructions in the intermediate representation
cated for each such color, instead of for eachmatch one template in the machine description.
spilled node. This greatly reduces the needeffor register allocation purposes each template
stack frame size for spilling. has many alternatives, where each of them can
have a different set of requirements on the
The final flow graph of the register allocator operands. For instance it's possible that the

... with def ofp1
p2 «+— pl

3 p2
... with use ofp3

can be seen in figure 6. generic “add” template has two alternatives,
one accepting registers of cla€6ASS1and
3 Takingitto GCC the other accepting registers of cl&ISASS2

The are also other types of constraints, for in-
Now we look how to fit all the above descrip- stance to limit the range of constant operands
tions into the framework o6CC The definite (so as to fit into an immediate field in the



GCC Developers Summit 2003 * 161

instruction), or matching constraints, whichlower half, then the high half), and then uses
force one operand to be equal to another. Irthepl in its whole. The interpretation of sub-
that way two address machines can be impleregs is bitwise.

mented. For instance the generic “add” pat-

tern has three operands (one target, and twf SPecial kind of subregs aparadoxical sub-

sources), and if the machine has only an in/€9S: Those are subregs in a wider mode than

struction which adds a register to the Otherthe.inside register provides. l.e. it accesses bits
source register, this can be specified by conWhich aren't provided (or are undefined).

straining the first source operand to be the Same,,thermore not all machines allow subregs to
as the target operand. be taken from all hardware registers. For in-

Such matching constraints can easily be madgt@nce on Alpha the floating point register can
valid by a pass before register allocation,N0ld 64-bit integers. But it's not possible to
by adding copy instructions for the matching2CC€SS the low or high 32 bit of that value by

operands (possibly using new pseudo reglissimply looking at the low or high 32 bit of the

ters). Similar with constraints which don't af- '€dister. Therefore some registers are not al-

fect register operands (constants e.g.). lowed for references which involve a subreg
reference.

Additionally some hardregs are not available

for register allocation at all, as they have spe/And finally there is the notion omulti word

cial uses (e.g. the static chain pointer for neste§fardregs. Those are references to hardregs in
a mode which is wider than this hardreg. Such

functions, or the PIC register on some ma- LS i
chines). references implicitly use the next few adjacent
hardregs (as much as needed). For instance a
The machine descriptions also have the posbImode reference to hardreg O (which for this
sibility to limit the set of hardregs for example shall be SiImode maximum) also uses
a pseudoreg just based on its mode (théardreg 1.
HARD_REGNO_MODE_m&cro).
3.2 Meaning for the Allocator

Subregs and Wide Regs The constraints on registers result in a set of al-

lowed hardregs for each register reference. The
Another possibility inGCCis the use osub-  set of allowed hardregs for a whole web con-
regs. Subregs are references to a part of a regsists of the intersection of the sets for all indi-
ister (or other values, but in those we aren't in-vidual references making up that web.

terested). This makes such code possible: _ _
It's possible that one web consists of references

with conflicting constraints, i.e. with disjoint
allowed hardregs. For instance a pseudo reg-
ister used in integer (e.g. bitwise logic) and
floating point context (e.g. addition with a float
constant). Such a web would have an empty set
Here the notatiop1 : [ST + x] means the sub- of possible hardregs. A possible solution is to
reg ofpl of modeSImode on byte offsetr in-  either fake this set (by ignoring the conflicting
sidepl. Suppose thatl is aDImode pseudo. reference), and thereby leave the work of fix-
The code does defingl piecewise (first the ing up the instructions toeload , or to spill

pl: [ST+0] « p2
pl: [ST+ 4] < p3 + p2
p4 «— pl 4+ pb
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away the conflicting reference while building tially (this is a cause of much of the complex-
the web. ity in the actual implementation). This can
also result in partial conflicts, i.e. something
As probably already became clear, eachye “the lower 32bit ofpl conflicts withp2.”
web has its own set of allowed hardregsgch conflicts are useful to create a good al-
(in the usable_regs  member ofstruct location for multi word pseudos, as now par-
web).  Most often it will not contain all jg gyerlap is allowed (so that for instance
hardregs. This has implications for the pred-omy three hardregs are needed for two pseu-

icateis-trivially-colorable ~usedin 45 each needing two regs). Partial webs are
thesimplify phase. The numbeY is meaning-  ihstances of the normatruct web  butthey

less here. Instead a web is trivially colorabley,g e theirparent_web member set. The
if the weight of its conflicts is less than the subreg_next members form a linked list

number of registers iusable_regs . For patween the whole web and its parts.

that to work there may only be conflict edges

between webs whose possible hardregs havegs  1he confiict Graph

non empty intersection. This of course makes

jvznsi’oazr:ft't \évtetrﬁee;naﬁé tsslg\r’vosgvigf]fﬁ:é:rhe most important structure in a graph color-
Y 9 . ! ing register allocator is obviously the conflict

between them are pointless. This also reduces ; :

: graph but up to now we haven't talked about it,
the necessary conflict edges.

because conceptually it's not very interesting

One difficulty are multi-word pseudos. The in the context of describing the general meth-
webs have anadd_hardregs  member 0ds of register allocation.

which contains the number of additionally re-
quired hardregs (at maximum). To generally
ensure that there is a hole of two consecu- o

tive hardregs in a block oW, it would be re-  Struct conflict_link

quired that there are less tha¥fy2 neighbors struct conflict link *next:
(which itself wouldn't be allowed to use mul-  struct web *t:

tiple regs). If we had exactly/2 conflicts all struct sub_conflict *sub;
even colors could be taken, leaving no block off: ,

size two. But this is clearly an overly conser- ?”“Ct sub_conflict

vative heuristic. struct sub_conflict *next;

. struct web *s;
Instead theadd _hardregs  member simply struct web *t:

is counted as another conflict. So the actua.
predicate is: struct web

trivial; := |usable;| > add;+ Z 1+add,, {

néeneighbors; struct conflict_link *conflict_list;
This is an optimistic predicate, which means
that even webs which were simplified could?

. sbitmap igraph;
not g)et a color (only when they are multi word sbitmap sup. igraph:
regs).

It is implemented iGCCby these structures:

The possibility of subregs means for us, thafThat is, each web has a linked list of its
a pseudo may sometimes be live only parconflicts. Only whole webs have this list,
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subwebs (those corresponding to subregs)se is remembered as live over it).
don't. The targets of those conflicts (in . .
conflict link.t ) are also whole webs. The currently analyzed use is placed into an

This allows fast iteration over all conflicts INStance ofstruct curr_use.  Partial live-
without having to care for the details of sub-N€SS IS supported by having a bit field (the
conflicts. If between wela and b only sub- .undefined  member) where each bit corre-

conflicts occur, then those are remembered i§PONdS 10 one byte of the use. A bit is set if
a second linked list, which hangs off of the the byte is still undefined. When a def is en-
edge betweeru and b. l.e. there is one countered the bits which correspond to that def

conflict link instance irus conflict list.  are cleared. If that results in no more left bits

with .t beingb, which has itssub member W€ have reached the first def which (partially)
pointing to a list of sub-conflicts which note defines the use on that path. The set bits also

which parts ofa resp. b exactly are conflict- ePresent the part of the use, which is still live.
ing (s points to a part of: or a itself, .t to ThIS is used for creating sub conflicts. Partial
b or a part of it). The bitmapgraph and liveness co_uld qlso be _representfed_ by a set of
sup_igraph  are used to test two webs for "anges, WhICh blts_ are _Ilvg. A variation of that
conflicts.igraph ~ contains the exact conflicts SCheme is used in [Bitwidth], although they
between partssup_igraph lists for whole only_spllt the b|_t§ into threg sections (a set of
webs, if they them-self or any parts of them/€@ding and trailing dead bits, and a section of
conflict. This is a bit suboptimal. If we had Middle bits, which are live). To correctly rep-

a mean to go from the indexes of two webs tg'€Sent live information under this scheme we

the correspondingonflict_link instance Wwould need to treat some subreg references as
for their connecting edge (a hash table for in-€ad-modify-write, like it's done in the conser-
stance) we wouldn’t neegup_igraph . If  Vative data flow pass iIBCCThis makes it less

one considers coalescing (which also involvedftiractive again.

merging conf_llcts, which we must be able ,tOThe advantage of such a builder compared to a
_brea_k up again) such a mean is not totally V-6 raditional bit-set based liveness analyzer
lally implemented, though. is the simplicity (we deal with only one use at
Actually building the conflict graph is im- @ tme), thatit's possible to precisely track par-
plemented inra-buildc . We use an U@l liveness for subregs (something which is
incremental graph builder which at the samg"0t that easily done with bitmaps) and that we
time does an liveness analysis, builds web§2n €asily rebuild the graph for only those uses,
and creates (preliminary) conflicts (it's in which need it. After spilling was done not the
build_web_parts_and_conflicts() whole graph needs to be rebuilt, but only those

and sub-functions). It works use by use. PelVe€bs, which were changed, and their former
use it goes backward the instruction streanf'€ighbors. A bit-set based analyzer also needs
(following all edges backward), until it reaches [0 iterate until the solution stabilizes. This is
a def for the register we currently analyze. On'0t needed here. And that we can note con-
that way it remembers the defs encounterediicts alreadywhile still building webs also is

for the current use (from those the real confliciattractive.
lists are build later), connec_ts uses and defs C\f/\/ith some optimizations (like skipping whole
the same reg as that use in a UNION'FINDbasic blocks if the current pseudo isn't men-

structure, and fills some house keeping inforyjo e i them) the part of building webs and
mation (for instance if an edge is crossed the
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preliminary conflicts actually was nearly as
fast as the traditional bitmap based liveness an-
alyzer inGCC

There is a pass necessary which actually cre-
ates thestruct web  instances and the con-
flict lists from the UNION-FIND structure
and the preliminary conflicts (which are all
based on the defs and uses, for each of whom
an instance ofstruct web_part is cre-
ated. This is done imake_webs() and sub-
functions.

The rest of initializing the webs is also in
ra-build.c . Among it are determining the
spill cost of a web, if it's rematerializable, col-
lecting the copy instructions and so on. It prob-
ably had better been nameal-analyze.c

-
3.4 Putting it Together

The implementation of the register allocator
consists of different files which roughly reflect
the structure described in section 2.

Besidesra-build.c which builds not only
the conflict graph but also most of the other
information about webs and program structure
(as described above), there is

ra-colorize.c

which is all about changing (like in coalesc-
ing) and coloring the conflict graph, including
optimizations which shorten the set of spilled
webs. This includes the work list management.
The structure is fairly close to the allocators in
the published papers, except for three things:

 selectablealgorithm: Most of the im-
provements in the coloring process are se-
lectable at runtime. For instance it can
be switched between optimistic or iterated

(a) (b) (c)

Figure 7: Coalescing of nodes

hard trying to color certain webs: due
to irregularities in connection with multi-
word pseudos, and with spill temporaries,
or other generally difficult webs (which
includes those during whose lifetime no
death occurs) it's possible that there is
no color free for a web which absolutely
must have a color (this happens extremely
seldom and only on register constrained
machines). In that situation it is tried to
temporarily mark one of its already col-
ored neighbors as spilled, and try again to
find a color. This is done until a color is
found or no more colored neighbors are
left. After that those temporarily spilled
neighbors are tried to be colored again. If
they don’t get a color they are left in the
spilled state.

recoloring spills: after the graph is col-
orized and the set of spilled webs is de-
termined, each spilled web is tried to be
recolored. For this the cost for the spilled
web getting a color is measured (it con-
sists of the sum of spill-costs of all neigh-
bors overlapping that color). If the small-
est cost is smaller than the web spill cost,
this recoloring is done, and the neighbors
which now conflict are spilled instead.
This can reduce the overall spill cost of
the graph.

coalescing, or biased coloring can be acti-One particularly ugly problem is how to imple-

vated or not.

ment splitting up merged nodes for optimistic
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coalescing. Refer to figure 7. Starting with data structures and can’t currently be used to-
graph (a) first nodes andc are merged, then gether. They will be usable together once the
nodesa andd. The final graph has only one implementation is done.

edge left which was not in the original graph. _ _ _
Now suppose we want to split notie We may BeS|d_es the |mprovement§ from section 2 for
reducing the number of inserted loads dur-

not yet remove edgé — ad, because also the ' ' _ !
original b — d edge was mapped to it. Only N9 spilling, the actual implementation also

when we also split noded we remove it, and has a naive implementation of optimizing dead
then we alsdhaveto remove it in order to not Stores. It goes backward the insn stream re-

constrain the graph more than necessary. membering to which locations it wrote to. F_or
each encountered use we delete all locations

From that description it becomes clear that thevhich overlap that use from the list. If it is
only real solution would be to add referenceabout to insert a store it first checks if that lo-
counters to edges. But that would bloat the sizeation is still in the list, and omits the store if it
of each edge. That’s not desirable as there arns.

potentially very many edges in a conflict graph. . . . .

The reference counter would also only be evefo"€ thing which should be mentioned is that
needed for edges which weren't in the originalVe defer the creation of real stack slots until

graph, as only those are candidate for removathe very end of allocation. Until then we create
new pseudo regs to hold the value of spilled (or

Currently we don't refcourdtthe edges, but split) webs. These pseudos are not to be con-
instead “repair” the graph after having split fused with normal pseudo regs, as they concep-
nodes. First we remove all edges incident taually represent stack slots or real registers. We
split nodes which weren't in the original graph do this for two reasons:

(we have an easy way to test that as each node
has a list of those), and then we look for other
coalesced nodes that would have added that
edge also (in which case we reinsert it into
the graph). This process is relatively slow,
so we will move to a refcounting implemen-
tation eventually (the work has already started
for that).

* We want to be able to track also liveness
for stack slots (in order to merge or color
them), and sometimes we are able to actu-
ally give them back a hard register. This
usually happens when multiple rounds of
spilling were needed and a spill method
which produces long living temporaries

ra-rewrite.c

is responsible for actually changing the pro-

gram to include any spill code. Its behav-

ior is also selectable at runtime, and it can
use spill-everywhere (separately for uses and
defs), traditional spill at deaths or spill at inter-

ference regions. It also implements the code
for splitting webs around other webs which

can theoretically be used with together with

all spill methods. Unfortunately interference

region spilling and web splitting use separate

2count the number of references of ... ;-)

was used.

In that case it happens that first a web is
spilled which then didn't relax the situa-
tion as much as hoped, so other webs are
also spilled. This in turn can make the
spilling of the first web unnecessary, and
by creating a web also for stack slots we
are able to make use of that. Thagack-
pseudosr stack-webss we call them in
the allocator are handled specially in a
number of situations. For instance they
are colored after all normal webs. If they
don’t get a color, they are not spilled again
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(this is implemented by coloring them functions for debugging the allocator including
with an impossible color). This also needsa new format of outputting the immediate for-
changes in the functions which check va-mat (RTL) of GCC which is much more com-
lidity of constraint, so that stack pseudospact and easier to read (although it lacks some
are accepted for memory references andéformation) than the traditional lisp like for-
for registers. mat. It should somewhen be extended to be

Some machines have requirements on theSable also for the other passes3GC and be
addresses they accept, for instance a limmerged with the format of the scheduler debug

ited range of offsets from a base regis-dUmPs (which uses something similar).

ters. Emitting an address reference Ofrg actually scan the instruction stream for

them can possibly lead to emitting more 5 (interesting) references to registers we use
than one instruction, which actually con- functions from df.c For each such ref-
structs the address by doing arithmetics ONyrence we build one instance struct

SOME new pse’udo reglsterg. On those m"j}/'veb_part which creates an indirection in one
chines we can't defer creating stack slotSys ye highly used data structures, so it might

completely, as creating new pseudo regg,mewhen be advisable to do this on our own.
means we must redo our register alloca-

tion. For those machines we actually emitThe last big part in the allocator is imple-
real stack references for all the stack-websnented in
which did not get a color. l.e. we defer pre-reload.c
stack slots only by one round, not until the As written at the very begin theload pass is
very end. responsible for actually emitting spill code in
the old register allocator, and for fixing up any
Snvalid instructions (those whose operands do
not match their constraints). The spilling code
we do add ourself now, but we could still pro-
duce invalid instructions (for instance operands
. don’t match where they have to, or an operand
and reduce the frame size. |.e. we aIIO_is in aregister which isn’'tin the required class).
cate_ stack space not for each stack pseLJOIC]’his would make reload emit fixup code. As
but instead only for each color needed forthis code is emitted locally without having the
them. big picture of a conflict graph or similar means
this often results in spilling some other pseudo
The rewriting phase is also responsible for reregisters, and reloads method for adding spill
setting the conflict graph and associated inforecode is undesirable.

mation into a state that is usable as a startingr
point for the next round. For instance all coa- | hérefore the goal must be to never leave the

lescing has to be undone, and the edges addéggister allocator with possibly invalid instruc-
for that have to be removed (a# coalescing tions. One requirement is to allocate pseudos
is undone this is considerable easier than whaf @ register which is accepted by all the in-
was described above). We also need to margtructions that reference it. To that end pre-

which webs have to be rebuilt (namely those™€load collects the possible register classes for
which changed their layout). each register reference. Another requirement

is to not violate matching constraints, which
The file ra-debug.c  contains some useful

» The other reason is stack slot coloring a
described in Section 2 (as “spill color-
ing”). When we have webs for all stack
slots (i.e. for the stack pseudos) includ-
ing all conflicts, we can color them easily
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is done by pre-reload emitting copy instruc-

tions before or after the invalid instruction, and

change the operands of it to actually match. It
also makes sure that constraints which don'tin-
volve pseudo regs are fulfilled, like constants
be of a certain range, or decomposing multi-

level indirect memory access (i.e. the address
is a memrefitself) if necessary.

The techniques it uses are heavily inspired by
reload itself, but as pre-reload works on pseudo

regs, the actual implementation can be quite a&Nzme T | Sog | Toow | Sro
bit simpler. 164.gzip 223| 627| 223 627
175.vpr 420| 334| 431| 324

The use of pre-reload can not make totally
sure, that no invalid instructions are gener-
ated. Which register class is acceptable for on
operand can depend on which register anothe

181.mcf 864 | 208| 874| 206
186.crafty 127| 787| 129| 774
,r197.parser 439 | 410| 438| 411

operands was put in and this is only known, 252.eon 1701 766 1711 759
once allocation finished, so in some situations 253.perlbmk | 275) 654| 274 656
we have to give up in the allocator and assum43254'ga,p 205| 537) 201} 546
something. This means, that reload will still be 256.bzip2 3711405 359| 418

. 300.twolf 831| 361 | 819| 366

needed, but only extremely seldom (we once
had only about 10 reloads while building cc1| 168.wupwise| 294 | 544 290| 551
IIRC). This makes me hope that reload can be 171.swim 973| 319| 1036| 299
implemented in a much simpler way than now, 172.mgrid 481| 374| 485| 371
for instance by simply emitting fixup instruc- | 173.applu 624 | 337| 599| 351

tion as invalid operands are encountered, in-177.mesa 233| 602| 229| 610

stead of first collecting all reloads of all in- | 179.art 1607 | 162 | 1664 156

structions. Reload inheritance probably would 183.equake | 327|398 | 323| 403

also not be useful anymore. 188.ammp 707|311 721| 305
200.sixtrack | 334 | 329| 327 | 337

Finallyra.c holds it all together and contains | 301.apsi 925|281 | 963| 270

some initialization functions plus the main _

loop. Figure 8: SPEC2000 results for Athlon 1800+

4 Numbers

For comparing the performance we give some
numbers of runs of the SPEC2000 performance
test suite, with the old allocator and the new
one.

Table 8 shows the result on a 1.53 GHz Dual

3memory reference
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Name 100 5 Trep=Tota] 5 Acknowledgments

164.9zip -1.38889 %

175.vpr -3.7037 (;/0 | wish to thank Daniel Berlin who started
176.gcc -0.465116 % thenew-regalloc-branch and created an
181.mcf 1.82648 % initial implementation, and Denis Chertykov
186.craifty 3.8835 % who createdpre-reload , for their help in
;gg'ggfer 154:733?? g//;’ implementation and fruitful discussions.
253.perlbmk -3.15315 % | also would like to thank SUSE and AMD for
254.gap -1.17647 % letting me work on the register allocator.
256.bzip2 -1.5873 %

300.twolf -5.66616 % And Cafebar 8006 for keeping me awake ;-)
168.wupwise 0.840336 %

171.swim 0.915751 % il

172.mgrid 417755 % 6 Availability

173.applu -1.42518 %

177.mesa -5.67686 % The current development version of the
179.art 0.555556 % register allocator is available in the
183.equake 1.0989 % new-regalloc-branch in GCC CVS.
188.ammp 0.444444 % See

200.sixtrack 0.593472 %

Figure 9: Relative SPEC2000 performance on http://gcc.gnu.org/cvs.html
AMDG64
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GENERIC and GIMPLE: A New Tree
Representation for Entire Functions

Jason Merrill
Red Hat, Inc.
jason@redhat.com

1 Abstract GCC also has another IL: its abstract syntax
tree representation. In the past, the compiler
would only build up trees for a single state-

tion of functions for the optimizers to o erate%ent’ and then lower them to RTL before mov-
X b ing on to the next statement. This began to

on. There was an existing functlons-as-tree(sghange in GCC 3.0 CodeSourcery, LLC mod-

representation shared by the C and C++ fronl ied the C++ compiler to store entire functions

ends, and another used by the Java front en Us trees and only lower them to RTL as part

put nelthe.r was adequatg fqr use in opt|m!za-0f compiling to assembly. As part of the same
tion. In this paper, we will discuss the design

of GENERIC. the new Ianguage-independen%’vork’ they introduced the first tree-level opti-

: mization pass, the inliner. Inlining at the tree
tree representat_lon, an_d GIM.PLE’ the reduce evel partially addressed the second limitation
subset used during optimization.

of RTL mentioned above, since C++ objects
passed as arguments to a function are usually

2 Introduction passed by address.

The tree SSA project is intented to expand on

For most of its history, GCC has compiled this by performing a full set of optimizations at
functions directly to RTL (Register Transfer the tree level. But to do this, we needed to re-
Language) on a statement-by-statement basi§ne how we use trees to represent whole func-
RTL has been a very useful intermediate lantions. The result is GIMPLE, and its superset
guage (IL) for low-level optimizations, but has GENERIC.

significant limitations that keep it from being

very useful for higher level optimizations: oo
3 Existing Tree ILs

* Its notion of data types is limited to ma-
chine words; it has no ability to deal with
structures and arrays as a whole.

The C++ compiler work was later extended to
work with the C compiler as well, but never
became a language-independent tree IL. Initial
work on tree-ssa was based on the C front end

* It introduces the stack t0o soon; takingyees, hut they were unsuited for use in opti-
the address of an object forces it into themization.

stack, even if later optimization removes
the need for the object to be addressible. The main shortcoming of C trees, from an op-
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timization standpoint, is that they are highly provides a hook for converting them to GIM-
context-dependent. ManySTMT codes just PLE and doesn’t expect them to work with any
serve as placeholders for calls éxpand_ (hypothetical) optimizers that run before the
functions and rely on the RTL layer to keep conversion to GIMPLE.

track of scoping. For a tree IL to be useful

for optimization, things such as the target of a

break orcontinue statement, or the scope

of a C++ cleanup, must be made explicit.

- . : 5 GIMPLE
The other preexisting tree IL is the one in the

Java front end. Java made an effort to use back-
end tree codes whenever possible, added a few
new tree codes to the backend, and retained

a few in the front end. GENERIC is largely g|MPLE is a simplified subset of GENERIC
based on Java front end trees, adjusted t0 bgy yse in optimization. The particular subset

entirely language independent. chosen (and the name) was heavily influenced
by the SIMPLE IL used by the McCAT com-
4 GENERIC piler project at McGill University [SIMPLE],

though we have made some different choices.
For one thing, SIMPLE doesn’t suppgwto ;
The purpose of GENERIC is simply to pro- a production compiler can't afford that kind of
vide a language-independent way of representestriction.
ing an entire function in trees. To this end, _
it was necessary to add a few new tree codeSIMPLE retains much of the structure of the

to the backend, but most everything was allarse trees: lexical scopes and control con-
ready there. If you can say it with the codesStucts such as loops are represented as con-
in gcc/tree.def it's GENERIC. tainers, rather than markers. However, expres-

sions are broken down into a 3-address form,
Early on, there was a great deal of debate aboutsing temporary variables to hold intermediate
how to think about statements in a tree IL.values.
In GENERIC, a statement is any expression _ _ )
whose value, if any, is ignored. A statementSiMilarly, in GIMPLE no container node is
will always haveTREE_SIDE_EFFECTSset €Ver used for its value; if £OND_EXPRr

(or it will be discarded), but a non-statementBIND_EXPRhas a value, it is stored into a
expression may also have side effects. Aemporary within the controlled blocks, and
CALL EXPR for instance. that temporary is used in place of the container.

It would be possible for some local optimiza- 1 "€ compiler pass which lowers GENERIC to

tions to work on the GENERIC form of a func- GIMPLE is referred to as the “gimplifier.” The

tion; indeed, the adapted tree inliner works finedimplifier works recursively, replacing com-
on GENERIC, but the current compiler per- plex statements with sequences of simple state-

forms inlining after lowering to GIMPLE. ments. Currently, the only way to tell whether
or not an expression is in GIMPLE form is

If necessary, a front end can use somdy recursively examining it; in the future there
language-dependent tree codes in itwill probably be a flag to help avoid redundant
GENERIC representation, so long as itwork.
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6 Interfaces tually is no real handoff to the tree backend
at the moment; in the future there will be a
tree_rest_of _compilation which

The tree representation of a functionwill take over, but it hasn’t been written yet.

is stored in DECL_SAVED TREE It _
is lowered to GIMPLE by a call to Notethatthere are still alarge number of func-

simplify_function_tree . tions and even files in the gimplifier which use
“simplify” instead of “gimplify.” This will be
If a front end wants to include language-corrected before the project is merged into the
specific tree codes in the tree represenGCC trunk.
tation which it provides to the back- _ .
end, it must provide a definiton of You can tell the compiler to dump a C-like rep-
LANG HOOKS SIMPLIFY EXPR which resentation of the GIMPLE form with the flag
knows how to convert the front end trees to-fdump-tree-simple
GIMPLE. Usually such a hook will involve
much of the same code fo_r expanding front end7 GIMPLE reference
trees to RTL. This function can return fully
lowered GIMPLE, or it can return GENERIC _
trees and let the main gimplifier lower them 7-1 Temporaries
the rest of the way; this is often simpler.
When gimplification encounters a subexpres-

The C and C++ front ends currently con-gion \yhich is too complex, it creates a new

vert directly from front end trees to GIMPLE, temporary variable to hold the value of the

and hand that off to the backend rather tharyaynression, and adds a new statement to ini-
first converting to GENERIC. Their gimplifier 276 it pefore the current statement. These
hooks know about all the STMT nodes and special temporaries are known as “expres-

how to convert them to GENERI_C f(_)rms. I sion temporaries,” and are allocated using
worked for a while on a genericization passget_formal_tmp_var . The compiler tries

which would run ﬁr;t, but tc?e existence CI)If to always evaluate identical expressions into
STMT_EXPRneant that in order to convertall o same temporary, to simplify elimination of

of the C statements into GENERIC equivalentsredundant calculations.

would involve walking the entire tree anyway,

so it was simpler to reduce all the way. ThisWe can only use expression temporaries
may change in the future if someone writeswhen we know that it will not be reeval-
an optimization pass which would work betteruated before its value is used, and that it
with higher-level trees, but currently the opti- will not be otherwise modified (these restric-
mizers all expect GIMPLE. tions are derived from those in [Morgan]

_ 4.8). Other temporaries can be allo-
A frontend which wants to use the treecated usingget_initialized_tmp_var

optimizers (and already has some SOrtyr create tmp_var

of whole-function tree representation) - -

only needs to provide a definition of Currently, an expression likea = b + 5 is
LANG_HOOKS_SIMPLIFY_EXPR and not reduced any further, though in future this
call simplify_function_tree and may be converted to

optimize_function_tree before they

start expanding to RTL. Note that there ac- T1 = b + 5;
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a = TL; T1[2] = 42;

to avoid problems with optimizers trying to re- alias analysis would not remember that the
fer to variables after they've gone out of scopereference toT1[2] came by way ofa.b ,
so it would think that the assignment could
7.2 Expressions alias another member of; this broke
struct-alias-1.c . Future optimizer im-

In general, expressions in GIMPLE consist ofProvements may make this limitation unneces-

an operation and the appropriate number of2'Y:
simple operands; these operands must either
be a constant or a variable. More complex7
operands are factored out into temporaries, so’
that

2.3 Conditional Expressions

A C ?: expression is converted into ah
a=b+c+d statement with each branch assigning to the
same temporary. So,

becomes
a=b?c:d;
Tl = b + ¢
a=Tl + d becomes

The same rule holds for arguments to a if (b)

CALL_EXPR 1 =g¢
else
The target of an assignment is usually a vari- Tl = d;

able, but can also be dNDIRECT_REF or a a = T1;

compound Ivalue as described below. _ _
Note that in GIMPLE,f statements are also

represented usinGOND_EXPRas described
7.2.1 Compound Expressions below.

The left-hand side of a C comma expression i37 2.4 Logical Operators
simply moved into a separate statement. o

Except when they appear in the condition
and ‘or’ operators are simplified as follows:

, , a = b && c becomes
Currently compound Ivalues involving array

and structure field references are not bro- T1 = (bool)b;
ken down; an expression likeb[2] = 42 if (T1)

is not reduced any further (though complex T1 = (bool)c;
array subscripts are). This restriction is a g = T1:

workaround for limitations in later optimizers;
if we were to convert this to Note thatT1 in this example cannot be an ex-

pression temporary, because it has two differ-
T1 = &a.b; ent assignments.
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7.3 Statements C++ front end uses pseudo-scopes to handle
cleanups for objects with destructors, these
Most statements will be assignment statedon’t translate into the GIMPLE form; multi-

ments, represented b}ODIFY_EXPR A ple declarations at the same level use the same

CALL_EXPRwhose value is ignored can also BIND_EXPR.
be a statement. No other C expressions can ap-

pear at statement level; a reference to a volatile

object is converted into IODIFY_EXPR

o 7.3.2 Statement Sequences
There are also several varieties of complex

statements.
Currently, multiple statements at the

same nesting level are connected via
7.3.1 Blocks COMPOUND_EX®R This representation
was chosen both because of precedent and

Block scopes and the variables they declare ilt.:_ecause itsimplified the implementation of the

GENERIC and GIMPLE are expressed usingg'm.p“f'er' tﬂqwegfer’ it makes "a':.s‘cot”ga“onz
the BIND_EXPRcode, which in previous ver- uring optimization more compiicated, an

sions of GCC was primarily used for the Cthereh 'Sd _somle goncern about the memory
statement-expression extension. overnead Involved.

The complication is mostly encapsu-
lated by the use of iterators declared in
tree-iterator.h . The representation
may be extended in the future, perhaps to use
statement vectors or a double-chained list, but
the iterators should also avoid the need for any
changes in the optimizers.

Variables in a block are collected into
BIND_EXPR_VARS in declaration order.
Any runtime initialization is moved out of
DECL_INITIAL and into a statement in the
controlled block. When gimplifying from
C or C++, this initialization replaces the
DECL_STMT

Variable-length arrays (VLAsS) complicate this

process, as their size often refers to variables

initialized earlier in the block. To handle this, 7.3.3 Empty Statements
we currently split the block at that point, and

move the VLA into a new, inndBIND_EXPR

This strategy may change in the future. Whenever possible, statements with no ef-

fect are discarded. But if they are nested
DECL_SAVED_TREBr a GIMPLE function within another construct which cannot be dis-
will always be aBIND_EXPRwhich contains carded for some reason, they are instead re-
declarations for the temporary variables usegblaced with an empty statement, generated by
in the function. build_empty _stmt . |Initially, all empty
_ ) statements were shared, after the pattern of the
A C++ program will usually contain more ;5.4 front end, but this caused a lot of trouble

BIND_EXPRs than there are syntactic blocksjy nractice, and they were recently unshared.
in the source code, since several C++ con-

structs have implicit scopes associated withAn empty statement is represented as
them. On the other hand, although the(void)O
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7.3.4 Loops 7.3.6 Jumps

. Other jumps are expressed by either
All loops are currently expressed in GIMPLE 5510 ExPRrRETURN EXPR
using LOOP_EXPRwhich represents an in- - - '

finite loop. Loop conditions,break and The operand of &O0TO_EXPRust be either
continue are converted into explicit gotos. a label or a variable containing the address to

o jump to.
A future loop optimization pass may repre-

sent canonicalized loops using another treqhe operand of aRETURN_EXPRis ei-

code, perhap®0O_LOOP_EXPRout this has therNULL_TREEor aMODIFY_EXPRwhich

not been implemented yet. sets the return value. | wanted to move
the MODIFY_EXPRinto a separate state-
ment, but the special return semantics in
expand_return  make that difficult. It may
still happen in the future.

7.3.5 Selection Statements
7.3.7 Cleanups

A simple selection statement, such as the Gyagyrycrors for local C++ objects and similar

if statement, is expressed in GIMPLE USINg &y namic cleanups are represented in GIMPLE
void COND_EXPRTf only one branch is used, by a TRY_FINALLY_EXPR When the con-

the other is filled with an empty statement.  /,11ed block exits, the cleanup is run.

Normally, the condition expression is reducedrry EINALLY EXPR complicates the flow
to a simple comparison. If it is a shortc&& graph, since the cleanup needs to appear on
or|| ) expression, however, we try to break Upgyery edge out of the controlled block: this

theif into multipleif s so that the implied (o4 ,ce5 our freedom to move code across
shortcut is taken directly, much like the trans-y,oe edges. In the future, we will want

formation done bydo_jump in the RTL ex- ¢, |ower TRY FINALLY_EXPRto simpler
pander. Currently, this is only done when it¢y g 4t some point in optimization, proba-
can be done simply by adding moife ; in -y by changing it into IRY_CATCH_EXPR
the future, this trangformatlon will handle more 44 inserting an additional copy of the cleanup
cases and usgoto if necessary. along each normal edge out of the block.

The representation of awitch is still un-

settled. Currently, &WITCH_EXPRontains _ _

the condition, the body, and BREE_VECof  /-3.8 Exception Handling

the LABEL_DECIs which theswitch can

jump to, andcase labels are represented in Other exception handling constructs are rep-
the body byCASE_LABEL_EXPR In future, resented usingRY_CATCH_EXPRIhe han-
we may want to move even more informationdler operand of &RY_CATCH_EXPRan be
about the cases into tI®&VITCH_EXPRtself, a normal statement to be executed if the con-
and reduce th€ASE_LABEL_EXPRto plain trolled block throws an exception, or it can
LABEL_ EXPR. have one of two special forms:



* A CATCH_EXPRexecutes its handler
if the thrown exception matches one

of the allowed types.

Multiple han-
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{

dlers can be expressed by a sequence of

CATCH_EXPRtatements.

 An EH_FILTER_EXPRexecutes its han-

dler if the thrown exception does not

match one of the allowed types.

Currently throwing an exception is not di-
rectly represented in GIMPLE, since it is im-
plemented by calling a function. At some point
in the future we will want to add some way to
express that the call will throw an exception of

a known type.

8 Example
struct A { A); ~AQ); %
int i
int g();
void f ()
{
A a;
intj=( ——i,i?0:1);
for (int x = 42; x > 0;
{
i += g() =4 + 32;
}
}
becomes
void f() ()
{
struct A * a.l;
int iftmp.2;
int T.3;
int T.4;
int T.5;
struct A * a.b;

——X)

struct A a;
int j;
a.l = &a;
__comp_ctor (a.l);
try
{
i=i -1
if (i == 0)
iftmp.2 = 1;
else
iftmp.2 = O;
j = iftmp.2;
{
int x;
X = 42,
while (1)
{
if (x < 0)
goto break_label;
T3 =9 ()
T4 = T3 =x 4
T5 =i + T4
i =T5 + 32
Xx=x —1
b
break_label:;
}
¥
finally
{
a.6 = &a;
__comp_dtor (a.6);
}
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9 Rough GIMPLE Grammar

function:

FUNCTION_DECL
DECL_SAVED_TREE- block

block:

BIND_EXPR
BIND_EXPR_VARS— DECL chain
BIND_EXPR_BLOCK— BLOCK
BIND_EXPR_BODY

— compound —stmt
compound —stmt:

COMPOUND_EXPR
op0 — non-—compound —stmt
opl — stmt

stmt: compound —stmt

| non—compound —stmt

non —compound —stmt:

block

| loop —stmt

| if —stmt

| switch —stmt
| jump —stmt

| label —stmt
| try —stmt

| modify —stmt
| call —stmt
loop —stmt:

LOOP_EXPR
LOOP_EXPR_BODY

— stmt | NULL_TREE

| DO_LOOP_EXPR
(to be defined later)

if —stmt:

COND_EXPR
op0 — condition
opl — stmt
op2 — stmt

switch —stmt:

SWITCH_EXPR
op0 — val
opl — stmt
op2 — TREE_VEC of LABEL_DECLs

jump —stmt:

GOTO_EXPR
op0 — LABEL_DECL| * ID
| RETURN_EXPR
op0 — modify —stmt
| NULL_TREE
label —stmt:
LABEL_EXPR
op0 — LABEL_DECL
| CASE_LABEL_EXPR
CASE_LOW— val | NULL_TREE
CASE_HIGH — val | NULL_TREE
CASE_LABEL — LABEL_DECL
try —stmt:
TRY_CATCH_EXPR
op0 — stmt
opl — handler
| TRY_FINALLY_EXPR
op0 — stmt
opl — stmt
handler:
catch —seq
| EH_FILTER_EXPR
| stmt
catch —seq:
CATCH_EXPR
| COMPOUND_EXPR
op0 — CATCH_EXPR
opl — catch —seq
modify —stmt:
MODIFY_EXPR
op0 — Ihs
opl — rhs
call —stmt: CALL _EXPR
op0 — _DECL | ,& _DECL
opl — arglist
arglist:
NULL_TREE
| TREE_LIST
op0 — val
opl — arglist

varname : compref | _DECL

Ihs: varname ¥, _DECL
pseudo —lval: _DECL | *, _DECL
compref :




COMPONENT_REF
op0 — compref | pseudo —Ival

| ARRAY_REF
op0 — compref | pseudo —Ival
opl — val
condition : val | val relop val

val : _DECL | CONST

rhs: varname | CONST
| * _DECL
| & varname
| call_expr
| unop val
| val binop val
| ,(, cast ,), varname

(cast here stands for all valid C
typecasts. Use of varname here seems
odd; it may change to val.)

unop: +, | . | L |~

binop: relop T S S I A

‘ 1%1 I 1&1 | 1|1 | %, | W, | 1/\1

relop: All tree codes of class <,
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Abstract even impossible) to obtain from RTL (e.g., ar-
ray references, data types, references to pro-

Tree SSA is a new optimization framework 9ram variables, control flow structures). Over

based on the Static Single Assignment (SSAJime, some of these transformations have been
form that operates on GCC's tree representaMplemented in RTL, but since the data struc-

tion. Tree SSA is designed to be both |an_f[ure is not reglly sulteq for this, the end result

guage and target independent and allow highiS code that is excessively convoluted, hard to
level analyses and transformations that are dif@intain and error prone.

ficult or impossible to implement with RTL. In this paper we describe an optimization

O”Z of the mailn goals dOf the project i? ' framework based on GENERIC and GIM-
produce an analysis and optimization in ras'PLE, two high-level intermediate represen-

tr.ucture baged on proven algorithms a”F’ techt'ations (IR) derived from GCC parse trees
niques avalla}ble in the .Ilteratur.e - In this pa- 5]. Language-specific constructs are removed
per we describe the design and |m_plemen'_[at_|o om the input parse trees to obtain GENERIC.
of the Tree SSA framework, provide prelimi- In turn, GENERIC trees are broken down into

nary results and discuss possible applicationa simpler three address representation called
and future work. GIMPLE which is used for optimization.

Optimizing GIMPLE is appealing because, (a)
it facilitates the implementation of new analy-
ses and optimizations closer to the source, (b)
Currently, optimizing transformations in GCC it simplifies the work of the RTL optimizers,
operate on a single intermediate representatiomotentially speeding up the compilation pro-
namely RTL (Register Transfer Language).cess or improving the generated code, and (c)
Parse trees generated by the front end argcan be done in alargely language and target-
almost immediately converted into RTL andindependent way. The latter is an important
passed on to the optimizer (Figure 1). feature for a compiler like GCC that targets

. i many different architectures and languages.
Being a low-level representation, RTL works

well for optimizations that are close to the tar-We believe that modularizing the compiler and
get (e.g., register allocation, delay slot opti-using well-known published algorithms will
mizations, peepholes, etc). However, many ophelp developers maintain and improve GCC,
timizing transformations need higher level in-and flatten the learning curve required for ex-
formation about the program that is difficult (or

1 Introduction
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Front End

C
parser
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C++
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Back End

Java
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RTL
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T
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RTL Code Object

. . [——
Optimizer Generator Code

Fortran 95
parser

Fortran 95 ——

Objective-C
parser

Objective-C = —

Figure 1. Existing compilation process in GCC.

ternal developers to contribute optimization
passes. Furthermore, by reducing the amount
of RTL code generated, we also expect to re-
duce compilation times and improve the qual-
ity of the final code.

2 Overview

There are three main components to the basic
infrastructure: the gimplifier, the control flow
graph (CFG) and the SSA module (Figure 2).

» The gimplifier is responsible for convert-
ing the input GENERIC representation
into GIMPLE. It also provides functions
for generating GIMPLE statements and
testing whether a given statement or ex-
pression is in GIMPLE form.

» The Control Flow Graph (CFG) is a di-

edges of the graph represent possible exe-
cution paths in the flow of control (condi-
tionals, loops, etc.).

Static Single Assignment (SSA) is a rela-
tively new representation that is becoming
increasingly popular because it leads to
efficient algorithmic implementations of
data flow analyzers and optimizing trans-
formations [3].

The SSA module finds all the variables

referenced and builds the SSA form for

the function. It provides all the neces-

sary functions and data structures to com-
pute, among other things, aliasing, reach-
ing definitions, and reached-uses informa-
tion. It is also responsible for converting

the function back to normal form right be-

fore calling the RTL expanders.

rected graph that models the executiorFigure 3 shows the proposed integration be-
of the program. Each node in the CFG,tween GIMPLE and RTL optimizations as im-
called abasic block represents a non- plemented in theree-ssa  branch. No-
branching sequence of statements (execuice that the interface between GENERIC
tion starts with the first instruction in the and GIMPLE may involve some language-
group and it leaves the block only after thedependent transformations, but those issues are
last instruction has been executed). Thebeyond the scope of this paper.
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Tree Optimizer

SSA pass 1

AN
N

SSA pass N

Back

GIMPLE > CFG > SSA End

unSSA = RTL —

Figure 2: Overview of the tree optimization process.

3 GIMPLE Trees When building the control flow graph for
this code fragment, the compiler must re-

Although GCC parse trees provide very de-  alize thatthe predicate for thig) ~ state-

tailed information about the original program, ment contains different flows of control
they are not suitable for optimization: of its own. Furthermore, this expression
requires more than one basic block to be

1. Lack of a common representation represented.

There is no single tree representation

shared by all the front ends. This meansl’o overcome these limitations, we use two

that each language would require a dif- new tree-based intermediate representations
ferent implementation of the same infras-.. .oy GENERIC and GIMPLE. GENERIC
tr_ucture. This would be a r_namtenan_ceaddresses the lack of a common tree represen-
nightmare and would make it very diffi- tation among the various front ends. GIMPLE
cult to add new front ends to GCC. solves the side-effect and complexity problems
2. Side effects Parse trees are allowed to that facilitate the discovery of data and control
have side effects. This means that the treflow in the program. All the analyses and op-
analysis and optimization phases wouldtimizations are done on the GIMPLE represen-
have to understand the semantics of eviation.
ery source language, which takes us t
the multiple implementation scenario de-
scribed above.

0Flgure 4 illustrates the differences between
GENERIC (Figure 4(a)) and GIMPLE (Figure
4(b)). Notice how in the GIMPLE version in-
3. Structural complexity. Parse trees may dividual expressions are simpler and more reg-
combine in arbitrarily complex patterns, ular in structure. For instance, with the excep-
which may obfuscate the control flow of tion of function calls, a statement in GIMPLE
the program. For instance, the following form is guaranteed to have no more than three
expression is represented in a single parseariable references. GIMPLE expressions are
tree also guaranteed to contain no side-effects (for
, _ _ example, the post-increment operation in line
T@=b>%7c:d)>10) 5 of Figure 4(a) has been explicitly exposed by



GCC Developers Summit

Front End
Objective-C Fortran 95 Java C++ C
trees trees trees trees trees
Objective-C Fortran 95 Java C++ C
genericizer genericizer genericizer genericizer genericizer

GENERIC

/

gimplifier

|

GIMPLE

SSA pass N

Tree Optimizer

~

SSA

unSSA

>

SSA pass 2

/"

SSA pass 1

RTL

Back
End

Figure 3: Proposed integration of GIMPLE and RTL optimizers.
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1 a=foo (); 1 a= foo ();
2 b=a+ 10; 2 b=a+ 10;
3 c=5; 3 ¢c=5;
4 if (a> b+ ¢ 4 Tl=Db+cg
5 c=bt+t /a+ (b* a); 5 if (a> Tl
6 bar(a b, ©); 6 {
7 T2 =Db/ a
8 T3=Db* g
9 c=T2+ T3
10 b=>b+ 1,
11
12 bar (g b, ©);
(a) GENERIC form. (b) GIMPLE form.
Figure 4: A program in GENERIC and GIMPLE forms.
the conversion to GIMPLE form). 4.1 Statement manipulation
4 The Control Flow Graph Although GIMPLE trees have a much sim-

pler structure than GENERIC and the origi-

nal parse trees, they still contain certain ele-
To take advantage of the existing flow graphments that are of no interest to a typical opti-
code for RTL, the GIMPLE flow graph uses mization pass. GIMPLE is a container-based
the same data structures for basic blocks andata structure. As such, statements inside
edges. This allows the GIMPLE CFG to useconstructs like loops, conditionals and lexical
all the functions that operate on the flow graphscopes are contained in sub-trees. Within each
independently of the underlying IR (e.g., dom-lexical scope, individual statement nodes are
inance information, edge placement, reachabilehained together using compound expression
ity analysis). For the cases where IR informa-CE) nodes. For instance, the body of function
tion is necessary, we either replicate functionbaz in Figure 5 contains two statements, the
ality (e.g., flow graph cleanup) or have intro- lexical scope starting at lineand thereturn
duced hooks (e.g., loop discovery). statement at liné@3. In turn, the lexical scope

) ) at line 5 contains 3 statements (lin8s9 and

The flow graph builder will also remove su- 15) Notice how all the statements in each lex-
perfluous control expressions of the foim ., scope are joined using CE nodes.
0) , if (2) and switch (CST) . The
edges leading to the unreachable arms of th®ne way to traverse this function is to use the
conditionals are removed, which in turn causegraditional call towalk _tree  with a callback
the unreachable arms to be removed. Theskinction to do the processing. However, this
statements are also completely linearized bypproach not only visits more nodes than nec-
replacing the conditional with the clause thatessary, but it also makes it difficult to distin-
is always executed. guish a statement from an expression contained
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/\

1 baz() 3 inti, j; CE

2 {

3 inti, | / \
4

2 { int k: 54 13 return j;
7

8 k = foo ();

9 i=k+ 2 )

10 j=i*k 6 intk; CE
1}

2 /\
13  return j;

14 } 8 k =foo ();

/ N\

9i=k+2; 10 j=i*k;

Figure 5: A GIMPLE program and its tree representation.

in a statement functionbaz() contains a single basic block.

A proper traversal should visit lineg 9, 10

To traverse the statements of a function inynq13 \which could be done using TSls, but
GIMPLE, one must follow the compound exX- the caller would have to be responsible for

pression nodes in the body of the function. Wengngjing lexical scopes and determining basic
have implemented an iterator data structureyo.k poundaries. This is provided tojock

calledtree statement iterato(TSI), to facili-  giatement iterator¢BSI). Thus, once the flow

tate this process. Note that TSIs don't guarang aph for the function has been built, traversing
tee that every single statement will be visited

) A IEnL el the statements in the function can be done
A traversal starting at liné in Figure 5 will

Sioa ) with the double nested loop:
only visit lines5 and13. It is up to the caller
to det_ect When a I_eX|caI scope or_contro.l ?t"’_‘teT:ORE ACH_BB (bh)
ment is being visited and recursively visit its  for (i = bsi_start (bb); bsiendp (i): bsinext (&)
body. processstmt (bsi_stmt (i));

While TSIs are convenient for traversing lex- BSIs can also be used for backward traver-

ical scopes,_th(_ey are qot suited for trz_iversingsa|s as well as statement manipulation. Cur-
statements inside basic blocks. Notice hOV‘fently, statements can be removed, inserted in-

IGENERIC and GIMPLE do not distinguish state- side blocks (before and after other statements)

ments from expressions as is done in the C and C++ fron"!?‘nd inserted on edges.
ends.
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1 a= foo (); 1 a = foo ();
2 b=a+ 10; 2 b =4a +10
3 c=5; 3 ¢ =5
4 T1=Db+ ¢ 4 T1, =b, +c
5 if (a> Tl 5 if (@ > T1)
6 { 6 {
7 T2=D0b/ g 7 T2, =b, I &;
8 T3=Db* g 8 T3, = b *a;
9 c=T2+ T3, 9 c, = T2, + T3;;
10 b=Db+ 10 b, =b, +1;
11 } 11
12 bar (a b, c); 12 b, = ¢(b,, by);

13 ¢, = ¢(c, C));

14 bar (a,, b, c,)
(a) Original GIMPLE program. (b) Same program in SSA form.

Figure 6: Static Single Assignment form.

5 Static Single Assignment form most recent assignment for the variable.

o . Now consider the use of variabkein the call
The Static Single Assignment (SSA) form [3] tobar() (line12). There are two assignments

's based on the premise that program varlableteo b that could reach liné2; the assignment at
are assigned in exactly one location in the proy

cam. Multible assignments o the same vari. line 2 and the assignment inside ttie at line
g P 9 10. To solve this ambiguity, SSA introduces a
able create new versions of that variable. Natu-

I tual Id SSA for new artificial definition forb by means of a
rally, actual programs are seldom in form phi) function. This new definition merges both
initially because variables tend to be assigne

multiple times. The compiler modifies the pro- ssignments to create a new versiondibs).
P P P'O" The semantics of the function dictate thabs
gram representation so that every time a vari-

bl ned in th q o rsion ﬁll” take the value from one of the function’s
able is assigned in the code, a new version o rguments. The specific argument returned by
the variable is created. Different versions of the

same variable are distinguished by subscrlptthquS function is not known until runtime.
ing the variable name with its version number.

Variables used in the right-hand side of expres6  Real and virtual operands
sions are renamed so that their version number

matches that of the most recent assignment. _ _ _
The SSA form is not suited for handling non-

Figure 6 shows the program from Figure 4(b)scalar variable types. For instance, given an ar-
and its corresponding SSA form (Figures 6(ayay M[100][100] , not only would the com-
and 6(b) respectively). Notice that every as-piler need to keep track of 10,000 different ver-
signment in the program introduces a new version numbers foiM but it may also be im-
sion number for the corresponding variable.possible to determine whether two references
Every time a variable is used, its name is re-M[i][j] and MK][1] are the same vari-
placed with the version corresponding to theable or not. Structures, unions and aliased vari-
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ables present similar problems. framework needs to gather enough information
) ) to prevent the optimizers from missing a poten-
One alternative to handling non-scalar typesjs| gata dependency. In all these cases, virtual

would be to simply ignore them. After all, if 4herands are used. Some of the more common
the operands are not converted into SSA formg;i,ations include:

they would not be considered for optimization.
However, that would also mean that statements
referencing nothing but non-scalars would ap-
pear dead to the optimizers. Also, situations
like scalar variables aliased by a structure field
would also be missed.

1. Aliasing. If two variablesa andb may
alias each other, then the compiler selects
one of them to serve as the representative
for all the aliased references. Every refer-

To address this problem, operands referencing €ence to either variable is then considered

non-scalar variables are considered references a virtual operand using the alias represen-

to the base object for that variable. For in- tative.

stance, references Myi][j] andMIK][l]

in the previous example would be considered 2. Call clobbering. Function calls may

references tM Since these operands need to modify addressable local variables and

be treated separately by the optimizers, they  globals in unknown ways. This is han-

are known awirtual operands as opposed to dled using a similar approach. Variables
the real operanddor scalar variables. There- that may be call clobbered are consid-
fore, every GIMPLE statemeicontains four ered alias of an artificial variable called
distinct sets of operands: .global_var . This variable is consid-

ered modified by function calls and by as-
signments to any of the variables associ-

DEF(S) If Sis an assignment statement, this ated with it.

is the variable at its left-hand side.

USES(S)s the set of all the variables used (or 3. Inline assembly ~ Much like function

loaded) byS. calls, inline assembly may modify local
variables in ways that the optimizers do
VDEFS(S)S the set of all the virtual variables not understand. Variables listed in tat-
defined (or stored) b VDEF operators putsor clobberslist of GCC’s asm state-

represent non-killing definitions because ment, are considered VDEF operandsl
they may or may not occur at run time. A

VDEF operator is of the foriy’ = VDEF
<V>, which means that a new value far

. The programs in Figures 7, n illustr
is created fronV's old value. € programs in Figures 7, 8 and 9 illustrate

how virtual operands are used to handle non-
VUSES(Sis the set of all the virtual variables scalar variables, alia_sing and call clobbering.
used bys All the example functions have been renamed
into SSA already. Notice how the VDEF oper-
ators link new SSA versions for a variable with
Virtual operands are also used to handle situits previous version. This creates def-def links
ations where the program is altering variableghat are used in passes like dead-code elimina-
in ways that are difficult or impossible to de- tion to determine all the potentially live assign-
termine statically. In these cases, the data flouments.
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double foo (int i, int j, int k, int I) int foo (int i, int j, int *p)

{
double T1, T2, f; int &
double M[100][100];
if G, >,
/* References to an element of ‘M’ are {

considered references to the whole
matrix. */

# M, = VDEF <M >

MIil] = ...

/* VDEFs are non-killing definitions,
that's why the new definition
created for M is linked to M, in

/* Whenever 'p’ changes, *p’ must
also change. *
# (*p), = VDEF <(*p),>
p, = &a
}

/* Since *p’ may alias 'a’, instead
of renaming the operand 'a’, we

the previous assignment. * create a virtual definition for its
# M, = VDEF <M,> alias "*p'. */
MIK][I] = ... # (*p), = VDEF <(*p),>

[* ’'p’ is needed to access *p'. */

# VUSE <M,> # VUSE <p.>
T1, = MIG]; a=i; +Jy
# VUSE <M > # VUSE <(*p),>
T2, = MIK][I]; return *p;
fo = T1, + T2, }
return fg;

Figure 8: Virtual operands for handling aliases.

Figure 7: Virtual operands for handling non- 8 Conversion into SSA form

scalar variables.
Converting the program into SSA form con-

7 Representing pointers sists of three main phases:

In GIMPLE there are no multi-level pointers. 1. may-alias computation, which determines

the compiler to keep track of a pointprand tion and whether they may be aliased or

its dereferencép as two separate, but related, not,
variables. The relation betwegnand*p is 2. insertion of ¢ nodes at basic blocks
quite straightforward: reached by more than one definition of the
same variable, and,
1. Every store t@ implies a store operation
to *p , because now is pointing to a dif-
ferent memory location.

3. statement renaming, which rewrites every
operand and virtual operand using the ap-
propriate SSA version numbers.

2. Every store or load ofp implies a load
operation fromp, because is read to de-  The following sections highlight the more im-
termine what memory locationto use.  portant aspects of the conversion into SSA
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gram. The basic idea is that if a variable is not
float F; live after being defined in block then it is not
float fooffloat f) Przﬁ?i?%% to insert@node at the dominance

/* Since 'F’ is call-clobbered,

instead of renaming 'F’ in the Since computing global live-in information is
statement, we rename the virtual more expensive than local live-in, this pass
operand .GLOBALVAR. */ uses a heuristic based on the total numbef of

# .GLOBAL_VAR, = VDEF <.GLOBAL_VAR >

e arguments. If this is is above a certain thresh-
=f, + 2

old?, the compiler builds a fully pruned form.

[* Function calls clobber the variable
.GLOBALVAR which in turn indicates 8.3 Rewriting statements and dominator-
that 'F' is also clobbered. * based optimizations

# .GLOBAL_VAR, = VDEF <.GLOBAL_VAR, >

b ; . . .
ar( The renaming process is done using a depth-

I* Uses of 'F’ are converted to first traversal of the flow graph’s dominator tree
virtual uses of .GLOBALVAR. In [3]. During this traversal it is possible to ap-
this statement we are using the ply very simplistic transformations that take

value of " potentially advantage of the order in which basic blocks

modified by the call to bar(). * ..
# VUSE <.GLOBAL VAR,> are visited [6].
return F; .
} These transformations, also known as

dominator-based  optimizations include
_ _ constant propagation, redundancy elimination,
Figure 9 Virtual operands for handling call copy propagation and propagation of predicate
clobbering. expressions. These optimizations are only
supposed to do simple cleanup work that
form. A more detailed description of the pro- catches most of the simple cases. The key
cess can be found in the literature [3, 1, 6].  property is that they must work fast because
they are piggybacked on top of the renaming
8.1 Computing may-alias information process (which is linear in the number of
statements).

This pass collects all the variables referenced

in the function and determines may-alias sets 1. Constant propagation. When a constant
for each one. Currently, alias information is assignment of the form;, = C is found,

type-based. A points-to analyzer is imple- it is stored in a hash table. Successive oc-

mented, but it is not fully functional yet. currences ofi; are replaced witiC'. No
folding nor control flow simplification is

8.2 Inserting ¢ nodes done, only constant replacements. Copy

assignments are similarly optimized.

This pass insert® nodes at the dominance
frontier of blocks with live variable definitions.

The algorithm implements the semi and fully
pruned forms suggested by Briggs et. al. [1]
to reduce the number af nodes in the pro- 2Currently 32.

2. Redundancy elimination uses a similar
idea. When an assignment of the form
a; = b;®cy is found, the expressian @y,
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8.4 Conversion back to normal form

Once all the SSA optimizations have been ap-
plied to the function, all the SSA version num-

bers and) nodes must be removed to return the
code to its original form. This process consists

is stored into a hash table. Successivef the development branch in CVS, status of
occurrences ob; @ c;, within the same the implementation and a list of “to-do” items.

sub-tree are replaced with,;. Notice that )
this transformation is valid only when re- In terms of performance, the branch still lags

placing redundant expressions dominated€hind mainiine.  This is hardly surprising
by the original assignment, otherwise it2S We have mostly worked on correctness is-

sues. Performance is going to be the focus
of the next phase of development. We have
been tracking performance using SPEC95 and

would be possible to insett in a control
flow path where it is never evaluated.

. Propagation of predicate expressions_sPECZOOO. Dally results of these eXperimentS

When a conditional statement of the form¢can be found atittp://gcc.gnu.org/
if ( a;, == C) is found, the assignment benchmarks/
a; = C'is inserted into the hash table for .. L

, : In addition to the optimizations performed
constants and copies when processing the | . o
. ., . . 2 While renaming into SSA form and the flow
then” clause of the conditional. This will

cause the constant/copy propagator to regraph restructuring, there are four optimization

placea; with C' in that sub-tree. passes implemented.

1. Sparse Conditional Constant Propagation
(CCP) [7]is an efficient formulation of the
constant propagation problem that is also
capable of finding constant conditionals
and unreachable code. This optimization
is currently enabled by default &1 and
above.

mainly in converting all) nodes into copy op-

erations. Some of the more important aspects » partial Redundancy Elimination (PRE)

erations. We implement the standard conver-  ore than once and re-writes them so that

sion into normal form described in the litera- their values are computed once and re-
ture [1, 6]. used as necessary. In addition to removing

completely redundant computations, PRE
has the ability to make partially redun-

9 Implementation status :
P dant computations fully redundant, thus
combining the effects of global common
Currently, the basic framework is almost fin- subexpression elimination and loop in-

ished. Two front ends (C and C++) have been  variant code motion.

fully converted to emit GIMPLE trees and the

regression test suite presents similar results to3. Dead Code Elimination (DCE) [3] re-
those of mainline GCC. Readers interested in  moves all statements in the program that
testing the current implementation and/or con-  have no effect on its output (assignments

tributing to its development are invited to visit to variables that are never used again, con-
the Tree SSA web page #ittp://gcc. ditional expressions with empty bodies,
gnu.org/projects/tree-ssa/ . This etc). This optimization is currently en-

page contains information for retrieving a copy abled by default atO1 and above.
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4. Copy Propagation (CP) is the same op- < Implement new optimizations and analy-
timization applied while converting the ses that are either difficult or impossible
program into SSA form, but implemented to implement in RTL.
as a separate pass.

By basing all the analyses and transformations
We are also implementing a memory checkergn widely known published algorithms, we are
calledmudflap that instruments every pointer giso trying to improve our ability to maintain
and array reference in the program with boundang add new features to GCC. Furthermore,
ary checks [4]. It is a combination of compile- the yse of standard techniques will encourage
time instrumentation and run-time library. The external participation from groups in the com-

instrumented code contains calls to the runpjler community that are not necessarily famil-
time library that will be triggered when the pro- j5r with GCC.

gram attempts one of several illegal operations,

such as accessing an array out of bounds, free-

ing the same block of memory more than onceACKnowledgments
accessing unallocated memory, leaking mem-

ory, etc. | would like to thank Red Hat for funding

: : : the Tree SSA project and to all the develop-
Mudfl h A ; : i
udflap is not yet integrated into the SS ers who have contributed to it. In particu-

framework, so no static analyses are don : )
to prevent inserting superfluous instrumenta‘-?ar’ | would like to thank the regular contrib-

tion. Optimization of mudflap instrumentation lI\J/TZ(r:SL(:g dt?(;er tﬂ(fijrev(\:/grkjf:trtj\évagg?nﬁggtﬁ\g
is currently underway. )

ture and optimizers; Jason Merrill for his work
on GENERIC and GIMPLE; Frank Eigler for

10 Conclusions his work on Mudflap; Sebastian Pop for the
original expression simplifier, tree unparser,

The Tree SSA project provides a new optimiza-and tree browser; Daniel Berlin for his work

tion framework to make it possible for GCC to ©N Points-to alias analysis and PRE; Steven
implement high-level analyses and optimiza-BOSSCher and the G95 team for their work on

tions. Currently, the framework is in active INtégrating G95 with GIMPLE; and Andreas
development and some optimizations have ala€9er. Phil Edwards, and Andrew Pinski for

ready been implemented. The goals of thidesting the branch on a regular basis.
project include:

References

» Provide a basic set of data structures and
functions for optimizers to query and ma- [1] P. Briggs, K. D. Cooper, T. J. Har-
nipulate the tree representation. vey, and L. Taylor Simpson. Practi-
o _ cal Improvements to the Construction and
* Simplify and, in some cases, replace ex-  pegtruction of Static Single Assignment
isting optimizations that work on the RTL Form. Software—Practice and Experi-
representation but are not really suited for ence 28(8):859-881, 1998.

it. By simplifying the work for the RTL
optimizers we aim to improve compile [2] F. Chow, S. Chan, R. Kennedy, S.-M. Liu,
times and code quality. R. Lo, and P. Tu. A new algorithm for



[3]

[4]

partial redundancy elimination based on
SSA form. InNACM SIGPLAN '97 Confer-
ence on Programming Language Design
and Implementationpages 273-286, Las
Vegas, 1997.

R. Cytron, J. Ferrante, B. Rosen, M. Weg-
man, and K. Zadeck. Efficiently comput-
ing static single assignment form and the
control dependence grapACM Transac-
tions on Programming Languages and Sys-
tems 13(4):451-490, October 1991.

F. Ch. Eigler. Mudflap: Pointer Use
Checking for C/C++. IlProceedings of the
2003 GCC SummiDttawa, Canada, May
2003.

[5] J. Merrill.  GENERIC and GIMPLE: A

[6]

[7]

New Tree Representation for Entire Func-
tions. In Proceedings of the 2003 GCC
Summit Ottawa, Canada, May 2003.

R. Morgan. Building an Optimizing Com-
piler. Digital Press, 1998.

M. Wegman and K. Zadeck. Constant
propagation with conditional branches.
ACM Transactions on Programming Lan-
guages and Systenis3(2):181-210, April
1991.

GCC Developers Summit 2003 * 193



194 « GCC Developers Summit




Porting GCC to the IBM S/390 platform
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Abstract ference the distinguished systems of that fam-
ily had was the way the instruction set was im-
plemented. The System/360 architecture de-
living architecture with the longest heritage,f'_ned 16 32'b'F ge”efa' purpose reglgters, 4 64-

bit floating point register and a 24-bit address

defined in a time when assembler program Shortly af q irtual add
ming was predominant and compilers were inoPace. ortly aiterwards, virtual address-

their childhood. Hence in porting GCC to ing was added to the architecture. In 1970,

S/390 we had to cope with certain architec-ﬁySterg/ .370 was introduced, p(;ovgi)digg a(r; /en-
ture features that were difficult or impossible anced instruction set. Around 1982 370/XA

to model in GCC’s architecture-independentbrought 31-bit addressing, in 1988 370/ESA

framework. These include 31-bit addressingmtmduced support for multiple address spaces.

mode, instruction-dependent address formaté,n th de 19d9'08 ';)he ESA/390 zrchltec(tjl:jre dwas
limited availability of address displacements'mro uced, su sequent_ machines added over
and immediate literals. and the condition coddi™€ the relative branch instructions as well as
handling. These problems notwithstanding, théhe IEEE floating-point instruction set.

S/390 back end matured over the last couplgn 2000 the first IBM eServer zSeries machine
of years to make GCC a stable and competizgme out, introducing a major architecture up-
tive compiler for the S/390 platform. In this yate.  The z/Architecture remained upward
paper we want to share how we managed Qompatible to ESA/390, but provided full 64-

handle most of the mentioned architecture feap;; support, extending the general purpose reg-

tures. We also want to point out areas thaigier size to 64-bit and adding a 64-bit address-
promise room for further improvement in the ;4 mode in addition to the traditional 24-bit

back end itself and suggest middle-end modifi g 31-pit modes. This means in particular that
cations that would benefit our platform in par- yth 64-bit and 31-bit applications can run un-

IBM’'s mainframe architecture S/390 is the

ticular. der a 64-bit operating system (if that provides
the required support). However, it is also pos-

1 Introduction sible to operate a zSeries machine in ESA/390
mode in order to run legacy 31-bit operating
systems.

1.1 From System/360 to zSeries

In the early 1960s IBM defined the System/360
architecture. This architecture was designed to
serve for a whole family of systems. The dif-
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1.2 GCC S/390 port history 2.1 zSeries instruction set

Within the S/390 firmware development We o ,geries architecture as a typical CISC

were searching in 1997 for a C compiler fulfill- 5 pitecture provides an extensive instruction
ing specific requirements. We needed a com;

_ i _ . set. It has a full set of I/O related instruc-
piler that could be link-compatible to the inter-

) i tions, dealing with a channel based I/O sub-
nally used pl.8 compiler, which was developedsystem_ For system programming there exists

at IBM Research a decade ago. Also it should,’ | set of instructions which enables opera-

provide the ability to use embedded assem_bletrion systems to retrieve all information about
code. One of the authors was asked to look intgy, system running on and do communication

the then existing System/370 port of GCC, t0,ih 2 service element. THRTART INTER-

evalute whether this could be adapted for the g ETATIVE EXECUTIONINStruction pro-
intended use. This port was not very St""bl%ides efficient virtualization capabilities, with

at this time, but it could easily be shown that,[he possibility to define very precisely which

gcmlnd be usehd as_a base. Sln(;e 'E f'rlr(nwaa?nstructions are to be intercepted. Many of
evelopment there Is no reason for backwar these architectural facilities were defined over

compatibility, we decided to set a certain Ievelthe last 40 years, putting all the experience
of architecture as given, and started internallyof the years before into the definition. How-
with a S/390 port, producing only code for lat- ever, even though the above mentioned fields

est CMOS based systems. are very interesting, we want to concentrate in

When work on the upcoming Linux for S/390 this paper on the small subset of instructions a
port started in 1998, the compiler port devel-compiler normally deals with. For a complete
oped by the firmware team could be used fofreference of the ESA/390 or z/Architecture see

the Linux port. The success of this new oper-10r [2]

ating system proved to be beneficial for GCCry o ,5eries architecture defines 16 general-
on S/390 as well, since the Linux develop-p,,nase registers and 16 floating-point regis-
ment team was then rapidly driving the effortsters_ Depending on the architecture mode, the

to delyek|0p tkf\e GCC port furthelrl to use Ithegeneral-purpose registers have a width of 32 or
ELF lin age ormat and eventually to exploit 64 bits. It is a classical 2-address architecture,
the 64-bit z/Architecture. In 2001, the S/390, hare for most instructions the first source

GCC port was finally donated to the Free Soft-, 0 an is also used as destination. Each in-

ware Foundation, with the authors in charge aS¢ryction has a length of 2, 4, or 6 bytes, and

maintainers, one of us (Hartmut Penner) repreup to now more than 30 instruction formats are

sen_ting the 8/3_90 hardware, the o?her (UlriChdefined. For most ALU operations there ex-

Weigand) the Linux for S/390 constituency. ist two instruction types, one using two register
operands (RR), the other a register and a mem-

2 Architectural overview ory operand (RX). Logical operations are also
available with two storage operands (SS) or a

o _ storage and a immediate operand (SI).
Before going into details of the GCC back end

implementation, we will start by giving a short More formally, the general instruction set of
overview of the relevant features of the zSerieshe zSeries architecture usable by a compiler
architecture as well as the ABI used by thecan be divided into following classes of in-
Linux for zSeries port. structions:
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RR rl=rlopr2 tions that decide whether a branch is taken de-
RX rl=rlop [x+b+d] pending on whether the current condition code
Rl rl=rlopch equals one of the values provided in the form

RS rl=rlop [b+d] of a 4-bit branch condition mask as part of the

S| [b+d] = [b+d] opl cb instruction.

SS [bl+d1] = [b1+d1] opl [b2+d2]

. . 2.2 Linux for zSeries ABI
where we use the following elements:

r General or floating-point register The Linux port on S/390 and zSeries uses a
X Index register (registe¥r1-%r15) variant of the ELF ABI. For a full definition

b Base register (registér1-%ris) of the architecture-dependent parts see [3] and
d Displacement, 12-bit constant (0—4095)

[4]; the following gives a short overview of the
most important features. While the processor
architecture does not define a stack, the ABI
chooses by convention the general purpose reg-
ister%r15 for use as stack pointer. The stack
grows downwards; the low 96 bytes (160 bytes

If running in zSeries architecture mode, an ado"n 64-bit) are reserved as reglste_r Save area
or use by called subroutines. Registéts0—

dress is 24, 31, or 64 bits wide, depending(f] : .
on the addressing mode a program operates in/_or5 are clobbered across function calls, while

The S/390 architecture mode provided only th Jor6-%rl5 are saved. Parameters are passed

24-bit and 31-bit addressing modes. Here, thdD registers and a parameter area on the stack.

most significant bit of a 32-bit address is Some'Apart from the stack pointérrl5, the follow-
times used to distinguish between 24-bit andng general purpose registers may be used for
31-bit bit mode in 'mixed’ environments. The gnecial purposegsri4 holds the function call
displacement for address generation in the ingeqrn addres6r13 is used to point to a per-
struction itself is only 12 bits. Together with g,nction literal pool %r12 points to the Global
the fact that this displacement is unsigned, thigyffset Table in position-independent code, and
causes some problems for defining a ABI andy, 11 js used as frame pointer in functions that
implementing a efficient compiler, especially perform dynamic stack allocation (otherwise,

when dealing with large stack frames, a downyhe stack pointer is used as frame pointer as
ward growing stack, large GOT tables, etc. Thei/vell).

impact of this for implementing the compiler
will be shown later. The following short "hello world" example

_ N ~ shows a typical 31-bit routine. Comments un-
In order to provide conditional execution, der each line give the semantics of the in-

zSeries uses a 2-bit condition code as part of it§rction, using the abbreviated syntax used by
program status word. Most non-move or NON-gcc in its scheduling printouts.

branch instructions, depending on the result of

their operation, set this condition code. The St %r6.96r15,24(%r15)

a_lctual value a speC|f_|c instruction sets is de, ([%6r15+24]=0%r6-[%6r 15+ 28]=%17:...}

fined for each instruction individually, and only = pr5s o613, 2

to a certain extend a clear classification cam {%r13=.L1;pc=.L2}

be made. The architecture has branch instructl1:
.LCO: .long .LC2

cb  8-bit constant, unsigned

ch 16-bit constant, signed or unsigned

op  Arithmetical or logical operation

opl  Logical operation (including move)
[addr] Content addr is pointing to
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LC1: .ong printf source code as well as address constants gen-
L2 erated by the compiler itself, used to reference

ahi  %rl15,-96
! code or data labels.
# {%r15=%r15-96;clobber %cc}

I %r2,.LCO-.L1(%r13)

# {96r2=[%r13+.LCO-L1]} However, the original S/390 architecture did

| %r14, LC1-.L1(%r13) not providg instru_ctions that could use I_iteral
# {%r14=[%r13+.LC1-.L1]} values as immediate operands. While it was

basr %r14,%r14 possible to load an immediate integer in the
# {pc=%rl4;%rl4=pc+2} range 0—4095 into a register using th®AD

Im  %r6,%r15,120(%r15) : :
4 [96r6=[Y6r15+120]:%r7=[%r15+124]:..} ADDRESSnstruction, all other literal values

br  %rld required loading from memaory.

# {pc=%rl4
{po=bortd) On the other hand, accessing a memory loca-

Note how the function prolod saves re isterstion to load a literal from requires to express
prolog 9 the address of that location first. Similarly,

sets up the literal pool pomte_r and allocatesmanch instructions need to be able to refer-
a new stack frame. The function proceeds to

load the address of thintf  routine as wel ence the branch target address. Again, the orig-

as the address of the string constant from th|naI S/390 architecture did not provide instruc-

. N NGons that could use immediate address con-
literal pool and performs the call. The epilog stants, neither as absolute nor as pc-relative
simply restores all saved registers (thereby re\'/alues’ The only way to specify an address, for
setting the stack pointer and removing the cur ny pu.rpose, was to use the standard effe’ctive
ﬁgﬁ?ﬁg Jﬁ?:;gg?esrgtgrrgji;Z;;flzaller byaddress generation mechanism that computes a
' target address as the sum of the contents of a

base register, an index register, and an immedi-

3 GCC and the zSeries architec- ate displacement in the range 0—4095.

ture To overcome these restrictions, the usual cod-

ing conventions for S/390 applications re-
While most of the features of the zSeries archiquired to reserve one general purpose regis-

tecture can be easily modelled using the stanter to always hold the address of the start of
dard mechanisms available to a GCC back endhe routine currently executing. This way, tar-
we have found some that require extra efforigets for branches within the routine could be
to implement correctly. This section describesexpressed via immediate displacement relative
how we addressed these issues in the curremy that function base register, and by placing a
S/390 back end: literal handling, 31-bit ad-pool of literal constants immediately adjacent
dressing mode, and instruction-dependent ado the routine’s code section, the same mecha-
dress formats. nism could be used to load literals from mem-
ory.
3.1 Literal handling
The obvious disadvantage of this method is

Literals. i.e. values determined at compilethat it requires the total size of a routine’s code

time, play an important role in most functions section plus its literal pool not to exceed a _sin-
generated by a compiler. They include con-gle page (4 KB),. to ensure every address within
stant values of various types (e.g. integer, floatP0th code and literal pool remains addressable
ing point, or string constants) provided in the Vi@ the function base register. When these lim-
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its are exceeded, a function has to be split intave also use immediate operands wherever pos-
multiple fragments, each consisting of up tosible, it is still necessary to maintain a lit-
4096 bytes of code and literals required by theeral pool for constants exceeding the allowed
fragment. On every branch between two dif-range. This pool is addressed via a base regis-
ferent fragments, the base register has to bter (usually%rl13) pointing to the start of the
reloaded to point to the beginning of the cur-literal pool. To set up the pool base register,
rent fragment. This can incur significant run-we use aBRANCH RELATIVE AND SAVE
time overhead. instruction, followed by the literal pool itself.

Executing that instruction transfers control to

Fortunately, over time several extensions Qe instruction following the pool, while at the
the S/390 architecture were implemented thaiyme time loading the pool start address into
provide relief to those constraints. With the jha pase register.

second generation of S/390 machines, starting

from 1992, theelative and immediate instruc- Address literals whose use cannot be avoided
tion facility provided a set of instructions that via pc-relative instructions are placed into the
allow on the one hand the use of immediate inditeral pool. However, if we are generating
teger constants with several operations, and oposition-independent code for use in Linux
the other hand the use of pc-relative addressshared libraries, we do not want to place ab-
ing modes for a number of branch instructions solute addresses into the literal pool, as those
However, due to the requirement that the newvould require relocations to be applied by the
instructions fit within the overall scheme of dynamic loader to the text segment. This is
S/390 instruction types, these literals were lim-undesirable as it prevents that page from ac-
ited in range. This means that only integer val-tually being shared across multiple processes
ues in the range of -32768-32767 are allowedising the same library. To solve this issue, we
as immediate operands, and pc-relative brancimstead place theffsetfrom the start of the lit-
targets can only specific a range of up to 64 KBeral pool to the required address into the pool.
before or after the current instruction. Every user of that pool entry needs to add the

i _ ) _ pool start address back to that offset, which can
With the advent of the 64-bit z/Architecture in usually be done implicitly as part of normal ad-

2000, the latter restriction was once again l00Sgags generation, using the offset loaded into

ened: the newelative longinstructions accept 4 jndex register together with the pool regis-
pc-relative targets in a range of up to 4 GB be+g, 55 pase register.

fore or after the current instruction. Th©AD

ADDRESS RELATIVE LON@struction fi- This method works fine as long as the routine’s
nally allows the use of pc-relative addressingcode size does not exceed 64 KB and its literal
for other accesses besides branches. pool size does not exceed 4 KB. For the vast

_majority of routines these conditions hold true,
Now, how does the GCC back end cope with,hich is why we have chosen to optimize for

those restrictions? We have chosen to supgyis common case. However, the compiler cer-
port in the S/390 back end only processorsainly has to be able to cope with cases where

that provide the relative and immediate in-gjther or hoth of these limits are exceeded.
struction facility. This means that we can use

the pc-relative branch instructions for all intra- If a routine’s code section exceeds 64 KB, de-
function branches as long as the code sectiotermining whether the target of any particular
of the routine does not exceed 64 KB. Whilebranch within the function is out of range or
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not is nontrivial, as this recursively dependschunks each requiring a partial literal pool
on the sizes of other branch instructions thatvhose size does not exceed 4096 bytes.
lie in between. Fortunately, this analysis is

performed by GCC'dranch shorteningass At every transition between different chunks,

which we are able to use unmodified for ourWe insert instructions to reload the pool base

target. We simply need to provide GCC com-redgister with the start of the literal pool of the

mon code with information about the length of current chunk. Those reload instructions thus
each instruction via thiength ~ attribute. need to be inserted before the first instruction

of every chunk as well as after every code la-
Once the branch shortening pass has dedel that is being branched to from an instruc-
termined which branches cannot be impleion located outside the chunk. Unfortunately,
mented via a pc-relative branch instruction,performing this reload operation is difficult,
our machine-dependent reorganization pass r&s we cannot use a pc-relative instruction to
places each of those out-of-range branches by@o so, we cannot use any arithmetical opera-
branch using a register as target, preceeded lions as those would clobber the condition code
an instruction loading the branch target addreseegister which might be live at the point the
from the literal pool into that register: reload is inserted, and we cannot even load
anything from the literal pool because we do
not know towhichpool chunk the base register
currently points—the same label might be the
target of instructions residing in multiple dif-
ferent chunks. We solve this problem by using
the following sequence of instructions:

I %r14,.LCtarget-.Lpool(%rl13)
br %r14

As previously mentioned, when generating
position-independent code, we place an offset
to the branch target label into the literal pool basr %r13,0

instead: la %r13,.Lchunk-.(%r13)
| %r14,.LCtarget-.Lpool(%r13) which resets the pool base register to the cur-
b O(%r114 %r13) rent instruction address, and adds the offset

from there to the current pool chunk start ad-

dress using #4OAD ADDRES#H®struction to
This replacement is simple and incurs onlyavoid clobbering the condition code. This tech-
relatively low overhead. However, if the lit- nique unfortunately imposes further require-
eral pool overflows its maximum size of 4096 ments on the pool chunks: every pool chunk
bytes, things get much more difficult. Fortu- must be placed within the function text section,
nately, this happens only extremely rarely; thefollowing the corresponding code chunk, and
cases where we have seen this to occur typithe size of that code chunk must not exceed
cally involve extremely large routines, unlikely 4096 bytes to avoid overflowing the range of
to be found in source code written by hand, buthe LA instruction.

sometimes occurring as a result of automati- o )
cally generated code. Once we've succeeded in dividing the function

into chunks and inserting the pool base reg-
However, if literal pool overflow does occur, ister reload instructions, we can then proceed
we still need to handle it correctly. What we to replace all references to the normal con-
do then is to partition the function into smaller stant pool by explicit references to the current
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pool chunk, assuming the base register is sehe literal pool until both operations succeed si-
up properly. Position-independent code proinultaneously. This is guaranteed to always ter-
vides an additional challenge, however. Recalminate, as every branch that we decided to split
that in this scenario we are using offsets rel-at any one point will remain split forever, and
ative to the pool start address instead of absahus the number of unsplit branches is strictly
lute address literals. Now, when we've split thedecreasing throughout this iterative process.

pool into multiple chunks, which pool chunk

are those references supposed to be relative tg31€ final obstacle is that we require a tempo-
We've initially tried to set up things so that ev- 2"y regl_st_erfor both branch splitting and literal
ery offset is always relative to the chunk whereP00! splitting (for the case of anchor reload-
it resides. Unfortunately this does not work, adNg)- Fortunately, the live ranges introduced

due to constant propagation it is possible for2r€ very short, and span just the newly added

an offset to be loaded into a register in a cominstructions together with the immediately fol-

pletely different chunk from where that register/0Wing instruction from the existing instruc-
is finally used. Thus we've decided to keep thelon stream. However, at this point in the code
master literal pool present, even it is empty af-9&neration process (after reload), all registers
ter all constants have been distributed to poofhightin fact be live at the point where we need
chunks, so that its start address can remain tf insert additional code. Thus, we currently
serve as anchor for address literal offsets. T6ES€rve one registef(f14) for use for those
make this work, evergxplicituse of the literal PuUrPoses. Note that the ABI defingerl4 to
pool base registe?rl3 needs to be replaced hold the function return address, which means
by another register holding the master ancholt is @lways clobbered across function calls, but
address. That address can be computed on tpart from that restriction the register would be
fly using the current pool chunk address and aff€€ for arbitrary use inside a routine. We are
offset from the start of that chunk to the anchor;"0t doing that, however, in order to have this

this offset is by convention always stored at ther_egister availat_)lg for use in branch splitting_and
very start of each pool chunk: Iltera_tl pool spllttlng._ The only problem with
that is that the decision whether we need to use

%rl4—and thus need to save and restore the
| %r14,0(%r13) register in the function prolog/epilog code—
la  %r14,0(%r14,%r13) can be made only during machine-dependent

reorg, long after the function prolog and epi-

Two final obstacles remain before literal pool!09 code was generated. Therefore, we al-

splitting can be considered a general solution'V&YS generate code to save and restore regis-

The first is the fact that literal pool splitting €S %r13 and %rl14, and remove that code
introduces additional instructions at variousdUing machine-dependent reorg once it has
points throughout the instruction stream. ThigPrOven to be unnecessary.

can cguse_branch splitting information to b(_e-U to now, we have exclusively discussed
come invalid, as some branches that were origz 4 generation for S/390 machines in 31-

inally in-range can now exceed their allowedbit mode. On z/Architecture machines, many

ranges. On the other hand, branch splittingy 16 problems described in this section dis-
works by placing branch target addresses intgnear due to the availability of thelative
the literal pool, which can cause the pool 105 family of instructions. First of all, the

overflow. To solve this interdependency, WegraANCH RELATIVE LON@structions al-
iterate branch splitting and attempting to split
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low pc-relative branches within the range ofeven so overall register pressure should benefit.

4 GB. By restricting the maximum allowed

size of any single executable or shared object & Major problem with optimizing literal pool
to 4 GB. we can thus use those instruction®Vverflow situations, however, is to determine
for nearly every branch. (The only occasion!OW t0 split the function into chunks. An op-
where we still might need branch splitting is in ima! solution here would try to minimize the

the case oBRANCH ON COUMiEtructions. requency of inter-chunk branches at run time.
which lack a relative-long variant.) To try to tackle that problem will require con-
trol flow data including basic block boundaries

Also, the LOAD ADDRESS RELATIVE and branch probabilities; unfortunately GCC
LONGinstruction allows us to directly load currently no longer maintains that information
arbitrary address literals, without requiring at the point in time where literal pool splitting
literal pool entry, in a position-independent has to be performed (in machine-dependent re-
manner. This means that we never need torg).

handle offsets relative to the literal pool base,

and the whole issue of reloading the anchog 5  31.pjt addressing mode

register after pool splitting disappears. Also,

as we can uséARL to load the literal pool

start address, literal pools no longer need td:or historical reasons, the S/390 architecture
reside in the text section, but can be moved t§l0€S Not have a 32-bit addressing mode, but

the read-only data section. This also simplified!S€S 31-bit addressing. This means that while

inserting pool base reload instructions in theP@s€ and index registers used in address gener-

case of literal pool splitting. However, the core 210N are regular 32-bit registers, the most sig-
problem that the literal pool cannot exceednificant bit is ignored when computing the ef-
4096 bytes remains. fective address. (Note that this does not apply
on zSeries in 64-bit addressing mode; most of
The solution described in this section allowsthe problems discussed in this section disap-
GCC to correctly handle every valid sourcepear in that environment.)
code, even if it causes code or literal pool _ _ _
sizes to exceed their optimum limits. However, 0" the compiler, this causes two issues that
there is still a lot of room for improvement to N€€d 10 be considered.  As for every 31-
optimize the code that is generated once thatit address there are two equally valid 32-bit

overflow happens. We are currently Workingpointer representations, one with the high bit
on some minor improvements. In particular set and one with the high bit cleared, care must

we'll remove the whole complex of pool an- P€ taken when comparing pointer values for
chor reloading for position-independent codefduality. To simplify this process, GCC tries to
by representing address literals as offsets reWays represent pointers using the representa-
ative to the gobal offset table (like on other fiON With the high bit cleared. However, some
platforms) instead of relative to the literal pool. Machine instructions store address values with
This requires some new relocation types to bd€ high bit set; most importantly tHgRANCH

implemented in binutils first. Once this is done, AND SAVHamily of instructions does so. A
we can try to finally make registétri4 avail- BASinstruction transfers control to another ad-

able for regular use. This would require thatdress, and at the same time stores the current

every branch instruction reserves one registeffStruction address (with the high bit set) into

to be used for branch splitting if necessary, buf 'egister. GCC uses those instructions for two
purposes: to implement function calls, and to
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set up the literal pool. Since both the call returnLOAD ADDRESBeeds to take into account a
address and the literal pool start address areumber of issues:

normally used only for compiler-internal pur-
poses, GCC does not bother to normalize these
values by clearing the high bit. However, in
some cases these values are visible externally,
and extra care needs to be taken:

* Wemust nouseLOAD ADDRES® per-
form integer addition, as the high bit of
the result is not computed.

* Where the result of an addition opera-

« The call return address can be re-  tjonis used as address, we can USBAD
trieved by doing a stack backtrace, e.g.  ADDRESSand it is in fact often the pre-
via the function__builtin_return_ ferred method to minimize pipeline stalls.
address . This will yield values

with the high bit set, which the caller + Some passes of the compiler (reload) in-
needs to normalize; this is handled by sert address computation operations into

the _ builtin_extract_return_ the instruction stream, making the im-
address function. However, as this plicit assumption that they do not clobber
built-in does nothing on most platforms, the condition code. Wenustuse LOAD

we have seen several cases where applica- ADDRES$n these cases.

tions didn’t work on S/390 because they
forgot to use it. * In some cases, in particular when

_ _ computing local addresses in position-
* The literal pool start address is used as  jndependent code (see above), we rely on
anchor to compute the addresses of local  the property that OAD ADDRES8ears

variables in position-independent code. the high bit, so we must not use regular
As these can be externally visible, the addition instead.

compiler needs to make sure this address

computation will normalize the resulting . )
pointer. This is done by using &WANSPEC This has been a problematic area during the
operation that enforces the use ldDAD development of the S/390 back end; we have
ADDRESSinstead of, say, a normal 32- tried various ways of simultaneously meeting

bit addition operation) to perform the cal- &/l these requirements, not always completely
culation. TheLA instruction will always successfully. As an example for the difficulties
return a 31-bit value with the high bit involved, consider the question whether there
cleared. should be aiA pattern that accepts all RTL in-
structions of the fornfset (reg) (plus

The second main problem caused by the 31.069) (reg)) ._Ifth_is patte_rn exists, there
bit addressing mode is that address generation t.he danger that. it might belllncorrectlly used
: ressing 1t . 9 to implement an integer addition. If it does
is a distinctly different operation from regu- . : .

lar addition. As mentioned above, th©AD not exist, there is the danger of reload failures

ADDRESSnstruction performs a 31-bit addi- as reload will create such instructions anyway.

tion operation, adding the values of base anJhe current S/390 back end tries to solve this

. . ; . : as follows:
index register and an immediate displacement;

and returning a 31-bit value. THDDinstruc-
tion, in contrast, performs a full 32-bit addition + Theadd instruction patterns accept insns
operation. The decision whether to usBDor that explicitly clobber the condition code.
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» Thela instruction patterns accept insnscally generated less efficient code due to super-
that do not clobber the condition code, fluousSimode <-> PSImode conversions
provided that it is safe to assume the resulinserted at various points by the middle end.
is being used as an address. This assumpmproving thePSIimode support might make
tion can be made if one of the registersthis option viable at some point in the future,
involved is the literal pool base register, though.
the global offset table base register, or is
known to point into the stack frame (stack 3.3 Instruction specific address formats
register, frame register, argument pointer

register etc.). The instruction will also ac- 5 fundamental assumption of GCC, in partic-
cept addresses using &NSPECQIO en- ¢ the reload pass, used to be that memory
force clearing the high bit. addresses are represented in the same format
in all instructions. This means that if a partic-
ular RTL expression represents a valid address
for one instruction, it is supposed to be valid
{pr all other instructions as well. The most im-
portant place where this assumption is made is
the find_reloads routine. This routine is
supposed to check whether an RTL instruction
matches the constraints imposed by the insn
pattern, and if it doesn’t, determine the most ef-
ficient way to modify the instruction stream by
« When reload tries to load plus ex- inserting additiqnal relpad insns to corr_ect the

pression that would not be accepted byProblem. In doing sofind_reloads  first

a regularla pattern, this is handled via tries to make sure that all memory addresses

the secondary input reload mechanism.mentioned in the instruction are valid. This

This means that theeload insi ex. Pass is performed in the same way for all in-
pander is called, which in turn will com- structions, and does not even look at the con-

pute the address usirfigrced la  pat- straint string. This means there is no way to im-
terns if necessary. That Wa_y reload will Pose different conditions as to whether a mem-

never fall back to generating add opera—ory address is valid or not, depending on which
tions by itself. instruction is involved.

» Asecond set oforced la  patterns ac-
cept all syntactically valid load address in-
sns, without employing the sanity check
mentioned above. Those use a special pa
tern that will never be accidentally gener-
ated by other parts of the compiler (e.g.
combine), so that those patterns will only
match in case they were explicitly gener-
ated by the S/390 back end.

+ To optimize for using A where possible Unfortunately, the S/390 architecture uses two
b P ' _different formats to specify memory addresses

a set of peephole2 patterns tries to trans:_ . .
. ) : . in instructions. The most general address for-
form add instructions intola instruc-

tions. This is only done when consideredmat allqws toto spec_ify a base reg.ister, an in-
profitable. dex register, and a displacement (in the range
of 0-4095). These are added up to compute
the effective address. Some other instructions,
A completely different option to solve the 31- however, do not allow the use of an index reg-
bit addressing mode problems might be to emister; instead, they compute the effective ad-
ploy the PSImode mechanism to explicitly dress simply as the sum of a base register and
represent a 31-bit data type. However, wethe displacement. (The two formats are com-
have tried this solution and found that it typi- monly called X and S instruction operands, re-



GCC Developers Summit 2003 * 205

spectively.) However, the back end has onlyis a valid memory operand on S/390, but

two choices when asked to validate an address is not an offsettable operand, because
RTX: either to never accept addresses with inonly the initial four bytes of theDIimode

dex register, or to always accept them. The firsbperand are addressable before the displac-
option causes very inefficient code to be generment exceeds the maximum value of 4095.
ated, while the second option can potentiallyin some cases, instructions cannot accept
cause invalid operands for S-type instructionsion-offsettable operands, and GCC allows to
to be produced. specifc this using the '0’ constraint letter. If,

_ ) _ ) _ after reload has performed all required mod-
We have tried various ways of coping with this ifications, a memory address marked with

problem, but with limited success. Itis possi-that constraint turns out to be non-offsettable,
ble to try to avoid invalid S-operands by check-rg|oad will generate a load-address operation
ing for their presence in the instruction pred-y, yg|gad the address into a single register; this

icate of affected instruction patterns. HOW-egister can then be used as offsettable memory
ever, this is not reliable, as an address operangperand_

that initially does not use an index register can
be modified into one that does by the reloadThe EXTRA_MEMORY_CONSTRAINTarget
pass, e.g. due to register elimination or disimacro now allows the back end to specify
placement overflow. While we could in ad- other classes of memory operands that require
dition to the predicate use a constraint lettersimilar treatment by reload. By declaring
to check for valid S-operands, this does nothat a constraint letter describes an extra
solve the problem: if a non-standard constraintnemory constraint, the back end promises that
does not match, reload will not know how to EXTRA_CONSTRAINTwhen called to verify

fix the problem, causing compilation to abort.whether an expression satisfies this constraint,
We were able to overcome this by relying will:

on undocumented—and arguably incorrect—

behaviour of reload when interpreting the '0’  « accept only memory operands, and
constraint; but this hack was not only fragile,
it also didn’t allow full flexibility in generating
efficient code.

» accept all memory operands whose ad-
dress consists of one single base register.

We finally solved this issue by introducing two This allows the reload pass to handle such
new features to the reload pass, starting Wltrbperands correctly: if a memory operand

ggl\(IZST\éeAr”S\:?n gr?d_ theEiﬁgiAﬂhDA[E)gggg — does not pass thEXTRA_CONSTRAINTheck,

CONSTRAINT target macros. These were reload is able to fix the problem by loading
inspired by the way reload was able to handldghe address into a base register. Similarly, the

offsettablememory constraints. A memory EXTRA ADDRESS_CONSTRAIN@rget macro
operand is called offsettable, if it stays a valid;o\vs the back end to define constraints that

mgmgcryémoe%etraigdaévdheedn tg f&algd%?ggg)nzlwork like the standard 'p’ constraint to denote

that every byte of the object comprising theaddress operands, but accepts only a subset of
operand can be addressed. As an example, tladl valid addresses (again including all those

RTX that consist of solely a base register so that
reload can fix the operand up if required).

(const_int 4092))) used by the S/390 back end to define the 'Q’
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constraint to handle S-operand instructionsgondition code value and the mask position is
this allows the use of these instructions with-given by the following table:

out abusing reload, and also provides flexibil-
ity to mix S-operand instructions with others
in the same instruction pattern, choosing the

best alternative depending on the specific sit-

uation. TheEXTRA ADDRESS CONSTRAINT

macro could be used by the S/390 back end to 3

implement the full range of options to specify g, example, the instructiobcr 12,%r1
the count operand for shift instructions (this ispranches to the address given in regigted

Condition Code Mask Position Value

PN B~ O

not currently implemented yet, however). if the current condition code is either 0 or 1.
(The GNU assembler also accepts mnemonics
4 Performance considerations instead of explicit mask values; as this branch

typically represents kBess-or-equatiecision, it

: . . . ._can equivalently be written dder %rl .
The previous section described issues relating q y ° )

to correctness of the generated code which reHowever, the numerical values 0-3 the condi-
quired special handling. However, for GCC totion code can assume have no fixed meaning.
be a competitive compiler on the zSeries platinstead, every instruction that sets the condi-
form, we need to not just generate correct, bution code is free to define the semantics of the
also efficient code. This section details two arcondition code values it may set. In early ver-
eas where we found we could achieve signifsions of the S/390 back end we therefore used
icant performance benefits by exploiting spe-only the condition codes set by explicit com-
cific features of the zSeries architecture: condiparison instructions (which are very regular),
tion code handling and instruction scheduling.and completely ignored that other instructions
may set the condition code as side effect of
4.1 Condition code handling some other operation. This works, but can ob-
viously cause code to be generated that is sig-
The S/390 architecture usescandition code nificantly less efficient. In particular, some im-
to implement conditional branches. The condi-portant instructions the S/390 architecture pro-
tion code consists of two bits stored in the pro-vides (e.g. TEST UNDER MAS$Kould not
gram status word. Various arithmetical, logi- be exploited at all.
cal, and comparison instructions set the condi-

tion code, while branch instructions make usel© IMprove this situation, we have rewritten

of it to decide whether the branch is to be takerf€ condition code handling parts of the S/390
or not. As opposed to many other platforms,0ack €nd to use an explictCmoderegister
the S/390 condition code is not composed Ofo represent the condition code (instead of us-

single bits with specific semantics. Instead, thé"d cco _)' The various different semap_tlcs that
two bits of the condition code combine to rep_ms.tructlons can impose on the condition code

resent a condition code value in the range 0-3/alues are represented via different machine

Branch instructions use a 4-bit branch condi-mOdeS of that register. The following list tries

tion mask to decide whether branching is per!© 9\V& an overview of the typical uses of the
formed. The current condition code selects Ongondltlon code:

of the four mask bits, and if this bit is one, the

branch is taken. The relationship between the ¢ Comparison operations (signed)
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Operands equal

First operand low

First operand high

3 Operands unordered (floating point)

N P~ O

This condition code semantics is rep-
resented by theCCSmode mode. It
is used by instructions likecCOMPARE
some other instructions (e.g. LOAD
AND TEST SHIFT RIGHT SINGLE)
set their condition code according to this
mode as well, assuming an implied com-
parison of their single operand against
zero.

Logical
signed)

comparison operations (un-

0 Operands equal

1 First operand low
2 First operand high
3 nla

This condition code semantics is repre-
sented by th&€ CUmodemode. It is used
by the COMPARE LOGICAEamily of
instructions.

Arithmetical operations

0 Result zero; no overflow

1 Resultless than zero; no overflow

2 Result greater than zero; no overflow
3 Overflow

This is used by thdDDandSUBTRACT
instructions. Unfortunately, due to the fact
that the case of signed arithmetic over-
flow is signalled via condition code 3, and
in that case no comparison of the result
against zero is performed, in most cases
we cannot use the condition code set by
those instructions. However, if one of
the operands is a compile-time immedi-
ate constant, we may be able to determine
at compile-time that if the operation over-
flows, the resulmustalways be greater or
less than zero, respectively. Those situa-
tions are represented by ti@&CAPmMode

and CCANmodemodes. (Note that some
languages, like C, guarantee that arith-
metic on signed data types must not over-
flow. Unfortunately, this information is
lost at the RTL level. Having some means
to pass this fact to the back end would en-
able us to make use of teDDcondition
code in many more cases.)

Logical operations

0 Result zero; no carry

1 Result not zero; no carry
2 Result zero; carry

3 Result not zero; carry

This is used byADD LOGICALand in
slightly modified form by SUBTRACT
LOGICAL;, we represent these cases by
the CCL1mode and CCL2mode modes.
We use the logical variants of the add and
subtract operations in cases where the re-
sult of the operation is compared against
zero, and we are not sure whether over-
flow happens. They can also be used to
implement carry propagation for multi-
word additions.

Zero test
0 Resultzero
1 Result not zero
2 nla
3 nla

The logical operations AND OR
EXCLUSIVE OR use these condition
code semantics, which we represent by
CCTmode What is important here is
that some of the condition code modes
mentioned above can also be used to
implement a test against zero (e.g.
CCSmode, CCUmodg We therefore
implement such tests using a virtual
condition code modeCCZmodethat is
allowed to match against all such modes,
using a semantics of condition code O if
result equals zero, and condition code
nonzero if the result is nonzero.
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The condition codes described above are all if ((flags & 0x84) == 0x80)

used by a number of different instructions, and

share a certain amount of regularity. How-The S/390 back end now uses the
ever, other instructions use the condition codésSELECT_CC_MODfaacro to inform combine
in completely different ways. As an examplethat it is possible to implement this particular

- - - - omparison operation using theCT2mode
we describe here an important instruction Offnode, causing the following (simplified)

LOW and how we can make use of this in-

struction within the GCC framework TEST (set (reg:CCT2 33 %cc)

register operand and compares them bit-for-bit (and:SI (reg/v:SI 40)
against a mask provided as immediate operand. (const_int 132 [0x84]))

The sole effect of the instruction is to set (const_int 128 [0x80])))

the condition code, depending on whether the(-Set (nC)
operand bits selected by the mask are ones or (it then_else
Zeros: (ne (reg:CCT2 33 %cc)
. . (const_int 0 [0x0]))
0 Selected bits all zeros; or mask bit all zeros (label_ref 18)
1 Selected bits mixed, and leftmost is zero (pc)))

2 Selected bits mixed, and leftmost is one

3 Selected bits all ones These in turn later generate the assembler code

This instruction is very useful to generate eff-Shown above. Note that the use@CT2mode
t.causes the branch instruction to use condition
code 2 for equality (and all other condition
codes for inequality); this is very different from

cient code for a number of frequently used bi
test operations. The following statement,

for example:
P how most other branches are handled.
if ((flags & 0x80) && Overall, the CCmode facilities of the GCC
I(flags & 0x4)) middle end allow to make use of the S/390

condition codes in many important cases; no
can be translated into a singl&eST UNDER  changes outside the S/390 back end were nec-
MASK  LOVWéperation followed by a condi- essary to exploit them. However, we have no-
tional branch: ticed some areas where common code changes
would be required to further improve the gener-
# Mask selects both 0x80 and ated code. One of these is to allow a condition
# 0x04 bits for testing code computed by one instruction to be reused

tml %rl,Qx84 o across multiple branches; the sequence
# Branch if leftmost bit is one,

# and the other zero .
brc 2,.Lxxx if (x == 5)

Starting with GCC 3.3, the S/390 back end is  &lse If (x < 95)

in fact able to generate this optimal code se-

guence. This is made possible by the fact that

the combiner pass notices the two subexpresurrently performs two distinct comparison op-
sions of thef clause can be combined into erations, although the optimal implementation
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would use a singl€OMPARB set the condi- Regardless whether an instruction actually uses
tion code, followed by two branch instructions a memory operand or not, latching of base and

evaluating it. index registers is done in the decode stage.
Likewise, the address generation stage as well
4.2 Instruction scheduling as the C1 and C2 stages are used for all instruc-

tions, even though they would be required for
The time required to run a certain program de-nemory operands only. Together with the fast
pends on the number of instructions and thd-1 data cache, this enables register-memory in-
time each specific instruction takes. Beside$tructions to be as fast as register-register in-
that, in most modern implementations of com-structions.

uter architectures, dealing with a pipelined . .
P g wi PIPEINECH e to the single cycle E1 stage for most sim-
and/or superscalar processor implementation

the cycles an instruction takes as part of arPle instruction, true data dependency does not

. : . ._cause a pipeline stall. This leads to a theoret-
instruction stream depends heavily on the IS= | coi of 1 for most compiler aenerated in-
sue order. For some architectures (e.g. VLIW) P prier g

: . . . ; . ‘structions, assuming an infinite cache. Also,
an inappropriate scheduling of instructions will _. T )
N since this pipeline is short, the penalty for mis-
lead to a significant performance decrease.

predicted branches is comparatively small.
Also on the recent z900 machines, some of th

. ) . . erhe main instruction-issue related problem left
single-cycle instructions will in fact take from

110 5 cycles, depending on the order this in-by this design is the address.generatlon inter-
L o . . lock (AGI). If a register used in the AA stage
struction is issued within an instruction stream.

The reason for this can easily be seen if we takée'g' base register) IS ch_ange(_j In an instruction
: : - . Shortly before, the pipeline will be stalled for
a close look at the single-issue pipeline all in-

up to 4 cycles. This is due to the fact that the
DA stage needs to wait for the WR stage to up-

detailed description of the z900 pipeline.) date the register needed

After instruction fetching, the instruction
pipeline consists of 6 stages. This pipeline i

designed so as to ensure that register-memoryhis AG| lets most applications suffer a perfor-
(RX) instructions perform the best way possi-mance degradation in the double-digit percent-
ble. age range. If we look at code examples like the
PLT code generated for ELF shared libraries,
DC Decode instruction, latch registers for ad-the impact is even bigger. Over the last gen-
dress generation. erations of S/390 systems attempts to reduce
this impact led to building certain kinds of by-
AA Address generation, by adding base, inde’ﬁ)asses into the pipeline. Especially tlad
register and displacement from instructiongndload addresdype instructions, which gen-
text. erate all their side-effects in the early stages of
the pipeline and which are frequently used in
pointer intensive code, got those bypasses. The
C2 Send memory data to execution unit. result of aload addressype instruction is gen-
erated in the AA stage and ready after C1, and
can be bypassed with a 1 cycle delay to the AA

WR Writeback result to register file. stage of a directly following instruction.

S(Please see Figure 1.)

C1 Cache access, TLB access.

E1 Execute.
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01 2 3 45 6 7 8 9 101

ar r2,r3 DC AA C1 C2 E1 WR
I r2,0(0,r2) DC AA Cl1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 1. Address Generation Interlock, first example

012 3 45 6 7 8 9 1011
la r2,0(r2,r3) DC AA C1 C2 E1 WR
[ r2,000,r2) DC AA Cl1 C2 E1 WR
ar ra,r2 DC AA C1 C2 E1 WR

Figure 2: Address Generation Interlock, second example

(Please see Figure 2.) (eq_attr "atype" "reg"))
"z el,z_wr")
The result of doad type instruction is ready
after the C2 stage and can be bypassed witfflefine_insn_reservation "z_agen” 1
a 2 cycle delay to the AA stage of a directly (&nd (ed_attr “cpu” "z900%)

. . . eq_attr "atype" "agen"
following instruction. "z_el,z(_\?v?") P gen’)

(Please see Figure 3.)

, , The 4-cycle hazard of the pipeline due to
All other instructions suffer a 4 cycle penalty AGI, the 1-cycle bypass for thiwad address
if setter and user are issued back to back. T%/pe instructions and the 2-cycle bypass for

avoid this, we use in the recent GCC imple-joa type instructions are described using the
mentation the new DFA based scheduler. define_bypass  construct.

To describe the behavior of the pipeline, we

only need to define the last two stages. Dowridefine_bypass 5 "z_int,z_agen" .

below we shortly show part of description of 2-2genz_faz_joad" "s390_agen.dep_p')

the z900 pipe”ne_ (define_byeass 3 "z_load" o )
z_agen,z_la,z_load" "s390_agen_dep_p")

(define_bypass 2 "z_la"

(define_automaton "z_ipu”) "z_agen,z_la,z_load" "s390_agen_dep_p")

(define_cpu_unit "z_el" "z _ipu")
(define_cpu_unit "z_wr"  "z_ipu")
With all this in place, GCC does a good job

(define_insn_reservation “2_la" 1 scheduling within a basic block. The places

(and (eq_attr "cpu" "z900")

(eq_attr "type" "la") wh(_—:'re we still see for certain code a non-
"z_el,z_wr") optimal scheduling are as follows:

(define_insn_reservation "z_load" 1 At the beginning of a basic block, the state of

(and (eq_attr "cpu” "z900") the DFA is reset. With GCC 3.4, the second

(eq_attr "type" "load"))

. € scheduling pass is placed after basic block re-
z_el,z wr")

ordering. Since the reordering will lead to a
(define_insn_reservation "z_int" 1 high probability that a basic block is entered
(and (eq_attr "cpu" "z900") from the immediately preceding basic block,
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01 2 3 456 7 8 9 1011
| r2,00r3) DC AA C1 C2 E1 WR

| 12,000,r3) DC AA Cl C2 E1 WR

ar ra,r2 DC AA Cl C2 E1 WR

Figure 3: Address Generation Interlock, third example

this could be used to improve scheduling. In-This all would need some kind of new syn-
stead of resetting the state at the beginning aofax, in order to refer to the registers an in-
the basic block, the state from the end of thestruction is using. Also, it would definitely not
last basic block scheduled could be used as inwork before register allocation, since the num-
tial state. ber of states and transition could not be han-
. _ dled. Even after register allocation, it remains
This uncovers another problem with the, e seen whether the the number of states and
current way the DFA is defined.  The (,ngisiton is managable. In our case, each in-

define_bypass ~ mechanism only influ- g ction may use up to 16 registers, and will
encesinsn_cost , which is used to set up |, up to two for addressing.

the priority a insn is scheduled with. Also

insn_cost is used to find out when a insn

is ready, depending on the instructions alreadyp ~ Conclusion
scheduled in the current basic block. However,

this information is not actually part of the state gcc on the IBM mainframe is a mature com-

of AGI hazards cannot be achieved solely bycompiler for all Linux on zSeries distributions.

looking at this state. The efficiency of the generated code is compet-

If GCC will use more and more of the DFA- itive with other compilers for our platform.

based algorithms for scheduling, like globalpygyever, there is still room for improvement.
all resources. I_n our specn‘_lc case, in order tQand in order to fully exploit all features the
detect AGlIs, this needs to include the generajchitecture provides. We also remain com-
register file. To model the AGI behaviour, we yitted to add support for future generations of

need to define a RR type instruction allocatingihe zSeries processor as soon as those become
the source register in the E1 stage and allocaty gijaple.

ing the destination register in the AA, C1, C2,

E1l, WR stages. A RX type instruction allo-

cates the address registers in the AA stage, theeferences

source register in the E1 stage and the destina-

tion register in the AA, C1, C2, E1, WR stages. [1] ESA/390 Principles of OperatioriBM

In case of doad type instruction the destina- Document Number SA22-7201-07, 2000.
tion register is only allocated in the AA, C1 and http://publibfp.boulder.
C2 stage, for doad addressype instruction in ibm.com/cgi-bin/bookmgr/

the AA and C1 stage. Having this in place, the BOOKS/dz9ar007
DFA would be sufficient for detecting the AGI

hazard. [2] z/Architecture Principles of Operation

IBM Document Number SA22-7832-01,
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[3]

[4]

[5]

2000.
http://publibfp.boulder.
ibm.com/cgi-bin/bookmgr/
BOOKS/dz9zr001

LINUX for S/390 ELF Application Bi-
nary Interface SupplementBM Docu-
ment Number LNUX-1107-00, 2001.
http://oss.software.ibm.
com/linux390/docu/I390abiO.

pdf

LINUX for zSeries ELF Application Bi-
nary Interface SupplementBM Docu-
ment Number LNUX-1107-00, 2001.
http://oss.software.ibm.
com/linux390/docu/lzsabiO.

pdf

E.M. Schwarz et alThe microarchitec-
ture of the IBM eServer z900 processor
IBM Journal of Research and Develop-
ment Vol. 46 No 4/5, 2002.
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Abstract 1 Motivation
1.1 Unix Standard System Installations

Although in recent years some Unix vendors

stopped shipping development tools with their

operating systems, it is still quite common on
When building ready-to-run applications from most systems to have a C compiler, an assem-
source, a compiler is not sufficient, but li- pler and a linker installed. Often system ad-
braries, an assembler, a linker, and eventuallyninistrators use these tools to compile applica-
some other tools are also needed. We call thﬁons for their Systems when binary packages
whole set of these tools a development tookre not available for their platform or when the
chain. BUIldlng a native tool chain to build ap- setup of the binary package is not app|icab|e to

plications for the compiler’s platform is well their local setup. For such scenarios, the sys-
documented and supported. As clusters beem compiler is quite sufficient.

come more and more widespread, it becomes

interesting for developers to use the enormous 5 Development Usage
CPU power of such a cluster to build their ap-
plications for various platforms by using cross

development tool chains. Although this so-called system compiler can

also be used by a software developer to build
We describe how a development tool chain ighe product he is developing on and is often
structured and which steps have to be taken bglone, this is in most cases not the best solution.

its parts to build an executable from source h | ¢ tusing th
We also evaluate whether the characteristics oT €re are several reasons for not using the sys-

each step imply that a special version of thistem compiler for development:
tool is needed for the cross development tool

chain. Furthermore, we explain what has to < In development you often have a large
be done to build a complete cross development number of development machines that
tool chain. This is more involved than building can be used in a compiler cluster to
a native tool chain, because intrinsic dependen-  speed up compilation. Tools for this pur-
cies that exist between some parts of the tool pose are available, atistcc by Mar-
chain must be explicitly resolved. Finally, we tin Pool,ppmake from Stephan Zimmer-
also show how such a cross compiler is used  mann with some improvements from my
and how it can be integrated into a build envi- side, or many other tools that do simi-
ronment on a heterogeneous Linux/Unix clus- lar things. The problem is that when us-

ter. ing the system compiler, you can only use
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other development machines that are ottharacteristics require them to be handled spe-
the same architecture and operating syseially when used in a cross development tool
tem because you cannot mix up objectchain. In section 3, we will show what must
files generated for different platforms. be done to build a complete cross development
tool chain and what are some tricks to work
 As a developer, you normally want to sup-around some problems. In section 4, we show
port multiple platforms, but in most cases, how to integrate the cross development tool
you have a large number of fast machineshain into build systems to gain a more effi-
for one platform, but only a few slow cient development tool chain. Finally, we will
machines for another one. If you usedfind some conclusions on our thoughts in the
only the system compiler in that case, youlast section.
would end up in long compilation times

for those platforms where you only have a )
few slow raachines. Y Y 2 How a Compiler Works

+ Last but not least, you often also wantTo understand how a compiler works and thus
to build for a differentglibc  release what we have to set up for a cross compiler,
etc. than the one installed on your sys-we need to have a look at the C development
tem for compatibility reasons. This is also tool chain. This is normally not a monolithic
not possible for all cases with a systemtool that is fed by C sources and produces exe-
compiler pre-configured for your system’s cutables, but consists of a chain of tools, where
binutils release and other system specifiach of these tools executes a specific transfor-

parameters. mation. An overview of this tool chain can be
found in Figure 1. In the following, | will show
1.3 Compiling for a Foreign Platform those parts and explain what they do.

This section is not intended to provide a com-
We can solve all those problems by makingplete overview on compiler technology, but
clear to ourselves that a compiler does not necdoes only discuss some principles that help
essarily have to build binaries for the platformus to understand why cross development tool
it is running on. A compiler where this is the chains work the way they do. If you would
case, like the system compiler, is called a nalike to have some detailed information about
tive compiler. Otherwise, the compiler is called compiler technology, | recommend reading the
a cross compiler. so-called Dragon book [ASUS86].

We also need a cross compiler for bootstrap-

. > 2.1 The C Preprocessor
ping a new platform that does not already ship
a compiler to bootstrap a system with. But this ) _ )
cannot really be a motivation for this paper, as! "€ C preprocessor is quite a simple tool. It
people that bootstrap systems most likely ddust removes all comments from the source
not need the information contained in this pa-c°de and processes all commands that have

per to build a cross development tool chain. & hash mark #) on the first column of
any lines. This means, for example, it in-

In the following section we will show some cludes header files at the position where we
basic principles of a development toolchain,placed#include  directives, it does condi-
how the single parts work and whether theirtional compiling on behalf o#if ... direc-
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’ C source file ‘ tual C compiler for performance reasons and to

solve some data flow issues. Because of these
reasons, the C preprocessor is actually not re-
ally platform-independent.

C preprocessorcpp)

| C preprocessed source file

C compiler €c1 ) — frontend 2.2 The C Compiler

" intermediate language

The actual C compiler is responsible for trans-

forming the preprocessed C source code to as-
C compiler €c1) — backend  sembler code that can be further processed by
the assembler tool. Some compilers have an in-

9
J

’ assembler file ‘ tegrated assembler, i.e. they bypass the assem-
bler source code, but compile directly to binary
assemblergs) object code.
’ object file ‘ We can divide the compiler into a front end and
a back end, but you should note that in most
linker (Id ) cases these two parts are integrated into one
tool.
’ executable ‘
Figure 1: tool chain 2.2.1 The Compiler Front End

The front end is responsible for transforming
tives and expands all macros used within the Ghe C source code to some proprietary inter-
source code. The output of the C preprocessahediate language. This intermediate language
is again C source code, but without commentsshould be ideally designed to be independent
and without any preprocessor directive. of both the source language and the destina-

Note that most proaramming lanauaaes othetion platform to allow easy replacements of the
brog g languag front end and the back end. Because of that

than C do not have a preprocessor. It ShOUI(iieason the front end is independent of the des-
be noted that preprocessor directives and eSP&- - tion platform
g :

cially macros make some hackers to produc
really ugly code, but in general, it is a quite

useful tool. )
2.2.2 The Compiler Back End

It can easily be seen that the C preproces-
sor itself should not be platform dependentrhe pack end does the translation of the in-
as it is a simple C-to-C-translator.  But in termediate language representation to assem-

fact, on most systems the preprocessor defing§ier code. As the assembler code is obviously

platform-specific macros like €.g. 1386__  pjatform-dependent, the back end is as well.
on an ia32 architecture, and it must be con-

figured to include the correct platform specific This results in the fact that although the front
header files. Apart from that, in many compil- end is platform-independent, the whole C com-
ers the preprocessor is integrated into the agailer is not because it is an integration of both
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the front end and the back end, where the latte8  Building the tool chain
is not independent.

2.3 The Assembler As we now have some basic knowledge about
how a development tool chain is structured, we

can start building our cross development tool

The assembler is the tool that translates asseghain. We can find both the C preprocessor and
bler code to relocatable binary object code. Re‘compiler in thegce package [GCC], which is
locatable means that there are no absolute aqhe most commonly used compiler for Linux

plresses built into the ob_ject code, but insteadsng for many other Unix and Unix-like plat-

if an absolute address is necessary, there agg,ms.

markers that will be replaced with the actual

address by the linker. The object code files in\We use the assembler and linker from the

clude a table of exported symbols that can b&SNU binutils package [Bin]. As an alterna-

used by other object files, and undefined symtive linker for ELF platforms, there is the one

bols that require definition in a different object from the elfutils by Ulrich Drepper, but this one

file. As both the input and the output of thisis in a very early point in its life cycle, and

tool is platform-specific, the assembler obvi-I would not currently recommend using these

ously depends on the platform it should gen+ools for a productive environment. For the

erate code for. GNU assembler, there are also various alterna-
tives available, but as changing an assembler
does only a straightforward translation job and

2.4 The Linker thus, no improvements of the results are to be
expected, it is not worth integrating another as-

_ ) _ _ sembler into the tool chain.
The linker can be considered the final part in

the development tool chain. It puts all binary These are all tools for our tool chain, but we
object code files together to one file, replac-are still missing something: As every C appli-
ing the markers by absolute addresses and linkcation uses functions from the C library, we
ing function calls or symbol access to other ob-need a C library for the destination platform.
ject files to the actual definition of the symbol. We will useglibc [Gli] here. If we wanted
Some of those object files might be fetchedto link our applications to additional libraries,
from external libraries, for example the C li- we would need them also, but we will skip this
brary. We do not explain how linking to shared part here. The essential support libraries for
objects works, as it just makes things a bit moreother gcc supported languages like C++ are
complicated, but does not make a real differ-shipped and thus built withcc anyway.

ence on the principles that are necessary to un- _ o
derstand the development tool chain. The relN€ following examples are for building a
sult of this tool is normally an executable. For oSS development tool chain for a Linux sys-
the same reasons as with the assembler, tH€M With glibc -~ on a PowerPC. The cross

linker clearly depends on the destination p|at_compiler is bui!t and wiII‘run itself on a Linux
form. system on an ia32 architecture processor. Al-

though something might be different for other
More detailed information on the principles of system combinations, the principles are the
linkers can be found in [Lev0Q]. same.
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3.1 The Binutils As long as there is not a hard bug in the used
binutils package, this step is quite unlikely to
The simplest thing to start with is the binutils fail, as there are no dependencies to other tools
package because they neither depend on the the tool chain we build. For the follow-
gcc compiler nor on theglibc  of the des- ing parts we should expect some trouble be-
tination platform. And we need them anyway cause of intrinsic dependencies betwege
when we want to build object files for the des-andglibc
tination platform, which is obviously done for

the glibc , but evengcc provides a librar : . : : .
g gee p y directory from our installation directory into

with some primitive functionality for some op- . :
erations that are too complex for the destina—$P'A‘T|_l as the following steps will need the

tion platform processor to execute directly. tools installed here.

From this point on, we should add thoen/

From a global point of view we have depen-3.2 A Simple C Compiler

dencies between the three packages as shown

in figure 2. Now we run into the ugly part of the story:
We need a C library. To build it, we obvi-
binutils ously need a C compiler. The problem is now
thatgcc ships with a librarylfbgcc ) thatin
some configurations depends on parts of the C
library.

For this reason, | recommend building the C
Figure 2: Dependencies between the packagdibrary and all the other libraries on a native

system and copying the binaries to the cross
So we fetch a binutils package, unpack itcompiler tool chain or using pre-built binaries,
and create a build directory somewhere—itif hossible. If you build a cross compiler that
is recommended not to build in the source,ompiles code for a commercial platform like
directory—where we then call Solaris, you have to do so anyway, as you nor-
mally do not have the option to compile the
Solarislibc  on your own. If you decide to
build the C library with your cross compiler,
continue here, otherwise skip to building the
full-featured compiler.

../binutils-2.13.90.0.20/configure
--prefix=/local/cross
--enable-shared
--host=i486-suse-linux
--target=powerpc-linux

binutils

We set the prefix to the directory we want
the cross development tool chain to be in-
stalled into, we enable shared object support,
as we want that on current systems and we tell simplegcc

configure  the host platform, i.e. the plat-

form the tools are running on later, and therigure 3: Dependencies with simple C com-
target platform, i.e. the platform for which pjjer

code should be generated by the tools later.

Afterwards, we run a quickmake, make We cannot build a full-featured compiler now,
install  , and the binutils are done. as the runtime libraries obviously depend on
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the C library. This cycle in the dependencyfiles to the destination directory, by removing
graph can be seen in figure 2. We can resolvéhe failing parts from the makefiles and contin-
this cycle by introducing a simple C compiler uing the build afterwards, or by just touching
that does not ship these additional libraries, sdhe files that fail to build. The last option forces
that we get dependencies as shown in figurenake to silently build and install corrupted li-
3. But because of the reason mentioned abovéyraries, but if we have this in mind, this is not
for most configurations we cannot even build areally problematic, as we can just rebuild the
simple C only compiler. That means we canwhole thing later and thus replace the broken
build the compiler itself, but the support li- parts with sane ones.

braries might fail. So we just start by doing ) _ ] )
The simplest way of installing an incomplete

compiler when using GNUmake is calling
make and make install with the addi-
tional parameterk so thatmake automati-
cally continues on errors. This will then just
skip the failing parts, i.e. the support libraries.

CFLAGS="-02 -Dinhibit_libc"
../gce-3.2.3/configure
--enable-languages=c
--prefix=/local/cross
--target=powerpc-linux
--disable-nls
--disable-multilib
--disable-shared
--enable-threads=single After having built a simple C compiler, we can

build the C library. It has already been said that

this might be necessary to be part of an iterative
build process together with the compiler itself.

3.3 The C Library

and then starting the actual build withake.

The configure  command disables just ev-
erything that is not absolutely necessary forry pyild the glibc
building the C library in order to limit the pos-
sible problems to a minimum amount. Some

we also need some ker-
nel headers, so we unpack the kernel sources
> ’ S Gt ‘somewhere and do some basic configuration by
times it also helps to set thehibit_libc

. : _typing
macro to tell the compiler that there is no libc
yet, so we add this also. In case the build com-
pletes without an error, we are lucky and camrmake ARCH=ppc symlinks
just continue with building the C library after include/linux/version.h
doing amake install before.

Otherwise, we must install the incomplete Now we configure by
compiler. In this case, the compiler will most

likely not be sufficient to build all parts of the . .

C library, but it should be sufficient to build the -/9libc-2.3.2/configure

major parts of it, and with those we might be ~ —~Nost=powerpc-linux

able to recompile a complete simple C com-  —-Puild=i486-suse-linux

piler. We have to iterate between building this ~ —Prefix= _

compiler and the C library, until at least the C /local/cross/powerpc-linux

library is complete. --with-headers=
/local/linux/include

The installation of an incomplete package can  --disable-profile

be either done by manually copying the built --enable-add-ons
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and do the usuahake andmake install 3.4 A Full-featured Compiler
stuff.

After we have a complete C library, we can
build the full-featured compiler. That means
we do now again a rebuild of the compiler,
but with all languages and runtime libraries we
want to have included.

Note that the-host parameter is different
here to the tools, as thglibc  should actu-
ally run on the target platform and not, like the
tools, on the build host. Therefix  is also
different, as thegliboc has to be placed into

the target specific subdirectory within the in-with a complete C library, this would be no

stallation directory, and not direCtIy into the pr0b|em any more, so we should manage to do
installation directory. Additionally, we have thjs by just typing

to tell configure  where to find the ker-
r\el headers and that we do not need prf)ﬁl'../gcc-3.2.3/c0nfigure
ing support, but we want the add-ons like

X --enable-languages=
linuxthreads enabled.

c,c++,f77,0bjc
--prefix=/local/cross
--disable-libgcj
--with-gxx-include-dir=

/local/cross/include/g++
--with-system-zlib
--enable-shared
--enable-___cxa_atexit
--target=powerpc-linux

In case that building the fuljlibc fails be-
cause building the C Compiler was incomplete
before, the same hints for installing the in-
complete library apply that where explained
for the incomplete compiler. Additionally, it
might help to touch the filpowerpc-linux/
include/gnu/stubs.h within the installa-
tion directory, in case it does not exist yet. This
file does not contain important information for
building the simple C compiler, but for some and again doing the build and installation by
platforms it is just necessary to be there bemake andmake install

cause other files used during the build include

it 4 Using the Tool Chain on a Clus-

After installation of theglibc (even the ter
incomplete one), we also have to install

the kernel headers manually by copyingwe now have a full-featured cross develop-

include/linux to  powerpc-linux/ ment tool chain. We can use these tools by
include/linux within - the installa- st putting thebin/  path where we installed
tion directory and include/asm-ppc 10 them to the system’s search path and calling
powerpc-linux/include/asm - The latest  {hem by the tool name with the platform name
kernels also wantinclude/asm-generic prefixed, e.g. for callingicc as a cross com-
to be copied tgoowerpc-linux/include/ piler for platformpowerpc-linux , we call
asm-generic . Other systems than Linux powerpc-linux-gcc _ The tools should
might have similar requirements. behave in the same way the native tools on the

host system do, except that they produce code
for a different platform.

But our plan was to use the cross compiler on a
cluster to speed up compilation of large appli-
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cations. There are various methods for doingCVS head revision replacggpmconnect by
so. In the following we will show two of them. the integrated binargpmake.

4.1 Using a Parallel Virtual Machine (PVM) There is also a script provio_led in the pa(?kage
that does most of these things automatically,

but I do not like the way this script handles the
process, so | do not use it personally, and such
itis a bit out of date recently.

We receive most scalability by dispatching all
jobs that produce some workload to the node
in the cluster.make is a wonderful tool to do

so. A long time ago, Stephan Zimmermannnote that there is a similar project [PVMb] by
implemented a tool callegpmake that be-  jean Labrousse ongoing which aims at in in-
haved like a simple shell that distributed thetegrating a similar functionality directly into

commands to execute on the nodes of a clusteNU make. You may want to consider look-
based on PVM. He Stopped the deVEIOpment Oifng at this project also.

the tool in 1997. As | wanted to have some im-
provements for the tool, | agreed with him to You should note that it is necessary for this ap-
put the tool under GPL and started to imple-proach that all files used in the build process
ment some improvements. You can fetch theare available on the whole cluster within a ho-
current development state from [ppm], but notemogenous file system structure, for example
that the documentation is really out of date anddy placing them on a NFS server and mount-
that | also stopped further development for seving on all nodes at the same place. Addition-
eral reasons. ally, it is necessary that all commands used
within the makefiles behave in the same way
If you want to use this tool, you just have t0 on all nodes of the cluster. Otherwise, you
fetch the package, build it and tethake to || get random results, which is most likely

use this shell instead of the standésuh/sh not what you want. This means you should
shell by setting thenake variable SHELL 10  glways call the platform-specific compiler ex-
the ppmake executable. Obviously you have plicitly, e.g. by powerpc-linux-gcc in-

to set upa PVM cluster before make this Work.stead OUCC , and the same releases of the com-

Information on how to set up a PVM cluster pjler, the linker and the libraries should be in-
can be found at [PVMa]. To gain something stalled on all nodes.

from your cluster you should also do parallel
builds by specifying the parametgr on the

make command line. 4.2 Using withdistcc

For example, if you had a cluster consisting of

42 nodes configured in your PVM software andTh(.e biggest dls_advant_age .Of the method _de-
: . scribed above is that it relies on central file
ppmake installed in/usr/ , you call

storage and on identical library installations on
all nodes. You can prevent these constraints
at the cost of limiting the amount of work-
load that will be distributed among the nodes in
the cluster to the compilation and assembling
step. Preprocessing and linking is done directly
instead of just on the system where the build process was
started and thus not parallelized. Only compi-
make ... lation jobs are parallelized, all other commands

make -j 42
SHELL=/usr/bin/ppmconnect
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are directly executed on the system, where thét least if you have an amount of systems for
build process was invoked. Although this lim- office jobs idling almost all of their time, it is
its the amount of workload that really runs in worth investing some time for building up such
parallel, this is in most cases not a real prob-an infrastructure to use their CPU power for
lem, as most build processes spend most ofour build processes.

their time with compilation anyway. o _ _
As this is a tutorial paper, its contents are

The advantage of this approach is that you onlyntended for people that do not have exten-
need to have the cross compiler and assensive konwledge on the topic described to help
bler on each node. Include files and librarieshem understanding it. If you think something
are necessary only on the system on which the unclear, some information should be added
build is invoked. or you find an error, please send a mail to

o _ _ rschiele@uni-mannheim.de
Such an approach is implemented in Martin

Pool'sdistcc  package [dis]. This tool is a

replacement for thgcc compiler driver. Pre- References
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Abstract One prominent issue is the restrictive ad-
dressing modes in these processors. Many
f the architectures have limited offsets, if a

Several microprocessors, used in digital signa? +offset’ add . de i 12l
processing and embedded devices, have ljm-egONSet -addressing mode 1S avallable or
ited displacement (4-6 bit) in “register + off- Just the auto increment/decrement modes. Ac-

set’ addressing mode. In some cases, onl essing data beyond reachable offset incurs ex-

auto increment/decrement addressing mode a instructions. While this cannot be avoided

are available. Hence, while accessing data of! all cases, Ioca;ll ftrarlne 'St (ine atr)ea Wh(t:)i:e
local frame, there are number of explicit in- we can improve data layout {0 subsume the

structions whose sole purpose is to reach thgddress arlthmgtlc. Th',s freedom can lead
desired data. This paper describes the impa&? subtle benefits .bOth n term_s_pf perfor-
of layout of local variables on performance andmance and code size. This erX|t_)|I|ty IS use-
code size for these architectures. It also detm regardless of target; the benefits, however,
scribes the techniques for optimal assignment re mosF apparenet for processors that have
of stack offsets such that instructions for ad-'mited displacement capability (such &si,
dress arithmetic for access of local variableéARM'Thumb' PA-RISC).

are minimized. The implementation of the e currently does not allow to reorder items
techniques in GCC is also dls%uss;ed._ Resulty, |ocal frame. The document first disccusses
indicate an improvement of 2%-7% in codehe problems that arise due to this. The solution

size and 5-9% improvement in execution tim-girategy and the implementation are discussed
ings for several benchmarks. subsequently.

1 Introduction 2 Problem Description

The use of micro-processors in embedded deFhe stack allocation scheme in GCC needs im-

vices has been growing. The complexity ofprovements. In the present scheme, the objects
applications that run on these processors hagre allocated on top of current frame when an

increased proportionately. This makes the usallocation is required. AmRTX of the of the

of HLLs such asC/C++ almost inevitable for form

writing these applications. Therefore, the com-

piler has to address the special architectural isgmem:mode (plus (fp) (const_int

sues normally found on these processors. offset)))
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is associated with it. A hard offset is thus as-
signed to it at the very beginning. This scheme
results in the following problems.

* The cost to restore the temporary base
pointer after use (re@ore)-

For floating point data SH allows pre-

* Increased code size

» Alignment holes and thus larger runtime

frames.
to

» Performace degradation due to cache
thrashing for certain applications.

decrement, post-increment and indexed ad-
dressing modeg@ being the sole legal index
register). Similar problems are imminent there

0.

As another example, consider this piece of

code in which a large array is placed at begin-

, . . ni
We first explain the impact of frame layout on

code size, taking the example of SH architec-
ture. The SH architecture has a limitation of
four bit offset in the ’offset + register’ address-
ing mode(@(k, rm)) . The 4-bit offset is
zero extended and multiplied by 1, 2 or 4, ac-
cording to the operand size (being a byte, word
or long). Hence a maximum of 64 bytes can
be accessed from a base register using this ad-

ng of the frame.

void func(void)
{
float foo[16];
int I,m,n;
putval(&l,&m,&n);
[=m+n;
funcl(l,m,n);

dressing mode. In cases where higher offsets

need to be accessed, the compiler adjusts the
registerm, so that a given reference lies within .
J ; g GCC produces this code for stateménh+n
or SH, when we don't reorder anything on

desired displacement. Hence if we want to acf
cess location, say, (72, fp) on SH, the assemberr

o rame.
output looks like:

| ; mov r14,r1 lframe pointer r14 --> rl
mov fp,rl .Extrg_ register add #4681 Ireaching "m"
add #72, rl |Addition mov.l  @rl+r5 I!m --> r5 and reaching "n"
mov.l @rl, r2 !Actual Load mov.l — @rlr6  In --> 16
mov 5,r4 Im --> |
add r6,r4 Im+n -->r4 (stored to "I")

Notice the worst case costs involved when
accessing data beyond addressable offsets

Note that frame layout is "foo, |, m, n"; so
frame.

offsets assigned to these relative to the frame

pointer are 0, 64, 68 and 72 respectively.
» The cost to spill the registers for

temporary stack base pointer of ar-Ideally, if stack was laid out differently with
ray/structure/class (spill,). following layout "I, m, n, foo", GCC generates

. the following code.
» The cost to copy the frame pointer.

(fpcoz)y) :

mov.| @@4,r14)5 ' m --> 15
« The cost to add the offset to temporary ~ movl  @@rl4)rs tn > 16
. mov 5,r4 'm -->r4
base pointer (reg,). add 6,14 | n+rd > 14
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Notice the benefits by this simple reordering. < Size of frame items is variable unlike reg-
First, a decrease in Code Size beacuse nbe- isters which are of fixed size.

causef instructions, whose sole purpose is to
reach data in local frame, are reduced. Sec-
ondly Register "rl" in above example remains
free to be utilized elsewhere. Thirdly reduc-
tion in frame size in the general case because
ordered layout will lead to lesser alignment
holes. In cases when a large array on local
frame is unused, we can significant stack space
if we do not allocate it at all. (Array foo in the
above example). These and several others problems are de-

. . , scribed by [Burlin].
Last, if compiler allows frame object to be

placed flexibly, the cache performance of ap-The most popular approach for offset assign-
plications might also be improved. ment is described by [Liao]. This approach is

) ) described for auto increment/decrement modes
We propose two improvements inway GCC al-3nq can be adjusted to accomodate limited dis-

locates local objects. The first improvement isplacemenaccommodates occurence of adjacent
the way the stack slots are represented intel5-cesses asoccurrenceto frame layout.
nally and secondly the algorithms to assign ac-

tual offsets to address these problems.

» Spilling has a different meaning than in
traditional allocation.

» Graph coloring usually performs better
for register sets numbering more than 16.
While considering limited displacements,
the algorithm seemed expensive.

3.1 Solution Strategy

3 Approach to the problem 3.1.1 The stack pseudos

The problem of offset assignments can pdt Was obvious that current representation of
viewed in different ways. We can view Stack slots had several problems. It made

this problem as similar to register allocation."€Shuffling objects in the stack virtually impos-

Drawing analogy from the fact that compiler SiPle. An rtx of the form

generates IL' code assuming infinite regis-

ters and allocates actual hard registers lategmem:mode (reg/f/c:Pmode slot))
we can generate IL assuming infinite displace-

ment and later map it to machine dependent . .
. . . : IS taken as the representation of a frame object.
displacement. While this mapping takes plac

we try to assign frame items within “fast ac_el'he slot is a stack address(or a stack pseudo).

. ., ) It is similar to virtual register but with slightly
cess window” based on the interference graph,. . :

) . : different semantics. We return a rtx of this
of stack slots.[Burlin] describes a technique onf

. . orm for each requested stack slot. Note that
lines of graph coloring. However, the approach . : o

: : .. the special flagc is used to tell that this is
has some implementation problems. Register

. o \ . stack address pseudo. The register allocator
allocation has significant differences with off- )
should not try to allocate any hard reg for this

setassignment inspite of apparent sin SIOitetie%’ecause it is already a known stack slot.After

Some obvious differences that need to be taken . :
care are register allocation, we sort the allocated stack

slots by size and number of references and con-
!IL:Intermediate language or RTL in case of GCC  vert it to normalfp+offset  form.
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3.1.2 The Access Graph 3.1.3 Use Data Flow Information

An access graph is derived from a basic blockAnother strategy is to use information built by
It gives the relative benefits of assigining adja-flow analysis pass of the compiler. GCC builds
cent locations for assigningof local variables.data flow information regarding pseudo regis-
Given a insn sequence, an access sequenta&s. This includes the attribute REG_FREQ
can be defined from it. Given an opera-which is the estimated frequency of the refer-
tion set(r3 op (rl r2)) , the access se- ence of the pseudo. Since stack slots are no
qguence is rl, r2, r3. The access sequence faliferent, this information is generated for dif-
an ordered set of operations is just a concateferent can use this information for frame lay-
nated sequence of each individual operationout by placing most frequently referenced vari-
The access graph G(V, E) is derived from ac-ables near the frame.We tried the following
cess sequence by adding edges corresponditguristics:

to adjacent access between variables. Instead

of an adjacent access, we take the limited off- o

set window to add the edges. For each repeatedl' sort the stack slots by size first

adjacent access, update the weight associatedz_
with an edge. At the end, we have a possi-
bly disjoint graph, representative of benefits of
placing variables within a same displacement

window. 3.1.4 Stack Reorganization Pass

place the most frequently referenced vari-
ables together near the frame

This access graph can be extended to model the o o o
entire procedure with the help of data flow in- A stack reorganization optimization pass is in-
formation.. The access graphs of basic blockéroduced after register allocation and is called
have to merge. Let us consider the scenari@s a subroutine during the reload phasghis
shown in Figure 1. Assume that probability new pass primarily takes care of stack lay-
of execution of basic blocks B2 and B3 is p2,0ut of variables. Stack assignments are made
p3 respectively. Further, since B3 is in a loopfor pseudo registers based on locality of us-

let us assume it has frequency of executfion age.lt was observed that stack reorganization
Then the following heuristics apply. will have little effect before reload because

most of the stack allocations are from within

1. For access sequences in B3, the weight aégload. So next possibility was to place it af-
ter reload pass. But replacing stack pseudos

signed while connecting adjacent variable™ _
accesses is proportionalfo with thelr_normal form after rt_-:-loa_d turns out to
be complicated because validation of changed
2. Weights assigned while connecting stacktx’s becomes part of stack reorganization, a
variable accesses between B1, B2 and B3ask that reload is already doing. So calling
IS proportional to probabilities p2 and p3. stack reorganization from within reload turns

out out be simpler and reload’s code need not
These heuristics ensure that access graph takB§ repeated.

into account the locality of accesses across enc o algorithm is based on method given by

tire pro_cedure. From this mformatlon, we CanJ(Liao]. The algorithm starts with the insn chain
determine placement of variables on the stac

to minimize large displacements. 2Post register allocation pass that handles the spills
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of the function being compiled. The routine
Construct_Access_Graph converts into a graph
G(V, E) where V is number of variable accesses B1
in a basic block and E is number of edges. An
edge will exist between two variables v1 and
v2 if they are accessed adjacently and the fre-
guency of the adjacent access is recorded in the
edge. Then algorithm uses a greedy approach,
where it tries to add the edges with maximum
weight adjacent to each other in spanning tree
E’. The routine Traverse_And_Assign_Offsets Figure 1: A sample control flow
takes this spanning tree as input and assigns

offsets to variables in stack.

B2 B3

2. Number of accesses of variables moved

INPUT: The insn chain of the function. near the frame.
OUTPUT: Offset Assignment on the Stack.

G (V, E)<-- Construct_Access_Graph (L);

/* G is a graph with local variables 3. Frame Iayout heuristics.
(V) as nodes and E is the number of
edges. */

Es: sorted list of edges in descending order

of weight.

/* The weight of an edge between <vl, v2> is | he b h . £
frequency/relative gain of their adjacent n the best cases, the execution perfromace
access. */ could go as high as 9%. The results for SH4

GV, E): Vi<V, E'<--NULL; processor are shown here. The base version

used for benchmark measurements GCC-3.3.

while ([E'] < V| -1 && Es != NULL) ) _ ) )
{ The compiler options are '-O2 -ml m4’. A

l fhé’;’[sﬁ first edge. */ new option namelyfstack-reorg is in-

/* Remove it from Edge List */ troduced to enable stack reorganization. Ta-

Es = Es - € ble 1 gives size comparisons of stress1.17 files

if (e does not cause a cycle in G) with and without stack reorganization. The
e mgree S5y and node in ¥ Heuristics used are while frame layout are
add e to E’; those of section 3.1.3. It is clear that in most

else

reject e: cases, we have a decrease in code size. Some

benchmarks show slight code size increase due

/* Now the best disjoint path cover to noise in reload phase

is available. */
Traverse_And_Assign_Offsets(E’)

The execution results for some benchmarks

are shown in Table 2. Only those benchmark
3.2 Benchmark Results which have variation in execution timings are
shown. One undesirable side effect, which is
_probably the main cause of performance degra-
dation, is the harm done to loop optimizer be-
cause stack addresses are not exposed to it. A
loop optimization pass after reload phase could
1. Size of the local frame. possibly fix this problem.

The performance improvement by frame re
ordering depends on the following factors.
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Table 1: Code Size Comparisons http://gce.gnu.org

Input Data| Gain
Benchmark Size | (Y%age)
gsm Compression| 1.71MB| 8.29
gsm decompression 361 KB | 5.60

jpeg(dct int) 3.25MB | -1.04
jpeg (dct float) 3.25MB | -0.38
djpeg(dct int) 328KB | 4.73
djpeg (dct float) 328 KB | -2.05
gzip 80MB | 0.01
gunzip 16.2 MB 0.7

Table 2: Execution Timings
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Abstract .

The 3.0 series of G++ compilers and libraries
offers a new multi-vendor ABI and increas-
ing conformance to the C++ standard. The
C++ ABI offers increased efficiency for C++
idioms and interoperability with other compil-
ers. Features of the ABI that the G++ user
should be aware are described. Both additional
and deprecated features in versions 3.2, 3.3 and
3.4 are described. Using various source idioms
to aid the G++ optimizers and loading process

is shown. The process of tracking the C++
standard as both defect reports and C++0X be-
come available is outlined.

1 The 3.0 ABI

Starting with G++ 3.0 a new C++ ABI is
provided. This multi-vendor ABI [2] came
from development of an Itanium port of GCC,
which included the design of a C++ ABI for

the Itanium processor. That ABI was de- °
signed by CodeSourcery, EDG, Compaq, HP,
Intel, Red Hat and SGI. Although designed for
one architecture, the C++ ABI is sufficiently
abstracted from Itanium features to allow its
use for other processors, and hence the multi-
vendor C++ ABI came about.

The 3.0 ABI is a complete redesign of the
G++ ABI, which leads to space and speed
improvements. The previous G++ ABI had

Empty structures take zero size when used
as a base class.

Tail padding can be overlaid for non-POD
bases and members.

Derived to base conversions are constant
time for both single and multiple inheri-
tance. Conversion to a non-virtual base,
requires a fixed adjustment and a single
access of the vtable is needed to convert
to a virtual base. Having virtual base
offsets held in the vtable reduces the ob-
ject size overhead for virtual inheritance.
In most programs virtual inheritance does
not increase the size of an object, because
nearly all classes with virtual bases have
virtual functions too. Previously a virtual
base would add a pointer member to each
class that derived from it, and base con-
version involved following an inheritance
path, which could involve several member
accesses.

Pointers to member functions are smaller,

and dispatching via them is faster, because
the vtable pointer is always at the start of

an object.

Virtual function thunks are all emitted
with the thunked to function. This gives
better cache coherency, and permits mul-
tiple entry point optimizations for thun-
ked functions. These improve the per-
formance of the virtual function calling

eVO|Ved over tlme as C++ |tS€|f Stablllzed. ABI 1G++ does not Current'y |mp|ement mu|t|p|e entry
improvements include, point optimizations.



230 ¢ GCC Developers Summit

mechanism. The thunk mechanism is ¢ A new implementation of the standard
such that even overriding from a virtual template library, which is properly con-
base is fast, with a single adjustment us-  tained in thestd namespace.

ing one access into the vtable. o .
» Type based aliasing is enabled at opti-

» Covariant return thunks are specified, and mization level-O2.
implemented in G++. Again, these are
emitted with the overriding function that
required their emission, and so have thel hese changes effect user code to varying ex-
cache coherency improvements and multitfents. Other than speeding up code, the new

ple entry point optimization opportunities ABI should result in no user visible changes.
of the simpler thunks. Of course, all programs and libraries will need

to be recompiled. If the user relied on ABI fea-
« Dynamic cast hints are generated bytures, then a program might be effected.
the compiler, and improve the speed of
dynamic_cast in common cases. In 11 Shared Libraries
most cases the speeddyinamic_cast
is now linear in the number of bases be- : -
tween the dynamic object type and the tar-1 N€ ABI makes use of a link facility that
ELF [3] supports called common data. The
get type of the cast. . . )
common data linkage is used for objects that
¢ Runtime type Comparison is Constanthave no well defined object file in which to

time, which further improvedynamic_ ~ place them. The C++ ABI relies on com-
cast and catch matching. Previously, mon data linkage to implement the constant

type comparison involved string compar-time comparison of types. This requires the

ison. names of type information objects to be glob-

ally visible. Libraries are effected because the

 Exception handling is a two phase pro-type information objects must be visible to user

cess. The first phase locates a catch harprograms. Shared libraries that are resolved

dler, and only when one is found is the at load time by the runtime loader, and those
stack unwound to that handler. If a han-opened explicitly withdlopen , as is com-

dler is not found, std::terminate monly done for program plugins, are effected
can be called in the throwing context, andin the same way. Static libraries are also ef-
hence help debugging. fected, but the impact on real programs has

) not been so great. The link and loading speed
* A new mangling scheme that uses & Comys 4 three kinds of libraries can be improved
pression algorithm. This produces shortef,, 1o mechanisms described here. A library
names, and so improves link and loady, es available, or exports, to user programs a
times. set of names. It also has to specify, or import,
those names it uses from other libraries. Both
importing and exporting use the same mecha-
nisms and the remainder of this paper simply
refers to exporting. If the library wishes to
« The std namespace became a realdynamic_cast or throw exceptions across
namespace, rather than an alias for thehe library interface, it must export type infor-

global namespace. mation names, so that the common linkage is

Additional improvements in G++ 3.0 were,
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achieved. More complicated export require-the important ones. The G++ ABI mangles
ments require other types of names to be exall names with an initial ‘Z’, followed by the
ported. mangled name. Certain prefixes are placed be-

‘tween the ' Z’ and the mangled name, for par-
Because C++ has no module system, the liticylar kinds of names. These are,

brary programmer cannot indicate at the source

level which types, functions and objects are to _ _

be exported. The library is forced to export all TV Vtables. Pointed to by polymorphic ob-
symbols, to ensure the user can access the ex- 1€Cts and those with virtual bases. These
ported functionality. There are proposals [5]  are termed dynamic classes in the ABI.

to add module facilities to the language. It is TT
desirable to indicate a subset of the names as
available to users of the library. The currently
available mechanism for doing this is symbol
versioning [4].

Vtable table. Used in constructing and de-
structing polymorphic objects with virtual
bases. Not all polymorphic classes will
need a vtable table.

Tl Type information. Returned btypeid

The simplest solution is to export all exter- operator, pointed to by the vtable.

nal names from the shared library. Unfortu-
nately this has two disadvantages. Firstly pro-TS Type string. Returned hbtype_info::
gram load times are increased because the dy- name, and used for type comparisons.
namic linker must resolve all these symbols in
order to eliminate duplicates with the alreadyG
loaded program. Secondly, it exposes the in-
ternal names of the library implementation that
have global scope. Sometimes those names can
conflict with the user’'s names, or those in other
libraries used in the program. Th,

V Guard variable. Used to guard the ini-
tialization of function scope static objects
that are dynamically initialized. The name
of the static object will be the same as the
guard variable without theGV prefix.

Virtual function thunks. These are fol-
. o . Tv, lowed by a mangling of the thunk infor-

The solution to name conflict is to put the in-1¢' mation, and then the mangling of the thun-

ternal names into a library specific namespace. ke to function. The second prefix letter

For instance, have the exported library func- indicates whether it is a fixed, virtual or
tionality in a ‘FooLib ' namespace, and the covariant thunk.

internal names in aFooLib::Internal ’
namespace. Unfortunately it can be difficult to _ _
retro fit such a solution to an existing library The vtable, vtable table, type information and

that is not namespace aware. type string are not tightly bound to any partic-
ular object file by the language, and so have

For a simple shared library, where no runtimecommon data linkage. Potentially any object
type information is transfered across its inter-file that uses them could contain their defini-
face, itis simply necessary to export the librarytion. The C++ ABI has an optimization where
interface functions. For a more complicatedthe class to which they belong has a non-inline
library, it is necessary to export the type in-virtual function, the first of which is called a
formation names, and potentially some of thekey function. In that case, all these objects
internal names. This can be done by examare only emitted in the object file that contains
ining the names in the library object files us-the definition of the key function. Other ob-
ing nmand using a pattern matcher to extractect files will not contain these objects, as it can
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be determined that their definition will be pro- final executable. Only static objects with a
vided elsewhere. Libraries can be effected bydynamic initialization expression will have a
this because, although it might not matter thaguard variable.

two instances of a particular object were use . :
in a program, a user program can rely on a deﬂf the library exports types that can be inher-

inition it knows is in the library ited from, then the type information object,
' all user callable member functions of the class
The type information Objects W|” need ex- and a” Virtual funCtiOI‘lS and thunkS must be

porting, to share type information, as userexported. The class members will be man-
programs which use the type fdynamic_  9led, following any applicable prefix, as a
cast or catching, will need to refer to them. scoped name of the fornN<classname>
Sometimes these are emitted with internal link-<membername>E. Both the classname

age, in which case they refer directly or indi- ahd membername components are mangled
rectly to an incomplete type. Such instancedts @ numeric length followed by the name, such
shouldnotbe exported. Type comparison itself @s 6FooLib .

uses the address of the type string. Itis necesyere js an example library header file, showing

sary for that string to be shared by all instance$,, 4t needs to be exported, depending on the
of the same type. If they are not eXported’functionaIity provided.

the type comparison algorithms will consider
two types with the same name to be different
types. Therefore, external names beginning
with *_ZTI > and *_ZTS’ should be exported

#include <exception>
#include <new>

namespace NMS {
namespace Internal {

from the library.

If the library exposes inlinable constructors or
destructors of dynamic classes to users of the
library, it is necessary for the library to export
the vtable and vtable table.

If the library exports constructors to the user,
all the user callable virtual functions of the
class and its ancestors must be exported. Al-
though virtual functions are normally called
via the vtable (and therefore their names are
not needed, just the index in the vtable), by ex-
posing the constructor it might be possible to
determine the dynamic type of an expression at
compile time. Should the compiler do that, it
may elect to replace a virtual call with a direct
call, and hence require the name of the virtual
function.

Static objects in inlinable functions that are ex-
posed in library header files will cause prob-
lems. The static objects’ names must be ex-
ported, so that only one becomes live in the

/I Helper we do not wish to expose
/I Do not export
class Helper
{
public:
Helper () {.....}
virtual int Frob () throw ();
k
} /I namespace Internal

/I Export type info _ZTIN3NMS5ErrorE
/I Export type string _ZTSN3NMS5ErrorE
class Error
/I Import std::exception typeinfo
public std::exception

friend class Widget;
/I Do not export, library creates
Error () throw () {}
public:
/I Do not export, it is inline
virtual ~Error () throw () {};
/I Do not export, called virtually
virtual char const *what () const
throw ();
h

/I Export Widget if it is inheritable
class Widget
/I Export direct & indirect bases,
/I if Widget is inheritable.
Internal::Helper
{

private:
/I Do not export, library creates
Widget () throw ();
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public:
/I Do not export, called virtually
virtual ~Widget () throw ();

public:
/I Do no export, called virtually
virtual int Action () throw (Error);

public:
/I Export, user can call
/I _ZN3NMS6Widget3NewEv
static Widget *New ()
throw (std::bad_alloc);

h
} /I namespace NMS

Because the only way of constructing a
‘NMS::Widget ’objectis by calling NMS::
Widget::New ', users of the library will
always have to use the virtual call mech-
anism to call NMS::Widget::~Widget ’
and NMS::Widget::Action ', so those
two functions do not need to be exported.
Both NMS::Error 's type information and
type string need exporting so that user pro-
grams can successfully catch such an object.

1.2 Library Compatibility

Linking C++ objects from different compilers
involves more than just the C++ ABI. If the
programs use the standard library, then the li-
brary versions must be compatible too. The
multi-vendor ABI does not specify the binary
compatibility of the library, as that would be
too constraining on implementations. The ABI
specifies a small runtime support library, nec-
essary to implement the core C++ language.
G++ provides that as a separately selectable
libsupc++ . The full library is also provided
automatically adibstdc++ . The G++ 3.0
implementation is a complete redesign of the
library. The new library is more standard con-
formant, and this has lead to some issues with
user code,

e The ‘std’ namespace must now
be explicitly noted. For example,
‘vector<int> foo; ' does not

compile. Vvector ’, along with every-
thing else, is in the std * namespace.
Previously, G++ also found it in the
global namespace, so programs compiled
whether Vector<T> ' or ‘std:
vector<T> ' was used. Another com-
mon instance of this problem is using
plain ‘cout « "Hello World" «

endl; ' The solution is to recognize
the failure mode and insertstd::
appropriately.

IO is slower. According to the C++
standard, by default, the standard C++
streams, std::cin  ’, ‘std::cout
and ‘std::cerr ', have to be synchro-
nized with the standard C file streams,
‘stdin ', ‘stdout ' and ‘stderr °’, so
that use of corresponding pairs of streams
can be intermixed. A clever trick al-
lowed the previous C++ library to over-
lay its stream classes on the underly-
ing C library's file structure,but only
for one specific C library. With the
change in the G++ ABI, and better
standard conformance, that trick became
impractical to maintain. The stan-
dard allows users to explicitly decou-
ple the C and C++ file 10 operations
by calling, ‘std::ios::sync_with_

stdio (false) " before any IO has
happened on the standard streams.

Another issue with std::cin and
‘std::cout ' is that they are synchro-
nized with each other. C++ requires that,
by default, intermixed input and output
will display in the correct order. This
synchronization can be removed by call-
ing ‘std::cin.tie (0) ’. C does not
have such fine grained synchronization on
‘stdin ' and ‘stdout ', these are nor-
mally only synchronized at newline char-
acters.

C++ 10 is more expressive than that pro-
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vided in C, and because the C++ library isto specify which set of known ABI fixes to in-
implemented on top of the C library, C++ clude. The current default version is 1. When-
IO will never be faster than C 10. Work is ever an ABI bug is discovered, code for both
ongoing in improving 10 performance.  options is added to the compiler, and the warn-
_ ing code is backported to the previous stable
* lterators do not have pointer types. SOM&elease branch, for a subsequent minor release.
code presumes that iterators are implepg course, because time machines are nonexis-
mented as pointer types, and contain codggny, it is not possible to backport it to the pre-
such as &mylterator ", expecting 10 yioysly released version. All known ABI fixes
geta T ** . Because the previous li- can pe selected withfabi-version=0
brary implemented them as such, thalypich fixes that includes depends on the ver-
code ‘worked’, even though that imple- gjon of G++, so using this value implies that the
mentation is neither required nor guaran-game version of G++ must be used to compile
teed by the standard. Now iterators arey| the object files and libraries of a program.
implemented as templated classes, whicyhen a sufficiently stable set of fixes has
gives better type safety, but breaks sucheen implemented, another ABI version num-
erroneous code. Code which assumeggr il be added, anefabi-version=2
the underlying representation of an iter-| pe selectable. It is likely that G++ 3.4 will
ator can be forced to work simply by implement such an ABI version number, but it

&mylterator , as the* operator will s yndecided whether that will be made the de-
provide a reference to the iterated objectsay|t value. Version 0 will still be selectable,
whose address can be taken. to obtain all the subsequent fixes added after

version 2 has been stabilized.

2 Whatisin G++ 3.3 G++'s implementation of the standard template
library has not yet stabilized. Because the li-

The multi-vendor ABI is very complicated and brary €XPOses mugh_ of its |mpl_er_nentat|on_ n
header files containing class, inline function

its fi ++ ion i ++ L o -
Its first G++implementation in G++ 3.0 turned and template definitions, it is very difficult to

out to have some bugs. Several of the defectﬁn rove the librarv without changina some-
were discovered in time for G++ 3.2. More is- P y ging

sues have been discovered since then, by test{]mg that effects binary compatibility. There

o : ) . are no planned library ABI changes between
ing interoperation with other compilers and bythe 3.2 and 3.3 releases. However. the 3.4 re-
using CodeSourcery’s testsuite. It is very in- ' ' ' ’ '

. lease will not be binary compatible, and the
convenient to change the ABI, as that means . . :

: . . . Shared object version number has been incre-
that all object files and libraries need to be re-

. . : mented. Because it is provided as a shared
compiled with the new compiler. Some ABI .. .
: . : library, and the version number has changed,
bugs merely effect inter-operation with other

. . . users will get a link error, rather than myste-
compilers, and are unimportant to a signif-

icant user base. Rather than force an ABI\r/Ig;JSSiOrrlljsntlme failures, if they attempt to mix

change on all users, G++ implements two flags

to warn about ABI discrepancies and to selecOne of the more significant changes in G++ 3.3
ABI version. The-Wabi flag warns when is the removal of the implicit typename exten-
G++ is emitting code or data that is known tosion. The extension was deprecated in G++
be at variance with the multi-vendor ABI. The 3.2, and elicited a warning at every use. In
-fabi-version=<n> flag allows the user a template class, hames from dependent bases
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are not visible when the template is defined—provided by the caller, such functions would
they are only looked up at instantiation time.invoke a copy constructor just before returning.
G++ had an extension that made names visiThe idea of the named return value extension
ble before instantiation, so G++ knew whichwas to allow the programmer to use that area
were types and which were not. The standardlirectly and avoid the copy. This extension did
requires that those that name a type be referregot work with template functions, and has been
to using theypename keyword and qualified removed. In its place is the return value opti-
name. mization, which notices when a function is re-
turning a temporary by value, and will directly
construct the temporary in the return area.

template <typename T>
class Base

typedef int Type;

y typedef int Other; 2.2 Exception Specifications

typedef unsigned Other;

template <typename T>

class Derived :  public Base<T> G++ 3.2 had poorer inlining performance than

;ype ac;]I //dlmplifcit typename use. desired. It would not make sensible choices
Standard conforming way. - C e .

typename Base<T>:Type b: about what to inline, and _the _|nI|n|ng process
_Other c; // Which Other? could lead to long compile times and large

g compiler memory size. This has been fixed

by taking advantage offirow () ’exception

The implicit typename extension became specifications. If none of the functions called
impossible to keep when updating G++'sby a particular function can throw exceptions,
parser to be more conformant. The extensiofihe inliner can do a better job.

is also problematic in itself. In the example,

when instantiatingDerived * for some par-  Exceptions specifications can also be used to
ticular type U, * Base<U>' might have a spe- reduce the size of a program. In the following
cialization for which Base<U>:Type 'is  program, CLASS] CLASS2 FOOand BAZ
notanint , or even a type. Another confusion can be defined to be empty, ahtow () .

is shown in the example by the use Gfther *  The code and exception data sizes for various
in ‘Derived . If the implicit typename exten- combinations using G++ 3.2 for i686-pc-linux-
sion is in operation, it will be Base<T>:: gnu producing optimized code is shown in Ta-
Other ’, whereas without it, it should find ple 1. The ‘Check’ column indicates whether

‘:Other . Having a program’s meaning the-fno-enforce-eh-specs option was
change between two valid interpretations byysed.

changing a command line flagpedantic ),
is really bad—better to remove the extension.

{
Previously G++ had a named return value ex- int m;
tension to help functions that returned a class Classl () CLASSI;
by value. Because returning a class value re- ~Classl () CLASSI;

quires a copy of the return value into the area  };
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Exception specification
CLASS1 CLASS2 FOO BAR Check Code Data Total Overhead
throw () throw () throw () Either Either 63 0 63 -
throw () throw () None Either No 83 92 175 178%
None None throw () Either No 95 88 183 190%
None None None None Either 103 104 207 226%
None None None throw () Yes 137 113 250 296%

Table 1: Exception Overhead Example

struct Class2 about 30,000 lines of code each were exam-
{ ined. One was a low level utility library, and
int m; the other a higher level 3D toolkit. Both li-
Class2 () CLASS2; braries have been written with exception speci-
~Class2 () CLASSZ2; fications on every function, most of which were
k no-throw, but many were allocation failure ex-
void Foo () FOO; ceptions. Each library was compiled in three

different ways:
void Baz () BAZ

{
Class1 cl; « With exception specifications, but with
Class2 c2; -fno-enforce-eh-specs enabled
Foo (); to remove the exception checking code.
}

» With exception specifications and with ex-

ception checking enabled.
The worst case is a factor of 4 in program size,
however the more common case is probably < With throw defined as a varadic

the penultimate line of the table where none ‘throw(...) ' macro, so that the ex-
of the functions have an exception specifica-  ception specifications were removed.
tion. The-fno-enforce-eh-specs op- With  no exception specifications,
tion tells G++ not to add code to a function checking exception specifications
to check that it is throwing only the excep- would have no effect on code size,
tions listed in its exception specification. A so -fno-enforce-eh-specs would
correct program will only throw such excep- make no difference.

tions, so such checking code is behaving as

assert macros. However it is notoriously '
difficult to exercise exceptional paths in pro- Table 2 shows that the overhead is between

gram flow. The author has used a custom allo11% and 18%. The code size of a checked

cation library to rigorously test allocation fail- €xception specified library is larger than that

ures in a command line app”cation, to good ef_Of the Iibrary without exception SpeCificationS,
fect. because of the number of non-empty exception

specifications. G++ is not clever enough to no-
Such a small example might be skewed to givedice whether functions that have a non-empty
large overheads—it has no real code in it, angkxception specification only call functions that
nothing can be inlined. Two C++ libraries of can throw the listed exception types—it still
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Exceptions Utility Library 3D Library
Specs Checked Code Data| Total | Overhead] Code Data| Total | Overhead
Yes No 147871 23037 170908 - | 219124 49422 268546 -
Yes Yes 158000 35070 193070 13% | 238691 77538 316229 18%
No Either 150760 39685 190445 11% | 224646 83306/ 307952 15%

Table 2: Library Exception Overhead

emits code to verify. A suitable optimiza- 289,281 bytes on the author’s gnu-linux sys-

tion will be able to remove that extra checkingtem. Both C and C++ sources gave the same

code. The same is not true of the extra codeize. The size is a glibc [8] issue, not a GCC

added when there are no exception specificggroblem. Glibc is not designed to be used as

tions. That code has been added to destroy laa static library, and embedded systems should

cal variables that will go out of scope, shoulduse an alternative library.

an exception be thrown. The compiler can-

not determine only from a function declaration

with no exception specification that the func-3 \What Will be in G++ 3.4

tion will not actually throw an exception, so it

must presume the worst and emit appropriate

destruction code. G++ 3.4 will feature a much better parser,

which correctly deals with more ambiguous

parsing situations than G++ 3.3 does. C++ has

whether it calls a function that could throw, an amblguous grammar where a construct.can
look like both a declaration and an expression,

r contains athrow expression. If it can- . . : o

or contains a OW ~ expressio tea it is not until deep within the statement that the

not throw, G++ will optimize appropriately. In . o .
arser can tell which one it is. The previous

the small example above, such analysis could . .
; e ison [6] based parser could not deal with sev-
only be done onBaz’, and the specification

. eral cases that were reasonably common. Bi-
checking code can be deleted as unreachablé y

) . . son parsers deal with LALR(1) [7] grammars,
if all the other functions have afirow () . but Cp:++ is not such a gran(wr)]a[lr.] gThe Bison

exception specification. Both 3.2 and 3.3 will based parser has some C++ specific hacks to
remove this unreachable code, but 3.3's com- P P

S . : deal with some of the ambiguities. The new
pile time performance will be better, as it no-

: L : Jarser iIs a handwritten recursive descent de-
tices much earlier in the translation process .

that the checking code is unreachable. G+ S9N, with arbitrary back tracking. Here is an

. . example, where as G++ 3.3 fails on every line
cannot currently tell whether an exception will ~ , :
. . . of ‘Foo’, G++ 3.4 will parse them all.
be caught inside the function, so appropri-

When the body of a function is visible, G++
can determine if it does not throw by noting

ate throw (...) ' exception specifications

should be added to function declarations and struct A
function definitions that containtry ... {

catch ’clauses. A (int = 0);

One final note about code size. A static

image of ‘Hello world" is surprisingly large. 2This section describes the development version of

For instance, the progranint main () G++ as at 28th April 2003. When 3.4 is released, it
{return 0;} ' has a static code size of might differ from what is described here.
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struct C /I Right Thing
{ void Flangicate ()
C ,(A’ A : A 0)’ /I Deferred to instantiation.
void oneFish () const; int ix = this->count:
3 }
A Foo (int thingl, int thing2) b
{
C redFish (A (), A (1)); e~ . ,
C blueFish (A (thingl), thing2): As perlvgd..EIanglfy shows, the'
C (A (2)).oneFish (): compiler will give an error at template defi-
return (A ()); nition time, if a non-dependent name is not
} found. Unfortunately, it could bind to an un-
intended object, which happens farount .
Having a better parser is good, but it is also Derived::Flangicate ' shows the cor-

more picky about name lookup in template def-rect way of forcing name lookup of members
initions. Names can be looked up during tem-to be deferred until instantiation time. The id-
plate definition and during template instantia-iom has the advantage of making explicit to

tion. Depending on context, a name might bethe programmer that the name refers to a mem-
looked up only during definition, or only dur- ber. That members in dependent bases are not

ing instantiation, or both. This is called two- searched for, unless preceded llyis->
stage name lookup. C++ programs developedf Very surprising to programmers unfamiliar
only with G++ are more than likely to have with the rule. The intent is to allow more
template name lookup problems—switching tochecking and precompilation of template def-
the new parser will produce compilation errors.initions, before instantiation, and only defer
There are two cases of interest, one involving® instantiation time those lookups that are
dependent bases and the other to do with argilemonstrably dependent on a template param-
ment dependent lookup (Koenig lookup). eter.

The dependent base problem is similar to thé'he other place effected by name lookup is
implicit typename issue that was removed inin function calling and argument dependent

G++ 3.3. Here is an example, name lookup. When a function is called us-
ing unqualified name lookup (something like
‘foo (arg) ', but it also happens on over-
template<typename T> . . .
struct Base loaded operators), the function is looked up in
t the current scope as normal and in the classes
int count;
int total: and namespaces of the arguments’ types. If the
Y arguments’ types are template dependent, that

int count;

part of the lookup is deferred until instantiation
time. The non-dependent part of the lookup is

template<typename T>
class Derived : public Base<T>

{ done at definition time, and not repeated at in-
/I Wrong Thing stantiation time. Here is an example,
void Flangify ()
{
/I 3.3 defers both to instantiation
/I time and finds those in Base<T>.
/I Should bind to ::count. namespace NMS {
int ix = count; class MyClass {};
/I Error, should not be found. VOid FOO (MyCIass)'

int jx = total;

} } /I namespace NMS
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void Foo (int); template <typename T>
struct Wump
template <typename T> {
void Bar (T thing) int zed;
{ h
Foo (1); /I #1 struct Gump
Foo (thing); /I #2 {
} int zed;
3
template <typename T>
The first call, Foo (1) ', will find ?””Ct Sneetch : Wump<T>, Gump
‘:Foo (int) ' at Qefinition t_img. The Sneetch ()
second call, Foo (thing) ', will find the {
global ‘Foo’ at definition time, but it will also /I Both 3.3 and 3.4 find an
find ‘NMS::Foo (MyClass) ' during the /I"ambiguity at instantiation.

/I Should bind to Gump::zed.

instantiation of Bar<NMS:MyClass> . zed = 5

The two declarations of Foo’ are added

to the overload set, upon which overload |5
resolution is performed. Overload resolution
could be done at definition time for the first

call, as that does not contain any template .
dependent expressions. At the current timeBecause G++ still does not do the correct two-

the development version of G++ still defersStage lookup for function call, some cases of
lookup for function calls until instantiation the first described name lookup issue can still

time, and therefore does not have the corred€Main undetected. When the intent is to call
two-stage lookup behavior here. a member function of a dependent base, the
name lookup is incorrectly deferred until in-

Another impact of this, is that G++ will not Stantiation time.  Even if the function pa-
mangle some templated names correctly. |fameters are template dependent, a non-friend
some cases the mangling depends on knownember from a dependent base should not be
ing what is a dependent expression and whad@und—only those names found by argument
is not. Without that knowledge, although thede_pen_dent lookup should be added at instanti-
manglings are unique, they do not adhere t&ton time.

that specified by the ABI.

where a name refers ambiguously to a mem-  struct Base
ber of a dependent base and of a non-dependent {

base. At definition time the dependent base void Dleﬂa”ge O
will be ignored and the name found unambigu- ) void Flange ()
ously in the non-dependent base. The ambi-

guity should notbe discovered at instantiation void Deflange ();

time, as the lookup is not r_ep_eate_d. G++ vv_|II template<typename T>
repeat the lookup at instantiation time and dis-  ¢jass Derived : public Base<T>
cover an ambiguity. {
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/I Wrong Thing * Library Working Group. This group deals
void Flangify () with issues in the libraries (clauses 17 to
{ 27). The library defect reports are avail-

/I 3.4 binds both of these to

/I members of Base<T> able [11].
/I Should bind to ::Deflange. . . .
Deflange (): » Evolution Working Group. This group
/I Error, should not be found. deals with extensions and other changes
Flange (); to the language and library. The group
} _ _ is currently considering what significant
/I Right Thing changes should be made for the next
}’O'd Flangicate () version of the standard, code named
/I Deferred to instantiation. ‘C++0X.
this->Deflange ();
}
3 The output of the core and library working

groups are lists of defect resolutions. A re-

To get two stage lookup correct requires bettePort may be deemed to be not a defect (the
tracking of the symbol table so that, at instanti-standard requires no change). Alternatively the
ation time, it is known what declarations arestandard may require clarification, or require

visible at both the definition context and thechange. The wording of the changes is dis-

instantiation context. Whether this work will cussed and goes through a process of drafting
be completed by the time 3.4 is released is ununtil itis ready to be accepted.

known. . o
G++ aims to track the standard with its col-

_ lection of defect reports. We do not make a
4 Tracking the Standard distinction between the 1998 standard and the
standard plus defect reports. Active partici-

The C++ standard is an evolving documentPation in the C++ standards meetings allows
Since the 1998 C++ standard was released, val?® G*+ maintainers to both know how defects
ious changes have been made. A Technicdl® likely to be resolved, and to influence that
Corrigendum 1 (TC1) is in the process of beingProcess. When C++0X is released, G++ will
released. That bundles all of the accumulate@'Pably have a command line switch to select

changes into single document. Issues can b\é{_hich version of C++ is to be accepted (just as
raised by anyone, and are collated via an emaﬁelther C89 and C99 can be selected between in

list. Every six months, a global meeting of the GCC)-
ANSI J16 and ISO WG21 [9] committees takeSMany people have suggested extensions that

place. These meetings are opento all interesteg++ should accept. Often these proposals
parties, and membership of J16 is not required

e : : are of the form ‘It would be neat if | could
Affiliation does effect voting rights. There are

h b thin th " write ...’, rather than a complete specifica-
ree subgroups within those meetings, tion. Such vague descriptions can prove prob-

lematical with a language as complicated as
» Core Working Group. This group deals C++—all the implications of an extension are
with issues in the core language (that docnot apparent, even after some thought. Without
umented in clauses 2 to 16). The core decare, extensions can either silently change the
fect reports are available [10]. meaning of a C++ program, or fail in obscure
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ways under some circumstances. Several GCBecause C++ extensions can have so many un-
extensions have caused such problems wheseen consequences, the G++ maintainers re-
ported to G++. Some of note are, quire a very strong argument and implementa-
tion in favor of an extension, before accepting
it. Incompletely documented extensions lead
« It used to be possible for PRETTY_ to problems in maintaining G++ [12].
FUNCTION__ to participate in string
concatenation. Unfortunately this does
not fit well with templates, where the ex-
pansion of PRETTY_FUNCTION__
depends on the instantiation, muchC++ support in the 3.x versions of G++ has
later than string concatenation occurs.improved considerably over that in the previ-
GCC has been changed throughout, s@us 2.x versions. Improving C++ conformance
that _ FUNCTION_, _ PRETTY_ is not without pain to users who have un-
FUNCTION__ and the C99 defined knowingly been writing ill-formed C++. G++
__function__ all behave the same aims to smooth the transition by deprecating
way as constant arrays of characters. inappropriate features and giving a warning in
one version and then removing the feature in
 Variable length arrays have a type whichthe next version. When a new error message
is not fixed at compile time. This causesis added, because of better standard confor-
a problem withtypeid , because there is mance, explanatory text might be added to help
no fixedstd::type_info object that the user correct their code.

can be returnedypeid was changed to _ .
return the type info for the array member Various improvements and ways that user pro-

type. Also template deduction suffers, be-grams can effect the quality and speed of com-
cause the type has a size that is not fixedPilation have been described. Library writers
Template deduction will not deduce vari- &€ particularly inhibited by the lack of a mod-
able length arrays by reference. They cartle system, and workarounds are shown so that
still be deduced as pointer types via theliorary link time can be reduced.

normal array to pointer decay rule.

5 Closing Remarks

There are still new optimization opportunities
in G++, for instan multiple entr int
* GCC allows empty structures as a C ex- G » T0F Instance a muttipie entry po
: . : mechanism for thunks, so that multiple inher-
tension, and gives them a size of zero. : )
. itance is even cheaper in both speed and code

++ - ; ;
C.: allows 'em.pty. structures, but speci size. Better exception tracking can be added to
fies that their size is not zero. They have

2 NON-Ero size 1o : . {emove unnecessary runtime checks.
- preserve the invarian
that no two objects of the same type have
the same address. GCC does not keep thiReferences
invariant for such empty types. Structures
that contain empty members will be laid 1] programming Languages—C-++,
out differently in C and C++. ISO/IEC 14882:1998.

 The implicit typename extension de- [2] Itanium C++ ABI, http://www.
scribed above has now removed from codesourcery.com/cxx-abi/
G++. abi.html
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Abstract The stack smashingariety of buffer overflow
[14] is its most common subtype, and the most
Since 1998, StackGuard patches to GCC havgaealdIIy treatable. A stack smash attack gains
. o control of a thread in an address space by over-
been used to protect entire distributions from " . . .
. writing control information—such as a return
stack smashing buffer overflows. Performance

overhead and software compatibility issues 00ress—on its stack.

have been minimal. In its history, the partsThe common way for the attacker to overwrite
of GCC that StackGuard has operated in havgalues stored on the stack is to usdoafer
twice changed enough to require completeyverflow where large inputs are used to cause
overhauls of the StackGuard patch. Sincenore data to be written to an area of memory
StackGuard is a mature technology, even seehan space has been allocated. StackGuard pro-
ing re-implementations in other compilers, wetects against stack smash attacks resulting from
propose that GCC adopt StackGuard as a stamuffer overflows, but also those resulting from

dard feature. This paper describes our recergnysequential write through memory.
work to bring StackGuard fully up to date with

current GCC, introduce architecture indepen-To detect corrupted control information in pro-
dence, and extend the protection of stack datéedu_fe activation records, StackGuard adds a
structures, while keeping the StackGuard patcfocation that it calls a “canary’to the stack

as small, simple, and modular as possible.  layout to hold a special guard value. Tradition-
ally, the layout of that section of the stack has

been determined by functigrologueandepi-
1 Introduction logue code generators, which are architecture
specific. As a result, StackGuanshplemen-
Despite years of punditry, source code au_tatio_ns have also been architecture specific.
dits, and many layers of proposed technolog)/o‘S time has passed, these par ts of GCC have
buffer overflows arestill the leading cause of become more abstract, requiring repeated re-

software vulnerability. This paper desCribesimplementations of StackGuard, but the ability

the motives and technical issues of incorporat:[0 modify stack layout in a platform indepen-

ing the StackGuard [6] stack smash defense a(éent way has been lacking.

a standard feature of GCC. A new version of StackGuard has been imple-
*This work supported by DARPA Contract F30602-
01-C-0172. 1Alluding to the canary Welsh miners used to detect

fnee WireX Communications, Inc. air problems before the miners could.
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mented for modern versions of GCC. It nowsignificant performance impact [%].

guardsall the information in the control re- ) . ) .
gion of all procedure activation records gener-1 1S paper describes the issues to be consid-

ated by the/gcc  back end of the GCC com- ered for_ including Stack_GuarpI as a standard
piler suite (C, C++etc). That is, the saved feature in GCC. In keeping with good modu-

registers and saved frame pointer are are nolt d€sign principles, we emphasize the consid-
protected in addition to the return address fofrations specific to the stack smash detection
every procedure. Stack layout to provide thef€chnique to keep that problem small and sepa-
canarylocation is still left to the architecture 'at€. In particular, the guarding technology can
specific function prologue and epilogue codeP® Used, with compiler support, to guard other

generators. The rest of StackGuard is now ari€9ions of memory. Its design and implemen-
chitecture independent. tation should not be unnecessarily tied to the

specific use as a Stack Smash detector, though
This new StackGuard has been successfullyhat's all that is discussed in this paper.
used in conjunction with other security hard- ) ) )
ening technologies to rebuild the Red Hat 7.3The rest of this paper is as follows. Section 2
distribution (GCC 2.96-113). The StackGuarddescribes compiler Wor_k to date on the buffer
patch has also been applied to the source focp_verflow problem. Section 3 describes the de-

GCC 3.2-7 used in the Red Hat 8 distributionSi9n Of our proposed feature for GCC. Sec-
to rebuild both the compiler and GLIBC. tion 4 describes our current implementation of

this design in GCC 3.2. Section 5 presents
In accordance with the principle of default our performance benchmarks, supporting our
deny [15] StackGuard makes a point to applyclaim that this feature is low-cost. Section 6
the guarding technology teveryprocedure in  describes our on-going security testing. Sec-
a distribution. In this fashion, StackGuard is ation 7 presents our conclusion. Section 8 de-
security optimizatiorthat transformsll emit-  scribes the availability of the StackGuard tech-
ted code to deny a class of attacks. It alsaology.
shows the soundness of the transformation by
showing that the distribution works the same
after the transformation as it did before. Pick-
ing and choosing which procedures receive the
transformation is gerformance optimization Aleph One’s paper [14] presented a cook book
that, based orassumptionsabout the nature for the “stack smashing” variety of buffer over-
of the security threat, trades some security foflows, in which the attacker overflows a stack
performance. buffer to change the return address in an acti-

_ vation record to point to malicious code con-
StackGuard strives to be the essence of th@yined in that self same overflow. In the gen-

“guard the control information” security opti- era| case, the attacker wants to inject mali-
mization that is capable of being applied to ev-cous code, and alter control flow structures so
ery procedure on a system. Given the negligithat the program will jump to the malicious
ble performance impact of the complete transtode. The stack smash is an elegant attack that
formation [5, 7], we have never seen the need
to apply any additional performance 0ptlmlza_per result from selected benchmarks (quicksort) that

tions. ) Unfortu_nately, there persists the mIS'emphasize where StackGuard imposes overhead (func-
taken impression that StackGuard produces fon calls) and ignores where Libsafe imposes overhead
(string functions).

2 Background and related work

2The performance issues shown in the Libsafe pa-
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achieves both objectives in a single stroke bystrictly local variables, and the security value

exploting a very common programming error of the feature is low.

(weak bounds checking on fixed sized stack

buffers). However, the attacker onheedsto 1€ Jones and Kelly GCC enhancement [12,
change control flow, because subvertable codt8] 1S an example of compromised perfor-

(capable of performing the moral equivalent ofMance. This GCC enhancement provides com-
“exec(sh) ” for the attacker) is often already plete array bounds checking, even for pointer

resident in the victim program’s address space/€ferences, and maintains the current size of a
pointer as a machine word. They achieve this

Since Aleph One’s paper appeared, there hathrough an associative lookup on each pointer
been a lot of work to defend against bufferreference to an array descriptor that stores the
overflows, interceding in the operating sys-base and bounds. Performance penalties are
tem [9, 8, 11, 17], system libraries [16, 1], high, approximately 10X to 30X slowdown.

and compilers [6, 12, 13, 10, 19]. These tech- _ ) _
niques variously try to prevent the modification "€ Bounded Pointers project [13] is an exam-

of control flow paths, prevent the injection of P& Of compromised compatibility. Rather than
malicious code, or both [7]. associative lookup, Bounded Pointers changes

pointers from a single word into a tuple that
Because we are proposing a GCC enhancencorporates base and bounds. This improves
ment, we consider only compiler defensesperformance by eliminating the associative
Compiler defenses can in turn be divided intolookup in Jones and Kelly, but also costs com-
array bounds checking (which prevents bufferpatibility because pointers no longer fitin a sin-
overflows, described in Section 2.1) and datayle word. Performance penalties are still high
integrity checking (which detects buffer over- at approximately 5X slowdown. It is conjec-
flows in time to prevent attacks from succeed-ured that this slowdown could be substantially
ing, described in Sections 2.2). reduced, but unlikely that the penalty would

reach the low percent range.

2.1 Bounds Checking
2.2 Integrity Checking

Array bounds checking is the ultimate way to

eliminate buffer overflows. Unfortunately, the The first integrity checking mechanism was
design and idioms of the C language makeSnarski’s libc [16] that checked the integrity of
it difficult to provide for fully secure array activation records within libc functions. Stack-
bounds checking while preserving reasonablé&uard [6] generalized this notion with a com-
legacy compatibility and reasonable perfor-piler enhancement to check the integrityadif
mance. activation records. These methods ornament

) activation records as they are built with data
The Compaq C compiler for Tru64 UNIX [3] giryctures that cannot survive stack smashing

is an example of incomplete protection. Thegeacks, so that when the function tries to re-
compiler has an option to perform boundsy, it can detect that the activation record
checking, but it only does so axplicitarray  pag peen corrupted. Upon detection, the pro-
references; pointer references are not checked;am issues an intrusion attempt alert and exits,

Since all arrays passed as function argumentg;er than handing control to the attacker.
are converted to pointers, this means that ar-

ray bounds checking is effectively limited to There have been three major releases of Stack-
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Guard. StackGuard 1 was a patch to GCC
2.72, hooking directly into thprologue and
epilogue code generation functions to emit
StackGuard canary generation and verification
code into function set up and tear down. Stack-
Guard 2 was a complete re-write, providing an
enhancement to GCC 2.92, this time imple-
mented as modified RTL generation for func-
tion setup and tear down. StackGuard 3, pre-
sented here, is another complete re-write to ac-
comodate GCC 2.95 and newer.

There are two significant reimplementations of
StackGuard: Propolice and Visual C++.net.

OpenBSD’s Propolice implements something
very much like the StackGuard defense as an
enhancement to GCC, and provides a impor-
tant and very interesting contrast with its dif-
ferences:

other data types—to make it difficult to
overflow into adjacentvariables. Stack-
Guard makes no assumptions about the
starting point of runaway sequential over-
writes of the stack, leaving security op-
timized stack layouts to separate mecha-
nisms, such as Propolice.

Propolice appears to move significantly

towards a universal, architecture indepen-
dent, stack layout. It even goes as far as to
move saved registers into the autovariable
region. StackGuard goes to great pains to
try to leave the stack layout as close to the
way it was as possible.

Propolice modifies far older versions of
GCC than StackGuard.

Propolice’s design decisions present different

trade-offs than StackGuard:

» To a large extent, Propolice and Stack-
Guard have independently converged,
from opposite directions, on doing the
guarding code inserts at the RTL level.
But they haven’t quite met in the middle—
Propolice does the inserts at a much ear-
lier pass in the compiler.

* Propolice places the canary word, as
a buffer overflowdetector, only at the
top of auto variable regions containing
“pbuffers”.* StackGuard places the canary
word, as astack smashetector, at the bot-
tom of everycontrol region.

* Propolice uses random canaries. Stack-
Guard uses terminator canaries.

* Propolice provides variable sorting—
moving somecharacter arrays above all

3Propolice started at the AST level, while Stack-
Guard started at the architecture specific function pro-
logue and epilogue backend level.

* By doing the code inserts well before

sibling and tail recursion is recognized,

Propolice has no way to insert canary

checks before the function exits points

produced by the external branches. Stack-
Guard makes a point of doing these inser-
tions also.

By depending on theoincidental adja-
cency of the autovariable region and the
control region on the stack, Propolice
gives the appearance of guarding the con-
trol region from buffer overflows that it
detects leaving the autovariable region.
But thisimplicit invariant isn’t maintained
across compositions with other security
and performance oriented transformations
that affect stack layout.

The apparent strengths and weaknesses of
both terminator and random canaries are
discussed in Section 3.1.

4Currently, this appears to be defined as character ar- 5OpenBSD’s GCC 2.95.3 20010195. Redhat 7.3's

rays of greater than 4.

GCC 2.96-113 and Redhat 8.0's GCC 3.2.2-2.
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* Nothing requires string writes to start in implementation details are naturally closed
a char buffer. When an exploit finds suchsource, but the emitted code strongly resembles
an opportunity, Propolice will stop it only StackGuard code. The comparison is gone into
if it's lucky. StackGuard will stop it by more detail at various points in later sections.
its design thaall stack smashes should be

detected. Section 3 presents the StackGuard 3 design in

more detail.
» Propolice’s buffer overflow detector be-
comes quite different than StackGuard's .
stack smash detector when alternate stacR  D€sIgn
layouts, involving multiple stacks, stacks

growing upward, heap allocated stacks;the purpose of StackGuard is to do integrity
etc. are considered. Both are useful: checking on activation records, with sufficient
Propolice detects buffer overflows that yrecision and timeliness that a program will

aren’t stack smashes, and StackGuard d&;ever dereference corrupted control informa-
tects stack smashes that aren’t buffer overgign in an activation record, which is written

flows. to once on entry to a function, and read from

* By moving saved registers into the auto-2Nce on exit from a function.

variable region, Propolice appears 10 asThethreatis that the attacker has the capability
sume that saved registers have the samg gverwrite control information in some frame
dynamic scope rules as autovariablesgn the stack via a sequential write operation—
where it would be correct to restore SaVedstarting from somewhere lower in memory
registers, but not correct, in general, (Othan thetarget This permits the attacker to hi-
deallocate autovariablés. jack the thread to execute code of the attacker’s
choice. The desired code might be new code
could disrupt other tools that do stack in-SUpplleOI by this particular s_eque_ntlgl write into
trospection, such as GDB and JIT-style 4the stack, another sequential write into stack
JVM's. StackGuard goes to pains to be‘non-stackmemory, or else che that is already
oL in the address space that will do what the at-
invisible to such tools. L :
tacker needs when branched to in this fashion.

* Propolice’s changing of the stack layout

* It's unknown how well Propolice ports
to current versions of GCC. StackGuard
strives to be its part of that work, done
completely and correctly.

We will assume that the attacker does not need
to inject code, but can use executable code al-
ready in the address space. This is a growing
technique in practice, and permits us to focus
on the most important part of the attack: over-
Microsoft has also implemented [4] a featurewriting control information, particularly point-
very similar to StackGuard which they call ers to code, such as return addresses.

the “/gs” feature in Visual C++.net. Compiler
- _ The attack works if it can rewrite the control in-
Some really clever tricks would be needed t0 sup-formation between the time it was written with
port tail recursion from functions with autovariables, and . .
people have been known to build compilers that do that.correCt values to_be _Saved a_‘nd the time it was
“As has happened with previous (but not current) verlater read assuming it contained correct values

sions of StackGuard. of things to be restored.
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» terminator canaries detect runaway

- g 3' strings, but is a known value.
S
o . . .
& ag2 unprotected region » random canaries detect all sequential
X . .
§ agl memory writes that don’t know its secret
¢ return address value.
saved frame pointer . )
protected region « random XOR canaries are random ca-
saved registers naries that might also detect random-
access memory writes into the protected
CANARY detector .
¢ — region.
E
S Terminator canaries leverage the observation
2 target of overflow here there be that moststackbuffer overflows involve string
% monsters operations, and not the memory copy opera-

tions almost always applied instead to heap al-

located objects, by using a value composed of
‘ four different string terminators (CR, LF, Null,
and -1). The attacker can’t write the termina-
tor character sequence for the particular string
operation being used to memory and then con-
tinue writing, because one or more of the ter-
Thedefensas to insert acanary locationim-  minator characters halt the string operation.
mediately before the control information in . .
each frame on the stack. See Figure 1. An}}f the explorf gets to overyvnte the canary more
sequential write through memory, such as b)}han_ once, |t_ can overwrl.te the _protected con-
a buffer overflow, that tries to rewrite the con- trol information on the first write, and then
trol information will be forced to also rewrite "€Construct the canary value with consecutive
the canary location. Then the remaining prob_writes. Itjsj _not known how rare multiple write
lem is to make the value of the canary someYulnerabilities are.
Fhi.n.g'th‘at’s hard to §poof. The canary location Any memory copy will be able to write the ter-
isinitialized immediately after the control val-

‘ , minator canary value.
ues are saved, amtheckedimmediately before y
the control values are restored. Random canariesassume that the exploit can
o . sequentially write any value it wants and kee
The control region is protected by virtue of the q 4 4 P

tact that th i< checked bef h S%oing. So it forces the exploit to know a 32-
act that the canary IS checked Detore €ach Uy secret random number thats retrieved from
of the protected information. The argument

. Sa global variable that'’s initialized to a differ-
sitting above that are used sooner than that, SOnt value each time the program is executed

aren't protected.

| " topof sk

Figure 1: i386 Stack Layout

Memory protection techniques can be used to
protect the global from writing, such as isolat-
ing the global on its own page and bracketing
it with “red” (unmapped) pages. The exploit
There are three kinds of canaries, each with anight also be able to get the victim program to
different strength and weakness: tell it what the current random canary value is,

3.1 Types of Canaries
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having it read from either the stack or from therithm with the return address, but positioned
global. the canary to also protect (without the “encryp-

_ tion”) the saved frame pointer.
If the attacker can also deploy an exploit that

can read the random canary value from any- _
place it might also reside in memory, then bothd  Implementation
string and memory copies can easily overwrite

the correct value (unless it contains the approtg first thing a function does on entry is to
priate string termination characters, and thu%ave the caller's control information on the

less entropy). stack. The region of memory used for this must

Random XOR canariesassume that the ex- P€ Protected by a canary location, which is ini-
tialized with the desired canary value.

ploit might be able to random-access write to

the location of some of the protected Infor-tpg |55t thing a function does on exit is to re-
mation [2]. So in addition to employing the g1 the caller's control information from the
random canary defense, some or all OI th&egion of memory set aside for that. But, be-
saved c:gnt_rol information is exclusive-or “en- o e that restoration can take place, the canary
crypted™ with the random canary value, stor- 5,6 muyst be checked to see if it has changed.
ing the result in the canary location. Then to¢ it has, the stack has been corrupted, and the

change the protected control information the,,cess s killed after a suitable Intrusion Re-
attacker needs to deploy an exploit that sets thgponse System has been notified.

canary location to the exclusive-or of the ran-
dom canary value and the new values of theThe code generators are:
control values used in the full “encryption.”

Random XOR canaries have the same weak- * détermine canary location—decide on
ness as random canaries above. where the canary location is going to be
on the stack and how the below operations

3.2 Examples of Canaries are going to refer to it.

allocate canary location—make space

All versions of StackGuard have provided ter- for the canary in the stack layout in a
minator canaries. We know of no alternate im- memory location close to and preceed-
plementations that provide this type of canary.  ing the region containing the saved control

. values to be protected.
All versions of StackGuard up to, but exclud- P

ing the latest version, provide random canaries. « inijtialize canary—give the canary loca-

Propolice provides random canaries. tion its correct value before any operation
happens that could rewrite it or its pro-

Only the mid-1999 version of StackGuard pro- .
tected region of memaory.

vided random XOR canaries, protecting only
the region containing the return address. When « check canary location—check that the
we checked in early 2003, Visual C++.net's  canary location contains its correct value,

/gs option performed exactly the same algo-  after any operation happens that could

8Some people are uncomfortable with the use of the rewrite it or its protected region, but be-

word “encryption” to protect integrity instead of confi- fore the saved control information it pro-
dentiality, hence the scare quotes. tects is restored with corrupted values. If
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the check fails, invoke the fail stop opera-the function prologue adds code to the begin-
tion below. ning and invokes thallocate canary location

_ code generator, and the function epilogue adds
» deallocate canary locatior—remove the e to all the exit points and invokes tte-

space made for the canary on the stackyigcate canary locationcode generator.
by the allocate canary location operation

above. In this paper, we try to keep a clear distinction
_ between “code generators” and “operations.”
* perform fail stop—send the mangled code generators might be invoked in an arbi-

namé, the type of canary, the correct trary order to emit operations that appear in a
value of the canary, and the corrupted neWyesired order in the object code.
value of the canary to a security fault han-

dler. In an earlier section, we were critical of Propo-
lice’s design In the remainder of this section,

The traditional way to implement StackGuarddeSp'te that it really does successfully recom-

has been to modify the function prologue anop”e practically all of the Redhat 7.3 distribu-

epilogue code generators, which are respons ion for a production quality distribution, we

ble for causing the machine instructions to be'® C”t'c"?ll of Stackguardi_mplementatlorior
emitted that save the caller’s frame pointer althe remainder of this section.
the beginning of the frame (if frame pointers
are enabled), saving registers, establishing th
position independent code pointer if it is en-
abled, and possibly aligning the stack pointerhe determine canary location code gener-
to some boundarif ator is architecturespecifi¢ since it needs to

know how the stack is laid out.
We've decided on terminator canaries on the

basis of the observation that nearly athck Both theinitialize canary location andcheck
: . . canary location code generators need the ar-
overflows are via string operations.

chitecture specific RTX for referring to the lo-

.__cation of the canary. But both are invoked be-
It should be noted that the order of the applicafgre the architectu?le specifmlocate canary

tion of the code generators is different than theocation anddeallocate canary locationcode
order that the emitted code appears in the gergenerators are. It turned out that the i386 back-

erated function. In particular, first, the body €nd placed alignment paddingaddingl )
of the function is converted to RTL. Then arlght where the soft frame pointer points:
number of optimizations take place, until the

sibling and tail recursion optimization makes rix canary_loc

its decisions available. Then tlitialize ca- = ge?—rtX—MEMt (S"tno_de'

nary location operation is added to the begin- rame_pointer_rtx):

ning, and thecheck canary locationopera-

tion is added to all the exit points. Then some&nd that was a nice location for the canary.
more RTL optimizations are performed until

6.1 Determine Canary Location

Marking the location volatile:

9The variable containing the unmangled name isn’t

always initialized at the time it is needed. MEM_VOLATILE_P (canary_loc) = 1;
10The author believes his IA-32 bias here merely adds

concreteness to his examples, and doesn't build in bad

assumptions. was required for thenitialize canary location
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code generator to keep its RTL from floatingwhere the canary value happens to be a sim-

past things that could corrupt the canary. ple expr_essioH not requiring evaluation as an
expression:

But, it broke the GCSE pass of the optimizer
for thecheck canary locationcode generator, static const int
apparently due to the way the infinite loop in terminator_canary_host_value

the perform fail stop was constructed, and it = 0x000aff0d;
appears not to be required to keep the RTL suf-
ficiently pinned down. if it wasn’t such a simple expression, then you

would need to worry more about its tempo-

raries being spilled to the stagkhere they can
4.2 Allocate Canary Location be attackedRandom and random XOR canary
value expressions are largely non-simple, espe-
cially when being compiled for position inde-

The allocate canary locationcode generator
pendent code.

is architecturespecifi¢ since it runs in the ar-

chitecture specific function prologue code gen-The above RTL sequence is inserted before the
erator. first non-NOTE RTL in the current function.
As remarked in section 4.1 above, designating
canary_loc as volatile appears to be suffi-
cient to keep the it from floating past some-

compute_frame_size function does hina that Id corrunt the protected control
alignment padding between the autovariabld N9 that could corrup , € protected contro
Information, but this isn’'t very comfortable.

region and the saved control information re-

gion. The solution is to add another alignmentI ve been hoping to stumble on a good way to

to paddingl if it's not big enough to hold insert barriers in the RTL instead of depending

the padding. on volatile.

For 1386, it turns out to be very simple.
Currently, the 1386 architecture’sx86

Since the padding is allocated when the Stacl§ometimes the machine instruction generated
needs a register, and usually it doesn’t. Thus

pointer is decremented (stack grows down-

ward) to also allocate the autovariables, thethe late insertion might confuse late stages of

allocation has no performance impact at run_reglster allocation depending on information

time. from stages earlier than the insertion.

4.4 Check Canary Location
4.3 Initialize Canary Location

The check canary locationcode generator is
architecturandependentsince it just inserts a

_Thelnr:qtallie (_:agary Iodcatltg_n co<_1|te_ g?r_lerat?r conditional branch into the RTL of the current
IS architecturendependentsince ILJUSLINSers ¢, qq, immediately after the sibling and tail

?n a.ss'gnrg.e rt]t II ntoftthe :?]TL Q;I'[_he Cur:je:]t.{unc'recursion recognition optimization (see the dis-
lon immediately ater the sibliing and tail 1€~ ¢ ssjon in subsection 4.3 above):

cursion recognition optimization:

emit_cmp_and_jump_insns

1There are two different sorts of simplicity, one at the
emit_move_insn (canary_loc, source code level (see the talk on TreeSSA), and one at
GEN_INT(terminator_canary_host_value)); the RTL to ASM conversion level.
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(canary_loc, 4.5 Deallocate Canary Location
GEN_INT(terminator_canary_host_value),
/* comparison = * comparison, /* EQINE */

[* size = * 0,

p umn"s‘?gne " :j/*gls'm"de* The deallocate canary locationcode genera-

I* label = * else_label); tor is architecturespecifi¢ since it runs in the
architecture specific function prologue code
generator.

For i386, it turns out to be absolutely free. The
alignment padding where the location resides

which is appended to the end of each functioniS Stripped off at the same time as the autovari-
and inserted before each tail-call. ables.

If the expression for the canary is not simple,

then you need to make sure that it doesn’t gral$-6  Perform Fail Stop
corruptable temporaries from the same compu-

tation in theinitializer canary location code

at the beginning of the function. The perform fail stop code generator is ar-

chitecture independent since it mostly just
At the end of each function, the compari-inserts a call to an external function named

son argument is EQ, because the test is uséd canary_death_handler " using the

to branch around thperform fail stop code GCC'’s internalemit_library _call pro-

whose generation is described in the seceedure.

tion 4.6 below. Theelse_label label o
The __canary_death_handler is in-

jumped to in that case is refers to the norma -l _
function epilogue code that hasn’t been gener\_/oked with information such as the current pro-
ated yet. cedure name, the version of stackguard, the

type of canary, what the canary value was sup-
Before each tail call, the comparison argumenposed to be, and what the canary is now that it
is NE, because the branchis to ffexform fail  has been corrupted.

stop code appended to the end of the function. ) )
I's not expected that recovery is possible

Dead code removal works correctly for all of from a corrupted stack, so if the canary_
these inserts. death_handler returns control from its
o call, something is very wrong, and the only
The branch prediction of the EQ case appearg,ing reliable to do is go into an infinite loop.
to get flipped correctly to put the return on thetpe correct way to recover would be to setup a
fast-path. different stack that returns control to different

The machine instruction seems to usually nee&Ode'

a register, but sometimes not. The late ingyception handling does not work here, since
sertion of this RTL when it needs a regis-he stack is corrupt. If you like, you might con-

ter may be causing the code generation in thgjqer this to be a securifault as opposed to an
“getdents” function in GLIBC which has the exception.

attribute ((regparm(3), stdcall)) to
go awry in the GREG (global register alloca- The late insertion of theemit_library
tion) pass. call into the RTL might be causing trouble.
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4.7 Summary of problems posed to be.

. o The aspell packages for Red Hat 7.3 has a com-
Moving the RTL code generators famitial-  plex enough class system for handling “file not
ize canary locationand check canary loca-  foung” exceptions that something throws it off,
tion out of the function prologue and epiloque an it runs off the top of the stack without find-
code generators was essential for two reasonfg an exception handler, and abort()'s. This
First, the prologue and epilogue were invokedyppears to be a problem with a dwarf annota-
too late to be able to generate the desired RTLjon interaction with the old exception handler
Second, the prologue and epilogue are archin gcc 2.96-113, which would probably be
tecture specific, and architecture independencgye (or at least completely different) in cur-
is highly desired. rent GCC.

However, the movement of these two generagyception handlers should check canaries for
tors appeared to be blocked in two ways. Firstagch frame as they crawl up the stack soas not
they appeared to only work correctly aroundig yse corrupted information. We're hoping to
the time of the sibling and tail recursion opti- 544 such support to the new exception handler
mization pass. Second, this was fortuituous bey, gcc 3.x, just as soon as a distribution that

cause this was also the first point where the inye can build, strenuously test, and release uses
sert points became available for addictieck i

canary location immediately before function
exiting branches (that is, before return state- :

. 4.9 Testing
ments and tail calls).

Ideally the movement of these two genera-The assembly output of the StackGuard com-
tors should proceed to the point that AST ispiler has been inspected for correct output for
converted to RTL (which would also fix any many optimization levels, with and without

problems the call temit_library_call frame pointers, PIC and non-PIC, inlines, and
mlght be CaUSing), but that Implles that S|b|lng nested function declarations.

and tail recursion recognition also move to that
point. A parser of the disassembler output for the

StackGuarded version of the main glibc library
4.8 Debuggers, Exception Handlers, and Other libc.s0.6 was done. Every procedure was qu-
Stack Crawlers rectly StackGuarded, and several tens of tail-

call sites were observed.

Previous versions of StackGuard placed the caPrevious versions of StackGuard rebuilt Red
nary location immediately before the return ad-Hat Linux 5.1, 5.2, 6.0, 6.1, and 7.0. The cur-
dress on the stack. This was quite confusingent version of StackGuard has rebuilt Red Hat
to programs that did their own ad hoc parsing7.2 and 7.3, with a rebuild of Red Hat 8 in

of the stack, such as GDB, Mozilla’s module progress.

loading mechanism, and IBM’s Java JIT com-

piler. The getdents  function in GLIBC in the

Redhat 8 rebuild has problems. It looks like the
All of these became non-problems with the lat-late insertion of the canary check causes GREG
est version of StackGuard, which places theoptimization phase to drive something insane
canary location in a spot where nothing’s sup-enough to apparently be confused about the
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sizes of various types. The RTL for the func-7 Conclusion
tion suddenly becomes quite different starting

about h.alfway through the function after thatgisckGuard is a very modest sized patch, with
pass, with tremendous movement of temporanygdest performance and legacy compatibility
and register initializations. costs, and yet solves a very large problem:
chronic stack smashing buffer overflows. De-
spite having been first innovated in GCC [6],

Microsoft has implemented a StackGuard-like
feature [4]as a standard featurehead of GCC.

Formal performance benchmarks are cur-\c/avggmpose that it \(vog;dhbesbenlfgmaléor the
rently under way, but were not complete at user community it the StackGuard secu-

press time. Previous performance bench[ity optimization became a standard compile

marks on StackGaurd 2 [5, 7] show veryOIOtIOn in GCC.
marginal overhead on real loads, especially

those programs that actually face network at8 Availability
tack. In particular, benchmarks of Apache

loaded by webstone, and throughput benchg .
marks of OpenSSH through the loopback in_Stac:kGuard has always been distributed under

. e the GPL, and is currently available htp:
terface, show overhead that is within mea- y P

. , _ /limmunix.org/stackguard.html
surement noise: http://immunix.org/

StackGuard/performance.html . We ex-  Copyright assignment to the FSF for the Stack-
pect similar performance from StackGuard 3. Guard patches is in progress.

5 Performance Benchmarks

6 Security Benchmarks References

[1] Arash Baratloo, Navjot Singh, and Tim-
Security testing (like total correctness) is al- othy Tsai. Transparent Run-Time De-
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Abstract GCC's development process requires everyone
to work incrementally and make minimally in-

GCC is considered more difficult to modify or vasive_c_hanges. Although not a formal requi_re-
debug than other programs of similar size. ThigN€nt, itis a consequence of the no-regressions
paper will investigate the reasons for this diffi- POlicy for check-ins, coupled with the extreme
culty, from the point of view of a maintenance COMPlexity of the source code. A simple
programmer: someone producing a small patcfhange might turn outto have ramifications ev-
to fix a bug or implement a feature, without €ywhere. A few individuals know the com-
causing new problems for unrelated use. BePller inside out; they can pull off hugely inva-
cause the development tree’s head is expecteddVe changes without breaking anything. Most
to be functional at all times, such incrementalOf US are not that good, so we must take small
changes are normal—even regular contributor§t€Ps, testing carefully as we go. Furthermore,

are in the maintenance programmer’s shoes. €ven regular contributors often have difficulty
getting their patches approved. And, of course,

_ we all have lots of demands on our attention, so
1 Introduction there is never enough time to work out the per-
fect design. Therefore, making life easier for a
Who is a maintenance programmer? Anyondnaintenance programmer who might have just
working to implement a specific feature, or fix one patch to contribute will make regular con-
a specific bug, without introducing new prob- tributors’ lives easier as well.
lems at the same time. Anyone with limited

time to investigate the situation and become fa; .
miliar with the code. 2 Technical Hurdles

Maintenance programmers are faced with both o5 take a moment and look at the GCC

technical and procedural hurdles. GCC has @qce tree from 10,000 feet up. Table 1 breaks

complex task to accomplish, but even so GCGyqn the code by category. There are about 1.6
is far more complicated than it needs to beyyjjjion Jines in total, ignoring comments. Just

which makes it harder to modify the code thang,ar half of this is C: there are also substantial

it should be. Further, once one does succesgodies of Ada. Java. and-C-. Machine de-
fully make a change, itis hard to getit acceptedscrintion files are written in a domain-specific,

to .the official sourge tree. The procedural re'Lisp-Iike language, which accounts for ten per-
quirements are stringent for good reason, butant of the total.

still discourage people from contributing, and
cause patches that were 90% correct to be rdBy nature, any program of this size is going
jected. to be nontrivial to work with. Furthermore, a
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By category By language
Core compiler 250,000 C 861,000 53%
Back ends 410,000 Ada 298,000 18%
biggest 40,000 (rs6000) MD 170,000 10%
smallest 2,200 (fr30) Java 127,000 8%
median 6,500 (v850) €+ 105,000 6%
Front ends 480,000 Other 78,000 5%
biggest 221,000 (ada)
smallest 2,500 (treelang)
median 59,000 (java)
Runtime libraries 458,000
biggest 274,000 (java)
smallest 8,200 (objc)
median 11,000 (f77)
Total 1,639,000

Physical source line counts, generated using SLOCCount [1]. MD = machine description.

Table 1: GCC 3.3 source code breakdown

compiler is necessarily more complicated tharWhatever the reason, an old API cannot be re-
the average program of similar size, since itmoved from the compiler until there are no re-
contains many algorithms and techniques thatmaining uses. An incomplete transition thus
require arcane theoretical knowledge to undermeans that for an extended period there are two
stand. SSA (static single assignment) form, foror more ways to do something. One is pre-
instance, takes a good chapter of exposition téerred, but it may not be obvious which. Some-
explain. GCC is necessarily more complicatedone writing new code that needs to do whatever
than the average compiler, since it supports sd is, might pick the obsolete technique, further
many input languages and target architecturedelaying the day when the old API can be re-
in its official distribution alone. Many other moved.

compilers support only one or two targets. . )
Incomplete transitions are most common in the

Even so, GCC's code could be much simplerAPI for writing architecture back ends. For ex-
and easier to maintain. This can be put down t@ample, there are two ways to write a machine-
three primary causes: incomplete transitionsspecific peephole optimization. Both do pat-
functional duplication, and inadequate modu-tern matching on the stream of RTL insns con-

larity. stituting the intermediate representation of a
function. The old waydefine_peephole )
2.1 Incomplete transitions overrides the normal mechanism for writing

out assembly language, substituting its own

. text. No further optimization can happen to the
Incomplete transitions occur whenever anyonga.q lt. The new waydefine_peephole2 )

invents a new, better way to .do something, b”FepIaces the matched insns with new ones,
does not update every last bit of code that use%hich can then be optimized further. For in-

to do it the old way. They might run out of stance, the second instruction scheduling pass

tlme_; they mlght ”Qt have the NECESSaly €Xsees the result of new peephole optimizations.
pertise; they might just not be able to find it.



GCC Developers Summit 2003 * 259

The new construct was created in 1999, but ofhen, that allccO architectures were broken
the 37 back ends present in GCC 3.3, only siXor some time last year.

use it exclusively. Fifteen still useéefine_ _
When someone discovers that a target they

peephole exclusively, and six more have :
both. (Ten have no peepholes at all.) Nowwanted to test is broken for some other rea-

peephole optimization is a relatively minor partSON, their usual response is not to bother test-
of a back end. The majority of the archi- N9 that target anymore. This of course means

tectures that use either variety define fewethat nothing stops the target from accumulat-
than ten. In terms of code generation, using"d faults. By the time someone comes along
define_peephole2 is most beneficial for Who wants it to work, it may be easier to start

architectures that use instruction scheduling/fom scratch than to fix all the faults. This is

The maintainers of any given architecture havéeSPecially true for OS-specific configurations,

no real incentive to update it to the newer style Which break more easily than architectures and

>From a maintenance programmer’s point ofr€quire relatively little effort to rewrite from
view, this situation is very bad. The presence>Cratch, especially if they are similar enough to
of two functionally-equivalent mechanisms for the generic Unix that GCC takes for its default.

f[he Same bﬁs'fkofﬁratéor;] adds conk?_plexn_)lll ingeecent experience [2] suggests that even CPU
Increases the likelinood that something wi eports can age to the point where starting over

broken accidentally. might be easier. The MIPS back end had
Peephole optimizations of either variety "0t been kept up to date for several years;

rarely cause trouble, because the machind! Was overhauled starting in late 2002, with
independent code that applies them is smafoSt of the work done by Richard Sandiford
and robust, so it is unlikely to be broken by and Eric Christopher. This took six months

an unrelated change. However, consider th&t@rt to finish, with approximately eight thou-
ccO mechanism, which is the older of two S&nd lines of code changed, which is compa-

possible ways to represent condition codes isable to the effort required to write a minimal
a machine description. There are 805 line@ck end from scratch. Of course, the MIPS

of code in the core compiler that are usedPack end is not minimal; starting from scratch
only by ccO architectures, and 79 lines of might have meant abandoning many of the sub-

code used only by none0 architectures architectures and operating systems that it cur-
scattered through 28 files in 121 individual "€Ntly supports.

#if blocks. ThIS is not a lot of.code co_rnparedA primary driver for the overhaul was the de-

to the total size of the compiler, but it is all ;o 15 ay0id use of the macro instructions pro-
n qut!cal_places, affecting most of the major vided by the MIPS assembler. This can also be
optimization passes. Testing on a ned seen as a transition, but not of an API; rather,

ar((:jhltectudre W'III r_lotlreveal broEt_anness In thethe preferred style for machine descriptions has
code used exclusively ycO architectures, or changed. When the MIPS port was originally

vice versa. The only widely-used architecture, ian the macro instructions were a conve-
that still uses this mechanisns the m68k, and nient way to simplify the compiler's job. Now

m68k environments ar:e allls!ow enough Fhatthey are seen as a hindrance to quality code
no one wants to test them. Itis not SurlD”S'ng’generation, requiring awkward workarounds in
1f (ccO) appears only idefine_expand  forms the compiler.

that generate no RTL, that machine description does not
use theccO mechanism.
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2.2 Functional duplication in file A is correct?” may well be “because

that transformation is duplicated in file B, only

Functional duplication occurs when two com-With bugs.” Furthermore, this duplication in-
ponents both implement some capability that/ités people to update one set of simplifiers and
could be shared. A long-standing case exists iftot another, which means that whether or not
the RTL simplification code. When Jeff Law @n RTL construct gets simplified depends on
createdsimplify-rtx.c in 1999, he in- Which optimizer pass encounters it. And, of
cluded a comment which gives the flavor of theCOUrse, it causes the compiler's runtime image
problem: to be bigger than necessary, which contributes
to compiler-speed problems by wasting space

in the instruction cache.
Right now GCC has three (yes, three)

major bodies of RTL simplification
code that need to be unified.

Law’s comment hints at a deeper cause of func-
tional duplication, namely, that we have two
different intermediate representations (trees

1. fold_rtx  incse.c . This code and RTL). In the past, almost all of the com-

uses various CSE specific infor-
mation to aid in RTL simplifica-
tion.

. combine_simplify_rtx in

combine.c . Similar tofold_

rtx , except that it uses combine
specific information to aid in RTL
simplification.

piler dealt exclusively with RTL so this was
not a cause for concern. We now do some op-
timizations at the tree level, and lots more are
planned. It would be useful to share code be-
tween tree optimizers and RTL optimizers as
much as possible. This has already been done
for the control-flow graph, on thigzee-ssa
branch. If the data structure holding an expres-

sion to be simplified could be made opaque
to the code computing the simplification, the
same could be done for the algebraic simplifi-
cation library.

3. The routines in this file.

... It's totally silly that when we add
a simplification that it needs to be
added to 4 places (3 for RTL simpli-

fication and 1 for tree simplification). Functional duplication also occurs when a

module exists that logically should be respon-

sible for some task, but is not presently capa-
It is worth pointing out that at 8,790 lines of ble of it. Instead of fixing the existing mod-
code,combine.c is the second longest file ule so that it is capable, often people choose
in the core compiler. Much of this bulk is to build something new from scratch, which
combine_simplify_rtx and its subrou- is easier in the short term. A good example
tines. here is the language-independent tree-to-RTL

_ o _ converter §tmt.c , expr.c , etc.) Itis one

Functional duplication is less likely to cause 4 the oldest parts of the compiler. It still re-
breakage than incomplete transitions. Conting (g design decisions made when C was the
uing with this example, all the RTL simplifiers only supported language, and the tree represen-
are exercised by the normal testing procedur€gqyion was used for only one source statement
so it is unlikely that one of them will remain 54 5 time. When front ends started being rewrit-

broken for an exten_deo‘l‘ period. However, th&gp, for whole-function tree representations, no
answer to the question “Why did this bad opti- ;e \wanted to update the converter to match.
mization happen, when | can see that the code
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Instead, each front end that now uses wholepleted, or that was written in anticipation of a
function trees contains duplicated tree-walkinguse that never materialized. One can usually
logic, so that it can continue to feed the tree-tofigure it out from mailing list traffic or CVS
RTL converter one statement at a time. logs, but only with practice. However, no mat-

) o ter what its intended function is or was, code
This duplication not only causes the problemsy, 5t is not being used now should be deleted;

described above, but also hinders conversiogyen if a future use was planned, it is likely
of other front ends to whole-function process-peayer to happe?.|f someone does have a use
ing, because they would have to duplicate thigy, 4 hody of unused code in the immediate fu-

code again. Nor is there agreement on th e they will undoubtedly say so when its re-
form of whole-function trees. The maintainers yoval is proposed.

of the C language family developed one such
representation; independently, the Java maiy 3 |nadequate modularity
tainers developed another, incompatible rep-

(rjeserlnatlc()jn.f Tg'sf prevgn_ted the Jrie Ig“nerUm‘ortunater, much code that has no appar-
eveloped for rom DeIng used for Java.q e fnction will cause something to break if
Rather than copy the file over, it has been heav:

v #itdef ed. which b it is taken out. This is the problem of inad-
Hy #lider - ed, which may or may not be an equate modularity. GCC is composed of a lot
improvement. (The people working on the

: of logical modules, but the boundaries between
tre_e-ssa branch have a major goal of devel- these modules are ill-defined and poorly docu-
oping a propet, Ianguagg-lndependent, Wh0|efnented. Any given behavior has a good chance
function tree representation.) of being required by some other module. For

When a transition is finally completed, or du- ins_tan.ce, the C compiler reads the first line
plicate code finally collapsed together, it may©f its input much earlier than would be natu-
still leave vestiges behind. The garbage colf@l- This is because some of the debugging-
lector was completed in late 1999, but most ofinformation generators want to know what the
the obstack allocation scheme that it obsolete@#@me of the primary source file is, when their
stuck around until late 2000. We are still find- initialization hook runs. These two things may

2003, other. But if the C compiler is handed already-

preprocessed input, the primary source file is
Everyone likes deleting code, so why do vesnot the file on the command line. It is the file
tiges stick around? People usually find vestinamed by thet marker on the first line of the
gial code when working on something else. Tofile on the command line. Therefore, in order
delete it, they would need to stop whatever theyo initialize the debug-info generator properly,
were doing at the time, construct a fresh CVSthat first line has to be read. [3]
checkout, delete the vestige, do a full test cycle
to make sure nothing broke, then submit thel he interface between language front ends and
patch and wait for approval. Al this time, they the core compiler is especially prone to this
would not be working on whatever they origi- SOt of problem.  This stems mostly from

nally planned to work on. We will come back the ad-hoc way in which the front-end in-
to time consumed by procedures later. terface has evolved. It has never been doc-

umented, yet there are seven different lan-
Another reason is, it is hard to distinguish code
that is left over from code that was never com-

2This is the YAGNI (You Aren’'t Gonna Need It)
principle.
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guages using it in the current source tree, plugng the conversion are taking the opportunity to
a few more maintained separately. As lan-<clean up the interfaces and create sensible de-
guages were added, their developers genefaults. Thus there is hope that this problem will
ally tweaked the tree specification around aglwindle as time goes by. However, the conver-
they saw fit, without much coordination. It sion project could drag on for years, becoming
was originally intended to cover the needsanother of the incomplete transitions that were
of GNU extended C only, and still reflects discussed above. GCC 3.3 has about seventy
that in some aspects. For instance, the Jawamembers of thdargetm structure; a com-
front end has interesting kludges in it to plete job will require about five hundred, but
cope with the allegedly language-independeninost targets will not need to override the de-
builtins.def , Which is full of C-specific faults for most of them.

notions likeva_list . Or, consider the way

each back end specifies its platform’s funda-1N€ core compilers is not free of modular-
mental data types: the TYPE and* TYPE ity problems, either. The RTL optimizers are

SIZE macros. These macros map direcﬂystructured as a pipeline of passes, and what

onto the fundamental data types of C; if thiS_eaCh pass does to the code is reflected in the

is a poor match to the language being imple-'”sn chain. On its face that is a modular de-

mented, one is in trouble. To be fair, most mod-Sign- However, there are undocumented lim-
ern platforms define their most basic ABI in altations to what each optimization pass can

similar fashion, so one might be in trouble any-nandle, which impose constraints on earlier
way. passes. For instance, the first local CSE pass is

a waste of time at this point, because the GCSE
The interface between the core compiler angass is more powerful. .. except that GCSE is
a target-specific back end is also very fuzzynot prepared to deal with certain high-level
The most basic parts are in the machine deeonstructs that local CSE eliminates, such as
scription, which is pretty well defined and doc- addressof . This is doubly unfortunate, be-
umented, but there are lots of little details han-cause GCSE could do a better job than CSE of
dled by defining macros, which are then visi-handling the high level RTL, if it only knew
ble to the entire compiler, including the front how. [4]
ends. A naive count finds close to five thou-
sand different macro names defined by headeg.4 Style
filesin GCC 3.3'sconfig  directory. Some of

these are internal to one architecture, and SOM&= should not neglect aesthetic concerns.
of the headers are not used during the CompileAnything that makes code harder to under-

build itsglf, but there is no easyyvayto teIIthemstand’ hides bugs from developers. Anything
apart. Since the macros are visible to every pa ot makes code harder to restructure, hin-
of the compiler, every part of the compiler cangerg gevelopers from resolving the more se-

use them, and does. A target must define als, ;s problems discussed above. GCC's pri-
most all of the macros used by the core cOMy 4y £ailing in this domain is by virtue of sheer
piler, which leads to massive duplication. size. Particularly in the older parts of the com-

There is ongoing work to convert all of these piler, it is common to find a single function so
macros to data members or function pointers i@rge and convoluted that a human reader can-
a global object calletargetm , which forces not remember all its details. Some may have

a more structured approach. The people do3rOWn by accretion:expand_expr  for ex-
ample may have been much smaller when there
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were fewer kinds of tree to be considered, omot yet been granted write-after-approval priv-

when fewer optimizations were attempted atileges, and proposes to fix a bug which appears

that time. Others are perhaps stylistically in-in the GNATS database.

spired by the “Pastel” compiler that predated _ )

GCC 1, which was in a language that Sup_The first ste_p is to get a copy of the develop-

ported nested functions; very large outer func/Ment tree (i.e. CVS HEAD). Then the bug

tions would have been more natural in that lanMuSt be reproduced and fixed. The potential
ifficulties with that were covered above.

guage. [5] These functions often maintain staté!

in local variables of an outer block; perform- \qy; ajice must carry out a full bootstrap and
ing the “obvious™ refactor of pulling the inner test cycle. This is not very hard once you know
blocks out to their own functions can causey, . Typical first-time gotchas include con-

mysterious failures, since the outer variablesfiguring in the wrong place or with the wrong
are no longer visible. sort of pathname, and tripping over a Make-

Gigantic controlling expressions iifi state- 1€ bug; having the wrong version of GNAT

ments are also common. Here the problem igﬂstglled, so the Adafr.ont end cannot.be baiilt;
notational. Such expressions often turn out tg'aving the wrong version of autoconf installed,
be performing pattern matching on RTL, in the SO the configure scrl_pts are _broken;_and finally,
most straightforward fashion possible in C. Ifit faving a broken DejaGNU installation, so the
were possible to write these expressions in thdest suite reports thousands of spurious failures.

language used for machine descriptions the)g)nce all these issues are resolved, Alice gets
would be far more readable. o sit back and wait for at least two hours. De-

pending on how slow her computer is, it might
The macros, idioms, and style constraintdoe more like a full day. There is also the possi-
which permitted us to build GCC with com- bility that the test cycle will fail because some-
pilers that predate the 1990 C standard shouldne else checked in a patch which broke the
also be seen as an issue of aesthetics. We atempiler.

ready enjoy the benefits of most of standard C’s

features, such as prototyped functions. How#SSuming thatwent fine, the patch is now to be
bmitted for review. Alice may be ignored for

ever, eliminating all these idioms (as we can®Y \
now do) will make it easier to read the code,e€ks on end, depending on how busy the of-

and this is not a trivial thing. Just the removalficial maintainer of that component is, whether
of the macros that cloak the differences be_she has submitted patches before, and how im-

tween traditional and standard C with regard tg°0rtant the bug seems to be. Once someone

variable-length argument lists should be a greai0€S 9ét around to responding, there is a good
step forward. chance that the patch will be torn to shreds and

sent back for revision, repeatedly. Alice might
get frustrated and give up. If she persists, the
3  Procedural hurdles patch will eventually get approved. Now (since
she lacks write privileges) the person who ap-
proved it is responsible for committing it and
Once again, let's take a moment and look fromclosing the entry in the GNATS database. |If
10,000 feet up, this time at the process forAlice keeps submitting good patches, she will
contributing a patch to GCC. For this purpose
we shall postulate a contributor named Alice,  3This is not currently a requirement, but Alice is be-
who has a copyright assignment on file, but hagg thorough.
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be granted write-after-approval privilege. Shework at all in parallel mode. Also, DejaGNU
can then do these last steps herself. has no ability to run tests in parallel, so the en-

) _ tire test suite must be run serially.
It is not terribly useful to speculate about the

ultimate causes of the procedural hurdles thaBootstrap time accounts for the majority of
can be seen in this description. Instead, we wiltime spent waiting for a computer to do some-
categorize them by nature, as slow or tedioushing. However, CVS operations should not
tasks; problems coping with tools; and humarbe neglected in this regard. On a higher-end

error. ADSL connection (1.5Mbps down/384Kbps
up) acvs update on the mainline takes fif-
31 Slow or tedious tasks teen seconds—if it has nothing to do, and there

are no modified files. If it has updates to down-

_ load, or potentially modified files that have to
One of the most important procedural hurdles, o checked (by sending the full text of the file

is the sheer amount of time it takes to develoR, {he server for comparison) it can take sub-
a patch and get it commlttec! to CVS. Alice gianially longer. Branches are also slower; on
had to wait for review, but let's defer that is- o 3 3 release branch, an update with nothing

sue for later. Even people with global write to do and no modified files takes a minute and
privileges are expected to carry outa full boot- ot - Recursive commit and diff operations
strap and test cycle on at least one target, infake a similar amount of time.

cluding all languages, before installation. This
takes two hours on a 2GHz P4 with 512MB Once a patch is fully tested, the contribu-
of real RAM, running Linux 2.4. A slower tor must write an explanation of the changes
CPU, less memory, or a less efficient operatmade, for thegcc-patches  mailing list,
ing system will all cause it to be dramatically and a ChangelLog entry. Working out long
slower. The author is personally aware of anChangelLog entries can be tedious. To some ex-
environment in active use which is centeredtent it can be automated; for example, a simple
around UltraSPARC 5 machines running So-perl script can extract the names of all the files
laris 2.5.1. On this platform a cross-compilerand functions touched by a patch and format
build, C and C++ only, takes six hours; an all-them in ChangelLog style, leaving one to write
language bootstrap would take even longer. the “what was done to each” comment, but that
part can still be tedious for a long change. This

On a sufficiently efficient operating System, yo has to be copied from the message into all
the bottleneck for a bootstrap is CPU time eX-¢ the relevant ChangeLog files, and into the

penged by the _compiler itself. This parqllelizesCVS commit log: it is easy to make a mistake
well; on a multiprocessor systemtmake -j N along the way.

will reliably divide the time for bootstrap by

N, up to some limit. Experimentation is usu- All of this places a lower bound on the time it
ally required to find the best value to use. How-takes to develop or revise a patch. Even the
ever, using parallel make can expose missingmost trivial changes have to go through this
dependency bugs in the Makefile. Since therocess, because theguldhave broken some-
header dependency lists are maintained byhing. The time it took to design and imple-
hand, itis easy for these bugs to creep in. Somment the change itself is neglected here. That
makefiles have not been written with paralleltime cannot be said to have been wasted, except
make in mind; for instance, at the time of writ- insofar as it may have been harder than neces-
ing, make gnatlib_and_tools does not
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sary to make a change, which was discussethat the reviewers would like. When this hap-
above. Of course, the lower bound is only mefpens, the reviewers will send the patch back
if the patch works the first time. If the patch for revisions. Sometimes they send it back so
causes a regression in some part of the testsuiteany times that the contributor gives up hope
that must be fixed, then the bootstrap must béhat it will ever be accepted. Then the patch,
repeated. which might not have been perfect, but was an

] . _improvement over the status quo, gets aban-
And the lower bound is only met if the contrib- 45neqd.

utor can commit his or her own patches without

approval. Otherwise, there will be some timelt does happen that patches are ignored inten-
spent waiting for the patch to be reviewed. Ittionally, in order to reject them without hav-
is not uncommon to get no response at all to ang to offer feedback. In most cases, this hap-
patch, or even to repeated inquiries. This is nopens because everyone who could review the
because anyone hates the patch or its contrilpatch feels that they cannot have a productive
utor. Most often patches are ignored becausdiscussion with the person who submitted it.
everyone with the authority and the experienceélhat might be the submitter’'s fault—there is
to review the patch is just too busy that weekjust no working with some people—but it is
A lot of GCC's code is listed as maintained much more likely to be a failure of the com-
by one of the people with global write priv- munity. Fortunately this is rare.

ileges, or else has no listed maintainer at all.

Either way, the set of people who can approves.2 Coping with tools

a change to that component is limited to those

with global privileges, all of whom are busy. A g o015 which give people the most trouble

related problem is that people who do not have), 4 day-to-day basis are DejaGNU and the
authority to approve patches often refrain fromy ;;5conf family. To begin with the most

commenting on them, even though their opin- aightforward issue, the GCC testsuite al-
ions are still valued.

ways produces a handful of “unexpected fail-
ure” (FAIL ) results when run. These failures

patches are too hard to review. This happen?re not unexpected in the standard sense of
when a patch tries to do too much at once, of'® Word. They do not change often. People
when the person who wrote it did not explainWho build the compiler on a daily bg;:ls a.nd/or
its motivation well enough. What seems sim-T0llow the gcc-testresults ‘mailing list

ple and obvious for the person who was justW'" know which unexpected failures are cur-
immersed in the relevant area, may not be obf€Ntly normal for a given environment. They
vious at all to anyone else. Splitting patcheg2'® ONly unexpected in the sense that DejaGNU
into minimal changes and explaining them wel|Nas not been advised to turn them into “ex-

are both learned skills. At present, we expecPectéd failure” KFAIL ) results. Regular con-
tributors are used to this. However, someone

people to pick them up by osmosis, but not ev- _ _ .
eryone can learn like that. who does not build the comp!ler on a daily ba-
sis, or follow the test-results list, will not know
Sometimes a patch is not quite right, and somewhether a given unexpected failure is normal
times a patch addresses an issue that cleartyr not. If they are running the testsuite to make
needs addressing but does not do it in the wagure the compiler works, not having made any
changes, they may believe there is something

4This is a variant of the “bikeshed effect.” [7] wrong with their environment, or a bug that is

Another contributing factor is that some
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not already known. If they have made changestest the cross compiler. However, DejaGNU
they will not know whether or not their changesis prone to glitches when used with a simulator
caused the unexpected failures. The only wayarget. One common problem is complete fail-
they can be sure, in this latter case, is to daire to findstdio.h  orcrtl.o . One sus-
two complete test cycles from the same basepected cause of this is invokirgpnfigure
line code, one without the desired patch andy relative instead of absolute pathname.
one with. This doubles both the testing time )
and the disk space requirements, since it is neciutoconf, automake, and libtool have all un-
essary to keep both trees around for Compari(_JIergone backward-incompatible revisions in
son. the past few years. One must have exactly the
right version of each installed in order to re-
Failures are not marked expected mainly begenerate GCC’sonfigure  scripts or Make-
cause it is too awkward. At the least, it in-files. For instance, all of the configure scripts
volves adding special tags to files in the testpresently require autoconf 2.13, which is the
suite. For test cases in thetorture frame- oldest version in common use. It is old enough
work it involves creating special files contain- that it is left out of the default installation of
ing snippets of Tcl code. What the tags or snipssome newer operating systems, such as Red
pets should be is mostly undocumented. PedHat 8.0. Use of a newer version might cause
ple usually do it by copy-and-paste from an-visible errors when the script is regenerated or
other test case. Further, DejaGNU’s ability torun, or more insidiously it might just cause
describe the situations under which a failure isa small handful of features to be misidenti-
expected is quite limited. For instance, therdied. Since GCC’'s Makefiles will automat-
is no way to specify that a test will fail if the ically attempt to regenerate configure scripts
necessary locale definitions are not installed, othat are older than the pareabnfigure.
that a test may sometimes (depending on sysn , a user may discover that the first build
tem load) take so long to run that it times out. from a fresh working copy succeeds, but all

) ) subsequent builds mysteriously fail. Using the
There is also a general assumption that &Xgontrib/gce_update script can prevent

pected test failures are not going to be fixeqyg problem, but it will not help someone who
anytime soon, whereas unexpected failureg g5 modified the configure script.

have someone looking at them right now. This

discourages people from marking tests exitis harder to get in trouble just by having the
pected to fail, because they might be fixed soonvrong version of automake or libtool installed,
and then the marking would have to be undonebecause these tools are only run on specific
Yet tests continue to fail “unexpectedly” for user request. But one may still be stuck with
months on end. no way to regenerate files under their control.

The author has resorted to updating a generated

If one does not have access to a hosted Sy§pakefile.in by hand on several occasions.
tem for an architecture, one can still test some

patches that affect it by building a cross com-
piler to a simulator target. The GDB source
tree includes simulators for many popular ar-
chitectures. It is easy to construct a com-From time to time someone checks in a patch
bined tree including gcc, binutils, the simu- which renders the tree unbuildable. Normally
lator, and a minimal C runtime, in which to it worked just fine for the person who tested

it, but breaks in a different environment. The

3.3 Human error
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problem may be target-specific, or involve onlyportant. For instance, at the time of writing,

a language which is not supported by thehalf of the unexpected failures in the C testsuite
tester’s platform. Or perhaps the patch that wasor GCC 3.3 were caused by incorrect warn-
tested is different from what checked in, someing messages. Nonetheless, a general habit of
how. Whatever the cause, when this happensgnoring persistent unexpected failures is not
everyone who did avs update just before good practice.

starting their bootstrap cycle gets to wonder

whether it was their changes that broke the tree, .
4 Conclusion

A few years ago, a CVS checkout taken at a

random point in time had a 34% chance of be-, . .
ing unbuildable. [6] This is directly attributable ~OMtPUtors to GCC face both technical and

rocedural challenges. These can be narrowed
to the two-year lapse between the 2.95.0 ang =g .
down to a short list of causes: incomplete tran-

3.0.0 releases. During that time, latent bugs.... . o .
. : : . sitions, functional duplication, and inadequate
were continually introduced, until any given

checkin had a good chance of riggering Onemodularlty; slow or tedious tasks, coping with

tools, and human errors. Some of these prob-
There was no concerted effort to flush thes ) : :
: o . ems are easy to address immediately, while
bugs out until the situation became dire enough

) ) ... 2others will require long-term, concerted effort.
to hinder day-to-day work. Since the institu- . g

. .This paper limits itself to discussion of the
tion of the three-stage development process, in :
roblems. However, we are confident that so-

mid-2001, unbuildable CVS checkouts happen ..

) . ~ lutions can be found.
only rarely, since the tree is regularly stabi-
lized.

The automated testers operated by Geoff Kea5 Acknowledgements

ing, Phil Edwards, and others have also been

instrumental in reducing the incidence of un-This paper is largely based on my personal
buildable source trees. A failure report fromexperience fixing bugs in older versions of
one of these testers can be trusted to indicate @CC for a CodeSourcery client. 1 am also in-
genuine problem—no risk of a quirky environ- debted to Neil Booth, Eric Christopher, and
ment causing issues—and conveniently lists alRichard Henderson for sharing their experi-
of the changes that could have been the proxiences. Michael Ellsworth, Kristen Hrycyk,
mate cause. They also make people aware dbavid Johnson, Mark Mitchell, Jeffrey Old-
bugs immediately, rather than several week$iam, and Nathan Sidwell were kind enough to
down the road when they no longer remembecomment on drafts.

the details of their changes. Unfortunately, at

present only a few platforms are monitored inlnspiration crystallized around the following
this fashion. IRC exchange between Phil Edwards and my-

self:

Nowadays, build failures are usually addressed
immediately, but testsuite regressions tend to
linger for weeks on end. The author believes<pme> Every time | readSnow Crash |
this is largely a matter of perception. Test wonder what a GCC “room” in the
cases are often contrived rather than reflective metaverse would look like.
of real code, and the failure may seem unim-<zwol> Take an H.R. Giger painting, you

know, with the perverse and in-
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sanely complicated biomechanical
constructs.

Now, instead of being all shiny and
new, make it old and rusty and over-
grown with weeds. Slimy weeds.

A Snow Craskesque view of GCC’s code
wasn't really what Phil meant, but | would still
like to thank him for sparking my imagination.
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