
Proceedings of the
GCC Developers Summit

May 25–27, 2003
Ottawa, Ontario

Canada

Contents

Optimizing for Space: Measurements and Possibilities for Improvement 7

Árpád Beszédes

GCC Compile Server 21

Per Bothner

Fortran 95 support in GCC 35

Paul Brook

A New Loop Optimizer for GCC 43

Zdeněk Dvořák

Mudflap: pointer use checking for C/C++ 57

Frank Ch. Eigler

Alias Analysis for Intermediate Code 71

Sanjiv K. Gupta

Porting GCC to the AMD64 Architecture 79

Jan Hubička

Porting to 64-bit Linux systems 107

Andreas Jaeger

Architecture for a Next Generation GCC 121

Chris A. Lattner

The finite state automaton based pipeline hazard recognizer and instruction scheduler
in GCC 135

Vladimir N. Makarov

Design and implementation of the graph coloring register allocator for GCC 151

Michael Matz

GENERIC and GIMPLE: A new tree representation for entire functions 171

Jason Merrill

Tree SSA – A New Optimization Infrastructure for GCC 181

Diego Novillo

Porting GCC to the IBM S/390 platform 195

Hartmut E. Penner

Building and Using a Cross Development Tool Chain 213

Robert Schiele

Optimal Stack Slot Assignment in GCC 223

Naveen N.S. Sharma

How to Get the Best from g++ 229

Nathan Sidwell

StackGuard: Simple Buffer Overflow Protection for GCC 243

Perry M. Wagle

A Maintenance Programmer’s View of GCC 257

Zachary Weinberg

Conference Organizers

Andrew J. Hutton,GCC Summit
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Toshiyasu Morita,Hitachi America
Steve Ellcey,Hewett Packard Company
Janis Johnson,IBM
Richard Henderson,Red Hat, Inc.
Paul JY Lahaie,Steamballoon, Inc.
Andrew J. Hutton,GCC Summit

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Optimizing for Space:
Measurements and Possibilities for Improvement

Árpád Beszédes, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and László Vidács
Research Group on Artificial Intelligence

University of Szeged
Aradi vértanúk tere 1., H-6720 Szeged, Hungary, +36 62 544126

{beszedes,gertom,gyimi,alga,lac}@cc.u-szeged.hu , http://gcc.rgai.hu/

Abstract

GCC’s optimization for space seems to have
been often neglected, in favor of performance
tuning. With this work we aim at determin-
ing the weakpoints of GCC concerning its opti-
mization capability for space. We compare (1)
GCC with two non-free ARM cross-compiler
toolchains, (2) how GCC evolved from release
3.2.2 to version 3.3, and (3) two runtime li-
braries for the Linux kernel. All tests were per-
formed using the C front end and for the ARM
target both as standalone and as Linux executa-
bles. The test suite is comprised of applica-
tions from well-known benchmark suites such
as SPEC and Mediabench. An optimal com-
bination of compiler (and linker) options with
respect to minimal code size is elaborated as
well. We conclude that GCC 3.3 steadily im-
proves with respect to version 3.2.2 and that it
is only about 11% behind a high-performance
non-free compiler. At the same time, we were
able to document a number of issues that de-
serve further investigation in order to improve
code generation for space.

1 Introduction

GCC is increasingly used as a cross-compiler
to produce programs for embedded systems.
Although performance in terms of speed is also
important, in many cases the amount of con-
sumed resources (memory, energy, etc.) plays
an even greater role in the case of devices with
limited resources. So, when GCC is used to
build these software, the code produced should
be as small as possible. Indeed, GCC is able to
optimize for space but, alas, it seems that this
objective was often neglected when designing
and implementing various code generation and
optimization algorithms [1, 5]. We may con-
clude the same when we consider the fact that
beside the vital regression testing methods and
the results of several benchmark suites avail-
able on GCC web pages [9, 8, 3], no word is
spoken about benchmarkingcode size. In fact,
were unable to find any related publication at
all which deals with the assessment of compil-
ers’ capabilities for space optimization.

With this work we attempted to determine the
weakpoints of GCC concerning its optimiza-
tion capability for space. We present the results
of our assessments where we compared:

• GCC for standalone executable with two

8 • GCC Developers Summit

non-free ARM cross-compiler toolchains,

• How GCC evolved from release 3.2.2 to
version 3.3, and

• Two runtime libraries for GNU/Linux,
glibc [2] andµClibc [7].

All tests were performed using the C front
end and for the ARM target (both for stan-
dalone and Linux executables) as this combi-
nation is one of the most frequently used nowa-
days for embedded applications. A testbed was
utilized with applications from various well
known benchmark suites.

We did our best to discover the optimal com-
bination of compiler (and linker) options with
respect to minimal code size; we elaborate on
the relevant ones for GCC and propose a set of
options to extend the default settings for code
size. With this option set an improvement of
nearly 5% was achieved.

In the investigation we included both the ob-
ject sizes produced by the compiler and the
linked executable sizes to see what effect the
runtime libraries had on the overall linked code
size. Comparing only object sizes, one non-
free compiler is about 11% better than GCC,
but in the case of executables this ratio rises to
32%.

We investigated the generated code by GCC
more thoroughly and finally we document sev-
eral issues that deserve further investigation in
order to improve code generation for space.
These include the lack of interprocedural op-
timizations, the required unit at a time compi-
lation, more intelligent handling of-Os , etc.

In Section 2 we describe our measurement en-
vironment and methodology. Section 3 deals
with GCC’s different compiler options and
there also we give our proposal for the best
combination. Sections 4 and 5 present the

actual results for standalone executables and
Linux libraries, respectively. Finally, in Sec-
tion 6 we summarize our conclusions and give
our view on the possibilities for improving
GCC.

2 Measurement Environment

For all three objectives of our investigation pre-
sented in the previous section, we have set up
a common measurement environment. It con-
sists of a collection of test programs that are
suitable for compiling and measuring code size
for all compilers and configurations under in-
vestigation. The environment is able to per-
form these measurements and present the data
in a simple form ready for further processing.
In addition, it also facilitates the execution of
the executable programs.

2.1 Compiler Toolchains

In each experiment we employed C as the
source language and the chosen target architec-
ture was ARM (32-bit ARM instruction set).
Two types of target code were used: stan-
dalone programs (that run on the hardware
without an operating system) and Linux tar-
get for the ARM architecture (for GCC com-
piler arm-elf and arm-linux machines,
respectively). The following toolchains were
used for the measurements:

• GCC 3.2.2 version with newlib version
1.10.0 [6] for standalone target (with
binutils version 2.13)

• GCC 3.3 prerelease snapshot (2003-04-
14) with the same newlib and binutils

• GCC version 3.2.2 with glibc version
2.2.5 [2] for Linux target

• GCC 3.3 prerelease snapshot (2003-04-
14) with glibc version 2.2.5

GCC Developers Summit 2003 • 9

• GCC version 3.2.2 withµClibc version
0.9.15 [7]

• Two non-free compilers for ARM archi-
tecture configured as standalone targets.
These will be denoted byCompiler 1and
Compiler 2 in the following discussions.
The former useself output format, while
the latter producescoff files.

The switches that control optimization for
space were turned on for all toolchains. In
addition, several further options (both com-
piler and linker) that enable or disable cer-
tain code optimization and/or generation algo-
rithms were also set that resulted the most com-
pact code size. The combination of these extra
options was determined by trial and error, and
for GCC toolchains we elaborate on these in
Section 3.

For each GCC toolchain the runtime libraries
were compiled using the same options as for
the test programs. (Neither of the two non-
free compilers libraries were prepared in such
way.) The use of such libraries has an effect
where the executables are compared, because
the overall code size incorporates library code
as well.

2.2 Testbed

The testbed used in the experiments consists of
two parts: small example programs and real ap-
plications from several well-known benchmark
suites (GNU applications, SPEC CPU2000
[10], MediaBench [4]). In the following table
some information is given about the sizes of the
test programs:

Test project files lines bytes exec.

bzip2 1 4,250 121,279 1
catdvi 6 770 24,332 1
flex 21 19,571 530,312 1
g721 8 1,725 46,980 2
gsm 29 5,982 182,809 1
jpeg 84 34,181 1,150,110 6
mcf 25 2,414 53,310 1
mpeg2enc 22 7,608 217,864 1
osdemo 147 68,434 1,925,141 1
parser 18 11,391 356,526 1
sed 20 12,393 365,886 1
P3szogr 1 48 1,568 1
_3szog 1 48 1,419 1
abc 1 17 443 1
arg 1 25 390 1
datum 1 48 870 1
eltelt 1 32 939 1
endian 1 18 258 1
geometry 1 435 11,869 1
lnkoszt 1 52 1,121 1
minimax 1 52 1,444 1
static 1 35 460 1
szinusz 1 52 1,372 1

The first column shows the number of files that
constitute the test project, the second one gives
the total number of program lines, and the third
column gives the size of the source code in
bytes. In the last column the number of exe-
cutables that are built from the test project is
shown.

All test programs were compiled to produce
the object files and the given executable pro-
grams were prepared by linking. These ob-
jects and the linked executables for each of
the toolchain under investigation were used for
measurement.

In the following for each measurement the
small programs (the last 12) are treated jointly
and are denoted by “small.”

2.3 Measurement Method

The way to measure the size of the generated
code (i.e. its compactness) is not always trivial.
As obvious, we chose to investigate the final

10 • GCC Developers Summit

binary machine code (instead of, for example,
the assembly code).

Objects and executables.The granularity of
the code was a further aspect: should we mea-
sure the function sizes individually, the object
code for a complete compilation unit, or inves-
tigate the size of the linked executable? In this
paper we present the results for the latter two
because in certain environments both can be in-
teresting. When we compare the object sizes
the effectiveness of the compiler proper is ac-
tually compared,1 while in the second case the
whole compiler toolchain is assessed including
the compiler, the linker and libraries as well.
This is because the size of a linked program
depends on the size of the libraries and also
how they are processed by the linker. Hence,
in this paper we mostly rely on comparing ob-
jects which is more informative with regard to
a compiler’s optimization capability for space.

In order to get the best possible results when
measuring executables, we also built the li-
braries of GCC toolchains with the same flags
as the test sources. With the libraries of the two
non-free compilers we were not able to do the
same.

Standalone and Linux programs. Another
dimension of the categorization we investi-
gated was both kinds of targets: standalone ex-
ecutables (i.e. for without an operating system)
and executables built for a specific operating
system (in our case GNU/Linux). Although the
same compiler is used with the same settings,
the resulted binaries generally contain several
notable differences: a few in the case of ob-
jects and a significant difference with executa-
bles. These are mostly due to different exe-
cutable production and to the fact that different

1Note, that the library implementation still has a min-
imal impact on the object sizes because of the library
headers, which are also translated by the compiler. Con-
sider for example, that macros can be used to implement
function-like behavior.

runtime libraries are used for the two cases (i.e.
in the case of GCC, newlib and glibc).

One would expect that with objects there
should be no difference at all. However, some
minor impact of the library is still noticeable.
The library headers should contain the same
standard prototypes (e.g. standard functions),
but the difference comes from the different im-
plementation of some features. For example,
some standard names can be implemented us-
ing macros and function calls as well.

Clearly, then, measuring the size of the exe-
cutables incorporates a much greater impact of
the library code. It is apparently measurable on
standalone executables. However, the situation
becomes more complicated when we investi-
gate executables built for Linux. The reason
for this is that Linux executables do not embed
the library code, but they maintain only ref-
erences to the so-called shared objects, which
are linked at runtime. (Even if static linking
is used some functionality will still be imple-
mented in the operating system rather than the
executable.) We present some results for Linux
executables in Section 5.

Sections. Another problem was deciding
which parts of the generated files we should
take into account (obviously the size of the
binary file is not relevant because of various
headers, etc.). The generated program code
consists of many parts; instructions, data and
so on, which are generally separate in a binary
file (in the sections). However, in many cases
these parts can be intermixed (e.g. executable
code can contain embedded data). In addi-
tion, several other sections are generally also
put into the binary file, which are of no inter-
est with respect to the size of the code. These
include the debug sections, symbol tables, etc.

The different types of object files (elf and
coff) can have different kinds of sections
and, what is more, the different compilers may

GCC Developers Summit 2003 • 11

use various strategies for laying out code and
data into sections. More specifically, differ-
ent compilers may split some code into sev-
eral sections, or put other things together in one
section. For example,elf files contain one
(or more) initialized read-write data section(s),
while coff files contain program code that
will initialize the data at runtime. So no com-
mon handling could be used and the combina-
tion of the sections to be incorporated in the
measurements needed to be determined sepa-
rately for each toolchain.

In each case we summarized the size of only
those sections that contains generated code
that is directly used by the program. These
are the sections that contain executable code
and constant- or initialized read-write program
data. Note, however, that executable code and
constant data cannot always be clearly sepa-
rated (there are constant data items which are
“hidden” in the executable code) so we handle
them together during the comparison.

We experimented with two kinds of section
combinations: (1) the size of sections contain-
ing program code or constant data (referred
to as “read-only sections”) and (2) the size
of sections that contain any kind of program
data, which also includes read-write data (re-
ferred to as “all sections”). We decided to fol-
low the second approach because it seemed to
be the most reasonable because of the above-
mentioned various types of handling of initial-
ized read-write data.

Measurement tools. When assessing both the
object and executable sizes theelf andcoff
files needed to be investigated. To this end dif-
ferent methods for extracting the section sizes
were employed because of the different binary
formats. The programsize (part ofbinutils)
is a suitable tool for extracting the size of the
mentioned sections fromelf files. We were
unaware of any similar tool forcoff files. The

programcoffdump extracts the sizes of the
sections fromcoff files, but not in a summa-
rized form. Fortunately, allcoff files contain
almost the same sections and have the same
names. We examined what kind of data was
contained in the sections, and counted the re-
quired sizes by hand. (Fortunately, only one of
the non-free compilers uses this format, with
all other toolchains including GCC we were
able to extract code sizes automatically.)

Execution. The measurement environment is
capable for executing the built programs us-
ing a simulator for standalone programs and
an ARM-based hardware device with Linux
system for Linux binaries. We ran the pro-
grams and checked their outputs for validating
the compiler toolchain with components of dif-
ferent versions, and for verifying the correct-
ness of various compiler option combinations.
Throughout our measurements only those con-
figurations were used that produced correct and
running programs.

3 Compiler and Linker Options

With each toolchain investigated we sought to
find the best possible combination of options
with respect to code size. In general, compil-
ers provide a special optimization option that
instructs them to optimize for space rather than
for speed. With GCC, this option is the switch
called-Os .

3.1 Best Options for Space in GCC

Commonly, -Os is used internally in GCC
to enable or disable certain optimization algo-
rithms, but generally any part of the compiler
proper can depend on this option and perform
differently when space is the concern. How-
ever, there are a number of other compiler op-
tions (mostly related to optimization) which
have a notable effect on the size of the gen-

12 • GCC Developers Summit

erated code. By experimenting with these op-
tions we found that-Os alone does not pro-
duce the minimal code for our testbed. Hence
we determined the combination of options on
top of -Os , which proved to be the best on our
testbed.2

The following table summarizes the final
choice of options, which we used in all our
trials (except where mentioned otherwise).
(Note, that some of these are implicitly enabled
or disabled by-Os ,3 therefore we supply the
options later in the command-line so that they
will be overridden.)

2One option belongs to this set if it produces an over-
all gain with respect to the default-Os , so it may happen
that in some cases it performs worse. It may also hap-
pen that one option combined with another one degrades
the overall result, but of course, we could not try every
combination of the options available.

3This is the list taken from the GCC 3.3 sources:

-falign-functions -falign-jumps
-falign-labels -falign-loops
-fbranch-probabilities -fcaller-saves
-fcprop-registers -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdefer-pop
-fdelete-null-pointer-checks
-fexpensive-optimizations -fforce-mem
-fgcse -fif-conversion
-fif-conversion2 -floop-optimize
-fno-merge-constants
-fno-reorder-blocks
-foptimize-sibling-calls -fpeephole2
-fregmove -freorder-blocks
-freorder-functions
-frerun-cse-after-loop
-frerun-loop-opt -fstrength-reduce
-fstrict-aliasing -fthread-jumps
options that depend on a define:
-fdelayed-branch -fomit-frame-pointer
-fschedule-insns
-fschedule-insns-after-reload .

Compiler Option 3.2 3.3
-Os yes yes
-mno-apcs-frame yes yes
-fomit-frame-pointer yes yes
-ffunction-sections yes yes
-fdata-sections yes yes
-fno-force-mem yes yes
-fno-force-addr yes yes
-fno-inline-functions yes yes
-fnew-ra no yes
-fbranch-probabilities yes yes
-finline-limit=1 yes yes
-fno-schedule-insns yes yes
-fno-optimize-sibling-calls yes yes
-fno-if-conversion no yes
-fno-thread-jumps yes yes
-fno-hosted yes yes

Some options were not available in GCC 3.2
releases, evidently they were left out in the
cases when this release was measured. We will
use the notationopt-1 for the best options for
3.2.2 andopt-2for the best options for 3.3.

The option-mno-apcs-frame is specific to
the ARM target. We also used another ARM-
specific option-mno-thumb-interwork
to tell the compiler that we were generating for
just 32-bit ARM instruction set.

Two interesting options are-ffunction-
sections and -fdata-sections which
generate only one function/data per section
and this helps the linker to omit the unused
functions/data from the executable. Generally
speaking, they do not influence the object sizes,
but the executables may become smaller.

Another notable option is-fno-inline-
functions which disables the automatic in-
lining of GCC. In general, automatic inlining
performs very badly with respect to code size
and it could be made more intelligent.

The linker also has a number of options that
were worth experimenting with. We deter-
mined the following combination which pro-
duced an overall smaller code than the default:

GCC Developers Summit 2003 • 13

Linker Option
-O 2
-gc-sections
-relax
-no-whole-archive

The options listed above produced, on our
testbed, an overall improvement in code size
of 4.78% with respect to using only-Os . Fig-
ure 1 shows the results separately for each pro-
gram. To obtain the relevant data we used the
GCC 3.3 snapshot with only-Os turned on
and compared it to the same compiler with ad-
ditional options from the table above (average
object sizes of test projects in standalone tar-
get). The total sizes of the test projects is given
with the project’s name in bytes.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

os
de

mo (
58

53
80

)

fle
x (

18
38

86
)

jpe
g (

16
02

52
)

pa
rse

r (
89

55
6)

mpe
g2

en
c (

69
98

9)

gs
m (4

67
38

)

se
d (

46
15

2)

bz
ip2

 (3
67

80
)

sm
all

 (1
18

92
)

g7
21

 (8
48

8)

mcf
(8

34
0)

ca
tdv

i (5
72

4)

GCC-3.3 newlib (-Os) GCC-3.3 newlib (opt-2)

Figure 1: The effect of additional compiler op-
tions

We can see from the above plot that every test
program has benefited from these options, es-
pecially the bigger ones (exceptflex , which
is probably due to the fact that it contains un-
commonly large amount of data).

In Section 5 we present some data which shows
that a marked improvement in library size can
also be achieved using this options set.

Due to the above results we propose to add
these to the default operation of-Os in future
releases of GCC (at least for the ARM target).

3.2 Other Optimization Options

There are high number of optimization options
(starting in-f) in GCC that can be given on
command-line (170+). Most of them have a bi-
nary state and so a corresponding-fno- XXX
is also normally present. We examined all
available options in GCC 3.3 but of course,
we could not try all of the possible combina-
tions, so we followed a simple approach in that
an option (both the enabling and disabling ver-
sions) was added to the list of good options if
it brought improvement over the default-Os .
An individual option was tried separately from
the others rather than by cumulating them. The
final result is given in the previous section.

Many of the investigated options had some
problems or did not yield improvements and
hence they were ignored. In the following
we categorize these options rather than listing
them all (they can be found in the GCC man-
ual). Those options that are not mentioned here
did not improve the code (the correctness of the
output was not verified either).

Combined use.The following options
separately produced certain im-
provements, but their combined
effect was not better on average:
-ffast-math -ffreestanding

-fno-builtin -fno-inline

-fno-sched-interblock

-fno-sched-spec

-fsched-spec-load

-fvolatile-static .

Parameterized options.For this work we
were not able to include the investigation
of those options that accept some param-
eters (i.e. not a binary). This parameter
is generally a number but in some cases
it can be a string. We only investi-
gated -finline-limit= number

14 • GCC Developers Summit

which showed a minor improve-
ment. The following options were
left with their default settings:
-falign-functions= number

-falign-labels= number

-falign-loops= number

-falign-jumps= number

-fcall-used- number

-fcall-saved- number

-fdiagnostics-show-

location= string -ffixed- number

-fmessage-length= number

-fsched-verbose= number

-fstack-limit-register= number

-fstack-limit-symbol= string

-ftls-model= number .

Invalid generated code.The options listed
here always produced smaller code, but
these codes could not be correctly exe-
cuted on GCC 3.3: -fshort-double

-fsingle-precision-constant

-funsafe-math-optimizations .
These should be investigated for possible
bugs in GCC.

Irrelevant option. Some options are ei-
ther not implemented in GCC 3.3
or they did produce some extremely
small code. These are the follow-
ing: -fallow-single-precision

-fcall-saved -fcall-used

-fconstant-string-class

-fdiagnostics-show-location

-fdump-tree -ffixed

-finline-functions

-finline-limit

-finstrument-functions

-fleading-underscore

-fmessage-length

-fno-allow-single-precision

-fno-call-saved -fno-call-used

-fno-constant-string-class

-fno-diagnostics-show-location

-fno-dump-class-hierarchy

-fno-dump-translation-unit

-fno-dump-tree -fno-fixed

-fno-function-sections

-fno-inline-limit

-fno-message-length

-fno-pretend-float

-fno-sched-verbose

-fno-stack-limit-register

-fno-stack-limit-symbol

-fno-tabstop

-fno-template-depth

-fpreprocessed -fpretend-float

-fprofile -fprofile-arcs

-fsched-verbose -fshort-enums

-fssa -fstack-limit

-fsyntax-only -ftabstop

-ftemplate-depth .

4 Compiler and Toolchain Com-
parisons

In this section we present the results of a com-
parison of the sizes of objects and executa-
bles of GCC configured for a standalone target
with two non-free compilers. The two com-
pilers shall remain anonymous, which will be
referred to asCompiler 1andCompiler 2. In
both cases the best configuration of compiler
options was used for code size. In the diagrams
opt-1 denotes the best options for GCC 3.2.2
andopt-2the best options for 3.3.

A comparison of objects is more informative
with regard to a compiler’s optimization capa-
bility for space, because in this case no pre-
generated code of libraries or startup routines
are included.

All sizes comprise of the program section sizes
(as described in Section 2.3), and we present
these in a relative form: with respect to GCC
3.3 snapshot with our option-set (elaborated in
Section 3).

GCC Developers Summit 2003 • 15

4.1 Compiler Results on Objects

In Figure 2 the average achievement of the C
compilers is shown in terms of object size. The
values are computed as the sum of the sizes of
all objects of the test programs, and are shown
as relative to GCC.

100.00%

88.52%
98.17%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

GCC-3.3 newlib (opt-2) Compiler 1 Compiler 2

Figure 2: Average compiler results for objects

As can be seen,Compiler 1provides the best
results andCompiler 2is still better than GCC.
The gain in size achieved byCompiler 1 is
11.48% and 1.83% byCompiler 2relative to
the size of the objects compiled with GCC.

The same measurement is shown in more de-
tail in Figure 3. It shows the effect of the C
compilers separately for the different test pro-
grams. The sizes of the objects are summarized
per test project (which is shown in parentheses
after the project name at the bottom of the dia-
gram in bytes).

The optimization capabilities of the compilers
seems to be similar for each test project:Com-
piler 1 produces the smallest code; the sizes of
the result ofCompiler 2are between the sizes
of the output ofCompiler 1and GCC.

4.2 Toolchain Results on Executables

We also investigated the difference in the gen-
erated code size of the executable files using
the same environment and options as for the

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

os
de

mo (
54

45
00

)

fle
x (

18
25

13
)

jpe
g (

15
38

64
)

pa
rse

r (
86

97
2)

mpe
g2

en
c (

67
61

0)

se
d (

44
33

6)

gs
m (4

39
94

)

bz
ip2

 (3
57

96
)

sm
all

 (1
15

96
)

g7
21

 (8
30

8)

mcf
(8

09
2)

ca
tdv

i (5
74

0)

GCC-3.3 newlib (opt-2) Compiler 1 Compiler 2

Figure 3: Individual compiler results for ob-
jects

objects. We performed this comparison for
standalone executable images, which means
that apart from the application objects, the li-
brary code and the effectiveness of the linker is
also incorporated in these number.

In Figure 4 the average result of executable
sizes is shown. We computed the average val-
ues in the same way as for the objects, so they
are simple sums of the program section sizes in
the executables. Relative values are shown as
well with respect to GCC.

100.00%

68.38%

85.89%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

GCC-3.3 newlib (opt-2) Compiler 1 Compiler 2

Figure 4: Average toolchain results for exe-
cutables

We can observe that the ranking of the
toolchains regarding code size in this compari-
son has not changed with respect to investigat-
ing only the compilers. The differences are, at
the same time, more significant than in the case
of objects comparison (about twice as much).

16 • GCC Developers Summit

Apparently, the reason for this is twofold: the
tools use different implementations of standard
C runtime libraries and the linkers may also be-
have differently. It is an open question whether
the difference in the libraries causes a bigger
difference or it is the linker that is responsible
(e.g. by performing different optimizations at
link time). Whatever the case, the comparison
of the executables is not as a good measure of
the toolchains as a comparison of the objects is
a measure of the compilers, because the imple-
mentation of the libraries is also an important
factor, which is included in the result.

In Figure 5 the same measurement is shown
in more detail individually for the various ex-
ecutables. The sizes of the executables are
summarized per test project (which is shown
in parentheses after the executable name at the
bottom of the diagram in bytes).

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

os
de

mo (
48

23
60

)

pa
rse

r (
13

10
04

)

mpe
g2

en
c (

12
29

08
)

cjp
eg

 (1
05

29
2)

toa
st

(7
73

84
)

ge
om

etr
y (

72
85

2)

ca
tdv

i (4
53

36
)

P3s
zo

gr
 (4

26
40

)

sz
inu

sz
 (4

24
08

)

da
tum

 (4
20

56
)

g7
21

d (
37

82
8)

g7
21

e (
37

08
4)

rd
jpg

co
m (3

57
08

)

ar
g (

29
65

2)

en
dia

n (
29

62
8)

GCC-3.3 newlib (opt-2) Compiler 1 Compiler 2

Figure 5: Individual toolchain results for exe-
cutables

As can be seen, the ranking of the three
toolchains does not always show the same or-
der as in the average case, but we can see that
Compiler 1 is still in all but one cases much
better than GCC.Compiler 2produced both the
worse and the best results: there are cases when
this tool had the largest code, but there are also
cases where it seems to be the best tool.

5 Results for Linux Libraries

Apart from using as a cross-compiler gen-
erating standalone executable images, GCC
is also widely used to generate programs
for GNU/Linux. Hence we thought that
it would be a good idea to investigate the
sizes of the generated objects and executa-
bles in this case as well. In these ex-
periments we used a GCC compiler config-
ured for the arm-linux-elf target with
the same environment and compiler options
as for the standalone target (the only ex-
ception being that we needed to omit the
-ffunction-sections option of GCC
because it caused some problems when execut-
ing the programs on a Linux system). In this
case we employed the commonly used GNU
library glibc [2].

The Linux executables are not comparable with
a standalone configuration (namely, with the
GCCarm-unknown-elf target or with the
two non-free compilers). This is because Linux
uses shared objects that are linked at runtime
to the executable (see Section 2.3). Neverthe-
less, objects should be comparable. Our re-
sults showed that the objects for Linux target
have a smaller code size than objects for stan-
dalone target (by 8.35% with GCC 3.2.2 on our
testbed). By examining the compiled objects
we found that the size differences were primar-
ily due to the different implementation of the
library headers.

5.1 glibc vs.µClibc

Alas we could not find any other compiler
toolchain (either free or non-free) that was able
to generate for Linux target. Only theµClibc
toolchain [7] could serve as a comparison ba-
sis. However it also uses the GCC compiler, so
it really compares two implementations of the
standard C runtime libraries.

GCC Developers Summit 2003 • 17

We performed all measurements on the testbed
and investigated the sizes of the objects and
executables as well. We used GCC version
3.2.2 because the later versions (3.3 snapshots
and the active development 3.4) are not sup-
ported byµClibc. With glibc- andµClibc-
based toolchains we used the same compiler
options that we found to be best for size with
the standalone target (as described in Section
3). It is interesting to note that compiling
the libraries using our combination of options
brought a significant improvement in library
size with respect to the default settings: 3.22%
for glibc and 2.04% forµClibc (computed for
shared object binaries and not for static li-
braries).

An interesting observation was that theµClibc
toolchain generally produces a slightly larger
code size (1 or 2% at most) than GCC with
glibc. We do not present the actual results here.
Rather it is more interesting to look at the dif-
ference in the sizes of the actual libraries.

We measured the total code section sizes for
all the generated library files. On average
the µClibc library was smaller by 80.58%
(1.94MB vs. 0.38MB) for the shared object bi-
naries, and was smaller by 59.49% (1.59MB
vs. 0.64MB) for static libraries counting sim-
ply the sum of all sections in all of the library
files.

6 Conclusion: Improvements and
Limitations

Assessing a compiler’s effectiveness in opti-
mizing for space poses a number of difficulties.
Based on our measurement results presented in
previous sections, we can say that the most re-
liable way is to compare the section sizes con-
taining program code and data in objects rather
than executables. This is because the imple-
mentation of the libraries is also an important

factor: all tools work with their own implemen-
tation, and this difference is also included in
the result.

We managed to narrow the gap between a high-
performance non-free compiler and GCC 3.3
using our own set of compiler options from
15.71% to 11.48% measured on objects for a
standalone target. However, this number is
nearly double when we consider executables.
This suggests that not only GCC needs im-
provement, but the associated libraries as well
(in this case newlib).

Things get more complicated if we wish to
compare toolchains configured for Linux target
and not for standalone. This is because Linux
uses shared objects that are linked at runtime.
In this case the only reasonable thing is to mea-
sure the size of the corresponding libraries.
For example, we found that the total size of
µClibc,—an alternative library to glibc—is far
less than glibc (only one fifth).

6.1 Improvement of Prerelease 3.3

In the previous sections we presented the re-
sults of measurements with the latest snapshot
of GCC 3.3 version. We performed the same
experiments with version 3.2.2 as well (which
is the last official release at the time of writ-
ing) and found that prerelease 3.3 has improved
slightly in terms of optimizing for space. In
this section we summarize the results of our
measurements of what are the exact improve-
ments.

The average difference between object sizes
generated by GCC 3.2.2 and the 3.3 snapshot
configured for standalone (with newlib) is only
0.31%. With both configurations we used the
best compiler options, where some options are
new to 3.3 and therefore not present in mea-
surements with 3.2.2 (see Section 3). Figure 6
shows the same separately for each program of

18 • GCC Developers Summit

the testbed.

90.00%

95.00%

100.00%

105.00%

110.00%

os
de

mo (
53

68
00

)

fle
x (

18
18

93
)

jpe
g (

15
71

96
)

pa
rse

r (
90

61
2)

mpe
g2

en
c (

69
63

0)

se
d (

45
57

2)

gs
m (4

41
86

)

bz
ip2

 (3
67

92
)

sm
all

 (1
18

76
)

g7
21

 (8
35

6)

mcf
(8

21
2)

ca
tdv

i (5
94

0)

GCC-3.2.2 newlib (opt-1) GCC-3.3 newlib (opt-2)

Figure 6: Improvement of GCC 3.3

Overall, no extraordinary improvement can be
seen from this diagram and, in fact, the biggest
program even shows that the older GCC gen-
erates smaller code. The difference is slightly
larger in the case of executables; (it is 1.86% on
average measured under the same conditions as
for objects), which can also be attributed to the
library code which is incorporated into the ex-
ecutable.

We also investigated the amount of improve-
ment that can be achieved with Linux libraries.
We prepared the glibc binaries using GCC
3.2.2 and 3.3 snapshot using the best options
and found that with the new version the library
was 0.95% smaller, which is similar to what we
got for object sizes above. Figure 7 shows this
improvement for each library component.

90.00%

95.00%

100.00%

105.00%

110.00%

lib
c-2

.2.
5 (

10
41

05
4)

lib
m-2

.2.
5 (

44
51

77
)

lib
ns

l-2
.2.

5 (
67

90
9)

lib
pth

re
ad

-0
.9

(8
28

22
)

lib
re

so
lv-

2.2
.5

(5
50

49
)

lib
ns

s_
co

mpa
t-2

.2.
5 (

39
38

2)

lib
ns

s_
nis

plu
s-2

.2.
5 (

38
26

4)

lib
ns

s_
file

s-2
.2.

5 (
34

61
9)

lib
ns

s_
nis

-2
.2.

5 (
33

81
2)

lib
rt-

2.2
.5

(2
22

52
)

lib
cry

pt-
2.2

.5
(1

76
35

)

lib
thr

ea
d_

db
-1

.0
(1

59
39

)

lib
ns

s_
he

sio
d-

2.2
.5

(1
27

54
)

lib
ns

s_
dn

s-2
.2.

5 (
10

81
4)

lib
an

l-2
.2.

5 (
79

55
)

lib
dl-

2.2
.5

(7
27

3)

lib
uti

l-2
.2.

5 (
63

83
)

lib
Bro

ke
nL

oc
ale

-2
.2.

5 (
22

90
)

GCC-3.2.2 glibc (opt-1) GCC-3.3 glibc (opt-2)

Figure 7: Improvement of GCC 3.3 measured
on glibc

We made some investigations to found out
what enhancements in GCC 3.3 caused this
improvement in code size. There are a num-
ber of minor issues that could probably ac-
count for this, like some smaller optimizer im-
provements and target specific optimizations.
However, we think that the major factor was
the introduction of the new register allocation
algorithm. In fact, by disabling-fnew-ra
in GCC 3.3, the difference of 0.31% between
3.2.2 and 3.3 using the best options disappears
and GCC 3.3 becomes to produce larger code
by 0.29% on average!

6.2 Remaining Problems

By looking at the generated code in more
depth, we managed to identify several weak-
points of GCC that could be improved in or-
der to generate a more compact code. Another
group of issues addresses GCC’s limitations
that are due to its architecture and logic of com-
pilation. Some of them may not be solved or at
least with very high effort. In the following we
summarize the main issues for providing some
starting point to future improvements.

Unit at a time compilation. GCC generally
translates one function at a time and therefore
it misses the opportunity of performing such
optimizations that rely on seeing all functions
of a compilation unit at the same time. With
version 3.4 there was recently added the possi-
bility for unit at a time compilation, but its uti-
lization in optimization has not yet been fully
achieved. If this feature is fully implemented
in GCC, it would enable, for example, the shar-
ing of global variables, the elimination of un-
used static functions, and the sharing of com-
mon data among functions (when the function-
per-section option is not used).

More intelligent -Os . Generally, when-Os
is turned on it means-O2 with some addi-
tional optimization algorithms being implicitly

GCC Developers Summit 2003 • 19

enabled. In addition, any part of GCC can
check for the state of this option. However, the
semantics of this option could be further im-
proved. First, a more careful selection of algo-
rithms that need to be enabled could be imple-
mented, similar to those proposed in Section 3.
This could be further enhanced using the pos-
sibility for target-specific configuration of this
switch. Furthermore, if-Os could act as an
orthogonal option to other levels of optimiza-
tion, it would offer for an even more flexible
configuration.

Interprocedural optimizations. Due to the
above-mentioned missing unit at a time com-
pilation, no interprocedural optimization algo-
rithms could be used. A number of existing
algorithms could be extended to interprocedu-
ral operation, which would undoubtedly pro-
duce significant improvement, e.g. interpro-
cedural dead-code elimination and redundant
code elimination [1, 5]. Even some evidently
redundant code constructs are currently gener-
ated by GCC. Consider, for example, the fol-
lowing code and notice that the call to function
foo will be superfluously generated:

int a,b;
int foo(int x) { return x; }
void bar() {

a = 1;
b = foo(a);

}

Minor optimization issues. Here we list sev-
eral minor issues that are related to some opti-
mization algorithm (or are possibly specific for
ARM target).

• The organization of loops is sometimes
too complicated with redundant condition
checking at higher optimization levels.

• The organization of the generated code for
theswitch statement can be made more

optimal, especially when jump tables are
used.

• RTL code generation from trees can be
made more optimal than that for the cur-
rent naïve preorder walk.

• Automatic function inlining does not
seem to take into account when code size
is the objective rather than speed. In this
case only those functions should be in-
lined, which produce smaller code than
calling the function.

• In ARM target, multiple variable load and
save instruction are generated only for
simple cases.

Library issues. Although the inadequacies of
library implementations are not the subject of
this article, we would like to remind the reader
of the fact that the library headers indeed have
some impact on the size of the generated code,
which we elaborate in Section 2.3. Another in-
teresting observation of ours was that a lot of
space could be saved if some operators could
be implemented by a library function call. For
example, if integer division and modulo opera-
tors (/ and%) would have a corresponding li-
brary function then for targets where these op-
erations are not part of the instruction set, a
simple call would be generated instead of the
inline implementation of the division. Natu-
rally, this would require that all library imple-
mentations provide such builtin functions for
certain commonly-used operators.

6.3 Conclusion

We have seen that GCC is getting better and
better with regard to code size. The latest
version 3.3 (using an optimal combination of
options) is only 11.48% worse than a high-
performance non-free compiler. In Figure 8 we
summarize the results of our measurements.

20 • GCC Developers Summit

5.89%

82.15%

11.96%

GCC-3.2.2 (-Os) to
GCC-3.3 (-Os)
GCC-3.3 (-Os) to
GCC-3.3 (opt-1)
GCC-3.3 (opt-1) to
GCC-3.3 (opt-2)

Figure 8: Summary of improvements

In this diagram we can observe (1) how much
improvement version 3.3 brings with-Os only
(0.3%), (2) the effect of a combination of op-
tions that we suggest over-Os measured on
GCC 3.3 (4.15%) and (3) the effect of some
new algorithms in GCC 3.3 (0.61%). These
three constitute the total difference of 5.06%
between GCC 3.2.2 with-Os and GCC 3.3
with opt-2.

Nevertheless there still are a number of
issues—which we summarized in the previous
section—that could make GCC’s capabilities
of optimization for space even better and this
way shift its mainly academic use nowdays to-
wards industry environments to become a seri-
ous competition to non-free commercial com-
pilers.

7 Availability

The present document and related informa-
tion including complete measurement data are
available at

http://gcc.rgai.hu/docs.php

The homepagehttp://gcc.rgai.hu/
aims to collect and maintain references to of-
ficial GCC pages in connection with the ARM
port.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman.
Compilers: Principles, Techniques, and
Tools. Addison-Wesley Pub Co, 1985.

[2] Homepage of glibc.
http://www.gnu.org/
software/libc/

[3] Charles Leggett’s benchmarks.
http://annwm.lbl.gov/bench/

[4] Homepage of MediaBench.
http://www.cs.ucla.edu/
~leec/mediabench/

[5] S.S. Muchnick. Advanced Compiler De-
sign and Implementation. Morgan Kauf-
mann Publishers, 1997.

[6] Homepage of newlib.
http://sources.redhat.com/
newlib/

[7] Homepage ofµClibc.
http://www.uclibc.org/

[8] SPEC 2000 tests by Andreas Jaeger.
http://www.suse.de/~aj/
SPEC/

[9] SPEC 95 tests by Diego Novillo.
http://people.redhat.com/
dnovillo/spec95/

[10] Standard Performance Evaluation Corpo-
ration – spec.
http://www.spec.org/

Gcc Compile Server

Per Bothner
Apple Computer

pbothner@apple.com

The way thegcc user-level program invokes
other programs (such ascc1 , as , andld) to
compile programs has changed little over the
years. Except for the recent integration of the
C pre-processorcpp with the compiler proper
cc1 , it works very much like the original Bell
Labs K+R C compiler: Thegcc driver runs
a freshcc1 /cc1plus /... executable for each
source C/C++/... program that needs to be
compiled, reading a single input source file,
and writing a single assembler output file.

This model has (at least) two big disadvan-
tages:

• Compiling or re-compiling many files is
slow. Most obviously there is the the over-
head of repeatedly creating a fresh exe-
cutable. Even more significant is that each
included header file has to be re-read from
scratch for each main file. This is a big
problem especially for C++, and has lead
to work-arounds like pre-compiled header
files.

• When compiling a source file the com-
piler has no knowledge of what is in other
source files. This limits the opportunities
for “cross-module” (or “whole-program”)
optimization, such as inter-module inlin-
ing.

The compile server project improves on these
problems as follows:

• The can be more than one input files to
a compilation, and they are compiled to-
gether to a single output file. It can create
tree representation for all the input files,
and delay code generation and optimiza-
tions such as inlining until it has read all
the input files.

• The compiler can be invoked inserver
mode, in which case it enters a loop, wait-
ing for compilation requests. Each re-
quest specifies the name of one or more
input files to compile, and the name of
a requested output assembler file. When
the compiler is done with one file, it does
some cleaning up, and then waits for the
next compilation request.

We will primarily discuss the latter server
mode, but multiple-file-compilation is relevant
to this discussion because both mechanisms re-
quire changing the logic and control flow in the
compiler proper.

The compile server compiles multiple source
files, without any extrafork ing or exec ing.
This provides some speedup, and so does hav-
ing to only once initialize tables and built-in
declarations. However, the substantial speed-
up comes from processing each header file only
once. The current work concentrates on front-
ends that make use ofcpplib , i.e. the C fam-
ily of languages. The goal is to achieve per-
formance comparable or better than with pre-
compiled headers, but without having to create
or manage PCHs. You are also a lot more flex-

22 • GCC Developers Summit

ible in terms of order of reading header files.
Specifically, the goal is to avoid re-parsing the
same header files many time, by re-using the
tree nodes over multiple compilations. Similar
ideas can benefit other languages (such as Java)
that import declarations from external modules
(or classes).

This paper describes highly experimental
work-in-progress. The current prototype han-
dles C tolerably well, and handles some non-
trivial C++ packages.

The compile server (as currently implemented)
uses the same working directory and command
line flags (such as-I and-D) for all compila-
tion requests.

1 Invoking the compiler

The gcc user-level driver takes a command
line with some number of flags, one or more
input file names, and optionally an output file
name. It uses a fairly complex set of rules to
select which other applications it needs to run.
One of these is the compiler “proper”, which
for C is thecc1 program. The driver executes
cc1 once for each C input file name, creating
an assembler file each time. The driver may
then invoke the assembler once for each assem-
bly file, creating relocatable binary files, which
may then be linked together forming an exe-
cutable or a shared library.

One part of this project is to change thegcc
driver so that when it is asked to compile multi-
ple C source files it just callcc1 once, passing
all the input files names tocc1 . The latter also
had to be changed so it could handle multiple
input file names, compile them all, and create
a single output file. This potentially speeds up
compilation time, but more importantly it en-
ables cross-module optimizations such as inter-
module inlining.

Handling multiple input files is valuable, but
doesn’t help much with interactive develop-
ment, where there are typically many frequent
debug-edit-compile cycles. It would speed
things up if the compiler could remember state
from previous compiles between compilations.
Another issue concerns existingMakefile
scripts, which often use a separategcc com-
mand for each source files. Therefore we need
an actualserver, which sits around in the back-
ground waiting for compilation requests. We
want to use the existinggcc command-line in-
terface so we don’t have to re-write existing
Makefile s, except that an environment vari-
able or a single flag will request thatgcc use a
compile server. Then you can just do:

make CC=’gcc --server’

2 Server protocol

The server uses Unix domain sockets to com-
municate with its clients. Using TCP/IP would
be more general, and would be needed for a
project where compilations are distributed to
different machines. However, there are a num-
ber of existing projects and products that do
distributed builds, and that is not the focus or
goal of this project, so far. (Distributed com-
pilation based on the compile server code may
be an interesting future project.)

Unix domain sockets are more efficient that
TCP/IP sockets, and are a good match for a
non-distributed compile server. Domain sock-
ets are bound to file names in the local file
system. Each compilation uses the current
working directory to resolve file names, so it
makes sense for the server to bind itself to a
socket in the current directory. (A future ver-
sion might be able to change working directo-
ries for different compilations.) For thecc1
compiler, the server listens on a socket bound
to ./.cc1-server .

GCC Developers Summit 2003 • 23

The server is started by adding-fserver to
thecc1 /cc1plus /... command line. All op-
tions are otherwise as normal, except you leave
out the names of the input and output files. The
server does alisten , and enters a loop us-
ing accept to wait for connections. For each
connection, it enters another loop, waiting for
server commands. Each command is a single
line, starting with acommand letter. Follow-
ing the command is a sequence of zero or more
quoted string arguments. The quote character
can be any byte: using a single quote"’" is
human readable, but thegcc driver uses nul
bytes’\000’ since they cannot appear in ar-
guments. Following the arguments is a newline
character that terminates the command.

The following server commands are or will be
supported:

F (“flags”) Set or reset the command-line
flags. (This is not implemented at the time
of writing.) It is followed by zero or more
nul-terminated flag values, terminated by
a newline. Do not use this to set input or
output file names. For example:

F\0-I/usr/include\0\0-DDEBUG=1\0\0-O2\0\n

T (“timeout”) Followed by an integer in mil-
liseconds. Sets the time-out duration. If
no requests come in during that time, the
server exits. If the timeout is 0, the server
exits immediately.

I (“invalidate”) Followed by a list of nul-
terminated filenames. Any cached data
for the named files are invalidated. Can be
used by an IDE when an include file has
been edited. (The server can alsostat
the files, but it may be more efficient to
avoid that.)

S (“source”) Followed by a file name argu-
ment, which is the name of an input

source file to compile. There can by mul-
tiple S commands in a row, in which case
all of the input files are compiled, produc-
ing a single output file.

O (“output”) Followed by a file name argu-
ment, which is the name of the output as-
sembler file. The file names from previous
S commands (since the lastO command)
are all compiled to produce the named
output assembler file.

The server currently writes out diagnostics to
its standard error, but it should instead send
them back to the client using the socket, so the
client can write out diagnostics on its standard
error.

The client is either thegcc command, or some
IDE. It could also be an enhancedmake. It
callssocket , and then attempts toconnect
to "./.gcc-server" . If there is no server
running, it starts up a server, and tries again.
(This part has not yet been implemented.)

If the gcc command is asked to compile mul-
tiple source files, it only opens a connection to
the server once, and only sends a singleF com-
mand. If a-o option is specified (and-E is
not specified) then (as an optimization) we can
havegcc do a multi-file compile, specifying a
singleOoutput file but multipleS input files.

3 Initialization

Initializing the compiler is relatively straight-
forward when compiling a single file. But a
server needs three levels of initialization:

1. Initialization that only needs to be done
once. For example creating the builtin
type nodes, and declaring__builtin
functions.

24 • GCC Developers Summit

2. Initialization that needs to be done for
each compilation request (i.e. for each
output file). For example opening the as-
sembler output file, and initializing vari-
ous data structures used by the compiler
back-end.

3. Initialization that needs to be done for
each input file. For example making
available any macros defined with-D
command-line flags - even if a previous
source file#undef ’d it. Also clearing out
any top-level declarations left over from
previous source files.

The historical code base has a number of as-
sumptions and dependencies that are no longer
appropriate with the compile server. We
interface between the language-independent
toplev.c and the language front-ends uses
callback functions that needed some changing:
The call-backs and functions that do one-time-
only initialization use the wordinitially ,
while the init is used for initialization
that is done once per compilation request.
For example the modified filec-common.c
contains bothc_common_initially and
c_common_init .

In general, we want to do as much as possible
in initially functions rather thaninit
functions. The obvious reason is to avoid re-
doing work needlessly, but there is a more im-
portant reason: The goal of the compile server
is to save and re-use trees across compilations.
These will make use of various builtin trees,
such asinteger_type_node . If these
builtins get re-defined, then any trees that make
use of them will become invalid.

The CPP functions make use of a
cpp_reader structure that maintains
the state of the pre-processor. The global
parse_in is initialized to acpp_reader
instance allocated atinitially -time. This

is important, because thecpp_reader
maintains a lot of state, including a cache of
header file contents, that we want to preserve
across compilations. In fact, a simple compile
server that only preserves the contents of
header files is one option for a less ambitious
compile server.

4 Caching text vs tokens vs trees

The fundamental design question for a compile
server is what state to save between compila-
tions. Three options come to mind:

• Preserving header file text is easy to im-
plement, especially ascpplib already
has a cache that does this. We just need to
tweak things a little bit. This is especially
useful if the OS is slow in handling file
lookup, doesn’t handle memory-mapped
files, or doesn’t do a good job buffering
files. Otherwise, the benefit should be mi-
nor. However, it is a modest change which
should be easy to implement.

• We can also preserve the raw token
streams in the header files, before macro-
expansion. This allows macros that
expand differently for different compi-
lations. However, we’d have to use
some new data structure for preserving
the tokens, and then feed them back to
cpplib . Any performance advantage
over preserving text is likely to be mod-
est, and unlikely to justify the rather rad-
ical changes tocpplib that would seem
to be required.

• Preserving the post-macro-expansion to-
ken stream seems more promising. Sav-
ing and later replaying the token stream
coming out ofcpplib doesn’t appear to
be very difficult, and would save the time
used for re-reading and re-lexing header

GCC Developers Summit 2003 • 25

files, though it would not save the time
spent on parsing and semantic analysis.
On the other hand consistency checks and
dealing with some of the ugly parts of the
languages and the compiler are simpler.

• The best performance gain comes from
saving and re-using the tree nodes af-
ter parsing and name lookup. This as-
sumes that (normally) a header file con-
sists mainly of declarations (including
macro definitions), and the “meaning” of
these declarations does not change across
compilations. That “meaning” may de-
pend on declarations in other header files,
but the “meaning” of those declarations is
also constant. (The C++ language specifi-
cation enshrines something similar in the
one-definition rule.)

Thus if we parse a declaration in a header
file, the result normally is a decl node or
a macro. Re-parsing the same header file
will result in an equivalent decl node or
macro. So instead of re-parsing and cre-
ating new nodes, we can just skip parsing
and re-use the old one.

A difficultly in re-using trees is determin-
ing when it is actually safe and correct to
do so, and when we have to re-parse the
header file. Another complication is that
the compiler modifies and merges trees
after-the-fact in various ways. We will
discuss these issues below.

The current prototype takes this approach.

5 Granularity of re-parsing

We say that a header file or portion of one
is parsed when actual characters are lexed,
parsed, and semantic actions performed. A file
or portion of one isre-parsedwhen the same
text is parsed a second or subsequent time, ei-
ther because the same file is included multiple

times without guards, or because we’re pro-
cessing a new main file. The goal of the com-
pile server is to minimize re-parsing text. In-
stead, we want tore-usea file or portion of
a file, which means we want to achieve the
semantic effects of parsing (typically creating
and adding declarations into the global scope),
without actually scanning or parsing the text.
We say that weprocessa file or a portion of
one to mean either parsing or re-using it.

We will later discuss how we can determine
when it is ok to re-use (a part of) a file, and
we have to re-parse it, but first let us consider
granularity of re-parsing: When we need to re-
parse, how much should we re-parse? The fol-
lowing approaches seem possible:

1. Re-read the entire header file. This is con-
ceptually simple, since deciding whether
to re-use or re-parse is decided when we
see an#include . This avoids any com-
plications about managing and seeking to
a position within a file. However, this is
not a major benefit, given thatcpplib al-
ready caches entire header files, and seek-
ing within a buffer is trivial. The prob-
lem with this approach is that handling
conditionals within a header file is diffi-
cult. We have to decide at the beginning
of the file whether any of it is invalid, and
whether any conditional compilation di-
rectives may “go the other way” compared
to when we originally parsed the file. This
is doable, but non-trivial. Also, this ap-
proach may be excessively conservative,
in that we have to invalidate too much.

2. Re-read a header file fragment between
any pre-processor directives. Each header
file is cached in a buffer. (This is not
new with the compile server.) When a
header file is re-used, we read from the
saved buffer. Pre-processor directives (in-
cluding conditionals) are handled in the

26 • GCC Developers Summit

normal way, by reading from the buffer.
However, if the fragment following a di-
rective (or the beginning of file) is valid,
we we just restore its declarations, and
skip ahead to the next directive (or end of
file). This approach has the big advantage
that we can use the existing code for eval-
uating and processing directives. It does
have the disadvantage that we have to re-
parse and re-evaluate directives, but sim-
plicity and consistency probably is more
valuable. There is also a simplification
because fragments (unlike header files)
don’t nest.

This is what is currently implemented.

3. Re-read a header file fragment between
conditional compilation directives. It is a
refinement of the previous option, except
that#define (and#undef) are treated
as part of a fragment, rather than delim-
iting fragments. A big advantage is that
we can re-use macro definitions, without
having to re-parse them.

I think this may be the best approach, but
I haven’t explored it yet.

4. Re-read just an individual declaration.
The problem with this is that we need to
maintain some amount of state with each
fragment, and the cost goes up if we make
the fragments too small: There are usu-
ally lots of declarations. The advantage of
smaller fragments is that there is less to
re-parse when a declaration becomes in-
valid, which reduces the chance of other
declarations becoming invalid. However,
we expect that this will not compensate
for the extra overheads, so we have not in-
vestigated this option.

Using fragments as the unit of re-parsing lets
us handle cases like this easily, where we can
re-useD1, even if we later find out we have to
re-parseD2:

#if M1
D1;
#endif
#if M2
D2
#endif

Header guards (as shown below to protected
against multiple inclusion) are no problem
when using fragments. The processing of
the #include and the header guard doesn’t
change when the compile server uses frag-
ments - the only difference is how it handles
the body of the header file.

#ifndef __H
#define __H
...
#endif

6 Entering and exiting fragments

The pre-processer uses callsbacks
enter_fragment and exit_fragment
to let the language-front-end know about the
start and end of fragments. These are bounds
to the functionscb_enter_fragment and
cb_exit_fragment in c-common.c .

The preprocessor maintains a cache of header
files, including their text. Each header file
also gets astruct cpp_fragment chain.
A new cpp_fragment is created whenever
cpplib starts processing a fragment and there
isn’t already acpp_fragment for that loca-
tion. This is done at the start of a header file,
and after each preprocessor directive. (We will
probably change the code so that#define
and#undef do not delimit fragments.) If the
language-specific callback returns non-NULL,
then the fragment has to be (re-)parsed nor-
mally. The preprocessor remember the re-
turned pointer, and it is passed back on subse-

GCC Developers Summit 2003 • 27

quententer_fragment calls for the same
cpp_fragment .

If cb_enter_fragment returns NULL, it
means the fragment can be re-used. The
preprocesor skips ahead to the end of the
fragment, ignoring anything skipped. The
cb_enter_fragment will have performed
any semantic actions for the fragment, such
restoring declarations into the top-level scope.

At the end of a fragment,cpplib calls
the exit_fragment callback, which per-
forms any language-specific actions needed if
this fragment is a candidate for future re-use.
Note thatexit_fragment is not called if
enter_fragment returned NULL.

7 Dependencies

Before we can re-use a saved fragment, we
need to determine if the declarations itde-
pends onhave changed, When a declaration is
parsed, identifiers appearing in it (such as pa-
rameter type names) are resolved using other
declarations, macros, and other dependencies.
So conceptually for each declaration we must
remember the set of other declarations and
“things” that it depends on. This is the former’s
depends-on-set. A pre-condition for re-using a
declaration when compiling a new file is that
any declarations it depends on also have been
re-used in the new compilation: A depended-
on declaration must have been processed, or
else it will not be defined, and it must not have
been re-parsed, in case that defined the decla-
rations to something new.

Consider a header fileh1.h containing:

#if M1
typedef int word;
#else
typedef long word;
#endif

/* Define flags,
which depends on word. */

extern word flags;

Assume the first time we#include h1.h ,
M1 is true, so word and flags are de-
fined. AssumeM1 is false the next time we
#include h1.h , so we get the other defi-
nition of word . Thus the saved definition of
flags , which depended on the old definition
of word , needs to be invalidated, and we have
to re-parse the fragment definingflags .

We can use a conservative approximation of
the depends-on set. For example, we can for
each header file remember the set of other
header files it uses, where a header file uses
some other header file if any declaration de-
fined in the former header file uses any dec-
laration in the latter header file. We can also
remember dependencies at the level of header
file fragments. This is the issue of the gran-
ularity of remembered dependencies (which
is related to but distinct from the granularity
of re-parsing). It actually has two parts: Is
a depends-on-set a set of declarations, frag-
ments, or files? How many depends-on-sets
do we maintain: One for each declaration, for
each fragment, or for each file?

Assuming the granularity of re-parsing is a
fragment, then there is no point in maintaining
a depends-on-set for each declaration. Instead
we maintain a depends-on-set for each frag-
ment, which is the union of the depends-on-
sets of the declarationsprovidedby the frag-
ment.

In the current implementation the elements of a
depends-on-set are fragments: I.e. a fragment
has a set of other fragments that provide decla-
rations it depends on. This is an optimization,
since there is no point in separately remember-
ing more than one declaration from the same
fragment (they will all be valid or all invalid).

28 • GCC Developers Summit

(However, there is a case for making the
depends-on-set elements be declarations rather
than fragments, because we then don’t have to
map from a declaration to the fragment that
provided it. The current implementation adds a
field to each declaration that points to the frag-
ment that declared it, and this is wasteful. (We
can also get the fragments by mapping back
from the declarations line number, but this is
slower, even if we change to using the line-map
structures.) However, we still need an efficient
way to determine if a declaration has been re-
used. We can do that by looking at the dec-
laration’s name, and verifying that the name’s
global binding is the declaration.)

7.1 Implementation details

For efficiency, a depends-on-set is represented
as a vector (currently aTREE_VEC, but it
could be a raw C array). This is more com-
pact than using a list, but has the complica-
tion that we don’t know how big an array to
allocate. To avoid excess re-allocation, we use
a global arraycurrent_fragment_deps_

stack (that we grow if needed) and a global
countercurrent_fragment_deps_end ,
This is used for the depends-on-set of the cur-
rent fragment. When we get to the end of the
fragment incb_exit_fragment , we allo-
cate the fragment’s depends-on-set (in the field
uses_fragments), whose size we now
know, filling it from current_fragment_

deps_stack , and then re-settingcurrent_

fragment_deps_end to 0.

We need to avoid adding the same
fragment multiple times to the current
depend-on-set. We do that by setting a
bit in the fragment when we save it in
current_fragment_deps_stack . If
the bit is set, we don’t need to add it. The
bit is cleared when incb_exit_fragment
we copy the stack into the fragment’s
uses_fragments field.

A global counterc_timestamp is incre-
mented on various occasions, and used as a
“clock” for various timestamps. Each fragment
has two timestamps:read_timestamp is
set when the fragment is (re-)parsed, while
include_timestamp is set whenever the
fragment is processed (parsed or re-used).
Both are set oncb_enter_fragment . We
also have a global main_timestamp
set whenever we starting compiling a
new main file. For a fragmentf to be
valid (a candidate for re-use), we re-
quire that f.include_timestamp <
main_timestamp , otherwise the fragment
has already been processed in this compila-
tion, and re-processing it is probably an error
we want to catch. We also require that for
each fragmentu in uses_fragments (the
depends-on-set) that all of the following are
true:

u->include_timestamp >=

main_timestamp (i.e. u has been
processed in this compilation);

that u.read_timestamp != 0 (it has
been parsed at some point!);

and that u.read_timestamp <=

f.read_timestamp (the most recent
time u was parsed was before the most
recent time thatf was parsed—i.e., thatu
hasn’t been re-parsed since we last used
it).

7.2 Depending on the lack of a definition

One subtle complication concernsnegative de-
pendencies: Some code may work one way if
an identifier has no binding and a different way
if it has a binding.

One example (from Geoff Keating): Suppose
the tagstruct x is undefined when this is
first seen:

GCC Developers Summit 2003 • 29

// in something.h
extern int do_something (struct x *);

This is legal C, but the parameter type is a
“local” (and useless) type, different from any
global struct x . Next, supposestruct
x has been declared (a forward declaration is
enough) the next time this fragment is pro-
cessed. In that case the parameter type of
do_something is the globalstruct x ,
and so the meaning ofdo_something has
changed. However, the dependency checking
discussed about will not catch this, since the
first time something.h was included there
was nothing for it depend on. This particular
problem will cause a warning to be written out
the first time, and we can at the same time in-
validate the current fragment (disabling future
re-use).

However, there may be more complex prob-
lems involving negative dependencies, for ex-
ample involving C++ function overloading.

8 Macro dependencies

The meaning of a fragment may also depend
on the definition of macros. Consider the fol-
lowing:

char buffer[BUFSIZ];

If the macroBUFSIZ changes, then the the
type ofbuffer is different, so the containing
fragment would have to be invalidated.

The implementation does not yet check for
macro re-definitions.

Assuming we change the implementation so
that macro definitions are part of fragments,
and we still store dependencies in terms of
fragments depending on other fragments, then

we have the basics of what we need. All that
would need to be added is that when a macro
is used, we note that the current fragment de-
pends on the fragment containing the macro
definition.

Which fragments get processed will also de-
pend on macros, but since conditional compi-
lation directives are always re-evaluated, this is
not a problem.

8.1 Depending on lack of a macro bindings

We also have the issue of negative dependen-
cies for macros: A fragment will use an iden-
tifier, and if later that identifier is bound to a
macro, then the fragment will be invalid. Con-
sider a header filea.h :

extern int i, j;

and a header fileb.h :

inline int foo() { return i; }

Supposefile1.c does this:

#include "a.h"
#include "b.h"

andfile2.c does this:

#include "a.h"
#define int size_t
#define i j
#include "b.h"

In file1.c the fragmentb.h depends on
a.h , since it usedi . But the meaning of frag-
mentb.h in file2.c is very different.

30 • GCC Developers Summit

The obvious solution is for every fragment to
maintain a set of identifiers that the fragments
depends on not being bound to macros, and to
check this list on fragment re-use. However,
this is quite expensive, as fragments will often
use many non-macro identifiers. Below, is a
less expensive (unimplemented) solution.

8.2 Checking lack of macro bindings

Here is one solution, that is inexpensive in the
common case. For each identifier we add two
bits:

unsigned used_as_nonmacro : 1;
unsigned also_used_as_macro : 1;

When an identifier is referenced, and there
is no macro definition for it (i.e.#define
strcmp strcmp doesn’t count), then we
set the used_as_nonmacro bit. This is
permanent—we never reset it.

If an identifier with theused_as_nonmacro

bit gets#define d as a macro, then we also
set thealso_used_as_macro bit (which is
also permanent). We also invalidate all frag-
ments. We can do this by setting this global (or
field in cpp_reader):

int first_valid_fragment_timestamp;

to c_timestamp . This forces all fragments
to be re-read the next time they are needed.

If an identifier is referenced, and it has the
also_used_as_macro bit set, then we add
it to a list belonging to the current fragment.
Then the next time the fragment is needed,
to check validity we check the macro state of
identifier on that list.

This implementation has the advantage that the
common case is cheap, not requiring any ex-
tra state except two bits per identifier. (We

also need space for a list header in each frag-
ment, but it may be possible to share with some
other list.). However, the rare cases get handled
without excessive cost.

9 Saving and restoring bindings

While a fragment is being parsed, each lan-
guage front-end is responsible for remember-
ing the bindings (declarations etc) that are be-
ing created, so they can be restored if the frag-
ment is re-used. The code for this is relatively
independent of the rest of the compile server
code, so it can be written without understand-
ing the details of the server.

Each binding that needs to be remem-
bered is added to the globalfragment_

bindings_stack , which is (currently)
a TREE_VEC. How much of the stack
is currently used is given by the global
fragment_bindings_end . There
are helper functions note_fragment_

binding_1 , note_fragment_binding_2 ,
and note_fragment_binding_3 to add
trees to the stack. What is added is up to the
front-end; we’ll give examples later. At the
end of the fragment,cb_exit_fragment

will allocate a TREE_VECwhose length is
fragment_bindings_end , assign that to
the fragmentsbindings field, and copy that
many elements fromfragment_bindings_

stack .

If a fragment is re-used, thencb_enter_

fragment will call the language-specific func-
tion restore_from_fragment . This is re-
sponsible for going through thebindings ar-
ray and restoring the bindings.

The C language front-end currently does the
following:

• pushdecl calls note_fragment_

GCC Developers Summit 2003 • 31

binding_1 , passing it the declaration
that ispushdecl ’s argument.

• pushtag calls note_fragment_

binding_1 , passing it theTREE_LIST
that is used to link the type into the tag
scope. This is called when the tag is
declared, including forward declarations.

• finish_struct and finish_enum

both callnote_fragment_binding_3 ,
passing it the struct/union/enum type,
the field list or enum values list, and
the type size. This is called when a
struct/union/enum tag type is defined.

To restore the bindings when re-using a
fragment, the function restore_from_

fragment in c-decl.c just loops through
thebindings TREE_VEC .

• If the element is a declaration, it set the
IDENTIFIER_GLOBAL_VALUE of the
declaration’s name to point to the decla-
ration, and chains it into thenames list
of thecurrent_binding_level .

• If the element is aTREE_LIST, we
know it was created bypushtag . So
we chain it into the tags list of
the current_binding_level . We
also null out the TYPE_FIELD and
TYPE_SIZE fields of the tag type, so
don’t get complaints if there is a later
start_struct . This restores a tag
type declaration.

• If the element is a type node, then it must
have been created byfinish_struct
or finish_enum , and must be fol-
lowed by a fields and a size node. Set
theTYPE_FIELDSand theTYPE_SIZE
fields of the type to those values. This re-
stores a tag type definition.

10 Modification-in-place of trees

As the compilation proceeds, the compiler
sometimes modifies existing declarations. This
causes some difficulties. Some examples:

• When the C or C++ front-end sees a dec-
laration with the same name as a pre-
vious declaration in the same scope, it
calls the functionduplicate_decls
to compare the old and new declarations.
This happens most frequently when the
old declaration is a forward or tentative
declaration. If the declarations match,
duplicate_decls may merge the in-
formation from the new declaration into
the old declaration, and then discard the
new declaration. If the old declaration
was in a header file that the compile server
re-uses, then it will incorrectly also con-
tain the information from the new decla-
ration.

• In C++ functions may be overloaded.
When a new function declaration over-
loads an older function declaration, the
latter is converted to a special overload
declaration. When a header file contain-
ing that declaration is re-used, we may in-
advertently also get overloaded functions
that aren’t supposed to be visible. This
may effect overload resolution, or cause
future incorrect error messages.

• A header file may contain a tentative
structure declaration (such asstruct
T), and a different header file may con-
tain a definition of thestruct with all
the fields. We need to be careful that re-
using the former does not re-use the latter.
Worse, some C programs may re-use the
same structure tag for incompatible types.
(This is poor style and rare, but we should
at least detect it.)

32 • GCC Developers Summit

Most of these merging operations are in prac-
tice harmless, or at least will very rarely cause
problems, though they may cause some errors
to not be properly detected. Sometimes the
merging operations can be handled by special
code, or it may be possible to “clean up” the
compiler to avoid them. However, there are so
many places in the compiler that modify older
tree nodes that we need a general framework
for dealing with them. Such a framework is an
undo buffer.

Whenever the compiler destructively modifies
a tree node that “belongs” to some “other”
header fragment, then it needs to append to a
global undo buffer enough information to undo
the modification. Before starting to compile a
new main file, the compiler runs through the
undo buffer in inverse order, undoing the re-
membered modifications. This allows frag-
ment re-use to push the associated declarations
without contamination from other fragments.

Implementation of the undo buffer has just
started, so I don’t know how will it will work
in practice, or how much undo information is
likely to be needed.

11 Some complications

Various unusual cases cause complications.

11.1 Nested #define inside declarations

On GNU/Linux <bits/siginfo.h> con-
tains:

enum
{

SI_ASYNCNL = -6,
define SI_ASYNCNL SI_ASYNCNL

SI_SIGIO,
define SI_SIGIO SI_SIGIO
...

SI_KERNEL = 0x80

#define SI_KERNEL SI_KERNEL
};

This causes a problem if#define is the end
of a fragment, since then we get a bunch of
fragments that are not self-contained. If for
some reason some but not all of these frag-
ments get invalidated and have to be re-parsed,
then the parser will get very confused!

This particular case is not a problem if we im-
plement the model that#define is part of a
fragment, rather than delimiting one, as I think
we should. Another and more general solution
if to invalidate a fragment if it starts or ends
not at top level: I.e. nested inside some other
declaration or scope. We discuss this next.

11.2 Conditional compilation inside declara-
tions

Many systems (including GNU/Linux and
Darwin) have code like the following (in
<netinet/ip.h>):

struct timestamp
{

u_int8_t len;
u_int8_t ptr;

#if __BYTE_ORDER == __LITTLE_ENDIAN
unsigned int flags:4;
unsigned int overflow:4;

#elif __BYTE_ORDER == __BIG_ENDIAN
unsigned int overflow:4;
unsigned int flags:4;

#else
error "Please fix <bits/endian.h>"
#endif

u_int32_t data[9];
};

This particular case should not be a problem in
practice, since the value of__BYTE_ORDER
is presumably not going to change. However,
it is possible that the first or last fragment might
becomes invalidated for some reason, causing

GCC Developers Summit 2003 • 33

the non-conditional parts to get re-parsed. In
that case, we need to make sure that the condi-
tional parts also get invalidated and re-parsed.
(The converse could also be true, though I
don’t see how that could happen.)

A general solution uses acurrently_

nested variable. It is incremented when start-
ing a declaration (such as an enum, class,
template, or inline function), and decremented
when exiting the declaration. Ifcurrently_

nested is positive when eithercb_enter_

fragment or cb_exit_fragment is called,
then the fragment is invalidated, disabling fu-
ture re-use.

This should be safe, but not ideal, asstruct
timestamp would be needlessly invalidated.
It would be better (though unimplemented) to
treat all the fragments that contain a part of
struct timestamp as a single unit. A
fragment groupis a minimal sequence of frag-
ments in the same header file such that if
currently_nested is true at the end of
one fragments then it and the following frag-
ment are both in the group. A fragment “fol-
lows” another if it is the next fragment pro-
cessed during a single processing of its file. For
simplicity, we require that there be no macro
definitions or undefinitions within the fragment
group. When we parse the fragment group, we
remember all the conditionals. We treat the
fragment group as a single fragment with a sin-
gle constructed compound conditional. When
we process the group the next time, we eval-
uate this compound conditional at the start of
the group. If it matches, we use the fragments
declarations like a normal re-use. If it does not
match, we re-parse the fragments as multiple
normal fragments.

11.3 Other non-nesting

One common example of non-nesting:

#ifdef __cplusplus
extern "{"
#endif

This causes the following to nested syntacti-
cally. However, we don’t want it to cause fol-
lowing fragments to be invalidated!

C++ namespaces.may have similar issues.

11.4 Types defined in multiple locations

The C standard requires that both<stdio.h>
and<stdlib.h> definesize_t . The trick
is to do this without a duplicate definition if
both are included. One common solution (used
on Darwin and other *BSD system) is to define
size_t in both headers, but use guards:

#ifndef __size_t_defined
#define __size_t_defined
typedef __SIZE_TYPE size_t;
#endif

Now supposea.c has

#include <stdio.h>
#include <stdlib.h>

andb.c has:

#include <stdlib.h>
#include <stdio.h>

In this case the dependencies might prevent
us from re-using the cached definition of
size_t . Worse, definitions that depend on
size_t also have to be invalidated. Note that
this is not a problem of the correctness of the
compile server, only its performance.

C++ has a “one-definition rule” that requires
that each type declaration etc only a single

34 • GCC Developers Summit

definition: If different compilation units see
different definitions, they must be token-by-
token the same. In practice this usually means
they are in the same header file, but as in the
size_t example, that is not strictly required.
However, if there are multiple definitions, they
will have inconsistent source lines. If you ask
an IDE forsize_t ’s definition, it will not be
able to give a unique answer. This suggests
that a good rule of design is the “extended one-
definition rule”: There should only be a sin-
gle definition, at a single location in a unique
header file.

Thesize_t definitions violate this extended
rule. Therefore, I think the “correct” solution
is to fix the headers to not do this. (We can use
fixincludes to avoid having to change the
installed headers, of course.) A simple solution
is to create a headerbits/size_t.h :

#ifndef _SIZE_T_H
#define _SIZE_T_H
typedef __SIZE_TYPE size_t;
#endif

and then have bothstdio.h andstdlib.h
do#include <bits/size_t.h> .

There are other solutions possible, but this
seems the cleanest and simplest. On
GNU/Linux systems using glibc, we have:

define __need_size_t
define __need_NULL
include <stddef.h>

The magic __need_size_t _ asks
stddef.h to define size_t and noth-
ing else. This satisfies the “extended one-
definition rule”, and I don’t know any reason
why it should cause problems for the compile
server. It is a rather complex mechanism,
though.

12 Results and conclusions

The compile server has been used to compile
sets of related C files (some Apple Carbon
files) and C++ (parts of the Octave mathemati-
cal library). The preliminary results have been
impressive, with speeds-ups of 3x or more.
However, there are a number of constructs that
are not handled correctly, some planned fea-
tures (such as the undo buffer) have not been
implemented yet, and for some constructs it is
not clear what the right solution is. So any de-
tailed performance numbers would be prema-
ture and misleading.

Work continues on the compile server, since
we at Apple believe it has great long-term po-
tential. The latest patches are available by
emailing<per@bothner.com> .

Thanks to the members and management of
the Apple compiler group (including Ted Gold-
stein, Ron Price, Mike Stump, and Geoff Keat-
ing) for discussions and support of this project.

Fortran 95 support in GCC

Paul Brook
paul@nowt.org

Abstract

This paper details the current status of Fortran
95 language support in GCC, with reference to
the future targets and goals of the g95 project.
Some of the problems encountered and design
decisions made in the process of interfacing
with the GCC backend code generator will also
be discussed.

1 The Evolution of Fortran

Fortran is a programming language primarily
designed for performing computationaly inten-
sive mathematical tasks. Indeed the name itself
is derived from the words FORmula TRANsla-
tion.

Common uses include Finite Element and
Computational Fluid Dynamics codes. Au-
thors of Fortran programs are often not pro-
fessional software developers. It is commonly
used in academic research situations where the
primary goal is the analysis and solution of the
problem, rather than the development of the
software itself.

Fortran was originally implemented by IBM as
an alternative to assembly language for pro-
gramming its 704 systems. The development
of the language started in 1954, with a man-
ual published in 1956 (there are rumors that
the first customer got a preview compiler with-
out manual in December 1955). The first ISO
Fortran Standard was released in 1966. Since
then, the standard has undergone four major re-

visions. These are typically named by the year
they were released.

Possibly the most significant changes were in-
troduced in the Fortran 90 standard. Many new
features were introduced, with the aim of en-
suring the language remained viable for use on
modern computing systems.

Fortran 90 introduces powerfull array handling
facilities. It allows operations to be performed
on whole arrays or sections of arrays in a single
expression. From the compiler writer’s view
this is the most complex feature of the language
from, as these must be converted into a collec-
tion of scalar operations. It also provides op-
portunities for the compiler to apply more ad-
vanced optimization strategies.

The concept of derived types (analagous to C
struct types) was also introduced. While many
Fortran vendors had previously provided ways
to access and manage dynamically allocated
storage areas these were only standardized in
the Fortran 90 standard.

As well as these additions to the functional ca-
pabilities of language, several other syntacti-
cal additions were made. These include mod-
ules to aid code modularity and reuse, explicit
procedure prototypes, block based flow control
constructs and the removal of restrictions on
the source form imposed by the use of punch
paper cards (so-called Hollerith cards).

Fortran 95 contains mostly minor changes rel-
ative to Fortran 90, and removes some of the
features that were deprecated with the advent

36 • GCC Developers Summit

of Fortran 90. However the majority of Fortran
77 code is still legal under Fortran 95 rules.

2 The g95 project

The existing GNU Fortran compiler is widely
respected, and a very competent compiler.
However this is limited to Fortran 77 code.
Even the author of g77 didn’t believe that one
could make a full Fortran 95 compiler based on
the existing g77 code. Writing a new frontend
from scratch means g95 is not restricted by de-
sign decisions made in g77, and is more easily
able to take advantage of new technologies in-
troduced into the common GCC middle- and
back-ends.

Thus Andy Vaught created the GNU Fortan 95
project. Initial work concentrated on parsing
and correctly resolving Fortran 95 source code.

Only in June 2002, when the parser and re-
solver were mostly complete, did work begin
on the code generation pass and interfacing to
the rest of GCC. For this reason g95 is able
to correctly parse and verify almost all Fortran
code, however it is only able to generate exe-
cutable code for some of it.

Work is currently concentrated on implement-
ing the few remaining constructs, and comple-
tion of the IO and runtime libraries.

Steven Bosscher and I created a fork from the
original g95 code in January 2003. This is done
in an attempt to achieve closer integration be-
tween GCC and g95, and to promote a more
open development environment.

3 The Parser and Resolver

Fortran grammar predates most modern pars-
ing techniques. It does not distinguish between
keywords and identifiers, and in some cases

the meaning of an identifier can only be deter-
mined from the way it is used. In other cases
the same line of code can have different mean-
ings depending on the context in which it is
encountered. It is possibly to write automat-
ically generated parsers for fortran. However
these are qute complicated as there is not a
clean seperation between lexical, syntactic and
semantics analysis. G95 uses a hand crafted
pattern matching parser which often operated
in a recursive manner.

The majority of error checking and name reso-
lution is done in this first pass. During this pro-
cess a tree structure is contructed to represent
the code. Each statement is represented by a
node. These are linked together in lists to form
code blocks. These are referenced by flow con-
trol statements. For example an IF statement
node contains pointers to an expression node
for the condition, and expression nodes for the
true and ELSE blocks.

Constant folding and simplification of intrinsic
functions is also performed while building this
tree.

This tree is then traversed in a second pass
to perform type checking, insert implicit type
conversions where necessary, and to resolve
overloaded functions. We also resolve calls
to intrinsic function calls to the corresponding
runtime library function.

After these two passes, the code tree is fully
resolved, and any errors will already have been
rejected. The completed tree is passed to the
code generation interface one program unit at
a time. A program unit is a module, top level
subroutine or function, or PROGRAM block.

The first two passes are now almost complete,
with legal code being parsed correctly. Most
illegal code is detected and rejected, however
there are still some constraints which are not
enforced.

GCC Developers Summit 2003 • 37

4 Interfacing to GCC

G95 uses the GCC middle end and back ends
to perform code generation and optimization.
It is currently targeted at the tree-ssa branch of
GCC. This uses a language independant, tree
based intermediate representation of the code.
This is very similar to the tree produced by the
parser, except it can only represents scalar op-
erations.

The GCC tree-ssa branch also provides a
cleaner seperation between the language spe-
cific fontends and the common backend. Pre-
vious versions were still quite closely tied to
the C frontend.

The translation of scalar code is mostly straigh-
forward. After some initial setup this is simply
a matter of transcribing the tree from one data
format to the other. This is done by recursively
walking the code tree, building the equivalent
GCC tree as this is done.

The main complication is that some expres-
sions require additional code to be associated
with them. The solution is to use a state struc-
ture when translating expressions. This state
structure contains the expression itself, and two
code blocks. The pre block contains setup code
which must be executed before the expression
is evaluated. The post block contains code to
clean up after the value is no longer needed.

For the majority of scalar operations both the
pre and post blocks will be empty. However
Fortran allows more complex operations which
may require additional code. One example of
this is passing the concatenation of two strings
as the actual argument of a function. The pre
block will contain code to allocate temporary
string storage and perform the concatenation.
The expression itself will consist of the func-
tion call with the temporary as the actual argu-
ment. The post block will contain code to free
the temporary storage.

The same state structure is also used to hold in-
formation needed for the scalarization of array
expressions.

5 Arrays

Modern computer systems employ a one di-
mensionsal memory space. Higher dimen-
sioned arrays are transformed into this space by
multiplying the index by the stride, or spacing,
between consecutive elements of the corre-
sponding dimension. These values are summed
to obtain the offset of the element relative to the
origin of the array. In g95 two pointers are used
to manipulate array data. A pointer to the first
element of data is required for memory man-
agement when allocating and freeing the array
data. To access the array a biased base pointer
is used. This pointer points to the location of
element zero of the array. In this way the ar-
ray can be accessed without needing to involve
the lower bound of the array. It may be the
case that element zero of the array does not ex-
ist. This does not matter, as it is only used as a
base point for the offsets; no non-existing ele-
ment of the array is ever referenced.

For fully contiguous arrays, where elements of
the array are stored in consecutive memory lo-
cations, the stride of a dimension is equal to the
size of all lower dimensions. This often speeds
up access to the array as these values may be
known at compile time.

The array descriptors used to pass actual argu-
ments (what C calls “parameters”) consist of
a pointer to the first element of the array, the
upper and lower bounds and the stride of each
dimension. Array pointer variables are handled
using the same structure. Array sections are ac-
comodated by calculating the origin and strides
to match the section, avoiding the need to make
temporary copies of the data.

38 • GCC Developers Summit

6 Scalarization

Array expressions introduce significantly com-
plications. The first problem is that of scalar-
ization. The Fortran language allows expres-
sions involving operations on sections of arrays
or whole arrays. In practical terms an operation
on a whole array is simply a special case of an
array section where the bounds of the section
are the bounds of the array.

In order to evaluate array expressions it is nec-
cessary to break them down into a set of scalar
operations. This is done by generating loops,
and using the implicit loop variables as indices
into the array sections. The evaluation of ar-
ray expressions involves several stages and two
passes of the expression tree.

First the expression tree is traversed to iden-
tify which terms are scalar, and which are ar-
rays. During this pass a list of subexpressions
is constructed. Operators whose operands are
all scalar result in a single scalar value. These
subexpressions will be evaluated outside the
scalarization loop, so the operands do not re-
quire individual processing. If an operator in-
volves has an array valued result, its operands
must be considered by the scalarizer.

The next task is to evaluate the bounds of the
implicit loops. The array terms in the expres-
sion are examined, and one of these is used to
determine the bounds of the scalarization loop.
Constant bounds are picked by preference as
this gives most potential possibilities for opti-
mization. All the terms in an array expression
must have the same shape, so the number of
elements in each dimension can be determined
from a single term.

For each array term an offset and stride relative
to the implicit loop are evaluated. It is not nec-
cessary to evaluate the upper bound of all the
array sections, except for runtime error check-
ing purposes.

The main body of the scalarization loop is gen-
erated using the same routines as are used for
scalar expressions. The translation of the ex-
pression is performed in the same order as the
initial walking, so only the next term in the
list needs to be examined during the translation
pass.

Operators which have not been marked as
specific subexpressions are translated in the
normal way after their operands have been
processed. When a scalar subexpression is
reached, the precalculated value is substituted.

When array expressions are reached, the im-
plicit loop variables are used to index into the
array to get a single scalar value. The offset
and scaling factor calculated earlier are used to
translate from the loop indices to individual ar-
ray indices.

A naive implementation of this algoritm would
require calculation of the offsets for all array
indices on every access. However we traverse
higher dimension array sections one dimension
at a time. Within the inner scalarization loop
the offset due to outer dimensions will be con-
stant. We take advantage of this by calculating
this offset before entering the inner scalariza-
tion loops.

7 Data Dependencies

The Fortran 95 standard specifies that all val-
ues on the right hand side of an assignment
statement must be evaluated before any assign-
ments take place. This is known as the “load-
before-store” principle. In many cases this re-
striction has no impact as the source terms of
the expression and the target variable are not
related. However more care must be taken
where both the source and target contain the
same elements.

Where the source and target elements are not

GCC Developers Summit 2003 • 39

identically matched, the order in which the as-
signments are performed may effect the result.
In some cases these data dependencies may be
resolved by ensuring the assignments are per-
formed in the correct order. In other cases an
array temporary is required.

The behaviour of g95 in this area is currently
quite simplistic. If any unmatched data depen-
dencies are detected, or the expression is too
complex to determine the exact dependencies,
an array temporary will be used for the whole
assignment. In this case two sets of scalariza-
tion loops are generated. The first evaluates the
source expressions, and stores the result in a
temporary array. The second copies the con-
tents of the temporary array to the target array.

There are many optimization techniques that
can be applied in order to reduce the size of
the temporary required, and to improve mem-
ory access patterns within scalarized assign-
ments. G95 currently only contains a partial
implementation of the simpler of these.

8 Intrinsic Functions

Fortran includes many intrinsic functions for
performing common mathematical and array
operations, as well as operations on data which
are impossible to implement using the Fortran
language itself. Intrinsic functions and subrou-
tines are implemented with a combination of
inline code and runtime library calls.

Where inline code is required the expression
state structure is used to hold the code to be
execured in order to evaluate the expression.

Most of the required library functions have
been implemented. However only the generic
versions of there have been written. There is
still significant scope for optimized versions to
take advantage of simpler cases, processor spe-
cific features and more advanced algorithms.

9 IO Library

The IO library is currently one of the least com-
plete parts of g95. Most of the infrastructure
for the IO library is in place, as is parsing of
format strings. However there is still a signif-
icant quantity of work required before this is
completed. Formatted IO of integers is possi-
ble, however IO of real values is still limited.

10 Incomplete Features

The WHERE and FORALL constructs only
work for simple cases where no data dependen-
cies exist.

The WHERE construct performs masked array
assignments. These are similar to normal array
assignments except a third array expression is
used as a mask. Only the assignments where
the coresponding element of the mask array is
true are preformed.

The FORALL construct allows assignments to
be performed for all permutations of a set of
loop variables. This is equivalent to enclos-
ing the assignment in multiple DO loops except
that “load-before-store” semantics apply to the
entire set of assignments. An array expression
may be used to mask these assignments. The
situation is further complicated by the ability
to nest additional FORALL and WHERE con-
stucts inside a FORALL block.

Arrays of character strings are not imple-
mented. Some combinations of derived types
and character strings are also incomplete.

Large array constructors used as variable ini-
tializers are not implemented. These typically
contain large implicit DO loops. The simplest
solution is to expand these loops at compile
time as we do will small constructors. How-
ever this process would consume an unreason-
ably large amount of CPU time and memory.

40 • GCC Developers Summit

The solution is to initialize these variables at
runtime.

11 Extensions

There are several extensions to the Fortran 95
standard which we would like to see included
in g95. The first seven of these will included in
the upcoming Fortran 200x standard.

1. Floating point exception handling

2. Allocatable arrays as structure compo-
nents, dummy arguments, and function re-
sults.

3. Interoperability with the C programming
language.

4. Parametrized data types.

5. Derived type I/O.

6. Asynchronous I/O.

7. Procedure variables.

8. OpenMP—provides multi-platform
shared-memory parallel programming.

9. Cray pointers—provides functionality
similar to C pointers.

12 Calling Conventions

The default behavior of g95 is to pass all ac-
tual arguments by reference. In many cases this
is neccessary as procedures may be called via
implicit interfaces. In this case the worst case
calling convention must be assumed.

In some cases, eg. elemental procedures or
procedures with assumed shape arguments, an
explicit intarface must always be used. For
these procedures optimizations such as passing

INTENT(IN) parameters by value are possible.
Although these optimizations are not currently
preformed to simplify debugging, they are lik-
ley to be implemented in future revisions.

By default all array arguments are passed us-
ing an array descriptor. The advantage of this
is that it allows discontiguous array section to
be passed without requiring an array tempo-
rary. The disadvantage of is that such code
will not be binary compatible with Fortran 77
code compiled by g77 or other Fortran compil-
ers. To accomodate this, a compile time option
is available to force g95 to use a g77 compat-
ible calling convention. Procedures which use
features which were not available in Fortran 77
(eg. POINTER arguments or assumed shape
arrays) are still passed using the default calling
convention.

While passing discontiguous arrays may re-
duce the overhead of a procedure call, it intro-
duces a penalty every time the parameter is ac-
cessed. This is acceptable if only a small pro-
portion of the passed data is accessed. How-
ever if the passed array is heavily used it is ben-
eficial to copy the array data into a contiguous
array temporary and access it from there. If the
array is INTENT(OUT) or INTENT(INOUT)
it may also be neccessary to copy the modified
data back to the original array.

The default behavior is to automatically add
code to the start of a procedure to test for
discontiguous arrays and repack them, as this
matches the behaviour of most other Fortran
compilers. Users are able to inhibit this be-
haviour when the cost of repacking the array
is likley to exceed the increased cost of access-
ing the array. For cases where the shape of the
array is not known at compile time the data is
not repacked when the first dimension is con-
tiguous, as this is unlikley to provide any per-
formance gain.

GCC Developers Summit 2003 • 41

13 Release dates

The tree-ssa branch of GCC is currently slated
for mainline integration in GCC 3.5. The cur-
rent release date for this, and hence the earliest
realistic release date for g95, is late 2004.

G95 only generated its first piece of executable
code in June 2002, and significant progress
has been made since then. It is hoped that by
Q4 2003 g95 will be functionaly complete and
standards compliant.

We believe that all the major obstacles to in-
clusion in the GCC source tree have now been
overcome. Inclusion in a non-release branch of
GCC is expected in the very near future. It is
expected that a seperate parallel development
tree will still be maintained for the convenience
of developers.

14 Acknowledgments

The g95 project was founded by Andy Vaught,
without whom g95 would not exist. He also
wrote a large portion of the code, braving the
more esoteric aspects of fortran grammar and
semantics.

Thanks should also be given to Steven Boss-
cher, Arnaud Desitter and everyone else who
has contributed code, patches, ideas or even
just support to the project. Also thanks to g77
maintainer Toon Moene for his assistance and
support.

42 • GCC Developers Summit

A New Loop Optimizer for GCC

Zdeněk Dvořák
SuSE Labs

dvorakz@suse.cz, http://atrey.karlin.mff.cuni.cz/˜rakdver/

Abstract

One of the most important compiler passes is
a loop optimization. The GCC’s current loop
optimizer is outdated and its performance, ro-
bustness and extendibility are unsatisfactory. A
goal of the project is to replace it with a new
better one. In this paper we discuss the design
decisions – the choice of used data structures
and algorithms, usage and updating of auxil-
iary information,. . . Then we describe the cur-
rent state with emphasis on still unsolved prob-
lems and outline the possibilities for further
continuation of the project, including replacing
the remaining parts of the old optimizer and in-
troducing new low-level (RTL based) and high-
level (AST based) optimizations.

Introduction

It is generally known that most of the time of
programs is spent in a small portion of code
([HP]). Those small but critical areas usually
consist of loops, therefore it makes sense to ex-
pect the optimizations that directly target loops
to have a great effect on program performance.
Indeed optimizations to improve the efficiency
of scheduling, decrease a loop overhead, op-
timize memory access patterns and exploit a
knowledge about a structure of loops in vari-
ous other ways were devised; see [BGS] for
a survey. Certainly no seriously meant com-
piler may ignore this. GCC contains a loop
optimizer that supports the following optimiza-

tions:

• Loop invariant motion that moves invari-
ant computations out of loops.

• Strength reduction, induction variable
elimination and various other manipula-
tions with induction variables like fitting
into machine addressing modes.

• Doloop optimization, i.e. usage of low
overhead loop instructions if a target ma-
chine provides them.

• Prefetching of arrays used inside loops to
reduce cache miss penalties.

• Unrolling of loops to reduce loop over-
heads, improve the efficiency of schedul-
ing and increase sequentiality of a code.

We refer to this loop optimizer as the old one
in the rest of the paper.

The importance of loop optimizations has been
recognized for a long time and the old loop
optimizer was added to GCC very early (a
copyright notice in theloop.c file dates it
to 1987). The lack of knowledge about the
optimization as well as the lack of computing
power lead to several design choices that were
unfortunate and today cause the optimizer to be
much less powerful than it could be. They also
cause other problems concerning its robust-
ness, extendibility and restrictions imposed on
the other optimizers. This lead us to decide to

44 • GCC Developers Summit

replace it by a new one by rewriting some parts,
adapting some parts for a new infrastructure
and extending it by new important optimiza-
tions. We refer to the goal of our efforts as the
new loop optimizer in the rest of this paper.

The paper is structured as follows: In the sec-
tion 1 we investigate the structure of the old
loop optimizer and problems with it. In the
section2 we discuss goals of the project to re-
place it and the high-level design choices of the
new loop optimizer. Then we continue by pro-
viding the detailed description of the current
state of the new loop optimizer, including the
changes made in the loop analysis. In the fol-
lowing section3 we describe used data struc-
tures and algorithms to update them. In the
section4 we summarize a status of the project,
provide some benchmark results and state our
future goals.

1 The Old Loop Optimizer

The loop optimizer was added to GCC very
early. Due to the lack of a computing power
(and partially also the lack of knowledge) in
those times, it has several features that are quite
unusual for modern compilers.

Firstly the loop discovery is based on notes
passed from the front-end. This approach is
very fast, but the considered loops are there-
fore required to form a contiguous interval in
the insn chain and to fit into one of a few spe-
cial shapes (of course covering all of the most
important cases). The loops created by non-
loop constructs (gotos, tail recursion, . . .) are
not detected at all. Optimization passes before
the loop optimizer are required to preserve the
shape of loops and the placement of loop notes.
Most of them fortunately do not modify control
flow graph, but those few that do are compli-
cated and restricted by this need.

Additionally sometimes this information is not

updated correctly, therefore it must be verified
in the loop optimizer itself and the offending
loops are ignored. This makes us miss some
more optimization opportunities.

The second problem is the handling of jumps
inside loops. The global (not specific to a sin-
gle pass) control flow graph was introduced
into GCC very lately (2000), and the loop op-
timizer works over the insn chain only. Con-
sequently the effects of branches are estimated
mostly by simple heuristics and results of loop
invariant and induction variable analyses tend
to be overly conservative.

As a side issue, the unroller does not update
control flow graph, forcing us to rebuild it.
This prevents us to gather a profiling feedback
before the loop optimizer, as this information
is stored in control flow graph. Therefore we
cannot use it in the loop optimizer itself and in
the previous passes (most notably GCSE and
loop header duplication).

The unroller uses its own routines to copy the
insn stream, creating an unnecessary code du-
plication with the other parts of the compiler.

Any single of these problems could probably
be addressed separately by modifying the rele-
vant code. Considering them together it seems
to be easier to write most of the optimizer
again from scratch. Some parts can just be
adapted for a new infrastructure (the decision
heuristics and execution parts of the invariant
motion and induction variable optimizations,
the whole doloop optimization pass), but the
greatest part has too deeply inbuilt expecta-
tions about a loop shape with respect to the insn
chain to be usable. We discuss the plans con-
cerning this rewrite in more detail in the fol-
lowing sections.

The source of other complications is the low
level of RTL. During the translation to RTL,
some of the information about possibility to

GCC Developers Summit 2003 • 45

overflow and types of the registers is lost and
we are forced to either rediscover it through
nontrivial analysis, use conservative heuristics,
produce a suboptimal code containing unnec-
essary overflow checks or produce a possibly
incorrect code. None of these options is par-
ticularly good. It would also make dependency
analysis quite complicated – it is not present
in GCC yet, and the optimizations that require
it (the loop reorganization, the loop fusion,
. . .) are missing. While the current project
is mostly RTL based, it will be necessary to
address these issues in near future. There are
already some efforts for moving the relevant
parts of the loop optimizer to the AST level in
progress; for more information see section4.

2 Overview of The New Loop Opti-
mizer

There are several basic principles we have de-
cided to follow:

• The passes that form the loop opti-
mizer should be completely independent
on each other. They must preserve the
common data structures and it should
be possible to run them any number
of times and in any order (although of
course not all orders are equally effec-
tive). This approach is completely dif-
ferent from the old loop optimizer one –
there the optimizers called each other in
non-transparent manner and most of them
had assumptions about information gath-
ered by the other ones. While this ap-
proach may be slightly more efficient and
perhaps simpler at some places with re-
spect to keeping the information up to date
during transformations, we prefer our ap-
proach due to its cleanness, extendibility
and robustness. We have also initially
made some parts of the optimizer quite

simplistic, and this approach enables us to
replace them later by more involved solu-
tions without greater problems.

• We have decided to generally reuse as
much of the existing code as possible
and eventually extend it for our purposes,
rather than creating our own variations
of the existing code. Most importantly
we used thecfglayout.c code for
duplicating basic blocks (this should re-
place two instances of a similar code,
one in unroll.c and the other one
in jump.c) and of course the existing
cfgloop.c code for a loop analysis (af-
ter significant changes described below).
We are also currently using the code from
simplify-rtx.c when computing a
number of iterations of a loop. In this
case we were unfortunately forced to start
working on an alternative RTL simplifi-
cation code for this purpose. The reason
is that the goal ofsimplify-rtx.c is
in some sense opposite to what we would
need. While we need to simplify the
RTL expressions into a simple canonical
shape,simplify-rtx.c code tries to
transform it so that it is efficiently com-
putable. Some of the manipulations it
does for this purpose (expressing multi-
plication through shifts) make it unsuit-
able for our needs, and some conversion
we need to do (using distributive law on
products of sums) make the resulting code
possibly much less efficient than the orig-
inal one. The two approaches do not seem
to fit together very well.

• As much of the information as possi-
ble should be kept up to date at any
given time. This concerns mostly com-
plicated operations over loops (unrolling,
unswitching, . . .), where we express them
as a composition of simpler operations
that preserve the consistent state rather

46 • GCC Developers Summit

than making them at once and updating
the structures afterwards. This makes
the code a bit slower, but much easier to
understand and debug (many bugs were
caught early due to a possibility to check
a consistency after every step).

The optimizer itself consists of the initializa-
tion, several optimization passes and the final-
ization. The finalization part is trivial, just
releasing the allocated structures. In the fol-
lowing paragraphs we examine the remaining
phases in a greater detail.

The initialization and finalization parts are
placed inloop-init.c . During the initial-
ization, we calculate the following information
(that is kept up to date till the finalization):

• A dominator relation is computed. The
dominators are used to define and find
natural loops and we use them during
loop transformations for several purposes,
most importantly during the simple loop
analysis to determine expressions (condi-
tions) that are executed (tested) in every it-
eration of the loop. Also we need them to
be able to update the loop structure when
parts of the code are removed. The de-
cision to keep the dominator relation al-
ways up to date turned out to be some-
what disputable. Having them ready at all
times is convenient and makes the parts
where they are used quite simple, but up-
dating them is relatively non-trivial and
quite costly. Most of their usages would
be simple to replace without using them
at a little extra cost, but their usage during
the removal of a code seems to be crucial.

• Natural loops are found. The natural loop
is defined as a part of a control flow graph
that is dominated by the loop’s header
block and backreachable from one of the
edges entering the header, called the latch

Figure 1: Creating nested loops from loops
with shared header.

Figure 2: Merging loops with a shared header.

GCC Developers Summit 2003 • 47

edge. Note that this definition makes it
possible for several loops to share the
same header block. We do not want to
have to handle them specially, so we split
the loop header in this case. There are
two ways to split the header (figures1
and 2) – one of them merges the loops
together, while the other one creates the
nested loops. It is impossible to recog-
nize which of these cases matches the re-
ality just from a control flow graph, and
even looking at the source code does not
help too much (this kind of loops is often
created by continue statements, and it is
hard to recognize what behavior describes
this situation better). If we have a profile
feedback available, we use it to determine
whether one of the latch edges is much
more frequent than the other ones, i.e. if it
behaves like an inner loop, and create the
inner loop in this case (this is sometimes
called the commando loop optimization).
Otherwise we just merge the loops.

• cfg_layout_initialize is called
to bring the instruction chain into a shape
that is more suitable for the transforma-
tions. This function removes the uncondi-
tional jumps from the instruction stream
(the information about them is already
included in the control flow graph) and
makes it possible to reorganize and ma-
nipulate basic blocks in much easier man-
ner.

• Loops are canonicalized so that they have
simple preheaders and latches. By this we
mean that:

– Every loop has just a single entry
edge and the source of this entry
edge has exactly one successor.

– The source of latch edge has exactly
one successor.

This makes moving a code out of the loop

easier, as there is exactly one place where
it must be put to (the preheader) and we
can put it there without a fear that it would
be executed if we do not enter the loop. It
also removes the singular case of a loop
that consists of just one block. A quite im-
portant fact is that the loop latch must now
belong directly to the loop (i.e. it cannot
belong to any subloop) and the preheader
belongs directly to the immediate super-
loop of the loop (it could belong to a sib-
ling loop if it had more than one succes-
sor).

• The irreducible regions are marked. A re-
gion of a control flow graph is considered
irreducible if it is strongly connected and
has more than one entry block (i.e. it con-
tains a depth first search back edge, but
the destination block of this edge does not
dominate its source, so the region fails to
be a natural loop). The irreducible re-
gions are quite infrequent (it is impossi-
ble to create them in structured languages
without use of a goto statement or a help
of the compiler), but we must be able to
handle them somehow. In the new loop
optimizer they are mostly ignored, just
taking them into account during various
analyses. The information about them is
quite easy to keep up to date unless we
affect their structure significantly. This
may occur in very rare cases during the
unswitching or the complete unrolling. In
some of these cases we have resigned on
updating the information and rather re-
compute them from scratch – it is quite
fast (just a depth first search over a con-
trol flow graph) and much less error prone
than to attempt to handle the case that we
would not be able to test properly (it is
almost impossible to construct a suitable
testcase).

48 • GCC Developers Summit

The optimization passes are placed in sepa-
rate files. The currently available optimization
passes are:

• Loop unswitching (in
loop-unswitch.c) – if there is a
condition inside a loop that is invariant,
we may create a duplicate of the loop,
put a copy of the condition in front of
the loop and its duplicate that chooses
the appropriate loop and optimize the
loop bodies using the knowledge of a
result of this condition. There are a few
points worth the attention. The first is
a code growth – if there is a loop with
k unswitchable conditions, we end up
with 2k duplicates of the loop. This is
not really a problem in practice – the
opportunities for unswitching are rare.
Also in most of the cases when we have
more than one unswitchable condition
per loop the values tested in them are
identical and they are therefore eliminated
already during the first unswitching. (Just
for sure the number of unswitchings per
loop is limited). The other is testing for
invariantness of the condition. As the new
loop optimizer is placed after GCSE (and
also the old loop optimizer’s invariant
motion), it is sufficient to just test that
the arguments of the condition are not
modified anywhere inside the loop.

• Loop unrolling and loop peeling (placed
in loop-unroll.c). While it would
correspond more to our philosophy to
have this pass split into several ones, the
code and computation sharing between
them is so large that it would be impracti-
cal. Anyway they are still completely in-
dependent and they could be split with a
little effort. We perform the following op-
timizations:

– Elimination of loops that do not roll

at all – this is somewhat exceptional,
as this does not increase code size (in
fact it decreases it). For this reason
we perform this transformation even
for non-innermost loops, unlike the
other ones.

– Complete unrolling of loops that it-
erate a small constant number of
times (a loop is eliminated in this
case too, but at the cost of a code size
growth).

– Unrolling loops with a constant
number of iterations—we may peel
a few iterations of the loop and thus
ensure that the loop may only exit in
a specified copy, therefore enabling
us to remove now useless exit tests.
For most of the loops we leave the
exit in the last copy of the loop
body—the exit is usually placed at
the end of loop body, and all copies
may be merged into a single block
in this case. In the rare cases when
this is not true we leave the exit in
the first copy—in this case it is a
bit easier to handle loops of a form
for (i=a; i < a+100; i++) ,
where the number of iterations may
be either100 or 0 (in the case of an
overflow).

– Unrolling loops for that the num-
ber of iterations may be determined
in runtime – the situation is similar
here, except that the number of it-
erations to perform before entering
the unrolled loop body must be de-
termined in runtime. The number
of iterations to be performed is cho-
sen through a switch statement-like
code.
According to some sources ([DJ]),
in both of these cases it is prefer-
able to place the extra iterations af-
ter the loop instead due to a better

GCC Developers Summit 2003 • 49

alignment of data (this might also be
important if we were doing autovec-
torisation). This can only be done
if the loop has just a single exit and
modifications of the loop are more
complicated. Also handling of over-
flows and other degenerate cases be-
comes much harder. It could how-
ever be done for constant time iterat-
ing loops with a little effort.

– Unrolling of all remaining loops –
this transformation is a bit contro-
versial. The gains tend not to be
large (scheduling may be improved
and rarely some computations from
two consecutive iterations may be
combined together), and sometimes
we even lose efficiency (due to neg-
ative effects of a code growth to
instruction caches and an increased
number of branches to branch pre-
diction). We only do this if specif-
ically asked to, and even then only if
the loop consists of just a single ba-
sic block.

– Loop peeling – the situation is simi-
lar (additionally we hope that the in-
formation about initial values of reg-
isters can be used to optimize the
few first iterations specially). We
gain most for loops that do not iter-
ate too much (optimally we should
not even enter the loop). To ver-
ify this, we use a profile feedback
and therefore perform this transfor-
mation only if it is present.

As was already mentioned, we perform
these transforms on innermost loops only.
This is not a principal restriction (the
passes are written so that they handle
subloops), but the ratio of a code size
growth to a performance gain is bad then,
and also duplicated subloops would be

more difficult for branch prediction in
processors.

The old loop unroller also performs the in-
duction variable splitting to remove long
dependency chains created by unrolling
that negatively impact scheduling and
other optimization passes. We instead
leave this work to the webizer pass that
is much more general.

There are three basic problems to solve.
Firstly there is the code growth. All of
the unrolling-type transformations natu-
rally increase a code size. While the
greater number of unrollings generally in-
creases effect of the optimization, it also
increases a pressure on code caches. It
is therefore important to limit the code
growth. There are adjustable thresholds
that limit the size of resulting loops as
well as the maximal number of unrollings.
We also use a profile feedback to optimize
only relevant parts and try to limit trans-
formations for that gains are questionable
in cases when we believe that they might
spoil the code instead (for example the
loop peeling is not performed without a
profile feedback that would suggest that
the loop does not roll too much).

A more appropriate solution might be a
loop rerolling pass run after scheduling
that would revert the effects of a loop un-
rolling in case we were not able to get any
benefits from it.

Secondly we need the analysis to deter-
mine a number of the loop’s iterations.
Currently we use a simplistic analysis that
for each exit from the loop that domi-
nates the latch (i.e. is executed in every
iteration) checks whether the exit condi-
tion is suitable – i.e. if it is comparison
where one of the operands is invariant in-
side the loop and the other one is set at
exactly one instruction that is executed ex-

50 • GCC Developers Summit

actly once per loop iteration. For such
condition we then check whether the vari-
able is increased by constant and attempt
to find its initial variable in an extended
preheader of the loop (i.e. basic blocks
that necessarily had to be executed before
entering the loop). Using the simplifica-
tion machinery fromsimplify-rtx.c
we then determine the number of itera-
tions. This turns out to be sufficient in
most cases, but things like multiple in-
creases of the induction variable prevents
us from detecting the variable. Also often
the initial value of the variable is assigned
to it earlier, preventing us from recogniz-
ing the loop as iterating a constant number
of times. Induction variables that iterate in
a mode that is narrower than their natural
mode are not handled, which causes prob-
lems on some of the 64 bit architectures
where int type is represented this way. We
are currently working on the full induction
variables analysis that solves all of these
problems.

Thirdly we must decide how much we
want to unroll the loop. Currently we take
into account just a code growth, thus we
unroll the bigger loops less times. For
constant times iterating loops we also at-
tempt to adjust the number of unrollings
so that the total size of the code is mini-
mal. In other cases we use the heuristic
that says that it is good to unroll number
of times that is a power of two (because of
better alignments and other factors). See
the section4 for discussion of the possi-
ble extensions of this scheme and the esti-
mation of gains obtainable by using some
better methods.

• Doloop optimization – this pass is just
an adaptation of the old loop optimizer’s
doloop pass that was written by Michael
Hayes. The structure of the pass was quite
clear and there were no major problems

with the transfer. This adaptation of the
pass is still only present on rtlopt-branch,
due to a bad interaction with the new loop
optimizer. This is caused by a overly
simplistic induction variable analysis used
and should be solved by the improved in-
duction variable analysis that is currently
being written.

3 The Data Structures

In this section, we discuss the structure to rep-
resent the loops as well as other auxiliary data
structures used in the new loop optimizer. We
also describe the algorithms used to update
them.

We consider a loopA a subloopof a loopB
if a set of basic blocks inside the loopA is a
strict subset of a set of basic blocks inside the
loopB. Because we have eliminated the loops
with shared headers, the Hasse diagram of a
partial ordering of loops by the subset relation
is a forest. To make some of the algorithms
more consistent, we add an artificial root loop
consisting of the whole function body (with an
entry block as a header and an exit block as a
latch). We maintain this loop tree explicitly.
For each of the nodes of the tree we remem-
ber the corresponding loop’s header and latch.
But we do not remember the set of basic blocks
that belong to it – if we need to enumerate the
whole loop body, we use a simple backward
depth first search from its latch, stopping at its
header.

To be able to test for the membership of a ba-
sic block to the loop we maintain the informa-
tion about the innermost loop that each basic
block belongs to. To speed up the testing for
a not necessarily immediate membership to a
loop (i.e. including membership to any subloop
of the loop), we also maintain the depth in the
loop tree and an array of parents for each node

GCC Developers Summit 2003 • 51

in the loop tree. Maintaining the arrays of par-
ents enables us to respond to these queries in
a constant time, but makes speed of all up-
dates proportional to the depth of the tree. This
works well in the practice, as the tree is usually
quite shallow and the structure of a loop tree
does not change very often.

Updating the loop tree is straightforward dur-
ing the control flow graph transformations we
use. Most of the optimizations do not change
the structure at all. The exception is the loop
unrolling and peeling type transformations if
some subloops are duplicated (it cannot really
occur just now because we optimize only in-
nermost loops, but the code can handle this sit-
uation for case we changed this decision) or the
unrolled loop is removed, but all of these cases
are easy to handle. Note that some of them
may create new loops if irreducible regions are
present. We ignore these newly created loops
(still having them marked as irreducible) – this
is conservatively correct and this situation is so
rare that it does not deserve any other special
handling.

As described in the previous section, there are
two further pieces of information we keep up-
to-date – the dominators of basic blocks and
the information about irreducible regions.

We represent the dominators as the in-
branching of immediate dominators. We rep-
resent this in-branching using ET-trees. This
structure was chosen due to its flexibility –
it enables us to perform all relevant opera-
tions asymptotically fast (updates and queries
for dominance in logarithmic time, finding the
nearest common dominator of a set of blocks
and enumerating all blocks that are immedi-
ately dominated by a given block in a time pro-
portional to the size of the relevant set times a
polylogarithmic time). The multiplicative con-
stants however turned out to be quite high and
we are considering replacing the structure by

some perhaps less theoretically nice but more
practical (e.g. a depth first search numbering
with holes).

Updating of the dominators in general is not
easy. During the transformations we perform
we are usually able to handle it by using the
fact that they are of a special kind (respecting
the loop structure that itself reflects the struc-
ture of dominators). In a small portion of cases
when we are not able to do it (or the rules to
determine how the dominators change would
be too complicated) we use a simple iterative
approach (similar to [PM]) to update the domi-
nators in the (usually) small set of basic blocks
where they could be affected. As already men-
tioned before, we also consider not keeping the
dominators at all and solving the cases when
they are currently used without them.

The irreducible regions are determined as
strongly connected components of a slightly al-
tered control flow graph. For each loop we cre-
ate a fake node. Entry edges of the loops are
redirected to these nodes, exit edges are redi-
rected to lead from them – this ensures that
the parts of the irreducible regions that pass
through some subloop are taken into account
only in the outer loop. We remember this in-
formation through flag placed on the edges that
are a part of those strongly connected compo-
nents. This is sufficient to update the informa-
tion effectively during the most of the control
flow graph transformations. The only difficult
case is when a loop that is a part of an irre-
ducible area is removed. We would have to
propagate the information about irreducibility
through the remnant of its body then. While
it could be done, it would be quite difficult
to handle all problems (subloops, other irre-
ducible regions). Instead, we simply remark
all irreducible regions using the algorithm de-
scribed above (this situation is quite rare and
the algorithm is sufficiently fast anyway).

52 • GCC Developers Summit

Estimated Estimated
Base Base Base Peak Peak Peak

Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 306 458 1400 291 480*
175.vpr 1400 452 310 1400 452 310*
176.gcc 1100 306 360 1100 299 368*
181.mcf 1800 821 219 1800 815 221*
186.crafty 1000 174 574 1000 174 575*
197.parser 1800 534 337 1800 534 337*
252.eon 1300 201 648 1300 199 652*
253.perlbmk 1800 338 533 1800 335 538*
254.gap 1100 280 393 1100 277 398*
255.vortex 1900 414 459 1900 410 464*
256.bzip2 1500 431 348 1500 428 351*
300.twolf 3000 902 333 3000 878 342*
Est. SPECint_base2000 398
Est. SPECint2000 403
Base flags: -O2 -march=athlon -malign-double -fold-unroll-loops
Peak flags: -O2 -march=athlon -malign-double -funroll-loops

Figure 3: SPECint2000 results for rtlopt-branch on Athlon, 1.7 GHz

Estimated Estimated
Base Base Base Peak Peak Peak

Benchmarks Ref Time Run Time Ratio Ref Time Run Time Ratio
164.gzip 1400 621 225 1400 605 232
175.vpr 1400 857 163 1400 854 164
176.gcc 1100 624 176 1100 618 178
181.mcf 1800 1354 133 1800 1361 132
186.crafty 1000 285 350 1000 275 364
197.parser 1800 930 194 1800 932 193
252.eon 1300 321 405 1300 331 393
253.perlbmk 1800 538 335 1800 556 324
254.gap 1100 426 258 1100 420 262
255.vortex 1900 817 233 1900 810 235
256.bzip2 1500 770 195 1500 774 194
300.twolf 3000 1709 176 3000 1699 177
Est. SPECint_base2000 224
Est. SPECint2000 225
Base flags: -O2 -march=athlon -fold-unroll-loops
Peak flags: -O2 -march=athlon -funroll-loops

Figure 4: SPECint2000 results for mainline on Duron, 800 MHz

GCC Developers Summit 2003 • 53

4 The Current State And Further
Plans

Everything described above in the paper (ex-
cept for the doloop optimizer adaptation) is al-
ready merged in the GCC mainline and will
be in GCC 3.4. The new loop unroller in
connection with webizer and other improve-
ments present on rtlopt-branch outperforms the
old one on i686 and even without the webizer
the results are comparable (see figures3 and
4 for results on SPECint2000 testsuite). Its
simple procedure to count the number of it-
erations beats the old loop optimizer’s one (it
detects52 loops as iterating a constant num-
ber of times on the gap benchmark compilation
as opposed to39 loops the old loop optimizer
did). The total number of loops detected is a bit
surprisingly almost the same –3292 by the old
loop optimizer,3298 by the new one – writers
of GCC have apparently done very good job
in keeping the front-end information about the
loops accurate.

We are still quite far from our final goal –
fully replacing and removing the old loop op-
timizer. What remains is to replace or adapt
induction variable optimizations (the invariant
motion can be solved by GCSE instead) and to
solve the problems described below.

While the results from i686 look quite promis-
ing, the new loop optimizer has problems on
the other architectures. Some of the 64-bit
architectures must represent 32-bit integers as
subregs of 64-bit registers. The simplistic anal-
ysis to determine a number of iterations of the
loops is not yet able to handle this case, so the
unroller is useless here. This should be solved
by introducing the new induction analysis that
is needed to replace the induction variable op-
timization parts anyway.

On some other architectures quite important
performance regressions were reported. They

might be partially caused by absence of the we-
bizer pass in mainline. We are currently inves-
tigating other reasons.

The interesting problem with the new loop un-
roller is determining whether and how much
we should unroll or peel a given loop. There
are several possible criterion:

• To decide whether to optimize at all, we
use a profile feedback. Not optimizing in
cold areas reduces the code growth a lot.
To decide whether to peel or to unroll, we
try to estimate the number of iterations of
a loop using the feedback and to peel a
sufficient number of iterations from a loop
so that the loop is not entered at all most of
the times. We also measure histograms of
first few iterations of the loops and use it
to determine this more precisely on rtlopt-
branch, but the effects are not significant.

• The effects on instruction cache seem to
be quite important. There are some works
describing how to take them into account
([HBK]), but they would require a global
program analysis and it seems question-
able whether they would be useful at all.
For now we cannot do anything but to at-
tempt to limit the code size growth.

Similarly duplication of loops whose bod-
ies contain many branches may also affect
the performance negatively, as the created
jumps increase the pressure on the CPU’s
branch prediction mechanisms. Some-
times these jumps may also may behave
less predictably than the original ones.

• From a scheduling point of view, it would
make sense to prefer unrolling loops that
contain instructions with long latencies. It
might also be useful to take a register al-
location into account, attempting to min-
imize the number of registers needed for
computing simple recurrences.

54 • GCC Developers Summit

Currently we use only a very simple heuristics
to take some of the effects mentioned above
into account. To estimate the possible gains of
using better methods, we wrote a code that at-
tempts to determine the best possible number
of unrollings for each of the loops. It adds a
code for each of the loops that measures the
total time spent inside it. Then fori between
1 and some upper bound, we unroll all loops
i times and gather the profiling data. Finally
we choose the best of these times for every
loop as the right number of iterations to un-
roll. This is far from optimal (the added pro-
filing code changes the performance character-
istics of a compiled program a lot and the opti-
mal numbers are also dependent on how other
loops are unrolled, so measuring them when all
are unrolled the same number of times is not
completely right), still we achieved about 2%
speedup on SPEC2000 this way on i686.

Adapting the rest of old loop optimizer seems
to be quite straightforward now. New induc-
tion variable analysis pass is just being tested
on rtlopt-branch, the next step is either to use it
to produce induction variable descriptions suit-
able for the old induction variable optimization
pass, or (more likely) to write a new one, heav-
ily reusing the parts of the old one.

There are additional loop optimizations that
should be added to GCC, including

• loop reorganization that makes accesses to
arrays more sequential by swapping an or-
der of nested loops if possible.

• loop fusion that joins adjacent loops that
iterate the same number of times (perhaps
after a small adjustment), to reduce an
overhead of loop creating instructions.

• loop splitting that inversely splits the
loops into several smaller ones if we know
that we are able to optimize them better
this way.

• autovectorisation, i.e. usage of SIMD in-
structions on arrays processed in loops.

All of those (and several other less impor-
tant) optimizations require a dependency anal-
ysis to determine whether it is indeed possi-
ble to reorganize computations as needed. It
would be pretty painful to determine this on the
RTL level, as information about types of vari-
ables is almost lost here (partially recoverable
only through a complicated analysis) and so is
some of the information about overflows. Also
the loop reorganization needed would be quite
complicated on the RTL level. This makes
them more suitable for the AST level. We hope
to be able to start a work on them in a few
months.

Other optimizations should be better done on
AST level from similar reasons, including a
part of induction variable optimizations that
does not use a machine specific information
(like a knowledge of addressing modes etc.)
and possibly unrolling and unswitching. There
are already some efforts for moving the rel-
evant parts of the loop optimizer to the AST
level in progress (Pop Sébastian have recently
altered the loop recognition code to work both
on RTL and AST levels).

Acknowledgments

The project is based on the GCC code written
by hundreds of volunteers. The most of contri-
butions to the loop analysis code we have built
upon were by Daniel Berlin, Michael Hayes
and Michael Matz. Part of the new loop op-
timizer was written during the “Infrastruktura
pro profilemřízené optimalizace v GCC” (“In-
frastructure for profile driven optimizations in
GCC”) software project at Charles University,
Prague ([DHNZ], [DHNZ-doc]) together with
Josef Zlomek, Pavel Nejedlý and Jan Hubička
under leadership of David Bednárek and later

GCC Developers Summit 2003 • 55

continued with support of Suse Labs. I would
also like to thank Richard Henderson for pro-
viding a useful feedback during the merging of
the new loop optimizer to the mainline.

References

[BGS] David F. Bacon, Susan L. Graham and
Oliver J. Sharp,Compiler Transforma-
tions for High-Performance Computing,
ACM Computing Surveys 26 (1994) p.
345–420.

[DJ] Jack W. Davidson and Sanjay Jinturkar,
An Aggressive Approach to Loop Un-
rolling, Technical Report CS-95-26, De-
partment of Computer Science, Univer-
sity of Virginia, Charlottesville, June
1995.

[DHNZ] The “Infrastruktura pro profilem
řízené optimalizace v GCC” project
specification,
http://ksvi.mff.cuni.cz/
~holan/SWP/zadani/gccopt.
txt

[DHNZ-doc] The “Infrastruktura pro pro-
filem řízené optimalizace v GCC” project
documentation,
http://atrey.karlin.mff.
cuni.cz/~rakdver/projekt/

[HBK] K. Heydemann, F. Bodin, P. Knijnen-
burg,Global Trade-off between Code Size
and Performance for Loop Unrolling on
VLIW Architectures, Publication Interne
1390, IRISA, Institut de Recherche en
Informatique et Syst‘emes Al’eatoires,
March 2001.

[HP] J. L. Hennessy and D. A. Patterson,
Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers,
Inc, San Matea, CA, 1990.

[PM] Paul W. Purdom, Jr. , Edward F. Moore,
Immediate predominators in a directed
graph, Communications of the ACM,
v.15 n.8, p.777-778, Aug. 1972

56 • GCC Developers Summit

Mudflap:
Pointer Use Checking for C/C++

Frank Ch. Eigler
Red Hat

fche@redhat.com

Abstract

Mudflap is a pointer use checking technol-
ogy based on compile-time instrumentation. It
transparently adds protective code to a variety
of potentially unsafe C/C++ constructs that de-
tect actual erroneous uses at run time. The
class of errors detected includes the most com-
mon and annoying types: NULL pointer deref-
erencing, running off the ends of buffers and
strings, leaking memory. Mudflap has heuris-
tics that allow some degree of checking even
if only a subset of a program’s object modules
are instrumented.

1 Motivation

C, and to a lesser extent C++, are sometimes
jovially referred to as a “portable assembly
language.” This means that they are portable
across platforms, but are low level enough
to comfortably deal with hardware and raw
bits in memory. This makes them particularly
suited for writing systems software such as op-
erating systems, databases, network servers,
and data/language processors. These types of
software are notorious for pointer-based data
structures and algorithms, which C/C++ make
easy to express. However, the runtime model
of C/C++ does not include any checking of
pointer use, so errors can easily creep in.

Several kinds of pointer use errors are widely

known by every C/C++ programmer. Access-
ing freed objects, going past buffer boundaries,
dereferencingNULLor other bad pointers, can
each result in a spectrum of effects, from
nothing, through random glitches and outright
crashes, to security breaches. Such bugs can
induce hard-to-debug delayed failures. Many
recent security vulnerabilities of operating sys-
tems result from simple stack-smashingbuffer
overrunerrors, where pointers go beyond their
bounds to corrupt memory, under the influence
of malevolent input.

There exist several technologies for catching
pointer use errors. They have distinct ap-
proaches and capability/performance tradeoffs.
For example, from a debugging point of view,
it is better to catch the memory corruption at
the moment it occurs, because context will be
fresh and available. On the other hand, for se-
curity protection of a deployed program, it may
be enough to catch an error just in time to pre-
vent a breach, which might be much later.

A large class of pointer use errors relates to
heap allocation. Writing past the end of a heap
object, or accessing a pointer after afree
can sometimes be detected with nothing more
than a library that replaces the standard li-
brary’s heap functions (malloc , free , etc.).
The Electric Fence1 package, for example, can
manage heap objects that carefully abut inac-

1ftp://ftp.perens.com/pub
/ElectricFence/

58 • GCC Developers Summit

cessible virtual memory pages. A buffer over-
run there causes an instant segmentation fault.
Some libraries provide a protected padding
area around buffers. This padding is filled
with code that can be periodically checked for
changes, so program errors can be detected at
a coarser granularity.

The bounded-pointers GCC extension2 ad-
dresses pointer errors by replacing simple
pointers with a three-word struct that also con-
tains the legal bounds for that pointer. This
changes the system ABI, making it neces-
sary to recompile the entire application. The
bounds are computed upon assignment from
the address-of operator, and constructed for
system calls within an instrumented version of
the standard library. Each use of the pointer is
quickly checked against its own bounds, and
the application aborts upon a violation. Be-
cause there is no database of live objects, an
instrumented program can offer no extra infor-
mation to help debug the problem.

The gcc-checker extension3 addresses pointer
errors by mapping all pointer manipulation
operations, and all variable lifetime scopes,
to calls into a runtime library. In this
scheme, the instrumentation is heavy-weight,
but the pointer representation in memory re-
mains ABI-compatible. It may be possible to
detect the moment a pointer becomes invalid
(say, through a bad assignment or increment),
before it is ever used to access memory.

The StackGuard GCC extension4 addresses
stack smashing attacks via buffer overruns. It
does this by instrumenting a function to rear-
range its stack frame, so that arrays are placed
away from vulnerable values like return ad-
dresses. Further guard padding is added around

2http://gcc.gnu.org/projects/bp
/main.html

3http://www-ala.doc.ic.ac.uk/˜phjk
/BoundsChecking.html

4http://immunix.org/stackguard.html

arrays and is checked before a function returns.
This is light-weight and reasonably effective,
but provides no general protection for pointer
errors or debugging assistance.

The valgrind package5 is a simulation-based
tool for detecting a broad class of pointer
use errors. It contains a virtual machine that
tracks processor operations, including mem-
ory loads and stores and even register arith-
metic, to check operations for validity. While
it works on unmodified executables, this simu-
lation process is quite slow.

The Purify package6 is a well-known propri-
etary package for detecting memory errors.
Purify works by batch instrumentation of ob-
ject files, reverse-engineering patterns in ob-
ject code that represent compiled pointer op-
erations, and replacing them with a mixture of
inline code and calls into a runtime library.

2 How Mudflap Works

Mudflap works by inserting a pass into GCC’s
normal processing sequence. It comes after
a language frontend, and before the optimiz-
ers, RTL expanders, and backend. It takes a
restricted form of GCCtrees, which are sim-
ilar to abstract syntax parse trees, as input.
It looks for tree nesting patterns that corre-
spond to the potentially unsafe source-level
pointer operations. These constructs are re-
placed with expressions that normally evaluate
to the same value, but include parts that refer
to libmudflap, the mudflap runtime. The com-
piler also adds instrumentation code associated
with some variable declarations.

The purpose of this instrumentation is to assert
a validity predicate at the use (dereferencing)
of a pointer. The predicate is simply whether

5http://developer.kde.org/˜sewardj/
6http://www.rational.com/products

/purify_unix/

GCC Developers Summit 2003 • 59

or not the memory region being referenced is
recognized by the runtime as legal. If not, a
violation is detected.

2.1 Object database

As a prerequisite for evaluating memory ac-
cesses, the runtime needs to maintain a
database of valid memory objects. This
database includes several bits of information
about each object, which may be retained for
some time even after it is deallocated.

• address range
• name, declaration source file, line number
• storage type (stack/heap/static/other)
• access statistics
• allocation timestamp and stack backtrace
• deallocation timestamp and stack back-

trace

In order to update and search the object
database, libmudflap exports a number of func-
tions to be called by the inserted instrumen-
tation. These basic ones include one to as-
sert that a given access is valid, and a pair
to add/remove a memory object to/from the
database. These functions are passed pointer
and size pairs plus some parameters to classify
or decorate accesses and objects. For exam-
ple, for a stack-based variable that may have
pointer-based accesses would have a “register”
call at the point of entry into its scope, and
a corresponding “unregister” call when con-
trol leaves the scope. For heap-based vari-
able, these calls would be performed within
hooked allocation and deallocation primitives.
For static variables, register calls are done early
during program startup, and the effort of an un-
register is not wasted during shutdown.

The database happens to be stored as a binary
tree, naturally ordered based on the addresses
of live objects. Its internal nodes are periodi-

cally rotated in order to move nodes for popu-
lar objects nearer to the root. There is a sepa-
rate fixed-size array listing recently deallocated
objects, used only during the performance-
insensitive processing of violation messages.

During program startup, some selected objects
are inserted into the database as specialno-
accessregions. These represent address ranges
that are certainly out-of-bounds for all instru-
mented programs, like theNULL area, and
some libmudflap internal variables. Violations
are always signaled when such objects are ac-
cessed by instrumented code.

2.2 Lookup cache

In order to hasten the database lookup, some-
thing which needs to be done many times, lib-
mudflap maintains alookup cache. This cache
is compact global direct-mapped array, indexed
using a simple hash function of the pointer
value. Each entry in the cache specifies a mem-
ory address range that is currently valid to ac-
cess. If an inline check of the cache for a given
access is successful, the application avoids the
call into libmudflap for the full-blown check-
ing routine. Though the code may look compli-
cated, it compiles down to a surprisingly small
number of instructions.

60 • GCC Developers Summit

/* uintptr_t: an integral type for
pointers */

struct __mf_cache { uintptr_t low,
high; };

struct __mf_cache
__mf_lookup_cache [];

uintptr_t __mf_lc_mask;
unsigned char __mf_lc_shift;

/* an approximation */
inline void
INLINE_CHECK (T* ptr, size_t sz, ...)
{

uintptr_t low = ptr;
uintptr_t high = low + sz - 1;
unsigned idx =

(low >> __mf_lc_shift) &
__mf_lc_mask;

struct __mf_cache *elem =
& __mf_lookup_cache [idx];

if (elem->low > low ||
elem->high < high)

__mf_check (ptr, sz, ...);
}

As with any caching scheme, choosing appro-
priate parameters (themaskandshiftvalues) is
a challenge. libmudflap has defaults suitable
for mixed sizes of objects, which can be over-
ridden by the user. In addition, when the run-
time detects excessive cache misses, it adap-
tively tunes the cache parameters to better fit
recent access patterns. For example, if ac-
cesses to small individual objects dominate, the
current heuristic tends to decrease shift val-
ues. That way, more of the lower-order bits of
the raw pointers remain to pick distinct cache
lines. Section 3.1.4 lists libmudflap options
that affect the lookup cache.

2.3 Instrumented expressions

Unsafe pointer expressions are easy to recog-
nize when looking at C/C++ code. Systemat-
ically, most*p , p->f , anda[n] expression
patterns need to be checked. Because mudflap
operates in the middle of the compiler, we can-
not look for such patterns in the source. In-
stead, we are given a representation of an en-

tire function that resembles an abstract syntax
tree. Expressions like the above are encoded in
a web of nodes of GCC’stree type structure.

Mudflap traverses a function tree in program
order, looking for certain pointer- or array-
related constructs. These tree nodes are modi-
fied in place, replacing the simple pointer ex-
pressions with a GCCstatement expression7

that evaluates to the same value, but includes
a call to the inline check routine outlined
above. Shown in GCC’s extended syntax,
the expressionp->f is changed roughly to
({check (p, ...); p;})->f .

This in-place modification scheme sup-
ports recursion for nested constructs like
ptr->array[i]->field . Here, two
separate checks would be emitted: one for
the elementptr->array[i] , and another
to follow that pointer. The checks are per-
formed in natural program order. Alternately,
such nested constructs might be presented to
mudflap already decomposed into an equiv-
alent sequence of simpler expressions by the
GIMPLE8 transformations.

Table 1 shows the primitive expression patterns
mudflap intercepts, and what address range is
checked for each. For indirect accesses into
larger compound objects, the checked range
typically begins at the address of the outer-
most compound object, and ends by including
the specific field or element being referenced.
This way, the checked base value for similar
accesses into the same structure or array can
be constant, and take more benefit from the
lookup cache. Notice that the checked range
doesnotextend to include the entire compound
object. This is because it is legal to allocate

7Statement expressions are a GCC extension that al-
lows a brace-enclosed block to be treated as an expres-
sion. The last statement in the block is used as the ex-
pression value.

8http://gcc.gnu.org/projects
/tree-ssa/

GCC Developers Summit 2003 • 61

slightly less memory for a variable-sized struc-
ture than the rawsizeof , as long as the unal-
located elements at the end are never accessed.
GCC’s own source code does this frequently.

2.4 Instrumented declarations

As discussed above, libmudflap’s object
database is kept up-to-date partly using instru-
mentation that tracks the lifetime of interest-
ing memory objects. Some of these objects
are variables declared asauto or static
and have their addresses taken (or are indexed-
into). For example, in the code segment be-
low, thearray variable needs to be registered
with libmudflap (so the[i] indexing can be
checked), but only for the duration of its scope
(so that the returned pointer is invalid to deref-
erence later).

char *foo (unsigned i) {
char array [10];
array [i] = ’a’;
return & array [i];

}

Tracking the lifetime of variables in a scope
is tricky because control can leave a scope
in several places. (Grossly, it might even
enter in several places usinggoto .) The
C++ constructor/destructor mechanism pro-
vides the right model for attaching code to
object scope boundaries. Luckily, GCC pro-
vides the necessary facilities even to trees that
come from the C frontend. There are sev-
eral variants: theCLEANUP_EXPRnode type,
and the more modernTRY_FINALLY_EXPR.
Both tree types take a block (a statement list)
and another statement (acleanup) as argu-
ments. The former is interpreted as a sequence
of statements such as any that follow a decla-
ration within a given scope/block. The latter
is a statement that should be evaluated when-
ever the scope is exited, whether that happens
by break , return , or just plain falling off

the end.9

We use this construct in mudflap by inserting
one of these special try/finally tree patterns be-
hind every declaration in need of lifetime in-
strumentation. The statement-list is the re-
mainder of the original function, past the dec-
laration in question, plus a register call for
the declared object. The cleanup statement is
an unregister call for the same object. The
above function becomes the following, render-
ing TRY_FINALLY_EXPRin a Java-like way:

char *foo (unsigned i) {
char array [10];
try {

__mf_register (array, 10, ...);
array [i] = ’a’;
return & array [i];

} finally {
__mf_unregister (array, 10, ...);

}
}

Mudflap also emits instrumentation to track the
lifetime of some objects in the global scope:
variables declared within file scope, or de-
claredstatic within a function. This is done
by intercepting assembler-related functions in
gcc/varasm.c . It turns out at some liter-
als like strings are like local static variables
in this respect, so they too are registered. In
each case, a list of declarations is accumu-
lated until the end of the compilation unit. At
that point a single dummyconstructorfunc-
tion is synthesized, containing a long list of
__mf_register calls. The linker arranges
to call this and all other constructor functions
early during the program startup.

2.5 Library interoperability

The above mechanisms are sufficient for
checking pointer operations that are within an
instrumented compilation unit. However, it is

9However, abrupt exit from a scope via alongjmp
is not specifically handled at this time.

62 • GCC Developers Summit

Sample declarations:

struct k {
int a; /* offset 0 size 4 */
char b; /* offset 4 size 1 */

}; /* size 8 */
int *iptr;
struct k *kptr;
char cbuf [];
short smtx [6][4];
int i, j;

expression tree structure check range
base size

*iptr INDIRECT_REF(iptr) iptr 4
*kptr INDIRECT_REF(kptr) kptr 8
kptr->a COMPONENT_REF(INDIRECT_REF(kptr),a) kptr 4
kptr->b COMPONENT_REF(INDIRECT_REF(kptr),b) kptr 5
cbuf[i] ARRAY_REF(cbuf,i) cbuf i+1
smtx[i][j] ARRAY_REF(ARRAY_REF(smtx,i),j) smtx 8*i+2*j+2

Table 1: Pointer expressions and their checked address ranges

often not possible to recompile an entire ap-
plication, including the system libraries, with
mudflap instrumentation. This means that sev-
eral aspects of interoperability need to be ad-
dressed.

Most C/C++ programs make use of standard
library functions (e.g.,strcpy) that manip-
ulate buffers given pointers. Typically, these
libraries are not instrumented by mudflap, so
they trust their arguments and don’t perform
pointer checking. An erroneous program can
pass invalid pointers to these libraries, and by-
pass mudflap protection. libmudflap contains
functions that interpose as a variety of such
system library routines (though many more are
yet to come). Each interposing function checks
given buffer/length arguments, then jumps to
the original system library. In this case, in-
terposition is performed by replacing system
library function names, viapreprocessor di-

rectivesimplied by mudflap, with libmudflap
names. This way, only instrumented object
files are affected. Figure 2.5 shows a sample
of this type of wrapper function in libmudflap.

In another scenario, an uninstrumented library
may return to an instrumented caller some
memory allocated from a shared heap. These
memory regions should be registered with lib-
mudflap, so that the instrumented code can
be allowed to use them. Intercepting calls
like malloc using preprocessor macros is
not possible, since we are dealing with pre-
compiled objects. We must intercept them
at link time. Suitable mechanisms are avail-
able: symbol wrapping(for static linking with
GNU ld) or symbol interposition(for shared
libraries). libmudflap contains a protection
mechanism to handle the case where a reen-
trant libmudflap⇒system-library⇒libmudflap
call chain might occur.

GCC Developers Summit 2003 • 63

void * WRAPPED_memmem (const void *haystack, size_t haystacklen,
const void *needle, size_t needlelen)

{
INLINE_CHECK (haystack, haystacklen, __MF_CHECK_READ, "memmem haystack");
INLINE_CHECK (needle, needlelen, __MF_CHECK_READ, "memmem needle");
return memmem (haystack, haystacklen, needle, needlelen);

}

size_t WRAPPED_fread (void *ptr, size_t size, size_t nmemb, FILE *stream)
{

INLINE_CHECK (ptr, size * nmemb, __MF_CHECK_WRITE, "fread buffer");
INLINE_CHECK (stream, 1, __MF_CHECK_READ, "fread stream");
return fread (ptr, size, nmemb, stream);

}

Figure 1: Sample libmudflap stdlib function wrappers

In yet another scenario, an uninstrumented li-
brary may return to an instrumented caller a
value that points to some valid static data in
the library. This could include objects as mun-
dane as string literals. In this case, no link-time
function interception can work, since these
addresses are taken without reference to sys-
tem functions. In order to tell automatically
whether such a pointer is valid or not, lib-
mudflap usesheuristics. These heuristics are
checked when an access check is initially de-
termined as a violation. They may look at other
auxiliary platform-dependent data like the pro-
gram’s segment boundaries, stack pointer, and
the like, to make a guess. Heuristics may be in-
dividually enabled or disabled at run time. See
section 3.1.3 for more details.

2.6 Performance

Mudflap instrumentation and runtime costs ex-
tra time and memory. At build time, the com-
piler needs to process the instrumentation code.
When running, it takes time to perform the
checks, and memory to represent the object
database. The behavior of the application has a
strong impact on the run-time slowdown, af-
fecting the lookup cache hit rate, the over-
all number of checks, and the number of ob-

factor description (+ polarity)
1 rare pointer manipulation
2 few large arrays
3 few addressed variables in scope
4 number cruncher
5 few tree/graph data structures
6 few objects in working set
7 non-changing access patterns

application factors in effect slowdown
+ − build run

BYTE nbench 3,4 1,2,5-7 3.5 3.5
spec2000 bzip2 2,5 1,3,4,6,7 4 5
spec2000 mcf 1-7 5 1.25

Table 2: Performance factors and overall mea-
sured slowdowns

jects tracked in the database, and their rates of
change. Table 2 lists some of these. A few
selected applications have been built with and
without mudflap instrumentation, then run to
estimate the slowdowns.10 Table 2 also lists
some applications, their performance factors,
and associated slowdowns for a default mud-
flap build and run.

10We used an x86 Linux host with ample memory, the
same mudflap-capable compiler, and same optimization
levels and linking modes.

64 • GCC Developers Summit

2.7 Future

Mudflap development is ongoing; we antici-
pate several improvements. Significant per-
formance benefits may arise from changing
the instrumentation code (mainly for pointer
checks), and functionality and performance
benefits from the runtime.

We currently instrument each occurrence of
a pointer dereference, even if that same
pointer/size pair has been “recently” checked.
Such checks could be eliminated if the com-
piler could prove that a subsequent check is
redundant with respect to an earlier one. Ex-
tending from this, it may be possible to ag-
gregate multiple checks based on the same
pointer or array - imagine sequences of state-
ments that accessptr->field1 through
ptr->field5 . The compiler could create a
single large check11 near the beginning of a ba-
sic block, and eliminate subsequent checks for
the same pointer/array. Some checks could be
moved out of loops. In exchange for signifi-
cantly better performance, such optimizations
could detect pointer use errors out of program
sequence.

Possible future libmudflap enhancements in-
clude support for multithreaded applications,
growing the list of hooked functions to include
more of the system libraries and system calls,
more libmudflap entry points for use in an em-
bedded system without a kernel, a better GDB
interface, and general tuning.

3 Using Mudflap

Using mudflap is intended to be easy. One
builds a mudflap-protected program by adding

11A large check would cover the maximal referenced
range, including the last referenced field for a pointer,
or the largest index for an array. This may require value
range propagation or similar analysis.

an extra compiler option (-fmudflap) to ob-
jects to be instrumented; one links with the
same option, plus perhaps-static . One
may run such a program by just starting it as
usual.

In the default configuration, a mudflap-
protected program will print detailed violation
messages tostderr . They are tricky to de-
code at first. Figure 5 in the Appendix contains
a sample message, and its explanation.

3.1 Runtime options

libmudflap observes an environment variable
MUDFLAP_OPTIONSat program startup, and
extracts a list of options. Include the string
-help in that variable, and libmudflap will
print out all the options and their default val-
ues. The display at the time of this writing is
shown in Figure 5 in the Appendix. The next
sections describe the options in groups.

3.1.1 Violation handling

The -viol- series of options control what
libmudflap should do when it determines a vi-
olation has occurred. The-mode- series con-
trols whether libmudflap should be active.

-viol-nop Do nothing. The program may
continue with the erroneous access. This
may corrupt its own state, or libmudflap’s.

-viol-abort Call abort() , requesting a
core dump and exit.

-viol-segv Generate aSIGSEGV, which a
program may opt to catch.

-viol-gdb Create a GNU debugger session
on this suspended program. The debugger
process may examine program data, but it
needs to quit in order for the program to
resume.

GCC Developers Summit 2003 • 65

-mode-nop Disable all main libmudflap
functions. Since these calls are still tab-
ulated if using-collect-stats , but
the lookup cache is disabled, this mode is
useful to count total number of checked
pointer accesses.

-mode-populate Act like every libmud-
flap check succeeds. This mode merely
populates the lookup cache but does not
actually track any objects. Performance
measured with this mode would be a
rough upper bound of an instrumented
program running an ideal libmudflap im-
plementation.

-mode-check Normal checking mode.
-mode-violate Trigger a violation for ev-

ery main libmudflap call. This is a dual of
-mode-populate , and is perhaps use-
ful as a debugging aid.

3.1.2 Extra checking and tracing

A variety of options add extra checking and
tracing.

-collect-stats Print a collection of
statistics at program shutdown. These
statistics include the number of calls to the
various main libmudflap functions, and an
assessment of lookup cache utilization.

-print-leaks At program shutdown, print
a list of memory objects on the heap that
have not been deallocated.

-check-initialization Check that
memory objects on the heap have been
written to before they are read. Figure 5
explains a violation message due to this
check.

-sigusr1-report Handle signal
SIGUSR1 by printing the same sort
of libmudflap report that will be printed
at shutdown. This is useful for moni-
toring the libmudflap interactions of a

long-running program.
-trace-calls Print a line of text to

stderr for each libmudflap function.
-verbose-trace Add even more tracing

of internal libmudflap events.
-verbose-violations Print details of

each violation, including nearby recently
valid objects.

-persistent-count=N Keep the de-
scriptions of N recently valid (but now
deallocated) objects around, in case a
later violation may occur near them. This
is useful to help debug use of buffers after
they are freed.

-abbreviate Abbreviate repeated detailed
printing of the same tracked memory ob-
ject.

-backtrace=N Save or print N levels of
stack backtrace information for each allo-
cation, deallocation, and violation.

-wipe-stack Clear each tracked stack ob-
ject when it goes out of scope. This can be
useful as a security or debugging measure.

-wipe-heap Do the same for heap objects
being deallocated.

-free-queue-length=N Defer an inter-
ceptedfree for N rounds, to make sure
that immediately followingmalloc calls
will return new memory. This is good for
finding bugs in routines manipulating list-
or tree-like structures.

-crumple-zone=N Create extra inaccessi-
ble regions of N bytes before and after
each allocated heap region. This is good
for finding buggy assumptions of contigu-
ous memory allocation.

-internal-checking Periodically tra-
verse libmudflap internal structures to
assert the absence of corruption.

66 • GCC Developers Summit

3.1.3 Heuristics

As discussed in Section 2.5, libmudflap con-
tains several heuristics that it may use when
it suspects a memory access violation. These
heuristics are only useful when running a hy-
brid program that has some uninstrumented
parts. Memory regions suspected valid by
heuristics are given the specialguessstorage
type in the object database, so they don’t in-
terfere with concrete object registrations in the
same area.

-heur-proc-map On Linux systems, the
special file/proc/self/map contains
a tabular description of all the virtual
memory areas mapped into the running
process. This heuristic looks for a match-
ing row that may contain the current ac-
cess. If this heuristic is enabled, then
(roughly speaking) libmudflap will permit
all accesses that the raw operating sys-
tem kernel would allow (i.e., not earn a
SIGSEGV).

-heur-start-end Permit accesses to the
statically linked text/data/bss areas of the
program.

-heur-stack-bound Permit accesses
within the current stack area. This is
useful if uninstrumented functions pass
local variable addresses to instrumented
functions they call.

-heur-argv-environ This option adds
the standard C startup areas that contain
theargv andenviron strings to the ob-
ject database.

3.1.4 Tuning

There are some other parameters available to
tune performance-sensitive behaviors of lib-
mudflap. Picking better parameters than de-
fault is a trial-and-error process and should be

undertaken only if-collect-stats sug-
gests unreasonably many cache misses, or the
application’s working set changes much faster
or slower than the defaults accommodate.

-age-tree=N For tracking a currentwork-
ing setof tracked memory objects in the
binary tree, libmudflap associates alive-
nessvalue with each object. This value is
increased whenever the object is used to
satisfy a lookup cache miss. This value is
decreased every N misses, in order to pe-
nalize objects only accessed long ago.

-lc-mask=N Set the lookup cache mask
value to N. It is best if N is2M − 1 for
0 < M ≤ 10.

-lc-shift=N Set the lookup cache shift
value to N. N should be just a little
smaller than the power-of-2 alignment of
the memory objects in the working set.

-lc-adapt=N Adapt the mask and shift pa-
rameters automatically after N lookup
cache misses. The adaptation algorithm
uses the working set as identified by tree
aging. Set this value to zero if hard-coding
them with the above options.

3.2 Introspection

libmudflap provides some additional services
to applications or developers trying to debug
them. Functions listed in themf-runtime.h
header may be called from an application, or
interactively from within a debugging session.

__mf_watch Given a pointer and a size, lib-
mudflap will specially mark all objects
overlapping this range. When accessed in
the future, a special violation is signaled.
This is similar to a GDB watchpoint.

__mf_unwatch Undo the above marking.
__mf_report Print a report just like the one

possibly shown at program shutdown or
upon receipt ofSIGUSR1.

GCC Developers Summit 2003 • 67

__mf_set_options Parse a given string
as if it were supplied at startup in the
MUDFLAP_OPTIONSenvironment vari-
able, to update libmudflap runtime op-
tions.

4 Acknowledgments

The author thanks Ben Elliston for sug-
gesting the mudflap name, Graydon Hoare
for prototyping several parts of libmudflap,
Diego Novillo for commiserating about GCC
internals (and doing something to improve it),
Red Hat (my employer) for funding mudflap’s
development, and future contributors for con-
tributing in the future.

5 Availability

The source code of GCC with mudflap ex-
tensions, and of libmudflap, are available
from the author, or by anonymous CVS.
See http://gcc.gnu.org/projects
/tree-ssa/ for instructions.

68 • GCC Developers Summit

mudflap violation 3 (check/read): time=1049824033.102085 ptr=080c0cc8 size=1

This is the third violation taken by this program. It was attempting to read a single-byte object with base pointer0x080c0cc8 . The timestamp
can be decoded as 102 ms afterTue Apr 8 13:47:13 2003 via ctime .

pc=08063299 location=‘nbench1.c:3077 (SetCompBit)’
nbench [0x8063299]
nbench [0x8062c59]
nbench(DoHuffman+0x4aa) [0x806124a]

The pointer access occurred at the given PC value in the instrumented program, which is associated with the filenbench1.c at line 3077, within
functionSetCompBit . (This does not require debugging data.) The following lines provide a few levels of stack backtrace information, including
PC values in square brackets, and sometimes module/function names.

Nearby object 1: checked region begins 8B into and ends 8B into

There was an object near the accessed region, and in fact the access is entirely within the region, referring to its byte #8.

mudflap object 080958b0: name=‘malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=1r/0w liveness=1

This object was created by themalloc wrapper on the heap, and has the given bounds, and size. Thecheck part indicates that it has been read
once (this current access), but never written. The liveness part relates to an assessment of how frequently this object has been accessed recently.

alloc time=1049824033.100726 pc=4004e482
libmudflap.so.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

The allocation moment of this object is described here, by time and stack backtrace. If this object was also deallocated, there would be a similar
dealloc clause. Its absence means that this object is still alive, or generally legal to access.

Nearby object 2: checked region begins 8B into and ends 8B into
mudflap object 080c2080: name=‘malloc region’
bounds=[080c0cc0,080c2057] size=5016 area=heap check=306146r/1w liveness=4562
alloc time=1049824022.059740 pc=4004e482

libmudflap.so.0(__real_malloc+0x142) [0x4004e482]
nbench(AllocateMemory+0x33) [0x806a153]
nbench(DoHuffman+0xd5) [0x8060e75]

Another nearby object was located by libmudflap. This one too was amalloc region, and happened to be placed at the exact same address. It
was frequently accessed.

dealloc time=1049824027.761129 pc=4004e568
libmudflap.so.0(__real_free+0x88) [0x4004e568]
nbench(FreeMemory+0xdd) [0x806a41d]
nbench(DoHuffman+0x654) [0x80613f4]
nbench [0x8051496]

This object was deallocated at the given time, so this object may not be legally accessed any more.
number of nearby objects: 2

No more nearby objects have been found.
The conclusion? Some code on line 3077 ofnbench1.c is reading a heap-allocated block that has not yet been initialized by being written into.
This is a situation detected by the-check-initialization libmudflap option, referred to in section 3.1.2.

Figure 2: Sample libmudflap violation message, dissected

GCC Developers Summit 2003 • 69

This is a GCC "mudflap" memory-checked binary.
Mudflap is Copyright (C) 2002-2003 Free Software Foundation, Inc.

The mudflap code can be controlled by an environment variable:

$ export MUDFLAP_OPTIONS=’<options>’
$ <mudflapped_program>

where <options> is a space-separated list of
any of the following options. Use ‘-no-OPTION’ to disable options.

-mode-nop mudflaps do nothing
-mode-populate mudflaps populate object tree
-mode-check mudflaps check for memory violations [default]
-mode-violate mudflaps always cause violations (diagnostic)
-viol-nop violations do not change program execution [default]
-viol-abort violations cause a call to abort()
-viol-segv violations are promoted to SIGSEGV signals
-viol-gdb violations fork a gdb process attached to current program
-trace-calls trace calls to mudflap runtime library
-verbose-trace trace internal events within mudflap runtime library
-collect-stats collect statistics on mudflap’s operation
-sigusr1-report print report upon SIGUSR1
-internal-checking perform more expensive internal checking
-age-tree=N age the object tree after N accesses for working set [13037]
-print-leaks print any memory leaks at program shutdown
-check-initialization detect uninitialized object reads
-verbose-violations print verbose messages when memory violations occur [default]
-abbreviate abbreviate repetitive listings [default]
-wipe-stack wipe stack objects at unwind
-wipe-heap wipe heap objects at free
-heur-proc-map support /proc/self/map heuristics
-heur-stack-bound enable a simple upper stack bound heuristic
-heur-start-end support _start.._end heuristics
-heur-argv-environ support argv/environ heuristics [default]
-free-queue-length=N queue N deferred free() calls before performing them [4]
-persistent-count=N keep a history of N unregistered regions [100]
-crumple-zone=N surround allocations with crumple zones of N bytes [32]
-lc-mask=N set lookup cache size mask to N (2**M - 1) [1023]
-lc-shift=N set lookup cache pointer shift [2]
-lc-adapt=N adapt mask/shift parameters after N cache misses [1000003]
-backtrace=N keep an N-level stack trace of each call context [4]

Figure 3: List of libmudflap runtime options.

70 • GCC Developers Summit

Alias Analysis for Intermediate Code

Sanjiv K. Gupta Naveen Sharma
System Software Group

HCL Technologies, Noida, India – 201 301
{sanjivg,naveens}@noida.hcltech.com

Abstract

Most existing alias analysis techniques are for-
mulated in terms of high-level language con-
structs and are unable to cope with pointer
arithmetic. For machines that do not have ’base
+ offset’ addressing mode, pointer arithmetic
is necessary to compute a pointer to the desired
address. Most state of the art compilers such as
GCC lack the mechanism to determine aliasing
between such computed pointers. Few other
existing alias analysis techniques described for
executable code can handle pointer arithmetic
but require large memory when applied to in-
termediate languages such as RTL. In this pa-
per, we describe a method of disambiguating
the computed pointers within a procedure at the
intermediate code level. The method is simi-
lar to the techniques described for executable
code but requires significantly less amount of
memory. We have experimented our method
with the GCC RTL and it reduces the code size
of array manipulating benchmarks by approxi-
mately 4-7% for the machines that do not have
’base + offset’ addressing mode.

1 Introduction

Various optimization passes like CSE and in-
struction scheduling rely on alias analysis to
determine the aliasing between two memory
references. Compile time alias analysis in
compilers such as GCC can successfully deter-

mine aliasing between two memory references
if they (i) use distinct offsets from the same
register; or (ii) one of them points to stack.
But such compile time alias analysis often fails
to determine aliasing between computed point-
ers and safely assume that these pointers may
alias.

To illustrate the computed pointers and aliasing
problem with them, let us consider the follow-
ing piece of code:

void foo (double *in)
{

in[4] += in[3];
}

For machines that have ’base + offset’ address-
ing for double , GCC generates RTL like,

r172 = [r170, 32]
r173 = [r170, 24]
r174 = r172 + r173
[r170, 32] = r174

in such cases the GCC can successfully deter-
mine that the memory references[r170, 32]

and[r170, 24] do not alias as they use dis-
tinct offsets from the same base register.

On machines that do not have ’base + off-
set’ addressing mode fordouble , the compiler
will need to compute the pointers to load and

72 • GCC Developers Summit

store locations. In these cases, the generated
RTL will look like,

r170 = r160 + 32
r171 = r160 + 24
r172 = [r170]
r173 = [r171]
r174 = r172 + r173
[r170] = r174

GCC fails to determine aliasing between the
computed pointersr170 and r171 . To be
safe, GCC simply assumes that these computed
pointers alias with each other. The problem
with GCC is that it does not have any mech-
anism to keep track of what address arithmetic
have been performed to obtain the computed
pointersr170 andr171 .

There are algorithms available to keep track of
address arithmetic (see [Debray98]); but they
work well only with the executable code since
the executable programs have small number of
registers (i.e. only hard registers). Time and
space requirements of such algorithms increase
when we try to use them for intermediate code
such as RTL as there may be large number
of pseudo registers present in the intermediate
code. This paper describes an alias analysis al-
gorithm that can be used with the intermediate
code to keep track of the address arithmetic ef-
ficiently. The algorithm is influenced from the
mod-k residue technique for executable code
described in [Debray98].

2 Terminology

The mod-k residue algorithm maps each
pseudo with a set of possible address values at
each program point. Let us first define some
basic terms that are required to discuss the al-
gorithm. The term pseudo means a pseudo reg-
ister in entire discussion.

2.1 A Program Point

A program point refers to a point between two
instructions[Muchnick]. A program pointp be-
tween instructionsI1 andI2 is denoted asp(I1,
I2), whereI1 immediately precedsp andI2 im-
mediately followsp. Since compilers always
keep a chain of instructions available all the
time, the preceding instructionI1 is all which
is required to identify a program pointp.

Any solution that attempts to disambiguate two
computed pointers should be able to tell the
possible address values represented by each
pointer pseudo at each program point. For ex-
ample, for the pointer pseudosr1 and r2 at
given program pointsp1 andp2, the solution
must be able to tell the possible address values
represented byr1 atp1, andr2 atp2.

2.2 mod-k Residues Set

For compactly storing an address value we
consider only some fixed number, saym, of the
lower bits of the value. This means an abstract
address valueval is represented by its mod-k
residueval mod k. (k = 2m). The set of all
abstract address values can then be represented
by the mod-k residues setZ = (0, 1, 2,, k−
1). Since(x mod k) 6= ((x + δ) mod k) ∀ 0 <
δ < k , the representation can distinguish be-
tween addresses involving distinct “small” dis-
placementsδ (i.e. less thank) from a base reg-
ister.

The choice of the valuek is critical for effi-
ciency of the technique. The valuek deter-
mines the size of mod-k residues set; the choice
should be made in such a way that it makes
storing and manipulating mod-k residues sets
low cost operations. Often, the natural word
size of the host machine is a good choice. This
way we can store a mod-k residue set as a bit
vector in a single machine word. Operations
such as adding a constantc to each member

GCC Developers Summit 2003 • 73

of the set can be simply obtained by rotating
the bit-vector byc bits. For example, the mod-
k residues set (4, 12) can be represented by a
machine word whose4th and12th bits are ON
and rest of the bits are OFF.

In our implementation experiment with GCC
on host machine x86, we choose the value ofk
as sizeof(int) so that a mod-k residues set can
be stored efficiently in an integer.

2.3 Address Descriptors

The mod-k residues sets by themselves are not
adequate for cases where we are not able to
predict the actual value of a pseudor at a pro-
gram point. To deal with this problem we ex-
tend mod-k residues set to ‘Address Descrip-
tors’. An address descriptor is a pair{I, Z} ,
where I is an instruction andZ is a mod-k
residues set. Given an address descriptorA(r)
= {I, Z} for a pseudor , the instructionI is the
defining instruction ofr , andZ denotes the set
of mod-k residues relative to whatever value is
computed by instructionI.

The address descriptor of a pseudor is com-
puted by analyzing its defining instruction as
per the rules described in section 3. If we can-
not say anything about the value of a pseudo
r while analyzing its defining instructionI, we
associate the address descriptor{I, (0)} with r .
A constant c yields an address descriptor
{NONE, (c mod k)}.

For example consider the following instruc-
tions:

I1: r172 = [r170]
I2: r173 = 5
I3:

The address descriptor of pseudor172 at pro-
gram pointp(I1, I2) will be {I1, (0)} as we can
not say anything about the value ofr172 af-
ter instructionI1. The address descriptor for

pseudor173 at program pointp(I2, I3) will be
{NONE, (5)}.

Further we define two special address descrip-
tors, an address descriptor{ANY, (all)} alias
with everything and the address descriptor
{NONE, (nothing)}alias with nothing.

3 Effect of Individual Instructions
on Address Descriptors: Keeping
track of Address Arithmetic

The operations performed by an instruction
modifies certain pseudos; the algorithm defines
these operations for address descriptors and ap-
plies them to modify address descriptors corre-
sponding to those pseudos. In this section we
define assignment, addition, and multiplication
operations for address descriptors as they are
the most frequent operations occurring in ad-
dress arithmetic.

3.1 Assignment Instructions

Consider an assignment instructionI having
the following form,

I: dest = src

wheredest is a pseudo andsrc could be a
pseudo or some integer constant.

The address descriptor ofdest pseudo is eval-
uated as following:

a) If src is a pseudo and has a valid address de-
scriptor, the address descriptor ofsrc becomes
the address descriptor ofdest .

b) If src is a pseudo that does not have a
valid address descriptor, the address descriptor
of dest becomes{I,(0)} .

c) If src is a constant integerc, address de-
scriptor ofdest will be as{NONE, (c mod k)}.

74 • GCC Developers Summit

3.2 Addition Instructions

Consider an addition instructionI having the
following form.

I: dest = src1 + src2

wheredest andsrc1 are pseudos andsrc2

can be a pseudo or an integer constant.
Let {I1, Z1} and {I2, Z2} be the address de-
scriptors ofsrc1 andsrc2 respectively. The
address descriptor of pseudodest is then eval-
uated as following:

a) If I1 = NONE, the address descriptor of
dest becomes{I2, Z} (the situation whereI2
= NONE is symmetric). HereZ = {((x +
y) mod k) ∀ x ε Z1, y ε Z2}.

b) Otherwise, we can not say anything about
the result of this operation. So the address de-
scriptor ofdest after this instructionI is taken
to be{I, (0)} .

3.3 Multiplication Instructions

Consider a multiplication instructionI having
the following form,

I: dest = src1 * src2

wheredest andsrc1 are pseudos andsrc2

can be a pseudo or an integer constant.
Let {I1, Z1} and {I2, Z2} be the address de-
scriptors ofsrc1 andsrc2 respectively. The
address descriptor ofdest is then evaluated as
following:

a) If I1 = NONE, the address descriptor of
dest becomes{I2, Z} (the situation whereI2
= NONE is symmetric). HereZ = {((x ∗
y) mod k) ∀ x ε Z1, y ε Z2}.

b) Otherwise, we can not say anything about
the result of this operation. So the address de-

scriptor ofdest after this instructionI is taken
to be{I, (0)} .

Though semantics for other operations on ad-
dress descriptors can be defined but above inte-
gral operations suffice in most cases to handle
the pointer arithmetic. The address descriptor
of the destination pseudor of an unhandled-
instruction1 I is taken as{I,(0)} .

4 The Algorithm

The algorithm maps each pseudo with its pos-
sible values (i.e. an address descriptor) at each
program point. Since storing an address de-
scriptor for each pseudo at each program point
will require excessive memory, we compute the
address descriptors of pseudos defined in a ba-
sic block and store them only at the end of
the basic block. Using this saved information,
the address descriptor of a pseudo at a particu-
lar program point within a basic block can be
obtained by recomputing the address descrip-
tors of the basic block upto that program point.
This recomputing does not take much time as
basic blocks happen to be small in most cases.

4.1 Computing Address Descriptors

The instructions in a basic block are analyzed
as described in section 3 to compute the ad-
dress descriptors of pseudos defined in that ba-
sic block. The input address descriptors of the
basic block are determined as described in the
subsection 4.2. The address descriptors com-
puted in the basic block are then saved at the
end of that basic block. This saved list of ad-
dress descriptors at the end of a basic block is
calledOUT_LISTof that basic block.

Storing the address descriptors for all pseudos
defined in a basic block in theOUT_LISTwill

1instruction for which the corresponding address de-
scriptor operation is not defined

GCC Developers Summit 2003 • 75

require very large memory (intermediate code
may contain large number of pseudos). Since
most of the defined pseudos are local to a ba-
sic block, they do not contribute to the input
of their successors. To reduce the memory re-
quirements, address descriptors for such pseu-
dos need not be saved in theOUT_LIST. The
algorithm first identifies all those pseudos that
are being used across basic blocks. We call
such pseudos as “shared pseudos”. The address
descriptors for “shared pseudos” only are saved
at the end of all basic blocks. This saves lot
of memory since there exists usually a small
number of “shared pseudos” in intermediate
code. If a procedure withN basic blocks haveR
shared pseudos, the memory required for stor-
ing the address descriptors would beRN(k+w)
bits, wherew is the machine word size in bits.

4.2 Propagating Address Descriptors across
Basic Blocks

CFG is used to propagate these descriptors
across basic blocks. Aunionoperation is used
to “merge” the information coming along the
incoming edges at vertices in the CFG. An in-
put list of address descriptors (we call this an
IN_LIST) for a basic block is formed by doing
the union of OUT_LISTs of its predecessors.
Thus if the address descriptors for a pseudor

being propagated along two incoming edges at
a vertex in the CFG are{I1, Z1} and{I2, Z2},
the resulting address descriptor for pseudor is
obtained as,

{I, Z1 union Z2} if I1=I2=I .
{ANY, (all)} if I1 6= I2.

For example, as shown in Figure 1, consider a
basic blockBB3 having two predecessorsBB1

andBB2. If the address descriptors of a pseudo
r101 in the OUT_LISTsof BB1 and BB2 are
{I0, (8)} and{I0, (24)}, the address descriptor
of r101 in the IN_LISTof BB3 will be {I0, (8,
24)}.

Figure 1: Merging of address descriptors

4.3 Building the Fixed alias analysis Informa-
tion

Multiple iterations over the CFG are done till
the address descriptors of all “shared regis-
ters” in a procedure become constant, or in
other words till theOUT_LISTsof all basic
blocks become constant. Each iteration com-
putes theOUT_LISTof each basic block us-
ing the IN_LIST of the basic block as input.
The OUT_LISTcomputed during the iteration
is unioned (as described in subsection 4.2) with
the savedOUT_LISTof the previous iteration
and the result is saved as the currentOUT_LIST
of the basic block. Another iteration over
CFG is required only if any of theOUT_LISTs
change in the current iteration. The required
information for performing alias analysis is
built once we have reached this stage where all
the OUT_LISTsare fixed. This way we have
gathered for all “shared pseudos”, all the pos-
sible results of operations performed on them
by all execution paths.

76 • GCC Developers Summit

We can describe this in the following pseu-
docode,

do {
out_lists_changed = false;
for each BB in the CFG {

prepare an IN_LIST of BB
by doing union of the
OUT_LISTS of
predecessors of BB;

evaluate OUT_LIST_OF_THIS_PASS
using IN_LIST as input;

NEW_OUT_LIST = do union of
OUT_LIST_OF_THIS_PASS
with the SAVED_OUT_LIST.

list_changed = false;
if (NEW_OUT_LIST is not

equal to SAVED_OUT_LIST) {
SAVED_OUT_LIST = NEW_OUT_LIST;
list_changed = true;

}
out_lists_changed =

out_lists_changed | list_changed;
}

} while (out_lists_changed);

To reduce the number of iterations required
over CFG, we identify loop counters such asr

= r + const and populate their address de-
scriptor in a single pass itself. For example,
given a loop counterr in RTL below,

I1: r = 0
...
I7: r = r + 2

The address descriptor of pseudor is cal-
culated in the first pass itself as{NONE,
(0,2,4,6,8,10,12,14)}(for mod-16 alias analy-
sis).

5 Reasoning about alias relation-
ship

Once the required alias information is gen-
erated, the aliasing relationship between two

computed pointers can be determined in fol-
lowing steps.

Step 1. Given two computed pointersr1 and
r2 , we retrieve the program pointsp1 andp2
wherer1 andr2 are dereferenced.

To retrieve the program points for these point-
ers a hash table is built at the start of the al-
gorithm. For every pointer, this hash table
records the instruction in which the pointer is
contained. For a pointer, the instruction re-
treived from the hash table gives the preceding
instruction of the program point.

Step 2. Find the basic blocks for the program
pointsp1andp2; say they areBB1 andBB2.

Step 3. Compute theIN_LISTsof BB1 and
BB2 by doing the union of savedOUT_LISTs
of their predecessors.

Step 4.Recompute the address descriptors{I1,
(Z1)} and{I2, (Z2)} of the two pointersr1 and
r2 at the desired program pointsp1 andp2 by
traversing within their basic blocksBB1 and
BB2.

Step 5. Address descriptors{I1, (Z1)} at in-
struction pointp1, and{I2, (Z2)} at instruction
point p2 denote disjoint addresses if both the
following conditions are satisfied.

i) I1 = I2 = ’I’ .

ii) Z1 intersection Z2 = NULL

Condition (i) ensures that both the program
pointsp1 andp2 see the same value computed
by instructionI. Condition (ii) then ensures that
relative to this value, the pointerr1 referred at
p1 is disjoint from the pointerr2 referred at
p2.

GCC Developers Summit 2003 • 77

6 Example

Let us describe the entire algorithm with the
help of the following example function in C,

void foo (double * a)
{

int i, j;

i = 0;
j = 2;

if (! a)
j = j + 4;

a[i] = a[i + j];
}

Figure 2 shows the CFG and RTL generated for
SH4 alongwith the address descriptors com-
puted by the algorithm. To determine the alias-
ing relationship between the computed point-
ers r165 and r162 in basic block BB2, their
address descriptors are recomputed using the
IN_LISTof BB2. Applying the rules of Sec-
tion 3 on BB2 gives the recomputed address
descriptors ofr162 andr165 as{I1, (0)} and
{I1, (16)}. These address descriptors do not
alias since they follow the rules described in
step5 of Section 5.

7 Drawbacks

The algorithm is not capable of keeping track
of contents of memory. Information about a
register is lost if it is saved to memory and
then subsequently restored at a later point.
Also if a register can have different defining
instructions at different predecessors of a CFG
vertex, the information is lost while merging
them using theunionoperator.

The precision of results obtained also depends
on the value ofk. The algorithm can only

Figure 2: address descriptor based alias analy-
sis

distinguish between the displacements in the
range{0 < δ < k}. For example, ifk=32
then the algorithm will not be able to differenti-
ate between the computed pointers for&in[9]

and &in[13] . Increasing the value ofk im-
proves the precision of results obtained but
may also increase the execution time of algo-
rithm.

8 Experimentation and Results

We experimented by implementing this algo-
rithm in GCC. Since the compiler was running
on an i686 machine, we chose the value of k as
32. We built the cross compiler for ia64-elf tar-
get and obtained the data about generated code

78 • GCC Developers Summit

size. Table 1 given below compares the gener-
ated code size for ia64-elf for some of stress-
1.17 files with -O2 option. We also observed
that our implementation increases the compila-
tion time for programs by about 20%.

file
name

size of
.text
section
(before)

size of
.text
section
(after

%code
size
decrease

dct64.o 9808 9568 2.44
lpc.o 36824 33256 9.68
mdct.o 5936 5488 7.54
polyobj.o 14840 14360 3.23
layer3.o 54760 54344 0.75
tif_lzw.o 24320 24256 0.32
quadrics.o22000 21840 0.73

Table 1: code size comparison for ia64-elf

9 Acknowledgments

We would like to thank people at
gcc@gcc.gnu.org for their invaluable support.
We specially thank to Richard Henderson,
Diego Novillo, Saumya K. Debray, Daniel
Berlin and David Edelsohn for their ideas.

References

[Debray98] S. Debray, R. Muth, and M. Weip-
pert, Alias Analysis of Executable Code,
In The 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Program-
ming Languages, pages 12-24, Orlando,
Florida (1998)

[Muchnick] Steven S. Muchnick,Advanced
Compiler Design and Implementation,
Morgan Kaufmann Inc., Reading, page
303, USA (1997)

[GCC] GCC source code,http://gcc.
gnu.org

Porting GCC to the AMD64 architecture

Jan Hubička
SuSEČR, s. r. o.

jh@suse.cz, http://www.ucw.cz/˜hubicka

Abstract

In this paper we describe our experience from
porting GCC to the AMD64 architecture and
the AMD Opteron processor. Our target was a
high quality port producing fast code. We dis-
cuss decisions taken while designing the Ap-
plication Binary Interface (ABI) and effect of
various code optimizations we implemented.
We also present several open issues we would
like to solve in the future.

1 AMD64 Instruction Set
Overview

The AMD64 architecture [AMD64] is an ex-
tension of x86 instruction set to enable 64-bit
computing while remaining compatible with
existing x86 software. The CPU can operate
in 64-bit mode, where semantic of several x86
instructions has been changed. Most notably:

• Single byte encoding ofinc anddec in-
structions is no longer available. Instead
the opcodes are used to encode a new pre-
fix REXwith four one-bit arguments. First
argument is used to overwrite instruction
operand size into 64 bits. Other three are
used to increase amount of general pur-
pose registers from 8 to 16.

• New 64-bit addressing mode is used by
default. Prefix is available to overwrite
into 32-bit addressing when needed.

• One of multiple possible encodings of di-
rect addressing has been changed into in-
struction pointer relative addressing. In-
struction pointer relative addressing is
now one byte shorter than direct address-
ing.

• Default operand size remains 32-bit, how-
ever stack manipulation instructions, such
as push and pop defaults to 64-bit
operand size.

• The immediate operands of instructions
has not been extended to 64 bits to keep
instruction size smaller, instead they re-
main 32-bit sign extended. Addition-
ally the movabs instruction to load ar-
bitrary 64-bit constant into register and
to load/store integer register from/to arbi-
trary constant 64-bit address is available.

• Several new instructions have been added
to allow 64-bit conversions of data types.

Unlike earlier 64-bit architectures GCC has
been ported to, some AMD64 features are
unique, such as CISC instruction set, gener-
ally usable IP relative addressing, partial sup-
port for 64-bit immediate operands and more.

2 Application Binary Interface

Since GCC has been one of the first compil-
ers ported to the platform, we had a chance to
design the processor specific part of the appli-
cation binary interface [AMD64-PSABI] from

80 • GCC Developers Summit

scratch. In this section we discuss the deci-
sions we made and rationale behind them. We
also discuss the GCC implementation, as well
as problems we encountered while porting the
software.

Majority of [AMD64-PSABI] has been de-
signed in the early stages of development with
just preliminary implementation of AMD64
support in GCC and no hardware nor simulator
available. Thus we had just limited possibili-
ties for experiments and most of our decisions
has been verified by measuring of executable
files sizes and number of instructions in them.

We never made serious study on how these re-
late to the performance, but it may be expected
that the relation is pretty direct in the cases we
were interested in.

2.1 Fundamental Types

We do use 64-bit pointers andlong . The type
int is 32-bit. This scheme is known as LP64
model and is used by all 64-bit UNIX ports we
are aware of.

64-bit pointers bring expansion of the data-
structures and increase memory consumption
of the applications. A number of 64-bit UNIX
ports also specify a code model with 32-bit
pointers, LP32. Because of large maintenance
cost of extra model (change of pointer size re-
quires kernel emulation layer and brings fur-
ther difficulties) and because of support for
native 32-bit applications we decided to con-
centrate on LP64 support first and implement
LP32 later only if necessary. See also Section
4.1 for some further discussion.

We considered thelong long type to be
128-bit, since AMD64 has limited support for
128-bit arithmetics (that comes from extending
support for 32-bit arithmetic in 16-bit 8086),
however there are many programs that do ex-
pectlong long to be exactly 64-bit, thus we

specify optional__int128 instead. At the
moment no library functions to deal with the
type are specified so it’s usage in C environ-
ment may be uncomfortable. This is something
we may consider to address in future extension
of the ABI document.

The size oflong double is 128 bits with
only first 80 bits used to match native x87 for-
mat. The rest is just padding to keep long
double values 128-bit aligned so loads and
stores are effective. The padding is unde-
fined that may bring problems when one is us-
ing memcmpto test for equality of twolong
double values.

Additionally we specify__m64 and__m128
types for SIMD operations.

All types do have natural alignment.
([i386-ABI] limits the alignment to 32-bit
that brings serve performance problems when
dealing with double , long double ,
__m64 and__m128 types on modern CPU.)
It is allowed to access misaligned data of all
types with the exception of__m128, since
CPU traps on misaligned 128-bit memory
accesses.

GCC Implementation

Our GCC implementation does support
all specified types with the exception of
__float128 . At the moment GCC is
not ready to support two extended floating
point formats having the same size and thus
implementing it would require considerable
effort.

The 128-bit arithmetics patterns are also
not implemented yet so code generated for
__int128 is suboptimal.

GCC Developers Summit 2003 • 81

Size Contents Frame

0–8n incoming arguments Previous
8 return address

0,8 previous%rbp value
0,8 padding

? local data Current
? register spill area

0–4 padding
0–48 register save area

0,8 padding
0,8 padding Allocated

0–8n outgoing arguments via push

Figure 1: Stack Frame

2.2 The Stack Frame

Unlike [i386-ABI] we do not enforce any spe-
cific organization of stack frames giving com-
piler maximal freedom to optimize function
prologues and epilogues. In order to allow
easy spilling of x87 and SSE registers we do
specify 128-bit stack alignment at the function
call boundary, thus function calls may need to
be padded by one extrapush since AMD64
instruction set naturally aligns stack to 64-bit
boundary only.

We additionally specify the red zone of
128 bytes below the stack pointer function can
use freely to save data without allocating the
stack frame as long as the data are not required
to survive function call.

The sample stack frame organization based on
extending the usual IA-32 coding practice to
64-bit is shown at Figure 1, the sample pro-
logue code is shown at Figure 2.

GCC Implementation

We found the use of frame pointer and
push /pop instructions to be common bottle-

push %rbp Save frame pointer
movq %rsp %rbp Initialize frame pointer
subq $48,%rsp Allocate stack frame
pushq %rbx Save non-volatile registers
pushq %r12 clobbered by function
pushq %r13
. . . Function body
popq %r13 Restore registers
popq %r12
popq %rbx
leave Restore%rbp

and deallocate stack
ret

Figure 2: Function Prologue and Epilogue

Size Contents Frame

0–8n incoming arguments Previous
8 return address

0,8 previous%rbp value
0–48 register save area

0,8 padding Current
0–96 va-arg registers

? local data
? register spill area

0–8 padding
0–8n outgoing arguments

Figure 3: Stack Frame in GCC

neck for the function call performance. The
AMD Opteron CPU can execute stores at the
rate of two per cycle, while it requires 2 cycles
to compute new%rsp value inpush andpop
operations so the sequence ofpush andpop
operations executes 4 times slower.

We reorganized the stack frame layout to al-
low shorter dependency chains in the prologues
and epilogues as shown on Figure 3. To save
and restore registers we commonly use the se-
quence ofmov instructions and we do allocate
whole stack frame, including outgoing argu-
ment area, using singlesub opcode as shown
in Figure 4. AMD Opteron processor executes
the prologue in 2 cycles, while the usual pro-

82 • GCC Developers Summit

movq %rbx ,-24(%rsp) Save registers
movq %r12,-16(%rsp)
movq %r13,-8(%rsp)
subq $72,%rsp Allocate stack frame
. . . Function body
movq 48(%rsp),%rbx Restore registers
movq 56(%rsp),%r12
movq 64(%rsp),%r13
addq $72,%rsp Deallocate stack frame
ret

Figure 4: GCC Generated Prologue and Epi-
logue

logue (Figure 2) requires 9 cycles. Similarly
for the epilogues.

Unfortunately the produced code is consider-
ably longer—the size ofpush instruction is
1 byte (2 bytes for extended register), while
the size ofmov is at least 5 bytes. In order
to reduce the expenses, GCC does use pro-
file information to use short sequences in the
cold function. Additionally it estimates num-
ber of instructions executed per one invocation
of function and use slow prologues and epi-
logues when it exceeds given threshold (20 in-
structions for each saved register).

We found heuristics choosing between fast
and short prologues difficult to tune—the pro-
logue/epilogue size is most expensive for small
functions where it also should be as fast as pos-
sible. As can be seen in the Table 7, the de-
scribed behavior results in about 1% speedup
at the1.1% code size growth (“prologues us-
ing moves” benchmark). Bypassing the heuris-
tics and using moves for all prologues results in
additional speedup of 1% and additional 1.1%
code size growth (“all prologues using moves”
benchmark). The heuristics works better with
profile feedback (Table 9). This is something
we should revisit in the future.

GCC does always eliminate the frame pointer
unless function contain dynamic stack alloca-

tion such asalloca call. This always result
in one extra general purpose register available
and fewer instructions executed.

Contrary to the instruction counts, eliminat-
ing of frame pointer may result in larger code,
because%rsp relative addressing encoding is
one byte longer than%rbp relative one. Thus
it may be profitable to not eliminate frame
pointer when function do contain many refer-
ences to the stack frame. Command line option
-fno-omit-frame-pointer can be used
to force use of frame pointer in all functions.

For 64-bit code generation omitting frame
pointer results in both smaller and faster code
on the average (Tables 7, 8, 9 and 10). In
the contrary, for 32-bit code generation it re-
sults in code size growth (Tables 11 and 12).
This is caused by the fact that increased regis-
ter file and register argument passing conven-
tions eliminated vast majority of stack frame
accesses produced by the 32-bit compiler.

In GCC stack frame layout the register save
area and local data are reordered to reduce
number of instruction whenpush instruc-
tions are used to save registers — the stack
frame and outgoing arguments area alloca-
tion/deallocation can be done at once using sin-
gle sub /add instruction. The disadvantage
is that leave can not be used to deallocate
stack frame in combination withpush and
pop instructions. In our benchmarks the new
approach brought noticeable speedups for 32-
bit code, however it is difficult to repeat the
benchmarks since the prologue/epilogue code
is dependent on the new stack frame organiza-
tion and would require some deeper changes to
work in the original scheme again.

At the moment GCC is just partly taking ad-
vantage of the red zone. We do use red zone
for leaf functions having data small enough to
fit in it and for saving some temporarily al-
located data in instruction generation (so the

GCC Developers Summit 2003 • 83

sub andadd instructions in Figure 4 would be
eliminated for leaf functions). For the benefit
of kernel programming (signal handlers must
take into account the red zone increasing stack
size requirements), option-fno-red-zone
is available to disable usage of red zone en-
tirely.

As can be seen in the Tables 7 and 8, red
zone results in slight code size decrease and
speedups. The effect depends on how many
leaf functions require stack frame. This is un-
common for C programs, but it happens more
frequently in template heavy C++ code where
function bodies are large due to in-lining (Ta-
bles 10 and 9).

We do not use the red zone for spilling registers
nor for storing local variables in non-leaf func-
tions as GCC is not able to distinguish between
data surviving function calls and data that does
not. Extending GCC to support it may be in-
teresting project and may reduce stack usage
of programs, however we have no data on how
effective the change can be.

To further reduce the expenses, GCC does
schedule the prologue and epilogue sequence
to overlap with function body. In the future we
also plan to implement shrink-wrapping opti-
mization as the expense of saving up to 6 reg-
isters may be considerable.

2.3 Stack Unwinding Algorithm

To allow stack unwinding, we do use additional
information saved in the same format as spec-
ified by DWARF debugging information for-
mat [DWARF2]. Instead of.debug_frame
section specified by DWARF we do use
.eh_frame section so the data are not
stripped.

The DWARF debugging format defines un-
winding using the interpreted stack machine
describing algorithms to restore individual reg-

isters and stack frames. This mechanism is
very generic and allows compiler to do pretty
much any optimization on stack layout it is
interested in. In particular we may eliminate
stack frame pointer and schedule prologues
and epilogues into the function body.

The disadvantage is the size of produced infor-
mation and speed of stack unwinding.

GCC Implementation

Implementation in GCC was straightforward
as DWARF unwinding was already used for
exception handling on all targets except for
IA-64. We extended it by support for
emitting unwind info accurate at each in-
struction boundary (by default GCC opti-
mize the unwind table in a way so it is ac-
curate only in the places where exceptions
may occur). This behavior is controlled via
-fasynchronous-unwind-tables .

GCC perform several optimizations on the un-
wind table size and the tables are additionally
shortened by assembler, but still the unwind ta-
ble accounts for important portion of image file
size.

As can be seen in the Table 7 it con-
sumes, at the average, 7.7% of the
stripped program binaries size, so use of
-fno-asynchronous-unwind-tables
is recommended for program where unwinding
will never be necessary.

The GCC unwind tables are carefully gener-
ated to avoid any runtime resolved relocations
to be produced, so with the page demand load-
ing tables are never load into memory when
they are not used and consume the disc space
only.

Main problem are the assembly language func-
tions. At the present programmer is required

84 • GCC Developers Summit

to manually write DWARF byte-code for any
function saving register or having nonempty
stack frame in order to make unwinding work.
This is difficult and most of assembly language
programmers are unfamiliar with DWARF. It
appears to be necessary to extend the assem-
bler to support describing of the unwind infor-
mation using the pseudo-instructions similar to
approach used by [IA-64-ABI].

2.4 Register Usage

The decision on split in between volatile (caller
saved) and non-volatile (callee saved) register
presented quite difficult problem. The AMD64
architecture have only 15 general purpose reg-
isters and 8 of them (so called extended regis-
ters) requireREXprefix increasing instruction
size. Additionally the registers%rax , %rdx ,
%rcx , %rsi and%rdi implicitly used by sev-
eral IA-32 instructions. We decided to make all
of these registers volatile to avoid need to save
particular register only because it is required by
the operation. This leaves us with only%rbx ,
%rbp and the extended registers available for
non-volatile registers. Several tests has shown
smallest code to be produced with 6 global reg-
isters (%rbx , %rbp, %r12–%r15).

Originally we intended to use 6 volatile SSE
registers, however saving of the registers is dif-
ficult: the registers are 128-bit wide and usu-
ally only first 64-bits are used to hold value, so
saving registers in the caller is more expensive.

We decided to delay the decision until hard-
ware is available and run several benchmarks
with different amount of global registers. We
also experimented with the idea of saving only
lower half of the registers. Our experiments al-
ways did lead to both longer and slower code,
so in the final version of ABI all SSE registers
are volatile.

Finally the x87 registers must be volatile be-

cause of their stack organization and the direc-
tion flag is defined to be clear.

2.5 Argument Passing Conventions

To pass argument and return values, the regis-
ters are used where possible. Registers%rdi ,
%rsi , %rdx , %rcx , %r8 and%r9 are used
to pass integer arguments. In particular, reg-
ister %rax is not used because it is often re-
quired as special purpose register by IA-32 in-
structions so it is inappropriate to hold function
arguments that are often required to be kept in
the register for a long time. Registers%xmm0–
%xmm5are used to pass floating point argu-
ments. x87 registers are never used to pass ar-
gument to avoid need to save them in variadic
functions.

To return values registers%rax , %rdx ,
%xmm0, %xmm1, %st0 and %st1 are used.
The usage of%rax for return value seems to be
considerable win even at the expense of extra
mov instruction needed for functions returning
copy of the first argument and functions return-
ing aggregates in memory via invisible refer-
ence.

The aggregates (structures and unions) smaller
than 16 bytes are passed in registers. The
decision on what register class (SSE, integer
or x87) to use to pass/return the aggregate is
rather complicated; we do pass each 64-bit part
of structure in separate register, with the excep-
tion of __m128 andlong double .

The argument passing algorithm classifies each
field of the structure or union recursively into
one of the register classes and then merge the
classes that belongs to the same 64-bit part.
The merging is done in a way so integer class
is preferred when both integer and SSE is used
and structure is forced to be passed in memory
when difficult to resolve conflicts appears. The
aggregate passing specification is probably the

GCC Developers Summit 2003 • 85

most complex part of the ABI and we hope that
the benefits will outweight the implementation
difficulties. For GCC it requires roughly 250
lines of C code to implement.

Arguments requiring multiple registers are
passed in registers only when there are enough
available registers to pass argument as a whole
in order to simplyva_arg macro implemen-
tation.

Variable sized arguments (available in GCC
only as GNU extension) are passed by ref-
erence and everything else (including aggre-
gates) is passed by value.

GCC Implementation

It is difficult to obtain precise numbers, but it
is clear that the register passing convention is
one of the most important changes we made
relative to [i386-ABI] improving both perfor-
mance and code size. The amount of stack ma-
nipulation is also greatly reduced resulting in
shorter debug information. On the other hand,
the most complex part, passing of aggregates,
has just minor effect on C code. We believe it
will become more important in future for C++
code.

At the moment GCC does generate subopti-
mal code in number of cases where aggregate
is passed in the multiple registers — the ag-
gregate is often offload to memory in order
to load it into proper registers. Beside that
GCC should implement all nuances of argu-
ment passing correctly.

For functions passing arguments in memory,
the stack space is allocated in prologue; deal-
located in epilogue and plainmov operations
are used to store arguments. This is in contrast
to common practice to usepush operation for
argument passing to reduce code size. Despite
that experimental results shows both speedups

and code size reductions of the AMD64 bi-
naries whenmov instructions are used (See
-maccumulate-outgoing-args in the
Table 7, 8, 9, and 10). This is in sharp contrast
to IA-32 code generation experience (Tables 11
and 12).

There are multiple reasons for the image size
to be reduced. Usage ofpush instructions in-
creases unwind table sizes (about 3% of the bi-
nary size). Most of the functions has no stack
arguments, however they still do require stack
frame to be aligned. This makes GCC to emit
number of unnecessary stack adjustments. Last
reason seems to be fact that majority of values
passed on the stack are large structures where
GCC is not using push instructions at all.

2.6 Variable Argument Lists

More complex argument passing conventions
require nontrivial implementation variable ar-
gument lists. Theva_list is defined as fol-
lows:

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

The overflow_arg_area points to the
end of incoming arguments area. Field
reg_save_area points to the start of reg-
ister save area.

Prologue of function then uses 6 integer moves
and 6 SSE moves to save argument registers. In
order to avoid lazy initialization of SSE unit in
the integer only programs, hidden argument in
the register%al is passed to functions that may
use variable argument lists specifying amount
of SSE registers actually used to pass argu-
ments.

86 • GCC Developers Summit

We decided to use the array containing
structure for va_list type same way as
[PPC-ABI] do to reduce expenses of passing
va_list to the functions — arrays are passed
by reference, while structures by value. This is
valid according to the C standard, but brings
unexpected behavior in the following function:

#include <stdarg.h>
void t (va_list *);
void q (va_list a)
{

t(&a);
}

The functiont expects address of the first el-
ement in the array, while in the second one,
the array argument is merely an shortcut for
a pointer so it passes pointer to the pointer to
the first argument. This unexpected behavior
did not trigger in Open Source programs since
these already has been cleaned up to work on
Power-PC, but has been hit by proprietary soft-
ware vendors who claimed this to be a compiler
bug even when GCC correctly emit an warning
message “passing arg 1 of ‘t’ from incompati-
ble pointer type”

GCC Implementation

The register save area is placed on fixed place
in stack frame as shown in Figure 3. There is
no particular reason for that, but it was slightly
easier to implement in GCC.

The computed jump is used in the prologue
to save only registers needed. This results
in small savings for programs calling vari-
adic function with floating point operands, but
makes program calling variadic functions us-
ing non-variadic prototypes to crash. Such pro-
grams are not standard conforming, but they
happen in practice. We noticed the problem for

strace and Objective C runtime. We may con-
sider replacing the jump table by single condi-
tional to avoid such crashes.

Second important compatibility problems ar-
rises from implicit type promoting. All 64-
bit targets supported by SuSE Linux do pro-
mote operands to 64-bit values and several
packages depend on it. Most notable exam-
ple is GNOME. While promoting all function
operands to 64-bit would be too expensive, we
may consider promoting the operands of vari-
adic functions to avoid such compatibility is-
sues.

2.7 Code Models

The 32-bit sign extended immediates and zero
extending loads of the immediate allows con-
venient addressing of only first231 bytes of the
address space. The other areas needs to be ad-
dressed viamovabs instructions or instruction
pointer relative addressing. In order to allow
efficient code generation for programs that do
fit in this limitation (almost all programs today)
we define several code models:

small All relocations (code and data) are
expected to fit in the first231 bytes.
This is the default model GCC use.
This code model can be produced via
-mcmodel=small command line op-
tion.

kernel All relocations (code and data) are ex-
pected to fit in the last231 bytes. This
is useful for kernel address space to
not overlap with the user address space.
This code model can be produced via
-mcmodel=kernel command line op-
tion.

medium Code relocations fit in the first231

bytes and data relocations are arbitrary.
This code model can be produced via

GCC Developers Summit 2003 • 87

-mcmodel=medium command line op-
tion. The medium code model has signif-
icant code size (about 10%) and notice-
able performance (about 2%) penalty (see
Tables 7, 8, 9 and 10). These penalties
are larger than the authors expectations
and probably further improvements to the
GCC code generation are possible.

large Code relocations and data relocations
are arbitrary. This model is currently not
supported by GCC as it would require
to replace all direct jumps via indirect
jumps. We don’t expect this model to be
needed in foreseeable future. Large pro-
grams can be split into multiple shared li-
braries.

The position independent code generation can
be effectively implemented using the instruc-
tion pointer relative addressing. We imple-
mented scheme almost identical to IA-32 po-
sition independent code generation practices
only replacing the relocations to option global
offset table address and index in it by single
instruction pointer relative relocation. Simi-
larly the instruction pointer relative addressing
is used to access static data.

The resulting code relies on the overall size of
the binary to be smaller than231 bytes. An
[AMD64-PSABI] extension will be needed in
the case this limitation will become a problem.
The performance penalty of-fpic is about
6% on AMD64 compared to 20% on IA-32
(see Tables 9, 10, 11 and 12).

3 Implemented Optimizations

In this section we describe target specific op-
timizations implemented for the first hardware
implementation of AMD64 architecture — the
AMD Opteron CPU.

The AMD Opteron CPU core has rather com-

plicated structure. The AMD64 instructions
are first decoded and translated into micro op-
erations and passed to separate integer and
floating point on chip schedulers. Integer in-
structions are executed in 3 symmetric pipes
of overall depth 11 with usual latency of 1
cycle, while floating point instructions are is-
sued into 3 asymmetric pipes (first executing
floating point add and similar operations, sec-
ond having support for long latency instruc-
tions and multiple and third executing loads
and stores). For more detailed description see
also [Opteron].

The processor is designed to perform well on
the code compiled for earlier IA-32 imple-
mentation and thus has reduced dependency
on CPU model specific optimizations. Still
several code generation decisions can be opti-
mized as described in detail in [Opteron]. We
implemented majority of these and here we de-
scribe only those we found most effective.

As can be seen in the Table 11, enabling AMD
Opteron tuning via-march=k8 improves in-
teger program performance by about 10% rel-
ative to compiler optimizing for i386. Relative
to the compiler optimizing for Pentium-Pro the
speedup is only about 1.1%. The optimizations
common for Pentium-Pro and Opteron include
the scheduling (scheduling for Pentium-Pro
still improves Opteron performance), avoid-
ing of memory mismatch stalls, use of new
conditional move andfcomi instructions and
-maccumulate-outgoing-args .

For floating point programs the most impor-
tant optimization is use of SSE instruction
set (10%) followed by the instruction schedul-
ing (not visible in the Table 12 because the
x87 stack register file does not allow effective
scheduling, but noticeable in the Table 10).

88 • GCC Developers Summit

3.1 Integer Code Instruction Selection

Majority of IA-32 instructions generated by
today compilers are well implemented in the
Opteron core so the code generation is straight-
forward.

In the Tables 7, 8, 9 and 10, “full sized loads
and moves” refers to the transformation of 8-
bit and 16-bit loads into zero extensions; use of
32-bit reg-reg moves for moving 8-bit and 16-
bit values and symmetric change for SSE. The
transformation is targeted to avoid hidden de-
pendencies in the on-chip scheduler. The trans-
formation has important effect for SSE code
and smaller but measurable effect on code ma-
nipulating with 8-bit and 16-bit values.

Second important optimization we imple-
mented is elimination of usepush andpop in-
structions as mentioned in Section 2.2 and 2.5

Other optimization implemented had just mi-
nor effect on overall performance.

3.2 SSE floating point arithmetics

Unlike integer unit, the floating point unit has
longer latencies (majority of simple floating
point operations takes 3 cycles to execute) and
is more sensitive to instruction choice.

The operations on whole SSE registers are usu-
ally more expensive than operations on the 64-
bit halves. This holds for the move opera-
tions also, so it is desirable to always use par-
tial moves when just part of SSE register is
occupied (this is common for scalar floating
point code). In particular it is desirable to use
movlpd instead ofmovsd to load double pre-
cision values, sincemovsd does clear upper
half of the register.movsd is the used for reg-
ister to register moves. This remains the upper
half of register undefined that may cause prob-
lem when the register is used as a whole for
instance for logical operation that has no scalar

equivalent. The CPU internally keeps values
in different format depending on how they are
produced (either single, double precision or in-
teger) when register is in wrong format, serve
reformatting penalty occurs.

In order to eliminate reformatting penalties we
do reformat the register explicitly before each
such operation (fortunately the logical opera-
tions are rare in generated code as they are used
for conditional moves and fabs/neg expansion
only) usingmovhlpd . In the future it may
be interesting to implement special pass insert-
ing the conversions only when they are actually
needed as most of themovhlpd instructions
emit are redundant. See “partial SSE register
moves” in the Tables 7, 8, 9 and 10 for the com-
parison of this code generation strategy to the
usual one recommended by [Pentium4].

For single precision scalars the situation is
different. There is no way conveniently to
load single precision data into memory with-
out clearing the upper part of register (movlps
require 64-bit alignment) and thus we maintain
the whole registers in single precision. In par-
ticular we do usemovss to load values and
movaps for register to register moves.

This scheme brings difficulties with
cvtsi2ss and similar instructions that
do rewrite the lower part only. In this case
xorps is used first to clear the register. Again
the large portion ofxorps instructions issued
this way are redundant because the register
is already in specified format. The CPU also
special casecvtsd2ss instruction where
the bytes 4–8 of the register are reformatted
to single precision too, however bytes 8–16
remains in the previous format. We risk the
reformatting penalty here, since bytes 8–16 are
rarely in the double precision format because
of the use of partial moves described above.
We plan to add an command line option to
force issuing of the reformatting here. Also

GCC Developers Summit 2003 • 89

we may reconsider this decision in the case
we implement the pass for smart placement of
reformatting instructions. See Tables 7, 8, 9
and 10, and benchmark “full sized loads and
moves” described in Section 3.1.

3.3 Scheduling

Implementation of instruction scheduling was
difficult for several reasons. The AMD
Opteron CPU has complicated pipeline ex-
panding each operation into multiple micro op-
erations renaming the register operands and ex-
ecuting them separately in rescheduled order.
The available documentation is incomplete and
the effect of instruction scheduling on such ar-
chitectures does not appear to be well studied.

As can be seen in Table 10, instruction schedul-
ing enabled via-fschedule-insns2 re-
mains one of the most important optimizations
we implemented for floating point intensive
benchmarks. On the other hand the effect is
about 10 times lower than on the in-order Al-
pha CPU (Table 14).

GCC at the present implements only local ba-
sic block scheduling that is almost entirely re-
dundant with the out-of-order abilities of the
CPU. We experimentally implemented an lim-
ited form of trace scheduling and measured an
improvement of additional 1% for the SPECfp.
Our expectation is that the more global the
GCC scheduler algorithm will be, the less re-
dundancies with out-of-order core will be ap-
parent, so the benefits of global algorithms
should be comparable to ones measurable on
in-order CPUs.

Our implementation represents just a simpli-
fied model of the real architecture. We model
the allocations of decoders, floating point unit
(fadd, fmul and fstore), the multiplier and load
store unit. We omit model of the reorder
buffers — the micro instructions are assumed

to be issued to the execution pipes immedi-
ately in the fixed model. This also allows us
to omit model of the integer and address gen-
eration units as never more than 3 instructions
are issued at once.

Most of the stalls the scheduler can avoid are
related to loads and stores. In order to avoid
the stall it is necessary to model the instruc-
tion latencies and the fact that address operands
are needed earlier than the data operands. The
scheduler can reorder the computations so the
data operands are computed in parallel with
loads. GCC scheduler does assume that all the
results must be available in order to instruc-
tion be issued and thus we reduce the laten-
cies of instructions computing values used as
data operands of load-execute instructions by
up to 3 cycles (the latency of address gener-
ation unit). Even when latencies of majority
instructions are shorter than 3 cycles and thus
we can not reduce the latency enough to com-
pensate the load unit latency, this model is ex-
act for the in-order simplification of CPU de-
scribed above as the instruction computing data
operands must be output before load-execute
instruction itself.

4 Experimental Results

We present benchmarks of majority opti-
mizations discussed. We also present the
same benchmarks performed on IA-32 and
Alpha system where possible to give an
comparison of effectivity of individual opti-
mizations on these architectures. We hope
this to be useful to apply earlier published
results on compiler optimization (such as
[FDO]) to the new platform and give a
guide of what optimizations are most im-
portant. We also present results with two
different optimization levels — the standard
optimization (-O2) used by the majority of
distributions today and aggressive optimiza-

90 • GCC Developers Summit

tion (-O3 -ftracer -funroll-loops
-funit-at-a-time with profile feedback)
we found to give best overall SPEC score.

We did use modified prerelease of GCC 3.3 as
used by SuSE Linux 8.2 for AMD64. All the
runs were performed on SuSE Linux on dedi-
cated machines, however important amount of
random noise remains (especially for bench-
marks Mesa, Gzip, Perl and Twolf). Due
to time limitations the benchmarks were per-
formed with one iteration only except for the
benchmarks in the Table 9 and 10 that were
computed with 3 iterations. Because the runs
were not done on final hardware and because
we didn’t satisfy the conditions for reportable
runs in all tests, we present relative numbers
only.

Each table is divided into two sections — first
part includes optimizations enabled by default
at given optimization level, while the other part
contains optimization that user needs to enable
by hand either because they are ineffective,
inappropriate for given settings or does not
obey the language standards. Each table also
contains comparison of two runs with equal
settings in the first line to present rough ap-
proximation of the noise in the numbers. Both
performance and sizes of the stripped binaries
are presented. The numbers always represent
relative speedup (or code size increase) from
the run with the specified feature disabled
to the run with specified feature enabled.
For instance -fomit-frame-pointer
run in the table 7 compare performance of
-O2 -fno-omit-frame-pointer to
-O2 -fomit-frame-pointer . The
benchmark “standard optimization” compares
-O0 to -O2 .

The Following benchmarks were performed:

aggressive optimizationcompare perfor-
mance of unoptimized code (-O0) to

the aggressive optimization settings
described above.

all prologue using move eliminate use of all
push and pop operations in the pro-
logues and epilogues except for cases
where single register is saved. See Sec-
tion 2.2.

-fasynchronous-unwind-tablesenable pro-
duction of DWARF2 unwind information.
See Section 2.3.

-fbranch-probabilities enable pro-
file feedback based optimizations. We
implemented majority of transformations
described on [FDO] with the exception
of function in-lining and switch statement
expansion.

-fgcse enable global optimizers including
(limited form of) partial redundancy elim-
ination, load motion, constant propaga-
tion and copy propagation. GCC does
contain loop invariant hoisting and ex-
tended basic block based value numbering
pass making the global optimizers partly
redundant.

-fguess-branch-probability
enable optimizations driven by static pro-
file estimation. The profile is estimated
by methods based on [profile] when
profile feedback is not available.

-finline-functions enable function
in-lining.

-fold-unroll-loops enable old loop
unroller that actually unrolls some loops
on Alpha.

-fomit-frame-pointer enable elimina-
tion of frame pointer by using stack
pointer instead. See Section 2.2.

GCC Developers Summit 2003 • 91

-foptimize-sibling-calls
transform call to leaf function into
jump.

-fpeel-loops enable loop peeling.

-fpic produce position independent code.
See Section 2.7.

-freorder-blocks enable intra-function
basic block reordering and duplication
based on significantly modified software
trace cache algorithm [STC].

-fschedule-insns2 enable post-register
allocation local scheduling. See Section
3.3.

-fschedule-insns enable pre-register
allocation region scheduling (not avail-
able for IA-32 and AMD64).

-fstrength-reduce enable strength re-
duction.

-fstrict-aliasing enable ANSI-C
type based aliasing.

full sized loads and movesavoids use of in-
structions initializing just portion of the
destination registers. See Section 3.2 and
3.1.

-ftracer enable super-block formation us-
ing algorithm similar to [FDO]. The
super-blocks are unified again after opti-
mizations by cross-jumping pass so this
transformation is not used to improve
scheduling as commonly described in the
literature. It is aimed to improve CSE
and other transformation by simplifying
the control flow.

-funit-at-a-time enable optimizations
on whole compilation unit. At the mo-
ment GCC perform stronger function in-
lining (in-lining of small functions called
before defined and static functions called

once) and use register calling conventions
for static functions on IA-32. Only effec-
tive for C compiler.

-funroll-all-loops enable loop un-
rolling of all small enough loops in the hot
spots.

-funroll-loops enable loop unrolling
for loops with known induction variable.
While working on the paper we noticed
that our new implementation has impor-
tant flaw avoiding loops from being un-
rolled on Alpha architecture.

-m64 enable 64-bit code generation (used in
comparisons relative to IA-32 code).

-mfpmath=sse eliminate use SSE(2) in-
struction set for scalar floating point cal-
culations.

-mcmodel controls code and data segment
size limits. See Section 2.7.

-mred-zone enable use of 128 bytes below
stack pointer for local data. See Section
2.2.

partial SSE moves eliminate use ofmovlpd
for double precision loads andmovsd for
register to register moves. See Section
3.2.

prologue using moveeliminate use of hot
push and pop operations in the pro-
logues and epilogues. See Section 2.2.

standard optimization compare performance
of unoptimized code (-O0) to the stan-
dard optimization settings (-O2).

4.1 Real World Performance

One of the main goals has been to develop
system ready for both enterprise and desktop

92 • GCC Developers Summit

options slowdown
0.00%

-fstrict-aliasing -1.13%
-fasynchronous-unwind-tables -0.38%
-freorder-blocks 0.00%
-fomit-frame-pointer 0.37%
-mred-zone 0.38%
-mfpmath=sse 0.75%
-maccumulate-outgoing-args 0.75%
-foptimize-sibling-calls 0.76%
-fguess-branch-probabilities 1.54%
-fschedule-insns2 2.33%
-fgcse 6.88%
-ffast-math -1.88%
-ftracer 0.00%
-frename-registers 0.74%
-funroll-loops 3.38%
-fpic 3.39%
-funroll-all-loops 5.32%
-mcmodel=medium 2.27%
-fbranch-probabilities 142.74%

Table 1: Compilation Time Cost (AMD
Opteron)

(workstation) use. While the need of 64-bit ad-
dressing space for the enterprise is well under-
stood, the effect on desktop performance is of-
ten discussed. The main drawback of 64-bit
system, as discussed in section 2.1 is the in-
creased memory footprint of the programs and
subsequent slowdown of program startup times
critical for today desktop systems.

In this section we present few simple bench-
marks of this phenomenon on SuSE Linux 8.2.
Both the 32-bit and 64-bit version of the sys-
tem were installed on the equally sized Reis-
erFS partitions in the default configuration.
The tests were performed in the same order on
both systems with reboots in between. Addi-
tional packages were installed as needed. We
hope this procedure to minimize amount of the
noise in the numbers.

The Table 2 compares startup times of several
programs. As can be seen, the 64-bit system,
perhaps surprisingly, is significantly faster in

test speedup
bootup time -0.9%
KDE startup from disk 18.1%
KDE startup from cache 14.6%

Table 2: Desktop Performance Relative to 32-
bit System

two of them and comparable in bootup times.
The Table 3 compares compilation of the pack-
age gimp.

As can be seen on Table 4 the memory con-
sumption grows up by about1

4
as expected, but

due to relative compactness of CISC AMD64
instruction set, the increase is much smaller
than one seen after switching to RISC or VLIW
systems.

In fact Tables 5 and 6 shows decrease in the
code section sizes.

The major growths can be seen in the section
.eh_frame that is usually not load into the
memory and sections related to the dynamic re-
locations. According to our benchmarks these
are not critical, since dynamic loader is still
slightly faster in 64-bit version compared to
32-bit.

Overall, we can recommend use of 64-bit sys-
tem instead of 32-bit on AMD64 machines in-
tended for desktop use as long as memory con-
sumption increased by 25% is not major limita-
tion (that is hardly the case for computers sold
today).

5 Runtime Library Optimizations

We made following optimizations to glibc:

• Assembly optimized math functions

• Assembly optimized memcpy and

GCC Developers Summit 2003 • 93

speedup
test real user system
tar xjf 17.7% 9.8% 4%
./configure -4.3% 0.7% -31%
make 12.9% 19.8% -39%

Table 3: Gimp Compilation Times Relative to
32-bit System

Table 4: Memory Resources Consumption

test 32-bit 64-bit increase
konqueror 14 M 18 M 28%
gimp 8.6 M 9.9 M 15%
mozilla 22 M 27 M 22%

section 32-bit 64-bit increase
.text 56216 K 53419 K -5%
.bss 18169 K 21098 K 16%
.data 10239 K 14076 K 37%
.rodata 17543 K 19734 K 12%
.eh_frame 546 K 8269 K 1414%
.rela.plt 358 K 1076 K 200%
.rela.dyn 40 K 126 K 215%
total 80435 K 91141 K 13%

Table 5: Size of Common Binaries in
/usr/bin

section 32-bit 64-bit increase
.text 71967 K 67526 K -7%
.bss 33463 K 11557 K -72%
.dynstr 13608 K 13587 K -1%
.rodata 12119 K 12217 K 0%
.dynsym 11424 K 7611 K 66%
.eh_frame 6367 K 12730 K 99%
.data 6018 K 9695 K 61%
.rela.dyn 4382 K 12844 K 193%
.plt 3898 K 6499 K 66%
.rela.plt 1293 K 3888 K 200%
.got 823 K 1654 K 100%
total 171812 K 198111 K 15%

Table 6: Size of Common Shared Libraries

memset functions that do use prefetch
and streaming moves for large blocks

• We found malloc implementation in
glibc 2.2 to be bottleneck.malloc in
glibc 2.3 solves this problem.

6 Conclusion

The performance of 64-bit code produced by
GCC is superior to 32-bit for CPU bound inte-
ger and numeric programs (even in comparison
to the best optimizing 32-bit compilers avail-
able).

Most important optimizations include usage
of newly available extended registers, regis-
ter argument passing conventions, use of SSE
for scalar floating point computations and re-
laxed stack frame layout restrictions by using
DWARF2 unwind information for stack un-
winding. The code section of 64-bit binaries
is, on the average, 5% smaller than code sec-
tion of 32-bit binary.

Most noticeable problem is the growth of data
structures caused by 64-bit pointers. This prob-
lem is noticeable as regression in mcf, parser
and gap SPEC2000 benchmarks as well as
about 25% increase in memory overhead of
usual desktop applications and 10% increase of
executable file sizes.

Despite that the overall system performance
seems to be improved even for (nontriv-
ial) benchmarks targeted to measure extra
overhead of increased memory bandwidth,
such as program startup times (0%–20%
speedup), compilation (12%) or SPEC2000 in-
teger benchmark suite (3.3%). Still it can be
worthwhile to implement LP32 code model to
provide an alternative for memory bound ap-
plications.

The aggressive optimizations in argument
passing conventions also brought several com-

94 • GCC Developers Summit

patibility problems especially when dealing
with variable argument lists. Other common
problem is lack of support for DWARF2 in
gas assembler making use of assembly func-
tions in AMD64 code difficult.

By eliminating the common bottleneck of
IA-32 code (such common memory accesses
caused by register starve ISA and argument
passing conventions), the code became more
sensitive to compiler optimizations. Num-
ber of optimizations we evaluated are more
effective in 64-bit than on 32-bit especially
those improving instruction decoding band-
width (AMD64 code usually consists of more
instructions with shorter overall latency), in-
struction scheduling and those that increase
register pressure.

In comparison to DEC Alpha EV56 architec-
ture, AMD Opteron is considerably less sen-
sitive on instruction scheduling and in-lining.
The first is caused by out-of-order architecture
and the second probably by smaller L1 cache.

7 Acknowledgements

The port of GCC to AMD64 was done by a
team of developers and I’d like to acknowledge
their contributions. Without the numerous dis-
cussions and the joint development the port and
therefore this paper would not be possible.

Geert Bosch designed stack unwinding and ex-
ception handling ABI. Richard Brunner, Alex
Dreyzen and Evandro Menezes provided a lot
of help in understanding the AMD Opteron
hardware. Zdeňek Dvǒrák implemented the
new loop unrolling pass, improved DWARF2
support, and made a number of improvements
to profile-based optimizations framework. An-
drew Haley finished the gcj (Java compiler)
port started by Bo Thorsen. Richard Hender-
son reviewed majority of the GCC changes.
Jan Hubǐcka implemented the first versions of

GCC and Binutils ports, co-edited the ABI
document, realized the AMD Opteron specific
optimizations and some generic ones (unit at
a time mode, profile feedback optimizations
framework, tracer). Andreas Jaeger ported
glibc, provided SPEC2000 testing framework,
co-edited the ABI document, and fixed a num-
ber of GCC and Binutils bugs. Jakub Jelínek
designed and implemented the thread local
storage ABI. Michal Ludvig and Jiří Šmíd re-
alized the GDB port. Michael Matz worked
on the new register allocator and fixed plenty
of GCC bugs. Mark Mitchell edited the ABI
document and set up WWW and CVS for the
project. Andreas Schwab and Bo Thorsen fixed
a number of problems in the linker and assem-
bler. Josef Zlomek redesigned the basic block
reordering pass and fixed a number of bugs in
GCC.

Andreas Jaeger and Evandro Menezes also re-
viewed the paper and helped to clarify it.

References

[AMD64] AMD x86-64 Architecture Pro-
grammer’s Manual, AMD (2003).

[Opteron] Software Optimization Guide for
the AMD OpteronTM Processor, AMD
(2003).

[Pentium4] IA-32 Intel Architecture Optimiza-
tion Manual, Intel (2003).

[AMD64-PSABI] UNIX System V Application
Binary Interface; AMD64 Architecture
Processor Supplement, Draft, (Ed. J. Hu-
bička, A. Jaeger, M. Mitchell),
http://www.x86-64.org , (2003)

[i386-ABI] UNIX System V Application Bi-
nary Interface; IA-32 Architecture Pro-
cessor Supplement, Intel (2000).

GCC Developers Summit 2003 • 95

[IA-64-ABI] UNIX System V Application Bi-
nary Interface; IA-64 Processor ABI Sup-
plement, Intel (2000).

[PPC-ABI] UNIX System V Application Bi-
nary Interface; PowerPC Processor ABI
Supplement(1995).

[DWARF2] DWARF Debugging Information
Format, Version 2.0.0UNIX Interna-
tional, Program Languages SIG (1993).

[FDO] Design and Analysis of Profile-Based
Optimization in Compaq’s Compilation
Tools for Alpha, Journal of Instruction-
Level Parallelism 3 (2000), p. 1–25.

[STC] A. Ramirez, J.L. Larriba-Pey,
C. Navarro, J. Torrellas, and M. Valero,
Software trace cache, Proc. 13th Intl.
Conf. on Supercomputing (1999), p.
119–126.

[profile] Y. Wu and J.R. Larus,Static branch
frequency and program profile analysis,
In Proceedings of the 27th International
Symposium on Microarchitecture (1994),
p. 1–11.

96 • GCC Developers Summit

Table 7: 64-bit SPECint 2000 with Standard Optimization (AMD Opteron)

Table 7: Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg

1.32 0.14 -0.45 -0.45 -0.17 0.19 0.41 0.11 0.60 0.28 0.27 -0.540.13
standard optimization 105.37 82.29 90.55 12.06 87.14 58.23 451.70 97.05 101.18 75.30 142.14 55.9993.40
-fguess-branch 4.40 4.45 2.90 0.00 2.73 0.19 5.58 5.96 7.43 21.60 2.56 -1.464.10

probabilities
-fschedule-insns2 1.62 1.44 2.40 0.22 0.32 0.78 4.90 1.28 -0.45 4.34 0.41 0.931.46
-fstrict-aliasing 1.48 4.62 1.93 0.00 3.68 0.58 -2.34 1.75 0.75 4.27 4.79 -2.341.19
-mfpmath=sse 1.93 3.98 -0.23 0.00 -0.09 -0.39 2.11 0.00 1.81 3.94 0.27 0.801.06
prologue using move -0.74 0.14 0.34 0.00 4.04 0.98 -0.43 1.43 0.30 5.71 -0.28 0.130.93
full sized loads and moves -1.76 -0.29 -0.46 0.88 0.96 -0.20 24.90 -1.52 -0.45 -1.04 0.97 -3.610.93
-fgcse 1.17 4.28 -1.77 1.35 0.48 1.38 2.33 1.75 -1.48 1.55 1.26 0.130.92
-foptimize 1.62 0.43 -0.12 0.00 3.33 0.00 2.33 -0.35 1.51 2.44 0.27 0.260.92

sibling-calls
-finline-functions 1.62 0.71 0.22 1.11 0.32 3.08 0.30 -1.04 0.58 -0.99 2.21 0.670.65
-fomit-frame-pointer 0.29 1.58 0.56 0.67 5.00 1.57 -3.03 3.07 -0.60 0.47 2.41 -3.480.39
-freorder-blocks 3.61 -0.29 -0.57 0.22 2.31 -0.78 0.72 4.06 0.75 3.45 1.84 -5.310.39
-maccumulate- 1.92 -0.58 0.78 0.45 0.24 -0.39 1.04 -0.12 -0.60 -1.13 0.13 0.800.26

outgoing-args
-mred-zone 1.47 0.14 1.35 -0.23 1.30 -0.20 -1.73 0.00 -0.30 -0.29 0.55 -0.670.13
partial SSE moves -0.30 5.89 -0.92 0.00 0.07 0.00 -1.17 0.00 0.00 -0.10 -0.14 -3.36-0.27
aggressive optimization 6.34 4.97 8.81 0.67 1.29 25.43 24.14 12.29 7.51 5.69 5.42 4.658.40
-fbranch-probabilities 5.95 1.71 7.13 0.22 -0.65 16.76 2.98 3.90 0.14 6.95 0.27 3.734.07
-funroll-all-loops 4.16 0.42 5.60 0.00 -4.28 0.77 16.42 4.02 1.35 0.57 1.82 1.462.50
-funroll-loops 3.71 0.28 4.17 0.00 0.08 0.58 15.35 1.61 1.35 -4.78 0.55 3.322.23
all prologue using move -0.60 0.56 2.38 -0.23 -0.40 0.58 3.73 3.19 -0.15 -4.29 0.55 4.681.05
-ffast-math 1.78 0.28 0.67 0.00 -0.25 -0.20 0.31 -0.81 0.15 2.67 1.12 2.640.78
-frename-registers -0.15 0.56 -0.68 0.00 0.08 0.58 1.34 -2.19 -0.76 -1.25 0.97 4.920.65
-funit-at-a-time 0.89 2.71 0.79 0.45 0.72 0.38 0.00 -0.47 -0.45 0.68 0.69 -0.930.39
-ftracer 3.12 0.14 1.57 0.00 1.13 -0.20 1.76 0.91 -7.81 -3.83 1.40 2.400.13
-cmodel=medium -4.30 -1.00 -0.45 0.00 -10.84 0.00 2.18 -3.57 -5.83 -6.27 -2.23 -0.27-2.51
-fpic -9.11 -1.72 -1.68 0.89 -18.21 -0.78 -1.36 -16.79 -3.76 -15.16 -6.18 -1.48-6.20

Table 7: File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

standard optimization -11.24 -23.04 -23.74 -20.59 -17.13 -13.77 -13.71 -20.00 -36.54 -9.42 -15.83 -39.29-22.31
-maccumulate- -0.42 -4.02 -3.47 -3.34 -0.35 -3.30 -3.15 -3.29 -4.31 -3.60 5.16 -2.51-3.25

outgoing-args
-fomit-frame-pointer -0.26 1.72 -1.13 -0.20 0.04 -3.76 -1.94 -1.24 -1.07 2.08 -0.08 -0.99-0.71
-fstrict-aliasing 0.00 -0.68 -0.15 0.00 0.00 0.00 0.22 0.00 -0.34 -0.66 0.00 -5.02-0.40
-mred-zone 0.00 -0.11 -0.19 0.00 -0.02 0.00 -0.76 0.59 -0.02 0.00 0.00 -0.04-0.09
-fschedule-insns2 0.00 0.02 -0.15 0.00 0.01 0.00 0.02 0.00 0.00 0.02 0.00 -0.07-0.05
-fgcse -0.11 0.04 -0.16 0.19 0.03 0.11 0.44 0.68 -0.01 -0.68 0.00 -1.16-0.05
-foptimize 0.00 -0.03 0.08 0.00 -0.02 0.00 -0.76 0.48 -0.16 -0.01 -0.23 -0.10-0.03

sibling-calls
partial SSE moves 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.010.02
full sized loads and moves 0.00 0.00 0.04 0.00 1.21 0.00 0.00 0.00 0.08 -0.01 0.00 0.110.08
-mfpmath=sse 0.00 -0.64 -0.15 0.00 0.00 0.00 2.34 -0.01 0.00 0.00 0.00 -1.640.13
prologue using move -0.11 1.06 1.01 0.00 1.26 -0.34 0.91 0.84 1.44 2.55 0.00 0.161.14
-freorder-blocks 7.06 2.71 4.43 0.00 4.05 3.67 1.07 5.72 3.42 5.60 10.89 4.224.19
-finline-functions -0.73 1.15 8.85 -0.20 0.24 28.60 0.12 6.55 3.37 1.99 29.84 0.685.49
-fguess-branch 7.00 4.41 5.82 0.00 3.60 3.34 2.64 6.67 5.85 8.74 10.89 3.975.66

probabilities
-fasynchronous 7.12 10.28 7.38 6.31 3.76 17.16 4.83 9.26 9.04 7.88 18.14 5.347.71

unwind-tables
-fbranch-probabilities -4.91 -2.07 -2.20 0.82 0.11 0.02 -2.44 -3.92 -3.74 -4.72 -7.30 -1.80-2.85
-funit-at-a-time -22.64 -4.95 -1.50 0.00 0.00 0.00 0.00 -0.82 -0.08 -0.01 0.00 -0.10-1.09
-ffast-math 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 -0.68 0.00 -0.02 0.00 0.01-0.09
-frename-registers 0.00 0.26 0.97 0.00 0.28 0.00 1.99 0.68 0.24 0.04 0.00 1.830.78
all prologue using move -0.73 4.14 1.14 -0.96 -0.33 2.18 1.35 0.87 1.60 0.52 -0.77 2.381.17

Table continues on next page. . .

GCC Developers Summit 2003 • 97

Table 7 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-ftracer 0.00 1.27 1.29 0.00 0.13 0.00 2.50 2.01 2.46 1.31 0.00 1.541.56
-funroll-loops 13.30 7.92 3.18 1.34 4.22 7.11 1.26 2.70 12.57 0.02 9.82 8.704.21
-funroll-all-loops 13.30 9.53 4.29 24.50 4.71 14.20 1.43 3.38 15.76 0.66 9.82 14.405.71
-fpic 12.11 6.53 3.62 1.14 21.40 9.38 1.92 6.48 15.53 9.16 7.06 16.667.55
-mcmodel=medium 13.62 8.10 7.10 0.00 17.57 7.44 6.35 8.29 8.35 6.64 9.90 13.338.09
aggressive optimization -14.42 4.03 21.89 5.12 6.44 44.45 -0.47 8.80 7.38 0.73 40.05 3.9311.08

Table 8: 64-bit SPECfp 2000 with Standard Optimization (AMD Opteron)

Table 8: Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

-0.28 -0.13 0.00 0.00 0.23 -2.07 0.14 0.00 0.00 0.00-0.16
standard optimization 102.22 54.49 633.14 220.37 79.20 22.69 90.76 111.08 204.34 192.64142.52
-mfpmath=sse 9.30 0.12 3.31 2.38 11.68 102.55 0.28 8.32 11.53 6.0112.43
-fguess-branch- 7.62 0.00 6.42 2.78 7.48 0.42 -2.23 -1.27 -0.29 4.722.75

probabilities
partial SSE moves 2.86 0.13 2.95 3.21 3.34 -3.26 0.86 3.11 3.86 3.332.12
full sized loads and moves 2.13 0.26 1.35 1.98 6.38 0.69 0.00 2.00 1.45 1.551.78
-fstrict-aliasing 0.00 0.12 0.00 0.19 2.22 5.22 -2.23 0.90 0.00 5.081.44
-fschedule-insns2 2.23 0.00 7.72 0.78 0.34 -1.40 -2.50 0.90 4.50 1.011.28
-freorder-blocks 0.97 0.12 0.18 0.19 13.09 2.28 0.28 0.00 -1.42 0.001.28
-fomit-frame-pointer 2.51 0.00 4.53 0.38 -0.58 -1.80 -1.13 0.90 -0.29 3.630.95
prologue using move -3.24 0.00 0.00 0.00 3.58 0.69 0.00 -0.14 0.00 0.000.15
-finline-functions 0.13 0.12 0.00 0.19 1.85 -1.51 1.84 -0.52 0.28 -0.170.15
-foptimize 0.82 0.12 0.18 0.19 -0.46 -0.97 0.00 0.12 0.00 0.000.00

sibling-calls
-mred-zone 0.00 0.00 0.00 0.38 0.57 0.97 -2.10 -0.26 0.00 0.160.00
-maccumulate- 0.55 -0.13 0.18 0.00 0.45 -3.46 0.00 0.00 -0.29 0.33-0.16

outgoing-args
-fgcse 1.37 0.00 -7.19 -5.15 -0.23 0.69 0.42 -0.64 -4.14 -2.13-1.71
aggressive optimization 5.57 -0.91 6.60 4.26 4.14 -1.93 7.96 3.58 10.63 -2.343.15
-funroll-all-loops 2.72 -0.13 1.88 2.32 -1.50 5.58 0.42 3.58 -0.29 1.161.58
-funroll-loops 2.72 0.00 1.88 2.51 -0.92 2.67 2.13 3.58 -0.29 1.161.57
-ffast-math 0.81 0.00 0.00 2.13 1.26 -3.16 0.99 4.74 0.57 1.500.94
all prologue using move 4.18 0.00 -0.39 0.19 0.23 -0.98 1.86 -0.27 1.14 0.340.63
-fbranch-probabilities -3.44 0.12 -0.94 0.38 15.14 -1.40 -0.15 -0.65 0.85 -3.350.15
-funit-at-a-time 0.13 0.12 -0.19 0.00 3.93 -3.54 0.14 0.12 0.00 -0.170.15
-frename-registers -3.54 -0.26 5.66 -0.39 -7.23 -1.11 4.97 3.46 0.86 -0.340.15
-ftracer -0.82 0.00 0.00 0.00 -2.87 -2.35 -0.15 0.77 0.86 -0.67-0.64
-cmodel=medium 2.73 -0.26 -0.19 -0.39 -3.69 -0.83 -0.72 -1.03 -14.95 -0.17-1.90
-fpic 0.95 0.00 0.37 -0.97 1.72 -0.29 0.71 -0.13 -20.98 -0.17-1.90

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
standard optimization -25.71 -26.52 -36.03 -60.14 -34.62 -15.82 -33.14 -32.33 -38.32 -30.33-36.85
-maccumulate- -1.63 -0.71 -1.83 -0.71 -3.40 -2.07 -1.80 -2.77 -1.12 -1.17-1.89

outgoing-args
-fschedule-insns2 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.02 -0.43 0.00-0.21
-mred-zone 0.00 0.00 -0.19 -2.31 -0.13 -0.08 -0.14 -0.12 -0.03 -0.12-0.14
-fgcse 0.00 -8.64 -4.00 -10.19 -0.74 1.91 -0.38 0.00 1.70 -3.61-0.07

Table continues on next page

98 • GCC Developers Summit

Table 8 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.13 0.07 0.00 -0.05 0.00 0.00-0.04
-foptimize 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.04 -0.02 0.68-0.02

sibling-calls
full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.750.08
-fomit-frame-pointer 0.00 0.47 0.75 -1.97 -0.05 0.39 -0.14 0.37 0.12 5.740.43
partial SSE moves 0.00 0.23 0.00 0.71 0.79 0.00 0.00 0.24 0.43 0.890.53
prologue using move -0.28 0.00 0.00 0.11 1.78 0.00 0.00 0.26 -0.02 0.700.53
-freorder-blocks 0.00 0.47 0.00 0.11 2.44 0.00 0.00 2.62 0.86 1.371.38
-mfpmath=sse 0.00 2.16 0.00 6.26 -1.57 0.00 -0.14 3.19 2.65 4.391.60
-fguess-branch -0.28 1.43 0.00 -0.36 5.10 12.16 10.56 3.04 0.41 1.192.09

probabilities
-finline-functions 0.00 0.00 0.00 0.00 5.39 19.96 0.13 0.42 1.29 1.502.45
-fasynchronous- 9.34 3.15 6.75 1.92 10.46 16.55 13.01 6.21 1.25 3.834.67

unwind-info
-fbranch-probabilities 0.64 0.15 0.76 0.19 -5.23 0.70 0.61 -2.11 -0.28 -0.06-1.58
-ffast-math 0.00 -0.95 0.00 0.58 -0.83 -13.04 -0.27 -5.57 0.86 0.00-0.35
-funit-at-a-time 0.00 0.00 0.00 0.00 -0.07 0.00 0.00 -0.03 0.00 0.00-0.03
all prologue using move -0.28 1.40 0.37 1.29 0.78 -1.02 -0.40 2.26 0.61 1.960.86
-ftracer 0.00 0.00 0.00 0.00 2.37 0.07 0.00 5.45 0.43 3.351.51
-frename-registers 0.00 0.47 0.00 2.65 1.78 0.00 0.00 2.60 2.58 0.862.10
-funroll-loops 1.93 24.69 6.32 6.42 7.95 20.05 0.65 11.14 3.02 6.635.63
-funroll-all-loops 1.93 24.69 7.25 6.42 8.19 20.05 2.35 11.14 3.02 6.635.73
-fpic 0.45 0.23 0.93 2.24 5.92 9.28 7.71 4.91 8.04 3.756.51
-mcmodel=medium 0.09 4.93 0.00 7.49 3.53 0.85 1.83 5.45 24.62 6.3614.32
aggressive optimization 71.81 164.20 125.37 57.30 11.28 97.53 52.54 12.91 26.21 34.1026.45

Table 9: 64-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

-0.28 -0.41 0.20 -0.45 0.00 -0.16 0.00 -0.11 0.84 0.00 0.13 0.380.12
aggressive optimization 112.35 91.73 103.60 14.72 86.01 97.56 589.65 130.46 111.79 74.46 151.98 56.79106.81
-fbranch-probabilities 8.40 2.62 10.71 0.22 3.38 21.72 27.67 27.67 14.24 10.37 4.39 -1.569.49
-fguess-branch . . .
full sized loads and moves 1.00 0.67 -0.53 0.00 0.97 -0.48 56.39 1.79 0.71 0.62 0.13 4.644.61
-fbranch-probabilities 2.69 0.00 5.62 -0.45 2.62 19.85 -0.92 11.94 4.06 2.29 1.07 0.513.77
-m64 9.90 0.27 3.39 -22.19 42.29 -2.13 45.66 0.30 -1.25 6.29 8.28 -13.333.38
-funroll-loops 1.69 0.54 0.41 0.22 0.88 1.41 16.94 7.59 0.56 1.73 0.93 4.623.12
-freorder-blocks 4.95 1.22 4.51 0.22 3.89 1.89 2.40 13.06 -0.56 -1.42 0.40 1.152.48
-fomit-frame-pointer 0.13 0.00 2.19 0.44 2.03 1.73 2.31 5.38 -0.28 1.08 1.47 5.052.10
-fstrict-aliasing -0.56 4.80 0.82 0.44 1.04 1.89 1.61 2.08 1.72 1.64 5.88 1.151.85
-finline-functions -0.42 0.54 1.55 2.02 1.86 5.21 1.01 -0.31 0.42 3.62 3.13 2.751.85
-ftracer -0.69 -0.27 0.30 0.00 1.12 0.78 5.20 3.93 0.14 0.27 0.53 4.901.60
-fschedule-insns2 0.27 2.62 0.41 0.22 4.24 0.46 2.57 1.55 0.99 3.34 1.61 0.641.47
-mred-zone -0.42 0.13 0.61 0.66 0.96 0.31 -1.33 1.56 -0.56 7.01 -0.14 3.561.22
-fgcse 2.70 4.06 1.14 -0.23 3.47 -0.77 -0.51 -0.82 2.29 1.27 0.93 0.251.10
-mfpmath=sse -0.28 2.48 -0.52 0.66 1.95 0.78 9.05 0.72 0.14 -2.80 -0.14 1.421.10
-frename-registers -0.42 1.22 -1.13 -0.45 4.24 0.46 -1.90 -0.72 -0.97 1.91 1.47 4.810.98
-funit-at-a-time -0.56 3.50 -1.23 0.22 1.12 0.93 0.16 -1.42 2.73 3.43 -0.27 2.640.98
prologue using move -0.43 0.54 1.06 0.43 1.06 0.79 -2.75 1.89 3.63 6.29 -0.14 -0.260.86
partial SSE moves -0.29 0.81 0.10 -0.44 0.00 0.63 0.00 0.62 0.00 0.26 -0.40 4.780.73
-foptimize 0.00 -0.14 0.61 0.22 0.96 0.78 1.96 0.00 -1.93 -1.86 -0.27 3.150.60

sibling-calls
-maccumulate- -0.28 0.94 -0.11 -0.23 2.53 0.46 1.18 -0.72 2.43 -0.81 0.13 0.630.48

Table continues on next page. . .

GCC Developers Summit 2003 • 99

Table 9 Continued—Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolfavg

outgoing-args
-fstrength-reduce -0.42 0.26 -1.22 0.00 0.64 0.00 -0.59 -1.81 0.42 4.30 -0.14 -0.130.00
all prologue using move -1.13 -0.27 -0.32 -0.22 1.28 0.94 6.46 -0.11 1.54 -1.33 0.39 0.500.61
-ffast-math -0.28 0.40 -1.24 -0.23 -1.92 0.00 0.08 0.10 0.56 1.34 -0.27 -3.56-0.73
-fpeel-loops 0.00 0.13 -1.13 0.22 -1.20 -0.62 0.08 -1.34 -1.69 -3.86 -0.40 -0.26-0.73
-funroll-all-loops 0.00 0.13 0.10 0.00 -0.48 -0.16 -0.84 2.04 -2.12 -5.58 0.26 -7.90-1.70
-cmodel=medium -5.12 -1.21 -2.97 0.44 -10.61 -0.78 -1.09 0.00 0.28 -4.85 -0.67 -7.74-3.28
-fpic -12.73 -1.89 -2.36 -0.89 -13.88 -6.96 -4.36 -12.79 -2.11 -18.23 -10.03 -8.87-8.12

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -24.01 -19.87 -6.95 -16.43 -11.81 24.89 -14.11 -12.48 -31.74 -8.77 17.87 -36.91-13.57
-fbranch-probabilities -12.51 -8.07 -5.50 -0.95 -2.64 -2.55 -5.80 -7.77 -14.58 -5.56 -12.11 -10.22-7.10
-maccumulate- -1.79 -1.55 -2.33 -1.44 -0.87 -2.85 -3.31 -1.77 -4.10 -3.78 3.05 -1.85-2.58

outgoing-args
-fgcse 0.73 -1.16 -1.95 -0.37 -1.92 -1.27 -0.32 -0.59 -0.38 -0.68 -0.06 -3.33-1.23
-fomit-frame-pointer -1.38 1.02 -0.81 -0.91 -0.27 -1.20 -1.94 -1.43 -1.10 1.41 -0.06 -1.20-0.72
-fstrict-aliasing 0.12 -1.14 -0.11 -0.73 0.00 0.36 0.36 -0.58 -0.56 -0.66 0.00 -5.14-0.46
-mred-zone 0.00 -0.06 -0.06 0.00 0.00 0.00 -0.34 -0.04 -0.02 0.12 0.00 -0.05-0.05
-fschedule-insns2 -0.07 -0.06 -0.07 -0.19 0.01 0.07 0.00 -0.01 -0.02 0.00 0.00 -0.04-0.03
-foptimize 0.06 -0.04 0.10 0.00 0.00 -0.04 -0.45 -0.20 0.13 -0.01 -0.06 -0.05-0.03

sibling-calls
-fstrength-reduce 0.24 0.11 -0.01 0.18 0.01 0.03 -0.02 0.00 0.10 0.00 0.00 0.120.02
partial SSE moves 0.00 0.27 0.00 0.00 0.00 0.01 0.24 0.00 0.00 0.00 0.00 0.010.03
full sized loads and moves 0.18 0.09 0.17 0.00 0.00 0.40 0.01 0.00 0.13 0.00 0.00 0.070.10
-mfpmath=sse 0.00 -1.35 -0.05 -0.55 -0.14 -0.08 3.34 -0.58 0.00 0.00 0.00 -1.390.15
prologue using move 0.00 0.07 0.14 0.00 -0.05 0.40 -0.02 0.45 0.28 0.37 -0.06 0.060.20
-funroll-loops 1.73 0.98 0.34 3.97 1.51 3.22 0.28 0.04 1.00 0.00 0.00 0.770.52
-freorder-blocks 0.24 0.11 1.05 -0.55 0.00 -0.04 0.20 0.63 0.36 0.00 0.00 0.210.53
-frename-registers 1.35 1.18 1.26 0.00 1.47 0.71 2.27 0.67 0.62 0.66 0.00 2.191.16
-ftracer 0.67 1.36 1.57 2.61 2.02 2.29 0.44 1.30 1.61 2.01 0.00 0.581.43
-fbranch-probabilities 6.09 4.09 5.60 5.44 6.03 9.87 -0.21 3.90 3.58 4.49 7.78 3.274.40
-fguess-branch . . .
-funit-at-a-time -14.10 2.25 12.02 0.00 2.04 5.62 0.00 4.14 6.08 2.66 7.60 1.925.94
-m64 16.48 -2.64 8.02 18.47 -19.00 15.52 0.25 11.38 9.65 -5.69 8.64 -3.443.90
-finline-functions 8.71 7.94 23.54 2.80 3.51 39.11 -0.09 11.96 9.86 4.17 39.65 2.7112.98
-ffast-math 0.00 -0.02 0.03 0.00 0.00 0.00 0.00 -0.05 0.00 -0.02 0.00 0.010.00
-funroll-all-loops 0.00 0.23 0.04 2.18 0.00 1.26 0.00 0.57 0.09 0.00 0.00 -2.940.03
-fpic 16.27 4.69 -6.01 0.18 17.87 -21.91 0.96 1.39 6.50 7.12 -21.77 14.970.38
-fpeel-loops 1.57 0.39 0.35 1.63 1.98 5.80 0.00 0.57 0.96 0.00 0.00 1.250.66
all prologue using move 2.18 2.85 1.30 1.45 0.26 2.63 2.31 1.71 2.95 2.77 -0.72 2.621.91
-mcmodel=medium 14.15 9.85 7.56 19.12 18.58 7.95 5.97 9.93 9.90 7.91 21.15 12.949.01

Table 10: 64-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

1.30 0.00 0.89 0.56 -5.34 -0.28 0.00 -0.13 -1.29 1.21-0.16
aggressive optimization 101.11 53.87 686.79 225.30 101.38 26.80 100.81 123.51 225.00 180.97149.23
-m64 5.00 -0.27 16.25 9.79 28.55 83.54 -1.31 19.17 28.33 20.8619.34
-mfpmath=sse 13.97 0.12 2.40 2.33 7.04 100.28 1.79 16.64 22.22 5.6713.80
-fbranch-probabilities -0.83 0.39 10.83 3.96 19.62 2.23 -0.28 6.85 2.24 0.703.98
-fguess-branch . . .
partial SSE moves 1.58 0.13 2.18 1.76 0.70 1.27 -2.51 3.17 6.14 2.541.74
-fstrict-aliasing 0.13 0.00 0.00 0.00 -0.90 4.49 1.37 5.49 0.00 4.711.73
full sized loads and moves -2.25 0.26 3.31 1.16 4.29 2.40 2.92 0.86 2.25 0.891.57
-fschedule-insns2 0.13 0.12 13.06 0.57 -9.93 1.53 -0.68 5.49 3.71 1.581.41
-ftracer 0.27 0.00 -0.19 -0.19 -2.85 0.97 1.79 1.10 0.00 0.340.15

Table continues on next page. . .

100 • GCC Developers Summit

Table 10 Continued—Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg
-mred-zone -0.95 0.00 -0.19 1.15 -2.32 0.13 1.09 0.00 0.00 0.00-0.16
prologue using move -1.53 0.13 -0.18 -0.20 0.91 -0.84 -0.14 0.00 0.00 -0.18-0.16
-frename-registers 0.00 0.00 4.52 -0.76 -12.07 1.83 3.21 1.84 1.39 -1.03-0.31
-fbranch-probabilities -1.61 0.00 -0.37 -0.57 7.36 -0.83 -0.14 -0.49 0.83 -4.16-0.32
-fomit-frame-pointer -1.08 0.00 0.54 0.95 -11.17 -0.69 0.68 0.85 0.00 1.94-0.62
-finline-functions 0.00 0.12 -0.19 0.00 -12.12 2.97 1.23 0.36 -0.28 0.00-0.77
-maccumulate- 3.20 -0.13 0.00 -0.19 -9.94 -0.70 0.40 -0.13 -0.28 0.00-0.78

outgoing-args
-freorder-blocks 1.08 0.00 -0.19 -0.19 -11.27 1.11 0.13 1.72 0.00 0.00-0.78
-funroll-loops -2.43 -0.13 0.00 1.34 -11.02 0.83 0.54 3.25 0.00 0.34-0.78
-foptimize -1.20 0.00 -0.37 0.00 -13.20 0.97 -0.28 -0.49 0.00 0.34-1.23

sibling-calls
-fstrength-reduce -1.85 0.00 -0.37 5.20 -13.15 -0.14 0.95 -0.85 1.39 -2.04-1.23
-funit-at-a-time -0.96 0.12 -0.19 -0.19 -11.26 0.00 1.09 0.00 0.00 0.00-1.24
-fgcse -1.46 -0.39 -7.52 -4.36 -12.53 1.26 0.40 -0.13 -1.63 -3.19-3.02
-ffast-math -2.01 0.00 -0.19 1.13 14.99 -0.70 2.16 1.45 -0.83 2.941.86
-fpeel-loops 9.94 0.00 -0.19 0.18 0.00 -0.83 -1.22 0.00 0.00 -0.180.62
-funroll-all-loops -0.41 0.12 0.00 -0.19 0.00 0.98 -1.49 -0.13 0.00 0.17-0.16
-fpic 5.42 -0.13 0.00 -0.95 14.84 0.55 -1.76 0.00 -20.67 -0.18-0.63
all prologue using move -5.90 0.00 -0.89 -0.39 0.20 -0.28 0.54 -0.62 0.00 0.17-0.78
-cmodel=medium -0.54 -0.13 -0.55 -1.71 9.68 -3.19 -1.76 -3.88 -16.53 -1.22-2.01

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

aggressive optimization -16.48 -15.91 -34.31 -57.92 -33.11 8.36 -29.40 -26.61 -36.44 -25.42-34.22
-fbranch-probabilities 0.55 -8.26 -2.73 -3.79 -12.90 -10.98 -9.59 -7.97 -4.00 -7.95-7.22
-maccumulate- -1.93 -0.62 -1.78 -0.78 -3.49 -0.97 -0.99 -1.92 -0.80 -1.19-1.67

outgoing-args
-mred-zone 0.00 -0.21 -0.37 -2.03 -0.77 -0.13 -0.13 -0.03 -0.01 -0.30-0.30
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.75 6.80 -10.04 0.00 0.00 -0.18-0.27
-fgcse 0.00 -8.64 -4.00 -10.19 -0.74 1.91 -0.38 0.00 1.70 -3.61-0.07
-fschedule-insns2 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.00-0.03
prologue using move -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.060.00
-foptimize 0.00 0.00 -0.37 0.00 -0.18 0.00 0.00 0.00 0.36 0.100.13

sibling-calls
full sized loads and moves 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.34 0.080.17
-freorder-blocks 0.00 0.00 0.00 0.00 0.03 0.24 0.49 0.00 0.42 -0.090.21
-funit-at-a-time 0.00 0.00 0.00 0.00 0.11 0.12 4.67 1.85 0.00 0.000.23
-fomit-frame-pointer 8.70 0.82 0.91 -1.92 -0.51 -0.73 -0.38 0.51 0.40 5.130.57
-fstrength-reduce 0.00 0.00 0.18 -0.51 0.03 0.00 0.12 0.00 1.20 0.120.59
partial SSE moves 0.00 0.20 0.18 0.39 0.77 0.60 0.00 0.00 0.82 0.230.65
-ftracer 11.68 0.41 -1.26 0.00 0.03 0.36 0.87 5.54 0.00 0.920.70
-funroll-loops 10.37 14.33 2.03 2.81 0.03 6.59 3.06 2.39 0.35 2.961.09
-fbranch-probabilities 12.12 15.26 2.69 3.25 0.02 19.33 5.59 8.65 0.43 4.671.92
-fguess-branch . . .
-frename-registers 8.99 0.82 0.54 2.99 2.38 1.85 1.76 2.69 2.57 1.582.53
-finline-functions 0.00 0.00 0.00 0.00 5.92 18.22 4.94 2.41 1.27 1.842.75
-mfpmath=sse 8.70 2.96 2.03 8.08 -0.75 6.59 3.99 5.54 5.28 5.133.72
-m64 45.40 201.01 156.05 26.51 17.41 39.81 27.06 23.41 28.79 38.2228.68

Table continues on next page. . .

GCC Developers Summit 2003 • 101

Table 10 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal
-ffast-math 0.00 -0.83 0.00 0.94 -0.85 -6.44 -4.84 -8.23 0.40 -0.18-0.81
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.24 0.61 0.00 0.00 0.000.01
-fpeel-loops 0.00 0.00 0.00 1.39 0.00 0.36 1.36 0.00 0.00 0.120.07
all prologue using move -0.49 8.82 1.79 1.28 2.22 8.41 0.99 2.15 0.36 4.231.49
-fpic 0.65 -6.38 2.35 1.11 5.32 -3.71 13.13 2.23 6.58 3.475.21
-mcmodel=medium 0.00 9.45 2.17 7.98 5.43 10.44 11.27 5.24 23.48 6.7214.49

Table 11: 32-bit SPECint 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

1.06 -0.14 0.42 0.69 0.11 0.00 -0.13 0.20 -0.28 0.85 0.71 3.520.75
aggressive optimization 96.74 76.81 73.11 14.74 56.38 83.61 349.45 111.06 98.34 71.82 122.25 67.0989.12
-march=i386 to k8 5.23 8.41 3.45 0.17 9.02 6.80 82.00 -0.52 0.41 14.78 2.45 8.5210.08
-fbranch-probabilities 8.34 2.37 12.33 1.40 4.25 7.49 17.57 14.35 8.99 12.75 6.47 0.877.37
-fguess-branch . . .
-fbranch- 2.94 0.41 10.33 0.17 2.91 5.43 0.61 8.82 2.41 8.26 6.45 0.773.89

probabilities
-fomit-frame-pointer 8.64 1.36 0.84 0.17 2.26 6.51 0.73 0.41 4.58 2.66 6.25 3.783.26
-fgcse 1.99 1.52 -2.27 -0.69 0.57 -4.36 5.14 8.00 2.67 2.93 1.86 2.981.77
-finline-functions 0.90 1.96 0.00 2.84 2.91 6.62 1.86 0.82 1.41 3.34 1.87 1.782.17
-ftracer 0.15 1.94 4.58 -0.52 -0.34 -2.23 3.94 9.70 0.13 1.74 3.05 0.771.78
-fschedule-insns2 2.30 2.22 2.47 -0.35 2.32 0.15 0.12 1.87 -0.69 2.04 1.73 2.701.52
-funit-at-a-time -0.60 8.91 3.47 -0.18 2.55 -1.50 0.12 7.50 -1.10 1.83 0.28 -0.671.39
-freorder-blocks 1.99 0.68 7.88 -0.87 3.52 0.76 -0.37 1.24 -0.83 2.23 2.01 -1.001.26
-funroll-loops -0.31 -0.55 0.00 0.34 0.22 -1.79 6.77 0.72 0.69 2.71 1.14 3.531.25
-march=ppro to k8 5.91 -1.89 2.37 0.34 0.45 -4.22 2.63 0.30 1.11 0.38 2.75 2.601.13
-maccumulate- 0.60 -0.28 0.53 0.00 2.67 -2.08 5.95 2.62 0.27 4.06 1.00 -2.150.88

outgoing-args
-frename-registers -0.30 1.65 -0.94 -1.04 0.68 -2.67 -1.57 0.00 -0.14 2.74 0.85 5.490.75
-foptimize -0.16 0.27 2.24 0.34 -0.34 -1.93 -1.21 -0.11 0.69 1.93 0.56 0.110.25

sibling-calls
-fstrict-aliasing 1.07 -1.37 0.21 1.39 -0.12 0.00 0.12 0.10 0.55 0.09 0.71 0.550.25
-fstrength-reduce -0.16 0.54 -0.53 -1.04 0.57 -2.51 0.12 0.00 -1.10 -1.14 0.28 1.10-0.25
-funroll-all-loops 3.10 -0.28 0.31 -0.87 0.11 2.73 0.49 2.98 0.68 1.14 -0.15 1.981.00
-mfpmath=sse 1.83 2.32 1.28 -1.38 0.11 0.45 0.36 0.51 1.39 0.94 0.85 0.320.75
-ffast-math -0.31 1.09 0.63 0.34 -0.46 0.15 0.12 0.72 0.55 0.86 0.42 0.440.50
-fpeel-loops 2.29 0.00 -0.32 -0.52 0.90 3.17 0.00 0.10 -3.43 -0.29 0.70 -1.200.00
-fpic -20.49 -5.64 -17.55 -3.28 -29.60 -28.19 -10.27 -29.75 -23.00 -35.03 -25.65 -17.66-20.81

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -18.85 -6.25 3.51 -21.10 2.34 33.46 -4.21 -6.83 -22.83 -2.91 33.80 -22.33-4.05
-fbranch-probabilities -14.82 -8.93 -5.82 0.67 -1.96 -3.46 -5.89 -7.95 -14.56 -3.10 -11.81 -10.11-6.87
-fgcse 1.21 -1.15 -1.23 0.00 2.31 -0.93 0.20 0.52 0.21 0.51 -1.59 -1.60-0.28
-foptimize 0.07 0.11 0.09 0.00 0.07 0.00 -1.44 0.05 0.01 -0.03 -1.18 -0.02-0.14

sibling-calls
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00
-fstrength-reduce 0.21 0.09 0.02 0.00 0.05 -0.29 0.03 0.09 0.12 0.00 0.00 -0.190.02
-fschedule-insns2 -0.15 0.21 -0.07 0.00 -0.07 0.00 1.63 -0.02 -0.04 -0.01 0.00 0.030.15
-march=ppro to k8 -2.15 1.33 -0.40 0.00 -0.36 0.00 5.56 -0.29 -0.49 0.10 -1.18 0.310.40
-funroll-loops 3.06 0.81 0.32 0.00 1.16 2.91 0.08 0.21 0.88 0.08 2.31 0.310.48
-frename-registers 0.49 0.48 0.52 0.00 0.51 0.00 1.42 0.81 0.22 0.10 1.02 0.310.55
-freorder-blocks -0.08 -0.06 1.22 0.00 0.50 -0.03 0.17 0.82 0.29 0.10 0.53 0.220.62
-fomit-frame-pointer -1.77 2.89 0.39 0.00 -0.14 0.77 4.52 -0.79 0.17 2.38 -2.80 -0.110.95
-ftracer 0.00 1.33 1.78 0.00 4.56 2.91 0.31 2.07 1.71 2.56 0.29 0.311.80
-fbranch-probabilities 6.98 3.72 6.73 0.67 9.29 9.37 -0.26 4.48 3.81 4.67 6.41 2.354.93
-fguess-branch . . .
-maccumulate- 1.29 6.40 6.00 0.00 1.95 2.47 0.38 2.07 4.64 19.88 3.13 4.365.87

Table continues on next page. . .

102 • GCC Developers Summit

Table 11 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

outgoing-args
-funit-at-a-time -11.69 6.01 13.64 0.00 2.27 6.00 0.00 4.45 7.07 2.65 6.53 1.866.58
-march=i386 to k8 1.43 9.46 9.78 0.00 3.65 6.00 8.00 4.13 6.70 21.21 4.02 8.639.24
-finline-functions 10.90 8.91 28.84 0.00 3.79 39.55 0.16 13.26 10.95 4.65 50.44 2.3014.46
-ffast-math 0.00 -0.79 0.01 0.00 -0.02 0.00 0.00 -0.13 0.00 -1.23 0.00 -0.06-0.21
-funroll-all-loops 0.00 0.25 0.05 0.00 0.07 2.83 0.00 0.03 0.07 0.03 1.19 0.210.15
-fpeel-loops 2.19 1.15 0.39 0.00 2.81 6.13 0.00 0.21 0.88 0.02 1.25 1.610.72
-fpic 12.59 6.19 -4.89 0.00 14.80 -27.60 10.58 4.43 1.15 1.35 -21.21 9.830.84
-mfpmath=sse -0.08 1.15 -0.03 0.00 -0.06 0.00 10.10 0.17 0.00 0.00 1.19 -1.801.13

Table 12: 32-bit SPECfp 2000 with Aggressive Optimization (AMD Opteron)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsiavg

0.13 0.00 0.00 -0.21 0.28 2.57 -0.14 0.00 6.00 0.000.72
aggressive optimization 77.83 27.22 445.45 148.97 56.22 -30.46 92.25 101.18 122.37 156.0898.56
-march=i386 to k8 6.02 0.00 2.53 3.17 13.31 1.54 -0.65 1.49 -3.05 2.112.41
-fbranch-probabilities 3.49 0.39 4.74 4.28 0.72 1.81 -1.42 7.93 -2.16 0.201.66
-fguess-branch . . .
-fomit-frame-pointer -0.14 0.12 3.49 2.25 9.32 1.02 0.38 0.29 0.00 1.031.63
-march=ppro to k8 8.34 0.00 0.00 -0.82 10.41 -1.50 0.26 -0.59 -0.94 -0.621.10
-fstrength-reduce 10.13 -0.26 1.46 1.03 -8.02 -1.54 0.13 0.89 -0.32 3.640.91
-funroll-loops 3.93 0.00 0.00 0.61 -7.65 1.81 0.52 4.62 0.95 -0.210.36
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 -1.27 -0.13 0.14 0.00 0.000.00
-frename-registers 0.81 0.12 -0.62 0.00 -5.69 -0.52 1.98 -0.15 0.63 0.62-0.19
-funit-at-a-time 0.13 0.00 0.00 0.00 -5.75 0.25 2.25 0.29 0.00 0.00-0.19
-ftracer 1.65 0.00 0.00 0.00 -6.54 0.51 0.39 2.26 -0.32 -0.82-0.37
-finline-functions 0.00 0.00 0.00 0.00 -7.14 3.70 1.85 -0.15 0.00 -0.21-0.37
-maccumulate- 2.20 0.00 0.20 0.20 -6.37 -0.76 -0.40 0.00 0.00 0.41-0.37

outgoing-args
-foptimize -0.27 0.00 0.00 0.00 -6.44 2.84 0.00 0.14 -0.32 0.00-0.37

sibling-calls
-fschedule-insns2 -0.54 0.13 1.04 2.72 -6.49 -0.26 -1.67 1.34 -6.48 1.04-0.72
-freorder-blocks 0.68 -0.13 0.20 0.00 -4.78 -1.52 -0.13 1.04 -1.55 -0.62-0.73
-fbranch-probabilities 1.78 0.00 -0.21 -2.80 0.00 -2.53 0.26 -1.17 -0.63 -2.23-0.91
-fgcse 2.21 -0.39 0.20 -2.40 -3.99 2.02 -0.13 -0.59 -10.68 0.20-1.43
-mfpmath=sse 2.43 0.25 3.29 -0.21 12.53 97.20 -0.14 1.47 13.20 3.3010.14
-ffast-math 1.21 0.25 0.00 2.04 3.13 -0.26 3.89 0.58 -0.95 3.091.44
-fpeel-loops 3.78 0.00 0.00 2.25 0.00 0.51 -0.26 0.00 0.00 0.000.54
-funroll-all-loops 0.00 0.12 0.00 0.00 0.00 -2.54 -0.26 0.14 0.00 0.00-0.19
-fpic -5.15 0.25 -3.72 3.46 -0.43 -1.31 -10.15 -2.36 -11.64 -1.45-3.10

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

aggressive optimization -3.88 -1.94 -20.88 -25.85 -23.54 14.89 -16.01 -17.99 -17.79 -11.69-18.60
-fbranch-probabilities 0.24 -2.71 0.69 -4.31 -14.27 -7.93 -4.87 -11.72 -4.35 -7.09-7.78
-fstrict-aliasing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00
-march=ppro to -march=k8 0.00 0.53 0.00 -4.45 1.81 0.77 0.10 0.41 -0.60 0.000.04
-funit-at-a-time 0.00 0.00 0.00 0.00 0.24 0.00 3.26 0.43 0.00 0.000.14
-freorder-blocks 0.00 0.00 0.00 0.04 0.15 -0.12 0.43 0.31 0.28 0.000.20
-foptimize 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.02 0.23 1.560.30

Table continues on next page. . .

GCC Developers Summit 2003 • 103

Table 12 Continued—File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp sixtrack apsitotal

sibling-calls
-frename-registers 0.00 0.26 0.00 0.04 0.25 0.33 0.65 0.02 0.61 0.000.38
-ftracer 7.98 0.00 0.00 0.00 0.07 0.44 0.76 5.35 0.00 1.440.66
-funroll-loops 5.15 6.26 0.00 1.15 0.06 7.76 1.21 0.43 0.07 2.480.57
-fgcse -1.84 3.89 0.00 -4.45 -0.79 0.11 0.54 0.09 2.85 -3.170.76
-fbranch-probabilities 10.49 6.75 0.69 1.60 -0.55 11.19 2.58 7.22 0.63 3.161.38
-fguess-branch . . .
-fschedule-insns2 0.00 0.81 0.00 1.44 0.63 0.66 1.32 3.68 2.53 2.071.90
-fomit-frame-pointer 2.10 1.60 0.00 4.64 2.24 0.00 0.54 4.52 1.22 9.282.41
-fstrength-reduce 0.00 -1.33 0.00 31.50 -0.04 -2.69 -0.22 -0.54 4.37 3.073.14
-finline-functions 0.00 0.00 0.00 0.00 6.28 13.54 6.74 1.95 1.85 3.973.23
-march=i386 to -march=k8 7.17 -4.61 0.00 1.44 6.05 0.55 0.87 -0.68 4.19 8.234.35
-maccumulate- 7.52 1.91 0.00 0.71 3.53 1.23 1.77 0.43 6.49 9.365.03

outgoing-args
-ffast-math 0.00 -0.81 0.00 0.23 -1.37 -31.41 -31.50 -6.71 -0.07 -0.78-1.89
-funroll-all-loops 0.00 0.00 0.00 0.00 0.00 0.11 0.65 0.00 0.00 0.000.01
-fpeel-loops 0.77 0.00 0.00 0.42 0.00 0.22 1.19 0.00 0.06 0.000.08
-fpic 4.90 -6.17 0.00 -25.58 9.63 -3.10 2.72 5.98 7.44 -0.105.74
-mfpmath=sse 4.04 7.23 0.00 10.72 2.53 7.29 8.28 15.12 8.83 6.817.33

Table 13: 64-bit SPECint 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf avg

0.00 -0.66 0.71 0.00 1.63 0.00 0.60 0.00 8.02 5.84 -0.55 4.721.96
aggressive optimization 143.98 77.03 73.26 16.94 105.84 141.75 505.83 119.81 128.84 94.27 180.89 71.33115.27
-fschedule-insns2 16.23 10.00 1.51 2.20 11.18 2.75 20.56 8.84 2.87 3.78 15.38 5.638.08
-fschedule-insns
-funit-at-a-time 1.42 2.63 3.73 3.67 -2.83 28.33 18.57 16.66 0.00 16.42 3.52 5.517.63
-finline-functions 5.18 2.63 2.18 1.47 14.63 31.62 1.19 8.33 0.00 22.13 4.73 2.706.84
-fbranch-probabilities 1.45 7.58 6.06 2.22 15.47 27.50 5.03 14.00 2.08 -3.48 0.00 0.656.16
-fguess-branch . . .
-fbranch-probabilities 9.30 2.66 6.81 5.97 -4.33 29.66 -1.18 9.93 4.22 17.51 2.31 -0.665.44
-fschedule-insns2 7.87 6.16 3.75 0.72 7.69 -0.89 7.84 7.38 1.42 3.14 7.89 5.635.03
-fomit-frame-pointer 0.00 0.00 2.94 0.00 5.34 2.01 5.76 7.69 3.52 3.18 5.26 1.332.63
-freorder-blocks 0.71 0.00 2.15 0.00 14.10 1.31 -6.94 5.62 3.52 4.48 2.22 2.642.63
-fgcse 5.42 0.00 1.41 0.72 -1.02 -0.65 14.86 1.19 2.09 2.54 2.82 -0.661.94
-fif-conversion 2.96 5.47 0.00 2.20 4.97 0.65 13.15 0.00 2.08 3.20 -0.56 1.312.61
-fstrength-reduce -3.53 -1.28 1.44 2.18 -3.30 -0.65 22.30 -2.96 2.08 -1.87 2.27 4.081.97
-funroll-loops -1.42 0.00 2.18 0.00 22.29 0.00 3.65 -0.60 -1.37 1.87 0.00 -3.881.30
-fstrict-aliasing -2.88 4.08 -0.71 0.73 2.13 8.45 -16.97 4.34 4.25 3.16 4.59 0.650.65
-frename-registers 0.71 0.64 0.71 -0.72 5.40 0.66 5.73 2.40 0.68 -12.50 -1.11 3.440.65
-foptimize -2.12 0.00 0.71 -1.42 -14.80 -0.65 2.42 -2.49 0.68 1.86 1.11 -0.65-1.28

sibling-calls
-ftracer 0.00 -4.55 0.00 -2.16 -12.07 -0.65 3.06 -2.95 0.00 1.25 1.11 -7.10-2.59
-ffast-math -1.44 -3.73 -2.12 2.18 7.65 0.00 -1.78 -0.59 1.37 8.60 -0.55 1.321.29
-funroll-all-loops 0.70 -0.65 -2.78 0.72 2.59 1.30 5.16 4.40 0.00 -3.04 0.55 -3.250.00
-fpeel-loops 0.00 3.28 -0.71 -1.43 4.44 1.30 -3.51 -2.36 0.00 0.61 0.00 -1.300.00
-fold-unroll-loops 0.00 0.64 0.00 0.72 -4.62 1.31 10.71 3.03 -1.37 -2.54 -6.63 0.000.00
-fpic 0.00 -2.64 0.00 0.73 -13.23 3.63 -4.10 -0.65 -1.40 -3.71 5.48 -2.65-2.05

File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal

aggressive optimization -38.22 -29.20 -9.28 -42.75 -28.90 5.66 -49.91 -12.38 -36.23 -17.64 -3.00 -39.40-22.85
-fbranch-probabilities -10.66 -1.50 -2.43 0.79 -0.71 2.11 -4.12 -6.17 0.00 -3.29 -9.80 -5.73-3.09
-fomit-frame-pointer -10.98 -3.61 -1.53 0.00 -1.19 -3.23 -7.01 -2.35 -2.88 -2.10 -1.09 -3.01-2.64
-fgcse -0.25 -1.53 -1.07 0.00 -0.87 -1.56 -1.29 -0.48 0.08 0.01 -10.13 0.00-0.84

Table continues on next page. . .

104 • GCC Developers Summit

Table 13 Continued—File size (relative increase of the size of stripped binaries in percent)
options gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolftotal
-fstrict-aliasing 0.03 -1.22 0.00 0.00 -0.07 -0.28 0.26 -0.20 -0.53 -0.26 0.00 -3.01-0.28
-freorder-blocks -0.04 0.01 0.31 0.00 -0.43 0.01 -1.35 -0.23 -0.27 0.00 0.00 0.00-0.09
-foptimize 0.06 -0.01 0.23 0.00 0.00 0.01 -1.26 -0.04 0.10 0.00 0.00 0.00-0.02

sibling-calls
-frename-registers 0.06 -0.09 0.00 0.00 -0.10 0.02 0.08 -0.09 0.01 -0.03 0.00 0.00-0.02
-fif-conversion -0.10 -0.19 0.28 0.00 0.15 -0.21 -1.31 0.05 0.04 0.00 0.00 0.00-0.01
-fstrength-reduce 0.06 0.33 0.00 0.00 0.23 -0.48 0.05 0.06 0.20 0.01 0.01 0.000.04
-funroll-loops 0.06 0.00 0.27 0.00 0.12 0.34 0.00 0.05 0.00 0.00 0.00 0.000.12
-ftracer 0.04 0.63 2.22 0.00 3.66 5.31 0.11 2.09 -0.11 3.25 0.00 3.191.99
-funit-at-a-time -20.22 0.29 9.22 0.83 1.09 6.54 -4.12 4.22 0.00 -1.08 0.30 -2.993.12
-fbranch-probabilities 0.46 4.61 5.48 0.79 5.40 6.52 0.20 4.37 0.06 4.34 0.42 3.343.90
-fguess-branch . . .
-fschedule-insns2 0.00 4.24 4.73 0.00 3.87 0.00 5.63 3.53 4.29 3.47 0.00 3.414.06
-fschedule-insns2 0.00 4.42 5.01 0.00 3.87 0.00 7.14 4.76 5.25 4.69 0.00 3.414.76
-fschedule-insns
-finline-functions 0.47 8.20 23.93 0.79 3.89 43.62 -4.17 14.35 0.00 2.22 52.11 -2.8911.68
-ffast-math -0.31 -0.09 -0.01 -0.40 -0.06 -0.12 -0.04 -0.01 -0.07 -0.04 -0.12 -0.03-0.04
-funroll-all-loops 0.99 0.31 0.00 0.00 0.43 2.29 0.00 0.11 0.00 0.02 0.00 0.000.13
-fpeel-loops 12.32 0.57 0.03 0.00 2.11 6.22 0.00 0.18 0.00 0.04 0.22 0.000.49
-fpic -1.53 1.09 0.12 0.39 1.78 5.18 2.52 1.25 1.35 0.21 1.28 0.800.92
-fold-unroll-loops 12.39 8.85 -1.48 0.00 5.54 5.61 2.90 2.75 13.59 0.00 11.26 9.302.83

Table 14: 64-bit SPECfp 2000 with Aggressive Optimization (DEC Alpha EV56/600Mhz)

Performance (relative speedups in percent)
options wupwise swim mgrid applu mesa art equake ammp apsiavg

0.00 -0.75 -0.21 0.00 0.93 0.00 0.83 -0.84 -1.760.00
-fschedule-insns2 14.49 10.74 50.22 17.06 28.57 7.60 17.08 24.61 25.4121.69
-fschedule-insns
-fschedule-insns2 1.93 0.00 0.92 3.25 34.50 7.73 4.67 5.26 0.005.78
-fstrength-reduce 9.27 0.75 2.71 4.88 2.85 1.19 2.56 0.84 1.813.17
-fbranch-probabilities 3.12 0.00 1.44 1.33 14.21 7.10 3.41 -0.83 0.903.14
-fguess-branch . . .
-ftracer 1.85 0.00 1.02 0.20 8.54 1.14 0.82 0.84 6.792.36
-fbranch-probabilities 1.85 -0.75 -1.83 0.40 5.85 1.65 8.03 1.69 -1.741.56
-funit-at-a-time 2.48 0.74 -0.21 0.40 7.25 -1.68 10.00 2.56 -3.451.56
-fstrict-aliasing 0.00 0.00 -0.21 0.00 2.35 -6.56 9.00 0.84 0.900.77
-fomit-frame-pointer 2.48 -0.75 -0.41 0.00 4.34 -0.58 6.19 0.00 -0.880.77
-fgcse 0.60 0.00 0.00 -2.18 3.33 6.50 6.14 0.84 -2.610.76
-finline-functions 1.85 -0.75 -0.31 0.20 7.42 -9.40 2.56 0.84 -2.590.00
-freorder-blocks 0.00 -0.75 0.00 0.10 4.32 -5.24 6.14 -1.64 0.000.00
-frename-registers 0.60 -1.49 0.40 0.40 5.85 -1.66 0.82 0.84 -1.790.00
-foptimize -0.61 0.00 -1.42 0.10 2.35 -4.66 5.21 0.00 -1.760.00

sibling-calls
-fif-conversion 0.00 0.00 0.20 0.20 0.94 1.10 4.31 -0.84 -0.900.00
-funroll-loops 0.60 -2.99 -1.01 0.10 1.87 -3.98 0.83 0.00 -0.88-0.77
-fold-unroll-loops 6.66 -0.75 0.20 2.43 -36.75 3.48 -4.96 1.66 3.63-3.08
-ffast-math -0.60 0.00 0.10 0.30 -0.47 2.90 -5.47 -0.83 -2.59-0.76
-fpic 0.63 0.00 -0.21 0.20 -2.04 2.95 0.00 0.00 0.870.00
-funroll-all-loops 0.00 -0.75 0.71 0.70 0.00 7.55 -0.82 -4.17 -1.790.00
-fpeel-loops 3.63 0.00 0.20 6.06 0.00 4.06 -4.14 0.00 0.000.76

GCC Developers Summit 2003 • 105

File size (relative increase of the size of stripped binaries in percent)
options wupwise swim mgrid applu mesa art equake ammp apsitotal

-fbranch-probabilities 0.37 -0.11 0.20 0.15 -7.43 -6.42 -0.06 -0.92 -2.47-4.77
-funit-at-a-time 0.37 -0.11 0.20 0.15 -7.37 -6.42 0.57 0.03 -2.47-4.61
-fomit-frame-pointer 0.00 -0.53 -1.53 -0.35 -3.45 -7.19 -2.12 -4.38 -1.30-2.96
-fgcse 0.00 -26.92 0.57 -8.87 -1.06 -7.19 0.25 -0.02 -0.74-1.93
-fstrict-aliasing 0.00 0.00 0.00 0.00 -0.31 -7.19 -2.17 -0.10 -0.15-0.44
-fif-conversion 0.00 -0.21 -0.09 -0.08 -0.22 -0.73 0.05 0.31 -0.03-0.11
-foptimize 0.00 0.00 0.00 0.00 -0.04 0.00 -0.06 -0.01 0.00-0.02

sibling-calls
-freorder-blocks 0.00 0.10 0.00 0.02 0.28 -0.19 0.11 -0.43 -0.200.07
-funroll-loops 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.020.00
-frename-registers 0.00 0.10 0.16 -0.08 0.13 0.18 0.22 0.11 -0.320.05
-finline-functions 0.37 0.20 0.28 0.13 -0.74 19.29 8.46 1.21 -1.870.09
-ftracer 8.22 0.00 0.08 0.02 0.22 0.55 0.22 1.01 1.720.79
-fbranch-probabilities 9.36 0.84 1.36 -1.20 0.00 2.79 0.97 4.33 1.801.17
-fguess-branch . . .
-fstrength-reduce 7.50 2.68 3.28 7.17 -0.17 0.00 0.22 0.37 7.241.70
-fschedule-insns2 3.87 2.47 3.73 6.90 5.47 3.11 4.91 5.97 6.535.64
-fschedule-insns2 3.78 2.47 4.26 11.04 5.55 3.11 5.66 5.97 6.976.25
-fschedule-insns
-fpic -1.98 -0.42 0.24 -2.57 -0.09 2.76 1.10 -1.06 -0.08-3.83
-ffast-math -0.21 -2.00 -1.05 -0.97 0.27 0.30 -0.60 -0.76 -0.61-0.17
-fpeel-loops 0.00 0.00 0.00 0.90 0.00 7.73 2.60 0.00 0.000.30
-funroll-all-loops 0.00 0.00 0.81 0.29 0.00 7.73 1.13 0.37 0.270.34
-fold-unroll-loops 2.71 36.40 15.56 5.15 4.52 23.73 6.75 15.75 8.917.79

106 • GCC Developers Summit

Porting to 64-bit GNU/Linux Systems

Andreas Jaeger
SuSE Linux AG

aj@suse.de, http://www.suse.de/˜aj

Abstract

More and more 64-bit systems are showing
up on the market—and developers are porting
their applications to these systems. Most code
runs directly without problems—but there is a
number of sometimes quite subtile problems
that developers have to be aware of for portable
programming and porting.

This paper illustrates some problems on port-
ing an application to 64-bit and also shows
how use a 64-bit system as development plat-
form for both 32-bit and 64-bit code. It will
give hints especially to application and library
developers on writing portable code using the
GNU Compiler Collection.

1 Introduction

With the introduction of AMD’s 64-bit archi-
tecture, AMD64, implemented in the AMD
Opteron and Athlon64 CPUs, another 64-bit
processor family enters the market and users
are going to buy and deploy these systems. A
new architecture offers new challenges for both
system developers (compare [JH]) and applica-
tion developers.

This paper will give hints especially to appli-
cation and library developers to write portable
code and make use of their 64-bit development
machine. While the paper discusses general
64-bit and porting problems specific to other
platforms, the AMD64 platform is used as pri-

mary example. Other architectures that the au-
thor has access to and is familiar with are dis-
cussed also. A brief characteristic of these 64-
bit Linux platforms1 is given in table 1.

Differences between platforms and therefore
the need to port software can be attributed to
at least one of:

Compiler Different compilers have different
behavior. This can mostly be avoided with
using the same version of the GNU com-
pilers.

Application Binary Interfaces (ABI) An
ABI specifies sizes of fundamental types,
function calling sequence and the object
format. In general the ABI is hidden from
the developer by the compiler.

CPU The effect of different CPUs is mainly
visible through the ABI. The differences
visible to developers include little or big
endian, whether the stack grows up or
down, or whether the fundamental size is
32-bit or 64-bit.

C Library Different C libraries might not im-
plement the same subset of functions or
have architecture dependent versions. The
GNU C Library tries to unify this but there
are always architecture dependent differ-
ences.

1The only missing 64-bit platforms that I am aware
of are MMIX and SuperH SH 5 but there is no Linux
port for them.

108 • GCC Developers Summit

Kernel All access to the Linux kernel is done
through functions of the C Library. A
newer kernel might have additional func-
tionality that the C Library then can pro-
vide.

Application developers will mainly have porta-
bility problems due to different CPUs and dif-
ferent ABIs and the discussion here will con-
centrate on these.

The paper is structured as follows: Section
2 mentions why 64-bit programs are advanta-
geous. The following section discusses exe-
cution of both 32-bit and 64-bit programs on
one system and development on such a system.
Section 4 shows how easy porting should be
and then goes into all the subtleties and prob-
lems that nevertheless arise.

2 Advantages of 64-bit Programs

The main limitation of 32-bit programs that
push developers to 64-bit programs is the lim-
ited address space. A 32-bit program can only
address 4 GB of memory. Under a 32-bit x86
kernel the available address space is at most 2-
3 GB (3.5 GB with a special kernel and static
linking of an application) since the kernel also
needs some of that memory. Nowadays appli-
cations need larger and larger address spaces
and performance can be greatly improved with
large caches which is a benefit especially for
databases.

Besides larger address space most recent 64-bit
processors introduce additional features over
the previous processor generation for improved
performance.

As an example the 64-bit AMD Opteron pro-
cessor has some architectural improvements,
like a memory controller integrated into the
processor for faster memory access which
eliminates high latency memory structure.

Programs written in 64-bit mode for AMD
Opteron take implicitly advantage of this but
also of further new features:

• 8 additional general purpose and 8 addi-
tional floating point registers

• RIP addressing (instruction-pointer rela-
tive addressing mode) to speed up espe-
cially handling of shared libraries[JH].

• A modern Application Binary Interface
[AMD64-PSABI].

• A large address space (currently 512 TB
per process).

3 64-bit and 32-bit Programs on
One System

The CPU architects of the 64-bit architectures
AMD64, MIPS64, Sparc64, zSeries and Pow-
erPC64 designed their CPUs in such a way that
these 64-bit CPUs can execute 32-bit code na-
tively without any performance penalty. The
most sold 64-bit platform is the MIPS architec-
ture but it—due to its usage nowadays mainly
in embedded systems—mainly runs in 32-bit
mode. Under Linux the 64-bit platforms Pow-
erPC64 and Sparc64 in general only use a 64-
bit kernel but have no significant 64-bit appli-
cation base.

All these architectures nevertheless share the
way that their 32-bit support is done. The sup-
port of two architectures is commonly called
“biarch support” and there’s also the general
concept of “multi-arch support.”

A 64-bit architecture that can execute 32-bit
applications natively offers some extra chal-
lenges for developers:

• The kernel has to support execution of
both 32-bit and 64-bit programs.

GCC Developers Summit 2003 • 109

Architecture uname -m Size Endian Libpath Miscellaneous
Alpha alpha LP64 little lib
AMD64 x86_64 LP64 little lib64 executes x86 code natively
IPF ia64 LP64 little lib executes x86 code via emulation
MIPS64 mips64 LP64 both lib64 executes MIPS code natively
PowerPC64 ppc64 LP64 big lib64 executes PowerPC code natively
Sparc64 sparc64 LP64 big lib64 executes Sparc code natively
PA-RISC64 parisc64 LP64 big — only kernel support, no 64-bit user land,

executes 32-bit PA-RISC code natively
zSeries (s390x) s390x LP64 big lib64 executes s390 code natively

Table 1: 64-bit Linux Platforms

• The system has to be installed in such a
way that 32-bit and 64-bit libraries of the
same name can exist on one system.

• The tool chain should handle development
of both 32-bit and 64-bit programs.

3.1 Kernel Implications

The kernel side is not part of this paper but
the requirements for the kernel implementation
should be stated:

• Starting of programs for every architec-
ture supported by the ABI, e.g. for both
32-bit and 64-bit.

• System calls for every architecture in a
way that is compatible to the correspond-
ing 32-bit platform. For example a pro-
gram that runs on x86 should run on
AMD64 without any changes.

One problem here is theioctl() sys-
tem call which allows to pass any kind
of data to the kernel including complex
data structures. Since the kernel needs to
translate these data structures to the same
structure for all supported architectures,
someioctl() s might only be supported
for the primary architecture. This restric-
tion only hits administration programs,
like LVM tools.

3.2 Libraries: lib and lib64

If a system only supports execution of one ar-
chitecture, all libraries will be installed in paths
ending with/lib like /usr/lib and user-
level binaries in paths ending with/bin , e.g.
/usr/bin . But if there’s more than one ar-
chitecture to support, libraries will exist in fla-
vors for each architecture but with the same
name, e.g. there’s alibc.so.6 for 32-bit
x86 and one for 64-bit code on an AMD64 sys-
tem. The problem now is where to install these
libraries.

Following the example set by the Sparc devel-
opers, all the other 64-bit biarch platforms in-
stall the 64-bit libraries into paths ending with
/lib64 , e.g. /usr/X11R6/lib64 . The
64-bit dynamic linker is configured to search
these library paths. For 32-bit libraries nothing
has been changed.

This setup has the advantage that packages
build for the 32-bit platform can be installed
without any change at all. For them everything
is the same as on the corresponding 32-bit plat-
form, no paths are changed at all. For exam-
ple the binary x86 RPM package of the Acro-
bat Reader can be installed directly on AMD64
systems and works without any change at all.

For 64-bit programs a little bit more work

110 • GCC Developers Summit

is needed since often configure scripts search
directly the library paths for certain libraries
but then find only the 32-bit library in e.g.
/usr/lib or makefiles have paths hard-
coded. Configure scripts created by GNU
autoconf offer an option to specify the li-
brary install path directly and if you use RPM,
you can use for example the following in your
spec file:

configure --prefix=/usr --libdir=%{_libdir}

Also ldconfig handles both 32-bit
and 64-bit libraries in its configuration
(/etc/ld.so.conf) and cache files
(/etc/ld.so.cache). ldconfig marks
64-bit libraries in the cache so that the dy-
namic linker can easily detect 32-bit and 64-bit
libraries.

3.3 Development for Different ABIs

GCC can be build as a compiler that supports
different ABIs on one platform. Depending on
the architecture a number of different ABIs or
instruction sets are supported, e.g. for ARM it
is possible to generate both ARM and Thumb
code. The GNU binutils also support these dif-
ferent ABIs.

The framework is especially useful for a biarch
compiler and the 64-bit GNU/Linux platforms
AMD64, MIPS, Sparc64 and zSeries (s390x)
have support to generate code not only for the
64-bit ABI but also for the corresponding 32-
bit (31-bit for zSeries) ABI. The PowerPC64
developers have not yet implemented this in
GCC but I expect that they follow the same
road.

Note that in the following text only the C com-
piler (gcc) is mentioned. The whole discus-
sion and options are also valid for the other
compilers in the GNU Compiler Collection:
The C++ compiler (g++), the Ada compiler
(gnat), the Fortran77 compiler (g77) and the
Java compiler (gcj).

3.3.1 The AMD64, Sparc64 and zSeries
Way

For AMD64, Sparc64 and zSeries the compiler
generates by default 64-bit code. To gener-
ate 32-bit code for x86 (on AMD64) or for
Sparc (on Sparc64), the compiler switch-m32
has to be given to GCC. Compilation for 31-
bit zSeries on a 64-bit zSeries needs the-m31
option. The assembler and linker have simi-
lar switches that GCC passes to them. The
compiler also knows about the default library
paths, e.g./usr/lib vs. /usr/lib64 and
invokes the linker with the right options. An
example compile session is given in figure 1.

3.3.2 MIPS and its ABIs

MIPS does not only support support 32-bit and
64-bit programs, it also support two different
ABIs for 32-bit programs. The three ABIs can
be summarized as follows:

Name Library Path GCC Switch
o32 (old 32-bit) /lib -mabi=o32
n32 (new 32-bit) /lib32 -mabi=n32
n64 (64-bit) /lib64 -mabi=64

Note that the Linux Kernel so far supports only
the o32 ABI completely, support for the other
two is currently been worked on.

3.3.3 Toolchain

GCC knows how to invoke assembler and
linker to generate 64-bit or 32-bit code. There-
fore in general GCC should be just passed the
right option for compilation and linking. In
cases where developers really need to call the
binary utilities2 directly for 32-bit code, there’s

2Calling these directly might also harm since GCC
passes extra options to the binary utilities. For example

GCC Developers Summit 2003 • 111

$ gcc hello.c -o hello64
$ gcc -m32 hello.c -o hello32
$ file ./hello32 ./hello64
./hello32: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
./hello64: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$ ldd ./hello32 ./hello64
./hello32:

libc.so.6 => /lib/libc.so.6 (0x40029000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

./hello64:
libc.so.6 => /lib64/libc.so.6 (0x0000002a9566b000)
/lib64/ld-linux-x86-64.so.2 =>

/lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)

$ gcc -L /usr/X11R6/lib -L /usr/X11R6/lib64 xhello.c -o xhello64 -lX11
/usr/lib64/gcc-lib/x86_64-suse-linux/3.3/../../../../x86_64-suse-linux/bin/ld:
skipping incompatible /usr/X11R6/lib/libX11.so when searching for -lX11
$ gcc -m32 -L /usr/X11R6/lib -L /usr/X11R6/lib64 xhello.c -o xhello32 -lX11
$ ldd ./xhello64 ./xhello32
./xhello64:

libX11.so.6 => /usr/X11R6/lib64/libX11.so.6 (0x0000002a9566b000)
libc.so.6 => /lib64/libc.so.6 (0x0000002a95852000)
libdl.so.2 => /lib64/libdl.so.2 (0x0000002a95a94000)
/lib64/ld-linux-x86-64.so.2 =>

/lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)
./xhello32:

libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40029000)
libc.so.6 => /lib/libc.so.6 (0x400f8000)
libdl.so.2 => /lib/libdl.so.2 (0x4022e000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Figure 1: Example Compile Sessions on AMD64

a short list of these options for the GNU binu-
tils in table 2. The user can inquiry most of
these options directly with callinggcc -v to
print out the commands issued by the compiler.

3.3.4 Caveat: Include Files for Multi-Arch
Compilation

The support for different ABIs on one systems
has one problem: What happens if different

the linker ld will not produce correct C++ binaries if
not called with the right set of options which GCC does
automatically.

versions of a library are installed that have a
different interface? For example, the 64-bit li-
brary could be an older version than the 32-bit
library and the newer version has changed data
types or signatures of functions. Since there is
only one include directory for all ABIs (there is
no /usr/include64 !), the system adminis-
trator has to take care that installed header files
are correct for all ABIs and libraries. In the
worst case the include file has to include sup-
port for each ABI using preprocessor condi-
tionals. As an example, the GNU C Library has
quite a few kernel dependent interfaces that are
different between architectures. The include
files for e.g. AMD64 therefore have—where

112 • GCC Developers Summit

Tool Option for 32-bit code
AMD64 Sparc64 zSeries

ar No option needed
as --32 -32 -m31
gcc,g++,. . . -m32 -m32 -m31
ld -m elf_i386 -m elf32_sparc -m elf_s390
nm No option needed
strip No option needed

Table 2: Options for 32-bit Code Generation on 64-bit Architectures

necessary—constructs like the following (from
<bits/fcntl.h >):

#include<bits/wordsize.h>
[...]
if __WORDSIZE == 64
define O_LARGEFILE 0
else
define O_LARGEFILE 0100000
endif

3.3.5 Debugging

The GNU Debugger (gdb) is currently getting
enhanced to be able to debug a number of dif-
ferent architectures and ABIs. So, in the future,
we could have a GDB that debugs all bina-
ries that can run on one architecture, e.g. both
32-bit x86 and 64-bit programs on AMD64
systems. Currently this is not possible and
therefore a separate debugger has to be used
for every ABI. For example, SuSE Linux on
AMD64, has agdb binary to debug AMD64
programs and agdb32 binary for x86 pro-
grams.

The system tracerstrace has on some archi-
tectures, e.g. AMD64 and Sparc64 already the
capability to trace both 32-bit and 64-bit pro-
grams. On other systems both a 32-bit and a
64-bit version needs to be put in place with dif-
ferent names.

3.3.6 Changing the Personality

The output of uname -m is used by e.g.
configure to check for which architecture
to build. This can cause problems if you build
on a 64-bit system for the corresponding 32-bit
architecture since thenconfigure might de-
cide that this is a cross-compilation instead of
a native compilation. For such cases the out-
put of uname -m, the so called personality,
can be changed with a special system call. The
personality is inherited by children from their
parents. There exists a user space program to
change the personality and it can be used e.g.
on AMD64 as:

$ uname -m
x86_64
$ linux32 bash
$ uname -m
i686

to create a shell with changed personality for
further development.

The name of the user space program is differ-
ent on different architectures, the following list
contains those names that we are aware of:

GCC Developers Summit 2003 • 113

Architecture Personality Tool
AMD64 linux32
PowerPC64 powerpc32
Sparc64 sparc32
zSeries s390

3.4 Development

So, with the complete toolchain supporting dif-
ferent ABIs, it is now possible to develop both
64-bit and 32-bit programs on one machine.
Instead of having two machines heating the
room, a developer can use only a 64-bit box
as development machine and still produce and
test 32-bit code.

To develop 32-bit code on an AMD64 system,
the developer has to add the-m32 option to the
compiler flags, no other changes are needed in
general.

For the development of native 64-bit AMD64
code on the same machine, the only change
might be to change the library path if another
library path as/usr/lib64 is used. It is
even safe to give both the 32-bit and the 64-
bit path, the linker will find the right library
directly (but emit warnings) as shown in figure
1.

4 64-bit Porting: Hints and Pitfalls

Porting to a 64-bit system is not a problem
for portable programs. Unfortunately most
programs are not really portable and therefore
need to be changed to run correctly on another
platform.

The porting effort on GNU/Linux platforms is
lower than e.g. between Unix and GNU/Linux
since all GNU/Linux platforms use the GNU C
Library. The C Library tries to use a common
implementation and headers for all platforms
which eases portability. Using the same C Li-
brary cross platforms means:

• Usage of the same functions: The set of
functions is the same in general. Only a
few functions are architecture specific and
those are needed in general to access hard-
ware which is platform specific.

• A different layout of structures: The C Li-
brary implements the different processor
specific ABIs and therefore structures can
have different length and members.

Therefore a program that is written portable,
without reference to platform specific features,
in general can be easily ported from on plat-
form to the other, e.g. from 32-bit to 64-bit.

Each platform has its own special “features,”
meaning that some non-portable code works on
all platforms except one. Keeping these prob-
lems in mind helps writing portable code and
eases debugging of non-portable code.

Most of the problems arise in C and therefore
this language is used everywhere in this paper.
Some of these problems might not arise in C++
since C++ has some stricter rules.

The general problem is that sizes of fundamen-
tal types on different platforms, and especially
between 32-bit and 64-bit platforms, are differ-
ent and therefore not all types are interchange-
able.

4.1 “Portable” x86/AMD64 Inline Assembler

There are some things that can not be done
portably in general. One issue is inline assem-
bler. For processors from the same family, like
x86 and AMD64 processors, often assembler
code can be shared. But this is not possible be-
tween different architectures.

A small example for inline assembler on x86
and AMD64 is the following function:

/* ffs -- find first set bit in a

114 • GCC Developers Summit

word, counted from least
significant end. */

int
__ffs (int x)
{

int cnt, tmp;
/* Count low bits in X; store in

%1.*/
asm ("bsfl %2,%0\n"

"cmovel %1,%0\n"
/* If number was zero, return

-1.*/
: "=&r" (cnt), "=r" (tmp)
: "rm" (x), "1" (-1));

return cnt + 1;
}

This would be compiled by GCC for x86 to:

mov $0xffffffff,%eax
mov %eax,%edx
bsf 0x4(%esp),%ecx
cmove %edx,%ecx
mov %ecx,%eax
inc %eax
ret

The assembler for AMD64 looks like this:

mov $0xffffffff,%eax
mov %eax,%edx
bsf %edi,%ecx
cmove %edx,%ecx
mov %ecx,%eax
inc %eax
ret

This example worked fine sinceint is 32-
bit on both x86 and AMD64 and the same in-
structions can be used. For datatypeslong
this scheme cannot be used since it’s 32-bit on
x86 and 64-bit on AMD64. The size oflong
long is 64-bit on both architectures but since
AMD64 has 64-bit registers code can be writ-
ten that is more efficient.

Using the inline assembler in that function
made it possible for the developer to ignore the
different passing conventions in this example.
For x86 the parameterx is passed on the stack
(0x4(%esp)) and for AMD64 in the lower 32
bits of registerRDI (%edi).

4.2 Sizes and Alignment of Fundamental
Datatypes and Structure Layout

On 64-bit platforms pointers and the type
long have a size of 64 bits while the type
int uses 32 bits. This scheme is known as the
LP64 model and is used by all 64-bit UNIX
ports. A 32-bit platform uses the so-called
ILP32 model: int , long and pointers are
32 bits.

The differences in sizes (in bytes) between the
32-bit x86 and the 64-bit AMD64 are summa-
rized in the following table:

Type i386 AMD64
long 4 8
pointer 4 8
long double 12 16

Besides the different sizes of fundamental
types, different ABIs specify also different
alignments. Adouble variable, for example,
is aligned on x86 to 4 bytes but aligned to 8
bytes on AMD64 despite having the same size
of 8 bytes. Structures will therefore have a dif-
ferent layout on different platforms. Addition-
ally some members of structures might be in
a different order or the newer architecture has
additional members that could not have been
added to the older one.

It is therefore important not to hard code any
sizes and offsets. Instead the C operator
sizeof has to be used to inquire sizes of both
fundamental and complex types. The macro
offsetof is available to get the offsets of
structure members from the beginning of the
structure.

GCC Developers Summit 2003 • 115

4.2.1 int vs. long

Since the sizes ofint andlong are the same
on a 32-bit platforms, programmers have of-
ten been lazy and usedint and long inter-
changeably. But this will not work anymore
with 64-bit systems wherelong has a larger
size thanint .

A few examples:

• Due to its size a pointer does not fit into a
variable of typeint . It fits on Unix into
a long variable but theintptr_t type
from ISO C99 is the better choice.

• Untyped integral constants are of type
(unsigned)int . This might lead to un-
expected truncation, e.g. in the following
snippet of non-portable code:

long t = 1 << a;

On both a 32-bit and a 64-bit system the
maximal value for a can be 31, since the
type of1<<a is int . To get a shift done
in 64-bit (a long calculation),1L has to
be used.

• The type of identifiers of an enumera-
tion is implementation defined but all con-
stants get the same type. GCC by default
gives them typeint , unless any of the
enumeration constants needs a larger type.

4.3 Function Prototypes

If a function is called in C without function
prototypes, the return value isint —and that’s
a 32-bit type on all 64-bit Linux platforms.
For arguments the integer promotions are per-
formed and arguments of typefloat are pro-
moted todouble .

Such a missing prototype can easily lead to a
segmentation fault. For example ifmalloc()

or memcpy() are used without a prototype,
the resulting binary might break because of:

malloc() The return value is a 32-bit entity
and therefore only half of the bits of the
returned address might be stored in the
variable that holds the return value mak-
ing the pointer invalid.

memcpy() The first two arguments are point-
ers that take the source and target address.
If, instead of the 64-bit pointers, only the
lower 32 bits are passed tomemcpy() ,
the function will access random memory
(note this can only happen if the pointer
has been assigned to a variable ofint and
that variable is used for passing).

4.4 Variable Argument Lists

The problem with variable argument lists is the
same problem as with missing function proto-
types: At the call side an argument is passed to
a function but the function expects an argument
of a different size.

If you pass in a 32-bit value, it is normally
passed in 64-bit registers or on the stack as 64-
bit value. The question now is what to do with
the unused 32 bits? The 32-bit value can be
zero-extended so that the unused bits are all
zero, it can be sign-extended giving all zeros
or all ones, and it can be left unspecified (as on
AMD64). If the called function expects now
a 64-bit value where it gets a 32-bit value, the
function might not work as expected.

The important rules are:

• If you pass 32-bit values, like variables of
type int , the called function has to take
out 32-bit values.

• If the function expects 64-bit values, like
long or pointers, the caller has to pass

116 • GCC Developers Summit

64-bit values. Note that0 is not the same
as aNULLpointer since those have differ-
ent sizes.

Another topic is usage ofva_lists . You
cannot copy variables of this type directly. This
works on those platforms that use a pointer to
implementva_lists but not on others. Use
instead the function-like macrova_copy .

4.5 Function Pointers

Often programmers assume that all pointers
have the same format but this is not guaranteed
by the ISO C standard.

On IPF, PA-RISC and PowerPC64 a pointer to
a function and a pointer to an object are repre-
sented differently. For example on IPF, a func-
tion pointer points to a descriptor containing
the function address and the value of the GP
(global pointer, used with shared libraries) reg-
ister:

struct ia64_fdesc {
uint64_t func;
uint64_t gp;
};

The GP register needs to be set with the right
value before calling any function.

This means the following should not be done
in a portable program:

Compare function pointers Since there can
be more than one descriptor for any func-
tion, different function pointers for the
same function will have different values.

Locate function The function pointer will not
point directly to the function, so it cannot
be used easily to find the actual code of
the function.

Construct function pointer from data address
This will fail since the GP register will
not be setup correctly.

4.6 Using Bitwidth-Dependent Types Portably

Some applications depend on specific sizes for
their datatypes. As has been mentioned before,
this cannot be done portably in general. ISO
C99 introduced a new header filestdint.h
that defines datatypes having specified widths
and a corresponding set of macros. The fol-
lowing types are also specified:

Exact-width integer types Signed integer
types of the formintN_t (unsigned:
uintN_t) with width N are defined in
general with widths 8, 16, 32, or 64. A
int32_t is therefore a signed 32-bit
integer.

Minimum-width integer types The types
int_leastN_t for signed and
uint_leastN_t for unsigned in-
tegers with a width of at least N bits are
defined. The widths 8, 16, 32 and 64 are
required to be supported.

Fastest Minimum-width integer types The
types int_fastN_t for signed and
uint_fastN_t for unsigned integers
with width at least N bits are defined as
types that are usually the fastest of all
integer types having at least this width.
Width of 8, 16, 32 and 64 are required to
be supported.

Integer types holding pointers The integer
types intptr_t and uintptr_t can
hold a pointer, a conversion between
pointer and this integer type is always
possible.

Greatest-width integer types The integer
typesintmax_t anduintmax_t hold

GCC Developers Summit 2003 • 117

any value of any signed/unsigned integer
type.

Note that an ISO C99 implementation does not
need to implement all of these types. The GNU
C Library implements all of them for all plat-
forms.

In addition to these types a number of macros
are defined to give the limits of the types.

Inclusion of the headerinttypes.h defines
additional macros for format specifiers both for
printf andscanf for these types, and some
conversion functions likestrtoimax .

An example of the usage of the types and the
format specifier for printing is:

#include <inttypes.h>
#include <stdio.h>
int
main (void) {

intmax_t u = INTMAX_MAX;
printf("The largest signed integer"

" is: %" PRIdMAX "\n", u);
return 0;

}

4.7 Usingprintf and scanf

ISO C99 introduced a few new format speci-
fiers to allow printing and scanning of certain
types that might have architecture dependent
size. These are%pfor printing a pointer value
and the%Zsize modifier for arguments of type
size_t . An example:

...
void *p;
printf("p has value %p and "

"size %Zd\n", p, sizeof(p));

4.8 Unsigned and Signed Chars

The ISO C Standard does not define the signed-
ness of the typechar .3 A definition likechar

3Note that this is not a 64-bit problem but it is one
of those differences you’ll notice when porting and is

foo; creates an unsigned variable on some
platforms but a signed one on others. If you
use variables of typechar as small integers,
you should specify whether you need a signed
or an unsigned type. Also comparisons with
char variables should take this into account,
the following code snippet will not give the de-
sired outcome ifchar is unsigned:

char c;
if (c < 0)

puts("Non-ascii character");

During compilation GCC should generate
the warning “warning: comparison
is always false due to limited
range of data type ”.

Platforms with an unsigned char type are both
32-bit and 64-bit versions of S390 and Pow-
erPC. GCC has the options-fsigned-char
and -funsigned-char to change the
signedness of typechar .

4.9 Evaluation of Floating-Point Arithmetic

A common confusion happens when suddenly
algorithms using floating-point arithmetic give
different results. The IEEE754 standard de-
fines that the basic operations have to be ex-
act. But nevertheless, results might vary be-
tween architectures.

The problem happens with operations of type
float anddouble since on the popular x86
architecture these operations are evaluated in
the x87 FPU inlong double precision. The
compiler might choose to leave intermediate
results (with a type oflong double) in the
x87 FPU or convert them back to the target
type. Depending when this conversion hap-
pens, different rounding errors occur.

A small example to show the differences is:

therefore worth mentioning.

118 • GCC Developers Summit

#include <stdio.h>
int
main (void)
{

float b, c;

b = 1 / 3.0f;
c = b * 3.0f - 1.0f;
printf ("c: %.20f\n", c);
return 0;

}

Compiling and executing this program on an
Linux/AMD64 system gives different results
between 32-bit x86 and 64-bit binaries:

$ gcc t.c -m32 -o t32
$ gcc t.c -o t64
$./t32
c: 0.00000002980232238770
$./t64
c: 0.00000000000000000000

Note that the example gives the same results if
compiled with optimization since without opti-
mizationb is stored in memory as typefloat
but with optimizationb is left in the FPU.

ISO C99 defines the macro
FLT_EVAL_METHODfor this in the header
<float.h >. It is set to:

0 If evaluation is done with the range and pre-
cision of the type. This is the value on
nearly all Linux systems.

1 If evaluation of expressions of typefloat
anddouble is done to the range and pre-
cision ofdouble and oflong double
to the range and precision oflong
double .

2 If all evaluations is done to the range and
precision of typelong double . This
is the value on Linux/x86.

-1 Indeterminable.

This problem with different results due to the
evaluation of floating-point arithmetic is not a
genuine 64-bit problem but a problem between
x86 code and all other platforms and therefore
might hit developers porting from x86 to other
platforms, e.g. to AMD64.

4.10 Shared Libraries

Most architectures have the constraint that
shared libraries need to be compiled as PIC-
code using the-fPIC switch to GCC. Even
for those architectures that allow it, like x86, it
is not desirable to do so since a shared library
should live once in the memory and get then
shared by all applications using it. But non-
PIC code cannot be shared.

Architectures that force to use-fPIC for
shared libraries include AMD64, IPF, and PA-
RISC.

4.11 How to Check for 64-bit?

Starting with GCC 3.4,all LP64 platforms will
define the macros__LP64__ and_LP64 that
can be used e.g. in preprocessor defines. Ear-
lier GCC releases define this macro only on
a few platforms or OSes. For GCC 3.2 and
3.3, the macros are defined on NetBSD, for
IPF (every OS), for PA-RISC (every OS) and
for AMD64 running Linux (starting with GCC
3.2.3).

In general it is possible to check for 64-bit with
the architecture builtins of GCC, e.g. with:

#if defined(__alpha__)\
||defined(__ia64__)\
||defined(__ppc64__)\
||defined(__s390x__)\
||defined(__x86_64__)

GCC Developers Summit 2003 • 119

but this needs to be enhanced for each new 64-
bit platform. The better solution is to write
portable code that does not need to check for
architecture details.

4.12 Optimized Functions, Macros, and
Builtins

The GNU Compiler Collection uses the same
optimizations on all platforms but some of
them are tuned in different ways and others
need help from the architecture specific back-
end. One area were this occurs especially are
builtin functions.

A function like strlen can be implemented
in the following ways:

As builtin in GCC The compiler can detect
that e.g. the arguments tostrlen are
constant and evaluate the function at
compile time. It can also optimize
the function to an inline function and
do a loop instead of calling the ex-
ternal strlen function. This can
be disabled with-fno-builtin or
-fno-builtin- function .

As macro in Glibc The C Library imple-
ments a number of functions as macros.
The string inline functions can be disabled
with a definition of __NO_STRING_
INLINES , some of them are only en-
abled if __USE_STRING_INLINES is
passed. For details check the header
/usr/include/string.h directly.
Inlining of mathematical functions can
be disabled by defining__NO_MATH_
INLINES . Also it is allowed to disable a
specific macro like#undef strlen .

As function in Glibc ISO C99 forces to im-
plement all required functions as func-
tions. Therefore for examplestrlen
will always be in the C Library.

Some developers decide to override the C Li-
brary functions and write their own optimized
implementation. This works fine for one sys-
tem consisting of a specific CPU, a specific C
Library and GCC version. But going to another
architecture, better optimizations might be pos-
sible, e.g. reading 8 bytes at once instead of 4
in strlen , or current code is penalized, e.g.
alignment is mandatory for 8 byte access.

So, instead of writing something just for one
program, it should be done in a generic way in
GCC or glibc so that all programs can benefit
from one optimization.

A number of functions in Glibc are written in
hand-optimized assembler for some architec-
tures and where this is not done, a good C im-
plementation is used. On AMD64 the com-
piler has builtins for the common string func-
tions and also for some mathematical functions
and uses them depending on the arguments and
enabled compiler optimizations, e.g.-Os dis-
abled most builtins since they would increase
size.

The pitfalls regarding porting here are that a
programs does optimizations that are not valid
for a new architecture or does not expect that a
function might be implemented as a macro or
builtin.

4.13 Useful Compiler Flags

An incomplete list of GCC compiler flags that
might be useful for porting code:

-Wall Enables a number of default warnings,
should be used for all code

-W Enables additional warnings. Some of
them are hard to avoid so this might not
be useful for all code.

-Wmissing-prototypes Warn about missing
prototypes, this is especially important for

120 • GCC Developers Summit

64-bit ports.

5 Conclusion

Despite the different problems we encountered
at SuSE while porting to the various 64-bit
platforms (first for Alpha, later for IPF, zSeries,
AMD64 and PowerPC64), the number of pack-
ages with actual problems is getting smaller
and smaller since code has less platform spe-
cific assumptions and is more portable.

Also development of the toolchain has been
improved recently and there is more focus on
creating bi-arch toolchains to allow compila-
tion for different ABIs on one system.

I hope that the problems mentioned and ex-
plained will help further in writing portable and
efficient code.

6 Acknowledgments

Porting to any new architecture means building
on the foundations that others have led, learn-
ing from their experiences and tackling with
others all the subtleties of non-portable pro-
gramming. I’d like to thank especially my col-
leagues Andreas Schwab for help in lots of de-
bugging sessions and bug fixing of tools and
programs, Stefan Fent and Stefan Reinauer for
driving the port of SuSE Linux to AMD64
and thereby encountering many of the prob-
lems mentioned in this paper, Jan Hubička and
Michael Matz for porting and fixing GCC and
the ABI on AMD64—and all of them for their
discussions on these issues. Thanks also to
Michael Matz and Evandro Menezes for re-
viewing the paper.

References

[AMD64] AMD64 Architecture Program-
mer’s Manual, AMD (2003).

[Opteron] Software Optimization Guide for
the AMD Opteron™ Processor, AMD
(2003).

[AMD64-PSABI] UNIX System V Application
Binary Interface; AMD64 Architecture
Processor Supplement, Draft, (Ed. J. Hu-
bička, A. Jaeger, M. Mitchell),http:
//www.x86-64.org , (2003)

[i386-ABI] UNIX System V Application Bi-
nary Interface; IA-32 Architecture Pro-
cessor Supplement, Intel (2000).

[ISOC99] Programming Languages—C,
ISO/IEC 9899:1999 (1999)

[IEEE754] IEEE Standard for Bi-
nary Floating-Point Arithmetic,
ANSI/IEEE754-1985 (1985).

[JH] Porting GCC to the AMD64 Architecture,
Jan Hubǐcka, GCC Summit (2003).

Architecture for a Next-Generation GCC

Chris Lattner Vikram Adve
University of Illinois at Urbana, Champaign

{lattner, vadve}@cs.uiuc.edu

http://llvm.cs.uiuc.edu

Abstract

This paper presents a design and imple-
mentation of a whole-program interprocedu-
ral optimizer built in the GCC framework.
Through the introduction of a new language-
independent intermediate representation, we
extend the current GCC architecture to include
a powerful mid-level optimizer and add link-
time interprocedural analysis and optimization
capabilities. This intermediate representation
is an SSA-based, low-level, strongly-typed,
representation which is designed to support
both efficient global optimizations and high-
level analyses. Because most of the program
is available at link-time, aggressive “whole-
program” optimizations and analyses are possi-
ble, improving the time and space requirements
of compiled programs. The final proposed or-
ganization of GCC retains the important fea-
tures which make it successful today, requires
almost no modification to either the front- or
back-ends of GCC, and is completely compat-
ible with user makefiles.

1 Introduction

The GNU Compiler Collection (GCC) [15] is
in many ways the centerpiece of the Free Soft-
ware movement. It supports several source lan-
guages and a plethora of back-ends for various
targets, providing a unified target for free soft-
ware. GCC has been successful because of its

extreme portability, stability, and because it is
able to compile and optimize several popular
source languages (C, C++, Java, etc) to each
target. Unfortunately, despite the success of
the GCC compiler suite as a whole, the opti-
mization infrastructure is still not competitive
with commercial compilers.

Over the years, the GCC optimizer has evolved
from compiling a statement at a time, to com-
piling and optimizing entire functions at a time,
to the (still very new) support for unit-at-a-time
compilation (compiling and optimizing all of
the functions in a translation unit together). As
the scope for analysis and optimizations in-
creases, the compiler is better able to reduce
the time and space requirements for the gener-
ated code.

This paper proposes the next logical step for
the GCC optimizer: extend it to be able to
analyze and optimizewhole programsat link-
time1, enabling new optimizations and making
existing analyses and optimizations more pow-
erful. For example:

• inlining across translation units

• whole-program alias analysis

• interprocedural register allocation

• interprocedural constant propagation

• data layout optimizations

• exception handling space optimizations
1This capability would be optional and could be en-

abled only when the program is compiled at the “-O4 ”
level of optimization, for example.

122 • GCC Developers Summit

• sorting initializer priorities at link-time

The key challenges to whole-program opti-
mization are to enable powerful transforma-
tions while keeping compile times reasonable,
and to keep the user-visible development pro-
cess unchanged (e.g. user makefiles).

The architecture that we propose is based on a
new language-independent low-level code rep-
resentation that preserves important type in-
formation from the source code. The use of
a low-level, SSA-based representation allows
the compiler to perform a variety of optimiza-
tions at compile time, off-loading work from
the link-time optimizer. However, the link-
time optimizer can only perform meaningful
optimizations on the program if it has enough
high-level information about the program to
prove that aggressive optimizations are safe.
Because of this, the low-level code represen-
tation is typed (using a language-independent
constructive type system) and directly exposes
information about structure and array accesses
to the optimizer.

The link-time optimizer is designed to combine
the translation units of a program together and
do the final whole-program optimization. Af-
ter the program is optimized, machine code is
generated at link-time for the entire program
at once, allowing a variety of interprocedural
low-level code optimizations to be performed.

The Low-Level Virtual Machine (LLVM) [10]
is an implementation of the architecture and
intermediate representation [11] described in
this paper, which allows us to be more con-
crete when describing aspects of the design.
This system has served as the host for sev-
eral research projects [7, 13, 12] which require
whole-program information as well as a host
for a variety of traditional compiler optimiza-
tions.

We hope that the lessons learned by the LLVM

project will be useful to the GCC community,
and are willing to contribute as much code to
the GNU project as there is interest in. We
are planning to have our first public release of
LLVM, with a liberal license, in the Summer of
2003. However, LLVM will only be discussed
when it helps clarify the ideas in the proposed
architecture, this paper is intended to be a GCC
paper, not an LLVM paper.

This paper is organized as follows: Section 2
describes the proposed high-level architecture
in detail, including modifications that would
need to be made to the GCC infrastructure.
Section 3 describes important aspects of the
proposed intermediate representation for the
system. Section 4 describes LLVM, our ex-
isting implementation of the proposed design.
Section 5 describes other work related to the
proposed design, and Section 6 wraps up the
paper.

2 High-Level Compiler Architec-
ture

The proposed high-level architecture is illus-
trated in Figure 1. The essential aspect of this
design is that it separates the currentcc1 pro-
gram into two components: a front-end com-
piler and an optimizing linker. The front-
end retains all of the responsibilities of current
GCC front-ends (preprocessing, lexical anal-
ysis, parsing, semantic analysis, etc..) and
should work unmodified in the new system.
After each function is parsed and checked
for semantic errors it is “expanded” from the
“tree” representation to the new language-
independent intermediate representation (de-
scribed in Section 3). Once the entire trans-
lation unit has been translated (and if no er-
rors have occurred), a standard set of mid-level
optimizations are performed on the translated
module. After these optimizations are finished,
a “.o ” file is emitted which contains IR assem-

GCC Developers Summit 2003 • 123

Figure 1: High-Level Compiler Architecture for Whole-Program Optimization

bly code for the representation.

When the optimizing linker is invoked, it reads
in all of the translated IR files and any li-
braries compiled to the intermediate represen-
tation. It links these files together into a single-
file representation of the program, on which it
can run whole-program analyses and optimiza-
tions. Finally, once these analyses and trans-
formations are complete, the GCC back-end is
invoked to expand the intermediate represen-
tation into RTL and use the configured target
description to produce a native.s file.

After the optimizing linker produces a na-
tive .s file, the compilation process proceeds
through the standard system assembler and
linker (to resolve any symbols in libraries that
were not available in the IR form), finally pro-
ducing a native executable.

2.1 Compatibility and Implementation

One of the key features of this design is that it
is compatible with the standard “compile and
link” models of compilation, and is thus fully
compatible with existing makefiles. In order
to provide this compatibility, the link phase
of the gcc compiler driver is extended to in-
voke the optimizing linker and system assem-
bler (if necessary) during the standard link step
of the compile process. In this way, any input
files that are in the IR format are automatically
linked together and optimized without interfer-
ing with the compilation and linking of stan-
dard translation units and libraries. If no files

in the IR format are present, the entire invoca-
tion of the optimizing linker is skipped.

Another important aspect of the design is how
the compiler works when whole-program opti-
mization is not enabled. If not enabled, each
translation unit is either compiled a function at
a time or a unit at a time (depending on the
setting of the-funit-at-a-time switch),
through the mid-level optimizer, RTL expan-
sion, and code generation phases of the com-
piler. This produces a native.s file, which can
be processed with the standard system assem-
bler and linker, as before.

For this approach to be feasible, a large amount
of code must be shared between the optimiz-
ing linker and the compiler front-ends. This
can either be accomplished through the use
of libraries that are shared between the two
(which would contain the existing GCC back-
end, and any shared optimizations on the IR),
or by making both logical pieces be part of the
same binary. In either case, the actual orga-
nization of the existing GCC code base would
not have to change in any substantial way.

2.2 Architectural Issues Affecting Perfor-
mance

In addition to providing the desired functional-
ity and compatibility with existing systems, it
is crucial that the compiler does not slow down
unacceptably — even if whole-program opti-
mization is only enabled at-O4 . In practical
terms, this design addresses the issue by per-

124 • GCC Developers Summit

forming as much optimization as possible at
compile time.

Any time a source file is changed, it must be re-
compiled and the application must be relinked.
In order to reduce the amount of work that must
be done, this design allows most traditional op-
timizations to be performed in the compiler
front-end stage, rather than requiring all opti-
mization to occur at the link stage (as is com-
mon for whole-program optimizers). Because
most aggressive scalar optimizations are per-
formed at compile-time, they would not need
to be rerun at link time, reducing the time for
compilation. Of course, the compiler perfor-
mance issue does not even arise unless the user
is modifying the program and recompiling at
-O4 .

Optionally with this design, the compiler could
try to minimize the amount of recompilation
necessary when a change occurs by keeping
track of which interprocedural information is
used to modify functions in other translation
units, building a dependence graph between
the modules [4]. In practice, however, this
would make the compiler much more compli-
cated and prone to subtle bugs that are hard to
reproduce. We feel that although the cost of re-
compilation is still fairly substantial in our sys-
tem (native code must be regenerated for the
entire application), that the extra complexity
introduced into the compiler must be weighed
against the recompilation time penalties, and
thus may be impractical.

3 Code Representation

The representation used to analyze and manip-
ulate the program determines what kinds of
transformations are possible and when in the
compilation process they must be performed to
be successful. As mentioned earlier, we pro-
pose using a language-independent, low-level,

SSA-based, strongly-typed representation as
the sole representation used for the mid-level
and link-time optimizers. This representation
is a first-class assembly language, which in-
cludes all of the information necessary to rep-
resent the program (and is in fact directly inter-
pretable). Concrete details of the representa-
tion used by LLVM are included in Section 3.2.

Using a low-level three-address code represen-
tation based on Static Single Assignment [6]
form enables the direct application of many
well-known and efficient global optimizations.
SSA form permitssparseoptimizations that
do not, in general, require bit-vector data-flow
analysis to compute results. Using a three-
address code representation (as opposed to
an tree structured representation) also makes
transformations easy to develop and reason
about.

Many transformations need information about
the high-level behavior of the program to be
effective. In order to preserve this informa-
tion, we propose that the representation main-
tain a strong (but language-neutral) type sys-
tem, which captures information about pointer,
structure, and array accesses in the program.
Working with the LLVM system we find that
this type information allows for a variety of
high-level analyses and transformations [7, 13,
12] while the nature of the low-level repre-
sentation makes it very easy to manipulate.
Another advantage of type information is that
it makes detecting and understanding bugs in
transformations much easier.

The goal of the program representation is to en-
able as many different types of optimizations
as possible. Because of this, it is important that
the representation be able to representall parts
of a program (including global variables, and
file scopeasm statements, for example) in a
form that allows transformations to modify it.
Another useful feature of the representation is

GCC Developers Summit 2003 • 125

a stable textual format (“assembly language”)
that can be read and written by the compiler.
Given this, it is trivial to write unit tests for
transformations and to debug transformations
in isolation from the rest of the compiler, and
the representation can be directly interpreted
for immediate feedback on a transformation.

3.1 Performance Aspects of the Representation

Once the optimizing linker brings together the
compiled program into one module, the in-
terprocedural analysis and optimization passes
are used to improve the program. Because
these passes operate on the entire program at
once, however, the efficiency of each analysis
or optimization is critical. For this reason, sev-
eral aspects of the representation are designed
to make these transformations as efficient as
possible.

In particular, the use of an SSA-based rep-
resentation allows for efficient, sparse, global
optimizations, and can make flow-sensitivity
much less important in many analyses (reduc-
ing cost substantially). In addition, the three-
address code representation has a small mem-
ory footprint and simple memory ownership
semantics (eliminating the need for it to live on
a garbage collected heap). In our experience
with LLVM, code optimizers for a sparse rep-
resentation can be several times faster than op-
timizations on a dense representation like RTL.

3.2 A Concrete LLVM Example

Figure 2 gives an example of a C function
and the corresponding LLVM module it com-
piles to. The example shows several important
aspects of the LLVM representation. In par-
ticular, it gives a simple example of the type
system, basic instruction flavor, and demon-
strates some instructions. More details about
the LLVM representation can be found in the
LLVM language reference [11].

LLVM uses a simple constructive type system
composed of primitive types, structures, ar-
rays, and pointers. Although this is a very sim-
ple type system, we believe that it contains the
key features necessary for a front-end to lower
any high-level type onto it. For example, the
LLVM C ++ front-end lowers classes with in-
heritance into nested structure types. Types are
very important in the LLVM system, and ev-
erything that can be used as an operand to an
instruction has a type.

Functions in LLVM contain a list of basic
blocks, and each basic block contains a list of
instructions. LLVM has only 29 instructions,
which include standard instructions likeload ,
xor , set cc, etc and aphi instruction for rep-
resenting SSA form2. Intraprocedural control
flow in LLVM is very simple (consisting of
conditional branches, unconditional branches,
and theswitch instruction).

Everything in LLVM is explicit: there are no
fall-through branches, all address arithmetic is
exposed (at the level of structures, pointers,
and arrays), and all references to memory use
theload andstore instructions. This makes
the language more uniform and simple to ana-
lyze and transform.

The getelementptr instruction in LLVM
provides the mechanism for structured address
arithmetic3. The getelementptr instruc-
tion is exactly analogous to sequences of ar-
ray subscript and structure index expressions,
returning the address of the last element in-
dexed4. For example, the%tmp.1 instruction
in Figure 2(b) first indexes into the0th element

2SSAφ-nodes are eliminated during the register al-
location phase of native code generation.

3LLVM code can also cast a pointer to an integer
type, add an arbitrary offset to it, then cast it back to a
pointer, if unstructured address arithmetic is necessary.

4The example in Figure 2(a) uses the strange syn-
tax ’T[0].x ’ instead of using the equivalent ’T->x ’ to
make the correspondence more clear.

126 • GCC Developers Summit

typedef struct QuadTree {

double Data;

struct QuadTree

∗Children[4];

} QT;

void Sum3rdChildren(QT ∗T,

double ∗Result) {

double Ret;

if (T == 0) { Ret = 0;

} else {

QT ∗Child3 =

T[0].Children[3];

double V;

Sum3rdChildren(Child3,

&V);

Ret = V + T[0].Data;

}

∗Result = Ret;

}

(a) Example function

%struct.QuadTree = type { double, [4 x %QT*] }
%QT = type %struct.QuadTree

void %Sum3rdChildren(%QT* %T, double* %Result) {
entry: %V = alloca double ;; %V is type ’double*’

%tmp.0 = seteq %QT* %T, null ;; type ’bool’
br bool %tmp.0, label %endif, label %else

else: ;;tmp.1 = &T[0].Children[3] ’Children’ = Field #1
%tmp.1 = getelementptr %QT* %T, long 0, ubyte 1, long 3
%Child3 = load %QT** %tmp.1
call void %Sum3rdChildren(%QT* %Child3, double* %V)
%tmp.2 = load double* %V
%tmp.3 = getelementptr %QT* %T, long 0, ubyte 0
%tmp.4 = load double* %tmp.3
%tmp.5 = add double %tmp.2, %tmp.4
br label %endif

endif: %Ret = phi double [%tmp.5, %else], [0.0, %entry]
store double %Ret, double* %Result
ret void ;; Return with no value

}

(b) Corresponding LLVM code

Figure 2: C and LLVM code for a function

from the pointer, then into the1st structure ele-
ment (the “Children” member), then into the
3rd element of the array. Structured address
arithmetic exposes the necessary high-level in-
formation about structure and array accesses
directly to analyses and transformations which
need it.

One important aspect of the LLVM language
is that all references to memory happen with
load andstore instructions, and that there
is no “address-of” operation. In LLVM, all ob-
jects which live in memory (global variables,
functions, the heap, and the stack) are explic-
itly allocated and exposed by their address, not
their value. In Figure 2, for example, theV
variable is required to live in memory so that its
address may be passed into a recursive invoca-
tion of Sum3rdChildren . Because it is im-

possible to take the address of a virtual register,
stack memory must be explicitly allocated with
the alloca instruction5, and any references
to V must useload andstore instructions.
This dramatically simplified def-use chain con-
struction for virtual registers, which would oth-
erwise require some form of alias-analysis to
construct.

A final example illustrating how LLVM simpli-
fies the development of transformations is the
operators that it lacks. In particular, LLVM
does not have (or need) any unary operators
or a copy instruction. Instead of providing the
standard negate and bitwise complement unary
operators, LLVM represents these with stan-

5When the back-end is invoked, all fixed sized
alloca s in the entry block are treated the same as
address-exposed automatic variables.

GCC Developers Summit 2003 • 127

dard binary operators where one operand is a
constant (“neg x ” = “ sub 0, x ” and “not
x ” = “ xor x, -1 ”). This reduces the depen-
dence on a “canonical form” for the representa-
tion and simply reduces the number of instruc-
tions that need to be handled.

The lack of a copy instruction is possible
through the use of SSA form, and because def-
use chains are trivially computed and always
available. Any time a copy instruction would
be inserted (to replace a redundant computa-
tion for example) it is sufficient to replace any
uses of the destination with uses of the source
operand (by following the def-use chains), im-
plicitly performing copy propagation automat-
ically. This simple feature has actually avoided
several phase-ordering issues that would other-
wise require unnecessary passes over the repre-
sentation to do copy propagation between other
passes.

4 LLVM Compiler Infrastructure

The LLVM Compiler Infrastructure [10] cur-
rently consists of approximately 130,000 lines
of C++ code and a the front-end, which is
a patch against the mainline GCC CVS tree.
This code largely implements the design pre-
sented in this paper, although there are some
differences. This section describes these dif-
ferences, the implementation status of LLVM,
some other features of LLVM that make writ-
ing transformations simpler, and some insights
that we have had while working on LLVM.

4.1 Implementation Status

The LLVM C front-end is based on the main-
line GCC CVS repository. It generates code
by calling LLVM versions of functions that are
equivalent to the RTL-expansion routines (e.g.
llvm_expand_expr , llvm_expand_
function_start , make_decl_llvm ,

etc.) during compilation. These routines
build up an LLVM version of the translation
unit, which is then written to the “.s ” file
all at once (allowing “unit-at-a-time” style
transformations to be performed from within
GCC in the future).

Instead of modifying thecc1 binary to inter-
face directly to the LLVM optimizations writ-
ten in C++, cc1 directly emits the expanded
code without any optimization at all. When
the gcc compiler driver invokes the “assem-
bler”, we actually have it invoke a program
calledgccas which parses the LLVM assem-
bly file, runs a series of LLVM optimizers on
it, then emits a compressed bytecode file (the
.o file). The interface togccas is intention-
ally designed to be identical to the interface of
the standard systemas tool, to avoid having to
make changes to spec files.

When the user (or a makefile) links the pro-
gram using ourgcc compiler driver, it in-
vokes ourgccld tool. This tool reads the.o
files specified, links in the appropriate byte-
code files from any.a files, and then runs a
series of interprocedural optimizations on the
program. At this time, we directly emit an
LLVM bytecode file for the entire program, in-
stead of automatically invoking a native code
generator.

Once the program has been optimized and is
available in a single bytecode file, there are
several ways to execute the resultant program.
LLVM provides a very slow (but portable) ref-
erence interpreter for bytecode files, a Sparc
V9 native code generator, a C back-end, and
a Just-In-Time (JIT) compiler for the IA32 ar-
chitecture.

A large number of LLVM optimizations and
analyses are available, including passes for:

• Traditional SSA based optimizations:
ADCE, GCSE, LICM, PRE, SCCP, in-

128 • GCC Developers Summit

duction variable canonicalization, reasso-
ciation, value numbering, register promo-
tion, etc. . .

• Control Flow Graph based optimizations
and analyses: critical edge elimination,
loop canonicalization, various dominator,
post-dominator, and control dependence
graph related analyses, interval construc-
tion, natural loop construction, CFG sim-
plification, path profiling instrumentation,
etc. . .

• Interprocedural analyses and transforma-
tions: call graph construction, several in-
terprocedural alias analyses, global vari-
able merging, dead global elimination, in-
lining, Data Structure Analysis [13], auto-
matic pool allocation [12], interprocedu-
ral mod/ref, etc. . .

In addition to pure infrastructure, the LLVM
system also provides a large test suite. The
three main sections of the test suite are the
regression tests (which contain thousands of
tests for transformations and other tools), fea-
ture tests (which demonstrate how instructions
and idioms are used in LLVM), and program
tests (which compile benchmarks and other
programs with the various code generators, en-
suring that they produce code whose behavior
agrees with a native compiler). The LLVM
web site also hosts a variety of documentation
describing aspects of the infrastructure.

LLVM is also still under development. In par-
ticular, the C++ front-end is nearing comple-
tion (runtime library support for exception han-
dling is the major missing portion), Sparc V9
support for the JIT is in development, and a
system for runtime optimization of statically
compiled binaries is in the research phases.

4.2 Differences from the Proposal

The biggest difference between the proposal
and the LLVM implementation is the lack of
an LLVM to RTL conversion pass. For our re-
search purposes, we use a C back-end, which
provides much of the same functionality as a
full fledges RTL back-end, but is much slower.
We expect that this component can be added
upon demand.

Another big difference between the current im-
plementation and the proposal is the interface
between thecc1 program and the mid-level
optimizer. For expediency of implementation
we currently have the two tools as separate ex-
ecutables, although this obviously incurs more
overhead than linking the two components to-
gether. Once the subject of including C++ code
in GCC is better decided, we can look to re-
solve this issue.

4.3 Support for Developers

One of the strengths of the LLVM infrastruc-
ture is that it has some interesting utilities
for constructing passes, finding bugs in those
passes, and building a compiler around a se-
lection of these passes. This strength is im-
portant for two reasons: it allows new people
to get into the system and get productive rel-
atively fast, and it also allows experienced de-
velopers to be more productive than they other-
wise would. The most important features are: a
strong consistency checker, a “pass manager,”
and a tool we callbugpoint .

The LLVM infrastructure includes a stringent
checker for LLVM code, which ensures that
type relationships, SSA properties (e.g., all
definitions dominates their uses), and other
LLVM invariants haven’t been violated by a
transformation. This checker is automatically
run after passes when in development mode
to ensure that these passes are not corrupting

GCC Developers Summit 2003 • 129

the input for other passes that are run. Addi-
tionally, when in development mode, an auto-
mated memory leak detector is automatically
enabled, which detects violations of the LLVM
representation’s ownership model. This light-
weight checker is implemented using only a
few additions to constructors and destructors
for the classes which make up the representa-
tion, no garbage collector is necessary.

The LLVM “Pass Manager” provides a
structured environment for passes to ex-
ecute in. Transformations in LLVM
use a declarative syntax to indicate
which other passes are prerequisites (e.g.
break-critical-edges), which analy-
ses are required (e.g. natural loop information,
alias analysis, value numbering, interprocedu-
ral mod/ref info, etc.), and which analyses are
preserved or destroyed by the transformation
being run. This structured pass model makes
it easier for developers to fit code into the
system, and it also makes construction of tools
(e.g. gccas and gccld) a simple matter
of handling command-line arguments and
selecting a sequence of passes to run.

bugpoint , another useful tool, is best de-
scribed as an “automated test-case reducer.”
Given an LLVM program (or fragment) and a
list of passes to run, it attempts to reduce the
test-case (and list of passes) to the minimum
which still exposes a problem.bugpoint can
currently diagnose passes which crash/assert
during optimization and passes which misop-
timize the program (by executing the resultant
program with a code generator, assuming a de-
terministic program)6. If a test-case causes a
pass to crash,bugpoint is usually able to
reduce the test-case down to the few LLVM
instructions and basic block which cause the
problem. If a pass (or combination of passes)
miscompiles the test-case, it can isolate a sin-

6A third mode, for debugging back-end bugs, is
planned.

gle function which is being miscompiled. The
bugpoint tool is possible because of the
modularity of the pass manager and the abil-
ity to read, write, and modify a representation
of whole programs.

4.4 Surprises and Insights from LLVM

Through the experience of developing LLVM,
we have developed several insights which may
be useful to a broad audience. First, imple-
menting a type-safe linker for C is a non-
trivial exercise. C programs often rely on im-
plicit prototypes for called functions, or use
prototypes that are blatantly wrong. We have
also seen cases where global data is declared
to have different types in different translation
units (which, in practice, behaves similarly to
a COMMON block in FORTRAN). A normal
binary linker does not typically have problems
with these issues, but they must be handled ex-
plicitly with a type-safe linker. On the other
hand, this information is often useful to the
programmer, like the “lint ” tool.

When performing interprocedural analysis,
having as much of the program available as
possible increases the precision of the analy-
ses. For this reason, we have compiled several
libraries to LLVM form that allow them to be
analyzed and optimized with the program. This
has several interesting consequences: first, the
library code itself can be specialized and opti-
mized with the program (for example, optimiz-
ing qsort by inlining the comparison func-
tions, so indirect calls do not need to be used).
Second, this dramatically reduces the need
for ad-hoc annotations on functions indicating
properties such as “const ” and “pure ”. In-
stead, simple interprocedural analyses can be
used, which have the advantage of applying to
user code as well as the built-in functions.

Finally, we have found that investing in mak-
ing the system easier to develop for, and de-

130 • GCC Developers Summit

Source wc -l GCC LLVM Pass Times # LLVM Pass xforms
Filename LOC CSE 1 IC GER GCSE Sum IC GER GCSE
combine.c 11103 0.70s .431s .027s .141s .599s 16182 141 2734
expr.c 10747 0.52s .141s .009s .072s .222s 6540 41 2870
cse.c 8779 0.50s .187s .012s .061s .260s 10925 59 1894
reload1.c 7117 0.37s .058s .008s .034s .100s 5735 86 1830
c-decl.c 6968 0.42s .022s .005s .031s .058s 3299 3 2221
insn-recog.c 6957 0.34s .082s .004s .090s .176s 5238 0 654
loop.c 6648 0.33s .013s .001s .003s .017s 1671 7 264
c-typeck.c 6604 0.46s .028s .005s .026s .059s 4481 14 1993

Table 1: Transformation timings for source files from the SPEC CPU2000 176.gcc benchmark

bug in, has been worth it. In particular, the
bugpoint tool can narrow down a test-case
from thousands of lines of C code to a dozen
lines of LLVM code in a few seconds: doing
the same manually would takemuch longer.
Making the development environment detect
problems early is also extremely valuable to
developers, making them more productive and
making it easier to bring new people on. Hav-
ing a modular system also helps keep people
from getting overwhelmed when they first start
on the project.

4.5 Optimizer Performance

The LLVM representation allows for efficient
transformations and analyses, both for aggres-
sive interprocedural transformation and tradi-
tional optimizations. In order to quantify this
performance, we compared the performance of
the GCC “cse ” pass with the performance of
the LLVM transformations closest to it (see
Table 1). For these tests, we compiled the 8
largest single.c files in the SPEC CPU2000
176.gcc benchmark (which is based on the
GCC 2.7.2.2 source code). The numbers were
collected on a 1.7GHz AMD 2100+ Athlon
processor.

The timings for thecse pass were collected
when compiling with GCC 3.2 and the-O3 op-
tion. The actual timings were acquired as the

average of 5 runs with the-ftime-report
option and the compiler configured for a
i686-pc-linux-gnu target. Thecse 2
pass was ignored, the timings just include the
first invocation of thecse pass.

For the LLVM timings, we chose to use a
combination of theInstruction Combining,
Global ExpressionReassociation, andGlocal
Common SubexpressionElimination passes.
The combination of these three phases is be-
lieved to be strictly more powerful than the
cse pass. The Instruction Combining pass
supersumes value numbering, constant folding
and trivial dead code elimination phases, plus
it performs a variety of transformations similar
to the GCC “combine” pass (described below).
The reassociation pass transforms chained oc-
currences of commutative operations to pro-
mote better code motion. The GCSE pass is
a well known technique to remove common
subexpressions. The table shows the execu-
tion time for each pass as well as the sum of
the three. The table also shows the number
of transformations that each pass makes (in-
structions combined, instructions reassociated,
common subexpressions deleted).

From the table, we can see that the LLVM op-
timizations always run in less time than the
cse pass, and with the exception of the “com-
bine.c” case, took about half as much time. De-

GCC Developers Summit 2003 • 131

spite being faster overall, the LLVM transfor-
mations are more powerful than thecse pass,
which only operates on extended basic blocks.
The slowest individual transformation by far is
the instruction combination pass, which uses
a work-list driven approach to perform “peep-
hole” style optimization on the SSA graph
(giving it global transformation powers) for a
large collection of algebraic identities (such as
folding “(A − (A&B))” into “ (A& ∼ B)”),
that thecse pass does not perform. Together,
the three transformations are quite effective.

In addition to simple scalar optimizations,
LLVM is designed to support aggressive in-
terprocedural analyses and optimizations at
link-time. As an example, we consider the
Data Structure Analysis algorithm, a context-
sensitive flow-insensitive memory analysis
framework. On the same hardware as above
it is capable of analyzing entire programs
in seconds: 2.5s thepovray and 1.2s for
the255.vortex programs, which are about
136,000 and 67,000 lines of C code respec-
tively [13]. Other simpler algorithms may ob-
viously run much more quickly.

5 Related Work

There is a vast amount of related work on inter-
procedural optimization in research and com-
mercial compilers [1, 8, 2, 9, 3]. To avoid
major changes to the build process, all of
these compilers combine the program together
at link-time in a very high-level representa-
tion, before any substantial optimization is per-
formed. Most often, this representation takes
the form of the source language Abstract Syn-
tax Tree (AST) with source language-specific
nodes removed. Once the program is com-
bined at link-time, optimization for the entire
program commences, starting with interproce-
dural optimizations.

In contrast, the approach described here im-
mediately optimizes and translates the program
to a low-level, but strongly-typed, intermedi-
ate representation which is suitable for opti-
mization both at compile- and link-time. Be-
cause substantial optimization is performed at
compile-time, the interprocedural optimizers
have less work to perform at link-time, re-
ducing the amount of time a recompilation re-
quires. Previous work [13, 7, 10, 12] has shown
that a low-level representation with type infor-
mation can support aggressive high-level anal-
yses and transformations.

Another successful class of interprocedural op-
timizers target very low-level optimizations.
These “smart-linkers” typically operate at the
level of the machine code, performing opti-
mizations such as interprocedural register al-
location and code layout optimizations [16, 14,
5]. Although these tools have been success-
ful, and require little or no modification to the
source compiler, they are not capable of per-
forming high-level optimizations at all. Also,
these optimizations can all be performed in our
framework, because code generation occurs for
the entire program at a time, exposing the nec-
essary interprocedural information.

Within the GCC project, several projects in
development or recently merged onto the
mainline are relevant. In particular, the
ast-optimizer project and itstree-ssa
subproject aim to improve optimization in
GCC by migrating optimizations from the
target-specific RTL representation to a target-
independent AST representation. The rep-
resentation proposed in this paper is similar
to the tree-ssa GIMPLE representation in
some ways (both are language-independent,
SSA based, and do not allow nested expres-
sions), but they are different in many other
ways.

In particular, the GIMPLE representation is not

132 • GCC Developers Summit

capable of representing the entire translation
unit being compiled: a lot of information about
the program is stored only in global variables,
or are immediately emitted to the output as-
sembly file. Also, the GIMPLE representation
has operations which are closer to the source
level. For example, variable definitions can
have their address taken, which makes the def-
use chain representation much more complex
in the GIMPLE representation. On the other
hand, thetree-ssa project is much better
integrated into GCC, is written in the C lan-
guage, and does not require the introduction of
a completely new intermediate representation.

6 Conclusion

This paper presents the design for an aggres-
sive, but realistic, interprocedural optimiza-
tion component for the GNU Compiler Col-
lection. This design is capable of supporting
a broad range of whole-program optimization
techniques, is reasonable in terms of compila-
tion time, and has already been implemented.
We hope our efforts will accelerate the process
of making GCC produce code which is more
competitive with commercial compilers, and
perhaps LLVM can be directly adopted as an
optional part of the compiler itself. We encour-
age members of the community who are inter-
ested in the proposed architecture or LLVM it-
self to contact the authors with any feedback,
questions, or ideas.

References

[1] J. Amaral, G. Gao, J. Dehnert, and
R. Towle. The SGI Pro64 compiler
infrastructure: A tutorial. The In-
ternational Conference on Parallel Ar-
chiteture and Compilation Techniques
(PACT2000), Oct. 2000.

[2] A. Ayers, S. de Jong, J. Peyton, and
R. Schooler. Scalable cross-module opti-
mization. InProc. SIGPLAN ’98 Conf. on
Programming Language Design and Im-
plementation, pages 301–312, Montreal,
June 1998.

[3] D. Blickstein, P. Craig, C. Davidson,
N. Faiman, K. Glossop, R. G. S. Hobbs,
and W. Noyce. The gem optimizing com-
piler system. Digital Technical Journal,
4(4):121–136, 1992.

[4] M. Burke and L. Torczon. Interproce-
dural optimization: eliminating unneces-
sary recompilation. ACM Transactions
on Programming Languages and Systems
(TOPLAS), 15(3):367–399, 1993.

[5] R. Cohn, D. Goodwin, and P. Lowney.
Optimizing Alpha executables on Win-
dows NT with Spike. Digital Technical
Journal, 9(4), 1997.

[6] R. Cytron, J. Ferrante, B. K. Rosen,
M. N. Wegman, and F. K. Zadeck. Ef-
ficiently computing static single assign-
ment form and the control dependence
graph. ACM Transactions on Program-
ming Languages and Systems, pages
13(4):451–490, October 1991.

[7] D. Dhurjati, S. Kowshik, V. Adve, and
C. Lattner. Memory safety without run-
time checks or garbage collection. In
Proc. 2003 ACM SIGPLAN Symposium
on Languages, Compilers, and Tools for
Embedded Systems, Feb 2003.

[8] C. Dulong, R. Krishnaiyer, D. Kulkarni,
D. Lavery, W. Li, J. Ng, and D. Sehr. An
overview of the Intel IA-64 compiler.In-
tel Technology Journal, (Q4), 1999.

[9] A. Holler and Hewlett-Packard Company.
Compiler optimizations for the PA-8000.
In Proc. IEEE International Computer
Conference, 1997.

GCC Developers Summit 2003 • 133

[10] C. Lattner. LLVM: An infrastruc-
ture for multi-stage optimization.
Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu .

[11] C. Lattner and V. Adve. LLVM As-
sembly language reference manual,
http://llvm.cs.uiuc.edu/
docs/LangRef.html .

[12] C. Lattner and V. Adve. Automatic
Pool Allocation for Disjoint Data Struc-
tures. InProc. ACM SIGPLAN Workshop
on Memory System Performance, Berlin,
Germany, Jun 2002.

[13] C. Lattner and V. Adve. Data structure
analysis: An efficient context-sensitive
heap analysis. Tech. Report UIUCDCS-
R-2003-2340, Computer Science Dept.,
Univ. of Illinois at Urbana-Champaign,
Apr 2003.

[14] A. Srivastava and D. W. Wall. A practical
system for intermodule code optimization
at link-time. Journal of Programming
Languages, 1(1):1–18, Dec. 1992.

[15] R. Stallman.The GNU C compiler. Free
Software Foundation, 1991.

[16] D. Wall. Global register allocation at
link-time. In Proc. SIGPLAN ’86 Sym-
posium on Compiler Construction, Palo
Alto, CA, 1986.

134 • GCC Developers Summit

The finite state automaton based pipeline hazard
recognizer and instruction scheduler in GCC

Vladimir N. Makarov
Red Hat

vmakarov@redhat.com

Abstract

A new model to describe the pipeline charac-
teristics of processors is proposed in the ar-
ticle. The model is based on the usage of
regular expressions. The model is compared
to the one used in GNU C compiler (GCC)
for long time. The article also describes the
pipeline hazard recognizer generated from the
new model currently implemented in GCC and
instruction scheduler which uses the pipeline
hazard recognizer. The current implementation
of the pipeline hazard recognizer is based on
the usage ofdeterministicandnondeterminis-
tic finite state automata.

Examples of usage of the new model, the
pipeline hazard recognizer, and the instruction
scheduler based on it are given. Possible future
directions of developing them to use them for
different algorithms of instruction scheduling
and software pipelining are discussed.

Introduction

To increase the productivity of computer
systems the modern processors can execute
several instruction simultaneously. It is
achieved by using several functional units
and/or pipelined functional units. Of course the
instruction execution could start only if the in-
put data are ready and enough processor func-
tional units necessary for the instruction execu-

tion are available. If at least one of the two con-
ditions is not satisfied, a processor stall might
occur and the instruction execution might be
delayed. The delay because the first condition
is not satisfied is called data delay. The delay
because of the second condition is called re-
source delay.

A special component in an optimized compiler,
called the instruction scheduler, is responsi-
ble for decreasing the data and resource delays
and (as a consequence) to increase the paral-
lelism of instruction execution. It is achieved
mainly by changing the original order of in-
structions, although more powerful code trans-
formation (like instruction cloning, partial reg-
ister renaming and forward substitution, and
instruction mutation) could be used. An im-
portant component of the instruction scheduler
responsible to find the resource delays is called
the pipeline hazard recognizer.

There is big variety of processors even for one
architecture. Therefore writing the pipeline
hazard recognizer manually is not wise. This is
especially true for portable compilers. There-
fore many compilers have a model to describe
pipeline characteristics of the target processors
and usually a generator of pipeline hazard rec-
ognizers. The model language can be a subset
of the compiler implementation language (like
C used to describe the reservation tables) or a
special language designed for this task.

136 • GCC Developers Summit

GCC as a compiler ported to most platforms
had such a model and generator for long time.
This model has its drawbacks. It can not accu-
rately describe many modern processors. As a
consequence the generated code is worse than
it could be with the same instruction sched-
uler. The more pipeline irregularity the proces-
sor has, the more is the impact of an instruction
scheduling inaccuracy. Another drawback is
the inconvenience of description. The model is
oriented to describe which instructions a func-
tional unit executes instead of the more natu-
ral model in which the reservation of the func-
tional units by given instruction is described.

GCC pipeline hazard recognizer is a part of the
instruction scheduler itself. It is driven by ta-
bles generated from the description. The tables
are just a simple translation of the description.
The more complex the pipeline description is,
the slower the pipeline hazard recognizer is.
The modern processor becomes more complex
and the slow speed of the pipeline hazard rec-
ognizer becomes a problem.

To solve this drawback, the new model and im-
plementation of the pipeline hazard recognizer
have been proposed. The model is based on the
usage of regular expressions describing all the
reservations of functional units by instructions.
The corresponding implementation of pipeline
hazard recognizer is based on the usage of fi-
nite state automata.

Each state of the automaton encodes all current
and planned reservations of functional units.
If there is an arc from one state to another
state marked by an instruction, then the instruc-
tion can be issued in a given state and there
will be no conflicts on functional unit usage
with the instructions issued earlier. The des-
tination state encodes all current and planned
functional unit reservations after issuing the in-
struction. Each state also has an arc marked by
cycle advancing. The destination state in this

case is the state after increasing the simulated
processor cycle. Transitions by the arc finally
result in freeing functional units.

So the instruction scheduler should only check
the presence of the arcs marked by the instruc-
tion from given state to find a resource de-
lay. After issuing the instruction the instruc-
tion scheduler should change the current state
to the destination state. If no instruction can be
issued, the instruction scheduler should change
the current state to the destination state into
which an arc marked by ‘cycle advancing’ en-
ters and increase the simulated processor cycle.

This approach is not new. It has been de-
scribed in [Bala, Proebsting]. What is a re-
ally new thing in the approach described in the
article is usage ofalternativesin the reserva-
tions. The alternatives can be treateddetermin-
istically andnondeterministically.

The deterministic treatment of the alternative
is to try the first alternative reservation and, if
there is a conflict on any functional unit re-
served by previously issued instructions, try
the next alternative. The nondeterministic one
is to try all alternative reservations concur-
rently.

The first section of the article describes in
more detail the description model and the cor-
responding pipeline hazard recognizer used in
GCC for a long time. It also describes the
drawbacks of such an approach. In the sec-
ond section, the proposed model is described.
The third section describes the generation of
the pipeline hazard recognizer from the pro-
posed model and its interface to the instruction
scheduler. The fourth section contains exam-
ples of descriptions as deterministic and non-
deterministic ones. The fifth section describes
an algorithm, called the first cycle multipass in-
struction scheduling. The algorithm improves
instruction scheduling by evaluation of more
than one instruction schedule. Usage of the fast

GCC Developers Summit 2003 • 137

pipeline hazard recognizer makes it practical.
In the sixth section, the possible future direc-
tions of developing the proposed approach are
discussed.

1 The old GCC processor pipeline
description model

This section is based on the documenta-
tion of Gcc internals [Gcc]. Practically all
processor parallelism for GCC is described
with the aid of one type of constructions—
define_function_unit —in a Gcc ma-
chine description file. Each usage of a func-
tional unit by a class of instructions is spec-
ified with a define_function_unit ex-
pression (see Table 1).

(define_function_unit NAME MULTIPLICITY SIMULTANEITY

TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])

NAMEis a string giving
the name of the functional
unit.

MULTIPLICITY is an integer
specifying the number of identical
units in the processor. If more than
one unit is specified, they will be
scheduled independently.

SIMULTANEITY speci-
fies the maximum num-
ber of instruction that can
be executing in each in-
stance of the functional
unit simultaneously.

TEST is an attribute test that se-
lects the instructions we are de-
scribing in this definition. Note
that an instruction may use more
than one functional unit.

READY-DELAYis an in-
teger that specifies the
number of cycles after
which the result of the
instruction can be used
without introducing any
stall.

ISSUE-DELAY is an integer that
specifies the number of cycles after
the instruction matching theTEST
expression begins using this unit
until a subsequent instruction can
begin. A cost ofN indicates an
N-1 cycle delay.

CONFLICT-LIST is an
optional list giving in-
structions with which ad-
ditional conflicts occur.

Table 1:The old description model construction.

As an example, consider a classic RISC ma-
chine where the result of a load instruction
is not available for two cycles (a single "de-
lay" instruction is required) and where only
one load instruction can be executed simulta-
neously. This would be specified as:

(define_function_unit "memory" 1 1
(eq_attr "type" "load") 2 0)}

For the case of a floating point function unit
that can pipeline either single or double preci-
sion, but not both, the following could be spec-
ified:

(define_function_unit "fp" 1 0
(eq_attr "type" "sp_fp") 4 4
[(eq_attr "type" "dp_fp")])

(define_function_unit "fp" 1 0
(eq_attr "type" "dp_fp") 4 4
[(eq_attr "type" "sp_fp")])

A special utility in Gcc generates different ta-
bles of bit vectors, macros, and some functions
(mainly for dealing with conflict lists), which
are used by the pipeline hazard recognizer em-
bedded into the instruction scheduler.

The current GCC instruction level parallelism
description model has serious drawbacks. The
biggest one is that the description model is not
powerful enough. Each functional unit is be-
lieved to be reserved at the start of instruction’s
execution. The model also does not permit al-
ternatives in the reservations. This is a big con-
straint for accurate descriptions of modern pro-
cessors. As a consequence of inaccurate de-
scriptions, the machine dependent files of Gcc
contain a lot of code to fix it. For example,
the SPARC machine-dependent files contained
about one thousand lines of C code.

Another important drawback of the model is
the unnatural way of description when a devel-
oper should write a unit and condition which
selects instructions using the unit. My experi-
ence shows that writing all units reservation for

138 • GCC Developers Summit

an instruction (an instruction class) are more
natural.

The pipeline hazard recognizer of resource
delays has a slow implementation. The
Gcc schedulers support structures which de-
scribe the unit reservations. The more com-
plex the pipeline description, the slower the
pipeline hazard recognizer. Such implementa-
tion would become even slower when we en-
able to reserve functional units not only at the
instruction execution start. The slow imple-
mentation becomes critical for the modern pro-
cessor (especially VLIW and EPIC).

2 The proposed processor pipeline
description model and its imple-
mentation

As the old processor pipeline description, the
proposed pipeline description should be placed
in the machine description files of Gcc. There
are several constructions to describe the pro-
cessor. The order of all such constructions in
the machine description file is not important.
All constructions are Lisp like construction be-
cause the machine description file has Lisp like
syntax. Please don’t be confused—it is just an
implementation form of the description model.
The syntax of the major constructions is given
on Table 2.

To describe a processor, first we should
define an automaton with the construction
define_automaton . We can have more
than one automaton in a machine description
file. All the automata should have unique
names. The automaton name is used in the con-
structiondefine_cpu_unit .

It is good practice to use separate automaton
to describe a processor of a given architecture.
For example, the machine description file for

(define_automaton
AUTOMATON-NAME)

AUTOMATA-NAMEis a string giv-
ing the name of the automaton.

(define_cpu_unit
UNIT-NAMES
AUTOMATON-NAME)

UNIT-NAMES is a string giving
the names of the functional units.
AUTOMATON-NAMEis a string
giving the name of the automaton
to which the unit is bound.

(define_insn_reservation
INSN-NAME
DEFAULT-LATENCY
CONDITION REGEXP)

DEFAULT-LATENCYis a number
giving the latency time of the in-
struction.
INSN-NAME is a string giving an
internal name of the instruction. It
is good practice to use the instruc-
tion class names as described in the
processor manual.
CONDITION defines what RTL
instructions are described by this
construction.
REGEXPis a string describing the
reservation of the cpu’s functional
units by the instruction (the syntax
is given in table 3).

(define_reservation
RESERVATION-NAME
REGEXP)

RESERVATION-NAMEis a string
giving the name of REGEXP.

(exclusion_set
UNIT-NAMES UNIT-NAMES)

(presence_set
UNIT-NAMES PATTERNS)

(absence_set
UNIT-NAMES PATTERNS)

UNIT-NAMES is a string giving
names of functional units.
PATTERNSis a string giving pat-
terns of functional units separated
by a comma. Currently a pattern
is one unit or units separated by
white-spaces.

Table 2:The major constructions of the proposed
description model.

SPARC architecture could have one automa-
ton for UltraSparcII and another one for Ultra-
SparcIII.

We could also use more than one automaton
to describe a single processor. Sometimes the
generated finite state automaton used by the
pipeline hazard recognizer is large. If we use
more than one automaton and bind functional
units to the automata, the summary size of the
automata is usually less than the size of the sin-
gle automaton.

GCC Developers Summit 2003 • 139

Each functional unit used in the description of
instruction reservations should be described by
the constructiondefine_cpu_unit .

The constructiondefine_insn_reserva-

tion is the major construction to describe
pipeline characteristics of an instruction. The
reservations are described by regular expres-
sions according to the syntax on Table 3.

regexp = regexp "," oneof
| oneof

, is used for describing the start
of the next cycle in the reserva-
tion.

allof = allof "+" repeat
| repeat

+ is used for describing a reser-
vation described by the first reg-
ular expression and the second
regular expression etc.

oneof = oneof "|" allof
| allof

| is used for describing a reser-
vation described by the first reg-
ular expression or the second
regular expression etc.

repeat = element "*" number
| element

* is used for convenience and
simply means a sequence in
which the regular expression is
repeatedNUMBERtimes with
cycle advancing (see ‘, ’).

element = cpu_unit_name
| reservation_name
| result_name
| "nothing"
| "(" regexp ")"

cpu_unit_name denotes
reservation of the named cpu
functional unit. nothing
denotes no unit reservations.

Table 3:Syntax of the regular expressions.

As an example, consider a superscalar RISC
machine which can issue three instructions
(two integer instructions and one floating point
number instruction) on a cycle but can finish
only two instructions. To describe this, we de-
fine the following functional units.

(define_cpu_unit "i0_pipeline, i1_pipeline")
(define_cpu_unit "f_pipeline,port0, port1")

All simple integer instructions can be executed
in any integer pipeline and their result is ready
in two cycles. The simple integer instructions
are issued into the first pipeline unless it is
reserved, otherwise they are issued into the
second pipeline. Integer division and multi-
plication instructions can be executed only in
the second integer pipeline and their results
are ready correspondingly in 8 and 4 cycles.
The integer division is not pipelined, i.e. the
subsequent integer division instruction can not
be issued until the current division instruction
finished. Floating point instructions are fully
pipelined and their results are ready in 3 cy-
cles. To describe all of this we could specify

(define_cpu_unit "div")
(define_insn_reservation "simple" 2

(eq_attr "cpu" "int")
"(i0_pipeline|i1_pipeline), (port0|port1)")

(define_insn_reservation "mult" 4
(eq_attr "cpu" "mult")
"i1_pipeline, nothing*2, (port0|port1)")

(define_insn_reservation "div" 8
(eq_attr "cpu" "div")
"i1_pipeline, div*7, div + (port0|port1)")

(define_insn_reservation "float" 3
(eq_attr "cpu" "float")
"f_pipeline, nothing, (port0|port1))

In our example we see that the unit reserva-
tions for different instructions contain com-
mon parts. In such case, we can simplify the
pipeline description by defining an abbrevia-
tion by the constructiondefine_reserva-
tion . To simplify the description in our ex-
ample we could use a reservation as follows

(define_reservation "finish" "port0|port1")
(define_insn_reservation "simple" 2

(eq_attr "cpu" "int")
"(i0_pipeline | i1_pipeline), finish")

Some processors (especially VLIW ones)
have many constraints which are quite dif-
ficult to describe only by the constructions
mentioned above. The three constructions
exclusion_set , presence_set , and
absence_set make description easy.

140 • GCC Developers Summit

The first construction (exclusion_set)
means that each functional unit in the first
string can not be reserved simultaneously with
a unit whose name is in the second string and
vice versa. For example, the construction is
useful for describing processors (e.g. some
SPARC processors) with a fully pipelined
floating point functional unit which can exe-
cute simultaneously only single precision float-
ing point instructions or only double precision
floating point instructions.

The second construction (presence_set)
means that each functional unit in the first
string can not be reserved unless at least one
of the pattern in the second string has been re-
served. This is an asymmetric relation. For
example, it is useful to description that VLIW
slot1 is reserved after a reservationslot0
or slot1 is reserved only after aslot0 and
unit b0 reservation. We could describe it by
the following constructions:

(presence_set "slot1" "slot0")
(presence_set "slot1" "slot0 b0")

The third construction (absence_set)
means that each functional unit in the first
string can be reserved only if each pattern in
the second string is not reserved. This is an
asymmetric relation. For example, it is useful
for description that VLIWslot0 can not be
reserved after aslot1 or slot2 reservation
or thatslot2 can not be reserved ifslot0
and unitb0 are reserved orslot1 and unit
b1 are reserved. We could describe it by the
following constructions:

(absence_set "slot2" "slot0, slot1")
(absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should
belong to the same automaton.

There are other constructions to describe
pipeline characteristics of processors. But for

the sake of brevity they are not described in this
article.

A special utility (the generator) generates the
automaton based pipeline hazard recognizer in
a separate file. The instruction scheduler com-
municates with it through a procedural inter-
face. The major procedure gets an automata
state and an instruction as parameters and re-
turns information on whether the instruction
can be issued or not. If it can be issued then
the procedure changes the state to reflect the
instruction issue.

Each state of the automaton encodes all current
and planned reservations of functional units. If
there is an arc to another state marked by an
instruction, then the instruction can be issued
in the given state and there will be no con-
flicts on functional unit usage with the instruc-
tions issued earlier. The destination state en-
codes all current and planned functional unit
reservations after issuing the instruction. If
the instruction parameter is null, it means that
the simulated processor cycle should be ad-
vanced. Each state has an arc marked by
cycle advancing . The destination state
in this case is the state after incrementing the
simulated processor cycle. Transitions by such
arcs result in the freeing of all functional units.

The DFA pipeline hazard recognizer is be-
lieved to not be as flexible as the old Gcc rec-
ognizer. This is not true. It is easy to get in-
formation from the automata. For example,
the generator also generates many other pro-
cedures like querying the reservation of func-
tional units for a given automaton state, finding
the minimal reservation delay needed to issue
an instruction in a given state, checking that no
one instruction can be issued in given state and
so on.

The nondeterministic treatment of alterna-
tives means trying all alternatives concurrently.
Some of them may be rejected by reservations

GCC Developers Summit 2003 • 141

in the subsequent instructions. Actually, the
nondeterministic treatment of alternatives is
enough to describe deterministic alternatives.
For example, let us look at the following reser-
vation with deterministic treatment of alterna-
tives.

(define_reservation "deterministic" "u1|u2")

It means that we reserveu1 and, if it is not pos-
sible (becauseu1 has been already reserved),
we reserveu2 . We can describe it with the fol-
lowing constructions

(define_reservation "nondeterministic"
"u1|u2+u1_present")

(presence_set "u1_present" "u1")

Here we use a reservation with nondetermin-
istic treatment of the alternative. What vari-
ant of alternative should we use? The proces-
sors are deterministic devices, so alternatives
should usually be treated deterministicaly (this
is the default treatment). Let us look at a dual
instruction issue processor which has two in-
teger units. One integer unitIU1 can execute
any integer instruction and another one (IU2)
can execute any integer instruction except mul-
tiply. In the first example, the processor always
issues instructions intoIU1 if it is free. The
processor could be described by using deter-
ministic alternatives as follows

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "IU1 | IU2")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "IU1")

Actually the processor has a bad design be-
cause if an integer instruction is followed by
multiply instruction the two instructions can
not be issued simultaneously. The improved
processor should always issue an integer in-
struction intoIU2 if it is not busy. We could
describe this using deterministic alternatives as
follows

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "IU2 | IU1")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "IU1")

On the other hand we could use nondetermin-
istic treatment in the example too. The result
automaton would be the same. But nondeter-
ministic treatment could better reflect the pro-
cessor’s behaviour if the processor had an in-
struction look ahead buffer to find the best as-
signment of functional units to instructions in
the buffer. Another example of usage of the
nondeterministic treatment of alternatives for
Itanium and Itanium2 processors is described
in the next section.

Generally speaking, the same processor can be
described differently. I would distinguish two
kind of descriptions. One is thestructuralde-
scription which describes (almost) all proces-
sors functional units mentioned in processor’s
documentation. Another one (behavioural)
aims to describe only pipeline hazards (some-
times with the aid of non-existing functional
units). The first one is usually more verbose
and the resulting automata are bigger. The sec-
ond one is simpler and the resulting automata
are smaller. But it is better to follow the docu-
mentation (in other words to use a structural
description) because it makes understanding
the description easier for other people.

3 Generation of the pipeline haz-
ard recognizer

Here is a brief description of the phases of the
generator of pipeline hazard recognizers and
the more interesting tasks solved by the gener-
ator. First, the generator of pipeline hazard rec-
ognizer translates the pipeline description into
an internal representation.

Then it checks the correctness of the automa-
ton pipeline description. The most nontrivial

142 • GCC Developers Summit

task is to check the correctness of assignments
of functional units occurring in a reservation
to the automata. There is no such problem for
reservations without alternatives [Bala]. Let us
consider the following description:

(define_cpu_unit "div" "div")
(define_cpu_unit "decode" "rest")
(define_insn_reservation "div" 3

(eq_attr "cpu" "div") "decode + div*3")

The corresponding automata are given on Fig-
ure 1. The figure also contains the single au-
tomaton as if all units were assigned to one
automaton. They behave analogously to the
single automaton with the two functional units
decode and div . It means that transition
marked by an instruction exists in the single
automaton if and only if there are transitions
marked by the instruction between the corre-
sponding states of all two automata. Instead of
changing only one state for a single automa-
ton, the pipeline hazard recognizer changes the
states of the two automata simultaneously. Al-
though a number of the states is hidden in the
pipeline hazard interface and there is only one
state in the interface, in reality the interface
state is represented by two states and pipeline
hazard recognizer internally manipulates the
states of the two automata.

Let us consider a more advanced dual instruc-
tion issue processor with a faster division unit.

(define_cpu_unit "decode1" "a1")
(define_cpu_unit "div,decode2" "a2")
(define_insn_reservation "div" 2

(eq_attr "cpu" "div")
"(decode1|decode2) + div*2")

For automataa1 anda2 we have correspond-
ingly the following functional unit reservations
for the instructiondiv

decode1|nothing
nothing|decode2 + div*2

nothing next cycle

decode
+div*3

div

div*2

next cycle

div

next cycle

next cycle

nothing next cycle

div*3

div

div*2

next cycle

div

next cycle

next cycle

nothing next cycle

decode

div next cycle

Figure 1: The single automaton and the two au-
tomata of the single issue processor.

Figure 2 contains the single automaton (as if all
units were assigned to one automaton) and the
corresponding two automata.

nothing next cycle

decode1
+div*2

div

div

next cycle

next cycle

nothing next cycle

decode1

div next cycle

div nothing div next cycle

Figure 2:The single automaton and the two incor-
rect automata of the dual issue processor.

The two automata are not equivalent to the sin-
gle automata. For example, we could issue
any number of division instructions on one cy-
cle according to the two automata. The sim-
ple solution of this problem could be the us-
age of the requirement to assign all functional

GCC Developers Summit 2003 • 143

units occurring in the same reservation to the
same automaton. It is a very severe constraint
to assign functional units to automata which
results in the impossibility of decreasing au-
tomata size in many cases even if we have
reservations without alternatives. Instead of it,
the current implementation uses a less severe
requirement. If a functional unit reservation
(div in our example) is present on a partic-
ular cycle of an alternative for an instruction
reservation, then some unit from the same au-
tomaton must be present on the same cycle for
the other alternatives of the instruction reser-
vation. The requirement is not too complicated
to be understood and it still helps to consider-
ably decrease automata size in many cases. Let
us consider the following distributions of the
functional units (The corresponding automata
are given on Figure 3):

(define_cpu_unit "decode1,decode2" "a1")
(define_cpu_unit "div" "a2")
(define_insn_reservation "div" 2

(eq_attr "cpu" "div")
"(decode1|decode2) + div*2")

nothing next cycle

decode1

div

decode1
+decode2

div

next cycle

nothing next cycle

div*2

div

div

next cycle

next cycle

Figure 3: The two correct automata of the dual
issue processor.

We see that the automata on figure 3 behave
analogously to the single automaton.

After checking the description, the generator of
the pipeline hazard recognizer creates the au-
tomata and, if the alternatives are treated non-
deterministicaly, transforms nondeterministic
finite state automata into deterministic ones.

After creating the automata, the generator does
a minimization of the finite state automata
by merging automaton states (I should men-
tion that Gcc experience shows importance of
some preliminary minimization during build-
ing the automata because even if the minimized
is small the automata before the minimization
could be huge). The minimization task is a bit
complicated. If we have functional units in the
description whose reservation may be queried
for a given state. Let us consider a processor
with different functional units for multiply and
for the rest of the integer instructions

(define_insn_reservation "int" 1
(eq_attr "cpu" "int") "decode + int")

(define_insn_reservation "mult" 1
(eq_attr "cpu" "mult") "decode + mult")

The corresponding automata before and the af-
ter the minimization are given on Figure 4. If
we want to know whether functional unitmult
is reserved in the second state of the minimized
automaton, we can not get this information
from just the state. The simplest solution of
the problem could be prohibiting the minimiza-
tion for automata with queried units. Unfor-
tunately such a solution is not reasonable be-
cause automaton minimization is an important
optimization which permits to considerably de-
crease the size of the automata in many cases.
Instead of the simplest approach we use mini-
mization with modified state equivalence. The
new state equivalence takes queried functional
units in the corresponding reservations into ac-
count. This approach still permits to consider-
ably decrease the automata size in many cases.

After the minimization, the generator forms ta-
bles, compresses them by different algorithms

144 • GCC Developers Summit

nothing next cycle

decode
+int

int

decode
+mult

multnext cycle next cycle

nothing next cycle

decode+int
|decode+mult

int mult next cycle

Figure 4:The automaton before and after the min-
imization.

(like a comb vector algorithm) and outputs
them (and functions accessing them (including
functions which are interface functions of the
pipeline hazard recognizer)) into a C file for
further compilation.

The biggest problem of the usage of the DFA
approach is the size of the automata. How big
can the automata be? For example, Gcc for In-
tel IA64 has four automata (two for Itanium
and two Itanium2) with 24K states and 170K
arcs. But this is an extreme case. Itanium and
Itanium2 have extremely complicated pipeline
characteristics. The IA64 automata are also
used for VLIW packaging (bundling instruc-
tions). Therefore the IA64 automata have
many queried units.

To solve the big automata size problem, it is
better to split an automata into several ones and
not to use queried units as it was mentioned
in above. Now automaton splitting should be
done manually by assigning functional units to
the automata. Automatic splitting of an au-
tomaton into several automata with total size
less than the size of the original automaton is a
challenging research work.

4 Usage of the proposed model and
the pipeline hazard recognizer

The first public usage of DFA based instruction
scheduling was for UltraSparc. The previous
implementation of the pipeline hazard recog-
nizer contained about 1000 lines of machine-
dependent C code for tuning the old pipeline
hazard recognizer generated from a non-DFA
pipeline description. The DFA description
of Sparc which resulted in all this code has
been gone and the instruction scheduling has
been improved. Table 4 contains a compari-
son of SPECfp95 run a 500 Mhz UltraSparcIIe
box. The average improvement of EEMBC
[EEMBC] for a 233 Mhz UltraSparcII box was
5.5%.

Benchmarks Ratio Ratio
101.tomcatv 12.6 13.4
102.swim 22.4 22.7
103.su2cor 5.95 6.04
104.hydro2d 6.04 6.05
107.mgrid 7.73 8.65
110.applu 7.52 7.65
125.turb3d 13.7 13.8
141.apsi 10.9 11.0
145.fpppp 11.0 11.4
146.wave5 14.7 15.0
SPECfp95 (Geom. Mean) 10.4 10.7

Table 4: Sparc GCC with non-DFA and DFA
pipeline hazard recognizers.

The usage of a DFA description for SH4 is an
example of the importance of accurate pipeline
descriptions for processors which have compli-
cated pipeline constraints: such as SH4. Im-
provement of instruction scheduling with the
DFA pipeline hazard recognizer for SLALOM
benchmark [Slalom] on a 200Mhz SH4 box
was about 12-13%.

A good example of usage ofnondeterministic
automata is the description of Itanium and Ita-

GCC Developers Summit 2003 • 145

nium2 processors. The IA64 architecture is an
extension of a typical VLIW architecture. In-
structions can only be placed in specific slots
(syllables in IA64 terminology) of a VLIW in-
struction (bundle in IA64 terminology). To
place an instruction in the current bundle or
the next bundle, sometimes one or twoNOPin-
structions should be issued first. Gcc already
had pipeline hazard recognizer for the Itanium
processor. It was written manually on C be-
cause the old description model was not pow-
erful enough. The code was big and compli-
cated. It was tuned very well to achieve good
instruction scheduling. The code tried to insert
suchNOPinstructions.

The nondeterministic automaton permits to
easily describe where to insert suchNOPin-
structions. The DFA descriptions have been
written for Itanium and Itanium2 processors.
Each processor has been described by two au-
tomata. The first (nondeterministic) automaton
described the instruction reservations with an
optional issue of one or twoNOPinstructions
before the instruction. So the pipeline hazard
recognizer followed all possibilities of insert-
ing NOPinstructions. This automaton is used
for the first and second instruction scheduling
in Gcc. The second automaton is determinis-
tic. It is used to bundle instructions on the final
phase of Gcc. Bundling instructions is to insert
NOPs andtemplate selectors. InsertingNOPs
was a dynamic programming algorithm which
tests all alternatives in insertingNOPs before
the instructions and choses the best ones. It
uses the second automaton and information
about new processor cycle start points prepared
by the previous instruction scheduling. Tem-
plates are defined by querying the functional
units of the second automaton.

Such implementation permitted to speed up all
Gcc run (with -O2) up to 45% for Itanium. The
code has been improved by 2% (see Table 5)
for SPECInt2000 benchmark on a 733 Mhz Ita-

Benchmarks Ratio Ratio
164.gzip 176 177
175.vpr 192 203
176.gcc 236 235
181.mcf 142 144
186.crafty 248 243
197.parser 168 171
252.eon 149 147
253.perlbmk 201 207
254.gap 163 167
255.vortex 232 233
256.bzip2 182 188
300.twolf 247 265
Est.SPECint2000 191 195

Table 5: Itanium Gcc with non-DFA and DFA
pipeline hazard recognizers.

Benchmarks Ratio Ratio
164.gzip 345 361
175.vpr 444 454
176.gcc 460 477
181.mcf 252 249
186.crafty 480 497
197.parser 366 368
252.eon 274 273
253.perlbmk 449 463
254.gap 326 331
255.vortex 509 512
256.bzip2 362 376
300.twolf 506 559
Est. SPECint2000 388 399

Table 6: Itanium Gcc with non-DFA pipeline
hazard recognizers vs. Itanium2 Gcc with DFA
pipeline hazard recognizer.

146 • GCC Developers Summit

nium box.

Unfortunately, there is no implementation of
Gcc for Itanium2 using a non-DFA pipeline
hazard recognizer. Therefore we could only
compare Itanium compiler using the non-DFA
pipeline hazard recognizer with the Itanium2
compiler using the DFA-pipeline hazard recog-
nizer. The compiler speed up is about 55% for
such a comparison. The SPECInt2000 bench-
mark results of Gcc (with usage -O2) on a
900Mhz Itanium2 box are given in Table 6.

5 The first cycle multipass instruc-
tion scheduling

The usage of the fast DFA pipeline hazard
recognizer permits to implement instruction
scheduling algorithms trying several schedules
and choosing the best one. The traditional in-
struction scheduling algorithms try only one
instruction schedule. The schedule is chosen
by a fixed set of heuristics. Usually the ma-
jor heuristic is a heuristic based on the critical
path length [Muchnick, Morgan]. This heuris-
tic works fine for classical RISC processors.
For super-scalar RISC or VLIW processors, a
greedy algorithm [Muchnick] trying to issue
the maximal number instructions on each pro-
cessor cycle might work better.

The first cycle multi-pass instruction schedul-
ing has been designed to integrate the best of
the both approaches. The idea of the algorithm
is to choose an instruction whose issue can re-
sult in the issue of a maximal number of in-
structions on the current simulated processor
cycle. The highest priority instruction should
be among these instructions. In other words,
the algorithm guarantees that the instruction
with the highest priority will be issued on the
current cycle (although necessarily not the first
in the cycle). On the other hand, it tries to max-
imize the number of issued instructions on the

cycle. The second highest priority instruction
might be not issued on the same cycle even if
it could be issued with the highest priority in-
struction. If it happens, the second highest pri-
ority instruction will be issued on the next cy-
cle.

function MaxIssues (ReadyArray, var ReadyTry,
State, var Index) : integer

begin
if no one instruction can be issued in State
then return 0; fi

Best := 0;

for i := 0 to length (ReadyArray) do
if not ReadyTry [i] then

Insn := i-th of ReadList;
TempState := State;
if Insn can be issued in TempState then

change TempState as if Insn were issued;
ReadyTry [i] = true;
n := MaxIssues (ReadyArray, TempState,

TempIndex);
if n > 0 || ReadyTry[0]
then n := n + 1; fi;
if Best < n then

Best := n;
Index := i;

fi;
ReadyTry [i] := false;

fi
fi

end
return Best;

end

function ChooseReady (ReadyArray, State) : Insn
begin

ReadyTry := array of length (ReadyArray)
initialized by false;

if MaxIssues (ReadyArray, ReadyTry,
State, i) == 0

then return the first instruction in
ReadyArray;

else return i-th instruction in ReadyArray;
fi

end

Figure 5: The first cycle multi-pass instruction
scheduling algorithm.

To find the instruction to issue, the algorithm
tries permutations of an array of ready instruc-
tions sorted by their priorities. The algorithm
might try too many permutations. Therefore
the speed of the pipeline hazard recognizer is
critical. The number of all permutations isn!,
wheren is number of the ready instructions.

GCC Developers Summit 2003 • 147

This number can be huge and some heuristics
are used to limit the processed permutations.
The recursive version of the algorithm (with-
out the heuristics) is given in Figure 5.

The algorithm is written on a Pascal/Modula
like language. The functionChooseReady
gets the array of the ready instructions sorted
by their priorities and a DFA state reflecting the
current and future functional unit reservations
and returns a ready instruction which should
be issued. The function calls another func-
tion MaxIssues to find the best instruction.
The recursive functionMaxIssues gets the
ready instruction array, the information about
already issued ready instructions as a boolean
array, and the current DFA state reflecting issu-
ing the ready instructions. The function returns
the maximal number of instructions which can
be issued in the given conditions and the index
of the instruction which should be issued first
to achieve this number. The function checks
only the instruction sequences which contain
the first ready instruction.

How much can the algorithm improve the
code? The improvement can be significant es-
pecially for VLIW processors. For example,
the test twolf from SpecInt2000 has been im-
proved by 12% for an Intel Itanium2 machine.
The overall SpecInt2000 has been improved by
2%. It should be mentioned that a modified al-
gorithm, limiting number of the permutations
being checked, was used. The modification
was necessary to make the algorithm fast (as
a small fraction of all the instruction scheduler
work time) so as to be practical for use in in-
dustrial compilers.

The algorithm tries all the possibilities to im-
prove the schedule in the scope of one proces-
sor cycle. It can be generalized to improve
code in scope of a basic block. So the algo-
rithm can be considered as an intermediate step
in the algorithm making an optimal or close to

optimal instruction schedule.

6 Future directions

The pipeline hazard recognizer based on the
proposed model of description and its DFA im-
plementation could be developed in the follow-
ing ways:

• The same approach in the implementa-
tion of the old pipeline hazard recognizer
could be used for an implementation of
the proposed model. It means a slower but
more compact pipeline hazard recognizer.
Such an implementation could be useful
for debugging and for complicated cases
when the automata are too big.

• Some optimization algorithms need to de-
fine a DFA state before issuing an in-
struction having a DFA state after issu-
ing the instruction. It is necessary for
trace scheduling [Fisher]. It could be use-
ful for VLIW slot assignment (instruction
bundling) too when we have a final DFA
state at the end of the basic block and
we move backward querying functional
unit reservations in order to place instruc-
tions into VLIW slots. This kind of algo-
rithm requires reversed automata genera-
tion [Bala].

• Some algorithms need a union of DFA
states. The union of two DFA states
is a DFA state which reflects the union
of functional unit reservations (in other
words, a simultaneous reservation of
functional units) from the both DFA
states. It is necessary when we need
to know the worst case in a joint point
of control flow graph. Perfect software
pipelining [Allan] and some interblock in-
struction scheduling are such kind of algo-
rithms.

148 • GCC Developers Summit

The union of states is also necessary for
the most widely used kind of software
pipelining - modulo scheduling [Allan].
To implement modulo scheduling we need
to make a union of the state after instruc-
tion issue and the states gotten from the it
by advancing the simulated processor cy-
cle by II * n , whereII is the initia-
tion interval andn is 1, 2, 3 and so on.N
could be constrained by a value which re-
sults in the state designating no functional
unit reservations.
Actually, we could implement the union
of states as simply a set of the states. But it
results in a slower implementation. On the
other hand, adding states to an automa-
ton which are the union of all automa-
ton states might result in the generation of
a huge automaton. So this approach re-
quires additional research.

The first cycle multipass instruction schedul-
ing tries all possibilities to improve the sched-
ule in the scope of one processor cycle. It
can be generalized to improve code in scope
of a whole basic block. It means an optimal or
close to optimal instruction scheduling. Opti-
mal instruction scheduling is aNP-hard task.
But we could decrease the number of all con-
sidered instruction schedules by heuristics and
by using dynamic programming to reuse the re-
sults of optimal instruction scheduling of a sub-
sequence of the instructions. The DFA pipeline
hazard recognizer would be important part of
the optimal instruction scheduling implemen-
tation because of its speed.

Regular expressions in the current implementa-
tion describes automata formingdirect acyclic
graphs(DAGs). It is not an adequate model
to accurately describeout-of-order speculative
executionprocessors. Usually they have reg-
ister renaming buffers, retire queues and so
on. Generic regular expressionsor context
free grammarscould be an accurate description

model for such processors. The single ques-
tion is “is it worth implementing?” From my
point of view, such an accurate description will
not give significant improvement of instruction
scheduling for the processors. But it could be
a good research work.

7 Acknowledgments

I would like to thank Robert Morgan and Nor-
man Rubin. Communication with them gave
me my original interest in automaton based
pipeline hazard recognizers.

I am grateful to my current and former col-
leagues at RedHat for their interest in and sup-
port of this project. Among them are Richard
Henderson who had the biggest impact on the
design of the description model, Jeff Law who
provided resources for this work through dif-
ferent contracts, Jason Eckhardt for the ex-
change of interesting ideas in this field, David
Miller who wrote the UltraSparc description
and had proven the advantages of the approach.

I should name many contributors to Gcc who
have affected this work. The full list could be
very long. So I only name Jim Wilson at Red-
Hat, Jan Hubicka at SUSE, David Edelhson
at IBM, Geoffrey Keating at Apple, Naveen
Sharma at HCL Technologies, Dan Nicolaescu
at University of California, Irvine. This is the
power of the open source community!

Last but not least, I would like to thank my son,
Serguei, for the help in editing the article.

References

[Bala] V. Bala and N. Rubin,Efficient Instruc-
tion Scheduling Using Finite State Au-
tomata, International Journal of Parallel
Programming (1995).

GCC Developers Summit 2003 • 149

[Proebsting] T. Proebsting and C. Fraser,
Detecting pipeline structural hazards
quickly, Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages (1994) p. 280–
286.

[Gcc] A Gcc Manual, Published by the Free
Software Foundation, 59 Temple Place
– Suite 330, Boston, MA 02111–1307
USA.

[EEMBC] EEMBC,
http://www.eembc.org

[Slalom] Slalom,
http://www.scl.ameslab.gov

/Publications/SLALOM

/FirstScalable.html

[Allan] V. Allan and others,Software pipelin-
ing, Computing Survey, Sept. (1995).

[Muchnick] Steven S. Muchnick,Advanced
compiler design implementation, Aca-
demic Press (1995), ISBN 1–55860–
320–4.

[Morgan] Robert Morgan,Building an Opti-
mizing Compiler, Digital Press, ISBN 1–
55558–179–X.

[Fisher] J. A. Fisher,Trace scheduling: A
technique for global microcode com-
paction, IEEE Trans. Computing 30
(1981) p. 478–490.

150 • GCC Developers Summit

Design and Implementation of a Graph Coloring
Register Allocator for GCC

Michael Matz
SuSE Linux AG
matz@suse.de

Abstract

Historically the register allocator used in GCC
is a two phase allocator differentiating be-
tween local and global pseudo registers, which
doesn’t itself produce spill code, and therefore
is limited in code quality if spilling is needed.
This paper describes a new register allocator
for GCC based on graph coloring. After a short
overview of the concepts of them in general, in-
cluding some of the improvements (if used in
the implementation) we discuss the actual im-
plementation of the allocator including design
decisions and justification for them. This in-
cludes parts which aren’t explained in the usual
scientific papers but needed in a real world
multi-target allocator.

1 Introduction

While compiling a program often the need
arises to have a place wherein to store certain
values. One example is the storage for the re-
sult of calculating a common subexpression.
To actually make use of it in the later occu-
rance it must be remembered somewhere. One
possibility would be memory, but as the fastest
storage for most real machines are CPU reg-
isters, those are the more natural choice. But
the CPU registers (also hardware registers, or
hardregs) are limited to a comparatively (to the
amount of available memory) small set, which
makes it unlikely to actually find a hardreg

which doesn’t yet hold a value.

The traditional solution is the use of pseudo
registers (pseudoregs). While generating code
for the program (if for initial generation or
optimization doesn’t matter) the compiler as-
sumes there is an unlimited set of registers, and
if it needs a new one it simply creates it. Now
we obviously have to create another pass in
the compiler (which has to be fairly late in the
translating process), which creates a mapping
from pseudoregs to hardregs. It is called reg-
ister allocation for obvious reasons. This map-
ping must be injective if constrained to all oc-
curring set of pseudoregs which are live at the
same time (so that each hardreg only contains
the value for one pseudoreg at a time), which
means, that it doesn’t necessarily exist triv-
ially. In that case the register allocator needs
to change the intermediate code to make use
of storage in RAM to hold some of the pseudo
registers at least during a part of their life time,
which we call to spill a pseudoreg to RAM.

1.1 Current Situation in GCC

The traditional implementation inGCCconsists
of two passes:

• The first one allocates hardregs to pseu-
doregs which are only defined and used in
one basic block (called local-alloc). This
constraint makes the creation of the live
range for those pseudoregs trivial (it con-

152 • GCC Developers Summit

sists of the start and end point of it, which
corresponds to the first def and last use
in that block), limits the set of pseudo
regs to deal with to those which also
are used in that block, and leads to effi-
cient algorithms of creating the mapping
to hardregs.

• The second (global-alloc) deals with the
other pseudoregs, which are defined and
used in different basic blocks. Their live
range can span multiple blocks, and most
often can not be described simply by their
borders. This pass allocates hardregs to
those pseudos (it also maintains a conflict
graph), constrained to the already done
allocation for local pseudos. It also can
override decisions of local-alloc if it sees
fit.

Both of these passes don’t change the code.
Instead they simply produce a mapping (in
reg_renumber[]) which simply doesn’t
contain a hardreg for a pseudo for which it
wasn’t able to find one. Then follows a pass
called reload , which uses this mapping to
change the instructions accordingly. Pseudos
without hardreg get a place on the stack, and
the instructions are modified to refer to their
memory location. While doing thisreload
also performs a validity check against con-
straints from the machine description. If this
check fails, the operands which were failing
are “reloaded” to make them valid (hence the
name of that pass). This for instance then also
includes creating explicit load and store in-
structions for those pseudos which have only
stack storage, if the insns which used them
can’t deal with memory operands. That is, the
process of spilling pseudos is implicit in forc-
ing instructions to be valid.

Those reload instructions themselves also need
register resources. If the reload was caused by
a stack reference, there is a high possibility that

it was storage for a pseudo which didn’t get
a hardreg, which further means that it’s also
probable that there isn’t any free hardreg. So
reload needs to deallocate some of the cur-
rently live pseudos in order to free up some
hardregs. For instance consider this instruc-
tion:

p1← p1 + p2

Supposep1 andp2 didn’t get a hardregs, and
the add instruction doesn’t accept memory
operands. Furthermore suppose that there are
no hardregs free during that instruction. Now
reload conceptually creates this instruction
internally

[sp + 4]← [sp + 4] + [sp + 8]

notices that it is invalid and creates reload insns
for the memory operands.sp here means ob-
viously the stack pointer and[adr] means the
memory at addressadr. The add instruction
here requires registers as operands, so we need
to use some, sayh1 and h2. The code now
looks conceptually like:

h1← [sp + 4]
h2← [sp + 8]
h1← h1 + h2
[sp + 4]← h1

So we need to deallocate all pseudos live dur-
ing this insn which formerly usedh1 or h2.
This in turn means that some pseudos now get
stack storage instead of a hardreg, therefore
the process of reload needs to be repeated un-
til it stabilizes (during which more and more
pseudos which initially got a hardreg could be
spilled again). In an optimizing compilation
reload actually calls back into global-alloc
right before repeating reloading, in the hope,

GCC Developers Summit 2003 • 153

that some of the newly spilled pseudos could
get a different hardreg instead of none at all.

That the emission of spill code is external to
the register allocator itself, and that it is done
on a per instruction basis leads to non-optimal
spill code in some situations. This (and cu-
riosity ;-) lead to the implementation of a more
traditional graph coloring register allocator for
GCC.

2 Graph Coloring Register Alloca-
tors

This section describes graph coloring register
allocators in general and introduces some im-
provements to the naive first versions.

2.1 A First Version

As explained above the problem to which we
seek a solution is to find a mapping from a
set of pseudoregs into a set of hardregs un-
der the constraint that pseudos simultaneously
live must not be mapped to the same hardreg.
Or more abstractly the constraint is, that cer-
tain pairs of pseudos may not get the same
hardreg (for whatever reasons). Such pseudos
are called to be in conflict. The set of con-
flicts forms a relation over the pseudos, which
is symmetric and irreflexive. The visualization
of a set together with such a relation is sim-
ply an undirected graph without loops. The
nodes represent the pseudoregs, the edges the
conflicts, the graph is called conflict graph. In
the context of register allocation we talk about
webs, instead of nodes.

Now the problem is to assign each node a
hardreg such that no neighbor of the node has
the same hardreg. This is exactly the for-
mulation of the graph coloring problem (with
hardregs being our colors), which explains the
name for the class of register allocators work-

ing under this model.

Note that pseudos not only conflict with other
pseudos, but also with hardregs. The reasons
can be that due to machine constraints some
hardregs are already used in the intermediate
representation before register allocation. Or
some pseudos only are permitted a certain set
of hardregs (which can be modeled by making
them conflict with the inverse set). To make
this fit into our model we also include a node
for each hardreg into the graph, which already
are assigned a color; they all conflict with each
other.

Now it’s well known that graph coloring is NP-
complete, so a full solution isn’t feasible for a
compiler. We have to implement approximate
solutions with better runtime behavior.

The first thing is to make use of Kempe’s obser-
vation (see [Kempe]), namely that nodes with
fewer thanN neighbors (whereN is the num-
ber of available colors) can be trivially col-
ored. We can remove such nodes from consid-
eration, which in turn might make other nodes
have fewer thanN neighbors. The removed
nodes are remembered on a stack. The pro-
cess of pruning the graph in this way is called
simplify . If we managed to empty the whole
graph in this way we can take one node at a
time from the top of stack, put it back into the
graph and trivially color it (it’s guaranteed to
have less thanN neighbors).

There are two reasons why simplifying the
graph might not completely empty it. First
it’s only a heuristic, and second the graph it-
self might not be colorable withN colors at
all from the beginning. Either way we might
end up with an intermediate graph in which all
nodes haveN or more neighbors (those nodes
are called constrained).

To make it simplify-able again we have to
change portions of the conflict graph. This is

154 • GCC Developers Summit

build

costs

simplify

coloring

spill code

anything spilled

Figure 1: Flow graph of register allocators

done by choosing one of the nodes, the one
with the lowest spill cost, remembering it for
spilling, and remove it from the graph, in much
the same way as if it were trivially colorable.
Somewhen this makes other nodes simplify-
able again, and in this manner we continue un-
til the graph is empty. If there were spilled
node we now add spill code, and repeat the
whole allocation process. The next time the
conflict graph will be simpler, as all spilled
nodes are now split into several nodes, whose
conflicts is only a subset of the original ones.

This leads to an allocator like in Figure 1. The
build phase analyzes the intermediate repre-
sentation of the program and creates the con-
flict graph. For choosing which nodes to spill
if the need arises, we have to associate a cost
for spilling to each node, so we can select the
cheapest. Those are calculated bycosts. The
spill code phase is only entered ifsimplify
had to remove some nodes by marking them
as spilled. Otherwise all nodes were simplify-
able, andcoloring is entered, which pops the
stack of simplified nodes and colors each one
individually. The simplest (and fasted) mean
to add spill code is to spill at each reference to
a spilled node. Before each use insert a load
from, and after each def1 insert a store to the
memory place allocated for the spilled pseudo.
See [Cha81], although this includes also a coa-

1definition

lescing phase.

2.2 Improvements

There are various improvements to the above
simple allocator. Namely in how it deals with
copy instructions, in the process of coloring the
graph itself, and how spill code is emitted. I’ll
only describe those which are actually imple-
mented inGCC.

After initially building the conflict graph, ad-
dition of code often changes it only locally.
Therefore it is not necessary to completely re-
build the graph for each colorization round. In-
stead werebuild the conflict graph incremen-
tally, which is much faster, especially if only
few pseudos were spilled.

Coloring and Copies

Copy instructions ensure that the two involved
pseudo regs get the same value. Hence they are
not a cause for a conflict between those two.
To the contrary: if they don’t conflict because
of other reasons, it even is worthwhile to as-
sign them the same hardreg, as by doing that
the copy instruction itself becomes redundant.
For instance in a situation like this:

p1← ...
p2← p1

p3← p4 + p1
p5← p4 + p2

Suppose thatp4 is defined earlier. Normally
p1, p2, p3 and p4 all conflict (exceptp3 and
p1). But the definition ofp2 is a copy from
p1, and there are no other defines for it. Sop1
andp2 don’t conflict. Furthermore if we could
ensure that both get the same color,p4 would
only conflict with two instead of three nodes.

GCC Developers Summit 2003 • 155

a

b c

d

Figure 2: Diamond graph

aggressive coalescing: After building the con-
flict graph, but before measuring the costs we
first try to merge all nodes for pseudos which
are involved in one move. Merging them en-
sures, that they will get the same color. It can
only be done if the nodes do not conflict. The
resulting conflicts of the merged node are ob-
viously the union of the individual conflicts.
As merging nodes may prevent other nodes
from being conflict free, nodes associated by
the most costly moves should be handled first.

To see a problem in the coloring process look
at the graph in Figure 2 and suppose there
are only two colors. Here thesimplify phase
doesn’t find any node having fewer thanN
neighbors, and ergo selects one for spilling (the
rest is then simplified). Now there is definitely
spill code added. But there’s a trivial color-
ing, namely when nodesa andd, resp. b and
c get the same color. But we can’t know if
this holds, until we actually color the nodes,
which is only begun when we anyway know,
that we succeeded. That is, the decision to spill
a node is done too early, which leads us to (see
[Briggs94]):

optimistic coloring: Instead of marking a
node for spilling insimplify we simply also put
such nodes on the stack (they are conceptually
potentially spilled). No matter if there are such
nodes or not, we go to thecoloring phase. This
one works as usual for the stack of nodes. If it
colors a simplified node it still is guaranteed to
get a color. And if it encounters a potentially

spilled node it also tries to find a free color. If
it succeeds, good, if not, only then is it actually
marked for spilling. It often succeeds, namely
in the case, where all the (≥ N) neighbors do
not need all theN colors at the same time (i.e.
some of them are colored equal).

The above mentioned coalescing, which is
called aggressive because it tries to coalesce all
copies, sometimes results in a much more con-
strained graph than without coalescing. When
nodes are merged whose conflicts are nearly
disjoint the resulting node will have much
more conflict than the nodes individually. Pos-
sibly more thanN , which makes it a potential
spill candidate instead of a trivially colorable
one. It can even make it definitely spill, where
without coalescing the individual nodes would
not have been spilled (at the expense of leaving
a copy instruction around). A solution for this
is (see also [GA96]):

iterated coalescing: Two pseudo nodes are
only coalesced, if the resulting set of conflicts
is smaller thanN elements (this is conservative
coalescing), and a pseudo to a hardreg node is
only coalesced if all conflicts of the pseudo will
be colored, or conflict already with the hardreg.
This ensures that the graph doesn’t become
more constrained due to coalescing than it was.
To not miss to coalesce too many copies coa-
lescing is tried repeatedly between simplifying
and choosing potential spill candidates. There
are quite many work lists for nodes and moves,
and the exact circumstances when they change
their state are a bit involved, so interested read-
ers are referred to the paper, as this is not any-
more the method of choice in my implementa-
tion.

The method of iterated coalescing still is a bit
too conservative. It effectively ensures that the
graph remains at least as colorable after coa-
lescing, but misses the positive effect which
coalescing can sometimes have one coalescing.

156 • GCC Developers Summit

a

b c

d

a

bc

d

(a) (b)

Figure 3: Diamond graph with b and c con-
nected by a move

For instance referring to figure 3(a) if nodesb
and c were coalesced the resulting graph (in
3(b)) is trivially colorable without any poten-
tial spill. Butb andc wouldn’t be coalesced un-
der any conservative scheme (whenN is two).
In general it holds, that if two nodes are co-
alesced, those nodes which conflict with both
have one conflict less after merging. This is
the positive impact.

The problem that iterated coalescing (and con-
servative coalescing) are trying to solve is
to prohibit coalesced nodes from becoming
spilled. They do this by limiting merging be-
fore the fact, but that isn’t necessary. It would
be better to only act if the danger of spilling a
merged node has become real (see [Park]):

optimistic coalescing: All moves are aggres-
sively coalesced beforecosts. Then the normal
simplify andcoloring phases are run. When
a node which is a merged node now defi-
nitely gets no color (i.e. would be spilled) we
first split the merged nodes into its ingredients
again, and try to color them individually. All
parts which still need spilling are spilled. From
the parts which get a color only the most costly
will be colored right away, the other parts are
put under the stack (so they are tried to be col-
ored after all the other nodes), as the building
of the color stack expected to only color one
node. This splitting of the merge is simply an
undo of the merge operation, i.e. all conflicts

again point to their initial nodes. Conceptu-
ally instead of spilling the node we actually
have split it. But compared to general splitting
we know already good split points (namely the
original copy instructions) and don’t even need
to insert them.

The example of figure 3 shows, that it some-
times is good for colorability if nodes are
merged. It isn’t necessary that there actually
is a copy instruction. This idea is used by:

extended coalescing: After aggressive coa-
lescing we also try to merge other nodes if it
looks feasible. The candidate pairs are those,
whose one pseudoreg is target and the other is
source in the same instruction, and which do
not conflict. Being mentioned in the same in-
struction makes it probable that the two sets of
conflicts have many elements in common, so
the merged node will not have that many more
conflicts. If we then are unlucky and can’t
color it we unmerge the nodes again and go on.

Shrinking the Spilled Set

One of the parameters which influences the
outcome of our graph colorizer in any way is
the heuristic for choosing the next potential
spill candidate among a set of remaining nodes
(which are all constrained) (the other parame-
ter is which color to choose for a node among
those which are still free). The heuristic best
for one graph may be bad for another one.

To become a bit more independent from that
heuristic Bernstein et.al. ([Bernstein]) pro-
posed abest-of-three strategy. For a set of
heuristics the graph is colored each time from
the beginning with one heuristic, and the over-
all cost of all spilled nodes is measured. Then
finally that colorization with the lowest such
cost will be used.

The other parameter is the choice of color

GCC Developers Summit 2003 • 157

among the free ones for a certain node. The
usual choices are first-fit and rotating. An-
other more complex one isbiased coloring
([Briggs92]): the number of choices depends
on how many colors are used by the neighbors,
so one goal for coloring a node would be to
not unnecessarily enlarge this set for the still
uncolored neighbors of it. For that we look at
the colored neighbors of all out yet uncolored
neighbors. Those colors are anyway already
unavailable to them, so would be a good choice
for us.

Cheap Spill Code

The improvements up to now had the goal to
make the set of spilled nodes as small as possi-
ble. The next few items deal with emitting the
cheapest spill code once this set is fixed after
one colorization round.

First notice that some pseudo regs contain con-
stants (also values loaded from argument stack
slots count as constants for this purpose), or
values which are provably constant over the
lifetime of that pseudo. This make spilling
them easy ([Cha81, Briggs92, Briggs94]):

rematerialization: Such pseudos are called
rematerializable as the expression calculating
their value at each point during their lifetime
is known, and hence, once they are overwritten
could easily be “rematerialized.” To spill such
nodes instead of inserting load from stack in-
structions, one inserts the rematerialization in-
structions (depending on the value, for instance
load with a constant). Stores are not needed for
these nodes (as we know their value). Remate-
rializing a node is worthy if it’s cheaper to cre-
ate these value-load instructions than the mem-
loads and mem-stores. More advanced meth-
ods of rematerialization also detect expressions
over other pseudoregs, like in this example:

p3← p1 + p2
... code not changingp1 or p2

p4← p1 + p3
p4← p4 + p2

If p3 is spilled andp1 andp2 are not, and an
add instruction on registers is cheaper than a
load from memory, then we can instead recom-
pute the value ofp3 before its use. If we op-
erate on SSA form the required analyzation to
prove thatp1 andp2 are not changed during the
lifetime of p3 are relatively easy. Before actu-
ally doing such rematerialization it needs also
to be ensured that the lifetime of the operands
are not extended, i.e. that all operands are live
during the lifetime of the spilled node.

Now we look at this code:

code definingp1 andp2
use← p1
use← p2
use← p1

no further use ofp2

Suppose thatp1 is spilled and before the first
use up to its definition are no instruction in
which a pseudoreg dies. Naively there would
be a load instruction added before each use of
p1. But adding it before the first use doesn’t
help colorability at all. As there are no deaths
between that use and the def the number of
used hardregs remains constant there. Insert-
ing a load is not going to help colorability of
p1.

Therefore we onlyspill at deaths, we only in-
sert loads if we encounter a death of another
non-spilled pseudo. For inserting loads we
walk backwards the instruction stream, note
which nodes need a load, and emit all loads
as soon as we reach a def (or the basic block
border).

Of course we don’t emit the loads directly af-
ter the death, but instead right before the in-

158 • GCC Developers Summit

struction which most recently used the spilled
pseudos. Otherwise we could end up with code
like:

p1← p1 + p2
p3← [sp + 4]
p4← [sp + 8]
p5← [sp + 12]
p1← p1 + p3
p1← p1 + p4
p1← p1 + p5

p3, p4 and p5 were spilled, andp2 died at
the first shown instruction, where we also in-
serted all loads together. So the register pres-
sure at the second add instruction is still four.
The correct position of the load is right before
their uses, but actually emitting them is only
triggered by encountering a death, which then
leads to this code:

p1← p1 + p2
p3← [sp + 4]
p1← p1 + p3
p4← [sp + 8]
p1← p1 + p4
p5← [sp + 12]
p1← p1 + p5

The next improvement isinterference region
spilling ([Bergner]): if we don’t find a color for
a node (i.e. it’s spilled) we up to now totally re-
moved that node from the graph (by placing it
into memory everywhere except for very small
ranges around the instructions which needed
it). But we also could simply assign any
hardreg to this node, and onlyremove the edges
to any now really conflicting neighbor.

Practically this is done by choosing a color for
all spilled nodes. While emitting the spill loads
we also track all hardregs which are currently
in use. Remember that we walk backwards.
If we encounter a use of a spilled web whose

1 2
p1 <−− ...
p2 <−− ...
...
... <−− p2

p3 <−− ...
p2 <−− ...
p1 <−− p2+p3

p3 <−− p1

p4 <−− p1+p2+p3
3

Figure 4: Example for interference region
spilling

p1 <−− ...
p2 <−− ...
...
... <−− p2

p3 <−− ...
p2 <−− ...

1 2

p1 <−− p2+p3

3

p3 <−− p1

p2 <−− [sp+4]
p4 <−− p1+p2+p3

Figure 5: Example for interference region
spilling (after inserting loads)

color is in use, we deal with it like described
above (i.e. waiting for a death and then insert-
ing a load before the using instruction). If on
the other hand its color is currentlynot in use
we mark it specially as potentially needing a
load. If we go further up and notice a defi-
nition for a node marked in this way, and its
color didn’t become used meanwhile, we sim-
ply remove that mark (it’s not live before the
definition anyway). If we encounter the use
of another (non-spilled) node we set its color
as used. If we currently have some potential
load candidates, whose color now is used, we
emit loads for those. This process effectively
only adds spill instructions if there is danger
that two nodes with the same color are live at
the same time.

To better see the effect look at figure 4 for

GCC Developers Summit 2003 • 159

an example situation.p1, p2 andp3 all con-
flict, and we only have two hardregs.p1 got
hardregs 0,p3 hardreg 1 andp2 was spilled.
We choose hardreg 1 for it. We begin with the
use in block 3, both colors are needed (p1 and
p3 are used), so we need to insert a load (we
reached the block border). Then we analyze
block 1. Initially hardreg 1 is not used (p3 is
not live), so we only markp2 as potentially
needing a load. While we go upward hardreg
1 doesn’t become used, but we encounter a def
of p2. So we simply forget about it. In block
2 hardreg 1 is used during lifetime ofp2, but
we don’t encounter a death until the def, so no
load is added here. We end up with the code in
figure 5.

If we had spilled by the former method we also
had inserted a load into block 1 (if there is any
death in the “. . . ”). With interference region
spilling we need to insert stores for each defi-
nition which reaches one of the uses for which
a load was added. In the above case after both
defs.

To further reduce cost of spill code we also do
web splitting ([Mass]). If we can’t find a color
for a web, i.e. we are going to split it, we first
try if we can split this web around other webs,
or other webs around that one, in a cheaper way
than splitting. Look at this code:

p1← ...
p2← ...

... code1 without usingp1
...← p2

... code2 without usingp1
...← p2
... code3
...← p1

Supposep2 is spilled (there are other uses ofp1
which makes it more costly to spillp1 thanp2)
andp1 already colored. Now instead of doing
that, we notice that during the lifetime ofp2

there are no references top1 (which requires
something like a containment graph, which can
also be used to implement the conflict graph).
This makes it possible to completely splitp1
aroundp2, so that it isn’t anymore live dur-
ing p2. This even guarantees, that the number
of conflicts for p2 reduces, something which
normal spilling can’t do generally. The result
would then look like:

p1← ...
[sp + 4]← p1

p2← ...
... code1 and code2

...← p2
p1← [sp + 4]

... code3

...← p1

Note that the load ofp1 is not for the later use
of it (like in spilling), but rather because the
lifetime of p2 ended. That is, generally stores
for split webs are created before each def of
webs around which they are split. Loads for
them are created right after each death of the
split around webs. A web can also die over a
certain edge, not only explicitely at a use.

One minor improvement isspill coalescing
([GLnew]): It can happen, that there are un-
coalesced copy instructions remaining, where
both pseudos of the copy insn are spilled, but
do not conflict. This would create a memory-
memory move which often is less than desir-
able. Therefore we can run another aggressive
coalescing pass for just the spilled webs in or-
der to remove such copies. This also reduces
the needed frame size a bit.

Another situation which sometimes arises is
helped byspill propagation: There are three
pseudos,p1 connected top2 by a copy andp2
connected top3 by a copy. They don’t conflict,
like here:

160 • GCC Developers Summit

build

coloring

aggressive
coalesce

no color
break merge

try split

simplifycostsextended
coalesce

nothing
spilled

rebuild
spill code

split code
optimize
spill set

Figure 6: Flow graph of the final allocator

... with def ofp1
p2← p1

...
p3← p2

... with use ofp3

Now suppose, thatp1 andp3 were spilled, but
p2 colored. It might be better to also spillp2
to memory, if then the two copy instructions
can be removed by coalescing all three pseudos
together. In a sense this “propagates” the spill
to a colored pseudo (which initially is counter
intuitive).

The last improvement here isspill coloring:
After the set of spilled webs is finalized a col-
oring pass is run on the subgraph induced by
the spilled nodes, with an unlimited number of
colors (i.e. when a node doesn’t get a color, the
maximum number is simply incremented and it
gets the new color). Then a stack slot is allo-
cated for each such color, instead of for each
spilled node. This greatly reduces the needed
stack frame size for spilling.

The final flow graph of the register allocator
can be seen in figure 6.

3 Taking it to GCC

Now we look how to fit all the above descrip-
tions into the framework ofGCC. The definite

reference is of course the source code (in files
ra*.c, ra.h and pre-reload.*), and
to not obsolete the paper as soon as some parts
of the allocator are changed we don’t follow
the source too closely here.

3.1 Constraints Imposed byGCC

Classes and Constraints

GCCnot only targets an ideal machine with
a set of N completely equivalent registers,
whose instruction set is totally orthogonal,
which doesn’t expect certain conditions from
the operands of instructions, but instead it tar-
gets real machines with sometimes awkward
constraints. The ones which influence the reg-
ister allocator are described here.

GCC has the concept ofregister classes:
The set of all hardware registers for a ma-
chine is divided into named smaller set of
registers (ALL_REGS for the whole set and
NONE_REGSfor the empty set are defined by
all machines). They are not disjoint. The regis-
ter operands of instructions can specify which
hard registers they accept by mentioning such
register classes.

The instruction templates for a machine can
specify constraints and can consist of more
than one alternative per template. Each of the
instructions in the intermediate representation
match one template in the machine description.
For register allocation purposes each template
has many alternatives, where each of them can
have a different set of requirements on the
operands. For instance it’s possible that the
generic “add” template has two alternatives,
one accepting registers of classCLASS1and
the other accepting registers of classCLASS2.

The are also other types of constraints, for in-
stance to limit the range of constant operands
(so as to fit into an immediate field in the

GCC Developers Summit 2003 • 161

instruction), or matching constraints, which
force one operand to be equal to another. In
that way two address machines can be imple-
mented. For instance the generic “add” pat-
tern has three operands (one target, and two
sources), and if the machine has only an in-
struction which adds a register to the other
source register, this can be specified by con-
straining the first source operand to be the same
as the target operand.

Such matching constraints can easily be made
valid by a pass before register allocation,
by adding copy instructions for the matching
operands (possibly using new pseudo regis-
ters). Similar with constraints which don’t af-
fect register operands (constants e.g.).

Additionally some hardregs are not available
for register allocation at all, as they have spe-
cial uses (e.g. the static chain pointer for nested
functions, or the PIC register on some ma-
chines).

The machine descriptions also have the pos-
sibility to limit the set of hardregs for
a pseudoreg just based on its mode (the
HARD_REGNO_MODE_OKmacro).

Subregs and Wide Regs

Another possibility inGCCis the use ofsub-
regs. Subregs are references to a part of a reg-
ister (or other values, but in those we aren’t in-
terested). This makes such code possible:

p1 : [SI + 0]← p2
p1 : [SI + 4]← p3 + p2

p4← p1 + p5

Here the notationp1 : [SI + x] means the sub-
reg ofp1 of modeSImode on byte offsetx in-
sidep1. Suppose thatp1 is aDImode pseudo.
The code does definep1 piecewise (first the

lower half, then the high half), and then uses
thep1 in its whole. The interpretation of sub-
regs is bitwise.

A special kind of subregs areparadoxical sub-
regs. Those are subregs in a wider mode than
the inside register provides. I.e. it accesses bits
which aren’t provided (or are undefined).

Furthermore not all machines allow subregs to
be taken from all hardware registers. For in-
stance on Alpha the floating point register can
hold 64-bit integers. But it’s not possible to
access the low or high 32 bit of that value by
simply looking at the low or high 32 bit of the
register. Therefore some registers are not al-
lowed for references which involve a subreg
reference.

And finally there is the notion ofmulti word
hardregs. Those are references to hardregs in
a mode which is wider than this hardreg. Such
references implicitly use the next few adjacent
hardregs (as much as needed). For instance a
DImode reference to hardreg 0 (which for this
example shall be SImode maximum) also uses
hardreg 1.

3.2 Meaning for the Allocator

The constraints on registers result in a set of al-
lowed hardregs for each register reference. The
set of allowed hardregs for a whole web con-
sists of the intersection of the sets for all indi-
vidual references making up that web.

It’s possible that one web consists of references
with conflicting constraints, i.e. with disjoint
allowed hardregs. For instance a pseudo reg-
ister used in integer (e.g. bitwise logic) and
floating point context (e.g. addition with a float
constant). Such a web would have an empty set
of possible hardregs. A possible solution is to
either fake this set (by ignoring the conflicting
reference), and thereby leave the work of fix-
ing up the instructions toreload , or to spill

162 • GCC Developers Summit

away the conflicting reference while building
the web.

As probably already became clear, each
web has its own set of allowed hardregs
(in the usable_regs member ofstruct
web). Most often it will not contain all
hardregs. This has implications for the pred-
icate is-trivially-colorable used in
thesimplify phase. The numberN is meaning-
less here. Instead a web is trivially colorable
if the weight of its conflicts is less than the
number of registers inusable_regs . For
that to work there may only be conflict edges
between webs whose possible hardregs have a
non empty intersection. This of course makes
sense, as if it were empty the two webs any-
way couldn’t get the same color, so conflicts
between them are pointless. This also reduces
the necessary conflict edges.

One difficulty are multi-word pseudos. The
webs have anadd_hardregs member
which contains the number of additionally re-
quired hardregs (at maximum). To generally
ensure that there is a hole of two consecu-
tive hardregs in a block ofN , it would be re-
quired that there are less thanN/2 neighbors
(which itself wouldn’t be allowed to use mul-
tiple regs). If we had exactlyN/2 conflicts all
even colors could be taken, leaving no block of
size two. But this is clearly an overly conser-
vative heuristic.

Instead theadd_hardregs member simply
is counted as another conflict. So the actual
predicate is:

triviali := |usablei| > addi+
∑

n∈neighborsi

1+addn

This is an optimistic predicate, which means
that even webs which were simplified could
not get a color (only when they are multi word
regs).

The possibility of subregs means for us, that
a pseudo may sometimes be live only par-

tially (this is a cause of much of the complex-
ity in the actual implementation). This can
also result in partial conflicts, i.e. something
like “the lower 32bit ofp1 conflicts withp2.”
Such conflicts are useful to create a good al-
location for multi word pseudos, as now par-
tial overlap is allowed (so that for instance
only three hardregs are needed for two pseu-
dos each needing two regs). Partial webs are
instances of the normalstruct web but they
have theirparent_web member set. The
subreg_next members form a linked list
between the whole web and its parts.

3.3 The Conflict Graph

The most important structure in a graph color-
ing register allocator is obviously the conflict
graph but up to now we haven’t talked about it,
because conceptually it’s not very interesting
in the context of describing the general meth-
ods of register allocation.

It is implemented inGCCby these structures:

struct conflict_link
{

struct conflict_link *next;
struct web *t;
struct sub_conflict *sub;

};
struct sub_conflict
{

struct sub_conflict *next;
struct web *s;
struct web *t;

};
struct web
{

...
struct conflict_link *conflict_list;
...

};
sbitmap igraph;
sbitmap sup_igraph;

That is, each web has a linked list of its
conflicts. Only whole webs have this list,

GCC Developers Summit 2003 • 163

subwebs (those corresponding to subregs)
don’t. The targets of those conflicts (in
conflict_link.t) are also whole webs.
This allows fast iteration over all conflicts
without having to care for the details of sub-
conflicts. If between weba and b only sub-
conflicts occur, then those are remembered in
a second linked list, which hangs off of the
edge betweena and b. I.e. there is one
conflict_link instance inas conflict list,
with .t beingb, which has its.sub member
pointing to a list of sub-conflicts which note
which parts ofa resp. b exactly are conflict-
ing (.s points to a part ofa or a itself, .t to
b or a part of it). The bitmapsigraph and
sup_igraph are used to test two webs for
conflicts. igraph contains the exact conflicts
between parts,sup_igraph lists for whole
webs, if they them-self or any parts of them
conflict. This is a bit suboptimal. If we had
a mean to go from the indexes of two webs to
the correspondingconflict_link instance
for their connecting edge (a hash table for in-
stance) we wouldn’t needsup_igraph . If
one considers coalescing (which also involved
merging conflicts, which we must be able to
break up again) such a mean is not totally triv-
ially implemented, though.

Actually building the conflict graph is im-
plemented in ra-build.c . We use an
incremental graph builder which at the same
time does an liveness analysis, builds webs
and creates (preliminary) conflicts (it’s in
build_web_parts_and_conflicts()
and sub-functions). It works use by use. Per
use it goes backward the instruction stream
(following all edges backward), until it reaches
a def for the register we currently analyze. On
that way it remembers the defs encountered
for the current use (from those the real conflict
lists are build later), connects uses and defs of
the same reg as that use in a UNION-FIND
structure, and fills some house keeping infor-
mation (for instance if an edge is crossed the

use is remembered as live over it).

The currently analyzed use is placed into an
instance ofstruct curr_use. Partial live-
ness is supported by having a bit field (the
.undefined member) where each bit corre-
sponds to one byte of the use. A bit is set if
the byte is still undefined. When a def is en-
countered the bits which correspond to that def
are cleared. If that results in no more left bits
we have reached the first def which (partially)
defines the use on that path. The set bits also
represent the part of the use, which is still live.
This is used for creating sub conflicts. Partial
liveness could also be represented by a set of
ranges, which bits are live. A variation of that
scheme is used in [Bitwidth], although they
only split the bits into three sections (a set of
leading and trailing dead bits, and a section of
middle bits, which are live). To correctly rep-
resent live information under this scheme we
would need to treat some subreg references as
read-modify-write, like it’s done in the conser-
vative data flow pass inGCC. This makes it less
attractive again.

The advantage of such a builder compared to a
more traditional bit-set based liveness analyzer
is the simplicity (we deal with only one use at
a time), that it’s possible to precisely track par-
tial liveness for subregs (something which is
not that easily done with bitmaps) and that we
can easily rebuild the graph for only those uses,
which need it. After spilling was done not the
whole graph needs to be rebuilt, but only those
webs, which were changed, and their former
neighbors. A bit-set based analyzer also needs
to iterate until the solution stabilizes. This is
not needed here. And that we can note con-
flicts alreadywhile still building webs also is
attractive.

With some optimizations (like skipping whole
basic blocks if the current pseudo isn’t men-
tioned in them) the part of building webs and

164 • GCC Developers Summit

preliminary conflicts actually was nearly as
fast as the traditional bitmap based liveness an-
alyzer inGCC.

There is a pass necessary which actually cre-
ates thestruct web instances and the con-
flict lists from the UNION-FIND structure
and the preliminary conflicts (which are all
based on the defs and uses, for each of whom
an instance ofstruct web_part is cre-
ated. This is done inmake_webs() and sub-
functions.

The rest of initializing the webs is also in
ra-build.c . Among it are determining the
spill cost of a web, if it’s rematerializable, col-
lecting the copy instructions and so on. It prob-
ably had better been namedra-analyze.c
;-)

3.4 Putting it Together

The implementation of the register allocator
consists of different files which roughly reflect
the structure described in section 2.

Besidesra-build.c which builds not only
the conflict graph but also most of the other
information about webs and program structure
(as described above), there is

ra-colorize.c
which is all about changing (like in coalesc-
ing) and coloring the conflict graph, including
optimizations which shorten the set of spilled
webs. This includes the work list management.
The structure is fairly close to the allocators in
the published papers, except for three things:

• selectablealgorithm: Most of the im-
provements in the coloring process are se-
lectable at runtime. For instance it can
be switched between optimistic or iterated
coalescing, or biased coloring can be acti-
vated or not.

a

bc

d

a

b

d

c bc

ad

(a) (b) (c)

Figure 7: Coalescing of nodes

• hard trying to color certain webs: due
to irregularities in connection with multi-
word pseudos, and with spill temporaries,
or other generally difficult webs (which
includes those during whose lifetime no
death occurs) it’s possible that there is
no color free for a web which absolutely
must have a color (this happens extremely
seldom and only on register constrained
machines). In that situation it is tried to
temporarily mark one of its already col-
ored neighbors as spilled, and try again to
find a color. This is done until a color is
found or no more colored neighbors are
left. After that those temporarily spilled
neighbors are tried to be colored again. If
they don’t get a color they are left in the
spilled state.

• recoloring spills: after the graph is col-
orized and the set of spilled webs is de-
termined, each spilled web is tried to be
recolored. For this the cost for the spilled
web getting a color is measured (it con-
sists of the sum of spill-costs of all neigh-
bors overlapping that color). If the small-
est cost is smaller than the web spill cost,
this recoloring is done, and the neighbors
which now conflict are spilled instead.
This can reduce the overall spill cost of
the graph.

One particularly ugly problem is how to imple-
ment splitting up merged nodes for optimistic

GCC Developers Summit 2003 • 165

coalescing. Refer to figure 7. Starting with
graph (a) first nodesb andc are merged, then
nodesa andd. The final graph has only one
edge left which was not in the original graph.
Now suppose we want to split nodebc. We may
not yet remove edgeb − ad, because also the
original b − d edge was mapped to it. Only
when we also split nodead we remove it, and
then we alsohaveto remove it in order to not
constrain the graph more than necessary.

From that description it becomes clear that the
only real solution would be to add reference
counters to edges. But that would bloat the size
of each edge. That’s not desirable as there are
potentially very many edges in a conflict graph.
The reference counter would also only be ever
needed for edges which weren’t in the original
graph, as only those are candidate for removal.

Currently we don’t refcount2 the edges, but
instead “repair” the graph after having split
nodes. First we remove all edges incident to
split nodes which weren’t in the original graph
(we have an easy way to test that as each node
has a list of those), and then we look for other
coalesced nodes that would have added that
edge also (in which case we reinsert it into
the graph). This process is relatively slow,
so we will move to a refcounting implemen-
tation eventually (the work has already started
for that).

ra-rewrite.c
is responsible for actually changing the pro-
gram to include any spill code. Its behav-
ior is also selectable at runtime, and it can
use spill-everywhere (separately for uses and
defs), traditional spill at deaths or spill at inter-
ference regions. It also implements the code
for splitting webs around other webs which
can theoretically be used with together with
all spill methods. Unfortunately interference
region spilling and web splitting use separate

2count the number of references of ... ;-)

data structures and can’t currently be used to-
gether. They will be usable together once the
implementation is done.

Besides the improvements from section 2 for
reducing the number of inserted loads dur-
ing spilling, the actual implementation also
has a naïve implementation of optimizing dead
stores. It goes backward the insn stream re-
membering to which locations it wrote to. For
each encountered use we delete all locations
which overlap that use from the list. If it is
about to insert a store it first checks if that lo-
cation is still in the list, and omits the store if it
is.

One thing which should be mentioned is that
we defer the creation of real stack slots until
the very end of allocation. Until then we create
new pseudo regs to hold the value of spilled (or
split) webs. These pseudos are not to be con-
fused with normal pseudo regs, as they concep-
tually represent stack slots or real registers. We
do this for two reasons:

• We want to be able to track also liveness
for stack slots (in order to merge or color
them), and sometimes we are able to actu-
ally give them back a hard register. This
usually happens when multiple rounds of
spilling were needed and a spill method
which produces long living temporaries
was used.

In that case it happens that first a web is
spilled which then didn’t relax the situa-
tion as much as hoped, so other webs are
also spilled. This in turn can make the
spilling of the first web unnecessary, and
by creating a web also for stack slots we
are able to make use of that. Thosestack-
pseudosor stack-websas we call them in
the allocator are handled specially in a
number of situations. For instance they
are colored after all normal webs. If they
don’t get a color, they are not spilled again

166 • GCC Developers Summit

(this is implemented by coloring them
with an impossible color). This also needs
changes in the functions which check va-
lidity of constraint, so that stack pseudos
are accepted for memory references and
for registers.

Some machines have requirements on the
addresses they accept, for instance a lim-
ited range of offsets from a base regis-
ters. Emitting an address reference on
them can possibly lead to emitting more
than one instruction, which actually con-
structs the address by doing arithmetics on
some new pseudo registers. On those ma-
chines we can’t defer creating stack slots
completely, as creating new pseudo regs
means we must redo our register alloca-
tion. For those machines we actually emit
real stack references for all the stack-webs
which did not get a color. I.e. we defer
stack slots only by one round, not until the
very end.

• The other reason is stack slot coloring as
described in Section 2 (as “spill color-
ing”). When we have webs for all stack
slots (i.e. for the stack pseudos) includ-
ing all conflicts, we can color them easily
and reduce the frame size. I.e. we allo-
cate stack space not for each stack pseudo,
but instead only for each color needed for
them.

The rewriting phase is also responsible for re-
setting the conflict graph and associated infor-
mation into a state that is usable as a starting
point for the next round. For instance all coa-
lescing has to be undone, and the edges added
for that have to be removed (asall coalescing
is undone this is considerable easier than what
was described above). We also need to mark
which webs have to be rebuilt (namely those
which changed their layout).

The file ra-debug.c contains some useful

functions for debugging the allocator including
a new format of outputting the immediate for-
mat (RTL) ofGCC, which is much more com-
pact and easier to read (although it lacks some
information) than the traditional lisp like for-
mat. It should somewhen be extended to be
usable also for the other passes inGCC, and be
merged with the format of the scheduler debug
dumps (which uses something similar).

To actually scan the instruction stream for
all (interesting) references to registers we use
functions from df.c . For each such ref-
erence we build one instance ofstruct
web_part which creates an indirection in one
of the highly used data structures, so it might
somewhen be advisable to do this on our own.

The last big part in the allocator is imple-
mented in
pre-reload.c .
As written at the very begin thereloadpass is
responsible for actually emitting spill code in
the old register allocator, and for fixing up any
invalid instructions (those whose operands do
not match their constraints). The spilling code
we do add ourself now, but we could still pro-
duce invalid instructions (for instance operands
don’t match where they have to, or an operand
is in a register which isn’t in the required class).
This would make reload emit fixup code. As
this code is emitted locally without having the
big picture of a conflict graph or similar means
this often results in spilling some other pseudo
registers, and reloads method for adding spill
code is undesirable.

Therefore the goal must be to never leave the
register allocator with possibly invalid instruc-
tions. One requirement is to allocate pseudos
to a register which is accepted by all the in-
structions that reference it. To that end pre-
reload collects the possible register classes for
each register reference. Another requirement
is to not violate matching constraints, which

GCC Developers Summit 2003 • 167

is done by pre-reload emitting copy instruc-
tions before or after the invalid instruction, and
change the operands of it to actually match. It
also makes sure that constraints which don’t in-
volve pseudo regs are fulfilled, like constants
be of a certain range, or decomposing multi-
level indirect memory access (i.e. the address
is a memref3 itself) if necessary.

The techniques it uses are heavily inspired by
reload itself, but as pre-reload works on pseudo
regs, the actual implementation can be quite a
bit simpler.

The use of pre-reload can not make totally
sure, that no invalid instructions are gener-
ated. Which register class is acceptable for one
operand can depend on which register another
operands was put in and this is only known,
once allocation finished, so in some situations
we have to give up in the allocator and assume
something. This means, that reload will still be
needed, but only extremely seldom (we once
had only about 10 reloads while building cc1
IIRC). This makes me hope that reload can be
implemented in a much simpler way than now,
for instance by simply emitting fixup instruc-
tion as invalid operands are encountered, in-
stead of first collecting all reloads of all in-
structions. Reload inheritance probably would
also not be useful anymore.

Finally ra.c holds it all together and contains
some initialization functions plus the main
loop.

4 Numbers

For comparing the performance we give some
numbers of runs of the SPEC2000 performance
test suite, with the old allocator and the new
one.

Table 8 shows the result on a 1.53 GHz Dual
3memory reference

Name Told Sold Tnew Snew

164.gzip 223 627 223 627
175.vpr 420 334 431 324
181.mcf 864 208 874 206
186.crafty 127 787 129 774
197.parser 439 410 438 411
252.eon 170 766 171 759
253.perlbmk 275 654 274 656
254.gap 205 537 201 546
256.bzip2 371 405 359 418
300.twolf 831 361 819 366

168.wupwise 294 544 290 551
171.swim 973 319 1036 299
172.mgrid 481 374 485 371
173.applu 624 337 599 351
177.mesa 233 602 229 610
179.art 1607 162 1664 156
183.equake 327 398 323 403
188.ammp 707 311 721 305
200.sixtrack 334 329 327 337
301.apsi 925 281 963 270

Figure 8: SPEC2000 results for Athlon 1800+

168 • GCC Developers Summit

Name 100 ∗ (Tnew−Told)
Told

164.gzip -1.38889 %
175.vpr -3.7037 %
176.gcc -0.465116 %
181.mcf 1.82648 %
186.crafty 3.8835 %
197.parser 1.43885 %
252.eon 5.7971 %
253.perlbmk -3.15315 %
254.gap -1.17647 %
256.bzip2 -1.5873 %
300.twolf -5.66616 %
168.wupwise 0.840336 %
171.swim 0.915751 %
172.mgrid -4.17755 %
173.applu -1.42518 %
177.mesa -5.67686 %
179.art 0.555556 %
183.equake 1.0989 %
188.ammp 0.444444 %
200.sixtrack 0.593472 %

Figure 9: Relative SPEC2000 performance on
AMD64

Athlon (Athlon 1800+). The T column shows
the runtime in seconds (smaller is better), the S
column the SPEC score (bigger is better). Note
in particular bzip2, twolf and applu, which
show some nice improvements. With the tested
version of the allocator there were also some
quite severe regressions as shown in the table.
I’ve not yet analyzed them in detail.

Table 9 shows the runtime of the SPEC2000
tests compiled with the new register allocator
compared with the old one on an AMD64 ma-
chine (i.e. with twice as much general purpose
registers as x86). As can be seen crafty and
eon regress quite much, but the potential of the
allocator can be seen in the other results.

5 Acknowledgments

I wish to thank Daniel Berlin who started
thenew-regalloc-branch and created an
initial implementation, and Denis Chertykov
who createdpre-reload , for their help in
implementation and fruitful discussions.

I also would like to thank SuSE and AMD for
letting me work on the register allocator.

And Cafebar 8006 for keeping me awake ;-)

6 Availability

The current development version of the
register allocator is available in the
new-regalloc-branch in GCC CVS.
See

http://gcc.gnu.org/cvs.html

References

[Bergner] P. Bergner, P. Dahl, D. Engebret-
sen, and M. O’Keefe,Spill Code Mini-
mization via Interference Region Spilling,
Proc. of the 1997 ACM SIGPLAN Conf.
on PLDI, pp. 287–295. June 1997

[Bernstein] David Bernstein, Dina Q. Goldin,
Martin C. Golumbic, Hugo Krawczyk,
Yishay Mansour, Itai Nahshon, and
Ron Y. Pinter, Spill code minimiza-
tion techniques for optimizing compilers,
SIGPLAN Notices, 24(7):258 263, July
1989

[Bitwidth] S. Tallam, R. Gupta, Bitwidth
Aware Global Register Allocation, TR,
Dept. of Computer Science, U. of Ari-
zona, July 2002

GCC Developers Summit 2003 • 169

[Briggs92] P. Briggs,Register Allocation via
Graph Coloring, PhD thesis, Rice Uni-
versity, Houston, Texas, April 1992

[Briggs94] P. Briggs, K. D. Cooper, and
L. Torczon,Improvements to graph color-
ing register allocation, ACM TOPLAS,
Vol 16, No.3, pages 428–455, May 1994

[Cha81] G. J. Chaitin, et. al.,Register alloca-
tion via coloring, Computer Languages,
6:47–57, Jan. 1981

[GA96] L. George and A. Appel,Iterated Reg-
ister Coalescing, ACM Trans. on Prog.
Lang. and Systems, 18(3):300–324, May
1996

[GLnew] Allen Leung, Lal George,A New
MLRISC Register Allocator, http:
//cs1.cs.nyu.edu/leunga/
www/MLRISC/Doc/html/ra.html

[Kempe] A. B. Kempe,On the geographical
problem of the four colors, Am. J. Math.
2, 193–200, 1879

[Mass] MSCP group,The massively scalar
compiler project

[Park] Jinpyo Park and Soo-Mook Moon,Op-
timistic register coalescing, IEEE PACT,
pages 196–204, 1998

170 • GCC Developers Summit

GENERIC and GIMPLE: A New Tree
Representation for Entire Functions

Jason Merrill
Red Hat, Inc.

jason@redhat.com

1 Abstract

The tree SSA project requires a tree representa-
tion of functions for the optimizers to operate
on. There was an existing functions-as-trees
representation shared by the C and C++ front
ends, and another used by the Java front end,
but neither was adequate for use in optimiza-
tion. In this paper, we will discuss the design
of GENERIC, the new language-independent
tree representation, and GIMPLE, the reduced
subset used during optimization.

2 Introduction

For most of its history, GCC has compiled
functions directly to RTL (Register Transfer
Language) on a statement-by-statement basis.
RTL has been a very useful intermediate lan-
guage (IL) for low-level optimizations, but has
significant limitations that keep it from being
very useful for higher level optimizations:

• Its notion of data types is limited to ma-
chine words; it has no ability to deal with
structures and arrays as a whole.

• It introduces the stack too soon; taking
the address of an object forces it into the
stack, even if later optimization removes
the need for the object to be addressible.

GCC also has another IL: its abstract syntax
tree representation. In the past, the compiler
would only build up trees for a single state-
ment, and then lower them to RTL before mov-
ing on to the next statement. This began to
change in GCC 3.0: CodeSourcery, LLC mod-
ified the C++ compiler to store entire functions
as trees and only lower them to RTL as part
of compiling to assembly. As part of the same
work, they introduced the first tree-level opti-
mization pass, the inliner. Inlining at the tree
level partially addressed the second limitation
of RTL mentioned above, since C++ objects
passed as arguments to a function are usually
passed by address.

The tree SSA project is intented to expand on
this by performing a full set of optimizations at
the tree level. But to do this, we needed to re-
fine how we use trees to represent whole func-
tions. The result is GIMPLE, and its superset
GENERIC.

3 Existing Tree ILs

The C++ compiler work was later extended to
work with the C compiler as well, but never
became a language-independent tree IL. Initial
work on tree-ssa was based on the C front end
trees, but they were unsuited for use in opti-
mization.

The main shortcoming of C trees, from an op-

172 • GCC Developers Summit

timization standpoint, is that they are highly
context-dependent. Many_STMTcodes just
serve as placeholders for calls toexpand_
functions and rely on the RTL layer to keep
track of scoping. For a tree IL to be useful
for optimization, things such as the target of a
break or continue statement, or the scope
of a C++ cleanup, must be made explicit.

The other preexisting tree IL is the one in the
Java front end. Java made an effort to use back-
end tree codes whenever possible, added a few
new tree codes to the backend, and retained
a few in the front end. GENERIC is largely
based on Java front end trees, adjusted to be
entirely language independent.

4 GENERIC

The purpose of GENERIC is simply to pro-
vide a language-independent way of represent-
ing an entire function in trees. To this end,
it was necessary to add a few new tree codes
to the backend, but most everything was al-
ready there. If you can say it with the codes
in gcc/tree.def , it’s GENERIC.

Early on, there was a great deal of debate about
how to think about statements in a tree IL.
In GENERIC, a statement is any expression
whose value, if any, is ignored. A statement
will always haveTREE_SIDE_EFFECTSset
(or it will be discarded), but a non-statement
expression may also have side effects. A
CALL_EXPR, for instance.

It would be possible for some local optimiza-
tions to work on the GENERIC form of a func-
tion; indeed, the adapted tree inliner works fine
on GENERIC, but the current compiler per-
forms inlining after lowering to GIMPLE.

If necessary, a front end can use some
language-dependent tree codes in its
GENERIC representation, so long as it

provides a hook for converting them to GIM-
PLE and doesn’t expect them to work with any
(hypothetical) optimizers that run before the
conversion to GIMPLE.

5 GIMPLE

GIMPLE is a simplified subset of GENERIC
for use in optimization. The particular subset
chosen (and the name) was heavily influenced
by the SIMPLE IL used by the McCAT com-
piler project at McGill University [SIMPLE],
though we have made some different choices.
For one thing, SIMPLE doesn’t supportgoto ;
a production compiler can’t afford that kind of
restriction.

GIMPLE retains much of the structure of the
parse trees: lexical scopes and control con-
structs such as loops are represented as con-
tainers, rather than markers. However, expres-
sions are broken down into a 3-address form,
using temporary variables to hold intermediate
values.

Similarly, in GIMPLE no container node is
ever used for its value; if aCOND_EXPRor
BIND_EXPR has a value, it is stored into a
temporary within the controlled blocks, and
that temporary is used in place of the container.

The compiler pass which lowers GENERIC to
GIMPLE is referred to as the “gimplifier.” The
gimplifier works recursively, replacing com-
plex statements with sequences of simple state-
ments. Currently, the only way to tell whether
or not an expression is in GIMPLE form is
by recursively examining it; in the future there
will probably be a flag to help avoid redundant
work.

GCC Developers Summit 2003 • 173

6 Interfaces

The tree representation of a function
is stored in DECL_SAVED_TREE. It
is lowered to GIMPLE by a call to
simplify_function_tree .

If a front end wants to include language-
specific tree codes in the tree represen-
tation which it provides to the back-
end, it must provide a definition of
LANG_HOOKS_SIMPLIFY_EXPR which
knows how to convert the front end trees to
GIMPLE. Usually such a hook will involve
much of the same code for expanding front end
trees to RTL. This function can return fully
lowered GIMPLE, or it can return GENERIC
trees and let the main gimplifier lower them
the rest of the way; this is often simpler.

The C and C++ front ends currently con-
vert directly from front end trees to GIMPLE,
and hand that off to the backend rather than
first converting to GENERIC. Their gimplifier
hooks know about all the_STMTnodes and
how to convert them to GENERIC forms. I
worked for a while on a genericization pass
which would run first, but the existence of
STMT_EXPRmeant that in order to convert all
of the C statements into GENERIC equivalents
would involve walking the entire tree anyway,
so it was simpler to reduce all the way. This
may change in the future if someone writes
an optimization pass which would work better
with higher-level trees, but currently the opti-
mizers all expect GIMPLE.

A frontend which wants to use the tree
optimizers (and already has some sort
of whole-function tree representation)
only needs to provide a definition of
LANG_HOOKS_SIMPLIFY_EXPR and
call simplify_function_tree and
optimize_function_tree before they
start expanding to RTL. Note that there ac-

tually is no real handoff to the tree backend
at the moment; in the future there will be a
tree_rest_of_compilation which
will take over, but it hasn’t been written yet.

Note that there are still a large number of func-
tions and even files in the gimplifier which use
“simplify” instead of “gimplify.” This will be
corrected before the project is merged into the
GCC trunk.

You can tell the compiler to dump a C-like rep-
resentation of the GIMPLE form with the flag
-fdump-tree-simple .

7 GIMPLE reference

7.1 Temporaries

When gimplification encounters a subexpres-
sion which is too complex, it creates a new
temporary variable to hold the value of the
subexpression, and adds a new statement to ini-
tialize it before the current statement. These
special temporaries are known as “expres-
sion temporaries,” and are allocated using
get_formal_tmp_var . The compiler tries
to always evaluate identical expressions into
the same temporary, to simplify elimination of
redundant calculations.

We can only use expression temporaries
when we know that it will not be reeval-
uated before its value is used, and that it
will not be otherwise modified (these restric-
tions are derived from those in [Morgan]
4.8). Other temporaries can be allo-
cated usingget_initialized_tmp_var
or create_tmp_var .

Currently, an expression likea = b + 5 is
not reduced any further, though in future this
may be converted to

T1 = b + 5;

174 • GCC Developers Summit

a = T1;

to avoid problems with optimizers trying to re-
fer to variables after they’ve gone out of scope.

7.2 Expressions

In general, expressions in GIMPLE consist of
an operation and the appropriate number of
simple operands; these operands must either
be a constant or a variable. More complex
operands are factored out into temporaries, so
that

a = b + c + d

becomes

T1 = b + c;

a = T1 + d;

The same rule holds for arguments to a
CALL_EXPR.

The target of an assignment is usually a vari-
able, but can also be anINDIRECT_REF or a
compound lvalue as described below.

7.2.1 Compound Expressions

The left-hand side of a C comma expression is
simply moved into a separate statement.

7.2.2 Compound Lvalues

Currently compound lvalues involving array
and structure field references are not bro-
ken down; an expression likea.b[2] = 42
is not reduced any further (though complex
array subscripts are). This restriction is a
workaround for limitations in later optimizers;
if we were to convert this to

T1 = &a.b;

T1[2] = 42;

alias analysis would not remember that the
reference toT1[2] came by way ofa.b ,
so it would think that the assignment could
alias another member ofa; this broke
struct-alias-1.c . Future optimizer im-
provements may make this limitation unneces-
sary.

7.2.3 Conditional Expressions

A C ?: expression is converted into anif
statement with each branch assigning to the
same temporary. So,

a = b ? c : d;

becomes

if (b)

T1 = c;

else

T1 = d;

a = T1;

Note that in GIMPLE,if statements are also
represented usingCOND_EXPR, as described
below.

7.2.4 Logical Operators

Except when they appear in the condition
operand of a COND_EXPR, logical ‘and’
and ‘or’ operators are simplified as follows:
a = b && c becomes

T1 = (bool)b;

if (T1)

T1 = (bool)c;

a = T1;

Note thatT1 in this example cannot be an ex-
pression temporary, because it has two differ-
ent assignments.

GCC Developers Summit 2003 • 175

7.3 Statements

Most statements will be assignment state-
ments, represented byMODIFY_EXPR. A
CALL_EXPRwhose value is ignored can also
be a statement. No other C expressions can ap-
pear at statement level; a reference to a volatile
object is converted into aMODIFY_EXPR.

There are also several varieties of complex
statements.

7.3.1 Blocks

Block scopes and the variables they declare in
GENERIC and GIMPLE are expressed using
theBIND_EXPRcode, which in previous ver-
sions of GCC was primarily used for the C
statement-expression extension.

Variables in a block are collected into
BIND_EXPR_VARS in declaration order.
Any runtime initialization is moved out of
DECL_INITIAL and into a statement in the
controlled block. When gimplifying from
C or C++, this initialization replaces the
DECL_STMT.

Variable-length arrays (VLAs) complicate this
process, as their size often refers to variables
initialized earlier in the block. To handle this,
we currently split the block at that point, and
move the VLA into a new, innerBIND_EXPR.
This strategy may change in the future.

DECL_SAVED_TREEfor a GIMPLE function
will always be aBIND_EXPRwhich contains
declarations for the temporary variables used
in the function.

A C++ program will usually contain more
BIND_EXPRs than there are syntactic blocks
in the source code, since several C++ con-
structs have implicit scopes associated with
them. On the other hand, although the

C++ front end uses pseudo-scopes to handle
cleanups for objects with destructors, these
don’t translate into the GIMPLE form; multi-
ple declarations at the same level use the same
BIND_EXPR.

7.3.2 Statement Sequences

Currently, multiple statements at the
same nesting level are connected via
COMPOUND_EXPRs. This representation
was chosen both because of precedent and
because it simplified the implementation of the
gimplifier. However, it makes transformations
during optimization more complicated, and
there is some concern about the memory
overhead involved.

The complication is mostly encapsu-
lated by the use of iterators declared in
tree-iterator.h . The representation
may be extended in the future, perhaps to use
statement vectors or a double-chained list, but
the iterators should also avoid the need for any
changes in the optimizers.

7.3.3 Empty Statements

Whenever possible, statements with no ef-
fect are discarded. But if they are nested
within another construct which cannot be dis-
carded for some reason, they are instead re-
placed with an empty statement, generated by
build_empty_stmt . Initially, all empty
statements were shared, after the pattern of the
Java front end, but this caused a lot of trouble
in practice, and they were recently unshared.

An empty statement is represented as
(void)0 .

176 • GCC Developers Summit

7.3.4 Loops

All loops are currently expressed in GIMPLE
using LOOP_EXPR, which represents an in-
finite loop. Loop conditions,break and
continue are converted into explicit gotos.

A future loop optimization pass may repre-
sent canonicalized loops using another tree
code, perhapsDO_LOOP_EXPR, but this has
not been implemented yet.

7.3.5 Selection Statements

A simple selection statement, such as the C
if statement, is expressed in GIMPLE using a
void COND_EXPR. If only one branch is used,
the other is filled with an empty statement.

Normally, the condition expression is reduced
to a simple comparison. If it is a shortcut (&&
or ||) expression, however, we try to break up
the if into multiple if s so that the implied
shortcut is taken directly, much like the trans-
formation done bydo_jump in the RTL ex-
pander. Currently, this is only done when it
can be done simply by adding moreif s; in
the future, this transformation will handle more
cases and usegoto if necessary.

The representation of aswitch is still un-
settled. Currently, aSWITCH_EXPRcontains
the condition, the body, and aTREE_VECof
the LABEL_DECLs which theswitch can
jump to, andcase labels are represented in
the body byCASE_LABEL_EXPRs. In future,
we may want to move even more information
about the cases into theSWITCH_EXPRitself,
and reduce theCASE_LABEL_EXPRs to plain
LABEL_EXPRs.

7.3.6 Jumps

Other jumps are expressed by either
GOTO_EXPRor RETURN_EXPR.

The operand of aGOTO_EXPRmust be either
a label or a variable containing the address to
jump to.

The operand of aRETURN_EXPRis ei-
therNULL_TREEor aMODIFY_EXPRwhich
sets the return value. I wanted to move
the MODIFY_EXPR into a separate state-
ment, but the special return semantics in
expand_return make that difficult. It may
still happen in the future.

7.3.7 Cleanups

Destructors for local C++ objects and similar
dynamic cleanups are represented in GIMPLE
by a TRY_FINALLY_EXPR. When the con-
trolled block exits, the cleanup is run.

TRY_FINALLY_EXPR complicates the flow
graph, since the cleanup needs to appear on
every edge out of the controlled block; this
reduces our freedom to move code across
these edges. In the future, we will want
to lower TRY_FINALLY_EXPR to simpler
forms at some point in optimization, proba-
bly by changing it into aTRY_CATCH_EXPR
and inserting an additional copy of the cleanup
along each normal edge out of the block.

7.3.8 Exception Handling

Other exception handling constructs are rep-
resented usingTRY_CATCH_EXPR. The han-
dler operand of aTRY_CATCH_EXPRcan be
a normal statement to be executed if the con-
trolled block throws an exception, or it can
have one of two special forms:

GCC Developers Summit 2003∼∼•∼∼177

• A CATCH_EXPRexecutes its handler
if the thrown exception matches one
of the allowed types. Multiple han-
dlers can be expressed by a sequence of
CATCH_EXPRstatements.

• An EH_FILTER_EXPRexecutes its han-
dler if the thrown exception does not
match one of the allowed types.

Currently throwing an exception is not di-
rectly represented in GIMPLE, since it is im-
plemented by calling a function. At some point
in the future we will want to add some way to
express that the call will throw an exception of
a known type.

8 Example

struct A { A(); ∼A(); };

int i;

int g();

void f ()

{
A a;

int j = (−−i, i ? 0 : 1);

for (int x = 42; x > 0; −−x)

{
i += g() ∗4 + 32;

}
}

becomes

void f() ()

{
struct A ∗ a.1;

int iftmp.2;

int T.3;

int T.4;

int T.5;

struct A ∗ a.6;

{
struct A a;

int j;

a.1 = &a;

__comp_ctor (a.1);

try

{
i = i − 1;

if (i == 0)

iftmp.2 = 1;

else

iftmp.2 = 0;

j = iftmp.2;

{
int x;

x = 42;

while (1)

{
if (x ≤ 0)

goto break_label;

T.3 = g ();

T.4 = T.3 ∗ 4;

T.5 = i + T.4;

i = T.5 + 32;

x = x − 1;

};
break_label:;

}
}

finally

{
a.6 = &a;

__comp_dtor (a.6);

}
}

}

178∼∼•∼∼GCC Developers Summit ∼

9 Rough GIMPLE Grammar

function:

FUNCTION_DECL

DECL_SAVED_TREE→ block

block:

BIND_EXPR

BIND_EXPR_VARS→ DECL chain

BIND_EXPR_BLOCK→ BLOCK

BIND_EXPR_BODY

→ compound−stmt

compound−stmt:

COMPOUND_EXPR

op0 → non−compound−stmt

op1 → stmt

stmt: compound −stmt

| non−compound−stmt

non−compound−stmt:

block

| loop −stmt

| if −stmt

| switch −stmt

| jump−stmt

| label −stmt

| try −stmt

| modify −stmt

| call −stmt

loop −stmt:

LOOP_EXPR

LOOP_EXPR_BODY

→ stmt | NULL_TREE

| DO_LOOP_EXPR

(to be defined later)

if −stmt:

COND_EXPR

op0 → condition

op1 → stmt

op2 → stmt

switch −stmt:

SWITCH_EXPR

op0 → val

op1 → stmt

op2 → TREE_VEC of LABEL_DECLs

jump−stmt:

GOTO_EXPR

op0 → LABEL_DECL | ‚*‚ ID

| RETURN_EXPR

op0 → modify −stmt

| NULL_TREE

label −stmt:

LABEL_EXPR

op0 → LABEL_DECL

| CASE_LABEL_EXPR

CASE_LOW→ val | NULL_TREE

CASE_HIGH→ val | NULL_TREE

CASE_LABEL→ LABEL_DECL

try −stmt:

TRY_CATCH_EXPR

op0 → stmt

op1 → handler

| TRY_FINALLY_EXPR

op0 → stmt

op1 → stmt

handler:

catch −seq

| EH_FILTER_EXPR

| stmt

catch −seq:

CATCH_EXPR

| COMPOUND_EXPR

op0 → CATCH_EXPR

op1 → catch −seq

modify −stmt:

MODIFY_EXPR

op0 → lhs

op1 → rhs

call −stmt: CALL_EXPR

op0 → _DECL | ‚&‚ _DECL

op1 → arglist

arglist:

NULL_TREE

| TREE_LIST

op0 → val

op1 → arglist

varname : compref | _DECL

lhs: varname | ‚*‚ _DECL

pseudo −lval: _DECL | ‚*‚ _DECL

compref :

GCC Developers Summit 2003 • 179

COMPONENT_REF

op0 → compref | pseudo −lval

| ARRAY_REF

op0 → compref | pseudo −lval

op1 → val

condition : val | val relop val

val : _DECL | CONST

rhs: varname | CONST

| ‚*‚ _DECL

| ‚&‚ varname

| call_expr

| unop val

| val binop val

| ‚(‚ cast ‚)‚ varname

(cast here stands for all valid C

typecasts. Use of varname here seems

odd; it may change to val.)

unop: ‚+‚ | ‚-‚ | ‚!‚ | ‚~‚

binop: relop | ‚-‚ | ‚+‚ | ‚/‚ | ‚*‚

| ‚%‚ | ‚&‚ | ‚|‚ | ‚«‚ | ‚»‚ | ‚^‚

relop: All tree codes of class ‚<‚

References

[SIMPLE] L. Hendren and C. Donawa and
M. Emami and G. Gao and Justiani
and B. Sridharan,Designing the McCAT
Compiler Based on a Family of Struc-
tured Intermediate Representations, Lec-
ture Notes in Computing Science no. 757
(1992) p. 406-420

[Morgan] Robert Morgan.Building an Opti-
mizing Compiler, Digital Press (1998).

180 • GCC Developers Summit

Tree SSA
A New Optimization Infrastructure for GCC

Diego Novillo
Red Hat Canada, Ltd.

dnovillo@redhat.com

Abstract

Tree SSA is a new optimization framework
based on the Static Single Assignment (SSA)
form that operates on GCC’s tree representa-
tion. Tree SSA is designed to be both lan-
guage and target independent and allow high-
level analyses and transformations that are dif-
ficult or impossible to implement with RTL.
One of the main goals of the project is to
produce an analysis and optimization infras-
tructure based on proven algorithms and tech-
niques available in the literature. In this pa-
per we describe the design and implementation
of the Tree SSA framework, provide prelimi-
nary results and discuss possible applications
and future work.

1 Introduction

Currently, optimizing transformations in GCC
operate on a single intermediate representation,
namely RTL (Register Transfer Language).
Parse trees generated by the front end are
almost immediately converted into RTL and
passed on to the optimizer (Figure 1).

Being a low-level representation, RTL works
well for optimizations that are close to the tar-
get (e.g., register allocation, delay slot opti-
mizations, peepholes, etc). However, many op-
timizing transformations need higher level in-
formation about the program that is difficult (or

even impossible) to obtain from RTL (e.g., ar-
ray references, data types, references to pro-
gram variables, control flow structures). Over
time, some of these transformations have been
implemented in RTL, but since the data struc-
ture is not really suited for this, the end result
is code that is excessively convoluted, hard to
maintain and error prone.

In this paper we describe an optimization
framework based on GENERIC and GIM-
PLE, two high-level intermediate represen-
tations (IR) derived from GCC parse trees
[5]. Language-specific constructs are removed
from the input parse trees to obtain GENERIC.
In turn, GENERIC trees are broken down into
a simpler three address representation called
GIMPLE which is used for optimization.

Optimizing GIMPLE is appealing because, (a)
it facilitates the implementation of new analy-
ses and optimizations closer to the source, (b)
it simplifies the work of the RTL optimizers,
potentially speeding up the compilation pro-
cess or improving the generated code, and (c)
it can be done in a largely language and target-
independent way. The latter is an important
feature for a compiler like GCC that targets
many different architectures and languages.

We believe that modularizing the compiler and
using well-known published algorithms will
help developers maintain and improve GCC,
and flatten the learning curve required for ex-

182 • GCC Developers Summit

Front End

Back End

C C
parser

RTL

C++ C++
parser

Java Java
parser

Fortran 95 Fortran 95
parser

Objective-C Objective-C
parser

RTL
Optimizer

Code
Generator

Object
Code

Figure 1: Existing compilation process in GCC.

ternal developers to contribute optimization
passes. Furthermore, by reducing the amount
of RTL code generated, we also expect to re-
duce compilation times and improve the qual-
ity of the final code.

2 Overview

There are three main components to the basic
infrastructure: the gimplifier, the control flow
graph (CFG) and the SSA module (Figure 2).

• The gimplifier is responsible for convert-
ing the input GENERIC representation
into GIMPLE. It also provides functions
for generating GIMPLE statements and
testing whether a given statement or ex-
pression is in GIMPLE form.

• The Control Flow Graph (CFG) is a di-
rected graph that models the execution
of the program. Each node in the CFG,
called a basic block, represents a non-
branching sequence of statements (execu-
tion starts with the first instruction in the
group and it leaves the block only after the
last instruction has been executed). The

edges of the graph represent possible exe-
cution paths in the flow of control (condi-
tionals, loops, etc.).

• Static Single Assignment (SSA) is a rela-
tively new representation that is becoming
increasingly popular because it leads to
efficient algorithmic implementations of
data flow analyzers and optimizing trans-
formations [3].

The SSA module finds all the variables
referenced and builds the SSA form for
the function. It provides all the neces-
sary functions and data structures to com-
pute, among other things, aliasing, reach-
ing definitions, and reached-uses informa-
tion. It is also responsible for converting
the function back to normal form right be-
fore calling the RTL expanders.

Figure 3 shows the proposed integration be-
tween GIMPLE and RTL optimizations as im-
plemented in thetree-ssa branch. No-
tice that the interface between GENERIC
and GIMPLE may involve some language-
dependent transformations, but those issues are
beyond the scope of this paper.

GCC Developers Summit 2003 • 183

Tree Optimizer

GIMPLE CFG SSA

SSA pass N

 ...

SSA pass 2

SSA pass 1

unSSA RTL Back
End

Figure 2: Overview of the tree optimization process.

3 GIMPLE Trees

Although GCC parse trees provide very de-
tailed information about the original program,
they are not suitable for optimization:

1. Lack of a common representation.
There is no single tree representation
shared by all the front ends. This means
that each language would require a dif-
ferent implementation of the same infras-
tructure. This would be a maintenance
nightmare and would make it very diffi-
cult to add new front ends to GCC.

2. Side effects. Parse trees are allowed to
have side effects. This means that the tree
analysis and optimization phases would
have to understand the semantics of ev-
ery source language, which takes us to
the multiple implementation scenario de-
scribed above.

3. Structural complexity . Parse trees may
combine in arbitrarily complex patterns,
which may obfuscate the control flow of
the program. For instance, the following
expression is represented in a single parse
tree

if ((a = (b > 5) ? c : d) > 10)
. . .

When building the control flow graph for
this code fragment, the compiler must re-
alize that the predicate for theif() state-
ment contains different flows of control
of its own. Furthermore, this expression
requires more than one basic block to be
represented.

To overcome these limitations, we use two
new tree-based intermediate representations
called GENERIC and GIMPLE. GENERIC
addresses the lack of a common tree represen-
tation among the various front ends. GIMPLE
solves the side-effect and complexity problems
that facilitate the discovery of data and control
flow in the program. All the analyses and op-
timizations are done on the GIMPLE represen-
tation.

Figure 4 illustrates the differences between
GENERIC (Figure 4(a)) and GIMPLE (Figure
4(b)). Notice how in the GIMPLE version in-
dividual expressions are simpler and more reg-
ular in structure. For instance, with the excep-
tion of function calls, a statement in GIMPLE
form is guaranteed to have no more than three
variable references. GIMPLE expressions are
also guaranteed to contain no side-effects (for
example, the post-increment operation in line
5 of Figure 4(a) has been explicitly exposed by

184 • GCC Developers Summit

Front End

Tree Optimizer

C
trees

C
genericizer

GENERIC

C++
trees

C++
genericizer

Java
trees

Java
genericizer

Fortran 95
trees

Fortran 95
genericizer

Objective-C
trees

Objective-C
genericizer

gimplifier

GIMPLE

CFG

SSA

SSA pass N ... SSA pass 2 SSA pass 1

unSSA

RTL

Back
End

Figure 3: Proposed integration of GIMPLE and RTL optimizers.

GCC Developers Summit 2003 • 185

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 if (a > b + c)
5 c = b++ / a + (b * a);
6 bar (a, b, c);

(a) GENERIC form.

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 T1 = b + c;
5 if (a > T1)
6 {
7 T2 = b / a;
8 T3 = b * a;
9 c = T2 + T3;

10 b = b + 1;
11 }
12 bar (a, b, c);

(b) GIMPLE form.

Figure 4: A program in GENERIC and GIMPLE forms.

the conversion to GIMPLE form).

4 The Control Flow Graph

To take advantage of the existing flow graph
code for RTL, the GIMPLE flow graph uses
the same data structures for basic blocks and
edges. This allows the GIMPLE CFG to use
all the functions that operate on the flow graph
independently of the underlying IR (e.g., dom-
inance information, edge placement, reachabil-
ity analysis). For the cases where IR informa-
tion is necessary, we either replicate function-
ality (e.g., flow graph cleanup) or have intro-
duced hooks (e.g., loop discovery).

The flow graph builder will also remove su-
perfluous control expressions of the formif
(0) , if (1) and switch (CST) . The
edges leading to the unreachable arms of the
conditionals are removed, which in turn causes
the unreachable arms to be removed. These
statements are also completely linearized by
replacing the conditional with the clause that
is always executed.

4.1 Statement manipulation

Although GIMPLE trees have a much sim-
pler structure than GENERIC and the origi-
nal parse trees, they still contain certain ele-
ments that are of no interest to a typical opti-
mization pass. GIMPLE is a container-based
data structure. As such, statements inside
constructs like loops, conditionals and lexical
scopes are contained in sub-trees. Within each
lexical scope, individual statement nodes are
chained together using compound expression
(CE) nodes. For instance, the body of function
baz in Figure 5 contains two statements, the
lexical scope starting at line5 and thereturn
statement at line13. In turn, the lexical scope
at line 5 contains 3 statements (lines8, 9 and
10). Notice how all the statements in each lex-
ical scope are joined using CE nodes.

One way to traverse this function is to use the
traditional call towalk_tree with a callback
function to do the processing. However, this
approach not only visits more nodes than nec-
essary, but it also makes it difficult to distin-
guish a statement from an expression contained

186 • GCC Developers Summit

1 baz ()
2 {
3 int i, j;
4
5 {
6 int k;
7
8 k = foo ();
9 i = k + 2;

10 j = i * k;
11 }
12
13 return j;
14 }

2 {

 3 int i, j; CE

5 { 13 return j;

 6 int k; CE

 8 k = foo (); CE

 9 i = k + 2; 10 j = i * k;

Figure 5: A GIMPLE program and its tree representation.

in a statement1.

To traverse the statements of a function in
GIMPLE, one must follow the compound ex-
pression nodes in the body of the function. We
have implemented an iterator data structure,
called tree statement iterator(TSI), to facili-
tate this process. Note that TSIs don’t guaran-
tee that every single statement will be visited.
A traversal starting at line5 in Figure 5 will
only visit lines5 and13. It is up to the caller
to detect when a lexical scope or control state-
ment is being visited and recursively visit its
body.

While TSIs are convenient for traversing lex-
ical scopes, they are not suited for traversing
statements inside basic blocks. Notice how

1GENERIC and GIMPLE do not distinguish state-
ments from expressions as is done in the C and C++ front
ends.

functionbaz() contains a single basic block.
A proper traversal should visit lines8, 9, 10
and13, which could be done using TSIs, but
the caller would have to be responsible for
handling lexical scopes and determining basic
block boundaries. This is provided byblock
statement iterators(BSI). Thus, once the flow
graph for the function has been built, traversing
all the statements in the function can be done
with the double nested loop:

FOR EACH BB (bb)
for (i = bsi start (bb); !bsi end p (i); bsi next (&i))

processstmt (bsi stmt (i));

BSIs can also be used for backward traver-
sals as well as statement manipulation. Cur-
rently, statements can be removed, inserted in-
side blocks (before and after other statements)
and inserted on edges.

GCC Developers Summit 2003 • 187

1 a = foo ();
2 b = a + 10;
3 c = 5;
4 T1 = b + c;
5 if (a > T1)
6 {
7 T2 = b / a;
8 T3 = b * a;
9 c = T2 + T3;

10 b = b + 1;
11 }
12 bar (a, b, c);

(a) Original GIMPLE program.

1 a
1

= foo ();
2 b

1
= a

1
+ 10;

3 c
1

= 5;
4 T1

1
= b

1
+ c

1
;

5 if (a
1

> T1
1
)

6 {
7 T2

1
= b

1
/ a

1
;

8 T3
1

= b
1

* a
1
;

9 c
2

= T2
1

+ T3
1
;

10 b
2

= b
1

+ 1;
11 }
12 b

3
= φ(b

1
, b

2
);

13 c
3

= φ(c
1
, c

2
);

14 bar (a
1
, b

3
, c

3
);

(b) Same program in SSA form.

Figure 6: Static Single Assignment form.

5 Static Single Assignment form

The Static Single Assignment (SSA) form [3]
is based on the premise that program variables
are assigned in exactly one location in the pro-
gram. Multiple assignments to the same vari-
able create new versions of that variable. Natu-
rally, actual programs are seldom in SSA form
initially because variables tend to be assigned
multiple times. The compiler modifies the pro-
gram representation so that every time a vari-
able is assigned in the code, a new version of
the variable is created. Different versions of the
same variable are distinguished by subscript-
ing the variable name with its version number.
Variables used in the right-hand side of expres-
sions are renamed so that their version number
matches that of the most recent assignment.

Figure 6 shows the program from Figure 4(b)
and its corresponding SSA form (Figures 6(a)
and 6(b) respectively). Notice that every as-
signment in the program introduces a new ver-
sion number for the corresponding variable.
Every time a variable is used, its name is re-
placed with the version corresponding to the

most recent assignment for the variable.

Now consider the use of variableb in the call
to bar() (line 12). There are two assignments
to b that could reach line12; the assignment at
line 2 and the assignment inside theif at line
10. To solve this ambiguity, SSA introduces a
new artificial definition forb by means of aφ
(phi) function. This new definition merges both
assignments to create a new version forb (b3).
The semantics of theφ function dictate thatb3

will take the value from one of the function’s
arguments. The specific argument returned by
theφ function is not known until runtime.

6 Real and virtual operands

The SSA form is not suited for handling non-
scalar variable types. For instance, given an ar-
ray M[100][100] , not only would the com-
piler need to keep track of 10,000 different ver-
sion numbers forM, but it may also be im-
possible to determine whether two references
M[i][j] and M[k][l] are the same vari-
able or not. Structures, unions and aliased vari-

188 • GCC Developers Summit

ables present similar problems.

One alternative to handling non-scalar types
would be to simply ignore them. After all, if
the operands are not converted into SSA form,
they would not be considered for optimization.
However, that would also mean that statements
referencing nothing but non-scalars would ap-
pear dead to the optimizers. Also, situations
like scalar variables aliased by a structure field
would also be missed.

To address this problem, operands referencing
non-scalar variables are considered references
to the base object for that variable. For in-
stance, references toM[i][j] andM[k][l]
in the previous example would be considered
references toM. Since these operands need to
be treated separately by the optimizers, they
are known asvirtual operands, as opposed to
the real operandsfor scalar variables. There-
fore, every GIMPLE statementScontains four
distinct sets of operands:

DEF(S). If S is an assignment statement, this
is the variable at its left-hand side.

USES(S)is the set of all the variables used (or
loaded) byS.

VDEFS(S)is the set of all the virtual variables
defined (or stored) byS. VDEF operators
represent non-killing definitions because
they may or may not occur at run time. A
VDEF operator is of the formV = VDEF
<V>, which means that a new value forV
is created fromV’s old value.

VUSES(S)is the set of all the virtual variables
used byS.

Virtual operands are also used to handle situ-
ations where the program is altering variables
in ways that are difficult or impossible to de-
termine statically. In these cases, the data flow

framework needs to gather enough information
to prevent the optimizers from missing a poten-
tial data dependency. In all these cases, virtual
operands are used. Some of the more common
situations include:

1. Aliasing. If two variablesa and b may
alias each other, then the compiler selects
one of them to serve as the representative
for all the aliased references. Every refer-
ence to either variable is then considered
a virtual operand using the alias represen-
tative.

2. Call clobbering. Function calls may
modify addressable local variables and
globals in unknown ways. This is han-
dled using a similar approach. Variables
that may be call clobbered are consid-
ered alias of an artificial variable called
.global_var . This variable is consid-
ered modified by function calls and by as-
signments to any of the variables associ-
ated with it.

3. Inline assembly. Much like function
calls, inline assembly may modify local
variables in ways that the optimizers do
not understand. Variables listed in theout-
putsor clobberslist of GCC’sasm state-
ment, are considered VDEF operands.

The programs in Figures 7, 8 and 9 illustrate
how virtual operands are used to handle non-
scalar variables, aliasing and call clobbering.
All the example functions have been renamed
into SSA already. Notice how the VDEF oper-
ators link new SSA versions for a variable with
its previous version. This creates def-def links
that are used in passes like dead-code elimina-
tion to determine all the potentially live assign-
ments.

GCC Developers Summit 2003 • 189

double foo (int i, int j, int k, int l)
{

double T1, T2, f;
double M[100][100];

/* References to an element of ’M’ are
considered references to the whole
matrix. */

M
2

= VDEF <M
1
>

M[i][j] = . . .

/* VDEFs are non-killing definitions,
that’s why the new definition
created for M

3
is linked to M

2
in

the previous assignment. */
M

3
= VDEF <M

2
>

M[k][l] = . . .

VUSE <M
3
>

T1
4

= M[i][j];

VUSE <M
3
>

T2
5

= M[k][l];
f
6

= T1
4

+ T2
5
;

return f
6
;

}

Figure 7: Virtual operands for handling non-
scalar variables.

7 Representing pointers

In GIMPLE there are no multi-level pointers.
This is a very appealing property that allows
the compiler to keep track of a pointerp and
its dereference*p as two separate, but related,
variables. The relation betweenp and *p is
quite straightforward:

1. Every store top implies a store operation
to *p , because nowp is pointing to a dif-
ferent memory location.

2. Every store or load of*p implies a load
operation fromp, becausep is read to de-
termine what memory location to use.

int foo (int i, int j, int *p)
{

int a;

if (i
1

> j
2
)

{
/* Whenever ’p’ changes, ’*p’ must

also change. */
(*p)

4
= VDEF <(*p)

3
>

p
5

= &a;
}

/* Since ’*p’ may alias ’a’, instead
of renaming the operand ’a’, we
create a virtual definition for its
alias ’*p’. */

(*p)
7

= VDEF <(*p)
4
>

/* ’p’ is needed to access ’*p’. */
VUSE <p

5
>

a = i
1

+ j
2
;

VUSE <(*p)
7
>

return *p;
}

Figure 8: Virtual operands for handling aliases.

8 Conversion into SSA form

Converting the program into SSA form con-
sists of three main phases:

1. may-alias computation, which determines
what variables are referenced in the func-
tion and whether they may be aliased or
not,

2. insertion of φ nodes at basic blocks
reached by more than one definition of the
same variable, and,

3. statement renaming, which rewrites every
operand and virtual operand using the ap-
propriate SSA version numbers.

The following sections highlight the more im-
portant aspects of the conversion into SSA

190 • GCC Developers Summit

float F;

float foo(float f)
{

/* Since ’F’ is call-clobbered,
instead of renaming ’F’ in the
statement, we rename the virtual
operand .GLOBALVAR. */

.GLOBAL VAR
2

= VDEF <.GLOBAL VAR
1
>

F = f
3

+ 2;

/* Function calls clobber the variable
.GLOBAL VAR which in turn indicates
that ’F’ is also clobbered. */

.GLOBAL VAR
3

= VDEF <.GLOBAL VAR
2
>

bar ();

/* Uses of ’F’ are converted to
virtual uses of .GLOBALVAR. In
this statement we are using the
value of ’F’ potentially
modified by the call to bar(). */

VUSE <.GLOBAL VAR
3
>

return F;
}

Figure 9: Virtual operands for handling call
clobbering.

form. A more detailed description of the pro-
cess can be found in the literature [3, 1, 6].

8.1 Computing may-alias information

This pass collects all the variables referenced
in the function and determines may-alias sets
for each one. Currently, alias information is
type-based. A points-to analyzer is imple-
mented, but it is not fully functional yet.

8.2 Inserting φ nodes

This pass insertsφ nodes at the dominance
frontier of blocks with live variable definitions.
The algorithm implements the semi and fully
pruned forms suggested by Briggs et. al. [1]
to reduce the number ofφ nodes in the pro-

gram. The basic idea is that if a variable is not
live after being defined in blockb, then it is not
necessary to insert aφ node at the dominance
frontier of b.

Since computing global live-in information is
more expensive than local live-in, this pass
uses a heuristic based on the total number ofφ
arguments. If this is is above a certain thresh-
old2, the compiler builds a fully pruned form.

8.3 Rewriting statements and dominator-
based optimizations

The renaming process is done using a depth-
first traversal of the flow graph’s dominator tree
[3]. During this traversal it is possible to ap-
ply very simplistic transformations that take
advantage of the order in which basic blocks
are visited [6].

These transformations, also known as
dominator-based optimizations, include
constant propagation, redundancy elimination,
copy propagation and propagation of predicate
expressions. These optimizations are only
supposed to do simple cleanup work that
catches most of the simple cases. The key
property is that they must work fast because
they are piggybacked on top of the renaming
process (which is linear in the number of
statements).

1. Constant propagation. When a constant
assignment of the formai = C is found,
it is stored in a hash table. Successive oc-
currences ofai are replaced withC. No
folding nor control flow simplification is
done, only constant replacements. Copy
assignments are similarly optimized.

2. Redundancy elimination uses a similar
idea. When an assignment of the form
ai = bj⊕ck is found, the expressionbj⊕ck

2Currently 32.

GCC Developers Summit 2003 • 191

is stored into a hash table. Successive
occurrences ofbj ⊕ ck, within the same
sub-tree, are replaced withai. Notice that
this transformation is valid only when re-
placing redundant expressions dominated
by the original assignment, otherwise it
would be possible to insertai in a control
flow path where it is never evaluated.

3. Propagation of predicate expressions.
When a conditional statement of the form
if (ai == C) is found, the assignment
ai = C is inserted into the hash table for
constants and copies when processing the
“then” clause of the conditional. This will
cause the constant/copy propagator to re-
placeai with C in that sub-tree.

8.4 Conversion back to normal form

Once all the SSA optimizations have been ap-
plied to the function, all the SSA version num-
bers andφ nodes must be removed to return the
code to its original form. This process consists
mainly in converting allφ nodes into copy op-
erations. Some of the more important aspects
of this pass is avoiding superfluous copy op-
erations. We implement the standard conver-
sion into normal form described in the litera-
ture [1, 6].

9 Implementation status

Currently, the basic framework is almost fin-
ished. Two front ends (C and C++) have been
fully converted to emit GIMPLE trees and the
regression test suite presents similar results to
those of mainline GCC. Readers interested in
testing the current implementation and/or con-
tributing to its development are invited to visit
the Tree SSA web page athttp://gcc.
gnu.org/projects/tree-ssa/ . This
page contains information for retrieving a copy

of the development branch in CVS, status of
the implementation and a list of “to-do” items.

In terms of performance, the branch still lags
behind mainline. This is hardly surprising
as we have mostly worked on correctness is-
sues. Performance is going to be the focus
of the next phase of development. We have
been tracking performance using SPEC95 and
SPEC2000. Daily results of these experiments
can be found athttp://gcc.gnu.org/
benchmarks/ .

In addition to the optimizations performed
while renaming into SSA form and the flow
graph restructuring, there are four optimization
passes implemented.

1. Sparse Conditional Constant Propagation
(CCP) [7] is an efficient formulation of the
constant propagation problem that is also
capable of finding constant conditionals
and unreachable code. This optimization
is currently enabled by default at-O1 and
above.

2. Partial Redundancy Elimination (PRE)
[2] finds expressions that are computed
more than once and re-writes them so that
their values are computed once and re-
used as necessary. In addition to removing
completely redundant computations, PRE
has the ability to make partially redun-
dant computations fully redundant, thus
combining the effects of global common
subexpression elimination and loop in-
variant code motion.

3. Dead Code Elimination (DCE) [3] re-
moves all statements in the program that
have no effect on its output (assignments
to variables that are never used again, con-
ditional expressions with empty bodies,
etc). This optimization is currently en-
abled by default at-O1 and above.

192 • GCC Developers Summit

4. Copy Propagation (CP) is the same op-
timization applied while converting the
program into SSA form, but implemented
as a separate pass.

We are also implementing a memory checker,
calledmudflap, that instruments every pointer
and array reference in the program with bound-
ary checks [4]. It is a combination of compile-
time instrumentation and run-time library. The
instrumented code contains calls to the run-
time library that will be triggered when the pro-
gram attempts one of several illegal operations,
such as accessing an array out of bounds, free-
ing the same block of memory more than once,
accessing unallocated memory, leaking mem-
ory, etc.

Mudflap is not yet integrated into the SSA
framework, so no static analyses are done
to prevent inserting superfluous instrumenta-
tion. Optimization of mudflap instrumentation
is currently underway.

10 Conclusions

The Tree SSA project provides a new optimiza-
tion framework to make it possible for GCC to
implement high-level analyses and optimiza-
tions. Currently, the framework is in active
development and some optimizations have al-
ready been implemented. The goals of this
project include:

• Provide a basic set of data structures and
functions for optimizers to query and ma-
nipulate the tree representation.

• Simplify and, in some cases, replace ex-
isting optimizations that work on the RTL
representation but are not really suited for
it. By simplifying the work for the RTL
optimizers we aim to improve compile
times and code quality.

• Implement new optimizations and analy-
ses that are either difficult or impossible
to implement in RTL.

By basing all the analyses and transformations
on widely known published algorithms, we are
also trying to improve our ability to maintain
and add new features to GCC. Furthermore,
the use of standard techniques will encourage
external participation from groups in the com-
piler community that are not necessarily famil-
iar with GCC.

Acknowledgments

I would like to thank Red Hat for funding
the Tree SSA project and to all the develop-
ers who have contributed to it. In particu-
lar, I would like to thank the regular contrib-
utors to the project: Jeff Law and Andrew
MacLeod for their work on the base infrastruc-
ture and optimizers; Jason Merrill for his work
on GENERIC and GIMPLE; Frank Eigler for
his work on Mudflap; Sebastian Pop for the
original expression simplifier, tree unparser,
and tree browser; Daniel Berlin for his work
on points-to alias analysis and PRE; Steven
Bosscher and the G95 team for their work on
integrating G95 with GIMPLE; and Andreas
Jaeger, Phil Edwards, and Andrew Pinski for
testing the branch on a regular basis.

References

[1] P. Briggs, K. D. Cooper, T. J. Har-
vey, and L. Taylor Simpson. Practi-
cal Improvements to the Construction and
Destruction of Static Single Assignment
Form. Software—Practice and Experi-
ence, 28(8):859–881, 1998.

[2] F. Chow, S. Chan, R. Kennedy, S.-M. Liu,
R. Lo, and P. Tu. A new algorithm for

GCC Developers Summit 2003 • 193

partial redundancy elimination based on
SSA form. InACM SIGPLAN ’97 Confer-
ence on Programming Language Design
and Implementation, pages 273–286, Las
Vegas, 1997.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Weg-
man, and K. Zadeck. Efficiently comput-
ing static single assignment form and the
control dependence graph.ACM Transac-
tions on Programming Languages and Sys-
tems, 13(4):451–490, October 1991.

[4] F. Ch. Eigler. Mudflap: Pointer Use
Checking for C/C++. InProceedings of the
2003 GCC Summit, Ottawa, Canada, May
2003.

[5] J. Merrill. GENERIC and GIMPLE: A
New Tree Representation for Entire Func-
tions. In Proceedings of the 2003 GCC
Summit, Ottawa, Canada, May 2003.

[6] R. Morgan. Building an Optimizing Com-
piler. Digital Press, 1998.

[7] M. Wegman and K. Zadeck. Constant
propagation with conditional branches.
ACM Transactions on Programming Lan-
guages and Systems, 13(2):181–210, April
1991.

194 • GCC Developers Summit

Porting GCC to the IBM S/390 platform

Hartmut Penner Ulrich Weigand
IBM Deutschland Entwicklung GmbH

Schönaicher Str. 220, 71032 Böblingen, Germany

{hpenner, uweigand}@de.ibm.com

Abstract

IBM’s mainframe architecture S/390 is the
living architecture with the longest heritage,
defined in a time when assembler program-
ming was predominant and compilers were in
their childhood. Hence in porting GCC to
S/390 we had to cope with certain architec-
ture features that were difficult or impossible
to model in GCC’s architecture-independent
framework. These include 31-bit addressing
mode, instruction-dependent address formats,
limited availability of address displacements
and immediate literals, and the condition code
handling. These problems notwithstanding, the
S/390 back end matured over the last couple
of years to make GCC a stable and competi-
tive compiler for the S/390 platform. In this
paper we want to share how we managed to
handle most of the mentioned architecture fea-
tures. We also want to point out areas that
promise room for further improvement in the
back end itself and suggest middle-end modifi-
cations that would benefit our platform in par-
ticular.

1 Introduction

1.1 From System/360 to zSeries

In the early 1960s IBM defined the System/360
architecture. This architecture was designed to
serve for a whole family of systems. The dif-

ference the distinguished systems of that fam-
ily had was the way the instruction set was im-
plemented. The System/360 architecture de-
fined 16 32-bit general purpose registers, 4 64-
bit floating point register and a 24-bit address
space. Shortly afterwards, virtual address-
ing was added to the architecture. In 1970,
System/370 was introduced, providing an en-
hanced instruction set. Around 1982 370/XA
brought 31-bit addressing, in 1988 370/ESA
introduced support for multiple address spaces.
In the 1990s the ESA/390 architecture was
introduced; subsequent machines added over
time the relative branch instructions as well as
the IEEE floating-point instruction set.

In 2000 the first IBM eServer zSeries machine
came out, introducing a major architecture up-
date. The z/Architecture remained upward
compatible to ESA/390, but provided full 64-
bit support, extending the general purpose reg-
ister size to 64-bit and adding a 64-bit address-
ing mode in addition to the traditional 24-bit
and 31-bit modes. This means in particular that
both 64-bit and 31-bit applications can run un-
der a 64-bit operating system (if that provides
the required support). However, it is also pos-
sible to operate a zSeries machine in ESA/390
mode in order to run legacy 31-bit operating
systems.

196 • GCC Developers Summit

1.2 GCC S/390 port history

Within the S/390 firmware development we
were searching in 1997 for a C compiler fulfill-
ing specific requirements. We needed a com-
piler that could be link-compatible to the inter-
nally used pl.8 compiler, which was developed
at IBM Research a decade ago. Also it should
provide the ability to use embedded assembler
code. One of the authors was asked to look into
the then existing System/370 port of GCC, to
evalute whether this could be adapted for the
intended use. This port was not very stable
at this time, but it could easily be shown that
it could be used as a base. Since in firmware
development there is no reason for backward-
compatibility, we decided to set a certain level
of architecture as given, and started internally
with a S/390 port, producing only code for lat-
est CMOS based systems.

When work on the upcoming Linux for S/390
port started in 1998, the compiler port devel-
oped by the firmware team could be used for
the Linux port. The success of this new oper-
ating system proved to be beneficial for GCC
on S/390 as well, since the Linux develop-
ment team was then rapidly driving the efforts
to develop the GCC port further to use the
ELF linkage format and eventually to exploit
the 64-bit z/Architecture. In 2001, the S/390
GCC port was finally donated to the Free Soft-
ware Foundation, with the authors in charge as
maintainers, one of us (Hartmut Penner) repre-
senting the S/390 hardware, the other (Ulrich
Weigand) the Linux for S/390 constituency.

2 Architectural overview

Before going into details of the GCC back end
implementation, we will start by giving a short
overview of the relevant features of the zSeries
architecture as well as the ABI used by the
Linux for zSeries port.

2.1 zSeries instruction set

The zSeries architecture as a typical CISC
architecture provides an extensive instruction
set. It has a full set of I/O related instruc-
tions, dealing with a channel based I/O sub-
system. For system programming there exists
a full set of instructions which enables opera-
tion systems to retrieve all information about
the system running on and do communication
with a service element. TheSTART INTER-
PRETATIVE EXECUTION instruction pro-
vides efficient virtualization capabilities, with
the possibility to define very precisely which
instructions are to be intercepted. Many of
these architectural facilities were defined over
the last 40 years, putting all the experience
of the years before into the definition. How-
ever, even though the above mentioned fields
are very interesting, we want to concentrate in
this paper on the small subset of instructions a
compiler normally deals with. For a complete
reference of the ESA/390 or z/Architecture see
[1] or [2].

The zSeries architecture defines 16 general-
purpose registers and 16 floating-point regis-
ters. Depending on the architecture mode, the
general-purpose registers have a width of 32 or
64 bits. It is a classical 2-address architecture,
where for most instructions the first source
operand is also used as destination. Each in-
struction has a length of 2, 4, or 6 bytes, and
up to now more than 30 instruction formats are
defined. For most ALU operations there ex-
ist two instruction types, one using two register
operands (RR), the other a register and a mem-
ory operand (RX). Logical operations are also
available with two storage operands (SS) or a
storage and a immediate operand (SI).

More formally, the general instruction set of
the zSeries architecture usable by a compiler
can be divided into following classes of in-
structions:

GCC Developers Summit 2003 • 197

RR r1 = r1 op r2
RX r1 = r1 op [x+b+d]
RI r1 = r1 op ch
RS r1 = r1 op [b+d]
SI [b+d] = [b+d] opl cb
SS [b1+d1] = [b1+d1] opl [b2+d2]

where we use the following elements:

r General or floating-point register
x Index register (register%r1–%r15)
b Base register (register%r1–%r15)
d Displacement, 12-bit constant (0–4095)
cb 8-bit constant, unsigned
ch 16-bit constant, signed or unsigned
op Arithmetical or logical operation
opl Logical operation (including move)

[addr] Content addr is pointing to

If running in zSeries architecture mode, an ad-
dress is 24, 31, or 64 bits wide, depending
on the addressing mode a program operates in.
The S/390 architecture mode provided only the
24-bit and 31-bit addressing modes. Here, the
most significant bit of a 32-bit address is some-
times used to distinguish between 24-bit and
31-bit bit mode in ’mixed’ environments. The
displacement for address generation in the in-
struction itself is only 12 bits. Together with
the fact that this displacement is unsigned, this
causes some problems for defining a ABI and
implementing a efficient compiler, especially
when dealing with large stack frames, a down-
ward growing stack, large GOT tables, etc. The
impact of this for implementing the compiler
will be shown later.

In order to provide conditional execution,
zSeries uses a 2-bit condition code as part of its
program status word. Most non-move or non-
branch instructions, depending on the result of
their operation, set this condition code. The
actual value a specific instruction sets is de-
fined for each instruction individually, and only
to a certain extend a clear classification can
be made. The architecture has branch instruc-

tions that decide whether a branch is taken de-
pending on whether the current condition code
equals one of the values provided in the form
of a 4-bit branch condition mask as part of the
instruction.

2.2 Linux for zSeries ABI

The Linux port on S/390 and zSeries uses a
variant of the ELF ABI. For a full definition
of the architecture-dependent parts see [3] and
[4]; the following gives a short overview of the
most important features. While the processor
architecture does not define a stack, the ABI
chooses by convention the general purpose reg-
ister%r15 for use as stack pointer. The stack
grows downwards; the low 96 bytes (160 bytes
on 64-bit) are reserved as register save area
for use by called subroutines. Registers%r0–
%r5 are clobbered across function calls, while
%r6–%r15 are saved. Parameters are passed
in registers and a parameter area on the stack.

Apart from the stack pointer%r15, the follow-
ing general purpose registers may be used for
special purposes:%r14 holds the function call
return address,%r13 is used to point to a per-
function literal pool,%r12 points to the Global
Offset Table in position-independent code, and
%r11 is used as frame pointer in functions that
perform dynamic stack allocation (otherwise,
the stack pointer is used as frame pointer as
well).

The following short "hello world" example
shows a typical 31-bit routine. Comments un-
der each line give the semantics of the in-
struction, using the abbreviated syntax used by
GCC in its scheduling printouts.

stm %r6,%r15,24(%r15)
{[%r15+24]=%r6;[%r15+28]=%r7;...}

bras %r13,.L2
{%r13=.L1;pc=.L2}
.L1:
.LC0: .long .LC2

198 • GCC Developers Summit

.LC1: .long printf

.L2:
ahi %r15,-96

{%r15=%r15-96;clobber %cc}
l %r2,.LC0-.L1(%r13)

{%r2=[%r13+.LC0-.L1]}
l %r14,.LC1-.L1(%r13)

{%r14=[%r13+.LC1-.L1]}
basr %r14,%r14

{pc=%r14;%r14=pc+2}
lm %r6,%r15,120(%r15)

{%r6=[%r15+120];%r7=[%r15+124];...}
br %r14

{pc=%r14}

Note how the function prolog saves registers,
sets up the literal pool pointer and allocates
a new stack frame. The function proceeds to
load the address of theprintf routine as well
as the address of the string constant from the
literal pool and performs the call. The epilog
simply restores all saved registers (thereby re-
setting the stack pointer and removing the cur-
rent stack frame) and returns to the caller by
branching to the address provided in%r14.

3 GCC and the zSeries architec-
ture

While most of the features of the zSeries archi-
tecture can be easily modelled using the stan-
dard mechanisms available to a GCC back end,
we have found some that require extra effort
to implement correctly. This section describes
how we addressed these issues in the current
S/390 back end: literal handling, 31-bit ad-
dressing mode, and instruction-dependent ad-
dress formats.

3.1 Literal handling

Literals, i.e. values determined at compile
time, play an important role in most functions
generated by a compiler. They include con-
stant values of various types (e.g. integer, float-
ing point, or string constants) provided in the

source code as well as address constants gen-
erated by the compiler itself, used to reference
code or data labels.

However, the original S/390 architecture did
not provide instructions that could use literal
values as immediate operands. While it was
possible to load an immediate integer in the
range 0–4095 into a register using theLOAD
ADDRESSinstruction, all other literal values
required loading from memory.

On the other hand, accessing a memory loca-
tion to load a literal from requires to express
the address of that location first. Similarly,
branch instructions need to be able to refer-
ence the branch target address. Again, the orig-
inal S/390 architecture did not provide instruc-
tions that could use immediate address con-
stants, neither as absolute nor as pc-relative
values. The only way to specify an address, for
any purpose, was to use the standard effective
address generation mechanism that computes a
target address as the sum of the contents of a
base register, an index register, and an immedi-
ate displacement in the range 0–4095.

To overcome these restrictions, the usual cod-
ing conventions for S/390 applications re-
quired to reserve one general purpose regis-
ter to always hold the address of the start of
the routine currently executing. This way, tar-
gets for branches within the routine could be
expressed via immediate displacement relative
to that function base register, and by placing a
pool of literal constants immediately adjacent
to the routine’s code section, the same mecha-
nism could be used to load literals from mem-
ory.

The obvious disadvantage of this method is
that it requires the total size of a routine’s code
section plus its literal pool not to exceed a sin-
gle page (4 KB), to ensure every address within
both code and literal pool remains addressable
via the function base register. When these lim-

GCC Developers Summit 2003 • 199

its are exceeded, a function has to be split into
multiple fragments, each consisting of up to
4096 bytes of code and literals required by the
fragment. On every branch between two dif-
ferent fragments, the base register has to be
reloaded to point to the beginning of the cur-
rent fragment. This can incur significant run-
time overhead.

Fortunately, over time several extensions to
the S/390 architecture were implemented that
provide relief to those constraints. With the
second generation of S/390 machines, starting
from 1992, therelative and immediate instruc-
tion facility provided a set of instructions that
allow on the one hand the use of immediate in-
teger constants with several operations, and on
the other hand the use of pc-relative address-
ing modes for a number of branch instructions.
However, due to the requirement that the new
instructions fit within the overall scheme of
S/390 instruction types, these literals were lim-
ited in range. This means that only integer val-
ues in the range of -32768–32767 are allowed
as immediate operands, and pc-relative branch
targets can only specific a range of up to 64 KB
before or after the current instruction.

With the advent of the 64-bit z/Architecture in
2000, the latter restriction was once again loos-
ened: the newrelative longinstructions accept
pc-relative targets in a range of up to 4 GB be-
fore or after the current instruction. TheLOAD
ADDRESS RELATIVE LONGinstruction fi-
nally allows the use of pc-relative addressing
for other accesses besides branches.

Now, how does the GCC back end cope with
those restrictions? We have chosen to sup-
port in the S/390 back end only processors
that provide the relative and immediate in-
struction facility. This means that we can use
the pc-relative branch instructions for all intra-
function branches as long as the code section
of the routine does not exceed 64 KB. While

we also use immediate operands wherever pos-
sible, it is still necessary to maintain a lit-
eral pool for constants exceeding the allowed
range. This pool is addressed via a base regis-
ter (usually%r13) pointing to the start of the
literal pool. To set up the pool base register,
we use aBRANCH RELATIVE AND SAVE
instruction, followed by the literal pool itself.
Executing that instruction transfers control to
the instruction following the pool, while at the
same time loading the pool start address into
the base register.

Address literals whose use cannot be avoided
via pc-relative instructions are placed into the
literal pool. However, if we are generating
position-independent code for use in Linux
shared libraries, we do not want to place ab-
solute addresses into the literal pool, as those
would require relocations to be applied by the
dynamic loader to the text segment. This is
undesirable as it prevents that page from ac-
tually being shared across multiple processes
using the same library. To solve this issue, we
instead place theoffsetfrom the start of the lit-
eral pool to the required address into the pool.
Every user of that pool entry needs to add the
pool start address back to that offset, which can
usually be done implicitly as part of normal ad-
dress generation, using the offset loaded into
an index register together with the pool regis-
ter as base register.

This method works fine as long as the routine’s
code size does not exceed 64 KB and its literal
pool size does not exceed 4 KB. For the vast
majority of routines these conditions hold true,
which is why we have chosen to optimize for
this common case. However, the compiler cer-
tainly has to be able to cope with cases where
either or both of these limits are exceeded.

If a routine’s code section exceeds 64 KB, de-
termining whether the target of any particular
branch within the function is out of range or

200 • GCC Developers Summit

not is nontrivial, as this recursively depends
on the sizes of other branch instructions that
lie in between. Fortunately, this analysis is
performed by GCC’sbranch shorteningpass,
which we are able to use unmodified for our
target. We simply need to provide GCC com-
mon code with information about the length of
each instruction via thelength attribute.

Once the branch shortening pass has de-
termined which branches cannot be imple-
mented via a pc-relative branch instruction,
our machine-dependent reorganization pass re-
places each of those out-of-range branches by a
branch using a register as target, preceeded by
an instruction loading the branch target address
from the literal pool into that register:

l %r14,.LCtarget-.Lpool(%r13)
br %r14

As previously mentioned, when generating
position-independent code, we place an offset
to the branch target label into the literal pool
instead:

l %r14,.LCtarget-.Lpool(%r13)
b 0(%r14,%r13)

This replacement is simple and incurs only
relatively low overhead. However, if the lit-
eral pool overflows its maximum size of 4096
bytes, things get much more difficult. Fortu-
nately, this happens only extremely rarely; the
cases where we have seen this to occur typi-
cally involve extremely large routines, unlikely
to be found in source code written by hand, but
sometimes occurring as a result of automati-
cally generated code.

However, if literal pool overflow does occur,
we still need to handle it correctly. What we
do then is to partition the function into smaller

chunks, each requiring a partial literal pool
whose size does not exceed 4096 bytes.

At every transition between different chunks,
we insert instructions to reload the pool base
register with the start of the literal pool of the
current chunk. Those reload instructions thus
need to be inserted before the first instruction
of every chunk as well as after every code la-
bel that is being branched to from an instruc-
tion located outside the chunk. Unfortunately,
performing this reload operation is difficult,
as we cannot use a pc-relative instruction to
do so, we cannot use any arithmetical opera-
tions as those would clobber the condition code
register which might be live at the point the
reload is inserted, and we cannot even load
anything from the literal pool because we do
not know towhichpool chunk the base register
currently points—the same label might be the
target of instructions residing in multiple dif-
ferent chunks. We solve this problem by using
the following sequence of instructions:

basr %r13,0
la %r13,.Lchunk-.(%r13)

which resets the pool base register to the cur-
rent instruction address, and adds the offset
from there to the current pool chunk start ad-
dress using aLOAD ADDRESSinstruction to
avoid clobbering the condition code. This tech-
nique unfortunately imposes further require-
ments on the pool chunks: every pool chunk
must be placed within the function text section,
following the corresponding code chunk, and
the size of that code chunk must not exceed
4096 bytes to avoid overflowing the range of
the LA instruction.

Once we’ve succeeded in dividing the function
into chunks and inserting the pool base reg-
ister reload instructions, we can then proceed
to replace all references to the normal con-
stant pool by explicit references to the current

GCC Developers Summit 2003 • 201

pool chunk, assuming the base register is set
up properly. Position-independent code pro-
vides an additional challenge, however. Recall
that in this scenario we are using offsets rel-
ative to the pool start address instead of abso-
lute address literals. Now, when we’ve split the
pool into multiple chunks, which pool chunk
are those references supposed to be relative to?
We’ve initially tried to set up things so that ev-
ery offset is always relative to the chunk where
it resides. Unfortunately this does not work, as
due to constant propagation it is possible for
an offset to be loaded into a register in a com-
pletely different chunk from where that register
is finally used. Thus we’ve decided to keep the
master literal pool present, even it is empty af-
ter all constants have been distributed to pool
chunks, so that its start address can remain to
serve as anchor for address literal offsets. To
make this work, everyexplicituse of the literal
pool base register%r13 needs to be replaced
by another register holding the master anchor
address. That address can be computed on the
fly using the current pool chunk address and an
offset from the start of that chunk to the anchor;
this offset is by convention always stored at the
very start of each pool chunk:

l %r14,0(%r13)
la %r14,0(%r14,%r13)

Two final obstacles remain before literal pool
splitting can be considered a general solution.
The first is the fact that literal pool splitting
introduces additional instructions at various
points throughout the instruction stream. This
can cause branch splitting information to be-
come invalid, as some branches that were orig-
inally in-range can now exceed their allowed
ranges. On the other hand, branch splitting
works by placing branch target addresses into
the literal pool, which can cause the pool to
overflow. To solve this interdependency, we
iterate branch splitting and attempting to split

the literal pool until both operations succeed si-
multaneously. This is guaranteed to always ter-
minate, as every branch that we decided to split
at any one point will remain split forever, and
thus the number of unsplit branches is strictly
decreasing throughout this iterative process.

The final obstacle is that we require a tempo-
rary register for both branch splitting and literal
pool splitting (for the case of anchor reload-
ing). Fortunately, the live ranges introduced
are very short, and span just the newly added
instructions together with the immediately fol-
lowing instruction from the existing instruc-
tion stream. However, at this point in the code
generation process (after reload), all registers
might in fact be live at the point where we need
to insert additional code. Thus, we currently
reserve one register (%r14) for use for those
purposes. Note that the ABI defines%r14 to
hold the function return address, which means
it is always clobbered across function calls, but
apart from that restriction the register would be
free for arbitrary use inside a routine. We are
not doing that, however, in order to have this
register available for use in branch splitting and
literal pool splitting. The only problem with
that is that the decision whether we need to use
%r14—and thus need to save and restore the
register in the function prolog/epilog code—
can be made only during machine-dependent
reorg, long after the function prolog and epi-
log code was generated. Therefore, we al-
ways generate code to save and restore regis-
ters %r13 and %r14, and remove that code
during machine-dependent reorg once it has
proven to be unnecessary.

Up to now, we have exclusively discussed
code generation for S/390 machines in 31-
bit mode. On z/Architecture machines, many
of the problems described in this section dis-
appear due to the availability of therelative
long family of instructions. First of all, the
BRANCH RELATIVE LONGinstructions al-

202 • GCC Developers Summit

low pc-relative branches within the range of
4 GB. By restricting the maximum allowed
size of any single executable or shared object
to 4 GB, we can thus use those instructions
for nearly every branch. (The only occasion
where we still might need branch splitting is in
the case ofBRANCH ON COUNTinstructions,
which lack a relative-long variant.)

Also, the LOAD ADDRESS RELATIVE
LONGinstruction allows us to directly load
arbitrary address literals, without requiring
literal pool entry, in a position-independent
manner. This means that we never need to
handle offsets relative to the literal pool base,
and the whole issue of reloading the anchor
register after pool splitting disappears. Also,
as we can useLARL to load the literal pool
start address, literal pools no longer need to
reside in the text section, but can be moved to
the read-only data section. This also simplifies
inserting pool base reload instructions in the
case of literal pool splitting. However, the core
problem that the literal pool cannot exceed
4096 bytes remains.

The solution described in this section allows
GCC to correctly handle every valid source
code, even if it causes code or literal pool
sizes to exceed their optimum limits. However,
there is still a lot of room for improvement to
optimize the code that is generated once that
overflow happens. We are currently working
on some minor improvements. In particular,
we’ll remove the whole complex of pool an-
chor reloading for position-independent code
by representing address literals as offsets rel-
ative to the gobal offset table (like on other
platforms) instead of relative to the literal pool.
This requires some new relocation types to be
implemented in binutils first. Once this is done,
we can try to finally make register%r14 avail-
able for regular use. This would require that
every branch instruction reserves one register
to be used for branch splitting if necessary, but

even so overall register pressure should benefit.

The major problem with optimizing literal pool
overflow situations, however, is to determine
how to split the function into chunks. An op-
timal solution here would try to minimize the
frequency of inter-chunk branches at run time.
To try to tackle that problem will require con-
trol flow data including basic block boundaries
and branch probabilities; unfortunately GCC
currently no longer maintains that information
at the point in time where literal pool splitting
has to be performed (in machine-dependent re-
org).

3.2 31-bit addressing mode

For historical reasons, the S/390 architecture
does not have a 32-bit addressing mode, but
uses 31-bit addressing. This means that while
base and index registers used in address gener-
ation are regular 32-bit registers, the most sig-
nificant bit is ignored when computing the ef-
fective address. (Note that this does not apply
on zSeries in 64-bit addressing mode; most of
the problems discussed in this section disap-
pear in that environment.)

For the compiler, this causes two issues that
need to be considered. As for every 31-
bit address there are two equally valid 32-bit
pointer representations, one with the high bit
set and one with the high bit cleared, care must
be taken when comparing pointer values for
equality. To simplify this process, GCC tries to
always represent pointers using the representa-
tion with the high bit cleared. However, some
machine instructions store address values with
the high bit set; most importantly theBRANCH
AND SAVEfamily of instructions does so. A
BASinstruction transfers control to another ad-
dress, and at the same time stores the current
instruction address (with the high bit set) into
a register. GCC uses those instructions for two
purposes: to implement function calls, and to

GCC Developers Summit 2003 • 203

set up the literal pool. Since both the call return
address and the literal pool start address are
normally used only for compiler-internal pur-
poses, GCC does not bother to normalize these
values by clearing the high bit. However, in
some cases these values are visible externally,
and extra care needs to be taken:

• The call return address can be re-
trieved by doing a stack backtrace, e.g.
via the function__builtin_return_
address . This will yield values
with the high bit set, which the caller
needs to normalize; this is handled by
the __builtin_extract_return_
address function. However, as this
built-in does nothing on most platforms,
we have seen several cases where applica-
tions didn’t work on S/390 because they
forgot to use it.

• The literal pool start address is used as
anchor to compute the addresses of local
variables in position-independent code.
As these can be externally visible, the
compiler needs to make sure this address
computation will normalize the resulting
pointer. This is done by using anUNSPEC
operation that enforces the use ofLOAD
ADDRESS(instead of, say, a normal 32-
bit addition operation) to perform the cal-
culation. TheLA instruction will always
return a 31-bit value with the high bit
cleared.

The second main problem caused by the 31-
bit addressing mode is that address generation
is a distinctly different operation from regu-
lar addition. As mentioned above, theLOAD
ADDRESSinstruction performs a 31-bit addi-
tion operation, adding the values of base and
index register and an immediate displacement,
and returning a 31-bit value. TheADDinstruc-
tion, in contrast, performs a full 32-bit addition
operation. The decision whether to useADDor

LOAD ADDRESSneeds to take into account a
number of issues:

• Wemust notuseLOAD ADDRESSto per-
form integer addition, as the high bit of
the result is not computed.

• Where the result of an addition opera-
tion is used as address, we can useLOAD
ADDRESS, and it is in fact often the pre-
ferred method to minimize pipeline stalls.

• Some passes of the compiler (reload) in-
sert address computation operations into
the instruction stream, making the im-
plicit assumption that they do not clobber
the condition code. WemustuseLOAD
ADDRESSin these cases.

• In some cases, in particular when
computing local addresses in position-
independent code (see above), we rely on
the property thatLOAD ADDRESSclears
the high bit, so we must not use regular
addition instead.

This has been a problematic area during the
development of the S/390 back end; we have
tried various ways of simultaneously meeting
all these requirements, not always completely
successfully. As an example for the difficulties
involved, consider the question whether there
should be anLA pattern that accepts all RTL in-
structions of the form(set (reg) (plus
(reg) (reg))) . If this pattern exists, there
is the danger that it might be incorrectly used
to implement an integer addition. If it does
not exist, there is the danger of reload failures
as reload will create such instructions anyway.
The current S/390 back end tries to solve this
as follows:

• Theadd instruction patterns accept insns
that explicitly clobber the condition code.

204 • GCC Developers Summit

• The la instruction patterns accept insns
that do not clobber the condition code,
provided that it is safe to assume the result
is being used as an address. This assump-
tion can be made if one of the registers
involved is the literal pool base register,
the global offset table base register, or is
known to point into the stack frame (stack
register, frame register, argument pointer
register etc.). The instruction will also ac-
cept addresses using anUNSPECto en-
force clearing the high bit.

• A second set offorced_la patterns ac-
cept all syntactically valid load address in-
sns, without employing the sanity check
mentioned above. Those use a special pat-
tern that will never be accidentally gener-
ated by other parts of the compiler (e.g.
combine), so that those patterns will only
match in case they were explicitly gener-
ated by the S/390 back end.

• When reload tries to load aplus ex-
pression that would not be accepted by
a regularla pattern, this is handled via
the secondary input reload mechanism.
This means that thereload_insi ex-
pander is called, which in turn will com-
pute the address usingforced_la pat-
terns if necessary. That way, reload will
never fall back to generating add opera-
tions by itself.

• To optimize for usingLA where possible,
a set of peephole2 patterns tries to trans-
form add instructions intola instruc-
tions. This is only done when considered
profitable.

A completely different option to solve the 31-
bit addressing mode problems might be to em-
ploy the PSImode mechanism to explicitly
represent a 31-bit data type. However, we
have tried this solution and found that it typi-

cally generated less efficient code due to super-
fluousSImode <-> PSImode conversions
inserted at various points by the middle end.
Improving thePSImode support might make
this option viable at some point in the future,
though.

3.3 Instruction specific address formats

A fundamental assumption of GCC, in partic-
ular the reload pass, used to be that memory
addresses are represented in the same format
in all instructions. This means that if a partic-
ular RTL expression represents a valid address
for one instruction, it is supposed to be valid
for all other instructions as well. The most im-
portant place where this assumption is made is
the find_reloads routine. This routine is
supposed to check whether an RTL instruction
matches the constraints imposed by the insn
pattern, and if it doesn’t, determine the most ef-
ficient way to modify the instruction stream by
inserting additional reload insns to correct the
problem. In doing so,find_reloads first
tries to make sure that all memory addresses
mentioned in the instruction are valid. This
pass is performed in the same way for all in-
structions, and does not even look at the con-
straint string. This means there is no way to im-
pose different conditions as to whether a mem-
ory address is valid or not, depending on which
instruction is involved.

Unfortunately, the S/390 architecture uses two
different formats to specify memory addresses
in instructions. The most general address for-
mat allows to to specify a base register, an in-
dex register, and a displacement (in the range
of 0–4095). These are added up to compute
the effective address. Some other instructions,
however, do not allow the use of an index reg-
ister; instead, they compute the effective ad-
dress simply as the sum of a base register and
the displacement. (The two formats are com-
monly called X and S instruction operands, re-

GCC Developers Summit 2003 • 205

spectively.) However, the back end has only
two choices when asked to validate an address
RTX: either to never accept addresses with in-
dex register, or to always accept them. The first
option causes very inefficient code to be gener-
ated, while the second option can potentially
cause invalid operands for S-type instructions
to be produced.

We have tried various ways of coping with this
problem, but with limited success. It is possi-
ble to try to avoid invalid S-operands by check-
ing for their presence in the instruction pred-
icate of affected instruction patterns. How-
ever, this is not reliable, as an address operand
that initially does not use an index register can
be modified into one that does by the reload
pass, e.g. due to register elimination or dis-
placement overflow. While we could in ad-
dition to the predicate use a constraint letter
to check for valid S-operands, this does not
solve the problem: if a non-standard constraint
does not match, reload will not know how to
fix the problem, causing compilation to abort.
We were able to overcome this by relying
on undocumented—and arguably incorrect—
behaviour of reload when interpreting the ’o’
constraint; but this hack was not only fragile,
it also didn’t allow full flexibility in generating
efficient code.

We finally solved this issue by introducing two
new features to the reload pass, starting with
GCC version 3.3—the EXTRA_MEMORY_
CONSTRAINT and EXTRA_ADDRESS_
CONSTRAINT target macros. These were
inspired by the way reload was able to handle
offsettablememory constraints. A memory
operand is called offsettable, if it stays a valid
memory operand when a small additional
displacement is added to the address, so
that every byte of the object comprising the
operand can be addressed. As an example, the
RTX

(mem:DI (plus:SI (reg:SI 1 %r1)
(const_int 4092)))

is a valid memory operand on S/390, but
it is not an offsettable operand, because
only the initial four bytes of theDImode
operand are addressable before the displac-
ment exceeds the maximum value of 4095.
In some cases, instructions cannot accept
non-offsettable operands, and GCC allows to
specifc this using the ’o’ constraint letter. If,
after reload has performed all required mod-
ifications, a memory address marked with
that constraint turns out to be non-offsettable,
reload will generate a load-address operation
to reload the address into a single register; this
register can then be used as offsettable memory
operand.

The EXTRA_MEMORY_CONSTRAINTtarget
macro now allows the back end to specify
other classes of memory operands that require
similar treatment by reload. By declaring
that a constraint letter describes an extra
memory constraint, the back end promises that
EXTRA_CONSTRAINT, when called to verify
whether an expression satisfies this constraint,
will:

• accept only memory operands, and

• accept all memory operands whose ad-
dress consists of one single base register.

This allows the reload pass to handle such
operands correctly: if a memory operand
does not pass theEXTRA_CONSTRAINTcheck,
reload is able to fix the problem by loading
the address into a base register. Similarly, the
EXTRA_ADDRESS_CONSTRAINTtarget macro
allows the back end to define constraints that
work like the standard ’p’ constraint to denote
address operands, but accepts only a subset of
all valid addresses (again including all those
that consist of solely a base register so that
reload can fix the operand up if required).

The EXTRA_MEMORY_CONSTRAINTmacro is
used by the S/390 back end to define the ’Q’

206 • GCC Developers Summit

constraint to handle S-operand instructions;
this allows the use of these instructions with-
out abusing reload, and also provides flexibil-
ity to mix S-operand instructions with others
in the same instruction pattern, choosing the
best alternative depending on the specific sit-
uation. TheEXTRA_ADDRESS_CONSTRAINT

macro could be used by the S/390 back end to
implement the full range of options to specify
the count operand for shift instructions (this is
not currently implemented yet, however).

4 Performance considerations

The previous section described issues relating
to correctness of the generated code which re-
quired special handling. However, for GCC to
be a competitive compiler on the zSeries plat-
form, we need to not just generate correct, but
also efficient code. This section details two ar-
eas where we found we could achieve signif-
icant performance benefits by exploiting spe-
cific features of the zSeries architecture: condi-
tion code handling and instruction scheduling.

4.1 Condition code handling

The S/390 architecture uses acondition code
to implement conditional branches. The condi-
tion code consists of two bits stored in the pro-
gram status word. Various arithmetical, logi-
cal, and comparison instructions set the condi-
tion code, while branch instructions make use
of it to decide whether the branch is to be taken
or not. As opposed to many other platforms,
the S/390 condition code is not composed of
single bits with specific semantics. Instead, the
two bits of the condition code combine to rep-
resent a condition code value in the range 0–3.
Branch instructions use a 4-bit branch condi-
tion mask to decide whether branching is per-
formed. The current condition code selects one
of the four mask bits, and if this bit is one, the
branch is taken. The relationship between the

condition code value and the mask position is
given by the following table:

Condition Code Mask Position Value
0 8
1 4
2 2
3 1

For example, the instructionbcr 12,%r1
branches to the address given in register%r1
if the current condition code is either 0 or 1.
(The GNU assembler also accepts mnemonics
instead of explicit mask values; as this branch
typically represents aless-or-equaldecision, it
can equivalently be written asbler %r1 .)

However, the numerical values 0–3 the condi-
tion code can assume have no fixed meaning.
Instead, every instruction that sets the condi-
tion code is free to define the semantics of the
condition code values it may set. In early ver-
sions of the S/390 back end we therefore used
only the condition codes set by explicit com-
parison instructions (which are very regular),
and completely ignored that other instructions
may set the condition code as side effect of
some other operation. This works, but can ob-
viously cause code to be generated that is sig-
nificantly less efficient. In particular, some im-
portant instructions the S/390 architecture pro-
vides (e.g. TEST UNDER MASK) could not
be exploited at all.

To improve this situation, we have rewritten
the condition code handling parts of the S/390
back end to use an explicitCCmoderegister
to represent the condition code (instead of us-
ing cc0). The various different semantics that
instructions can impose on the condition code
values are represented via different machine
modes of that register. The following list tries
to give an overview of the typical uses of the
condition code:

• Comparison operations (signed)

GCC Developers Summit 2003 • 207

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered (floating point)

This condition code semantics is rep-
resented by theCCSmode mode. It
is used by instructions likeCOMPARE;
some other instructions (e.g. LOAD
AND TEST, SHIFT RIGHT SINGLE)
set their condition code according to this
mode as well, assuming an implied com-
parison of their single operand against
zero.

• Logical comparison operations (un-
signed)

0 Operands equal
1 First operand low
2 First operand high
3 n/a

This condition code semantics is repre-
sented by theCCUmodemode. It is used
by the COMPARE LOGICALfamily of
instructions.

• Arithmetical operations

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

This is used by theADDandSUBTRACT
instructions. Unfortunately, due to the fact
that the case of signed arithmetic over-
flow is signalled via condition code 3, and
in that case no comparison of the result
against zero is performed, in most cases
we cannot use the condition code set by
those instructions. However, if one of
the operands is a compile-time immedi-
ate constant, we may be able to determine
at compile-time that if the operation over-
flows, the resultmustalways be greater or
less than zero, respectively. Those situa-
tions are represented by theCCAPmode

andCCANmodemodes. (Note that some
languages, like C, guarantee that arith-
metic on signed data types must not over-
flow. Unfortunately, this information is
lost at the RTL level. Having some means
to pass this fact to the back end would en-
able us to make use of theADDcondition
code in many more cases.)

• Logical operations

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

This is used byADD LOGICALand in
slightly modified form by SUBTRACT
LOGICAL; we represent these cases by
the CCL1modeand CCL2modemodes.
We use the logical variants of the add and
subtract operations in cases where the re-
sult of the operation is compared against
zero, and we are not sure whether over-
flow happens. They can also be used to
implement carry propagation for multi-
word additions.

• Zero test
0 Result zero
1 Result not zero
2 n/a
3 n/a

The logical operations (AND, OR,
EXCLUSIVE OR) use these condition
code semantics, which we represent by
CCTmode. What is important here is
that some of the condition code modes
mentioned above can also be used to
implement a test against zero (e.g.
CCSmode, CCUmode). We therefore
implement such tests using a virtual
condition code modeCCZmode that is
allowed to match against all such modes,
using a semantics of condition code 0 if
result equals zero, and condition code
nonzero if the result is nonzero.

208 • GCC Developers Summit

The condition codes described above are all
used by a number of different instructions, and
share a certain amount of regularity. How-
ever, other instructions use the condition code
in completely different ways. As an example
we describe here an important instruction of
the S/390 architecture,TEST UNDER MASK
LOW, and how we can make use of this in-
struction within the GCC framework.TEST
UNDER MASK LOWtakes the low 16 bits of a
register operand and compares them bit-for-bit
against a mask provided as immediate operand.
The sole effect of the instruction is to set
the condition code, depending on whether the
operand bits selected by the mask are ones or
zeros:

0 Selected bits all zeros; or mask bit all zeros
1 Selected bits mixed, and leftmost is zero
2 Selected bits mixed, and leftmost is one
3 Selected bits all ones

This instruction is very useful to generate eff-
cient code for a number of frequently used bit-
test operations. The followingif statement,
for example:

if ((flags & 0x80) &&
!(flags & 0x4))

can be translated into a singleTEST UNDER
MASK LOWoperation followed by a condi-
tional branch:

Mask selects both 0x80 and
0x04 bits for testing
tml %r1,0x84
Branch if leftmost bit is one,
and the other zero
brc 2,.Lxxx

Starting with GCC 3.3, the S/390 back end is
in fact able to generate this optimal code se-
quence. This is made possible by the fact that
the combiner pass notices the two subexpres-
sions of theif clause can be combined into

if ((flags & 0x84) == 0x80)

The S/390 back end now uses the
SELECT_CC_MODEmacro to inform combine
that it is possible to implement this particular
comparison operation using theCCT2mode
mode, causing the following (simplified)
instruction sequence to be emitted:

(set (reg:CCT2 33 %cc)
(compare:CCT2

(and:SI (reg/v:SI 40)
(const_int 132 [0x84]))

(const_int 128 [0x80])))

(set (pc)
(if_then_else

(ne (reg:CCT2 33 %cc)
(const_int 0 [0x0]))

(label_ref 18)
(pc)))

These in turn later generate the assembler code
shown above. Note that the use ofCCT2mode
causes the branch instruction to use condition
code 2 for equality (and all other condition
codes for inequality); this is very different from
how most other branches are handled.

Overall, theCCmode facilities of the GCC
middle end allow to make use of the S/390
condition codes in many important cases; no
changes outside the S/390 back end were nec-
essary to exploit them. However, we have no-
ticed some areas where common code changes
would be required to further improve the gener-
ated code. One of these is to allow a condition
code computed by one instruction to be reused
across multiple branches; the sequence

if (x == 5)
...

else if (x < 5)
...

currently performs two distinct comparison op-
erations, although the optimal implementation

GCC Developers Summit 2003 • 209

would use a singleCOMPAREto set the condi-
tion code, followed by two branch instructions
evaluating it.

4.2 Instruction scheduling

The time required to run a certain program de-
pends on the number of instructions and the
time each specific instruction takes. Besides
that, in most modern implementations of com-
puter architectures, dealing with a pipelined
and/or superscalar processor implementation,
the cycles an instruction takes as part of an
instruction stream depends heavily on the is-
sue order. For some architectures (e.g. VLIW)
an inappropriate scheduling of instructions will
lead to a significant performance decrease.

Also on the recent z900 machines, some of the
single-cycle instructions will in fact take from
1 to 5 cycles, depending on the order this in-
struction is issued within an instruction stream.
The reason for this can easily be seen if we take
a close look at the single-issue pipeline all in-
structions are executed on. (See [5] for a more
detailed description of the z900 pipeline.)

After instruction fetching, the instruction
pipeline consists of 6 stages. This pipeline is
designed so as to ensure that register-memory
(RX) instructions perform the best way possi-
ble.

DC Decode instruction, latch registers for ad-
dress generation.

AA Address generation, by adding base, index
register and displacement from instruction
text.

C1 Cache access, TLB access.

C2 Send memory data to execution unit.

E1 Execute.

WR Writeback result to register file.

Regardless whether an instruction actually uses
a memory operand or not, latching of base and
index registers is done in the decode stage.
Likewise, the address generation stage as well
as the C1 and C2 stages are used for all instruc-
tions, even though they would be required for
memory operands only. Together with the fast
L1 data cache, this enables register-memory in-
structions to be as fast as register-register in-
structions.

Due to the single cycle E1 stage for most sim-
ple instruction, true data dependency does not
cause a pipeline stall. This leads to a theoret-
ical cpi of 1 for most compiler generated in-
structions, assuming an infinite cache. Also,
since this pipeline is short, the penalty for mis-
predicted branches is comparatively small.

The main instruction-issue related problem left
by this design is the address generation inter-
lock (AGI). If a register used in the AA stage
(e.g. base register) is changed in an instruction
shortly before, the pipeline will be stalled for
up to 4 cycles. This is due to the fact that the
AA stage needs to wait for the WR stage to up-
date the register needed.

(Please see Figure 1.)

This AGI lets most applications suffer a perfor-
mance degradation in the double-digit percent-
age range. If we look at code examples like the
PLT code generated for ELF shared libraries,
the impact is even bigger. Over the last gen-
erations of S/390 systems attempts to reduce
this impact led to building certain kinds of by-
passes into the pipeline. Especially theload
andload addresstype instructions, which gen-
erate all their side-effects in the early stages of
the pipeline and which are frequently used in
pointer intensive code, got those bypasses. The
result of aload addresstype instruction is gen-
erated in the AA stage and ready after C1, and
can be bypassed with a 1 cycle delay to the AA
stage of a directly following instruction.

210 • GCC Developers Summit

0 1 2 3 4 5 6 7 8 9 10 11
ar r2,r3 DC AA C1 C2 E1 WR
l r2,0(0,r2) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 1: Address Generation Interlock, first example

0 1 2 3 4 5 6 7 8 9 10 11
la r2,0(r2,r3) DC AA C1 C2 E1 WR
l r2,0(0,r2) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 2: Address Generation Interlock, second example

(Please see Figure 2.)

The result of aload type instruction is ready
after the C2 stage and can be bypassed with
a 2 cycle delay to the AA stage of a directly
following instruction.

(Please see Figure 3.)

All other instructions suffer a 4 cycle penalty
if setter and user are issued back to back. To
avoid this, we use in the recent GCC imple-
mentation the new DFA based scheduler.

To describe the behavior of the pipeline, we
only need to define the last two stages. Down
below we shortly show part of description of
the z900 pipeline.

(define_automaton "z_ipu")
(define_cpu_unit "z_e1" "z_ipu")
(define_cpu_unit "z_wr" "z_ipu")

(define_insn_reservation "z_la" 1
(and (eq_attr "cpu" "z900")

(eq_attr "type" "la"))
"z_e1,z_wr")

(define_insn_reservation "z_load" 1
(and (eq_attr "cpu" "z900")

(eq_attr "type" "load"))
"z_e1,z_wr")

(define_insn_reservation "z_int" 1
(and (eq_attr "cpu" "z900")

(eq_attr "atype" "reg"))
"z_e1,z_wr")

(define_insn_reservation "z_agen" 1
(and (eq_attr "cpu" "z900")

(eq_attr "atype" "agen"))
"z_e1,z_wr")

The 4-cycle hazard of the pipeline due to
AGI, the 1-cycle bypass for theload address
type instructions and the 2-cycle bypass for
load type instructions are described using the
define_bypass construct.

(define_bypass 5 "z_int,z_agen"
"z_agen,z_la,z_load" "s390_agen_dep_p")

(define_bypass 3 "z_load"
"z_agen,z_la,z_load" "s390_agen_dep_p")

(define_bypass 2 "z_la"
"z_agen,z_la,z_load" "s390_agen_dep_p")

With all this in place, GCC does a good job
scheduling within a basic block. The places
where we still see for certain code a non-
optimal scheduling are as follows:

At the beginning of a basic block, the state of
the DFA is reset. With GCC 3.4, the second
scheduling pass is placed after basic block re-
ordering. Since the reordering will lead to a
high probability that a basic block is entered
from the immediately preceding basic block,

GCC Developers Summit 2003 • 211

0 1 2 3 4 5 6 7 8 9 10 11
l r2,0(0,r3) DC AA C1 C2 E1 WR
l r2,0(0,r3) DC AA C1 C2 E1 WR
ar r4,r2 DC AA C1 C2 E1 WR

Figure 3: Address Generation Interlock, third example

this could be used to improve scheduling. In-
stead of resetting the state at the beginning of
the basic block, the state from the end of the
last basic block scheduled could be used as ini-
tial state.

This uncovers another problem with the
current way the DFA is defined. The
define_bypass mechanism only influ-
encesinsn_cost , which is used to set up
the priority a insn is scheduled with. Also
insn_cost is used to find out when a insn
is ready, depending on the instructions already
scheduled in the current basic block. However,
this information is not actually part of the state
of the DFA itself, and due to that the detection
of AGI hazards cannot be achieved solely by
looking at this state.

If GCC will use more and more of the DFA-
based algorithms for scheduling, like global
scheduling, the DFA should be built to model
all resources. In our specific case, in order to
detect AGIs, this needs to include the general
register file. To model the AGI behaviour, we
need to define a RR type instruction allocating
the source register in the E1 stage and allocat-
ing the destination register in the AA, C1, C2,
E1, WR stages. A RX type instruction allo-
cates the address registers in the AA stage, the
source register in the E1 stage and the destina-
tion register in the AA, C1, C2, E1, WR stages.
In case of aload type instruction the destina-
tion register is only allocated in the AA, C1 and
C2 stage, for aload addresstype instruction in
the AA and C1 stage. Having this in place, the
DFA would be sufficient for detecting the AGI
hazard.

This all would need some kind of new syn-
tax, in order to refer to the registers an in-
struction is using. Also, it would definitely not
work before register allocation, since the num-
ber of states and transition could not be han-
dled. Even after register allocation, it remains
to be seen whether the the number of states and
transisiton is managable. In our case, each in-
struction may use up to 16 registers, and will
use up to two for addressing.

5 Conclusion

GCC on the IBM mainframe is a mature com-
piler that is in widespread use as the system
compiler for all Linux on zSeries distributions.
The efficiency of the generated code is compet-
itive with other compilers for our platform.

However, there is still room for improvement.
We will continue to work on the S/390 back
end in order to fully exploit all features the
architecture provides. We also remain com-
mitted to add support for future generations of
the zSeries processor as soon as those become
available.

References

[1] ESA/390 Principles of Operation, IBM
Document Number SA22-7201-07, 2000.
http://publibfp.boulder.
ibm.com/cgi-bin/bookmgr/
BOOKS/dz9ar007

[2] z/Architecture Principles of Operation,
IBM Document Number SA22-7832-01,

212 • GCC Developers Summit

2000.
http://publibfp.boulder.
ibm.com/cgi-bin/bookmgr/
BOOKS/dz9zr001

[3] LINUX for S/390 ELF Application Bi-
nary Interface Supplement, IBM Docu-
ment Number LNUX-1107-00, 2001.
http://oss.software.ibm.
com/linux390/docu/l390abi0.
pdf

[4] LINUX for zSeries ELF Application Bi-
nary Interface Supplement, IBM Docu-
ment Number LNUX-1107-00, 2001.
http://oss.software.ibm.
com/linux390/docu/lzsabi0.
pdf

[5] E.M. Schwarz et al.The microarchitec-
ture of the IBM eServer z900 processor,
IBM Journal of Research and Develop-
ment Vol. 46 No 4/5, 2002.

Building and Using a Cross Development Tool Chain

Robert Schiele
rschiele@uni-mannheim.de

Abstract

When building ready-to-run applications from
source, a compiler is not sufficient, but li-
braries, an assembler, a linker, and eventually
some other tools are also needed. We call the
whole set of these tools a development tool
chain. Building a native tool chain to build ap-
plications for the compiler’s platform is well
documented and supported. As clusters be-
come more and more widespread, it becomes
interesting for developers to use the enormous
CPU power of such a cluster to build their ap-
plications for various platforms by using cross
development tool chains.

We describe how a development tool chain is
structured and which steps have to be taken by
its parts to build an executable from source.
We also evaluate whether the characteristics of
each step imply that a special version of this
tool is needed for the cross development tool
chain. Furthermore, we explain what has to
be done to build a complete cross development
tool chain. This is more involved than building
a native tool chain, because intrinsic dependen-
cies that exist between some parts of the tool
chain must be explicitly resolved. Finally, we
also show how such a cross compiler is used
and how it can be integrated into a build envi-
ronment on a heterogeneous Linux/Unix clus-
ter.

1 Motivation

1.1 Unix Standard System Installations

Although in recent years some Unix vendors
stopped shipping development tools with their
operating systems, it is still quite common on
most systems to have a C compiler, an assem-
bler and a linker installed. Often system ad-
ministrators use these tools to compile applica-
tions for their systems when binary packages
are not available for their platform or when the
setup of the binary package is not applicable to
their local setup. For such scenarios, the sys-
tem compiler is quite sufficient.

1.2 Development Usage

Although this so-called system compiler can
also be used by a software developer to build
the product he is developing on and is often
done, this is in most cases not the best solution.

There are several reasons for not using the sys-
tem compiler for development:

• In development you often have a large
number of development machines that
can be used in a compiler cluster to
speed up compilation. Tools for this pur-
pose are available, asdistcc by Mar-
tin Pool,ppmake from Stephan Zimmer-
mann with some improvements from my
side, or many other tools that do simi-
lar things. The problem is that when us-
ing the system compiler, you can only use

214 • GCC Developers Summit

other development machines that are of
the same architecture and operating sys-
tem because you cannot mix up object
files generated for different platforms.

• As a developer, you normally want to sup-
port multiple platforms, but in most cases,
you have a large number of fast machines
for one platform, but only a few slow
machines for another one. If you used
only the system compiler in that case, you
would end up in long compilation times
for those platforms where you only have a
few slow machines.

• Last but not least, you often also want
to build for a differentglibc release
etc. than the one installed on your sys-
tem for compatibility reasons. This is also
not possible for all cases with a system
compiler pre-configured for your system’s
binutils release and other system specific
parameters.

1.3 Compiling for a Foreign Platform

We can solve all those problems by making
clear to ourselves that a compiler does not nec-
essarily have to build binaries for the platform
it is running on. A compiler where this is the
case, like the system compiler, is called a na-
tive compiler. Otherwise, the compiler is called
a cross compiler.

We also need a cross compiler for bootstrap-
ping a new platform that does not already ship
a compiler to bootstrap a system with. But this
cannot really be a motivation for this paper, as
people that bootstrap systems most likely do
not need the information contained in this pa-
per to build a cross development tool chain.

In the following section we will show some
basic principles of a development toolchain,
how the single parts work and whether their

characteristics require them to be handled spe-
cially when used in a cross development tool
chain. In section 3, we will show what must
be done to build a complete cross development
tool chain and what are some tricks to work
around some problems. In section 4, we show
how to integrate the cross development tool
chain into build systems to gain a more effi-
cient development tool chain. Finally, we will
find some conclusions on our thoughts in the
last section.

2 How a Compiler Works

To understand how a compiler works and thus
what we have to set up for a cross compiler,
we need to have a look at the C development
tool chain. This is normally not a monolithic
tool that is fed by C sources and produces exe-
cutables, but consists of a chain of tools, where
each of these tools executes a specific transfor-
mation. An overview of this tool chain can be
found in Figure 1. In the following, I will show
those parts and explain what they do.

This section is not intended to provide a com-
plete overview on compiler technology, but
does only discuss some principles that help
us to understand why cross development tool
chains work the way they do. If you would
like to have some detailed information about
compiler technology, I recommend reading the
so-called Dragon book [ASU86].

2.1 The C Preprocessor

The C preprocessor is quite a simple tool. It
just removes all comments from the source
code and processes all commands that have
a hash mark (#) on the first column of
any lines. This means, for example, it in-
cludes header files at the position where we
placed#include directives, it does condi-
tional compiling on behalf of#if . . . direc-

GCC Developers Summit 2003 • 215

C source file

C preprocessor (cpp)

C preprocessed source file

C compiler (cc1) — frontend

intermediate language

C compiler (cc1) — backend

assembler file

assembler (as)

object file

linker (ld)

executable
?

?

?

?

?

Figure 1: tool chain

tives and expands all macros used within the C
source code. The output of the C preprocessor
is again C source code, but without comments
and without any preprocessor directive.

Note that most programming languages other
than C do not have a preprocessor. It should
be noted that preprocessor directives and espe-
cially macros make some hackers to produce
really ugly code, but in general, it is a quite
useful tool.

It can easily be seen that the C preproces-
sor itself should not be platform dependent,
as it is a simple C-to-C-translator. But in
fact, on most systems the preprocessor defines
platform-specific macros like e.g.__i386__
on an ia32 architecture, and it must be con-
figured to include the correct platform specific
header files. Apart from that, in many compil-
ers the preprocessor is integrated into the ac-

tual C compiler for performance reasons and to
solve some data flow issues. Because of these
reasons, the C preprocessor is actually not re-
ally platform-independent.

2.2 The C Compiler

The actual C compiler is responsible for trans-
forming the preprocessed C source code to as-
sembler code that can be further processed by
the assembler tool. Some compilers have an in-
tegrated assembler, i.e. they bypass the assem-
bler source code, but compile directly to binary
object code.

We can divide the compiler into a front end and
a back end, but you should note that in most
cases these two parts are integrated into one
tool.

2.2.1 The Compiler Front End

The front end is responsible for transforming
the C source code to some proprietary inter-
mediate language. This intermediate language
should be ideally designed to be independent
of both the source language and the destina-
tion platform to allow easy replacements of the
front end and the back end. Because of that
reason the front end is independent of the des-
tination platform.

2.2.2 The Compiler Back End

The back end does the translation of the in-
termediate language representation to assem-
bler code. As the assembler code is obviously
platform-dependent, the back end is as well.

This results in the fact that although the front
end is platform-independent, the whole C com-
piler is not because it is an integration of both

216 • GCC Developers Summit

the front end and the back end, where the latter
is not independent.

2.3 The Assembler

The assembler is the tool that translates assem-
bler code to relocatable binary object code. Re-
locatable means that there are no absolute ad-
dresses built into the object code, but instead,
if an absolute address is necessary, there are
markers that will be replaced with the actual
address by the linker. The object code files in-
clude a table of exported symbols that can be
used by other object files, and undefined sym-
bols that require definition in a different object
file. As both the input and the output of this
tool is platform-specific, the assembler obvi-
ously depends on the platform it should gen-
erate code for.

2.4 The Linker

The linker can be considered the final part in
the development tool chain. It puts all binary
object code files together to one file, replac-
ing the markers by absolute addresses and link-
ing function calls or symbol access to other ob-
ject files to the actual definition of the symbol.
Some of those object files might be fetched
from external libraries, for example the C li-
brary. We do not explain how linking to shared
objects works, as it just makes things a bit more
complicated, but does not make a real differ-
ence on the principles that are necessary to un-
derstand the development tool chain. The re-
sult of this tool is normally an executable. For
the same reasons as with the assembler, the
linker clearly depends on the destination plat-
form.

More detailed information on the principles of
linkers can be found in [Lev00].

3 Building the tool chain

As we now have some basic knowledge about
how a development tool chain is structured, we
can start building our cross development tool
chain. We can find both the C preprocessor and
compiler in thegcc package [GCC], which is
the most commonly used compiler for Linux
and for many other Unix and Unix-like plat-
forms.

We use the assembler and linker from the
GNU binutils package [Bin]. As an alterna-
tive linker for ELF platforms, there is the one
from the elfutils by Ulrich Drepper, but this one
is in a very early point in its life cycle, and
I would not currently recommend using these
tools for a productive environment. For the
GNU assembler, there are also various alterna-
tives available, but as changing an assembler
does only a straightforward translation job and
thus, no improvements of the results are to be
expected, it is not worth integrating another as-
sembler into the tool chain.

These are all tools for our tool chain, but we
are still missing something: As every C appli-
cation uses functions from the C library, we
need a C library for the destination platform.
We will useglibc [Gli] here. If we wanted
to link our applications to additional libraries,
we would need them also, but we will skip this
part here. The essential support libraries for
other gcc supported languages like C++ are
shipped and thus built withgcc anyway.

The following examples are for building a
cross development tool chain for a Linux sys-
tem with glibc on a PowerPC. The cross
compiler is built and will run itself on a Linux
system on an ia32 architecture processor. Al-
though something might be different for other
system combinations, the principles are the
same.

GCC Developers Summit 2003 • 217

3.1 The Binutils

The simplest thing to start with is the binutils
package because they neither depend on the
gcc compiler nor on theglibc of the des-
tination platform. And we need them anyway
when we want to build object files for the des-
tination platform, which is obviously done for
the glibc , but evengcc provides a library
with some primitive functionality for some op-
erations that are too complex for the destina-
tion platform processor to execute directly.

From a global point of view we have depen-
dencies between the three packages as shown
in figure 2.

binutils

gcc glibc
�

�
�

��

@
@

@
@I

-
�

Figure 2: Dependencies between the packages

So we fetch a binutils package, unpack it
and create a build directory somewhere—it
is recommended not to build in the source
directory—where we then call

../binutils-2.13.90.0.20/configure
--prefix=/local/cross
--enable-shared
--host=i486-suse-linux
--target=powerpc-linux

We set the prefix to the directory we want
the cross development tool chain to be in-
stalled into, we enable shared object support,
as we want that on current systems and we tell
configure the host platform, i.e. the plat-
form the tools are running on later, and the
target platform, i.e. the platform for which
code should be generated by the tools later.
Afterwards, we run a quickmake, make
install , and the binutils are done.

As long as there is not a hard bug in the used
binutils package, this step is quite unlikely to
fail, as there are no dependencies to other tools
of the tool chain we build. For the follow-
ing parts we should expect some trouble be-
cause of intrinsic dependencies betweengcc
andglibc .

From this point on, we should add thebin/
directory from our installation directory into
$PATH, as the following steps will need the
tools installed here.

3.2 A Simple C Compiler

Now we run into the ugly part of the story:
We need a C library. To build it, we obvi-
ously need a C compiler. The problem is now
thatgcc ships with a library (libgcc) that in
some configurations depends on parts of the C
library.

For this reason, I recommend building the C
library and all the other libraries on a native
system and copying the binaries to the cross
compiler tool chain or using pre-built binaries,
if possible. If you build a cross compiler that
compiles code for a commercial platform like
Solaris, you have to do so anyway, as you nor-
mally do not have the option to compile the
Solaris libc on your own. If you decide to
build the C library with your cross compiler,
continue here, otherwise skip to building the
full-featured compiler.

binutils gcc

simplegcc glibc

6

?HH
HHH

HHHY

-
�

�

Figure 3: Dependencies with simple C com-
piler

We cannot build a full-featured compiler now,
as the runtime libraries obviously depend on

218 • GCC Developers Summit

the C library. This cycle in the dependency
graph can be seen in figure 2. We can resolve
this cycle by introducing a simple C compiler
that does not ship these additional libraries, so
that we get dependencies as shown in figure
3. But because of the reason mentioned above,
for most configurations we cannot even build a
simple C only compiler. That means we can
build the compiler itself, but the support li-
braries might fail. So we just start by doing

CFLAGS="-O2 -Dinhibit_libc"
../gcc-3.2.3/configure
--enable-languages=c
--prefix=/local/cross
--target=powerpc-linux
--disable-nls
--disable-multilib
--disable-shared
--enable-threads=single

and then starting the actual build withmake.
The configure command disables just ev-
erything that is not absolutely necessary for
building the C library in order to limit the pos-
sible problems to a minimum amount. Some-
times it also helps to set theinhibit_libc
macro to tell the compiler that there is no libc
yet, so we add this also. In case the build com-
pletes without an error, we are lucky and can
just continue with building the C library after
doing amake install before.

Otherwise, we must install the incomplete
compiler. In this case, the compiler will most
likely not be sufficient to build all parts of the
C library, but it should be sufficient to build the
major parts of it, and with those we might be
able to recompile a complete simple C com-
piler. We have to iterate between building this
compiler and the C library, until at least the C
library is complete.

The installation of an incomplete package can
be either done by manually copying the built

files to the destination directory, by removing
the failing parts from the makefiles and contin-
uing the build afterwards, or by just touching
the files that fail to build. The last option forces
make to silently build and install corrupted li-
braries, but if we have this in mind, this is not
really problematic, as we can just rebuild the
whole thing later and thus replace the broken
parts with sane ones.

The simplest way of installing an incomplete
compiler when using GNUmake is calling
make and make install with the addi-
tional parameter-k so thatmake automati-
cally continues on errors. This will then just
skip the failing parts, i.e. the support libraries.

3.3 The C Library

After having built a simple C compiler, we can
build the C library. It has already been said that
this might be necessary to be part of an iterative
build process together with the compiler itself.

To build theglibc we also need some ker-
nel headers, so we unpack the kernel sources
somewhere and do some basic configuration by
typing

make ARCH=ppc symlinks
include/linux/version.h

Now we configure by

../glibc-2.3.2/configure
--host=powerpc-linux
--build=i486-suse-linux
--prefix=

/local/cross/powerpc-linux
--with-headers=

/local/linux/include
--disable-profile
--enable-add-ons

GCC Developers Summit 2003 • 219

and do the usualmake andmake install
stuff.

Note that the-host parameter is different
here to the tools, as theglibc should actu-
ally run on the target platform and not, like the
tools, on the build host. The-prefix is also
different, as theglibc has to be placed into
the target specific subdirectory within the in-
stallation directory, and not directly into the
installation directory. Additionally, we have
to tell configure where to find the ker-
nel headers and that we do not need profil-
ing support, but we want the add-ons like
linuxthreads enabled.

In case that building the fullglibc fails be-
cause building the C Compiler was incomplete
before, the same hints for installing the in-
complete library apply that where explained
for the incomplete compiler. Additionally, it
might help to touch the filepowerpc-linux/

include/gnu/stubs.h within the installa-
tion directory, in case it does not exist yet. This
file does not contain important information for
building the simple C compiler, but for some
platforms it is just necessary to be there be-
cause other files used during the build include
it.

After installation of the glibc (even the
incomplete one), we also have to install
the kernel headers manually by copying
include/linux to powerpc-linux/

include/linux within the installa-
tion directory and include/asm-ppc to
powerpc-linux/include/asm . The latest
kernels also wantinclude/asm-generic

to be copied topowerpc-linux/include/

asm-generic . Other systems than Linux
might have similar requirements.

3.4 A Full-featured Compiler

After we have a complete C library, we can
build the full-featured compiler. That means
we do now again a rebuild of the compiler,
but with all languages and runtime libraries we
want to have included.

With a complete C library, this would be no
problem any more, so we should manage to do
this by just typing

../gcc-3.2.3/configure
--enable-languages=

c,c++,f77,objc
--prefix=/local/cross
--disable-libgcj
--with-gxx-include-dir=

/local/cross/include/g++
--with-system-zlib
--enable-shared
--enable-__cxa_atexit
--target=powerpc-linux

and again doing the build and installation by
make andmake install .

4 Using the Tool Chain on a Clus-
ter

We now have a full-featured cross develop-
ment tool chain. We can use these tools by
just putting thebin/ path where we installed
them to the system’s search path and calling
them by the tool name with the platform name
prefixed, e.g. for callinggcc as a cross com-
piler for platformpowerpc-linux , we call
powerpc-linux-gcc . The tools should
behave in the same way the native tools on the
host system do, except that they produce code
for a different platform.

But our plan was to use the cross compiler on a
cluster to speed up compilation of large appli-

220 • GCC Developers Summit

cations. There are various methods for doing
so. In the following we will show two of them.

4.1 Using a Parallel Virtual Machine (PVM)

We receive most scalability by dispatching all
jobs that produce some workload to the nodes
in the cluster.make is a wonderful tool to do
so. A long time ago, Stephan Zimmermann
implemented a tool calledppmake that be-
haved like a simple shell that distributed the
commands to execute on the nodes of a cluster
based on PVM. He stopped the development of
the tool in 1997. As I wanted to have some im-
provements for the tool, I agreed with him to
put the tool under GPL and started to imple-
ment some improvements. You can fetch the
current development state from [ppm], but note
that the documentation is really out of date and
that I also stopped further development for sev-
eral reasons.

If you want to use this tool, you just have to
fetch the package, build it and tellmake to
use this shell instead of the standard/bin/sh
shell by setting themake variableSHELL to
the ppmake executable. Obviously you have
to set up a PVM cluster before make this work.
Information on how to set up a PVM cluster
can be found at [PVMa]. To gain something
from your cluster you should also do parallel
builds by specifying the parameter-j on the
make command line.

For example, if you had a cluster consisting of
42 nodes configured in your PVM software and
ppmake installed in/usr/ , you call

make -j 42
SHELL=/usr/bin/ppmconnect
...

instead of just

make ...

CVS head revision replacedppmconnect by
the integrated binaryppmake.

There is also a script provided in the package
that does most of these things automatically,
but I do not like the way this script handles the
process, so I do not use it personally, and such
it is a bit out of date recently.

Note that there is a similar project [PVMb] by
Jean Labrousse ongoing which aims at in in-
tegrating a similar functionality directly into
GNU make. You may want to consider look-
ing at this project also.

You should note that it is necessary for this ap-
proach that all files used in the build process
are available on the whole cluster within a ho-
mogenous file system structure, for example
by placing them on a NFS server and mount-
ing on all nodes at the same place. Addition-
ally, it is necessary that all commands used
within the makefiles behave in the same way
on all nodes of the cluster. Otherwise, you
will get random results, which is most likely
not what you want. This means you should
always call the platform-specific compiler ex-
plicitly, e.g. by powerpc-linux-gcc in-
stead ofgcc , and the same releases of the com-
piler, the linker and the libraries should be in-
stalled on all nodes.

4.2 Using withdistcc

The biggest disadvantage of the method de-
scribed above is that it relies on central file
storage and on identical library installations on
all nodes. You can prevent these constraints
at the cost of limiting the amount of work-
load that will be distributed among the nodes in
the cluster to the compilation and assembling
step. Preprocessing and linking is done directly
on the system where the build process was
started and thus not parallelized. Only compi-
lation jobs are parallelized, all other commands

GCC Developers Summit 2003 • 221

are directly executed on the system, where the
build process was invoked. Although this lim-
its the amount of workload that really runs in
parallel, this is in most cases not a real prob-
lem, as most build processes spend most of
their time with compilation anyway.

The advantage of this approach is that you only
need to have the cross compiler and assem-
bler on each node. Include files and libraries
are necessary only on the system on which the
build is invoked.

Such an approach is implemented in Martin
Pool’s distcc package [dis]. This tool is a
replacement for thegcc compiler driver. Pre-
processing and linking is done almost in the
same way the standard compiler driver does,
but the actual compile and assemble jobs are
distributed among various nodes on the net-
work.

Although this solution obviously gives not the
same amount of scalability, as not all jobs can
be parallelized, it is for most situations a better
solution, as from my experience it seems that
many system administrators are not capable of
installing a homogenous build environment on
a cluster of systems.

5 Conclusion

Finally, we can conclude that it is not really dif-
ficult to build and use a cross development tool
chain, but in most cases, building the whole
tool chain is not as simple as described in
the compiler’s documentation because building
cross development tool chains is not as well
tested as building native tool chains are. Thus,
you should expect numerous minor bugs in the
code and in the build environment. But with
some basic knowledge about how such a sys-
tem works and, thus, what the source of those
problems is, in most cases they can be easily
fixed or worked around.

At least if you have an amount of systems for
office jobs idling almost all of their time, it is
worth investing some time for building up such
an infrastructure to use their CPU power for
your build processes.

As this is a tutorial paper, its contents are
intended for people that do not have exten-
sive konwledge on the topic described to help
them understanding it. If you think something
is unclear, some information should be added
or you find an error, please send a mail to
rschiele@uni-mannheim.de .

References

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman.
Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Read-
ing, MA, 1986.

[Bin] GNU Binutils.
http://sources.redhat.
com/binutils/ .

[dis] distcc: a fast, free distributed C and
C++ compiler.http://distcc.
samba.org/ .

[GCC] GCC Home Page—GNU Project—
Free Software Foundation (FSF).
http://gcc.gnu.org/ .

[Gli] GNU libc.
http://sources.redhat.
com/glibc/ .

[Lev00] John R. Levine.Linkers and Load-
ers. Morgan Kaufmann Publishers,
340 Pine Street, Sixth Floor, San
Francisco, CA 94104-3205, 2000.

[ppm] SourceForge.net: Project Info—
PVM Parallel Make (ppmake).
http://sourceforge.net/
projects/ppmake/ .

222 • GCC Developers Summit

[PVMa] PVM: Parallel Virtual Machine.
http://www.epm.oml.gov/
pvm/ .

[PVMb] PVMGmake. http:
//pvmgmake.sourceforge.
net/ .

Optimal Stack Slot Assignment in GCC

Naveen Sharma Sanjiv Kumar Gupta
System Software Group

HCL Technologies Ltd
Noida, India–201301

{naveens, sanjivg}@noida.hcltech.com

Abstract

Several microprocessors, used in digital signal
processing and embedded devices, have lim-
ited displacement (4-6 bit) in “register + off-
set” addressing mode. In some cases, only
auto increment/decrement addressing modes
are available. Hence, while accessing data on
local frame, there are number of explicit in-
structions whose sole purpose is to reach the
desired data. This paper describes the impact
of layout of local variables on performance and
code size for these architectures. It also de-
scribes the techniques for optimal assignments
of stack offsets such that instructions for ad-
dress arithmetic for access of local variables
are minimized. The implementation of the
techniques in GCC is also discussed. Results
indicate an improvement of 2%-7% in code
size and 5-9% improvement in execution tim-
ings for several benchmarks.

1 Introduction

The use of micro-processors in embedded de-
vices has been growing. The complexity of
applications that run on these processors has
increased proportionately. This makes the use
of HLLs such asC/C++ almost inevitable for
writing these applications. Therefore, the com-
piler has to address the special architectural is-
sues normally found on these processors.

One prominent issue is the restrictive ad-
dressing modes in these processors. Many
of the architectures have limited offsets, if a
’reg+offset’ addressing mode is available or
just the auto increment/decrement modes. Ac-
cessing data beyond reachable offset incurs ex-
tra instructions. While this cannot be avoided
in all cases, local frame is one area where
we can improve data layout to subsume the
address arithmetic. This freedom can lead
to subtle benefits both in terms of perfor-
mance and code size. This flexibility is use-
ful regardless of target; the benefits, however,
are most apparenet for processors that have
limited displacement capability (such asSH,

ARM-Thumb, PA-RISC).

GCC currently does not allow to reorder items
in local frame. The document first disccusses
the problems that arise due to this. The solution
strategy and the implementation are discussed
subsequently.

2 Problem Description

The stack allocation scheme in GCC needs im-
provements. In the present scheme, the objects
are allocated on top of current frame when an
allocation is required. AnRTX of the of the
form

(mem:mode (plus (fp) (const_int
offset)))

224 • GCC Developers Summit

is associated with it. A hard offset is thus as-
signed to it at the very beginning. This scheme
results in the following problems.

• Increased code size

• Alignment holes and thus larger runtime
frames.

• Performace degradation due to cache
thrashing for certain applications.

We first explain the impact of frame layout on
code size, taking the example of SH architec-
ture. The SH architecture has a limitation of
four bit offset in the ’offset + register’ address-
ing mode(@(k, rm)) . The 4-bit offset is
zero extended and multiplied by 1, 2 or 4, ac-
cording to the operand size (being a byte, word
or long). Hence a maximum of 64 bytes can
be accessed from a base register using this ad-
dressing mode. In cases where higher offsets
need to be accessed, the compiler adjusts the
registerrm, so that a given reference lies within
desired displacement. Hence if we want to ac-
cess location, say, (72, fp) on SH, the assember
output looks like:

mov fp , r1 !Extra register
add #72, r1 !Addition
mov.l @r1, r2 !Actual Load

Notice the worst case costs involved when
accessing data beyond addressable offsets in
frame.

• The cost to spill the registers for
temporary stack base pointer of ar-
ray/structure/class (spillreg).

• The cost to copy the frame pointer.
(fpcopy).

• The cost to add the offset to temporary
base pointer (regadd).

• The cost to restore the temporary base
pointer after use (regrestore).

For floating point data SH allows pre-
decrement, post-increment and indexed ad-
dressing modes (r0 being the sole legal index
register). Similar problems are imminent there
too.

As another example, consider this piece of
code in which a large array is placed at begin-
ning of the frame.

void func(void)
{

float foo[16];
int l,m,n;
putval(&l,&m,&n);
l=m+n;
func1(l,m,n);

}

GCC produces this code for statementl=m+n
for SH, when we don’t reorder anything on
frame.

mov r14,r1 !frame pointer r14 --> r1
add #68,r1 !reaching "m"
mov.l @r1+,r5 !m --> r5 and reaching "n"
mov.l @r1,r6 !n --> r6
mov r5,r4 !m --> l
add r6,r4 !m+n -->r4 (stored to "l")

Note that frame layout is "foo, l, m, n"; so
offsets assigned to these relative to the frame
pointer are 0, 64, 68 and 72 respectively.

Ideally, if stack was laid out differently with
following layout "l, m, n, foo", GCC generates
the following code.

mov.l @(4,r14),r5 ! m --> r5
mov.l @(8,r14),r5 ! n --> r6
mov r5,r4 ! m --> r4
add r6,r4 ! n+r4 --> r4

GCC Developers Summit 2003 • 225

Notice the benefits by this simple reordering.
First, a decrease in Code Size beacuse nbe-
causef instructions, whose sole purpose is to
reach data in local frame, are reduced. Sec-
ondly Register "r1" in above example remains
free to be utilized elsewhere. Thirdly reduc-
tion in frame size in the general case because
ordered layout will lead to lesser alignment
holes. In cases when a large array on local
frame is unused, we can significant stack space
if we do not allocate it at all. (Array foo in the
above example).

Last, if compiler allows frame object to be
placed flexibly, the cache performance of ap-
plications might also be improved.

We propose two improvements in way GCC al-
locates local objects. The first improvement is
the way the stack slots are represented inter-
nally and secondly the algorithms to assign ac-
tual offsets to address these problems.

3 Approach to the problem

The problem of offset assignments can be
viewed in different ways. We can view
this problem as similar to register allocation.
Drawing analogy from the fact that compiler
generates IL1 code assuming infinite regis-
ters and allocates actual hard registers later,
we can generate IL assuming infinite displace-
ment and later map it to machine dependent
displacement. While this mapping takes place
we try to assign frame items within “fast ac-
cess window” based on the interference graph
of stack slots.[Burlin] describes a technique on
lines of graph coloring. However, the approach
has some implementation problems. Register
allocation has significant differences with off-
set assignment inspite of apparent sin spiteties.
Some obvious differences that need to be taken
care are

1IL:Intermediate language or RTL in case of GCC

• Size of frame items is variable unlike reg-
isters which are of fixed size.

• Spilling has a different meaning than in
traditional allocation.

• Graph coloring usually performs better
for register sets numbering more than 16.
While considering limited displacements,
the algorithm seemed expensive.

These and several others problems are de-
scribed by [Burlin].

The most popular approach for offset assign-
ment is described by [Liao]. This approach is
described for auto increment/decrement modes
and can be adjusted to accomodate limited dis-
placemenaccommodates occurence of adjacent
accesses asoccurrenceto frame layout.

3.1 Solution Strategy

3.1.1 The stack pseudos

It was obvious that current representation of
stack slots had several problems. It made
reshuffling objects in the stack virtually impos-
sible. An rtx of the form

(mem:mode (reg/f/c:Pmode slot))

is taken as the representation of a frame object.
The slot is a stack address(or a stack pseudo).
It is similar to virtual register but with slightly
different semantics. We return a rtx of this
form for each requested stack slot. Note that
the special flag/c is used to tell that this is
stack address pseudo. The register allocator
should not try to allocate any hard reg for this
because it is already a known stack slot.After
register allocation, we sort the allocated stack
slots by size and number of references and con-
vert it to normalfp+offset form.

226 • GCC Developers Summit

3.1.2 The Access Graph

An access graph is derived from a basic block.
It gives the relative benefits of assigining adja-
cent locations for assigningof local variables.
Given a insn sequence, an access sequence
can be defined from it. Given an opera-
tion set(r3 op (r1 r2)) , the access se-
quence is r1, r2, r3. The access sequence for
an ordered set of operations is just a concate-
nated sequence of each individual operation.
The access graph G(V, E) is derived from ac-
cess sequence by adding edges corresponding
to adjacent access between variables. Instead
of an adjacent access, we take the limited off-
set window to add the edges. For each repeated
adjacent access, update the weight associated
with an edge. At the end, we have a possi-
bly disjoint graph, representative of benefits of
placing variables within a same displacement
window.

This access graph can be extended to model the
entire procedure with the help of data flow in-
formation.. The access graphs of basic blocks
have to merge. Let us consider the scenario
shown in Figure 1. Assume that probability
of execution of basic blocks B2 and B3 is p2,
p3 respectively. Further, since B3 is in a loop
let us assume it has frequency of executionf .
Then the following heuristics apply.

1. For access sequences in B3, the weight as-
signed while connecting adjacent variable
accesses is proportional tof .

2. Weights assigned while connecting stack
variable accesses between B1, B2 and B3
is proportional to probabilities p2 and p3.

These heuristics ensure that access graph takes
into account the locality of accesses across en-
tire procedure. From this information, we can
determine placement of variables on the stack
to minimize large displacements.

3.1.3 Use Data Flow Information

Another strategy is to use information built by
flow analysis pass of the compiler. GCC builds
data flow information regarding pseudo regis-
ters. This includes the attribute REG_FREQ
which is the estimated frequency of the refer-
ence of the pseudo. Since stack slots are no
diferent, this information is generated for dif-
ferent can use this information for frame lay-
out by placing most frequently referenced vari-
ables near the frame.We tried the following
heuristics:

1. sort the stack slots by size first

2. place the most frequently referenced vari-
ables together near the frame

3.1.4 Stack Reorganization Pass

A stack reorganization optimization pass is in-
troduced after register allocation and is called
as a subroutine during the reload phase2. This
new pass primarily takes care of stack lay-
out of variables. Stack assignments are made
for pseudo registers based on locality of us-
age.It was observed that stack reorganization
will have little effect before reload because
most of the stack allocations are from within
reload. So next possibility was to place it af-
ter reload pass. But replacing stack pseudos
with their normal form after reload turns out to
be complicated because validation of changed
rtx’s becomes part of stack reorganization, a
task that reload is already doing. So calling
stack reorganization from within reload turns
out out be simpler and reload’s code need not
be repeated.

The algorithm is based on method given by
[Liao]. The algorithm starts with the insn chain

2Post register allocation pass that handles the spills

GCC Developers Summit 2003 • 227

of the function being compiled. The routine
Construct_Access_Graph converts into a graph
G(V, E) where V is number of variable accesses
in a basic block and E is number of edges. An
edge will exist between two variables v1 and
v2 if they are accessed adjacently and the fre-
quency of the adjacent access is recorded in the
edge. Then algorithm uses a greedy approach,
where it tries to add the edges with maximum
weight adjacent to each other in spanning tree
E’. The routine Traverse_And_Assign_Offsets
takes this spanning tree as input and assigns
offsets to variables in stack.

INPUT: The insn chain of the function.
OUTPUT: Offset Assignment on the Stack.

G (V, E)<-- Construct_Access_Graph (L);
/* G is a graph with local variables

(V) as nodes and E is the number of
edges. */

Es: sorted list of edges in descending order
of weight.

/* The weight of an edge between <v1, v2> is
frequency/relative gain of their adjacent
access. */

G’(V’, E’): V’<--V, E’<--NULL;

while (|E’| < |V| -1 && Es != NULL)
{

/* Choose first edge. */
e = Es[1];
/* Remove it from Edge List */
Es = Es - e;

if ((e does not cause a cycle in G’)
&&(e does not cause and node in V’
to have degree > 2)

add e to E’;
else

reject e;
}

/* Now the best disjoint path cover
is available. */

Traverse_And_Assign_Offsets(E’)

3.2 Benchmark Results

The performance improvement by frame re-
ordering depends on the following factors.

1. Size of the local frame.

B1

B2 B3

Figure 1: A sample control flow

2. Number of accesses of variables moved
near the frame.

3. Frame layout heuristics.

In the best cases, the execution perfromace
could go as high as 9%. The results for SH4
processor are shown here. The base version
used for benchmark measurements GCC-3.3.
The compiler options are ’-O2 -ml m4’. A
new option namely-fstack-reorg is in-
troduced to enable stack reorganization. Ta-
ble 1 gives size comparisons of stress1.17 files
with and without stack reorganization. The
Heuristics used are while frame layout are
those of section 3.1.3. It is clear that in most
cases, we have a decrease in code size. Some
benchmarks show slight code size increase due
to noise in reload phase.

The execution results for some benchmarks
are shown in Table 2. Only those benchmark
which have variation in execution timings are
shown. One undesirable side effect, which is
probably the main cause of performance degra-
dation, is the harm done to loop optimizer be-
cause stack addresses are not exposed to it. A
loop optimization pass after reload phase could
possibly fix this problem.

228 • GCC Developers Summit

File size decrease
Name size (stack-reorg) (%)
revolt.o 5956 5508 7.52
l3psy.o 15024 13968 7.03
mission.o 16972 15820 6.79
blocksort.o 4960 4640 6.45
advdomestic.o 8152 7640 6.28
explode.o 7916 7468 5.66
advmilitary.o 14844 14140 4.74
dogmove.o 10436 9956 4.60
lndsub.o 13820 13276 3.94
compress.o 4968 4776 3.86
physics.o 9020 8700 3.55
jidctflt.o 928 896 3.45
navion_gear.o 2040 1976 3.14
mhitm.o 22528 21824 3.13
r_segs.o 4384 4416 -0.73
q_shared.o 7966 8030 -0.80
g_phys.o 7396 7460 -0.87
tonal.o 10832 10928 -0.89
regex.o 24012 24268 -1.07

Table 1: Code Size Comparisons

Input Data Gain
Benchmark Size (%age)
gsm Compression 1.71 MB 8.29
gsm decompression 361 KB 5.60
jpeg(dct int) 3.25 MB -1.04
jpeg (dct float) 3.25 MB -0.38
djpeg(dct int) 328 KB 4.73
djpeg (dct float) 328 KB -2.05
gzip 80 MB 0.01
gunzip 16.2 MB 0.7

Table 2: Execution Timings

4 Acknowledgements

We would like to thank the GCC developer
community for help. Their support is in-
valuable. We specially thank Zack Weinberg,
Toshiyasu Morita, and Joern Rennecke for im-
plementation ideas and comments.

References

[Liao] S.Liao and S.DevdasStorage Assign-
ment to Decrease Code Size, MIT De-
partmenet of EECS, Cambridge MA
(1995).

[Burlin] Johny BurlinOptimizing Stack Frame
Layout for Embedded Systems, Informa-
tion Technology Computing size depart-
ment, Uppsala University, Sweden.

[GCC] GCC Internals Manual
http://gcc.gnu.org

Getting the Best From G++

Nathan Sidwell
CodeSourcery LLC

nathan@codesourcery.com

Abstract

The 3.0 series of G++ compilers and libraries
offers a new multi-vendor ABI and increas-
ing conformance to the C++ standard. The
C++ ABI offers increased efficiency for C++
idioms and interoperability with other compil-
ers. Features of the ABI that the G++ user
should be aware are described. Both additional
and deprecated features in versions 3.2, 3.3 and
3.4 are described. Using various source idioms
to aid the G++ optimizers and loading process
is shown. The process of tracking the C++
standard as both defect reports and C++0X be-
come available is outlined.

1 The 3.0 ABI

Starting with G++ 3.0 a new C++ ABI is
provided. This multi-vendor ABI [2] came
from development of an Itanium port of GCC,
which included the design of a C++ ABI for
the Itanium processor. That ABI was de-
signed by CodeSourcery, EDG, Compaq, HP,
Intel, Red Hat and SGI. Although designed for
one architecture, the C++ ABI is sufficiently
abstracted from Itanium features to allow its
use for other processors, and hence the multi-
vendor C++ ABI came about.

The 3.0 ABI is a complete redesign of the
G++ ABI, which leads to space and speed
improvements. The previous G++ ABI had
evolved over time as C++ itself stabilized. ABI
improvements include,

• Empty structures take zero size when used
as a base class.

• Tail padding can be overlaid for non-POD
bases and members.

• Derived to base conversions are constant
time for both single and multiple inheri-
tance. Conversion to a non-virtual base,
requires a fixed adjustment and a single
access of the vtable is needed to convert
to a virtual base. Having virtual base
offsets held in the vtable reduces the ob-
ject size overhead for virtual inheritance.
In most programs virtual inheritance does
not increase the size of an object, because
nearly all classes with virtual bases have
virtual functions too. Previously a virtual
base would add a pointer member to each
class that derived from it, and base con-
version involved following an inheritance
path, which could involve several member
accesses.

• Pointers to member functions are smaller,
and dispatching via them is faster, because
the vtable pointer is always at the start of
an object.

• Virtual function thunks are all emitted
with the thunked to function. This gives
better cache coherency, and permits mul-
tiple entry point optimizations for thun-
ked functions.1 These improve the per-
formance of the virtual function calling

1G++ does not currently implement multiple entry
point optimizations.

230 • GCC Developers Summit

mechanism. The thunk mechanism is
such that even overriding from a virtual
base is fast, with a single adjustment us-
ing one access into the vtable.

• Covariant return thunks are specified, and
implemented in G++. Again, these are
emitted with the overriding function that
required their emission, and so have the
cache coherency improvements and multi-
ple entry point optimization opportunities
of the simpler thunks.

• Dynamic cast hints are generated by
the compiler, and improve the speed of
dynamic_cast in common cases. In
most cases the speed ofdynamic_cast
is now linear in the number of bases be-
tween the dynamic object type and the tar-
get type of the cast.

• Runtime type comparison is constant
time, which further improvesdynamic_
cast and catch matching. Previously,
type comparison involved string compar-
ison.

• Exception handling is a two phase pro-
cess. The first phase locates a catch han-
dler, and only when one is found is the
stack unwound to that handler. If a han-
dler is not found,std::terminate
can be called in the throwing context, and
hence help debugging.

• A new mangling scheme that uses a com-
pression algorithm. This produces shorter
names, and so improves link and load
times.

Additional improvements in G++ 3.0 were,

• The std namespace became a real
namespace, rather than an alias for the
global namespace.

• A new implementation of the standard
template library, which is properly con-
tained in thestd namespace.

• Type based aliasing is enabled at opti-
mization level-O2 .

These changes effect user code to varying ex-
tents. Other than speeding up code, the new
ABI should result in no user visible changes.
Of course, all programs and libraries will need
to be recompiled. If the user relied on ABI fea-
tures, then a program might be effected.

1.1 Shared Libraries

The ABI makes use of a link facility that
ELF [3] supports called common data. The
common data linkage is used for objects that
have no well defined object file in which to
place them. The C++ ABI relies on com-
mon data linkage to implement the constant
time comparison of types. This requires the
names of type information objects to be glob-
ally visible. Libraries are effected because the
type information objects must be visible to user
programs. Shared libraries that are resolved
at load time by the runtime loader, and those
opened explicitly withdlopen , as is com-
monly done for program plugins, are effected
in the same way. Static libraries are also ef-
fected, but the impact on real programs has
not been so great. The link and loading speed
of all three kinds of libraries can be improved
by the mechanisms described here. A library
makes available, or exports, to user programs a
set of names. It also has to specify, or import,
those names it uses from other libraries. Both
importing and exporting use the same mecha-
nisms and the remainder of this paper simply
refers to exporting. If the library wishes to
dynamic_cast or throw exceptions across
the library interface, it must export type infor-
mation names, so that the common linkage is

GCC Developers Summit 2003 • 231

achieved. More complicated export require-
ments require other types of names to be ex-
ported.

Because C++ has no module system, the li-
brary programmer cannot indicate at the source
level which types, functions and objects are to
be exported. The library is forced to export all
symbols, to ensure the user can access the ex-
ported functionality. There are proposals [5]
to add module facilities to the language. It is
desirable to indicate a subset of the names as
available to users of the library. The currently
available mechanism for doing this is symbol
versioning [4].

The simplest solution is to export all exter-
nal names from the shared library. Unfortu-
nately this has two disadvantages. Firstly pro-
gram load times are increased because the dy-
namic linker must resolve all these symbols in
order to eliminate duplicates with the already
loaded program. Secondly, it exposes the in-
ternal names of the library implementation that
have global scope. Sometimes those names can
conflict with the user’s names, or those in other
libraries used in the program.

The solution to name conflict is to put the in-
ternal names into a library specific namespace.
For instance, have the exported library func-
tionality in a ‘FooLib ’ namespace, and the
internal names in a ‘FooLib::Internal ’
namespace. Unfortunately it can be difficult to
retro fit such a solution to an existing library
that is not namespace aware.

For a simple shared library, where no runtime
type information is transfered across its inter-
face, it is simply necessary to export the library
interface functions. For a more complicated
library, it is necessary to export the type in-
formation names, and potentially some of the
internal names. This can be done by exam-
ining the names in the library object files us-
ing nm and using a pattern matcher to extract

the important ones. The G++ ABI mangles
all names with an initial ‘_Z’, followed by the
mangled name. Certain prefixes are placed be-
tween the ‘_Z’ and the mangled name, for par-
ticular kinds of names. These are,

TV Vtables. Pointed to by polymorphic ob-
jects and those with virtual bases. These
are termed dynamic classes in the ABI.

TT Vtable table. Used in constructing and de-
structing polymorphic objects with virtual
bases. Not all polymorphic classes will
need a vtable table.

TI Type information. Returned bytypeid
operator, pointed to by the vtable.

TS Type string. Returned bytype_info::
name, and used for type comparisons.

GV Guard variable. Used to guard the ini-
tialization of function scope static objects
that are dynamically initialized. The name
of the static object will be the same as the
guard variable without the ‘GV’ prefix.

Th, Virtual function thunks. These are fol-
Tv , lowed by a mangling of the thunk infor-
Tc mation, and then the mangling of the thun-

ked to function. The second prefix letter
indicates whether it is a fixed, virtual or
covariant thunk.

The vtable, vtable table, type information and
type string are not tightly bound to any partic-
ular object file by the language, and so have
common data linkage. Potentially any object
file that uses them could contain their defini-
tion. The C++ ABI has an optimization where
the class to which they belong has a non-inline
virtual function, the first of which is called a
key function. In that case, all these objects
are only emitted in the object file that contains
the definition of the key function. Other ob-
ject files will not contain these objects, as it can

232 • GCC Developers Summit

be determined that their definition will be pro-
vided elsewhere. Libraries can be effected by
this because, although it might not matter that
two instances of a particular object were used
in a program, a user program can rely on a def-
inition it knows is in the library.

The type information objects will need ex-
porting, to share type information, as user
programs which use the type fordynamic_
cast or catching, will need to refer to them.
Sometimes these are emitted with internal link-
age, in which case they refer directly or indi-
rectly to an incomplete type. Such instances
shouldnotbe exported. Type comparison itself
uses the address of the type string. It is neces-
sary for that string to be shared by all instances
of the same type. If they are not exported,
the type comparison algorithms will consider
two types with the same name to be different
types. Therefore, external names beginning
with ‘_ZTI ’ and ‘_ZTS’ should be exported
from the library.

If the library exposes inlinable constructors or
destructors of dynamic classes to users of the
library, it is necessary for the library to export
the vtable and vtable table.

If the library exports constructors to the user,
all the user callable virtual functions of the
class and its ancestors must be exported. Al-
though virtual functions are normally called
via the vtable (and therefore their names are
not needed, just the index in the vtable), by ex-
posing the constructor it might be possible to
determine the dynamic type of an expression at
compile time. Should the compiler do that, it
may elect to replace a virtual call with a direct
call, and hence require the name of the virtual
function.

Static objects in inlinable functions that are ex-
posed in library header files will cause prob-
lems. The static objects’ names must be ex-
ported, so that only one becomes live in the

final executable. Only static objects with a
dynamic initialization expression will have a
guard variable.

If the library exports types that can be inher-
ited from, then the type information object,
all user callable member functions of the class
and all virtual functions and thunks must be
exported. The class members will be man-
gled, following any applicable prefix, as a
scoped name of the form ‘N<classname>
<membername>E’. Both the classname
and membername components are mangled
as a numeric length followed by the name, such
as ‘6FooLib ’.

Here is an example library header file, showing
what needs to be exported, depending on the
functionality provided.

#include <exception>
#include <new>

namespace NMS {
namespace Internal {

// Helper we do not wish to expose
// Do not export
class Helper
{
public:

Helper () {......};
virtual int Frob () throw ();

};

} // namespace Internal

// Export type info _ZTIN3NMS5ErrorE
// Export type string _ZTSN3NMS5ErrorE
class Error

// Import std::exception typeinfo
: public std::exception

{
friend class Widget;
// Do not export, library creates
Error () throw () {}
public:
// Do not export, it is inline
virtual ~Error () throw () {};
// Do not export, called virtually
virtual char const *what () const

throw ();
};

// Export Widget if it is inheritable
class Widget

// Export direct & indirect bases,
// if Widget is inheritable.
: Internal::Helper

{
private:

// Do not export, library creates
Widget () throw ();

GCC Developers Summit 2003 • 233

public:
// Do not export, called virtually
virtual ~Widget () throw ();

public:
// Do no export, called virtually
virtual int Action () throw (Error);

public:
// Export, user can call
// _ZN3NMS6Widget3NewEv
static Widget *New ()

throw (std::bad_alloc);
};

} // namespace NMS

Because the only way of constructing a
‘NMS::Widget ’ object is by calling ‘NMS::
Widget::New ’, users of the library will
always have to use the virtual call mech-
anism to call ‘NMS::Widget::~Widget ’
and ‘NMS::Widget::Action ’, so those
two functions do not need to be exported.
Both NMS::Error ’s type information and
type string need exporting so that user pro-
grams can successfully catch such an object.

1.2 Library Compatibility

Linking C++ objects from different compilers
involves more than just the C++ ABI. If the
programs use the standard library, then the li-
brary versions must be compatible too. The
multi-vendor ABI does not specify the binary
compatibility of the library, as that would be
too constraining on implementations. The ABI
specifies a small runtime support library, nec-
essary to implement the core C++ language.
G++ provides that as a separately selectable
libsupc++ . The full library is also provided
automatically aslibstdc++ . The G++ 3.0
implementation is a complete redesign of the
library. The new library is more standard con-
formant, and this has lead to some issues with
user code,

• The ‘std ’ namespace must now
be explicitly noted. For example,
‘vector<int> foo; ’ does not

compile. ‘vector ’, along with every-
thing else, is in the ‘std ’ namespace.
Previously, G++ also found it in the
global namespace, so programs compiled
whether ‘vector<T> ’ or ‘ std::
vector<T> ’ was used. Another com-
mon instance of this problem is using
plain ‘cout « "Hello World" «
endl; ’ The solution is to recognize
the failure mode and insert ‘std:: ’
appropriately.

• IO is slower. According to the C++
standard, by default, the standard C++
streams, ‘std::cin ’, ‘ std::cout ’
and ‘std::cerr ’, have to be synchro-
nized with the standard C file streams,
‘stdin ’, ‘ stdout ’ and ‘stderr ’, so
that use of corresponding pairs of streams
can be intermixed. A clever trick al-
lowed the previous C++ library to over-
lay its stream classes on the underly-
ing C library’s file structure,but only
for one specific C library. With the
change in the G++ ABI, and better
standard conformance, that trick became
impractical to maintain. The stan-
dard allows users to explicitly decou-
ple the C and C++ file IO operations
by calling, ‘std::ios::sync_with_
stdio (false) ’ before any IO has
happened on the standard streams.

Another issue with ‘std::cin ’ and
‘std::cout ’ is that they are synchro-
nized with each other. C++ requires that,
by default, intermixed input and output
will display in the correct order. This
synchronization can be removed by call-
ing ‘std::cin.tie (0) ’. C does not
have such fine grained synchronization on
‘stdin ’ and ‘stdout ’, these are nor-
mally only synchronized at newline char-
acters.

C++ IO is more expressive than that pro-

234 • GCC Developers Summit

vided in C, and because the C++ library is
implemented on top of the C library, C++
IO will never be faster than C IO. Work is
ongoing in improving IO performance.

• Iterators do not have pointer types. Some
code presumes that iterators are imple-
mented as pointer types, and contain code
such as ‘&myIterator ’, expecting to
get a ‘T ** ’. Because the previous li-
brary implemented them as such, that
code ‘worked’, even though that imple-
mentation is neither required nor guaran-
teed by the standard. Now iterators are
implemented as templated classes, which
gives better type safety, but breaks such
erroneous code. Code which assumes
the underlying representation of an iter-
ator can be forced to work simply by
&*myIterator , as the* operator will
provide a reference to the iterated object,
whose address can be taken.

2 What is in G++ 3.3

The multi-vendor ABI is very complicated and
its first G++ implementation in G++ 3.0 turned
out to have some bugs. Several of the defects
were discovered in time for G++ 3.2. More is-
sues have been discovered since then, by test-
ing interoperation with other compilers and by
using CodeSourcery’s testsuite. It is very in-
convenient to change the ABI, as that means
that all object files and libraries need to be re-
compiled with the new compiler. Some ABI
bugs merely effect inter-operation with other
compilers, and are unimportant to a signif-
icant user base. Rather than force an ABI
change on all users, G++ implements two flags
to warn about ABI discrepancies and to select
ABI version. The-Wabi flag warns when
G++ is emitting code or data that is known to
be at variance with the multi-vendor ABI. The
-fabi-version=<n> flag allows the user

to specify which set of known ABI fixes to in-
clude. The current default version is 1. When-
ever an ABI bug is discovered, code for both
options is added to the compiler, and the warn-
ing code is backported to the previous stable
release branch, for a subsequent minor release.
Of course, because time machines are nonexis-
tent, it is not possible to backport it to the pre-
viously released version. All known ABI fixes
can be selected with-fabi-version=0 .
Which fixes that includes depends on the ver-
sion of G++, so using this value implies that the
same version of G++ must be used to compile
all the object files and libraries of a program.
When a sufficiently stable set of fixes has
been implemented, another ABI version num-
ber will be added, and-fabi-version=2
will be selectable. It is likely that G++ 3.4 will
implement such an ABI version number, but it
is undecided whether that will be made the de-
fault value. Version 0 will still be selectable,
to obtain all the subsequent fixes added after
version 2 has been stabilized.

G++’s implementation of the standard template
library has not yet stabilized. Because the li-
brary exposes much of its implementation in
header files containing class, inline function
and template definitions, it is very difficult to
improve the library without changing some-
thing that effects binary compatibility. There
are no planned library ABI changes between
the 3.2 and 3.3 releases. However, the 3.4 re-
lease will not be binary compatible, and the
shared object version number has been incre-
mented. Because it is provided as a shared
library, and the version number has changed,
users will get a link error, rather than myste-
rious runtime failures, if they attempt to mix
versions.

One of the more significant changes in G++ 3.3
is the removal of the implicit typename exten-
sion. The extension was deprecated in G++
3.2, and elicited a warning at every use. In
a template class, names from dependent bases

GCC Developers Summit 2003 • 235

are not visible when the template is defined—
they are only looked up at instantiation time.
G++ had an extension that made names visi-
ble before instantiation, so G++ knew which
were types and which were not. The standard
requires that those that name a type be referred
to using thetypename keyword and qualified
name.

template <typename T>
class Base
{

typedef int Type;
typedef int Other;

};

typedef unsigned Other;

template <typename T>
class Derived : public Base<T>
{

Type a; // Implicit typename use.
// Standard conforming way.
typename Base<T>::Type b;
Other c; // Which Other?

};

The implicit typename extension became
impossible to keep when updating G++’s
parser to be more conformant. The extension
is also problematic in itself. In the example,
when instantiating ‘Derived ’ for some par-
ticular type ‘U’, ‘ Base<U>’ might have a spe-
cialization for which ‘Base<U>::Type ’ is
not anint , or even a type. Another confusion
is shown in the example by the use of ‘Other ’
in ‘Derived ’. If the implicit typename exten-
sion is in operation, it will be ‘Base<T>::
Other ’, whereas without it, it should find
‘ ::Other ’. Having a program’s meaning
change between two valid interpretations by
changing a command line flag (-pedantic),
is really bad—better to remove the extension.

2.1 Optimization

Previously G++ had a named return value ex-
tension to help functions that returned a class
by value. Because returning a class value re-
quires a copy of the return value into the area

provided by the caller, such functions would
invoke a copy constructor just before returning.
The idea of the named return value extension
was to allow the programmer to use that area
directly and avoid the copy. This extension did
not work with template functions, and has been
removed. In its place is the return value opti-
mization, which notices when a function is re-
turning a temporary by value, and will directly
construct the temporary in the return area.

2.2 Exception Specifications

G++ 3.2 had poorer inlining performance than
desired. It would not make sensible choices
about what to inline, and the inlining process
could lead to long compile times and large
compiler memory size. This has been fixed
by taking advantage of ‘throw () ’ exception
specifications. If none of the functions called
by a particular function can throw exceptions,
the inliner can do a better job.

Exceptions specifications can also be used to
reduce the size of a program. In the following
program,CLASS1, CLASS2, FOOand BAZ
can be defined to be empty, or ‘throw () ’.
The code and exception data sizes for various
combinations using G++ 3.2 for i686-pc-linux-
gnu producing optimized code is shown in Ta-
ble 1. The ‘Check’ column indicates whether
the-fno-enforce-eh-specs option was
used.

struct Class1
{

int m;

Class1 () CLASS1;
~Class1 () CLASS1;

};

236 • GCC Developers Summit

Exception specification
CLASS1 CLASS2 FOO BAR Check Code Data Total Overhead
throw () throw () throw () Either Either 63 0 63 -
throw () throw () None Either No 83 92 175 178%
None None throw () Either No 95 88 183 190%
None None None None Either 103 104 207 226%
None None None throw () Yes 137 113 250 296%

Table 1: Exception Overhead Example

struct Class2
{

int m;

Class2 () CLASS2;
~Class2 () CLASS2;

};

void Foo () FOO;

void Baz () BAZ
{

Class1 c1;
Class2 c2;

Foo ();
}

The worst case is a factor of 4 in program size,
however the more common case is probably
the penultimate line of the table where none
of the functions have an exception specifica-
tion. The -fno-enforce-eh-specs op-
tion tells G++ not to add code to a function
to check that it is throwing only the excep-
tions listed in its exception specification. A
correct program will only throw such excep-
tions, so such checking code is behaving as
assert macros. However it is notoriously
difficult to exercise exceptional paths in pro-
gram flow. The author has used a custom allo-
cation library to rigorously test allocation fail-
ures in a command line application, to good ef-
fect.

Such a small example might be skewed to give
large overheads—it has no real code in it, and
nothing can be inlined. Two C++ libraries of

about 30,000 lines of code each were exam-
ined. One was a low level utility library, and
the other a higher level 3D toolkit. Both li-
braries have been written with exception speci-
fications on every function, most of which were
no-throw, but many were allocation failure ex-
ceptions. Each library was compiled in three
different ways:

• With exception specifications, but with
-fno-enforce-eh-specs enabled
to remove the exception checking code.

• With exception specifications and with ex-
ception checking enabled.

• With throw defined as a varadic
‘ throw(...) ’ macro, so that the ex-
ception specifications were removed.
With no exception specifications,
checking exception specifications
would have no effect on code size,
so -fno-enforce-eh-specs would
make no difference.

Table 2 shows that the overhead is between
11% and 18%. The code size of a checked
exception specified library is larger than that
of the library without exception specifications,
because of the number of non-empty exception
specifications. G++ is not clever enough to no-
tice whether functions that have a non-empty
exception specification only call functions that
can throw the listed exception types—it still

GCC Developers Summit 2003 • 237

Exceptions Utility Library 3D Library
Specs Checked Code Data Total Overhead Code Data Total Overhead
Yes No 147871 23037 170908 - 219124 49422 268546 -
Yes Yes 158000 35070 193070 13% 238691 77538 316229 18%
No Either 150760 39685 190445 11% 224646 83306 307952 15%

Table 2: Library Exception Overhead

emits code to verify. A suitable optimiza-
tion will be able to remove that extra checking
code. The same is not true of the extra code
added when there are no exception specifica-
tions. That code has been added to destroy lo-
cal variables that will go out of scope, should
an exception be thrown. The compiler can-
not determine only from a function declaration
with no exception specification that the func-
tion will not actually throw an exception, so it
must presume the worst and emit appropriate
destruction code.

When the body of a function is visible, G++
can determine if it does not throw by noting
whether it calls a function that could throw,
or contains athrow expression. If it can-
not throw, G++ will optimize appropriately. In
the small example above, such analysis could
only be done on ‘Baz ’, and the specification
checking code can be deleted as unreachable,
if all the other functions have a ‘throw () ’
exception specification. Both 3.2 and 3.3 will
remove this unreachable code, but 3.3’s com-
pile time performance will be better, as it no-
tices much earlier in the translation process
that the checking code is unreachable. G++
cannot currently tell whether an exception will
be caught inside the function, so appropri-
ate ‘throw (...) ’ exception specifications
should be added to function declarations and
function definitions that contain ‘try ...
catch ’ clauses.

One final note about code size. A static
image of ‘Hello world’ is surprisingly large.
For instance, the program ‘int main ()
{return 0;} ’ has a static code size of

289,281 bytes on the author’s gnu-linux sys-
tem. Both C and C++ sources gave the same
size. The size is a glibc [8] issue, not a GCC
problem. Glibc is not designed to be used as
a static library, and embedded systems should
use an alternative library.

3 What Will be in G++ 3.4

G++ 3.42 will feature a much better parser,
which correctly deals with more ambiguous
parsing situations than G++ 3.3 does. C++ has
an ambiguous grammar where a construct can
look like both a declaration and an expression,
it is not until deep within the statement that the
parser can tell which one it is. The previous
Bison [6] based parser could not deal with sev-
eral cases that were reasonably common. Bi-
son parsers deal with LALR(1) [7] grammars,
but C++ is not such a grammar. The Bison
based parser has some C++ specific hacks to
deal with some of the ambiguities. The new
parser is a handwritten recursive descent de-
sign, with arbitrary back tracking. Here is an
example, where as G++ 3.3 fails on every line
of ‘Foo ’, G++ 3.4 will parse them all.

struct A
{

A (int = 0);
};

2This section describes the development version of
G++ as at 28th April 2003. When 3.4 is released, it
might differ from what is described here.

238 • GCC Developers Summit

struct C
{

C (A, A = A ());
void oneFish () const;

};

A Foo (int thing1, int thing2)
{

C redFish (A (), A (1));
C blueFish (A (thing1), thing2);
C (A (2)).oneFish ();
return (A ());

}

Having a better parser is good, but it is also
more picky about name lookup in template def-
initions. Names can be looked up during tem-
plate definition and during template instantia-
tion. Depending on context, a name might be
looked up only during definition, or only dur-
ing instantiation, or both. This is called two-
stage name lookup. C++ programs developed
only with G++ are more than likely to have
template name lookup problems—switching to
the new parser will produce compilation errors.
There are two cases of interest, one involving
dependent bases and the other to do with argu-
ment dependent lookup (Koenig lookup).

The dependent base problem is similar to the
implicit typename issue that was removed in
G++ 3.3. Here is an example,

template<typename T>
struct Base
{

int count;
int total;

};

int count;

template<typename T>
class Derived : public Base<T>
{

// Wrong Thing
void Flangify ()
{

// 3.3 defers both to instantiation
// time and finds those in Base<T>.
// Should bind to ::count.
int ix = count;
// Error, should not be found.
int jx = total;

}

// Right Thing
void Flangicate ()
{

// Deferred to instantiation.
int ix = this->count;

}
};

As ‘Derived::Flangify ’ shows, the
compiler will give an error at template defi-
nition time, if a non-dependent name is not
found. Unfortunately, it could bind to an un-
intended object, which happens for ‘count ’.
‘Derived::Flangicate ’ shows the cor-
rect way of forcing name lookup of members
to be deferred until instantiation time. The id-
iom has the advantage of making explicit to
the programmer that the name refers to a mem-
ber. That members in dependent bases are not
searched for, unless preceded by ‘this-> ’,
is very surprising to programmers unfamiliar
with the rule. The intent is to allow more
checking and precompilation of template def-
initions, before instantiation, and only defer
to instantiation time those lookups that are
demonstrably dependent on a template param-
eter.

The other place effected by name lookup is
in function calling and argument dependent
name lookup. When a function is called us-
ing unqualified name lookup (something like
‘ foo (arg) ’, but it also happens on over-
loaded operators), the function is looked up in
the current scope as normal and in the classes
and namespaces of the arguments’ types. If the
arguments’ types are template dependent, that
part of the lookup is deferred until instantiation
time. The non-dependent part of the lookup is
done at definition time, and not repeated at in-
stantiation time. Here is an example,

namespace NMS {
class MyClass {};
void Foo (MyClass);

} // namespace NMS

GCC Developers Summit 2003 • 239

void Foo (int);

template <typename T>
void Bar (T thing)
{

Foo (1); // #1
Foo (thing); // #2

}

The first call, ‘Foo (1) ’, will find
‘ ::Foo (int) ’ at definition time. The
second call, ‘Foo (thing) ’, will find the
global ‘Foo ’ at definition time, but it will also
find ‘NMS::Foo (MyClass) ’ during the
instantiation of ‘Bar<NMS::MyClass> ’.
The two declarations of ‘Foo ’ are added
to the overload set, upon which overload
resolution is performed. Overload resolution
could be done at definition time for the first
call, as that does not contain any template
dependent expressions. At the current time,
the development version of G++ still defers
lookup for function calls until instantiation
time, and therefore does not have the correct
two-stage lookup behavior here.

Another impact of this, is that G++ will not
mangle some templated names correctly. In
some cases the mangling depends on know-
ing what is a dependent expression and what
is not. Without that knowledge, although the
manglings are unique, they do not adhere to
that specified by the ABI.

A lookup case that G++ still gets wrong is
where a name refers ambiguously to a mem-
ber of a dependent base and of a non-dependent
base. At definition time the dependent base
will be ignored and the name found unambigu-
ously in the non-dependent base. The ambi-
guity should notbe discovered at instantiation
time, as the lookup is not repeated. G++ will
repeat the lookup at instantiation time and dis-
cover an ambiguity.

template <typename T>
struct Wump
{

int zed;
};

struct Gump
{

int zed;
};

template <typename T>
struct Sneetch : Wump<T>, Gump
{

Sneetch ()
{

// Both 3.3 and 3.4 find an
// ambiguity at instantiation.
// Should bind to Gump::zed.
zed = 5;

}
};

Because G++ still does not do the correct two-
stage lookup for function call, some cases of
the first described name lookup issue can still
remain undetected. When the intent is to call
a member function of a dependent base, the
name lookup is incorrectly deferred until in-
stantiation time. Even if the function pa-
rameters are template dependent, a non-friend
member from a dependent base should not be
found—only those names found by argument
dependent lookup should be added at instanti-
ation time.

template<typename T>
struct Base
{

void Deflange ();
void Flange ();

};

void Deflange ();

template<typename T>
class Derived : public Base<T>
{

240 • GCC Developers Summit

// Wrong Thing
void Flangify ()
{

// 3.4 binds both of these to
// members of Base<T>
// Should bind to ::Deflange.
Deflange ();
// Error, should not be found.
Flange ();

}

// Right Thing
void Flangicate ()
{

// Deferred to instantiation.
this->Deflange ();

}
};

To get two stage lookup correct requires better
tracking of the symbol table so that, at instanti-
ation time, it is known what declarations are
visible at both the definition context and the
instantiation context. Whether this work will
be completed by the time 3.4 is released is un-
known.

4 Tracking the Standard

The C++ standard is an evolving document.
Since the 1998 C++ standard was released, var-
ious changes have been made. A Technical
Corrigendum 1 (TC1) is in the process of being
released. That bundles all of the accumulated
changes into single document. Issues can be
raised by anyone, and are collated via an email
list. Every six months, a global meeting of the
ANSI J16 and ISO WG21 [9] committees takes
place. These meetings are open to all interested
parties, and membership of J16 is not required.
Affiliation does effect voting rights. There are
three subgroups within those meetings,

• Core Working Group. This group deals
with issues in the core language (that doc-
umented in clauses 2 to 16). The core de-
fect reports are available [10].

• Library Working Group. This group deals
with issues in the libraries (clauses 17 to
27). The library defect reports are avail-
able [11].

• Evolution Working Group. This group
deals with extensions and other changes
to the language and library. The group
is currently considering what significant
changes should be made for the next
version of the standard, code named
‘C++0X’.

The output of the core and library working
groups are lists of defect resolutions. A re-
port may be deemed to be not a defect (the
standard requires no change). Alternatively the
standard may require clarification, or require
change. The wording of the changes is dis-
cussed and goes through a process of drafting
until it is ready to be accepted.

G++ aims to track the standard with its col-
lection of defect reports. We do not make a
distinction between the 1998 standard and the
standard plus defect reports. Active partici-
pation in the C++ standards meetings allows
the G++ maintainers to both know how defects
are likely to be resolved, and to influence that
process. When C++0X is released, G++ will
probably have a command line switch to select
which version of C++ is to be accepted (just as
either C89 and C99 can be selected between in
GCC).

Many people have suggested extensions that
G++ should accept. Often these proposals
are of the form ‘It would be neat if I could
write . . . ’, rather than a complete specifica-
tion. Such vague descriptions can prove prob-
lematical with a language as complicated as
C++—all the implications of an extension are
not apparent, even after some thought. Without
care, extensions can either silently change the
meaning of a C++ program, or fail in obscure

GCC Developers Summit 2003 • 241

ways under some circumstances. Several GCC
extensions have caused such problems when
ported to G++. Some of note are,

• It used to be possible for__PRETTY_
FUNCTION__ to participate in string
concatenation. Unfortunately this does
not fit well with templates, where the ex-
pansion of __PRETTY_FUNCTION__
depends on the instantiation, much
later than string concatenation occurs.
GCC has been changed throughout, so
that __FUNCTION__, __PRETTY_
FUNCTION__ and the C99 defined
__function__ all behave the same
way as constant arrays of characters.

• Variable length arrays have a type which
is not fixed at compile time. This causes
a problem withtypeid , because there is
no fixedstd::type_info object that
can be returned.typeid was changed to
return the type info for the array member
type. Also template deduction suffers, be-
cause the type has a size that is not fixed.
Template deduction will not deduce vari-
able length arrays by reference. They can
still be deduced as pointer types via the
normal array to pointer decay rule.

• GCC allows empty structures as a C ex-
tension, and gives them a size of zero.
C++ allows empty structures, but speci-
fies that their size is not zero. They have
a non-zero size to preserve the invariant
that no two objects of the same type have
the same address. GCC does not keep that
invariant for such empty types. Structures
that contain empty members will be laid
out differently in C and C++.

• The implicit typename extension de-
scribed above has now removed from
G++.

Because C++ extensions can have so many un-
seen consequences, the G++ maintainers re-
quire a very strong argument and implementa-
tion in favor of an extension, before accepting
it. Incompletely documented extensions lead
to problems in maintaining G++ [12].

5 Closing Remarks

C++ support in the 3.x versions of G++ has
improved considerably over that in the previ-
ous 2.x versions. Improving C++ conformance
is not without pain to users who have un-
knowingly been writing ill-formed C++. G++
aims to smooth the transition by deprecating
inappropriate features and giving a warning in
one version and then removing the feature in
the next version. When a new error message
is added, because of better standard confor-
mance, explanatory text might be added to help
the user correct their code.

Various improvements and ways that user pro-
grams can effect the quality and speed of com-
pilation have been described. Library writers
are particularly inhibited by the lack of a mod-
ule system, and workarounds are shown so that
library link time can be reduced.

There are still new optimization opportunities
in G++, for instance a multiple entry point
mechanism for thunks, so that multiple inher-
itance is even cheaper in both speed and code
size. Better exception tracking can be added to
remove unnecessary runtime checks.

References

[1] Programming Languages—C++,
ISO/IEC 14882:1998.

[2] Itanium C++ ABI, http://www.
codesourcery.com/cxx-abi/
abi.html .

242 • GCC Developers Summit

[3] System V Application Binary Inter-
face, http://www.caldera.com/
developers/gabi/ .

[4] Using GNU ld, http://sources.
redhat.com/binutils/docs-2.
12/ld.info/index.html .

[5] Pete Becker, Draft Proposal for Dy-
namic Libraries in C++,http://std.
dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1428.html .

[6] Bison Parser Generator, http:
//www.gnu.org/software/
bison/bison.html .

[7] Aho, Sethi, Ullman,Compilers: Prin-
ciples, Techniques, and Tools. Addison-
Wesley, 1986.

[8] Gnu C Library, http://www.gnu.
org/software/libc/libc.html .

[9] ISO/IEC Working Group 21
http://std.dkuug.dk/jtc1/
sc22/wg21/ .

[10] C++ Core Issues List, http:
//std.dkuug.dk/jtc1/sc22/
wg21/docs/cwg_active.html .

[11] C++ Library Issues List, http:
//std.dkuug.dk/jtc1/sc22/
wg21/docs/lwg-active.html .

[12] Zachary Weinberg, A Maintenance Pro-
grammer’s View of GCC, GCC Devel-
oper’s Summit, 2003.

StackGuard: Simple Stack Smash Protection for
GCC

Perry Wagle Crispin Cowan∗

Immunix, Inc.†

wagle@immunix.com, http://www.immunix.com/˜wagle

Abstract

Since 1998, StackGuard patches to GCC have
been used to protect entire distributions from
stack smashing buffer overflows. Performance
overhead and software compatibility issues
have been minimal. In its history, the parts
of GCC that StackGuard has operated in have
twice changed enough to require complete
overhauls of the StackGuard patch. Since
StackGuard is a mature technology, even see-
ing re-implementations in other compilers, we
propose that GCC adopt StackGuard as a stan-
dard feature. This paper describes our recent
work to bring StackGuard fully up to date with
current GCC, introduce architecture indepen-
dence, and extend the protection of stack data
structures, while keeping the StackGuard patch
as small, simple, and modular as possible.

1 Introduction

Despite years of punditry, source code au-
dits, and many layers of proposed technology,
buffer overflows arestill the leading cause of
software vulnerability. This paper describes
the motives and technical issues of incorporat-
ing the StackGuard [6] stack smash defense as
a standard feature of GCC.

∗This work supported by DARPA Contract F30602-
01-C-0172.

†nee WireX Communications, Inc.

Thestack smashingvariety of buffer overflow
[14] is its most common subtype, and the most
readily treatable. A stack smash attack gains
control of a thread in an address space by over-
writing control information—such as a return
address—on its stack.

The common way for the attacker to overwrite
values stored on the stack is to use abuffer
overflow, where large inputs are used to cause
more data to be written to an area of memory
than space has been allocated. StackGuard pro-
tects against stack smash attacks resulting from
buffer overflows, but also those resulting from
anysequential write through memory.

To detect corrupted control information in pro-
cedure activation records, StackGuard adds a
location that it calls a “canary”1 to the stack
layout to hold a special guard value. Tradition-
ally, the layout of that section of the stack has
been determined by functionprologueandepi-
loguecode generators, which are architecture
specific. As a result, StackGuardimplemen-
tations have also been architecture specific.
As time has passed, these parts of GCC have
become more abstract, requiring repeated re-
implementations of StackGuard, but the ability
to modify stack layout in a platform indepen-
dent way has been lacking.

A new version of StackGuard has been imple-

1Alluding to the canary Welsh miners used to detect
air problems before the miners could.

244 • GCC Developers Summit

mented for modern versions of GCC. It now
guardsall the information in the control re-
gion of all procedure activation records gener-
ated by the./gcc back end of the GCC com-
piler suite (C, C++,etc.). That is, the saved
registers and saved frame pointer are are now
protected in addition to the return address for
every procedure. Stack layout to provide the
canarylocation is still left to the architecture
specific function prologue and epilogue code
generators. The rest of StackGuard is now ar-
chitecture independent.

This new StackGuard has been successfully
used in conjunction with other security hard-
ening technologies to rebuild the Red Hat 7.3
distribution (GCC 2.96-113). The StackGuard
patch has also been applied to the source for
GCC 3.2-7 used in the Red Hat 8 distribution
to rebuild both the compiler and GLIBC.

In accordance with the principle of default
deny [15] StackGuard makes a point to apply
the guarding technology toeveryprocedure in
a distribution. In this fashion, StackGuard is a
security optimizationthat transformsall emit-
ted code to deny a class of attacks. It also
shows the soundness of the transformation by
showing that the distribution works the same
after the transformation as it did before. Pick-
ing and choosing which procedures receive the
transformation is aperformance optimization
that, based onassumptionsabout the nature
of the security threat, trades some security for
performance.

StackGuard strives to be the essence of the
“guard the control information” security opti-
mization that is capable of being applied to ev-
ery procedure on a system. Given the negligi-
ble performance impact of the complete trans-
formation [5, 7], we have never seen the need
to apply any additional performance optimiza-
tions. Unfortunately, there persists the mis-
taken impression that StackGuard produces a

significant performance impact [1].2

This paper describes the issues to be consid-
ered for including StackGuard as a standard
feature in GCC. In keeping with good modu-
lar design principles, we emphasize the consid-
erations specific to the stack smash detection
technique to keep that problem small and sepa-
rate. In particular, the guarding technology can
be used, with compiler support, to guard other
regions of memory. Its design and implemen-
tation should not be unnecessarily tied to the
specific use as a Stack Smash detector, though
that’s all that is discussed in this paper.

The rest of this paper is as follows. Section 2
describes compiler work to date on the buffer
overflow problem. Section 3 describes the de-
sign of our proposed feature for GCC. Sec-
tion 4 describes our current implementation of
this design in GCC 3.2. Section 5 presents
our performance benchmarks, supporting our
claim that this feature is low-cost. Section 6
describes our on-going security testing. Sec-
tion 7 presents our conclusion. Section 8 de-
scribes the availability of the StackGuard tech-
nology.

2 Background and related work

Aleph One’s paper [14] presented a cook book
for the “stack smashing” variety of buffer over-
flows, in which the attacker overflows a stack
buffer to change the return address in an acti-
vation record to point to malicious code con-
tained in that self same overflow. In the gen-
eral case, the attacker wants to inject mali-
cous code, and alter control flow structures so
that the program will jump to the malicious
code. The stack smash is an elegant attack that

2The performance issues shown in the Libsafe pa-
per result from selected benchmarks (quicksort) that
emphasize where StackGuard imposes overhead (func-
tion calls) and ignores where Libsafe imposes overhead
(string functions).

GCC Developers Summit 2003 • 245

achieves both objectives in a single stroke by
exploting a very common programming error
(weak bounds checking on fixed sized stack
buffers). However, the attacker onlyneedsto
change control flow, because subvertable code
(capable of performing the moral equivalent of
“exec(sh) ” for the attacker) is often already
resident in the victim program’s address space.

Since Aleph One’s paper appeared, there has
been a lot of work to defend against buffer
overflows, interceding in the operating sys-
tem [9, 8, 11, 17], system libraries [16, 1],
and compilers [6, 12, 13, 10, 19]. These tech-
niques variously try to prevent the modification
of control flow paths, prevent the injection of
malicious code, or both [7].

Because we are proposing a GCC enhance-
ment, we consider only compiler defenses.
Compiler defenses can in turn be divided into
array bounds checking (which prevents buffer
overflows, described in Section 2.1) and data
integrity checking (which detects buffer over-
flows in time to prevent attacks from succeed-
ing, described in Sections 2.2).

2.1 Bounds Checking

Array bounds checking is the ultimate way to
eliminate buffer overflows. Unfortunately, the
design and idioms of the C language make
it difficult to provide for fully secure array
bounds checking while preserving reasonable
legacy compatibility and reasonable perfor-
mance.

The Compaq C compiler for Tru64 UNIX [3]
is an example of incomplete protection. The
compiler has an option to perform bounds
checking, but it only does so onexplicit array
references; pointer references are not checked.
Since all arrays passed as function arguments
are converted to pointers, this means that ar-
ray bounds checking is effectively limited to

strictly local variables, and the security value
of the feature is low.

The Jones and Kelly GCC enhancement [12,
18] is an example of compromised perfor-
mance. This GCC enhancement provides com-
plete array bounds checking, even for pointer
references, and maintains the current size of a
pointer as a machine word. They achieve this
through an associative lookup on each pointer
reference to an array descriptor that stores the
base and bounds. Performance penalties are
high, approximately 10X to 30X slowdown.

The Bounded Pointers project [13] is an exam-
ple of compromised compatibility. Rather than
associative lookup, Bounded Pointers changes
pointers from a single word into a tuple that
incorporates base and bounds. This improves
performance by eliminating the associative
lookup in Jones and Kelly, but also costs com-
patibility because pointers no longer fit in a sin-
gle word. Performance penalties are still high
at approximately 5X slowdown. It is conjec-
tured that this slowdown could be substantially
reduced, but unlikely that the penalty would
reach the low percent range.

2.2 Integrity Checking

The first integrity checking mechanism was
Snarski’s libc [16] that checked the integrity of
activation records within libc functions. Stack-
Guard [6] generalized this notion with a com-
piler enhancement to check the integrity ofall
activation records. These methods ornament
activation records as they are built with data
structures that cannot survive stack smashing
attacks, so that when the function tries to re-
turn, it can detect that the activation record
has been corrupted. Upon detection, the pro-
gram issues an intrusion attempt alert and exits,
rather than handing control to the attacker.

There have been three major releases of Stack-

246 • GCC Developers Summit

Guard. StackGuard 1 was a patch to GCC
2.72, hooking directly into theprologue and
epilogue code generation functions to emit
StackGuard canary generation and verification
code into function set up and tear down. Stack-
Guard 2 was a complete re-write, providing an
enhancement to GCC 2.92, this time imple-
mented as modified RTL generation for func-
tion setup and tear down. StackGuard 3, pre-
sented here, is another complete re-write to ac-
comodate GCC 2.95 and newer.

There are two significant reimplementations of
StackGuard: Propolice and Visual C++.net.

OpenBSD’s Propolice implements something
very much like the StackGuard defense as an
enhancement to GCC, and provides a impor-
tant and very interesting contrast with its dif-
ferences:

• To a large extent, Propolice and Stack-
Guard have independently converged,
from opposite directions, on doing the
guarding code inserts at the RTL level.3

But they haven’t quite met in the middle—
Propolice does the inserts at a much ear-
lier pass in the compiler.

• Propolice places the canary word, as
a buffer overflowdetector, only at the
top of auto variable regions containing
“buffers”.4 StackGuard places the canary
word, as astack smashdetector, at the bot-
tom ofeverycontrol region.

• Propolice uses random canaries. Stack-
Guard uses terminator canaries.

• Propolice provides variable sorting—
moving somecharacter arrays above all

3Propolice started at the AST level, while Stack-
Guard started at the architecture specific function pro-
logue and epilogue backend level.

4Currently, this appears to be defined as character ar-
rays of greater than 4.

other data types—to make it difficult to
overflow into adjacentvariables. Stack-
Guard makes no assumptions about the
starting point of runaway sequential over-
writes of the stack, leaving security op-
timized stack layouts to separate mecha-
nisms, such as Propolice.

• Propolice appears to move significantly
towards a universal, architecture indepen-
dent, stack layout. It even goes as far as to
move saved registers into the autovariable
region. StackGuard goes to great pains to
try to leave the stack layout as close to the
way it was as possible.

• Propolice modifies far older versions of
GCC than StackGuard.5

Propolice’s design decisions present different
trade-offs than StackGuard:

• By doing the code inserts well before
sibling and tail recursion is recognized,
Propolice has no way to insert canary
checks before the function exits points
produced by the external branches. Stack-
Guard makes a point of doing these inser-
tions also.

• By depending on thecoincidentaladja-
cency of the autovariable region and the
control region on the stack, Propolice
gives the appearance of guarding the con-
trol region from buffer overflows that it
detects leaving the autovariable region.
But thisimplicit invariant isn’t maintained
across compositions with other security
and performance oriented transformations
that affect stack layout.

• The apparent strengths and weaknesses of
both terminator and random canaries are
discussed in Section 3.1.

5OpenBSD’s GCC 2.95.3 20010125vs.Redhat 7.3’s
GCC 2.96-113 and Redhat 8.0’s GCC 3.2.2-2.

GCC Developers Summit 2003 • 247

• Nothing requires string writes to start in
a char buffer. When an exploit finds such
an opportunity, Propolice will stop it only
if it’s lucky. StackGuard will stop it by
its design thatall stack smashes should be
detected.

• Propolice’s buffer overflow detector be-
comes quite different than StackGuard’s
stack smash detector when alternate stack
layouts, involving multiple stacks, stacks
growing upward, heap allocated stacks,
etc. are considered. Both are useful:
Propolice detects buffer overflows that
aren’t stack smashes, and StackGuard de-
tects stack smashes that aren’t buffer over-
flows.

• By moving saved registers into the auto-
variable region, Propolice appears to as-
sume that saved registers have the same
dynamic scope rules as autovariables.
This is not necessarily true for tail calls,
where it would be correct to restore saved
registers, but not correct, in general, to
deallocate autovariables.6

• Propolice’s changing of the stack layout
could disrupt other tools that do stack in-
trospection, such as GDB and JIT-styled
JVM’s.7 StackGuard goes to pains to be
invisible to such tools.

• It’s unknown how well Propolice ports
to current versions of GCC. StackGuard
strives to be its part of that work, done
completely and correctly.

Microsoft has also implemented [4] a feature
very similar to StackGuard which they call
the “/gs” feature in Visual C++.net. Compiler

6Some really clever tricks would be needed to sup-
port tail recursion from functions with autovariables, and
people have been known to build compilers that do that.

7As has happened with previous (but not current) ver-
sions of StackGuard.

implementation details are naturally closed
source, but the emitted code strongly resembles
StackGuard code. The comparison is gone into
more detail at various points in later sections.

Section 3 presents the StackGuard 3 design in
more detail.

3 Design

The purpose of StackGuard is to do integrity
checking on activation records, with sufficient
precision and timeliness that a program will
never dereference corrupted control informa-
tion in an activation record, which is written
to once on entry to a function, and read from
once on exit from a function.

Thethreatis that the attacker has the capability
to overwrite control information in some frame
on the stack via a sequential write operation—
such as a string copy or a memory copy—
starting from somewhere lower in memory
than thetarget. This permits the attacker to hi-
jack the thread to execute code of the attacker’s
choice. The desired code might be new code
supplied by this particular sequential write into
the stack, another sequential write into stackor
non-stackmemory, or else code that is already
in the address space that will do what the at-
tacker needs when branched to in this fashion.

We will assume that the attacker does not need
to inject code, but can use executable code al-
ready in the address space. This is a growing
technique in practice, and permits us to focus
on the most important part of the attack: over-
writing control information, particularly point-
ers to code, such as return addresses.

The attack works if it can rewrite the control in-
formation between the time it was written with
correct values to be saved and the time it was
later read assuming it contained correct values
of things to be restored.

248 • GCC Developers Summit

arg 1

arg 2

arg 3

return address

saved frame pointer

saved registers

CANARY

 s
ta

ck
 g

ro
w

th

top of stack

st
ri

ng
 g

ro
w

th

target of overflow here there be
monsters

protected region

unprotected region

detector

Figure 1: i386 Stack Layout

Thedefenseis to insert acanary location im-
mediately before the control information in
each frame on the stack. See Figure 1. Any
sequential write through memory, such as by
a buffer overflow, that tries to rewrite the con-
trol information will be forced to also rewrite
the canary location. Then the remaining prob-
lem is to make the value of the canary some-
thing that’s hard to spoof. The canary location
is initialized immediately after the control val-
ues are saved, andcheckedimmediately before
the control values are restored.

The control region is protected by virtue of the
fact that the canary is checked before each use
of the protected information. The arguments
sitting above that are used sooner than that, so
aren’t protected.

3.1 Types of Canaries

There are three kinds of canaries, each with a
different strength and weakness:

• terminator canaries detect runaway
strings, but is a known value.

• random canaries detect all sequential
memory writes that don’t know its secret
value.

• random XOR canaries are random ca-
naries that might also detect random-
access memory writes into the protected
region.

Terminator canaries leverage the observation
that moststackbuffer overflows involve string
operations, and not the memory copy opera-
tions almost always applied instead to heap al-
located objects, by using a value composed of
four different string terminators (CR, LF, Null,
and -1). The attacker can’t write the termina-
tor character sequence for the particular string
operation being used to memory and then con-
tinue writing, because one or more of the ter-
minator characters halt the string operation.

If the exploit gets to overwrite the canary more
than once, it can overwrite the protected con-
trol information on the first write, and then
reconstruct the canary value with consecutive
writes. It’s not known how rare multiple write
vulnerabilities are.

Any memory copy will be able to write the ter-
minator canary value.

Random canariesassume that the exploit can
sequentially write any value it wants and keep
going. So it forces the exploit to know a 32-
bit secret random number thats retrieved from
a global variable that’s initialized to a differ-
ent value each time the program is executed.
Memory protection techniques can be used to
protect the global from writing, such as isolat-
ing the global on its own page and bracketing
it with “red” (unmapped) pages. The exploit
might also be able to get the victim program to
tell it what the current random canary value is,

GCC Developers Summit 2003 • 249

having it read from either the stack or from the
global.

If the attacker can also deploy an exploit that
can read the random canary value from any-
place it might also reside in memory, then both
string and memory copies can easily overwrite
the correct value (unless it contains the appro-
priate string termination characters, and thus
less entropy).

Random XOR canariesassume that the ex-
ploit might be able to random-access write to
the location of some of the protected infor-
mation [2]. So in addition to employing the
random canary defense, some or all of the
saved control information is exclusive-or “en-
crypted”8 with the random canary value, stor-
ing the result in the canary location. Then to
change the protected control information the
attacker needs to deploy an exploit that sets the
canary location to the exclusive-or of the ran-
dom canary value and the new values of the
control values used in the full “encryption.”

Random XOR canaries have the same weak-
ness as random canaries above.

3.2 Examples of Canaries

All versions of StackGuard have provided ter-
minator canaries. We know of no alternate im-
plementations that provide this type of canary.

All versions of StackGuard up to, but exclud-
ing the latest version, provide random canaries.
Propolice provides random canaries.

Only the mid-1999 version of StackGuard pro-
vided random XOR canaries, protecting only
the region containing the return address. When
we checked in early 2003, Visual C++.net’s
/gs option performed exactly the same algo-

8Some people are uncomfortable with the use of the
word “encryption” to protect integrity instead of confi-
dentiality, hence the scare quotes.

rithm with the return address, but positioned
the canary to also protect (without the “encryp-
tion”) the saved frame pointer.

4 Implementation

The first thing a function does on entry is to
save the caller’s control information on the
stack. The region of memory used for this must
be protected by a canary location, which is ini-
tialized with the desired canary value.

The last thing a function does on exit is to re-
store the caller’s control information from the
region of memory set aside for that. But, be-
fore that restoration can take place, the canary
value must be checked to see if it has changed.
If it has, the stack has been corrupted, and the
process is killed after a suitable Intrusion Re-
sponse System has been notified.

The code generators are:

• determine canary location—decide on
where the canary location is going to be
on the stack and how the below operations
are going to refer to it.

• allocate canary location—make space
for the canary in the stack layout in a
memory location close to and preceed-
ing the region containing the saved control
values to be protected.

• initialize canary—give the canary loca-
tion its correct value before any operation
happens that could rewrite it or its pro-
tected region of memory.

• check canary location—check that the
canary location contains its correct value,
after any operation happens that could
rewrite it or its protected region, but be-
fore the saved control information it pro-
tects is restored with corrupted values. If

250 • GCC Developers Summit

the check fails, invoke the fail stop opera-
tion below.

• deallocate canary location—remove the
space made for the canary on the stack
by the allocate canary location operation
above.

• perform fail stop—send the mangled
name9, the type of canary, the correct
value of the canary, and the corrupted new
value of the canary to a security fault han-
dler.

The traditional way to implement StackGuard
has been to modify the function prologue and
epilogue code generators, which are responsi-
ble for causing the machine instructions to be
emitted that save the caller’s frame pointer at
the beginning of the frame (if frame pointers
are enabled), saving registers, establishing the
position independent code pointer if it is en-
abled, and possibly aligning the stack pointer
to some boundary.10

We’ve decided on terminator canaries on the
basis of the observation that nearly allstack
overflows are via string operations.

It should be noted that the order of the applica-
tion of the code generators is different than the
order that the emitted code appears in the gen-
erated function. In particular, first, the body
of the function is converted to RTL. Then a
number of optimizations take place, until the
sibling and tail recursion optimization makes
its decisions available. Then theinitialize ca-
nary location operation is added to the begin-
ning, and thecheck canary location opera-
tion is added to all the exit points. Then some
more RTL optimizations are performed until

9The variable containing the unmangled name isn’t
always initialized at the time it is needed.

10The author believes his IA-32 bias here merely adds
concreteness to his examples, and doesn’t build in bad
assumptions.

the function prologue adds code to the begin-
ning and invokes theallocate canary location
code generator, and the function epilogue adds
code to all the exit points and invokes thede-
allocate canary locationcode generator.

In this paper, we try to keep a clear distinction
between “code generators” and “operations.”
Code generators might be invoked in an arbi-
trary order to emit operations that appear in a
desired order in the object code.

In an earlier section, we were critical of Propo-
lice’s design. In the remainder of this section,
despite that it really does successfully recom-
pile practically all of the Redhat 7.3 distribu-
tion for a production quality distribution, we
are critical of StackGuard’simplementationfor
the remainder of this section.

4.1 Determine Canary Location

The determine canary location code gener-
ator is architecturespecific, since it needs to
know how the stack is laid out.

Both theinitialize canary location andcheck
canary location code generators need the ar-
chitecture specific RTX for referring to the lo-
cation of the canary. But both are invoked be-
fore the architecture specificallocate canary
location anddeallocate canary locationcode
generators are. It turned out that the i386 back-
end placed alignment padding (padding1)
right where the soft frame pointer points:

rtx canary_loc
= gen_rtx_MEM (SImode,

frame_pointer_rtx);

and that was a nice location for the canary.

Marking the location volatile:

MEM_VOLATILE_P (canary_loc) = 1;

was required for theinitialize canary location

GCC Developers Summit 2003 • 251

code generator to keep its RTL from floating
past things that could corrupt the canary.

But, it broke the GCSE pass of the optimizer
for thecheck canary locationcode generator,
apparently due to the way the infinite loop in
the perform fail stop was constructed, and it
appears not to be required to keep the RTL suf-
ficiently pinned down.

4.2 Allocate Canary Location

The allocate canary locationcode generator
is architecturespecific, since it runs in the ar-
chitecture specific function prologue code gen-
erator.

For i386, it turns out to be very simple.
Currently, the i386 architecture’six86_
compute_frame_size function does
alignment padding between the autovariable
region and the saved control information re-
gion. The solution is to add another alignment
to padding1 if it’s not big enough to hold
the padding.

Since the padding is allocated when the stack
pointer is decremented (stack grows down-
ward) to also allocate the autovariables, the
allocation has no performance impact at run-
time.

4.3 Initialize Canary Location

The initialize canary location code generator
is architectureindependent, since it just inserts
an assignment into the RTL of the current func-
tion immediately after the sibling and tail re-
cursion recognition optimization:

emit_move_insn (canary_loc,
GEN_INT(terminator_canary_host_value));

where the canary value happens to be a sim-
ple expression11 not requiring evaluation as an
expression:

static const int
terminator_canary_host_value
= 0x000aff0d;

if it wasn’t such a simple expression, then you
would need to worry more about its tempo-
raries being spilled to the stackwhere they can
be attacked. Random and random XOR canary
value expressions are largely non-simple, espe-
cially when being compiled for position inde-
pendent code.

The above RTL sequence is inserted before the
first non-NOTE RTL in the current function.
As remarked in section 4.1 above, designating
canary_loc as volatile appears to be suffi-
cient to keep the it from floating past some-
thing that could corrupt the protected control
information, but this isn’t very comfortable.
I’ve been hoping to stumble on a good way to
insert barriers in the RTL instead of depending
on volatile.

Sometimes the machine instruction generated
needs a register, and usually it doesn’t. Thus
the late insertion might confuse late stages of
register allocation depending on information
from stages earlier than the insertion.

4.4 Check Canary Location

The check canary locationcode generator is
architectureindependent, since it just inserts a
conditional branch into the RTL of the current
function immediately after the sibling and tail
recursion recognition optimization (see the dis-
cussion in subsection 4.3 above):

emit_cmp_and_jump_insns

11There are two different sorts of simplicity, one at the
source code level (see the talk on TreeSSA), and one at
the RTL to ASM conversion level.

252 • GCC Developers Summit

(canary_loc,
GEN_INT(terminator_canary_host_value),
/* comparison = */ comparison, /* EQ/NE */
/* size = */ 0,
/* mode = */ SImode,
/* unsignedp = */ 0,
/* label = */ else_label);

which is appended to the end of each function,
and inserted before each tail-call.

If the expression for the canary is not simple,
then you need to make sure that it doesn’t grab
corruptable temporaries from the same compu-
tation in theinitializer canary location code
at the beginning of the function.

At the end of each function, the compari-
son argument is EQ, because the test is used
to branch around theperform fail stop code
whose generation is described in the sec-
tion 4.6 below. Theelse_label label
jumped to in that case is refers to the normal
function epilogue code that hasn’t been gener-
ated yet.

Before each tail call, the comparison argument
is NE, because the branch is to theperform fail
stopcode appended to the end of the function.

Dead code removal works correctly for all of
these inserts.

The branch prediction of the EQ case appears
to get flipped correctly to put the return on the
fast-path.

The machine instruction seems to usually need
a register, but sometimes not. The late in-
sertion of this RTL when it needs a regis-
ter may be causing the code generation in the
“getdents” function in GLIBC which has the
attribute ((regparm(3), stdcall)) to
go awry in the GREG (global register alloca-
tion) pass.

4.5 Deallocate Canary Location

The deallocate canary locationcode genera-
tor is architecturespecific, since it runs in the
architecture specific function prologue code
generator.

For i386, it turns out to be absolutely free. The
alignment padding where the location resides
is stripped off at the same time as the autovari-
ables.

4.6 Perform Fail Stop

The perform fail stop code generator is ar-
chitecture independent, since it mostly just
inserts a call to an external function named
“__canary_death_handler ” using the
GCC’s internalemit_library_call pro-
cedure.

The __canary_death_handler is in-
voked with information such as the current pro-
cedure name, the version of stackguard, the
type of canary, what the canary value was sup-
posed to be, and what the canary is now that it
has been corrupted.

It’s not expected that recovery is possible
from a corrupted stack, so if the__canary_
death_handler returns control from its
call, something is very wrong, and the only
thing reliable to do is go into an infinite loop.
The correct way to recover would be to setup a
different stack that returns control to different
code.

Exception handling does not work here, since
the stack is corrupt. If you like, you might con-
sider this to be a securityfault as opposed to an
exception.

The late insertion of theemit_library_
call into the RTL might be causing trouble.

GCC Developers Summit 2003 • 253

4.7 Summary of problems

Moving the RTL code generators forinitial-
ize canary location and check canary loca-
tion out of the function prologue and epiloque
code generators was essential for two reasons.
First, the prologue and epilogue were invoked
too late to be able to generate the desired RTL.
Second, the prologue and epilogue are archi-
tecture specific, and architecture independence
is highly desired.

However, the movement of these two genera-
tors appeared to be blocked in two ways. First,
they appeared to only work correctly around
the time of the sibling and tail recursion opti-
mization pass. Second, this was fortuituous be-
cause this was also the first point where the in-
sert points became available for addingcheck
canary location immediately before function
exiting branches (that is, before return state-
ments and tail calls).

Ideally the movement of these two genera-
tors should proceed to the point that AST is
converted to RTL (which would also fix any
problems the call toemit_library_call
might be causing), but that implies that sibling
and tail recursion recognition also move to that
point.

4.8 Debuggers, Exception Handlers, and Other
Stack Crawlers

Previous versions of StackGuard placed the ca-
nary location immediately before the return ad-
dress on the stack. This was quite confusing
to programs that did their own ad hoc parsing
of the stack, such as GDB, Mozilla’s module
loading mechanism, and IBM’s Java JIT com-
piler.

All of these became non-problems with the lat-
est version of StackGuard, which places the
canary location in a spot where nothing’s sup-

posed to be.

The aspell packages for Red Hat 7.3 has a com-
plex enough class system for handling “file not
found” exceptions that something throws it off,
and it runs off the top of the stack without find-
ing an exception handler, and abort()’s. This
appears to be a problem with a dwarf annota-
tion interaction with the old exception handler
in GCC 2.96-113, which would probably be
fixed (or at least completely different) in cur-
rent GCC.

Exception handlers should check canaries for
each frame as they crawl up the stack soas not
to use corrupted information. We’re hoping to
add such support to the new exception handler
in GCC 3.x, just as soon as a distribution that
we can build, strenuously test, and release uses
it.

4.9 Testing

The assembly output of the StackGuard com-
piler has been inspected for correct output for
many optimization levels, with and without
frame pointers, PIC and non-PIC, inlines, and
nested function declarations.

A parser of the disassembler output for the
StackGuarded version of the main glibc library
libc.so.6 was done. Every procedure was cor-
rectly StackGuarded, and several tens of tail-
call sites were observed.

Previous versions of StackGuard rebuilt Red
Hat Linux 5.1, 5.2, 6.0, 6.1, and 7.0. The cur-
rent version of StackGuard has rebuilt Red Hat
7.2 and 7.3, with a rebuild of Red Hat 8 in
progress.

The getdents function in GLIBC in the
Redhat 8 rebuild has problems. It looks like the
late insertion of the canary check causes GREG
optimization phase to drive something insane
enough to apparently be confused about the

254 • GCC Developers Summit

sizes of various types. The RTL for the func-
tion suddenly becomes quite different starting
about halfway through the function after that
pass, with tremendous movement of temporary
and register initializations.

5 Performance Benchmarks

Formal performance benchmarks are cur-
rently under way, but were not complete at
press time. Previous performance bench-
marks on StackGaurd 2 [5, 7] show very
marginal overhead on real loads, especially
those programs that actually face network at-
tack. In particular, benchmarks of Apache
loaded by webstone, and throughput bench-
marks of OpenSSH through the loopback in-
terface, show overhead that is within mea-
surement noise: http://immunix.org/

StackGuard/performance.html . We ex-
pect similar performance from StackGuard 3.

6 Security Benchmarks

Security testing (like total correctness) is al-
ways problematic, because you cannot test for
security, you can only detectvulnerability. As
in performance, security testing is still under
way at press time. Past security testing of
StackGuard [6, 5, 7] shows that StackGuard is
effective in its narrow goal of stopping classic
stack smashing attacks. Furthermore, unlike
some of the kernel-based defenses [8] when
StackGuard stops a vulnerability, it isstopped,
i.e. revising of the attack code does not result
in bypassing StackGuard protection.

The major exception to this claim is that some
exploits can attack the frame pointer, which
was left unprotected in StackGuard 1 and 2.
StackGuard 3 fixes this by moving the canary
below the frame pointer.

7 Conclusion

StackGuard is a very modest sized patch, with
modest performance and legacy compatibility
costs, and yet solves a very large problem:
chronic stack smashing buffer overflows. De-
spite having been first innovated in GCC [6],
Microsoft has implemented a StackGuard-like
feature [4]as a standard featureahead of GCC.
We propose that it would be beneficial for the
GCC user community if the StackGuard secu-
rity optimization became a standard compile
option in GCC.

8 Availability

StackGuard has always been distributed under
the GPL, and is currently available athttp:

//immunix.org/stackguard.html .

Copyright assignment to the FSF for the Stack-
Guard patches is in progress.

References

[1] Arash Baratloo, Navjot Singh, and Tim-
othy Tsai. Transparent Run-Time De-
fense Against Stack Smashing Attacks. In
2000 USENIX Annual Technical Confer-
ence, San Diego, CA, June 18-23 2000.

[2] “Bulba” and ”Kil3r”. Bypassing stack-
guard and stackshield.Phrack, 10(56),
May 2000.

[3] Compaq. ccc C Compiler for Linux.
http://www.unix.digital.
com/linux/compaq_c/ , 1999.

[4] Crispin Cowan. Re: In response to al-
leged vulnerabilities in Microsoft Visual
C++ security checks feature.http:
//online.securityfocus.com/
archive/1/256416 , February 14
2002. Bugtraq.

GCC Developers Summit 2003 • 255

[5] Crispin Cowan, Steve Beattie,
Ryan Finnin Day, Calton Pu, Perry
Wagle, and Erik Walthinsen. Protecting
Systems from Stack Smashing Attacks
with StackGuard. In Linux Expo,
Raleigh, NC, May 1999.

[6] Crispin Cowan, Calton Pu, Dave Maier,
Heather Hinton, Peat Bakke, Steve Beat-
tie, Aaron Grier, Perry Wagle, and Qian
Zhang. StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-
Overflow Attacks. In7th USENIX Secu-
rity Conference, pages 63–77, San Anto-
nio, TX, January 1998.

[7] Crispin Cowan, Perry Wagle, Cal-
ton Pu, Steve Beattie, and Jonathan
Walpole. Buffer Overflows: Attacks
and Defenses for the Vulnerability of
the Decade. InDARPA Information
Survivability Conference and Expo
(DISCEX), January 2000. Also presented
as an invited talk at SANS 2000, March
23-26, 2000, Orlando, FL, http:
//schafercorp-ballston.com/
discex .

[8] “Solar Designer”. Non-Executable User
Stack. http://www.openwall.
com/linux/ .

[9] Casper Dik. Non-Executable
Stack for Solaris. Posting to
comp.security.unix , January
2 1997.

[10] Hiroaki Etoh. GCC extension for pro-
tecting applications from stack-smashing
attacks. http://www.trl.ibm.
com/projects/security/ssp/ ,
November 21 2000.

[11] Mike Frantzen and Mike Shuey. Stack-
Ghost: Hardware Facilitated Stack Pro-
tection. InUSENIX Security Symposium,
Washington, DC, August 2001.

[12] Richard Jones and Paul Kelly.
Bounds Checking for C. http:
//www-ala.doc.ic.ac.uk/
~phjk/BoundsChecking.html ,
July 1995.

[13] Greg McGary. Bounds Checking
in C & C++ Using Bounded Point-
ers. http://gcc.gnu.org/
projects/bp/main.html , 2000.

[14] “Aleph One”. Smashing The Stack For
Fun And Profit.Phrack, 7(49), November
1996.

[15] Jerome H. Saltzer and Michael D.
Schroeder. The Protection of Information
in Computer Systems.Proceedings of the
IEEE, 63(9), November 1975.

[16] Alexander Snarskii. FreeBSD
Stack Integrity Patch. ftp:
//ftp.lucky.net/pub/unix/
local/libc-letter , 1997.

[17] ‘The PaX Team’. PaX. http:
//pageexec.virtualave.net/ ,
May 2003.

[18] Herman ten Brugge. Bounds Checking C
Compiler. http://web.inter.NL.
net/hcc/Haj.Ten.Brugge/ , 1998.

[19] “Vendicator”. Stack Shield.
http://www.angelfire.com/
sk/stackshield/ , January 7 2000.

256 • GCC Developers Summit

A Maintenance Programmer’s View of GCC

Zachary Weinberg
CodeSourcery, LLC

zack@codesourcery.com

Abstract

GCC is considered more difficult to modify or
debug than other programs of similar size. This
paper will investigate the reasons for this diffi-
culty, from the point of view of a maintenance
programmer: someone producing a small patch
to fix a bug or implement a feature, without
causing new problems for unrelated use. Be-
cause the development tree’s head is expected
to be functional at all times, such incremental
changes are normal—even regular contributors
are in the maintenance programmer’s shoes.

1 Introduction

Who is a maintenance programmer? Anyone
working to implement a specific feature, or fix
a specific bug, without introducing new prob-
lems at the same time. Anyone with limited
time to investigate the situation and become fa-
miliar with the code.

Maintenance programmers are faced with both
technical and procedural hurdles. GCC has a
complex task to accomplish, but even so GCC
is far more complicated than it needs to be,
which makes it harder to modify the code than
it should be. Further, once one does success-
fully make a change, it is hard to get it accepted
to the official source tree. The procedural re-
quirements are stringent for good reason, but
still discourage people from contributing, and
cause patches that were 90% correct to be re-
jected.

GCC’s development process requires everyone
to work incrementally and make minimally in-
vasive changes. Although not a formal require-
ment, it is a consequence of the no-regressions
policy for check-ins, coupled with the extreme
complexity of the source code. A simple
change might turn out to have ramifications ev-
erywhere. A few individuals know the com-
piler inside out; they can pull off hugely inva-
sive changes without breaking anything. Most
of us are not that good, so we must take small
steps, testing carefully as we go. Furthermore,
even regular contributors often have difficulty
getting their patches approved. And, of course,
we all have lots of demands on our attention, so
there is never enough time to work out the per-
fect design. Therefore, making life easier for a
maintenance programmer who might have just
one patch to contribute will make regular con-
tributors’ lives easier as well.

2 Technical Hurdles

Let’s take a moment and look at the GCC
source tree from 10,000 feet up. Table 1 breaks
down the code by category. There are about 1.6
million lines in total, ignoring comments. Just
over half of this is C; there are also substantial
bodies of Ada, Java, and C++. Machine de-
scription files are written in a domain-specific,
Lisp-like language, which accounts for ten per-
cent of the total.

By nature, any program of this size is going
to be nontrivial to work with. Furthermore, a

258 • GCC Developers Summit

By category By language
Core compiler 250,000 C 861,000 53%
Back ends 410,000 Ada 298,000 18%

biggest 40,000 (rs6000) MD 170,000 10%
smallest 2,200 (fr30) Java 127,000 8%
median 6,500 (v850) C++ 105,000 6%

Front ends 480,000 Other 78,000 5%
biggest 221,000 (ada)
smallest 2,500 (treelang)
median 59,000 (java)

Runtime libraries 458,000
biggest 274,000 (java)
smallest 8,200 (objc)
median 11,000 (f77)

Total 1,639,000
Physical source line counts, generated using SLOCCount [1]. MD = machine description.

Table 1: GCC 3.3 source code breakdown

compiler is necessarily more complicated than
the average program of similar size, since it
contains many algorithms and techniques that
require arcane theoretical knowledge to under-
stand. SSA (static single assignment) form, for
instance, takes a good chapter of exposition to
explain. GCC is necessarily more complicated
than the average compiler, since it supports so
many input languages and target architectures
in its official distribution alone. Many other
compilers support only one or two targets.

Even so, GCC’s code could be much simpler
and easier to maintain. This can be put down to
three primary causes: incomplete transitions,
functional duplication, and inadequate modu-
larity.

2.1 Incomplete transitions

Incomplete transitions occur whenever anyone
invents a new, better way to do something, but
does not update every last bit of code that used
to do it the old way. They might run out of
time; they might not have the necessary ex-
pertise; they might just not be able to find it.

Whatever the reason, an old API cannot be re-
moved from the compiler until there are no re-
maining uses. An incomplete transition thus
means that for an extended period there are two
or more ways to do something. One is pre-
ferred, but it may not be obvious which. Some-
one writing new code that needs to do whatever
it is, might pick the obsolete technique, further
delaying the day when the old API can be re-
moved.

Incomplete transitions are most common in the
API for writing architecture back ends. For ex-
ample, there are two ways to write a machine-
specific peephole optimization. Both do pat-
tern matching on the stream of RTL insns con-
stituting the intermediate representation of a
function. The old way (define_peephole)
overrides the normal mechanism for writing
out assembly language, substituting its own
text. No further optimization can happen to the
result. The new way (define_peephole2)
replaces the matched insns with new ones,
which can then be optimized further. For in-
stance, the second instruction scheduling pass
sees the result of new peephole optimizations.

GCC Developers Summit 2003 • 259

The new construct was created in 1999, but of
the 37 back ends present in GCC 3.3, only six
use it exclusively. Fifteen still usedefine_
peephole exclusively, and six more have
both. (Ten have no peepholes at all.) Now,
peephole optimization is a relatively minor part
of a back end. The majority of the archi-
tectures that use either variety define fewer
than ten. In terms of code generation, using
define_peephole2 is most beneficial for
architectures that use instruction scheduling.
The maintainers of any given architecture have
no real incentive to update it to the newer style.
>From a maintenance programmer’s point of
view, this situation is very bad. The presence
of two functionally-equivalent mechanisms for
the same basic operation adds complexity and
increases the likelihood that something will be
broken accidentally.

Peephole optimizations of either variety
rarely cause trouble, because the machine-
independent code that applies them is small
and robust, so it is unlikely to be broken by
an unrelated change. However, consider the
cc0 mechanism, which is the older of two
possible ways to represent condition codes in
a machine description. There are 805 lines
of code in the core compiler that are used
only by cc0 architectures, and 79 lines of
code used only by non-cc0 architectures,
scattered through 28 files in 121 individual
#if blocks. This is not a lot of code compared
to the total size of the compiler, but it is all
in critical places, affecting most of the major
optimization passes. Testing on a non-cc0
architecture will not reveal brokenness in the
code used exclusively bycc0 architectures, or
vice versa. The only widely-used architecture
that still uses this mechanism1 is the m68k, and
m68k environments are all slow enough that
no one wants to test them. It is not surprising,

1If (cc0) appears only indefine_expand forms
that generate no RTL, that machine description does not
use thecc0 mechanism.

then, that allcc0 architectures were broken
for some time last year.

When someone discovers that a target they
wanted to test is broken for some other rea-
son, their usual response is not to bother test-
ing that target anymore. This of course means
that nothing stops the target from accumulat-
ing faults. By the time someone comes along
who wants it to work, it may be easier to start
from scratch than to fix all the faults. This is
especially true for OS-specific configurations,
which break more easily than architectures and
require relatively little effort to rewrite from
scratch, especially if they are similar enough to
the generic Unix that GCC takes for its default.

Recent experience [2] suggests that even CPU
ports can age to the point where starting over
might be easier. The MIPS back end had
not been kept up to date for several years;
it was overhauled starting in late 2002, with
most of the work done by Richard Sandiford
and Eric Christopher. This took six months
start to finish, with approximately eight thou-
sand lines of code changed, which is compa-
rable to the effort required to write a minimal
back end from scratch. Of course, the MIPS
back end is not minimal; starting from scratch
might have meant abandoning many of the sub-
architectures and operating systems that it cur-
rently supports.

A primary driver for the overhaul was the de-
sire to avoid use of the macro instructions pro-
vided by the MIPS assembler. This can also be
seen as a transition, but not of an API; rather,
the preferred style for machine descriptions has
changed. When the MIPS port was originally
written, the macro instructions were a conve-
nient way to simplify the compiler’s job. Now
they are seen as a hindrance to quality code
generation, requiring awkward workarounds in
the compiler.

260 • GCC Developers Summit

2.2 Functional duplication

Functional duplication occurs when two com-
ponents both implement some capability that
could be shared. A long-standing case exists in
the RTL simplification code. When Jeff Law
createdsimplify-rtx.c in 1999, he in-
cluded a comment which gives the flavor of the
problem:

Right now GCC has three (yes, three)
major bodies of RTL simplification
code that need to be unified.

1. fold_rtx in cse.c . This code
uses various CSE specific infor-
mation to aid in RTL simplifica-
tion.

2. combine_simplify_rtx in
combine.c . Similar to fold_
rtx , except that it uses combine
specific information to aid in RTL
simplification.

3. The routines in this file.

. . . It’s totally silly that when we add
a simplification that it needs to be
added to 4 places (3 for RTL simpli-
fication and 1 for tree simplification).

It is worth pointing out that at 8,790 lines of
code,combine.c is the second longest file
in the core compiler. Much of this bulk is
combine_simplify_rtx and its subrou-
tines.

Functional duplication is less likely to cause
breakage than incomplete transitions. Contin-
uing with this example, all the RTL simplifiers
are exercised by the normal testing procedure,
so it is unlikely that one of them will remain
broken for an extended period. However, the
answer to the question “Why did this bad opti-
mization happen, when I can see that the code

in file A is correct?” may well be “because
that transformation is duplicated in file B, only
with bugs.” Furthermore, this duplication in-
vites people to update one set of simplifiers and
not another, which means that whether or not
an RTL construct gets simplified depends on
which optimizer pass encounters it. And, of
course, it causes the compiler’s runtime image
to be bigger than necessary, which contributes
to compiler-speed problems by wasting space
in the instruction cache.

Law’s comment hints at a deeper cause of func-
tional duplication, namely, that we have two
different intermediate representations (trees
and RTL). In the past, almost all of the com-
piler dealt exclusively with RTL so this was
not a cause for concern. We now do some op-
timizations at the tree level, and lots more are
planned. It would be useful to share code be-
tween tree optimizers and RTL optimizers as
much as possible. This has already been done
for the control-flow graph, on thetree-ssa
branch. If the data structure holding an expres-
sion to be simplified could be made opaque
to the code computing the simplification, the
same could be done for the algebraic simplifi-
cation library.

Functional duplication also occurs when a
module exists that logically should be respon-
sible for some task, but is not presently capa-
ble of it. Instead of fixing the existing mod-
ule so that it is capable, often people choose
to build something new from scratch, which
is easier in the short term. A good example
here is the language-independent tree-to-RTL
converter (stmt.c , expr.c , etc.) It is one
of the oldest parts of the compiler. It still re-
flects design decisions made when C was the
only supported language, and the tree represen-
tation was used for only one source statement
at a time. When front ends started being rewrit-
ten for whole-function tree representations, no
one wanted to update the converter to match.

GCC Developers Summit 2003 • 261

Instead, each front end that now uses whole-
function trees contains duplicated tree-walking
logic, so that it can continue to feed the tree-to-
RTL converter one statement at a time.

This duplication not only causes the problems
described above, but also hinders conversion
of other front ends to whole-function process-
ing, because they would have to duplicate this
code again. Nor is there agreement on the
form of whole-function trees. The maintainers
of the C language family developed one such
representation; independently, the Java main-
tainers developed another, incompatible rep-
resentation. This prevented the tree inliner
developed for C from being used for Java.
Rather than copy the file over, it has been heav-
ily #ifdef ed, which may or may not be an
improvement. (The people working on the
tree-ssa branch have a major goal of devel-
oping a proper, language-independent, whole-
function tree representation.)

When a transition is finally completed, or du-
plicate code finally collapsed together, it may
still leave vestiges behind. The garbage col-
lector was completed in late 1999, but most of
the obstack allocation scheme that it obsoleted
stuck around until late 2000. We are still find-
ing traces of it now, in the second quarter of
2003.

Everyone likes deleting code, so why do ves-
tiges stick around? People usually find vesti-
gial code when working on something else. To
delete it, they would need to stop whatever they
were doing at the time, construct a fresh CVS
checkout, delete the vestige, do a full test cycle
to make sure nothing broke, then submit the
patch and wait for approval. All this time, they
would not be working on whatever they origi-
nally planned to work on. We will come back
to time consumed by procedures later.

Another reason is, it is hard to distinguish code
that is left over from code that was never com-

pleted, or that was written in anticipation of a
use that never materialized. One can usually
figure it out from mailing list traffic or CVS
logs, but only with practice. However, no mat-
ter what its intended function is or was, code
that is not being used now should be deleted;
even if a future use was planned, it is likely
never to happen.2 If someone does have a use
for a body of unused code in the immediate fu-
ture, they will undoubtedly say so when its re-
moval is proposed.

2.3 Inadequate modularity

Unfortunately, much code that has no appar-
ent function will cause something to break if
it is taken out. This is the problem of inad-
equate modularity. GCC is composed of a lot
of logical modules, but the boundaries between
these modules are ill-defined and poorly docu-
mented. Any given behavior has a good chance
of being required by some other module. For
instance, the C compiler reads the first line
of its input much earlier than would be natu-
ral. This is because some of the debugging-
information generators want to know what the
name of the primary source file is, when their
initialization hook runs. These two things may
sound like they have nothing to do with each
other. But if the C compiler is handed already-
preprocessed input, the primary source file is
not the file on the command line. It is the file
named by the# marker on the first line of the
file on the command line. Therefore, in order
to initialize the debug-info generator properly,
that first line has to be read. [3]

The interface between language front ends and
the core compiler is especially prone to this
sort of problem. This stems mostly from
the ad-hoc way in which the front-end in-
terface has evolved. It has never been doc-
umented, yet there are seven different lan-

2This is the YAGNI (You Aren’t Gonna Need It)
principle.

262 • GCC Developers Summit

guages using it in the current source tree, plus
a few more maintained separately. As lan-
guages were added, their developers gener-
ally tweaked the tree specification around as
they saw fit, without much coordination. It
was originally intended to cover the needs
of GNU extended C only, and still reflects
that in some aspects. For instance, the Java
front end has interesting kludges in it to
cope with the allegedly language-independent
builtins.def , which is full of C-specific
notions likeva_list . Or, consider the way
each back end specifies its platform’s funda-
mental data types: the*_TYPE and*_TYPE_
SIZE macros. These macros map directly
onto the fundamental data types of C; if this
is a poor match to the language being imple-
mented, one is in trouble. To be fair, most mod-
ern platforms define their most basic ABI in a
similar fashion, so one might be in trouble any-
way.

The interface between the core compiler and
a target-specific back end is also very fuzzy.
The most basic parts are in the machine de-
scription, which is pretty well defined and doc-
umented, but there are lots of little details han-
dled by defining macros, which are then visi-
ble to the entire compiler, including the front
ends. A naive count finds close to five thou-
sand different macro names defined by header
files in GCC 3.3’sconfig directory. Some of
these are internal to one architecture, and some
of the headers are not used during the compiler
build itself, but there is no easy way to tell them
apart. Since the macros are visible to every part
of the compiler, every part of the compiler can
use them, and does. A target must define al-
most all of the macros used by the core com-
piler, which leads to massive duplication.

There is ongoing work to convert all of these
macros to data members or function pointers in
a global object calledtargetm , which forces
a more structured approach. The people do-

ing the conversion are taking the opportunity to
clean up the interfaces and create sensible de-
faults. Thus there is hope that this problem will
dwindle as time goes by. However, the conver-
sion project could drag on for years, becoming
another of the incomplete transitions that were
discussed above. GCC 3.3 has about seventy
members of thetargetm structure; a com-
plete job will require about five hundred, but
most targets will not need to override the de-
faults for most of them.

The core compilers is not free of modular-
ity problems, either. The RTL optimizers are
structured as a pipeline of passes, and what
each pass does to the code is reflected in the
insn chain. On its face that is a modular de-
sign. However, there are undocumented lim-
itations to what each optimization pass can
handle, which impose constraints on earlier
passes. For instance, the first local CSE pass is
a waste of time at this point, because the GCSE
pass is more powerful. . . except that GCSE is
not prepared to deal with certain high-level
constructs that local CSE eliminates, such as
addressof . This is doubly unfortunate, be-
cause GCSE could do a better job than CSE of
handling the high level RTL, if it only knew
how. [4]

2.4 Style

We should not neglect aesthetic concerns.
Anything that makes code harder to under-
stand, hides bugs from developers. Anything
that makes code harder to restructure, hin-
ders developers from resolving the more se-
rious problems discussed above. GCC’s pri-
mary failing in this domain is by virtue of sheer
size. Particularly in the older parts of the com-
piler, it is common to find a single function so
large and convoluted that a human reader can-
not remember all its details. Some may have
grown by accretion:expand_expr for ex-
ample may have been much smaller when there

GCC Developers Summit 2003 • 263

were fewer kinds of tree to be considered, or
when fewer optimizations were attempted at
that time. Others are perhaps stylistically in-
spired by the “Pastel” compiler that predated
GCC 1, which was in a language that sup-
ported nested functions; very large outer func-
tions would have been more natural in that lan-
guage. [5] These functions often maintain state
in local variables of an outer block; perform-
ing the “obvious” refactor of pulling the inner
blocks out to their own functions can cause
mysterious failures, since the outer variables
are no longer visible.

Gigantic controlling expressions inif state-
ments are also common. Here the problem is
notational. Such expressions often turn out to
be performing pattern matching on RTL, in the
most straightforward fashion possible in C. If it
were possible to write these expressions in the
language used for machine descriptions they
would be far more readable.

The macros, idioms, and style constraints
which permitted us to build GCC with com-
pilers that predate the 1990 C standard should
also be seen as an issue of aesthetics. We al-
ready enjoy the benefits of most of standard C’s
features, such as prototyped functions. How-
ever, eliminating all these idioms (as we can
now do) will make it easier to read the code,
and this is not a trivial thing. Just the removal
of the macros that cloak the differences be-
tween traditional and standard C with regard to
variable-length argument lists should be a great
step forward.

3 Procedural hurdles

Once again, let’s take a moment and look from
10,000 feet up, this time at the process for
contributing a patch to GCC. For this purpose
we shall postulate a contributor named Alice,
who has a copyright assignment on file, but has

not yet been granted write-after-approval priv-
ileges, and proposes to fix a bug which appears
in the GNATS database.

The first step is to get a copy of the develop-
ment tree (i.e. CVS HEAD). Then the bug
must be reproduced and fixed. The potential
difficulties with that were covered above.

Next, Alice must carry out a full bootstrap and
test cycle. This is not very hard once you know
how. Typical first-time gotchas include con-
figuring in the wrong place or with the wrong
sort of pathname, and tripping over a Make-
file bug; having the wrong version of GNAT
installed, so the Ada front end cannot be built;3

having the wrong version of autoconf installed,
so the configure scripts are broken; and finally,
having a broken DejaGNU installation, so the
test suite reports thousands of spurious failures.
Once all these issues are resolved, Alice gets
to sit back and wait for at least two hours. De-
pending on how slow her computer is, it might
be more like a full day. There is also the possi-
bility that the test cycle will fail because some-
one else checked in a patch which broke the
compiler.

Assuming that went fine, the patch is now to be
submitted for review. Alice may be ignored for
weeks on end, depending on how busy the of-
ficial maintainer of that component is, whether
she has submitted patches before, and how im-
portant the bug seems to be. Once someone
does get around to responding, there is a good
chance that the patch will be torn to shreds and
sent back for revision, repeatedly. Alice might
get frustrated and give up. If she persists, the
patch will eventually get approved. Now (since
she lacks write privileges) the person who ap-
proved it is responsible for committing it and
closing the entry in the GNATS database. If
Alice keeps submitting good patches, she will

3This is not currently a requirement, but Alice is be-
ing thorough.

264 • GCC Developers Summit

be granted write-after-approval privilege. She
can then do these last steps herself.

It is not terribly useful to speculate about the
ultimate causes of the procedural hurdles that
can be seen in this description. Instead, we will
categorize them by nature, as slow or tedious
tasks; problems coping with tools; and human
error.

3.1 Slow or tedious tasks

One of the most important procedural hurdles
is the sheer amount of time it takes to develop
a patch and get it committed to CVS. Alice
had to wait for review, but let’s defer that is-
sue for later. Even people with global write
privileges are expected to carry out a full boot-
strap and test cycle on at least one target, in-
cluding all languages, before installation. This
takes two hours on a 2GHz P4 with 512MB
of real RAM, running Linux 2.4. A slower
CPU, less memory, or a less efficient operat-
ing system will all cause it to be dramatically
slower. The author is personally aware of an
environment in active use which is centered
around UltraSPARC 5 machines running So-
laris 2.5.1. On this platform a cross-compiler
build, C and C++ only, takes six hours; an all-
language bootstrap would take even longer.

On a sufficiently efficient operating system,
the bottleneck for a bootstrap is CPU time ex-
pended by the compiler itself. This parallelizes
well; on a multiprocessor system,make -j N
will reliably divide the time for bootstrap by
N , up to some limit. Experimentation is usu-
ally required to find the best value to use. How-
ever, using parallel make can expose missing-
dependency bugs in the Makefile. Since the
header dependency lists are maintained by
hand, it is easy for these bugs to creep in. Some
makefiles have not been written with parallel
make in mind; for instance, at the time of writ-
ing, make gnatlib_and_tools does not

work at all in parallel mode. Also, DejaGNU
has no ability to run tests in parallel, so the en-
tire test suite must be run serially.

Bootstrap time accounts for the majority of
time spent waiting for a computer to do some-
thing. However, CVS operations should not
be neglected in this regard. On a higher-end
ADSL connection (1.5Mbps down/384Kbps
up) acvs update on the mainline takes fif-
teen seconds—if it has nothing to do, and there
are no modified files. If it has updates to down-
load, or potentially modified files that have to
be checked (by sending the full text of the file
to the server for comparison) it can take sub-
stantially longer. Branches are also slower; on
the 3.3 release branch, an update with nothing
to do and no modified files takes a minute and
a half. Recursive commit and diff operations
take a similar amount of time.

Once a patch is fully tested, the contribu-
tor must write an explanation of the changes
made, for thegcc-patches mailing list,
and a ChangeLog entry. Working out long
ChangeLog entries can be tedious. To some ex-
tent it can be automated; for example, a simple
perl script can extract the names of all the files
and functions touched by a patch and format
them in ChangeLog style, leaving one to write
the “what was done to each” comment, but that
part can still be tedious for a long change. This
text has to be copied from the message into all
of the relevant ChangeLog files, and into the
CVS commit log; it is easy to make a mistake
along the way.

All of this places a lower bound on the time it
takes to develop or revise a patch. Even the
most trivial changes have to go through this
process, because theycouldhave broken some-
thing. The time it took to design and imple-
ment the change itself is neglected here. That
time cannot be said to have been wasted, except
insofar as it may have been harder than neces-

GCC Developers Summit 2003 • 265

sary to make a change, which was discussed
above. Of course, the lower bound is only met
if the patch works the first time. If the patch
causes a regression in some part of the testsuite
that must be fixed, then the bootstrap must be
repeated.

And the lower bound is only met if the contrib-
utor can commit his or her own patches without
approval. Otherwise, there will be some time
spent waiting for the patch to be reviewed. It
is not uncommon to get no response at all to a
patch, or even to repeated inquiries. This is not
because anyone hates the patch or its contrib-
utor. Most often patches are ignored because
everyone with the authority and the experience
to review the patch is just too busy that week.
A lot of GCC’s code is listed as maintained
by one of the people with global write priv-
ileges, or else has no listed maintainer at all.
Either way, the set of people who can approve
a change to that component is limited to those
with global privileges, all of whom are busy. A
related problem is that people who do not have
authority to approve patches often refrain from
commenting on them, even though their opin-
ions are still valued.4

Another contributing factor is that some
patches are too hard to review. This happens
when a patch tries to do too much at once, or
when the person who wrote it did not explain
its motivation well enough. What seems sim-
ple and obvious for the person who was just
immersed in the relevant area, may not be ob-
vious at all to anyone else. Splitting patches
into minimal changes and explaining them well
are both learned skills. At present, we expect
people to pick them up by osmosis, but not ev-
eryone can learn like that.

Sometimes a patch is not quite right, and some-
times a patch addresses an issue that clearly
needs addressing but does not do it in the way

4This is a variant of the “bikeshed effect.” [7]

that the reviewers would like. When this hap-
pens, the reviewers will send the patch back
for revisions. Sometimes they send it back so
many times that the contributor gives up hope
that it will ever be accepted. Then the patch,
which might not have been perfect, but was an
improvement over the status quo, gets aban-
doned.

It does happen that patches are ignored inten-
tionally, in order to reject them without hav-
ing to offer feedback. In most cases, this hap-
pens because everyone who could review the
patch feels that they cannot have a productive
discussion with the person who submitted it.
That might be the submitter’s fault—there is
just no working with some people—but it is
much more likely to be a failure of the com-
munity. Fortunately this is rare.

3.2 Coping with tools

The tools which give people the most trouble
on a day-to-day basis are DejaGNU and the
autoconf family. To begin with the most
straightforward issue, the GCC testsuite al-
ways produces a handful of “unexpected fail-
ure” (FAIL) results when run. These failures
are not unexpected in the standard sense of
the word. They do not change often. People
who build the compiler on a daily basis and/or
follow the gcc-testresults mailing list
will know which unexpected failures are cur-
rently normal for a given environment. They
are only unexpected in the sense that DejaGNU
has not been advised to turn them into “ex-
pected failure” (XFAIL) results. Regular con-
tributors are used to this. However, someone
who does not build the compiler on a daily ba-
sis, or follow the test-results list, will not know
whether a given unexpected failure is normal
or not. If they are running the testsuite to make
sure the compiler works, not having made any
changes, they may believe there is something
wrong with their environment, or a bug that is

266 • GCC Developers Summit

not already known. If they have made changes,
they will not know whether or not their changes
caused the unexpected failures. The only way
they can be sure, in this latter case, is to do
two complete test cycles from the same base-
line code, one without the desired patch and
one with. This doubles both the testing time
and the disk space requirements, since it is nec-
essary to keep both trees around for compari-
son.

Failures are not marked expected mainly be-
cause it is too awkward. At the least, it in-
volves adding special tags to files in the test-
suite. For test cases in thec-torture frame-
work it involves creating special files contain-
ing snippets of Tcl code. What the tags or snip-
pets should be is mostly undocumented. Peo-
ple usually do it by copy-and-paste from an-
other test case. Further, DejaGNU’s ability to
describe the situations under which a failure is
expected is quite limited. For instance, there
is no way to specify that a test will fail if the
necessary locale definitions are not installed, or
that a test may sometimes (depending on sys-
tem load) take so long to run that it times out.

There is also a general assumption that ex-
pected test failures are not going to be fixed
anytime soon, whereas unexpected failures
have someone looking at them right now. This
discourages people from marking tests ex-
pected to fail, because they might be fixed soon
and then the marking would have to be undone.
Yet tests continue to fail “unexpectedly” for
months on end.

If one does not have access to a hosted sys-
tem for an architecture, one can still test some
patches that affect it by building a cross com-
piler to a simulator target. The GDB source
tree includes simulators for many popular ar-
chitectures. It is easy to construct a com-
bined tree including gcc, binutils, the simu-
lator, and a minimal C runtime, in which to

test the cross compiler. However, DejaGNU
is prone to glitches when used with a simulator
target. One common problem is complete fail-
ure to findstdio.h or crt1.o . One sus-
pected cause of this is invokingconfigure
by relative instead of absolute pathname.

Autoconf, automake, and libtool have all un-
dergone backward-incompatible revisions in
the past few years. One must have exactly the
right version of each installed in order to re-
generate GCC’sconfigure scripts or Make-
files. For instance, all of the configure scripts
presently require autoconf 2.13, which is the
oldest version in common use. It is old enough
that it is left out of the default installation of
some newer operating systems, such as Red
Hat 8.0. Use of a newer version might cause
visible errors when the script is regenerated or
run, or more insidiously it might just cause
a small handful of features to be misidenti-
fied. Since GCC’s Makefiles will automat-
ically attempt to regenerate configure scripts
that are older than the parentconfigure.
in , a user may discover that the first build
from a fresh working copy succeeds, but all
subsequent builds mysteriously fail. Using the
contrib/gcc_update script can prevent
this problem, but it will not help someone who
has modified the configure script.

It is harder to get in trouble just by having the
wrong version of automake or libtool installed,
because these tools are only run on specific
user request. But one may still be stuck with
no way to regenerate files under their control.
The author has resorted to updating a generated
Makefile.in by hand on several occasions.

3.3 Human error

From time to time someone checks in a patch
which renders the tree unbuildable. Normally
it worked just fine for the person who tested
it, but breaks in a different environment. The

GCC Developers Summit 2003 • 267

problem may be target-specific, or involve only
a language which is not supported by the
tester’s platform. Or perhaps the patch that was
tested is different from what checked in, some-
how. Whatever the cause, when this happens,
everyone who did acvs update just before
starting their bootstrap cycle gets to wonder
whether it was their changes that broke the tree.

A few years ago, a CVS checkout taken at a
random point in time had a 34% chance of be-
ing unbuildable. [6] This is directly attributable
to the two-year lapse between the 2.95.0 and
3.0.0 releases. During that time, latent bugs
were continually introduced, until any given
checkin had a good chance of triggering one.
There was no concerted effort to flush these
bugs out until the situation became dire enough
to hinder day-to-day work. Since the institu-
tion of the three-stage development process, in
mid-2001, unbuildable CVS checkouts happen
only rarely, since the tree is regularly stabi-
lized.

The automated testers operated by Geoff Keat-
ing, Phil Edwards, and others have also been
instrumental in reducing the incidence of un-
buildable source trees. A failure report from
one of these testers can be trusted to indicate a
genuine problem—no risk of a quirky environ-
ment causing issues—and conveniently lists all
of the changes that could have been the proxi-
mate cause. They also make people aware of
bugs immediately, rather than several weeks
down the road when they no longer remember
the details of their changes. Unfortunately, at
present only a few platforms are monitored in
this fashion.

Nowadays, build failures are usually addressed
immediately, but testsuite regressions tend to
linger for weeks on end. The author believes
this is largely a matter of perception. Test
cases are often contrived rather than reflective
of real code, and the failure may seem unim-

portant. For instance, at the time of writing,
half of the unexpected failures in the C testsuite
for GCC 3.3 were caused by incorrect warn-
ing messages. Nonetheless, a general habit of
ignoring persistent unexpected failures is not
good practice.

4 Conclusion

Contributors to GCC face both technical and
procedural challenges. These can be narrowed
down to a short list of causes: incomplete tran-
sitions, functional duplication, and inadequate
modularity; slow or tedious tasks, coping with
tools, and human errors. Some of these prob-
lems are easy to address immediately, while
others will require long-term, concerted effort.
This paper limits itself to discussion of the
problems. However, we are confident that so-
lutions can be found.

5 Acknowledgements

This paper is largely based on my personal
experience fixing bugs in older versions of
GCC for a CodeSourcery client. I am also in-
debted to Neil Booth, Eric Christopher, and
Richard Henderson for sharing their experi-
ences. Michael Ellsworth, Kristen Hrycyk,
David Johnson, Mark Mitchell, Jeffrey Old-
ham, and Nathan Sidwell were kind enough to
comment on drafts.

Inspiration crystallized around the following
IRC exchange between Phil Edwards and my-
self:

<pme> Every time I readSnow Crash, I
wonder what a GCC “room” in the
metaverse would look like.

<zwol> Take an H.R. Giger painting, you
know, with the perverse and in-

268 • GCC Developers Summit

sanely complicated biomechanical
constructs.
Now, instead of being all shiny and
new, make it old and rusty and over-
grown with weeds. Slimy weeds.

A Snow Crash-esque view of GCC’s code
wasn’t really what Phil meant, but I would still
like to thank him for sparking my imagination.

References

[1] David Wheeler, “SLOCCount, a tool for
counting physical Source Lines of
Code.”http://www.dwheeler.
com/sloccount/

[2] Eric Christopher, personal
communication.

[3] Neil Booth, personal communication.

[4] Richard Henderson, personal
communication.

[5] Richard Stallman, “The GNU Project.”
http://www.gnu.org/gnu/
thegnuproject.html

[6] Jeffrey Oldham, “March gcc 3.0 and 3.1
Bootstraps Fail 34% of Time.” Email
message dated 30 March 2001.
http://gcc.gnu.org/ml/gcc/
2001-03/msg01319.html

[7] Poul-Henning Kamp, “A bike shed (any
color will do) on greener grass.” Email
message dated 2 October 1999, as
quoted in the FreeBSD FAQ.
http://www.freebsd.org/doc/
en_US.ISO8859-1/books/faq/
misc.html#BIKESHED-PAINTING

