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1. History of Flash at Toshiba 
When Dr. Masuoka, who is now a professor at Tohoku University, joined Toshiba in 1971, he 

had been thinking that the substitution of magnetic memory would be indispensable for the 
development of semiconductor memory. 

 
He also understood that the market size for memory is more dependent on its bit cost than its 

user-friendliness.  For instance, let’s compare the market size between DRAMs and SRAMs. 
SRAM is faster, requires no refresh, and is very user-friendly, but the market size for DRAMs is 
much larger than that of SRAMs.  The only reason why the DRAM market is larger is because the 
cost of DRAMs is much lower than that of SRAMs.  This is the RAM story, but the ROM story is 
similar.  Like SRAM, the byte-EEPROM is very user-friendly because it can erase and program a 
single byte.  But its cost is so high that it cannot be widely adopted.  A hard disk, which can also be 
considered to be a non-volatile memory, does not offer byte reprogramming, but does offer sector 
reprogramming (block reprogramming) and is widely used because of low cost.  So, what is 
required is not the flexibility of byte reprogramming, but a low cost per bit. 

 
Based on the concepts above, Dr. Masuoka applied for a patent on simultaneously erasable 
EEPROMs in 1980.  Although a conventional byte-EEPROM has two transistors per cell, a new 
memory cell which consists of only one transistor, was proposed to reduce cost.  To realize a one-
transistor cell, the bit erase scheme was dismissed and a simultaneous erase scheme was adopted.  
The development of a real test device was started in 1983 with Dr. Masuoka’s colleagues: Mr. 
Asano and Mr. Iwahashi for the design, Mr. Tozawa, Mr. Komuro, Mr. Tanaka for the device 
technology, and supported by Mr. Suzuki, the memory senior manager.  Fortunately, the device was 
verified be functional.  In June of 1984, the first paper was submitted to IEDM. At that time, Dr. 
Masuoka recognized that it must be the first simultaneously erasable EEPROM in the world and 
thought about naming it with his colleagues.  Mr. Ariizumi, one of his colleagues, proposed naming 
it "Flash" sometime in June of 1984, before submitting the IEDM paper.  Why Mr. Ariizumi 
suggested the term "Flash" was because the device could erase a block simultaneously, which made 
him imagine the Flash of a camera.  But no one, at the moment, could have dreamed that Flash 
memory would be used in digital cameras today.  So what was first called simultaneously erasable 
EEPROM, was named “Flash” from 1984.  The memory cell area for the first proposed Flash 
EEPROM was 64 sq. microns while a conventional byte-erasable EEPROM cell at that time 
occupied 272 sq. microns in the same lithography design rule of 2 microns. 

 
In December of 1984, the first paper for the Flash EEPROM was presented at IEDM in San 

Francisco.  A subsequent the paper on a 256k bit Flash EEPROM was presented at ISSCC in San 
Francisco in February of 1985.  After that, Dr. Masuoka was interviewed by “Business Week” and 
the Flash EEPROM was reported in Business Week on Mar.25, 1985.  On the news, Dr. R.D. 
Pashley of Intel was interviewed to provide counterpoints.  But afterwards, Intel stopped developing 
the UV-EPROM (ultraviolet erasable) and focused on Flash memory development. Dr. Pashley 
would become the General Manager of the Flash memory division. 

 
After Toshiba presented the 256k bit Flash EEPROM at the ’85 ISSCC, Seeq developed a 128k 

bit Flash EEPROM and announced it at the ’87 ISSCC.  Seeq’s memory cell was programmed by 
hot electron injection and erased by field emission from the floating gate to the drain. Therefore, 
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Seeq’s cell could be realized by a dual polysilicon structure while Toshiba’s Flash EEPROM cell 
used a triple polysilicon structure due to the formation of the erase gate.  Intel presented a 256k bit 
Flash EEPROM at the ’88 ISSCC.  Intel adopted the same cell structure as that of the UV-EPROM. 
It is programmed by the hot electron injection like a UV-EPROM and erased by the field emission 
from the floating gate to the source. In principal, this concept is quite similar to that of the first 
proposed Flash EEPROM by Toshiba. 
 

2. How Flash Works 
Like a UV-EPROM (ultraviolet erasable programmable read only memory) cell, a Flash 

EEPROM (electrically erasable programmable read only memory) cell has a dual gate structure in 
which a floating gate exists between a control gate and a silicon substrate of a MOSFET. A floating 
gate is perfectly isolated by the insulator, i.e. silicon dioxide, so that the injected electrons cannot 
leak out of the floating gate after power is removed.  This is the basic storage mechanism for the 
Flash EEPROM  non-volatile memory.  The charge retention mechanism for Flash EEPROM is the 
same as  conventional UV-EPROM and byte-erasable EEPROM. Like a UV-EPROM, a Flash 
EEPROM is programmed by a hot electron injection mechanism, and erased by field emission from 
a floating gate, like a byte-erasable EEPROM.  The erase mechanism for a Flash EEPROM cell is 
the same as that for a byte-erasable EEPROM cell; however, their basic use as LSI memories are 
typically different.  In a Flash EEPROM, the whole chip can be erased simultaneously, while a 
byte-erasable EEPROM is erased only one byte at a time.  When the byte erase function is 
eliminated, an electrically re-programmable non-volatile memory can be realized by utilizing only 
one transistor per cell.  A UV-EPROM also simultaneously erases all its bits by exposure to 
ultraviolet light, and is programmed by hot electron injection mechanism.  In this sense, a UV-
EPROM is similar to a Flash EEPROM in functionality except that the erase operation is carried out 
by UV irradiation.  

2.1 NAND vs NOR Flash 
Current semiconductor memories achieve random access by connecting the memory cells to 

the bit lines in parallel, as in NOR-type flash.  In NOR-type flash, if any memory cell is turned on 
by the corresponding word line, the bit line goes low (see figure 1).  Since the logic function is 
similar to a NOR gate, this cell arrangement results in NOR flash. 

 
 However, speedy access is not always required in order to replace magnetic memory.  The 

NAND Flash is a new flash configuration that reduces memory cell area so that a lower bit cost can 
be achieved.  In 1987, Toshiba proposed the NAND Flash, and its NAND structured cell arranged 
as eight memory transistors in series.  The NAND flash cell array, fabricated by using conventional 
self-aligned dual polysilicon gate technology, had only one memory transistor, one forth of a select 
transistor and one sixteenth of the contact hole area per bit.  This technology realizes a small cell 
area without scaling down the device dimensions.  The cell area per bit was half that of a DRAM 
using the same design rule of 1um (which was used for the 1M bit DRAM).  As a result, Toshiba 
realized that it was possible for NAND Flash to be developed earlier than DRAM (for the same 
density) by one process generation.  In comparison, conventional EEPROM was behind DRAM by 
one process generation at that time. 
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The most important item regarding memories is the bit cost.   In the case of a semiconductor 
memory, the bit cost is dependent on the memory cell area per bit.  Since the cell area of NAND 
Flash is smaller than that of NOR Flash, NAND Flash always had the potential from the start to be 
less expensive than NOR Flash.  However, it takes a rather long time for a NAND Flash to read out 
the first data byte compared to NOR Flash because of the resistance of the NAND cell array, 
although it is much faster than the seek time for a hard disc by several orders of magnitude.   
Therefore, the aim of NAND Flash is to replace hard disks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 1. NAND Flash vs. NOR Flash 

 
The advantages of NAND Flash are that the erasing and programming times are short. The 

programming current is very small into the floating gate because NAND Flash uses Fowler-
Nordheim tunneling for both erasing and programming. Therefore, the power consumption for 
programming does not significantly increase even as the number of memory cells being 
programmed is increased.  As a result, many NAND Flash memory cells can be programmed 
simultaneously so that the programming time per byte becomes very short.  Conversely, the NOR 
Flash can be programmed only by byte or word, and since it uses the hot electron injection 
mechanism for programming, it also consumes more power and the programming time per byte is 
longer.  The programming time for NOR Flash is typically more than a order of magnitude greater 
than that of NAND Flash. 

 
The power consumption of NAND Flash or NOR Flash is about one tenth that of a hard disk 

drive.  Also, the seek time for semiconductor memories is much faster than that of a hard disk.  
However, NAND Flash or NOR Flash must be erased before reprogramming while a hard disk 
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requires no erasure.  Therefore, in the case of continuous programming where the seek time is 
negligibly small, a hard disk drive can be programmed more quickly.   

 
For both for NOR Flash and NAND Flash, the endurance (which means the number of cycles 

a block or chip can be reprogrammed) is limited.  In order to replace the UV-EPROM with Flash, 
and endurance of 1000 cycles was sufficient.  It is estimated that at least 1,000,000 cycles are 
required to replace a hard disk drive.  NOR Flash is typically limited to around 100,000 cycles.   
Since the electron flow-path due to the hot electron injection for programming is different from the 
one due to tunneling from the floating gate to the source for erasing, degradation is enhanced. 
However, in NAND Flash, both the programming and erasing is achieved by uniform Fowler-
Nordheim tunneling between the floating gate and the substrate.  This uniform programming and 
uniform erasing technology guarantees a wide cell threshold window even after 1,000,000 cycles. 
Therefore, NAND Flash has better characteristics with respect to program/erase endurance.  In 
some recent scaled NOR Flash memories, their erasing scheme has been changed from source side 
erasing to uniform channel erasing, which is the same as the NAND Flash. 

 
From a practical standpoint, the biggest difference a designer will notice when comparing 

NAND Flash and NOR Flash is the interface.  NOR Flash has a fully memory-mapped random 
access interface like an EPROM, with dedicated address lines and data lines.  Because of this, it is 
easy to “boot” a system using NOR Flash.  On the other hand, NAND Flash has no dedicated 
address lines.  It is controlled using an indirect I/O-like interface and is controlled by sending 
commands and addresses through a 8 bit bus to an internal command and address register.  For 
example, a typical read sequence consists of the following: writing to the command register the 
“read” command, writing to the address register 4 byte of address, waiting for the device to put the 
requested data in the output data register, and reading a page of data (typically 528 bytes) from the 
data register.  The NAND Flash’s operation is similar to other I/O devices like the disk drive it was 
originally intended to replace.  But because of its indirect interface, it is generally not possible to 
“boot” from NAND without using a dedicated state machine or controller.   However, the indirect 
interfaces advantage is that the pinout does not change with different device densities since the 
address register is internal.   Because NAND Flash is optimized for solid-state mass storage (low 
cost, high write speed, high erase speed, high endurance), it is the memory of choice for memory 
cards such as the SmartMediaTM, SDTM card, CompactFlashTM, and MemoryStickTM. 
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Figure 2. NAND Flash Cell Biasing 

3. The NAND Flash Interface 
 
The pinout of the standard NAND Flash in the TSOP I package is shown in figure 2 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. NAND Flash Pinout. 
 
The basic interface is fairly simple.  When asserted low, the chip enable (CE#) pin enables the 

NAND flash to accept bytes written to the chip when write enable (WE#) is asserted low or enable 
the output of a data byte when read enable (RE#) is asserted low.  When CE# is high, the chip 
ignores RE# and WE# and the I/O is tri-stated.  The Command Latch Enable (CLE) pin and the 
Address Latch Enable (ALE) pin act as multiplexer select pins by selecting which internal register 
is connected to the external I/O pins.   There are only three valid states as shown in the table below: 

 
ALE CLE Register Selected

0 0 Data register 
0 1 Command register
1 0 Address register 
1 1 Not defined 

 
The key to understanding how the NAND flash operates is the realization that in the NAND 

flash, the read and program operation takes place on a page basis (i.e. 528 bytes at a time for most 
NAND devices) rather than on a byte or word basis like  NOR flash.  A page is the size of the data 
register.  The erase operation takes place on a block basis (for most NAND devices, the block size 
is 32 pages).  There are only three basic operations in a NAND flash: read a page, program a page, 
and erase a block.  Let’s examine each of these operations in more detail. 

 

CLE: Command Latch  Enable
ALE: Address Latch Enable 
CE#: Chip  Enable 
WE#: Write  Enable 
RE#: Read  Enable 
WP#: Write  Protect 
R/B: Ready/Busy 
GND: Test Input (grounded) 
I/O: Input Output 
Vcc: Positive Supply (core) 
Vccq: Positive Supply (I/O) 
Vss: Negative supply (ground)

NC 
NC 
NC 
NC 
NC 

GND  
R/B 
RE# 
CE# 
NC 
NC 

Vcc 
Vss 
NC 
NC 

CLE 
ALE 
WE# 
WP# 

NC 
NC 
NC 
NC 
NC 

1  
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

48
47
46
45
44
42
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25

NC
NC 
NC 
NC 
I/O 8
I/O 7
I/O 6
I/O 5
NC 
NC 
NC 
Vccq
Vss 
NC 
NC 
NC 
I/O 4
I/O 3
I/O 2
I/O 1
NC 
NC 
NC 
NC 
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3.1 Page Read 
 
In a page read operation, a page of 528 bytes is transferred from memory into the data register 

for output.  The sequence is as follows: 

 
• Command phase: With CLE=1, ALE=0, the command byte 00h is placed on the I/O pins 

and WE# is brought low, then high.  This stores the “read mode 1” command into the 
command register. 

• Address phase: With CLE=0, ALE=1, the first address byte is placed on the I/O pins and 
WE# is toggled.  This first address byte “N” (called the column byte in the figure below) is 
usually set to 0 in order to start reading from the beginning of the page.  It is possible to set 
N to any value between 0 and 255.  Because the page is actually 528 bytes long, a different 
read command is used if you want output data to start from byte 256-511 (read mode 2 – 
command byte 01h is used instead of 00h).  A third read command is used if you want 
output data to come from bytes 512-527 (read mode 3 – command byte 50h is used instead 
of 00h).  It should be noted that the full page is read from memory into the register.  The 
value N, in conjunction with the read command used, simply sets the output data pointer 
within the register.   The address bytes which follow after column byte N, indicated by 
Row1 and Row2 in the figure, are used to set the page within a block (lowest 5 bits in byte 
Row1), and the block within the device.  In the higher density NAND devices, the address 
phase is 4 bytes long rather than 3. 

Registe
r 

Cell

Data-Out 

Page Address

t
R Address

    N 
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• Data Transfer phase: CLE and ALE are set to zero while the chip goes busy in preparation 
for data readout.  During the busy period, the ready/busy pin (R/B) goes low for up to 25 
microseconds while data is being read from the memory array and transferred into the data 
register.  During this period, it is important that chip enable is held low to keep the read 
operation from being stopped mid-cycle (note: this restriction is removed in a new family of 
NAND flash devices known as CE don’t care). 

• Read Out phase: Once R/B returns high, data is available in the data register for read out.  
The first data byte output is byte N. Each RE# pulse reads out the next byte in the register.  
Once the last byte (D527) is read out, standard NAND flash will automatically go busy 
(another data transfer phase) in preparation for reading out the next page (with no additional 
command or address input).  In the datasheet, this is called sequential read. If this is not 
desired, chip enable must be brought high (note: for the CE don’t care family of NAND 
flash, the automatic sequential read function does not exist). 

 
Why is a page 528 bytes long?  Since the original intent of the NAND flash was to replace 

magnetic hard disk drives, the intention was for the page to be big enough to store 1 sector (512 
bytes) worth of data with 16 bytes extra for overhead such as error correcting code.  Because the use 
of ECC is common with NAND flash (sample code is in the appendix), read mode 1 is the most 
often used read command because it enables one to read the entire 528 byte page. 

3.2 Page Program 
In a page program operation, a page of 528 bytes is written into the data register and then 

programmed into the memory array.  The sequence is as follows: 

C
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DN DN+1 D527
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• Command phase: With CLE=1, ALE=0, the command byte 80h is placed on the I/O pins 

and WE# is brought low, then high.  This stores the “serial data input” command into the 
command register.  This command also resets the register to all “1”s (all FFh). 

• Address phase: With CLE=0, ALE=1, the first address byte is placed on the I/O pins and 
WE# is toggled.  This first address byte “N” (called the column byte in the figure below) is 
usually set to 0 in order to start writing from the beginning of the page.  However, like the 
read command, it is also possible to set N to any value between 0 and 255.  The first byte 
that is written in the data phase will then overwrite the FFh at location N in the register.  If 
you desire to overwrite the register values starting at byte N (N=256-527), you need to 

precede the 80h command with either 01h or 50h (the read mode 2 and read mode 3 
commands).  It should be noted that the full page is programmed from the register into the 
memory each time the program command (10h) is received.  However, since the serial data 
input command (80h) resets the register to all “1”s, bytes in the register that are not 
overwritten with data will remain “1” and should not will not affect the memory.  Like the 
read mode, the address bytes which follow after column byte N, indicated by Row1 and 
Row2 in the figure, are used to set the page within a block (lowest 5 bits in byte Row1), and 
the block within the device.  In the higher density NAND devices, the address phase is 4 
bytes long rather than 3. 

 
 

• Data Input phase: CLE and ALE are set to zero, and data bytes are written into the data 
register.  If you try to write more bytes than the page size, the last byte in the register will 
contain the last byte written. 
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• Program phase: With CLE=1, ALE=0, the auto program command (10h) is written to the 
command register.  The device then goes busy for tPROG (typically 250us).  During this 
busy period, even if chip enable goes high, the device will finish programming. 

• Timeout Check phase: Although not shown on the diagram, it is typical to check the status 
after programming.  If the device was unable to program a bit from 1 to 0 within the time 
allowed, the pass/fail bit returned by the status read command will indicate a failure.  If this 
happens, the block should be considered bad because the device has already attempted to 
program the bit multiple times before the internal timeout occurred. 

3.3 Block Erase 
 In a block erase operation, a group of consecutive pages (typically 32) is erased in a single 

operation.  While programming turns bits from “1” to “0”, block erasure is necessary to turn bits 
from “0” back to “1”.  In a brand new device, all usable (good) blocks are in the erased state. 

 

• Command phase: With CLE=1, ALE=0, the command byte 60h is placed on the I/O pins 
and WE# is brought low, then high.  This stores the “auto block erase” command into the 
command register. 

• Address phase: With CLE=0, ALE=1, two address bytes are written into the address register.  
Notice that only two address bytes are required.  There is no “column” byte as in the read 
and program operations.  In the first address byte (Row1), only the upper 3 bits are used.  
The lower 5 bits of Row1are reserved for the page within the block (for device with 32 
pages per block) and during a block erase operation, all pages within the block will be 
erased; therefore, the value of the least significant 5 bits are actually don’t care.  The upper 3 
bits of Row1 and the 8 bits of Row2 determine the block that will be erased.  Because this is 
only 11 bits (2048 blocks max.), higher density NAND devices require 3 address bytes.   
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• Erase phase: With CLE=1, ALE=0, the auto block erase confirm command (D0h) is written 

to the command register.  The device then goes busy for tERASE (typically 2ms).  During 
this busy period, even if chip enable goes high, the device will finish erasing the block. 

• Timeout Check phase: Although not shown on the diagram, it is typical to check the status 
after erasing to make sure a timeout (erase failure) did not occur.  If the device was unable to 
erase the block successfully within the time allowed, the pass/fail bit returned by the status 
read command will indicate a failure.  If this happens, the block should be considered bad 
because the device has already attempted to erase the block (and verify it is erased) multiple 
times before the internal timeout occurred. 

 

4. Hardware Interfacing 
 

When you examine the timing diagrams in the datasheets for standard NAND flash devices, 
you will notice that there was the expectation that NAND flash would be connected to a controller 
chip or specialized interface state machine because of two characteristics: 

 
• The chip enable is shown asserted low continuously during the period of the operation.  

Actually, chip enable can be deasserted in between individual write cycles and read cycles; 
however, it must remain continuously asserted low during the read cycle busy period.  For 
chip enable don’t care NAND, this restriction is removed. 

• Signal ALE is shown to be high continuously between individual write cycles.  Actually, in 
between write cycles, ALE can go low as long as the setup and hold times are met. 
 

These timing diagrams are relatively easy to achieve if you connect the NAND flash to a state 
machine.  However, if you intend to connect the NAND to a microprocessor bus directly, some glue 
logic will be necessary.  There are several ways to connect the NAND flash to the host: 
 
1) Using general purpose input/output (GPIO) pins 
2) Using a memory-mapped interface with glue logic 
3) Using a chip-enable don’t care NAND 
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The key requirement in all cases will be to meet the timing diagram restrictions.  For example, 
the setup and hold times for CLE, ALE, CE#, and data input with respect to WE# are shown below.  
Note that CLE, ALE, and CE# are not required to be held in a particular state outside the interval.  
The practical implication is that CLE and ALE can be connected to the host address lines in order to 
select the internal register connected: data register, command register, or address register. 
 
 
 

The data read cycle is shown below.  Not shown on the diagram are CLE and ALE, which are 
both assumed to be low.  This diagram is for the chip enable don’t care NAND; notice that the chip 
enable state is don’t care during the busy period preceding the data read cycle.  For standard NAND, 
chip enable must be held low during the busy period preceding data read out. 

 

/ ALE

/ CLE

Command In / Address In

Set up time for ALE, CLE, -CE is based on
the falling edge of  -WE, hold time based
on the rising edge of -WE.

Set up time for I/O is based only on the
rising edge of -WE.

tCLH / tALH

tALS / tCLS tALH / tCLH

tCLS / tALS

Symbol Spec
Setup tCLS 0ns

tALS 0ns
tCS 0ns
tDS 20ns

Hold tCLH 10ns
tALH 10ns
tCH 10ns
tDH 10ns

Other tWP 25ns

Figure 4-1.  NAND Timing Requirement for Address/Command Inputs. 
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Using GPIO Pins 
 

Using GPIO pins to control the NAND signals (such as ALE, CLE, /CE, /WE, and /RE) offers 
great flexibility in meeting the NAND timing requirements.  However, unless the speed 
requirements are relatively low, the performance is likely to be a fraction of the NAND’s potential 
performance.  Also, GPIO pins are often scarce in a system, so this may not be an acceptable use of 
a scarce resource.  However, although adding GPIO pins to the interface may involve additional 
cost, it may be easier to control the NAND for some platforms. 

 
 

tCEA

Data Read

Symbol Spec
tRC 50ns
tRP 35ns

tREH 15ns
tREA 35ns
tCEA 45ns
tOH 10ns
tRR 20ns

Figure 4-2.  NAND Timing Requirement for Data Reads. 

/CE 

 

GPIO

/RB

I/O 1 - 8 

ALE 
CLE 
/RE 
/WE 

Standard or 
Chip Enable 
DC NAND 

D0 - 7

GPIO

GPIO
GPIO
GPIO

:  Connected only to NAND  
:  Shared by other memory devices  

Figure 4-3.   Physical  Connection  when GPIOs are used. 

GPIO
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Memory-Mapped Interfacing using Glue Logic 
 
In order to interface to standard NAND devices, it is necessary to use a latched signal to drive 

the NAND’s chip enable.  The simplest approach is to use a latched GPIO pin. 

 
The GPIO pin controlling the chip enable is asserted low at the beginning of the NAND read, 
program, or erase cycle and is not deasserted until the end of the entire cycle.  Note that the read 
enable and write enable to the NAND is qualified by an address decoded chip select.  In this way, 
only read or writes intended for the NAND actually toggle the NAND’s read enable or write enable 
pins.  When /CS is deasserted, the glue logic deasserts /RE and /WE, which tri-state the NAND’s 
outputs. 
 
 
Using a Chip Enable Don’t Care NAND 
 

Perhaps the simplest method to connect NAND to a microprocessor bus is the use of a chip 
enable don’t care CEDC) NAND instead of standard NAND.  The main difference between 
standard NAND and chip enable don’t care NAND is that chip enable does not need to be 
continuously asserted low during the read busy period.  The removal of this restriction allows chip 
enable to be deasserted between individual read or write cycle and enables the direct connection of 
the NAND to a microprocessor with no glue logic.  The NAND chip enable will work as expected 
and qualify the read enable and write enable signals.  The only function that was removed from 
standard NAND to make this possible was the elimination of the automatic sequential read function, 
which was rarely used anyway. 
 
 
 

I/O 1 - 8

ALE
CLE

/CE

/RE

/WE

Standard or 
Chip Enable 
DC NAND 

D0 - 7

A1
A0

GPIO

/OE

/WE

:  Connected only to NAND  
:  Shared by other memory devices  

/RBGPIO

/CS

Figure 4-4.  Physical  Connection  when Memory-Mapped. 
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Unlike NOR flash, the NAND flash does not have any dedicated address pins to be connected 
to the microprocessor address pins.  Therefore, most people think that a direct interface between 
NAND and a microprocessor is difficult.  However, as shown in figure 4.5, the interface does not 
require any glue logic.  Toshiba has demonstrated this glueless NAND connection between the 
Toshiba TX4927 MIPS processor and the Toshiba TC582562AXB NAND flash. 

  
On the TX4927 demonstration board, the timing for the chip select (/CS) of the TX4927 was 

modified as described in figure 4-6 and 4-7 below.  This was easily be done by changing the register values 
which controlled the timing for /CS.  Most high end processors with integrated chip select circuitry have programmable 
timing.  With CLE connected to A0 and ALE connected to A1, the software driver for the NAND need only access 3 
address locations.  Access to the base address for /CS accesses the NAND data register by setting 
CLE=0 (A0=0) and ALE=0 (A1=0).  Writes to base address+1 writes the NAND command register 
by setting CLE=1 (A0=1) and ALE=0 (A1=0).  Writes to base address+2 writes the NAND address 
register by setting CLE=0 (A0=0) and ALE=1 (A1=1).  

 
With the introduction of the chip enable don’t care NAND, interfacing to NAND flash has 

never been easier. 
 
 
 
 
 
 
 
 
 
 
 
 

I/O 1 - 8 

ALE
CLE

/CE

/RE
/WE

TC582562AXB 
CEDC NAND  

D0 - 7 

A1 
A0 

/CS 

/OE 
/WE 

:  Connected only to NAND  
:  Shared by other memory devices  

/RBGPIO 

Figure 4-5.  Connection using Chip Enable Don’t Care NAND. 
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GBUSCLK = 100MHz = 10ns
The bus speed is set to 1/4 of the GBUSCLK                     SYSCLK = 40ns.

40ns 40ns 40ns

Symbol Spec 4927
Setup tCLS 0ns 40ns

tALS 0ns 40ns
tCS 0ns 40ns
tDS 20ns 80ns

Hold tCLH 10ns 40ns
tALH 10ns 40ns
tCH 10ns 40ns
tDH 10ns 40ns

Other tWP 25ns 40ns

*) BWE, BE, ACK is not used.

Command In / Address In ( 120ns / cycle )

Figure 4-6.  Command In, Address Timing Generated by 
TX4927. 

*) BWE, BE, ACK is not used.
(*1) : Data latch point is within OE low, so not an issue.

Symbol Spec 4927 
tRC 50ns 120ns 
tRP 35ns 40ns 

tREH 15ns 80ns 
tREA 35ns approx 80ns
tCEA 45ns approx 80ns
tOH 10ns - (*1) 

40 ns 40 ns 40ns

Data Latch

Data Read ( 120ns / cycle ) 

Figure 4-7.  Data Read Timing Generated by TX4927. 
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 5. Large block vs. Small Block NAND 
In the current NAND architecture, each page consists of 528 bytes, and each block consists of 

32 pages.  Future NAND devices will use the large page/large block structure in which a page will 
be 2112 bytes (4 times larger) and a block will consist of 64 pages (2 times larger) resulting in a 
block size that is 8 times larger.  The first of these new large block NAND flash devices is the 1 
Gbit  TC58NVG0S3AFT00.  Note that all large block devices will also have the chip enable don’t 
care feature.  The increased page and block size will enable faster program and erase speeds in 
future high density NAND flash.   
 

0.16 micron 0.13 micron 0.13 micron
Small Page (528 B) Small Page (528 B) Large Page (2112 B)
Small Block (16kB) Small Block (16kB) Large Block (128kB)

64 Mb TC58V64BFT (standard) N/A N/A
TC58128AFT (standard) TC58DVM72A1FT00 (standard) N/A
TC581282AXB (CEDC) TC58DVM72A1XB11 (CEDC) N/A
TC58256AFT (standard) TC58DVM82A1FT00 (standard) N/A
TC58256AXB (CEDC) TC58DVM82A1XB11 (CEDC) N/A
TC58512FT (standard) TC58DVM92A1FT00 (standard) N/A

TH58DVM92A1XB11 (CEDC) N/A
1 Gb TH58100FT (standard) TC58DVG02A1FT00 (standard) TC58NVG0S3AFT00 (CEDC)
2 Gb N/A N/A TH58NVG1S3AFT00 (CEDC)

512 Mb

Density

128 Mb

256 Mb

 
Note: CEDC = Chip Enable Don’t Care 

 
Although the internal architecture will be different, the external physical interface will be the 

same.  Therefore, in most cases, only the flash software needs to be updated in order to use these 
new devices. 
 
The effective read speed of the large block NAND devices is similar to the small block devices: 
 
 Read Time = 6 cycles x 50ns + 25 µs + 2112 cycles x 50ns = 131 µs 
 Read Speed = 2112 bytes / 131 µs = 16.1 Mbytes /sec 
 
The effective write speed of the large block NAND devices is more than 3 times faster. 
 
 Write Time = 5 cycles x 50ns + 2112 cycles x 50ns + 1 cycle x 50ns + 200µs = 306 µs 
 Write Speed = 2112 bytes / 306µs = 6.9 Mbytes / sec 
 
The effective erase speed is nearly 8 times faster. 
 
 Erase Time = 4 cycles x 50ns + 2ms = 2ms 
 Erase Speed = 128kB / 2ms = 64 Mbytes / sec 
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6. Failure Mode Overview 

6.1 Bad Block Identification (Initial Bad Blocks) 
 

The NAND flash was designed to serve as a low cost solid state mass storage medium.  In 
order to achieve this goal, the standard specification for the NAND allows for the existence of bad 
blocks in a certain percentage.  A bad block list (or bad block table) that can be updated needs to be 
maintained in the system.  The bad block table can either be stored in one of the good blocks on the 
chip, or on another chip in the system such as RAM.  A bad block table is also required because 
unlike magnetic media, flash memory does not possess infinite write/erase capability; there is a 
finite number of write and erase cycles that all types of flash memory can achieve.  Because all 
flash memory will eventually wear-out and no longer be useable, a bad block table needs to be 
maintained to track blocks that fail during use. 
 

Allowing for the existence of bad blocks increases the effective chip yield and enables a lower 
cost.  The existence of bad blocks does not affect the good blocks because each block is 
independent and individually isolated from the bit lines by block select transistors.  
 

During outgoing testing and burn-in testing, blocks that are considered bad by Toshiba are 
marked with a 00h in byte 0x205 (byte 517) in each page of a bad block (this is the same as the 
SmartMedia format for marking bad blocks).  Toshiba determines that blocks are bad by 
performing extensive pattern testing over both temperature and voltage extremes. 
 

The cause of bad blocks could be a number of reasons (decoder failure, word line failure, 
memory cell failure) so once the bad blocks have been located, Toshiba recommends that the bad 
blocks no longer be accessed.  To locate the bad blocks on a brand new device, read out each block.  
Any block that is not all FFh (all 1s) in byte 517 (starting from byte 0) of the 1st page of a block is a 
bad block.  The figure below is a flowchart that shows how bad blocks can be detected by doing a 
read check on each block.  
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Once you erase a block, the non-FF bytes will be also be erased. If this occurs, re-identifying 
the bad blocks will be difficult without testing at different temperatures and voltages and running 
multiple test patterns, so if the list of bad blocks is lost, recovering bad block locations are 
extremely difficult. 

6.2 Blocks that Fail  During Use 
 

As mentioned in the previous section, all flash memory has a finite lifetime and will 
eventually wear out.  Since each block is an independent unit, each block can be erased and 
reprogrammed without affecting the lifetime of the other blocks.  For NAND memory, each good 
block can be erased and reprogrammed more than 100,000 to 1,000,000 times typically before the 
end of life. This is described in the datasheet. 
 

The primary wear out mechanism is believed to be excess charge trapped in the oxide of a 
memory cell and the net effect is that erase times increase until an internal timer times out 
(Narrowing Effect).  The programming time seen by the user actually decreases slightly with 
increasing number of total write/erase cycles, so the device’s end of life is not characterized by 
program failures.  Generally, only a severe device failure could cause a page program failure. 
 

Therefore, blocks should be marked as bad and no longer accessed if there is either a block 
erase failure or a page program failure.  This can be determined by doing a status read after either 
operation.  The status read command is used to determine the outcome of the previous erase or 
program operation.  Block erase operations are automatically verified, so the entire block is FFh if 
the status bit indicates the erase operation passed.  For programming, the status bit indicates the 
program operation passed if all zeros (“0”) in the data register are correctly programmed into 
memory. One (“1”) bits in the data register are not verified and are ignored.  Therefore, if  “0s” are 
already programmed into a page in memory, all program operations to that page, regardless of the 
data in the data register, would pass. By not verifying 1s, partial page programming is possible. 
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6.3 Failure Modes Mechanism and Symptoms 
 

Although random bit errors may occur during use, this does not necessarily mean that a block 
is bad.  Generally, a block should be marked as bad only if there is a program or erase failure.  The 
four main failure modes that can be distinguished as “permanent failures” or “soft errors” are 
described below. 

Permanent Failure 
• Write/Erase Cycle Endurance - This error may be manifested as a cell, page, or block failure 

which can be detected by status read after either auto program or auto block erase (Figure 6.3.1). 
 

 
 
 
 

Soft Errors 
Over Programming - This is caused when the threshold voltage of a “0” data cell becomes too high 
as a result of excess programming current.  Normally, all threshold voltages are below a bias 
voltage (Vbias) so that the application of Vbias to unselected pages will enable them to turn on 
(figure 6.3.2).  If the threshold voltage of a cell is too high (Figure 6.3.3), the bias voltage that is 
supposed to be high enough to turn on any cell during the read cycle is insufficient, so the cell never 
turns on (figure 6.3.4).  

 

Leak in oxide

bit, page,or block failure

nn

p-well

Vpp (Program)

Vpp(Erase)

nn

p-well

R1

R2

Programmed Cell

“0” Data

Erased Cell

“1”Data

Write/Erase

Endurance Stress

nn

p-well

nn

p-well

Figure 6.3.1. Write/Erase Endurance
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Therefore the error occurs during a program, but can only be detected by reads.  The resultant 
error symptom is that all cells on that bit line in the block read out as 0, so in the worse case 
scenario, if this bit is supposed to be “1” for all other pages in the block, there will be a one bit 
failure for each page in the block.  This condition is cleared by a block erase. 
 

 
 

 

Figure 6.3.2 Programmed bit exceeding VBias 

0V

Vth

Data “0”

Data “1”

VBias

+

Figure 6.3.2. Normal Read 

  Bit Line

Unselected page = Vbias : Tr = ON

Unselected page = Vbias : Tr = ON

Selected page = 0 Volt : Tr =    ON   if “1” data

Unselected page = Vbias : Tr = ON

OFF if “0” data

“0”

Bit Line 
Pre-charge

[V]

Bi
t L
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e 
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ge
 

Time
0

“1”

The S/A senses the bit line voltage and
determines “1” and “0”
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Program Disturb - In this failure mode, a bit is unintentionally programmed from “1” to “0” during 
the programming of a page.  The bit error may occur either on the page being programmed or on 
another page in the block.  Bias voltage conditions in the block during page programming can cause 
a small amount of current to tunnel into memory cells.  Multiple partial page programming attempts 
in a block can aggravate this error symptom. Since this error is caused by soft programming of 
memory cells, the condition is removed by block erasure.  Program disturb effects are also 
worsened by randomly programming pages in a block.  Therefore, the datasheets for NAND flash 
now require programming pages in sequential order only (from lowest page address to highest page 
address).  
 

Understanding these error mechanisms is useful in order to understand how to interpret the 
NAND flash reliability report.  Interpreting the reliability report is the subject of appendix A. 

Figure 6.3.3. Read Operation with over programmed cell 

  Bit Line

Unselected page = Vbias : Tr = ON

Selected page = 0 Volt : Tr = ON
but because above cell does not
turn on, the current does not flow.

Unselected page = Vbias : Tr = ON

Over Programmed Cell

“0”
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Pre-charge

[V]
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Time
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The S/A senses “0” data for cells that are
affected by over programmed cell.
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7. Managing NAND Flash 
 

In order to use NAND flash effectively, the NAND flash must be managed by some kind of a 
controller (either software or hardware).  This is necessary in order to make the NAND flash appear 
to the system as ideal block device.   

7.1 Bad Block Management 
 

In a brand new device, the standard NAND flash specification allows for the existence of 
initial bad blocks.  Standard NOR flash devices have extra spare memory blocks that are used to 
replace bad blocks, but NAND flash devices have a minimal amount of redundant memory blocks 
because it was always expected that an intelligent controller would ignore the bad blocks.  Since it 
was expected that NAND flash would be used for solid state mass storage, blocks would eventually 
wear out; therefore, it was expected that the system be able to handle bad blocks that would form 
during use. 

 
The standard factory location for the bad block byte is byte 517 (the 518th byte) of a NAND 

page.  If this byte is FFh, the block is good, otherwise, the block is bad (typically indicated by 00h).  
This format for marking bad blocks is from SmartMedia card (NAND flash in a removable card 
package) and was standardized by the SSFDC Forum (Solid State Floppy Disk Card – the former 
name of SmartMedia).  If additional bad blocks form during use, the block is marked bad.  
Generally, this is possible even if the block that you are marking is considered bad.  To distinguish 
between factory marked bad blocks and blocks that go bad during use, two flag values are defined 
in the SmartMedia format: 00h (for initial factory marked bad blocks) and F0h (for blocks that go 
bad during system use). 

 
An alternative approach to the “in block” method of keeping track of bad blocks is to maintain 

a bad block table.  However, where to you store a bad block table since blocks could be bad?  For 
NAND TSOP devices only, the first block of the NAND flash (block 0) is guaranteed to be good.  
Thus, block 0 could be used to hold a bad block table if desired.  However, at power up, many 
systems simply scan the first page of each block to determine whether they are good or bad and 
build a bad block table in RAM.  

7.2 Error Correcting Code 
 

The use of an error correcting code is essential in order to maintain the integrity of stored code.  
Soft errors (especially during programming) occur at a rate of approximately 10-10 or about 1 bit per 
10 billion bits programmed.  Single bit correcting (two bit error detecting) Hamming code is 
sufficient for NAND flash.  Toshiba has developed C sample code for implementing Hamming code.  
It is available in a separate document entitled the SmartMediaTM ECC Reference Manual. 

7.3 Wear Leveling 
 

If flash memory had infinite write/erase endurance, wear leveling would not be necessary.  
However, unlike magnetic media, flash memory eventually wears out and no longer programs or 
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erases in the allotted amount of time.  Because the design of typical file systems assumed the 
characteristics of magnetic media, certain physical locations may be repeatedly rewritten.  For 
example, in the DOS FAT file system, the FAT and directory areas must be modified multiple times 
each time a file is written or appended.  When multiplied by the thousands of files in a typical file 
system, the FAT and directory areas of the disk will experience vastly more writes than any other 
area of the disk. 

 
When flash memory is used to emulate a disk drive, the physical areas of the flash that contain 

the FAT and directory would be worn out first, leading to early failure of the file system stored on 
the flash.  In order to spread out the writes across as much of the flash as possible, a wear leveling 
algorithm is implemented by the controller (software or firmware in a hardware controller) which 
translates a logical address to different physical addresses for each write.  Generally, this logical to 
physical lookup table is implemented in RAM and is initialized at power up by reading each 
physical block in the NAND flash to determine its logical block value. 

 
Ideally, wear leveling is intrinsic to the file system itself.  Several new file system exist which 

write new data sequentially rather than overwriting a fixed location.  These file systems use a 
technique known as journaling.  For flash memory, JFFS2 (Journaling Flash File System 2) and 
YAFFS (Yet Another Flash File System) exist which automatically spread out wear by writing 
sequentially to free flash space. 

7.4 Software Drivers 
Software drivers for managing NAND flash are becoming available from a variety of sources.  

There are open source developments such as JFFS2 and YAFFS, as well as a number of drivers 
available from third parties.   The table below lists the sources of NAND flash driver software we 
are currently aware of or have discovered on the web. 

 
Product Name Company/Sponsor Website 
F1Pack Angel & Jet Tokyo Electron http://tmg-eng.teldevice.co.jp/f1pack.html 
FlashFX Datalight http://www.datalight.com 
JFFS2 Red Hat http://sources.redhat.com/jffs2/ 
NAND File system Kyoto Software Research Contact Toshiba http://www.toshiba.com/taec/ 
smxFFS Micro Digital http://www.smxinfo.com 
TargetFFS-NAND Blunk Microsystems http://www.blunkmicro.com/ffs 
TrueFFS Wind River Systems http://www.windriver.com/products/true_ffs/ 
YAFFS Toby Churchill http://www.aleph1.co.uk/armlinux/projects/yaffs/

 

7.5 Hardware Controllers 
 

There are a number of sources for hardware controllers for NAND flash.  To date, the main 
application for these controllers have been for use inside flash memory cards such as CompactFlash,  
USB drives, or flash memory card reader/writers.  Manufacturers include SST, Cypress, Standard 
Microsystems Corp., and many others. 
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8.  Tips for Using NAND Flash 

8.1 MROM / NOR Replacement 
In many cases, the intended use of the NAND flash is to act as a large read-only memory.  

There are two problems to consider.  First, some type of bootstrap ROM is necessary (unless the 
processor has a built-in NAND controller state machine) since NAND flash is not a random access 
device.  The bootstrap ROM will typically be MROM or NOR flash, although some processors have 
the ability to boot from a serial EEPROM.  The bootstrap ROM code’s job is to copy code from the 
NAND flash into system RAM.  The second problem, the existence of initial bad blocks that must 
be skipped over, is handled by the bootstrap ROM code.  Of course for systems without a 
significant amount of RAM space, shadowing code from the NAND into RAM is not a viable 
option.  However, for most systems running on a 32 bit microprocessor and running an industrial 
strength real-time OS, significant amounts of RAM (SDRAM) are likely to be available and 
shadowing from NAND flash would be a very cost effective solution. 

 
Typically, the bootstrap ROM code would be written in assembly language and should do 

minimal system initialization like setting up chip selects and initializing the DRAM controller.  
Then the bootstrap ROM code would: 

 
1. Read the first page of a NAND block and examine the bad block mark location 
2. Determine whether the block is good or not 
3. If good, copy the data from the NAND flash into system DRAM and correct the data 

if necessary 
4. If bad, skip over block 
5. If additional blocks need to be transferred, repeat process 

 
There is one question that often comes up “Is ECC really necessary?”  After all, the likeliest 

cause of a bit error is during the programming process.  For example, if you program a block, then 
verify it has no errors, how reliable is the data?  In these ROM-like applications where the 
write/erase cycles is very low, the actual failure rate for a block is about 3 ppm after 10 years (i.e. 3 
blocks out of every million blocks will have a bit error after 10 years) in which a block failure is 
defined as a single bit error.  This result was derived from testing 29708 pieces of 512Mb NAND 
(0.16um) by writing a checkerboard pattern into blocks and storing at 125C.  Since there will be a 
non-zero data retention failure rate, you should limit the amount of code to 1 block to achieve a low 
ppm probability of failure. 

 
It is taken for granted that NAND flash is not bootable (at least for the moment) because of the 

lack of separate address and data lines, but there actually is a variant of NAND flash that is!  Co-
developed by Toshiba and M-Systems, the monolithic DiskOnChipTM has a true random access type 
of interface (13 address lines, 16 data lines, chip enable, write enable, output enable, etc) in a TSOP 
or BGA package.  A small bootstrap loader program (1kB or 2kB) can be executed directly from the 
DiskOnChip without shadowing.  TrueFFSTM software drivers have been written by M-Systems for 
the following operating systems:  Windows CE, Linux, VxWorks, Symbian, Windows NT, PSOS, 
QNX, Nucleus, and DOS. 
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8.2 To Partition or Not to Partition 
In the previous section, the NAND flash is used exclusively as a ROM in which a file system 

is unnecessary.  However, many applications may wish to use part of the NAND flash as a ROM, 
and part as a file system.  In this case, there are basically two approaches.  In the first case, we can 
partition the NAND flash into two separate distinct regions in which code is stored in one partition 
and the file system is stored in the other.  In the second case, we could use the entire NAND flash as 
a file system and store the code as a special file within it.  The first case will be simpler to 
implement because the bootstrap loader program will not have to understand the file system in order 
to retrieve code from the NAND flash.  However, the second case is more versatile.   If code should 
grow in the future, there is no need to repartition the NAND flash.  Development is easy because 
one can simply reload a new ROM image as a file.  However, a more sophisticated bootstrap loader 
program requiring more space will be necessary. 

8.3 Considerations for Preprogramming NAND  
Preprogramming NAND flash is different than programming NOR flash primarily because the 

existence of bad blocks prevents the use of fixed physical addressing.  Programmers that support 
NAND flash program complete blocks and skip over bad blocks.  All overhead bytes (including 
ECC bytes) must be included in the data file itself.  In the data file, every 518th byte (byte 517) out 
of every 528 bytes should be left as 0xFFh.  As discussed in section 6.1, this byte is reserved as the 
bad block flag byte.  A separate white paper describing the issues in preprogramming NAND flash 
is available from Toshiba America. 

 
If the NAND flash is divided into 2 partitions as described in section 8.2, it will be necessary 

to program the NAND flash in two operations.  In the first operation, the code portion is 
programmed.  Since the bad block distribution will vary from chip to chip, the last physical block 
programmed will differ.  If the second partition (i.e. file system partition) is to be written starting at 
the same physical address in every chip during the second program operation, several spare blocks 
(1-2%) typically needs to be added to the code partition to allow for bad blocks to enable the second 
partition to start at a fixed block location.  Of course, there is still a possibility that in a particular 
chip, the bad blocks are concentrated in the code partition section.  If this happens, there would be 
an insufficient number of good blocks in the physical block range allocated for code storage to 
actually store the code.  Also, the hassle of dealing with two separate files (code and file system) to 
be programmed can lead to errors.  Therefore, it will be more convenient to avoid partitioning the 
flash and implement case 2 in section 8.2 by storing the code as a special file in the file system and 
program a single file into the flash. 
 

8.4 Considering Memory Cards 
If  portable storage is necessary, the easiest solution is to use one of the removable memory 

cards available.  The advantage of using a memory card is that all memory cards (except 
SmartMedia) have a built-in memory controller chip.  Toshiba, as the inventor of SmartMedia, co-
inventor of the SD card, and a major manufacturer of CompactFlash cards, offers a variety of 
possible solutions.  For further information on these cards, see: 
• SmartMedia – http://www.ssfdc.or.jp 
• SD Card – http://www.sdcard.org 
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• CompactFlash – http://www.compactflash.org 

9. Introduction to CompactFlash 
 

The CompactFlashTM card is a small, removable, storage and I/O card.  Invented by Sandisk, 
the specifications are now determined by the CompactFlash Association (CFA) 
(http://www.compactflash.org), an organization that promotes the adoption of CompactFlash.  The 
CompactFlash can be used in such applications as portable and desktop computers, digital cameras, 
handheld data collection scanners, PDAs, Pocket PCs, handy terminals, personal communicators, 
advanced two-way pagers, audio recorders, monitoring devices, set-top boxes, and networking 
equipment. 
 

A CompactFlash card is essentially a small form factor card version of  an ATA PC Card (AT 
Attachment) specification and includes a True IDE (Integrated Drive Electronics) mode which is 
compatible with the ATA/ATAPI-4 specification.  As such, there are 3 distinct interface modes that 
a CompactFlash card can use: 
 
• PC Card Memory Mode (uses WE#, OE# to access memory locations) 
• PC Card I/O Mode (uses IOWR#, IORD# to access I/O locations) 
• True IDE Mode (uses IOWR#, IORD# to access I/O locations) 
 

The CompactFlash card is essentially a solid state ATA disk drive.  To control an ATA disk 
drive, one writes to the task file registers.  The values put into these task file registers control the 
drive (the ANSI T13 committee defines these registers and the commands used to control all 
ATA/IDE drives – see http://www.t13.org).  These task file registers can be mapped into either 
memory or I/O address space. 

 
A typical CompactFlash card consists of a controller and several NAND flash memory chips.  

The convenient aspect of using them is that the controller typically implements ECC in hardware 
and the NAND flash management in firmware offering both high reliability and high performance.  
Two application notes describing a reference interface between the CompactFlash card and either 
the MPC8260 or PPC405 are available from Toshiba. 

 
 


