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required to traverse the boundary of a simple plane polygon. From this data, we

wish to determine the area of the plot. In a simple example, such as Figure 1a,
one could break up the polygon into triangles whose areas could be laboriously found
using trigonometric methods. A better way (Figure 1b) is to introduce rectangular
coordinates and change the displacement vectors from polar to rectangular form, so they
can be added to give the coordinates of the vertices of the polygon. Then a general
formula can be applied, which expresses the area of the polygon as a function of the
coordinates of its vertices. Such a polygonal area formula is well known to surveyors
but, despite its elementary nature, does not appear in most precalculus or calculus
textbooks.

Q typical survey of a plot of land gives as data the successive displacements

Besides its intrinsic interest, at least two reasons can be advanced for including this
surveyor’s area formula in the calculus course, when plane vectors are introduced:

1. The derivation provides an excellent opportunity to introduce and use the geometric
interpretation of 2 x 2 determinant as the oriented area of a paralleloglm in  This
makes it easier later on for students to understand geometric properties of the cross
product of vectors i3,

2. The surveyor’s formula provides a geometric interpretation of an otherwise
mysterious formula in multivariable calculus, expressing the area inside a simple closed
curve in parametric form as an integral around its boundary. An elementary derivation of
this curvilinear area formula closely resembles that of the arc-length formula, so both
can be derived together. An important advantage of the area formula is that the area
integrals for many familiar curves are easily evaluated.

The Surveyor’s Formula. If the vertices of a simple polygon, listed counterclockwise

around the perimeter, at®,, o), (X, v4), . .(X,_1.Y¥,_1), the area of the polygon is
Azl{xo Xl X0 Xl g K2 Kaea P Xo}'
2(IYo W1 Y1 Y2 Yn-2 Yn-1 Yn-1 Yo
Note that each oriented edge of the polygon correspond2 to2a determinant in the

surveyor’s formula.
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Our deivation of the sweyor’s formula is based on theegmetic interpretaion of a
2 x 2 deteminant as the ented aea of the pallelogram whose sides arthe ectos
compiising the columns of the detemant.We formally stae this and mvide a poof
suiteble for a calculus cose

Vi W

Lemma. The dsolute alue of is the aea of the pallelogram detemined ly

Vo W,
the \ectos V = (v;, v,), W = (w;,, w,), and the deteninant is positie just if the
(shoter) direction of ptation of V into W is counteclockwise.

To prove this,let N denote the &ctor obtained Yorotaing V = (v,, v,)
counteclockwise ly 7r/2 radians. Ifg is the polar angle df (the angle beteen the
positive x-axis andV), then6 + (/2) is the polar angle dfl. Since

V = (r cosb, r sinb),
where

r= 1|V,
we hae

N = (—rsing, r cosf) = (—V,, ;).

I The altitude of the patlelogram with basé/ and
adjacent sid&V is the #&solute alue of the component
of W alongN; tha is, |W - N|/|N|. Therefore, the
areaA of this paallelogram is|V||W - N|/|N]. but

IN| = |[V|,s0A = |W- N| = |v,w, — v,w,|, the
absolute alue of the deteninant withV andW as
column \ectos. Moreover, this deteminant is positie
just if the angle beteenN andW is acute; thais, if

the angle fomV to W, measued counteslockwise,

is between 0 andr.

Figure 2.



Now let’s tun to the sureyor’s formula. The casen = 3, when the polgon is a
triangle is the ley to our poof.

{1y, il

Figure 3.

From the Lemmawe knav tha the aea of a tiangle haing vertices(xy, Yo), (X, Y1),
(X, ¥) listed countetlockwise (so thaithe shater direction of otaion of
V = (X, — X5 Y1 — Yo iINTOW = (X, — X,, ¥, — Yo iS counteclockwise), is

Azlxl_xoxz_xo
21 = Yo Y2 = Yo

Now let D be the3 x 3 deteminant whose ows aer; = (1,1, 1), r, = (X, Xq, Xo),
rs = (Yo Y1: ¥»). Compaing the two expansions oD,

1 0 0 Y X % — .
D=X X —X X=X = yl_y yz_y =
Yo Y1 Yo Y2~ Yo oo oo
and
D= LT I ] I LGRS
Y. Y Yo Yo Yo Y1
o K Xl X X
Yo Yal oIYi Yol 1Yo Yol
we obtain the sweyor’s formula
2(lYo Y1 Y1 Yo Y2 Yo

for the aea of a tiangle Note thathe deteminants @peamg in the brmula
correspond to the tieeorientededges of the tangle

To estdlish the suveyor’s formula for a poygon withn > 3 sides,we use thedct (see
[4], p. 286) thaary oriented simple pgigon can be tangulaed; tha is, we can ad

n — 3 auxiliary diagonals though the intdaor to decompose the paon inton — 2
triangles,ead diagonal being an edgof two adjacent tangles lot inherting opposite
orientdions form them (kgure 4). Since theartices of our polgon ae listed
counteclockwise, all the tiangles inhdt this positve otientdion; so the dented aea
of the poygon is the sum of the @as of the tangles.
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Figure 4.

Applying the suveyor’s formula to eab triangle and summingiges

1 (X X
A==

22 Yi Y
with one deteninant br eat oriented edg in our collection of tangles. Since e&c
diagonal occus twice (as the common eslgf adjacent iangles) and with opposite
orientaions,the two deteminants caresponding to edcdiagonal cancel out

(becaus%i ? ? 3 = O), and we're left with the sum of the detamants
i j j i
corresponding to the mnted edgs of the aginal polygon. This completes the pof.

+

Exercises base on aatch like Fgure 1,0r on suvey daa (eg. [7]) will reinforce the
students gasp of the sweyor’s formula.

TheArea Inside a Simple Closed Cwe. In a typical calculus cosg parmmetic
equdions of cuves ae introduced in the 2nd semester and trelangth brmula for a
curve in paametic form is deived but no mention is made of thegttem of finding
the aea inside a simpldased cuve. Except for cunves in polar coatinaes,the student
can fnd ara ony by breaking up theagion into pieces bounded/lgraphs of functions
and lines pallel to the coalinae ayes.

Late in the 3d semesteor perhg@s in a nultivariable calculus coigg the formula
1
A= Eyfx dy — ydx

appeas as a ivial consequence of @ens theoem. Often no gometic explandion is
given,and the érmula males little impession.The suveyor’s formula leads n@rally to
this intggral formula, if one thinks of a cwre as the limit of insdoed poygons.And
since the aa brmula in polar coatinaes is an easy consequence of theegl
integral formula for paametic curves,class time spent deloping the sweyor’'s
formula can be paally regained The esult is an elementatreament of the calculus
of cuves,which males dear the fundamentable of the paametic form.



Example Let the cicle C of radiusr, with center athe orgin, be gven ly the
pammetic equadionsx(t) = r cost andy(t) = rsint (0 < t < 2). For ary naural
numbern, the pointst, = (2ksr)/n (0 < k < n) form a egular patition of the paameter
interval [0, 27r], and the caesponding pointéx,, y,) = (r cost,, r sint,) are the ertices
of a positvely oriented regularn-sided poygon inscibed in our cicle. (See kgure 5a.)
Note tha (X, Yo) = (%o, Yn)-

Figure 5a.

Applying the suveyor’s formula to eahb triangle and summingiges

2 2T 447
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Thus,the aea of this cicle isA = lim A, = «rr% Note also tha
1 _ 127 . . _ 2
2fcxdy ydx = ZJo [rcost(rcott) — rsint(—rsint)] dt = =r*.

To shav tha the limit of the aeas of insdbed poygons is gven ly the intgral

(1/2)f-xdy — ydx for ary simple closed rectifiable cuve C, we modify our notdon
slightly, writing the suveyor’s formula as



13 %1 &‘
A=_ , 1
2&0Yio1 Y @)
with the comention(x,, y,) = (X,, Yo). SettingAx, = x, — x,_, andAy, =y, — y,_,, and

using the identity

X1 x| _ X A
Yi-1 Y Yic1 Ay,
we obtain
13 [X6-1 Ax
A= . 2
2i21 Yier Ay @)
Now supposeC: t — C(t) = (x(t), y(t)) fort € [a, b] is a simpleclosed smooth plane
curve traversed in the posite (counteclockwise) dilection; so thiathe inteior of the
curve lies to the left of the nwing pointC(t). Each patitona=t; <t; < ---<t,=Db
of the paameter interal [a, b] detemines the erticesC(t,) of a positvely oriented
polygon ‘inscribed’ in the cuwe. (See kgure 5b).

Chrad g, At
Figure 5h
Using the MeaWalue theoem, the length of the insilyed pol/gon
$ic) - ol =SB0 - X6 B + bit) - ¥R
can be gpressed as
ii\/{x’(ui)}z + 1y (v) 12—t y),

whetre the dewatives ae evaluged d pointsu;, v, in (t,_,, t;). Similarly, the suveyor’s
formula (2) or the aea of the pagigon,

100 ) — vt ] - v IXe) — el

can be gpressed as

%_il{x(ti—l)y/(vi) — y(t_ )X (u) =t ).




As the mesh of the p@tion of [a, b] tends to ero, these'geneanlized Riemann sums’
corverge (see [2]p. 133) to the inwgrals

L= [Vix0r + yora
and
_ 1 v at = 1[0 X
A—%fa (XY (®) — yOx ()] dt—%fa W0 y,(t)]dt

Tha the intgral L does in &ct gve the ac-length ofC is shavn corvincingly in [6].
See Rem#r2 belav for a poof tha A is indeed the &a insideC.

3)

The connection bet®en the ara brmula (3) and the sueyor’s formula (2) can be
displayed most eally by using the not#on for the intgral of a diferential form over a
curve. In this notgion ([5], p. 290),the inteyral (3) over[a, b] is the intgral of the brm
w = (3)(xdy — y dx) over the cuve C, denoted

1 1 X dx

5| xdy — ydx, or; .

2L y -y 2fc y dy
One might simpt s&y that asAx, and Ay, become inhitesimalsdx anddy, the
summaion in the suveyor’s formula (2) is tansbrmed into the intgral (3).

Remaks 1. By induding in eab patition of [a, b] all t-values &which eitherC'(t) is
zero or C(t) fails to be diferentieble, the ac-length and &a brmulas ae seen to be
valid for piecevise smooth cwes,a lage enough lass to intude all cuves studied in
elementay calculus.

2. For cetain pdhological cuives,the inscibed poygons coresponding to pétions of
the paameter inteval [a, b] might cioss themsebs,even for arbit@aiily fine patitions.
This unbrtunae complicéion could be cicumwented either Y simply excluding sut
curves flom consideation ([3], p. 187),0r betteyby broadening the discussion toven
polygons and cwes with self-intesections ([2]p. 311).

Better still,by an goplicaion of Greens theoem,

_([(%9_ 6_f>
fcf(x, y)dx + g(x, y) dy = f jR< ox  ay dA,
which is \alid for an arbitary Jordan egion R with bounday cuwve C [1], p. 289),

the difiiculty with pahological cuves \anishes. Choosinfgx, y) = — z)y and

alx,y) = (%)x we et (%)fcx dy — ydx = [[z1 dA, which (by definition) is the aea of
the region R. Thus,our formula (3) is \alid for ary simple closed rectifiable, oriented
curve. The ony point in mentioning the insitred pol/gons is to povide a ggometic
motivation for the line intgral formula, and br this pupose ve mg restict attention to
well-behaed cuwes.

Variants of theArea Formulas. The formula for the ac-length of a polar cue

r = f(6)(a < 6 < b) is usualy deiived a s a special case of the-mEngth brmula for
curves in paametic form. using the pametization by polar anglex(6) = f(6) cos 0
andy(6) = f(0) sin 6.



Since{x"(0)}2 + {y’(0)}?> = {f(0)}> + {f(0)}?, we hae
b
L= [ Vi) + {11(0)}> do.
Similariy,ax(e)y’(e) — y(0)x(6) = {f(0)}? and this yields the aa brmula

b
A= %f {f(0)}2d6

for a simpleclosed polar cuve.

The usual gometic agument,based on theofmula A = (%)rze for the aea of a
circular sectarshaws thd the Eolar aga brmula gplies not onf to simple tosed
curves lut moe geneally (%) J11(0)}2 do gives the ara of thesector’bounded B the
rays # = aand® = b, and the cwrer = f(6). (See kgure 6.)

N
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polar ray

Figure 6.

This moe geneal result can be dered by obseving tha is identicalyy 0 along

/7

‘x X’

ary ray through the dgin, since along suta @y the tangnt \ector(x’,y’) is a
multiple of the adius \ector(x, y). So the intgral (%)fx dy — ydx along the sgments
from the pole to the point with polar cdarates(f(a), a) and fiom (f(b), b) bad to
the pole will both &nish,leaving (%) f,ff{f(())}2 de as the on} norvanishing parof the
integral of (%)(x dy — y dx) around the boundgrof the“sector”.

In this connectionanother viev of the suveyor’s aea brmula should be mentioned
Obseve tha

X1 X
Yi-1 Y
is the aea of the flangle haing vertices(x,_, ¥, 1), (%, Y;) and(0, 0), with the
orientaion detemined ly the ofentaion of theith edg in the oiginal polygon. Thus,
the suveyor’s formula can be vieed as gpressing the @a of a poflgon as the sum of
the ofented aeas of the tangles brmed ly joining successe pais of \ertices to the
origin. (See fgure 7.)

1
2




Figure 7.A = |A)| + |A,| — |Ag] + |A;] — |Ag], the sum of the dented aeas of the
triangles subtendedylihe edgs of the palgon.

This view leads to considarg the diferential orm » = (3)(xdy — y dx) as the'radial

area elementn rectangular coainaes,just as one speaks @rz de as the aa
element in polar codinaes.As the paametert runs fom a to b, the ray from the oigin
to the pointC(t) = (x(t), y(t))sweeps out an aa which is computed pintegration of w
over the cuve C. Note tha this intepretaion of w provides a simplexplandion of
Kepler’s lav of equal agas 6r motion in a cenal force feld. In sut a feld, (x”, y”) is
a multiple of (x, y), so

dix x X X’
diy y1 ly Yy
This meanxy’ — yx’ is constant; thais, the aea is svept out d a constantate.

= 0.

We round out this discussiorytbriefly consideing two useful arants of the intgral
formula for the aea inside a simpje&losed cuve:

b
A= f x(®)y(t) dt (4)

and

b
A= — f yOX () d. (5)



Adding these tgether and diding by 2 gves the symmaetr formula (3). Hav are (4)
and (5) elaed to the sweyor’s formula for the aea of a potgon? Deining

(X4 1, Yo+ 1) 0 be(xy, y;) and collecting the coB€ients of eak x in the suveyor's
formula, one easjyl verifies the identity

Xi—1 X
Yi-1 Yi
Writing the ight side as

1. n

= 2201~ %)

2
i=1 i

%_lei Vivs = W) + %_lei i = ¥i-),

it follows (as noted eber) tha as the mesh of the igion of [a, b] approades 0this
corverges to

b b b
5[ Xy ® dt + 5[ xty® ot = [ xOy)
a a a

A similar agument gves brmula (5).As a mdter of fact,the suveyor’'s formula is
often &pressed in the cogsponding drms

A=33%ips — Yiog) O Az%Eyi(xi—l_xi+1)

in suveying books. (See [7]. 202,0r [8], p. 483.)

Some Exercises. A drawbad of the brmulalL = f;’\/{x’(t)}2 + {y/(t)}2 dt,
for dassoom puposesjs tha this intgral is non-elementgrfor most cuves.
The aea intgrals (3),(4), or (5) for mary familiar cuves,however, are easy
evaluaed Indeedwe irvite reades to \erify the aea brmulas br the bllowing
curves gven in paametic form.

. X = bcost . X=acos’t
. < < - <
Ellipse: y = asint O0<t< 2m Astroid: y = asirt O<ts<2m
Area= mab Area= 37a’

10
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Cardioid: Deltoid:
X = 2acost — acos 2t X = 2acost + acos 2t
. . st<?2 . . <t 2
y =2asint — asinzt ( t m y =2asint — asinzt ( t ™)
Area= 6ma2 Area= 2ma?

s
r

Trisectix: x=at?—1)/(t2 + 1)
inner loop: .
X = acost + acos2t (2m/3 < It)< 47/3) Strophoid: loop:
y=asint + asin 2t o= b= AT (-1<t<1)
y=at(t? — 1)/(t? + 1)
2, 3\/§ 2,
Area= & 7 — > Area= a’(4 — m)/2

11
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