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Atypical survey of a plot of land gives as data the successive displacements
required to traverse the boundary of a simple plane polygon. From this data, we
wish to determine the area of the plot. In a simple example, such as Figure 1a,

one could break up the polygon into triangles whose areas could be laboriously found
using trigonometric methods. A better way (Figure 1b) is to introduce rectangular
coordinates and change the displacement vectors from polar to rectangular form, so they
can be added to give the coordinates of the vertices of the polygon. Then a general
formula can be applied, which expresses the area of the polygon as a function of the
coordinates of its vertices. Such a polygonal area formula is well known to surveyors
but, despite its elementary nature, does not appear in most precalculus or calculus
textbooks.

Besides its intrinsic interest, at least two reasons can be advanced for including this
surveyor’s area formula in the calculus course, when plane vectors are introduced:

1. The derivation provides an excellent opportunity to introduce and use the geometric
interpretation of a determinant as the oriented area of a parallelogram in This
makes it easier later on for students to understand geometric properties of the cross
product of vectors in 

2. The surveyor’s formula provides a geometric interpretation of an otherwise
mysterious formula in multivariable calculus, expressing the area inside a simple closed
curve in parametric form as an integral around its boundary. An elementary derivation of
this curvilinear area formula closely resembles that of the arc-length formula, so both
can be derived together. An important advantage of the area formula is that the area
integrals for many familiar curves are easily evaluated.

The Surveyor’s Formula. If the vertices of a simple polygon, listed counterclockwise
around the perimeter, are . . . , the area of the polygon is

Note that each oriented edge of the polygon corresponds to a determinant in the
surveyor’s formula.
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Figure 1a. Figure 1b.

Our derivation of the surveyor’s formula is based on the geometric interpretation of a
determinant as the oriented area of the parallelogram whose sides are the vectors

comprising the columns of the determinant. We formally state this and provide a proof
suitable for a calculus course.

Lemma. The absolute value of is the area of the parallelogram determined by

the vectors and the determinant is positive just if the
(shorter) direction of rotation of into is counterclockwise.

To prove this,let denote the vector obtained by rotating 
counterclockwise by radians. If is the polar angle of the angle between the
positive x-axis and then is the polar angle of Since

where

we have

Figure 2.
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The altitude of the parallelogram with base and
adjacent side is the absolute value of the component
of along that is, Therefore, the
area A of this parallelogram is but

so the
absolute value of the determinant with and as
column vectors. Moreover, this determinant is positive
just if the angle between and is acute; that is, if
the angle from to measured counterclockwise,
is between 0 and p.
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Now let’s turn to the surveyor’s formula. The case when the polygon is a
triangle, is the key to our proof.

Figure 3.

From the Lemma,we know that the area of a triangle having vertices 
listed counterclockwise (so that the shorter direction of rotation of

into is counterclockwise),is 

Now let D be the determinant whose rows are 
Comparing the two expansions of D,

and

we obtain the surveyor’s formula

for the area of a triangle. Note that the determinants appearing in the formula
correspond to the three orientededges of the triangle.

To establish the surveyor’s formula for a polygon with sides,we use the fact (see
[4], p. 286) that any oriented simple polygon can be triangulated; that is, we can add

auxiliary diagonals through the interior to decompose the polygon into 
triangles,each diagonal being an edge of two adjacent triangles but inheriting opposite
orientations form them (Figure 4). Since the vertices of our polygon are listed
counterclockwise, all the triangles inherit this positive orientation; so the oriented area
of the polygon is the sum of the areas of the triangles.
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Figure 4.

Applying the surveyor’s formula to each triangle and summing gives

with one determinant for each oriented edge in our collection of triangles. Since each
diagonal occurs twice (as the common edge of adjacent triangles) and with opposite
orientations,the two determinants corresponding to each diagonal cancel out 

because and we’re left with the sum of the determinants 

corresponding to the oriented edges of the original polygon. This completes the proof.

Exercises base on a sketch like Figure 1,or on survey data (e.g. [7]) will reinforce the
student’s grasp of the surveyor’s formula.

The Ar ea Inside a Simple Closed Curve. In a typical calculus course, parametric
equations of curves are introduced in the 2nd semester and the arc-length formula for a
curve in parametric form is derived, but no mention is made of the problem of finding
the area inside a simple closed curve. Except for curves in polar coordinates,the student
can find area only by breaking up the region into pieces bounded by graphs of functions
and lines parallel to the coordinate axes.

Late in the 3rd semester, or perhaps in a multivariable calculus course, the formula

appears as a trivial consequence of Green’s theorem. Often no geometric explanation is
given,and the formula makes little impression. The surveyor’s formula leads naturally to
this integral formula, if one thinks of a curve as the limit of inscribed polygons. And
since the area formula in polar coordinates is an easy consequence of the general
integral formula for parametric curves,class time spent developing the surveyor’s
formula can be partially regained. The result is an elementary treatment of the calculus
of curves,which makes clear the fundamental role of the parametric form.
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Example. Let the circle C of radius r, with center at the origin, be given by the
parametric equations and For any natural
number n, the points form a regular partition of the parameter
interval and the corresponding points are the vertices
of a positively oriented, regular n-sided polygon inscribed in our circle. (See Figure 5a.)
Note that 

Figure 5a.

Applying the surveyor’s formula to each triangle and summing gives

Thus,the area of this circle is Note also that

To show that the limit of the areas of inscribed polygons is given by the integral
for any simple, closed, rectifiable curve C, we modify our notation

slightly, writing the surveyor’s formula as
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(1)

with the convention Setting and and
using the identity

we obtain

(2)

Now suppose for is a simple, closed, smooth,plane
curve traversed in the positive (counterclockwise) direction; so that the interior of the
curve lies to the left of the moving point Each partition 
of the parameter interval determines the vertices of a positively oriented
polygon ‘inscribed’ in the curve. (See Figure 5b).

Figure 5b.

Using the Mean Value theorem,the length of the inscribed polygon

can be expressed as

where the derivatives are evaluated at points in Similarly, the surveyor’s
formula (2) for the area of the polygon,

can be expressed as
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As the mesh of the partition of tends to zero, these ‘generalized Riemann sums’
converge (see [2],p. 133) to the integrals

and

(3)

That the integral L does in fact give the arc-length of C is shown convincingly in [6].
See Remark 2 below for a proof that A is indeed the area inside C.

The connection between the area formula (3) and the surveyor’s formula (2) can be
displayed most clearly by using the notation for the integral of a differential form over a
curve. In this notation ([5], p. 290),the integral (3) over is the integral of the form

over the curve C, denoted

or 

One might simply say that as and become infinitesimals dx and dy, the
summation in the surveyor’s formula (2) is transformed into the integral (3).

Remarks. 1. By including in each partition of all t-values at which either is
zero or fails to be differentiable, the arc-length and area formulas are seen to be
valid for piecewise smooth curves,a large enough class to include all curves studied in
elementary calculus.

2. For certain pathological curves,the inscribed polygons corresponding to partitions of
the parameter interval might cross themselves,even for arbitrarily fine partitions.
This unfortunate complication could be circumvented either by simply excluding such
curves from consideration ([3], p. 187),or better, by broadening the discussion to cover
polygons and curves with self-intersections ([2],p. 311).

Better still,by an application of Green’s theorem,

which is valid for an arbitrary Jordan region R with boundary curve C ([1], p. 289),
the difficulty with pathological curves vanishes. Choosing and 

we get which (by definition) is the area of
the region R. Thus,our formula (3) is valid for any simple, closed, rectifiable, oriented
curve. The only point in mentioning the inscribed polygons is to provide a geometric
motivation for the line integral formula,and for this purpose we may restrict attention to
well-behaved curves.

Variants of the Ar ea Formulas. The formula for the arc-length of a polar curve
is usually derived a s a special case of the arc-length formula for

curves in parametric form. using the parametrization by polar angle:
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Since we have

Similarly, and this yields the area formula

for a simple, closed, polar curve.

The usual geometric argument,based on the formula for the area of a
circular sector, shows that the polar area formula applies not only to simple closed
curves but more generally gives the area of the ‘sector’bounded by the
rays and and the curve (See Figure 6.)

Figure 6.

This more general result can be derived by observing that is identically 0 along 

any ray through the origin, since along such a ray the tangent vector is a 
multiple of the radius vector So the integral along the segments
from the pole to the point with polar coordinates and from back to 
the pole will both vanish,leaving as the only nonvanishing part of the 
integral of around the boundary of the “sector”.

In this connection,another view of the surveyor’s area formula should be mentioned.
Observe that 

is the area of the triangle having vertices and with the
orientation determined by the orientation of the ith edge in the original polygon. Thus,
the surveyor’s formula can be viewed as expressing the area of a polygon as the sum of
the oriented areas of the triangles formed by joining successive pairs of vertices to the
origin. (See Figure 7.)
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Figure 7. the sum of the oriented areas of the
triangles subtended by the edges of the polygon.

This view leads to considering the differential form as the ‘radial 

area element’in rectangular coordinates,just as one speaks of as the area
element in polar coordinates. As the parameter t runs from a to b, the ray from the origin
to the point sweeps out an area which is computed by integration of 
over the curve C. Note that this interpretation of provides a simple explanation of
Kepler’s law of equal areas for motion in a central force field. In such a field, is
a multiple of so

This means is constant; that is, the area is swept out at a constant rate.

We round out this discussion by briefly considering two useful variants of the integral
formula for the area inside a simple, closed curve:
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Adding these together and dividing by 2 gives the symmetric formula (3). How are (4)
and (5) related to the surveyor’s formula for the area of a polygon? Defining

to be and collecting the coefficients of each in the surveyor’s
formula,one easily verif ies the identity

Writing the right side as

it follows (as noted earlier) that as the mesh of the partition of approaches 0,this
converges to

A similar argument gives formula (5). As a matter of fact,the surveyor’s formula is
often expressed in the corresponding forms

or

in surveying books. (See [7],p. 202,or [8], p. 483.)

Some Exercises. A drawback of the formula 
for classroom purposes,is that this integral is non-elementary for most curves. 
The area integrals (3),(4), or (5) for many familiar curves,however, are easily
evaluated. Indeed, we invite readers to verify the area formulas for the following 
curves given in parametric form.
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