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Abstract

This paper describes a system for designing and classifying actor languages. This
system, named Actalk, which stands for actors in Smalltalk-80, is based on some
minimal kernel introducing actors into Smalltalk-80. The Actalk kernel extends pas-
sive and sequential objects activated by synchronous message passing into active and
concurrent actors communicating by asynchronous message passing. This defines
a sub-world of actors embedded into the Smalltalk-80 programming language and
environment, which is left unchanged. The Actalk kernel is composed of only two
Smalltalk-80 classes. Simulating current actor languages or designing new ones is
achieved by defining subclasses of these two kernel classes. Consequently all such
extensions are implicitly classified by the inheritance mechanism and unified into the
Actalk environment. We are currently extending the standard Smalltalk-80 program-
ming environment to design a specific one dedicated to Actalk concurrent actors.

In this paper, the motivations and the goals which led to design the Actalk system
are first discussed. Then the structure and implementation of the kernel of Actalk is
detailed. The very good integration of this kernel into the Smalltalk-80 programming
language and environment is demonstrated through some examples. Interests and
limits of combining objects with actors are then discussed. In the last part of the
paper, we demonstrate the expressive power of the Actalk kernel by extending it
to simulate the two main actor computation models and programming languages,
namely, the Actor model of computation, and the Abcl/1 programming language.
Related and further work is summarized before concluding this paper.
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1 INTRODUCTION

This paper is concerned with the design and experiment of Object-Based Concurrent
Programming (OBCP) languages. We believe that the so-called actor family of lan-
guages is among the most promising approaches. The theory of actors was invented
by Carl Hewitt [Hewitt 77]. Plasma was the first language designed along this philos-
ophy. It was followed by Actl [Lieberman 81], Act2 [Theriault 83], and the latest and
most achieved prototype: Pract/Acore [Manning 87}, based on the latest computation
model called the Actor computation model defined by Gul Agha [Agha 86]. Besides
this stream of prototypes designed around Carl Hewitt at the AI Lab of MIT, the
actor metaphor gave rise to other OBCP proposals based on the original actors, al-
though changing some aspects of the model. All these actor, or actor-based languages
keep the foundation of active and concurrent objects communicating asynchronously.
One of the most representative element is the Abcl/1 language proposed by Akinori
Yonezawa [Yonezawa et al. 86].

We remarked that, from the user point of view, it is not always easy to analyze and
compare all these proposals. Comparing various semantics needs to abstract from
various syntax and implementation supports. Moreover some of the prototypes are
not usable outside of some labs or very specific machines. From the implementor point
of view, experience (including our personal one) of designing actor languages shows
that usually too many prototype implementations are thrown away before clarifying
the design. Making a prototype modular (and improving its efficiency) is usually
achieved afterwards and not in the early implementation effort. The reuse of previous
prototypes or even other ones would greatly improve the design task. This goal of
modularity is endorsed by Object-Oriented Programming (OOP). This led us recently
to design some modular system/environment for actor languages based on OOP, in
order to satisfy these needs. We will now discuss how we designed it.

2 GOALS AND DESIGN DECISIONS

To design a system for integrating various actor languages in a single environment,
we had the following goals in mind:

1. uniformity and modularity
We wanted to unify various actor languages into some common environment
and to be able to analyze and define them step by step. Therefore we chose
the object-oriented paradigm as a basis for matching these two first goals. We
decided to introduce actors into traditional OOP, by defining a sub-world of
actors embedded into the world of objects, and without changing the underlying
object system.

2. minsmality and eztensibility
We wanted some minimal kernel expressing the most general semantics of ac-
tor languages, and to further extend it in order to simulate various existing
languages and to design new ones. Therefore we chose a minimal architecture
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in the spirit of ObjVlisp [Briot and Cointe 87,Cointe 87] which is based on a
minimal kernel, and then further uniformly extended. We use inheritance to
classify the various actor models.

3. an integrated environment

We didn’t want to restrict our system to some semantic model and raw imple-
mentation, but also to provide a full environment for pragmatic experiment with
actor-oriented programming. Therefore we chose Smalltalk-80 because it is the
most achieved and flexible OOP system with a fully integrated programming en-
vironment. Because of the integration of our actors into the Smalltalk-80 model
and environment, the designer of actor languages could automatically use the
standard Smalltalk-80 programming environment. Furthermore, this environ-
ment could be extended in order to support the specific concurrency aspects of
actors.

By choosing Smalltalk-80 we could also provide a minimal implementation of the
system, because all entities needed to build actors: objects, classes and messages,
and to express concurrency: processes and semaphores, are provided by Smalltalk-
80. The resulting system is named Actalk (which stands for actors in Smalltalk-80),
as a spiritual offspring of ObjVlisp (objects in virtual Lisp). Actalk is an integrated
environment, embedded into Smalltalk-80, used as a testbed to classify and design
actor languages. Actalk does not change the underlying Smalltalk-80 system, but
rather merges into it. Because of the optimal integration of actors within objects,
Actalk may also be used as a basis for studying relation and combination between
objects and actors. We are currently using Actalk in graduate courses to introduce
and teach actor-oriented programming to object-oriented programmers.

3 FROM SMALLTALK-80 OBJECTS TO ACTORS

We will now shortly introduce the model of actors, and how we embed them into
Smalltalk-80. We will focus on why and how to introduce them into a standard OOP
model, namely Smalltalk-80, which is extended towards concurrency.

In Smalltalk-80, as in standard OOP, objects are activated by message passing. Ob-
jects are passive because they undergo the request of activation by the sender of the
message. They have no activity of their own. Sending a message represents the trans-
fer of activity from one object to another one, before going back to the sender whose
activation is suspended.

To achieve concurrency, Smalltalk-80 introduces multiple activations, called processes.
Then multiple messages may activate concurrently several objects. But if a single ob-
ject receives concurrently two messages, the two activations may compete to control
the object. If both methods assign concurrently a same variable of the object, the
resulting state cannot be predicted and is inconsistent. The problem is that an ob-
ject is still passive, therefore it should be protected against multiple simultaneous
activations.
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The simplest and most pragmatic solution to this problem is to ensure the single
activation condition, also called mutual ezclusion. Such a technique is described in
Smalltalk-80 by [Pascoe 86]. A further solution ensures this condition by providing
its own activity to the object. This changes the model of computation from passive
into active objects. An object will now possess its own internal activity, and will no
more depend on external activations through message passing. The object becomes
active and autonomous. It gained the ability to decide on its own when to perform a
message and has the power to complete it.

Because the receiver has its own activity to perform the message, the sender does
not need any more to suspend its activity to transfer it to the receiver. If no reply
is needed, the sender may resume its computation immediately after sending the
message. Message passing becomes unidirectional and asynchronous. Thus, sending
a message reduces to its delivery to the receiver. The receiver may process it any
time after the delivery, therefore messages should be buffered in a mailboz associated
to the receiver, before being processed.

The initial model of passive objects synchronously activated by messages has been
extended towards a model of concurrent active objects communicating asynchronously
by passive messages. We will call such entities actors. An actor will encapsulate a
standard Smalltalk-80 object to make it active and to change the semantics of message
passing. An actor is composed of a mailbox where the incoming messages will be
buffered, and the active object that will process them, which we will call its behavior.

4 IMPLEMENTATION OF THE ACTALK KERNEL

4.1 Definition of the Minimal Kernel

We will now define the most minimal and general kernel for our Actalk system. We
will call it the Actalk kernel. Two classes define its semantics. The class Actor defines
the semantics of actors. The class ActorBehavior defines the semantics of behaviors
(of actors).

The class Actor simply defines an actor through its two components, the mailbox
or queue which will contain the incoming messages, and the behavior which will
process them. The implementation of asynchronous message passing led us to define
a third class, presented in section 4.4, in order to clearly separate the implementation
technique required from the semantics of the kernel.

Designing the class ActorBehavior needs careful attention. We want to define the
most general semantics of how a behavior processes messages. The Actor computation
model of Gul Agha states that a behavior processes only one message and has to spec-
ify which behavior will process next message. This generalizes the usual assignment
of instance variables in OOP languages. The Actor computation model is minimal
and general enough to express any other kind of computation model, as discussed in
[Agha 86]. However we do not choose it as the candidate for the kernel, because we
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aself

Figure 1: Implementation of an actor in Actalk.

want an extension of the Smalltalk-80 language with minimal implementation and
maximal integration within Smalltalk-80. We would like the programmer to specify
behaviors of actors as he would specify behaviors of standard Smalltalk-80 objects.
Therefore we must keep usual variable assignment to specify state changes. Because
there could be state changes during the processing of a message, messages have to be
serialized [Hewitt and Atkinson 79), i.e., processed one at a time.

We believe that the basic semantics of behaviors we choose is minimal and general
enough. It expresses the default semantics of the activity of behaviors, and it can
be extended or redefined by the extensions of the kernel. For instance the Actor
computation model of Gul Agha is expressed as an immediate extension of the kernel
(one method is redefined and another one is added), as shown in section 7.1.

Figure 1 gives a representation of the implementation of an actor. All Smalltalk-80
source for Actalk will be printed in the standard fileOut format, where the underline
character _ means assignment.

4.2 The class Actor

The class Actor implements actors as encapsulators built around standard Smalltalk-
80 objects. Its superclass is the class MinimalObject which will be used for the
implementation of asynchronous message passing and is described in section 4.4. It
specifies two instance variables:

mailbox denotes the queue of messages, an instance of the standard class
SharedQueue,

behavior denotes the behavior which processes the messages, an instance of a sub-
class of the class ActorBehavior described in next section.

MinimalObject subclass: #Actor
instanceVariableNames: 'mailBox behavior '
classVariableNames: '’
poolDictionaries: *°
category: 'Actalk-Kernel'!
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{Actor methodsFor: ’initialization’!

initialize
mailBox _ S8haredQueue nev!

initializeBehavior: aBebavior
behavior _ aBehavior.
behavior initializeAself: self! !

fActor methodsFor: ’'access to instance variables'!

mailBox
“mailBox! !

1Actor methodsFor: 'message passing'!

asynchronousSend: aMessage
mailBox nextPut: aNessage! !

Moo mn mm me me m= mm me == —= em me —e e m= e == == W}

lActor class methodsFor: ’'instance creation and initializatiom'!

behavior: aBehavior
“self new initializeBehavior: aBehavior!

new
“super nev initialize! !

The behavior: class method creates an actor and initializes its behavior
(initializeBehavior: instance method). The new class method is redefined to
initialize the mailbox of the actor (initialize instance method). We designed this
decomposition in two distinct initialization protocols in order to improve modularity
and reuse of the kernel when extending this basic implementation (but this won’t be
shown in this paper). The asynchronousSend: instance method implements asyn-
chronous message passing to an actor by enqueueing the corresponding message onto
its mailbox.

4.3 The class ActorBehavior

The class ActorBehavior implements the general behavior of an actor. Users
will describe behaviors of actors by defining classes of behaviors as subclasses of
ActorBehavior. The class ActorBehavior defines one instance variable: aself,
which denotes the actor currently using this behavior. aself allows an actor to send
(asynchronous) recursive messages to itself. The difference with standard pseudo
variable self will be explained in section 4.4.

A background process will be created with the actor to implement the activity and
autonomy of the behavior. This process is infinite. As stated in the definition of the
kernel, the behavior will keep dequeueing the next message from the mailbox and
perform it.
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Object subclass: #ActorBehavior
instanceVarisbleNames: ‘aself ’
classVariableNames: '’
poolDictionaries: '°
category: °‘Actalk-Kernel’!

!ActorBehavior methodsFor: ’initialization’!

initializeAself: anActor
aself _ anActor.
self setProcess!

setProcess
[[true) whileTrue: [self acceptNextMessage]] fork! !

'ActorBehavior methodsFor: ’'message acceptance’!

acceptNextMessage
self acceptMessage: aself mailBox next!

acceptNessage: aNessage
self performNessage: aNessage! |

1ActorBehavior methodsFor: ’actor creation'!

actor
“Actor behavior: self! !

The initializeAself: instance method initializes the self-reference (aself) of
the actor and starts the activity of the behavior (setProcess method). The
acceptNextMessage and acceptMessage: methods accept and perform the next
message in the mailbox. The process is suspended until the mailbox is not
empty by the semaphore which synchronizes reading data from the shared queue
{Goldberg and Robson 83, page 262). The actor method creates an actor from a
passive object which is used as its behavior. It is the only method that the end user
has to know about the kernel, i.e., the public interface, as shown in section 5.1.

Note that the Actalk kernel is stated in just 2 classes and 11 small methods. The
number of methods could have been further reduced, but as already stated in previous
section, we chose this modular decomposition to easily describe further extensions.
For the same kind of reason, the implementation primitive performMessage: method
is defined in class Object:

i0bject methodsFor: ’message passing’!

performNessage: aMessage
“gself perform: aMessage selector withArguments: aMessage arguments! !
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4.4 Transparent Asynchronous Message Passing

Local Redefinition of Message Passing Semantics Now we would like to integrate
harmoniously our new message passing model (asynchronousSend: method) be-
tween actors with the current message passing syntax of Smalltalk-80. We use a
technique initiated in Smalltalk-80 in order to change the syntax (to introduce com-
pound selectors for multiple inheritance [Ingalls and Borning 82]) or the semantics
(to encapsulate objects [Pascoe 86]) of message passing through redefinition of error
semantics. A message is sent to an object which, on purpose, does not recognize
the selector. This error is trapped by redefinition of the standard error method
(doesNotUnderstand:) which then executes some specific strategy. Local redefini-
tion of the doesNotUnderstand: method ensures the locality of changes. Thus we
redefine it in the class Actor in order to redefine the semantics of message passing
locally to actors:

tActor methodsFor: ‘'message passing’!

doesNotUnderstand: aNessage
self asynchronousSend: aNessage! |

A message sent to an actor will get an asynchronous semantics whereas the same mes-
sage sent to some standard Smalltalk-80 object will keep the standard synchronous
semantics. Note that the value returned by asynchronous transmission is not signifi-
cant. (Actually the value of the expression is the receiver of the message, due to the
Smalltalk-80 convention.)

When specifying the behavior of an actor which sends recursive messages, the pro-
grammer may choose between pseudo-variables aself or self. Sending to aself uses
Actalk asynchronous message passing. The message is put in the mailbox of the actor,
and the behavior will process it later. Sending to self relies on standard Smalitalk-80
synchronous message passing. This implies immediate and “internal” processing of
the message by the behavior.

Implementation By using this error redefinition technique we assume that an actor
won’t recognize the selector of the message it receives because we do want to trigger
an error, in order to put the message in the mailbox. (Note that, in contrast, the
“Actalk implementation methods” defined in class Actor will be directly processed.)
But methods defined in class Object are inherited by every class, consequently such
messages sent to an actor won't fail as expected.

[Pascoe 86} and [McCullough 87] discuss various implementation strategies to ensure
the assumption of unrecognized messages. Qur simplified solution is to define another
root of the inheritance tree, besides the class Object, in order to bypass it. Actually
the method dictionary of this new class should not be fully empty, because a2 minimal
set of system methods is needed to trap errors, print, compare, and inspect their in-
stances. Otherwise the Smalltalk-80 interpreter and environment would not be able to
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manage properly such objects. Unfortunately the standard Smalltalk-80 environment
disallows the user to define a class without superclass. Therefore the implementation
trick is to define the new class, named MinimalObject, at first as a subclass of Object.
Then its initial inheritance link is automatically removed (superclass _ nil), and
a minimal set of system methods belonging to Object is copied (recompile:from:)
onto it.

Object subclass: #MinimalObject
instanceVariableNames: '’
classVariableNames: ’°
poolDictionaries: '’
category: ’Actalk-Kernel-Encapsulator’!

IMinimalObject class methodsFor: 'initialization’!

initialize
superclass _ nil.
#(doeaNotUnderstand: error: ~~ isNil = == printString printOn: class
inspect basicInspect basicAt: basicSize instVarAt: instVarAt:put:)
do: [:selector | self recompile: selector from: Object]! !

NinimalObject initialize!

5 A FIRST EXAMPLE: THE COUNTER

Our first example will be one of the most simple and paradigmatic examples of object-
oriented programming: the counter. This will show how well Actalk actors are inte-
grated into the Smalltalk-80 language. The class Counter will describe the behavior
of counter actors, i.e., which behave as counters.

5.1 Definition of the Counter

The class Counter defines two instance methods to reset (reset), and increment
(incr) the instance variable contents of a counter. In the actor terminology, these
two methods constitute the script of the actor.

ActorBehavior subclass: #Counter
instanceVariableNames: 'contents
clasgVariableNames: °°
poolDictionaries: '’
category: 'Actalk-Examples’!

!Counter methodsFor: 'script’!

iner
contents _ contents + 1!
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reset
contents _ Of !

We defined this class of behaviors of actors-counters, exactly as we usually de-
fine the class of objects-counters. Counter must be defined as a subclass of class
ActorBehavior. We may create an instance of Counter as some usual Smalltalk-80
counter object postfixed with the selector actor, and send (implicitly asynchronous)
messages to this newly created actor:

| aCounter |
aCounter _ Counter new actor.
aCounter reset; incr; incr

Notice that the selector actor is the only special keyword to create actors. Definition
and message passing are transparent within the Smalltalk-80 language into which
actors are embedded. Some difference in programming style will be when returning
values, as we will see in next section.

5.2 Concept of Reply Destination: the Printer Example

Now suppose that we want to consult the contents of the counter and display it for
instance. But, due to the asynchronous nature of message passing to actors, we cannot
rely any more on the returned value of a message as in standard Smalltalk.

The intuitive idea is to simulate bidirectional transmission by a second unidirectional
message as reply, i.e., to specify within the message the actor to which the reply
will be returned. Such an actor is called a customer [Agha 86}, or reply destination
[Yonezawa et al. 86]. Reply destinations are also used to implement continuations
which is one of the main concept of programming with actors [Hewitt 77], but won’t
be addressed in this paper. We will specify a reply destination when consulting the
contents of a counter with the following method:

{Counter methodsFor: 'script’!

consultAndReplyTo: replyDestination
replyDeatination reply: contents! !

We assume that every actor (or even object, see section 7.2) used as a reply destination
handles the selector reply:, convention for replying the value. For instance, some
standard Actalk actor which is bound to the global variable Print, displays values in
the Smalltalk-80 Transcript window. Its behavior is defined by the class Printer:
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ActorBebavior subclass: #Printer
instanceVariableNames: '’
classVariableNames: '’
poolDictionaries: *’
category: ‘Actalk-Examples'!

1Printer methodsFor: 'script’!}

reply: value
Transcript show: "> * , value print8tring; cr! !

Following is an example of use:

Counter new actor
reset; incr; incr; consultAndReplyTo: Print

which displays:

6 SYMBIOSIS BETWEEN OBJECTS AND ACTORS

Historically, classes and objects were proposed by Simula and Smalltalk to describe
abstract and concrete concepts. Actors were proposed by Plasma to describe control
structures and concurrency. Actalk appears as a proposal to combine both, i.e., extend
classes and objects towards concurrency, or/and give a structure and an environment
to describe actors. Because the Actalk sub-world of actors is fully integrated into the
Smalltalk-80 language, actors may send messages to objects and vice versa. Thus the
iwo programming styles may be combined.

8.1 Safety of Combination

One of the motivation for introducing actors in the object world of Smalltalk-80 was
to automatically solve the inconsistencies between objects and processes (discussed in
section 3). However some unrestricted combination between objects and actors may
see these problems reoccur. If several actors happen to share a single passive object,
the situation will be equivalent to processes sharing an object.

One drastic and ultimate way to solve the problems is to remove passive objects
and to make every Smalltalk-80 object become an actor. ConcurrentSmalltalk-II
[Yokote and Tokoro 87] walked a step in this direction and reduced some of the prob-
lems by changing parts of the Smalltalk-80 system. We did not choose this way
because we did not want to change Smalltalk-80 in any way.
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Another way that we chose is to provide safety rules. Some of the rules are ensured
by the Actalk implementation and user interface (for instance, the only way to create
an actor). But some methodological rules are also necessary as compromises between
too strict rules forbidding any reuse of standard objects and too weak rules leading to
havoc. For instance, Smalltalk-80 classes may be safely approximated to constant ob-
jects. Consequently they may stand concurrent activations. (In the actor terminology,
a Smalltalk-80 constant object is similar to an unserialized actor.)

6.2 Extending the Smalltalk-80 Environment towards Actors

Because Actalk actors are well integratcd into the Smalltalk-80 system, they auto-
matically benefit from the standard Smalltalk-80 programming environment, which is
a great help when designing languages and applications. A further goal is to extend
this standard environment to support the specificity of actors. A first step is to extend
the Smalltalk-80 MV C model for interface design towards actors. The prototype basic
extension of MVC that we designed allows to control representations (views) of an
actor during its activation. Another challenge is to extend the current Smalltalk-80
debugger towards a specific debugger for actors. A first prototype has already been
implemented. It relies on extended messages which contain the context of the sender
to reconstruct the appropriate chain of contexts.

7 EXTENDING THE KERNEL TO SIMULATE VARIOUS
ACTOR LANGUAGES

Now we will sketch some extensions to our actor kernel in order to simulate some
of the most representative OBCP computation models and programming languages
based on the actor concept. Such simulations are not concerned about a complete
reimplementation of some programming language environment, but to express its
most essential and specific characteristics. These extensions will use inheritance to
refine the semantics of the Actalk kernel. The first example will express Agha’s Actor
computation model as a subclass of ActorBehavior, whereas the second example will
express Yonezawa’s Abcl/1 model as a subclass of Actor. This shows the merits of
modularity for our kernel. Because the kernel and its extensions are related by inher-
itance, one could easily compare them. Inheritance helps not only to classify various
actor models, but also to clearly relate and to reuse their various implementations.

Figure 2 shows the hierarchy of the classes of the Actalk kernel, augmented by
some of its current extensions, and the example of the counter. Note that the class
ActorBehavior and all its extensions are abstract classes, i.e., don’t have instances.
These classes only give the semantics of how to compute messages, not the seman-
tics of messages themselves. Only the application classes, like Counter, will generate
actual instances, the behaviors. Actors will be instances of class Actor and its sub-
classes. The classes ExtendedAc tor and ExtendedAc torBehavior introduce a generic
control of actor events (i.e., receiving a message, computing it...) into Actalk. They
are currently used to modularly change the semantics of the underlying Smalltalk-80
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Figure 2: Architecture of the Actalk system (kernel and few extensions).

scheduler of processes, and design actor event driven representations (views) of actors-
(through a combination with our Actalk/MVC interface). Their complete description
is found in [Briot 88].

7.1 The Actor Model of Computation

The Concept of Behavior Replacement The Actor model of computation, as exposed
in [Agha 86|, replaces state change (assignment} with a much higher level concept:
behavior change. When performing a message, the current behavior of an actor will
specify its replacement behavior, i.e., how it will perform next incoming message. A
behavior will now accept only one message. The replacement behavior in turn, on
accepting the next message, will specify its own replacement behavior. This leads
to a causally connected ordered chain of behaviors isomorphic to the queue of mes-
sages. The two important points to highlight are the absence of assignment and
the separation between the successive behaviors. As a consequence they may execute
concurrently.

Implementation To change accordingly the semantics of behaviors, we introduce a
new class, named AghaActorBehavior, as a subclass of ActorBehavior:

ActorBehavior subclass: #AghaActorBehavior
instanceVariableNames: '’
classVariableNames: '’
poolDictionaries: '’
category: 'Actalk-Extensions-Agha'!
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Figure 3: The concept of behavior replacement.

!AghaActorBehavior methodsFor: ‘inmitialization’!

setProcess
[self acceptNextMessage] fork! !

tAghaActorBehavior methodsFor: 'behavior replacement’!

replace: replacementBehavior
aself initializeBehavior: replacementBehavior! !

Only two instance methods define our extension. The setProcess method is rede-
fined, and now accepts only one message in the message queue. We introduce a new
method, named replace:, whose semantic is to specify the repla.cement behavior
(and to initialize it).

This redefinition slightly changes the role of the instance variable named behavior
and defined in class Actor. It now represents the current behavior of an actor.
When performing a behavior replacement this variable will be reassigned (by the
initializeBehavior: method of Actor) to the replacement behavior. The current
behavior won’t be touched, thus it will complete its current computation. It will then
be garbage-collected by the system because it is no longer referenced by the actor and
the process is also terminated. Figure 3 shows this new model of actors.

Ezample We easily redefine the class of counters (defined in section 5.1) as a sub-
class of AghaActorBehavior and name it AghaCounter. Previous assignment will be
replaced by the specification of a replacement behavior. (We suppose the existence
of the contents: class method to create and initialize a new counter.) Remark that
the consultAndReplyTo: method, although not changing state, needs to specify a
replacement behavior (equal to the current one) in order to process next incoming
message.

AghaActorBehavior subclass: #AghaCounter
instanceVariableNames: ‘contents °
classVariableNames: '’
poolDictionaries: "
category: 'Actalk-Extensions-Agha-Examples’!
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|AghaCounter methodsFor: ’script’!

consultAndReplyTo: replyDestimation
self replace: self.
xeplyDestination reply: contents!

incr
self replace: (AghaCounter contents: contents + 1)!

reset
self replace: (AghaCounter contents: 0)! |

Further extensions of this initial implementation of the Actor model have been easily
obtained with Actalk, e.g., various strategies for optimization, as for instance proposed
in the Pract/Acore system [Manning 87], and introduction of the concept of future.
This concept will also be dealt with, by other means, in the next section.

7.2 The Abcl/1 Model of Computation

Principles The Abcl/1 language (which stands for Actor-based concurrent language)
[Yonezawa et al. 86], although based on the actor philosophy, chose a more pragmatic
approach. The language is not intended to be self-contained, but supports hybrid
computation. The actor-orfented model of computation may combine with more
traditional programming languages which could be used for expressing parts of the
behaviors of actors. The main characteristic of Abcl/1 is to propose three distinct
types of communication protocols between actors, called types of message passing, at
the user level:

past is the asynchronous type of message passing, equivalent to the one we designed
in the Actalk kernel. The action of sending the message is already completed
(in the past) as soon as specified, and the sender may immediately resume its
computation,

now is a synchronous type of message passing. The sender wants the reply now and
will wait for it.

future is an eager type of message passing. The place where the reply (or possibly

several successive replies) will be eventually delivered in the future is specified

. at the time of sending. Consequently the sender may start manipulating the
(future) reply before getting its actual value.

Moreover, these three types of message passing are consistent. The same message is
sent but the reply destination depends on the type. The reply destination is implicit
for the now and future types. (This will be illustrated in section 7.2.) Consequently
the receiver handles uniformly the three types of messages, and only the semantics of
replying will change according to the various reply destinations.
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Actually, there are some more (four) major properties in order to fully define Abel/1.
Due to space limitation, they won’t be discussed here, but they have also been simu-
lated by extending further the following extension.

Principles of Implementation To simulate Abcl/1 into Actalk, we will follow the
pragmatic philosophy of Abcl/1. We will define the now and future types of message
passing as returning immediately some standard Smalltalk-80 object on which the
sender will synchronize to get the value(s) once computed. We will call this object a
future object (because it acts in place of the future actual value). It should behave
as a queue buffering the successive replies. To implement it, we will use the standard
class SharedQueue, already used to implement mailboxes. We just need to rename the
assignment message and define a message to consult the first value by suspending until
the queue is not empty. The class MAFuture (which stands for multiple assignment
future) implements such future objects:

S8haredQueue subclass: #MAFuture
instanceVariableNames: °*°’
classVariableNames: '*
poolDictionaries: *°’
category: 'Actalk-Extensions-Abcl'!

INAFuture methodsFor: ‘assignment’!

reply: aValue
melf nextPut: aValue! !

IMAFuture methodsFor: 'consultation’!

value
| fixstValue |
readSynch wait; signal.
accessProtect critical: [firstValue _ contentsArray at: readPosition].
“firstValue! !

The reply: method ensures our reply selector convention (defined in section 5.2)
by renaming the nextPut: assignment method. The value method consults the
first element of the queue (without removing it). The semaphore controlling the non
emptiness of the queue is checked then reset (in order to be able to read the value
once again). (This definition is minimal but relies on the implementation of standard
class SharedQueue.)

Two more useful methods, next and isEmpty, are inherited from class SharedQueue.
The next method returns (and removes) the first element in the queue. But the
value and next methods need to wait if the queue is empty. Therefore the isEmpty
method provides checking the emptiness of the queue. This is useful for an actor not
to be “glued” onto a future object not yet ready, but on the contrary to do some
other computation for a while. These two inherited methods respectively simulate
the next-value and ready? standard Abcl/1 constructs to access future objects.
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The Future Type of Message Passing We may now easily define the Abcl/1 future
type of message passing. It creates a new future object, sends the original message in
the past type with the future object as the reply destination, and immediately returns
this future object as the value of the transmission (through the underlying standard
synchronous message passing level). When the receiver will finish computing the reply
to this message, it will reply the returned value to the future object. Then the queue
will get assigned with a first element, and will be available for consultation.

The future type of message passing will reduce to the past type with a future object
as reply destination. In order to always and easily know which argument of the
message specifies the reply destination, we assume that a reply destination is always
specified as the last argument of a message. Consequently the newly created future
object will always replace the initial last argument of the message before sending the
message in the past type. The initial argument is not significant, but will be used
for discriminating the 3 types of message passing as shown in section 7.2. We now
define the class AbclActor as a subclass of class Actor to add this new future type of
message passing:

Actor subclass: #AbclActor
instanceVariableNames: '°*
classVariableNames: '’
poolDictionaries: '’
category: 'Actalk-Extensions-Abcl’!

!AbclActor methodsFor: 'message passing’!

futureCall: aMessage
| aFuture |
aFuture _ NAFuture newv.
aNessage arguments at: aMessage arguments size put: aFuture.
self asynchronousSend: sMessage.
“~aFuture! !

From Eager to Synchronous Communication The now (synchronous) type reduces
immediately to the future type of message passing plus the explicit consultation of
(waiting for) the first value of the future object:

1AbclActor methodsFor: ’message passing’!

nowCall: aMessage
~(self futureCall: aMessage) value! !

This reduction of the now type to the future type, itself reduced to the past type, is
similar to the reduction semantics proposed in [Yonezawa et al. 86, pages 263-264).
Like in Abcl/1, the implicit reply destination is a future object, first class object, which
may be passed along or delegated to other actors. Note however that in Actalk the
future object is a standard Smalltalk-80 object and not an actor like in Abcl/1. This
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does not limit our simulation in practice however, because of the symbiosis between
objects and actors in Actalk.

Combination of Message Types into the Abcl/1 Model The now and future types
of message passing will now be combined with the past type already integrated (in
section 4.4) into standard Smalltalk-80 syntax. We extend the error redefinition
technique by using a symbol to specify the two new types of message passing. The
last (replyTo:) parameter of the message is used for this purpose. Moreover the
value of this parameter is not significant when sending a message in the now or future
types, because their reply destination is implicit. This parameter will be replaced
during the reduction process, as seen in section 7.2, by the real reply destination, a
newly created future object.

Consequently we will redefine further the doeaNotUnderstand: method in order to
discriminate the type of message passing. We first check if there is at least one
argument to the message, and in such a case then check the last one:

{AbclActor methodsFor: 'message passing'l

doesNotUnderstand: aNessage
“aNessage arguments isEmpty
ifTrue: [self asynchronousSend: aNessage]
ifFalse: [aNewsage arguments last == #future
ifTrue: [self futureCall: aNessage]
ifFalase: [aMessage arguments last == #now
ifTrue: [self nowCall: aNessagel
ifFalse: [self asynchronousSend: aMessagel]]! !

The three types of messages passing are summarized in this example of consulting a
counter:

aCounter consultAndReplyTo: Print
will be sent in the past type and include an explicit reply destination (Print).
The contents of the counter will be displayed on the Transcript, as already
explained in section 5.2.

aCounter consultAndReplyTo: #now
will be sent in the now type. The value of the expression is the contents of the
counter.

aCounter consultAndReplyTo: #future
will be sent in the future type. The value of the expression is a future object
(instance of class MAFuture), referencing the contents of the counter.

One needs to send the message value to this future object in order to get the real
value. Note that we also developed other implementations of future objects where the
consultation of the real value is implicit.
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8 RELATED AND FURTHER WORK

Our work can be compared with similar activities which have not been already re-
ferred in the paper. [Bézivin 88| shares a similar goal on studying concurrency within
Smalltalk-80, however his study is much more general, whereas ours is only devoted
to study the actor paradigm for computation by providing a testbed dedicated to
it. The ConcurrentSmalltalk [Yokote and Tokoro 87] and Actra [Lalonde et al. 86]
projects went further than Actalk in terms of combination of objects and actors. But
to achieve it, they had to slightly change both the Smalltalk-80 virtual machine and
the semantics of original actors, whereas our objective was to preserve the underlying
environment and to simulate various actor systems into it. We are not concerned ei-
ther in designing an efficient extension of Smalltalk-80 to concurrency, but we provide
a platform for specification and experiment with actor languages which takes benefit
and reuse of the standard Smalltalk-80 programming environment.

We now expect to explore many fields with this unified tool. We will attempt
simulating more actor languages as extensions of the Actalk kernel. For in-
stance, Actalk is currently being used as a designing tool for the Mering-IV project
|[Ferber and Briot 88]. We also plan the design of a higher level language, analog
to Acore [Manning 87], with a compiler generating Actalk kernel code. A group of
students is currently working on a general framework based on Smalltalk-80 MVC to
visualize and control Actalk actors. Other prospective experiments with the Actalk
platform include: modeling communication protocols, modeling strategies for allo-
cation of actors and tasks, and compiling production rules into concurrent daemons
implemented by Actalk actors [Voyer 89)].

9 CONCLUSION

In this paper we discussed the design of a system, named Actalk, based on Smalltalk-
80 and providing an environment to compare and design various actor languages and
implementation strategies. The kernel of Actalk introduces actors into the current
Smalltalk-80 system. Its implementation was completely described. A methodology
for combining traditional Smalltalk-80 programming and actor-oriented programming
was discussed. The extension of the current Smalltalk-80 programming environment
towards actors was also sketched. The minimal Actalk kernel has been successfully
extended in several directions to simulate various actor languages. We described
the complete implementation in Actalk of the Actor model of computation and the
communication protocols of the Abcl/1 programming language.

Because of space limitation, many topics were just sketched in this paper. They are
extensively discussed in the current preliminary report on Actalk [Briot 88] which
includes all code for Actalk kernel, extensions and examples.

We would like to express our ‘thanks to Jean-Francois Perrot and the reviewers for
suggesting improvements of the paper.
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