
TECHNICAL REPORT
CMU/SEI-98-TR-017

ESC-TR-98-017

rlogin(1):
The Untold Story

Lawrence R. Rogers
November 1998

Pittsburgh, PA 15213-3890

rlogin(1):
The Untold Story

CMU/SEI-98-TR-017
ESC-TR-98-017

Lawrence R. Rogers

November 1998

Network System Survivability Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1998 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L. Core Road;
PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-800-547-8306 / FAX:
(304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703)
767-8274 or toll-free in the U.S.: 1-800 225-3842.

This work was funded by AFRL/IFGB. Mr. Peter J. Radesi is the Laboratory Program Manager and he can be contacted at
(315) 330-1466.

CMU/SEI-98-TR-017
i

Table of Contents

1 Introduction 1

2 The rlogin Program 3
2.1 Description of rlogin 3
2.2 Coding Defect in rlogin 3
2.3 Determining Vulnerability 5

3 Mitigation Strategies 7
3.1 Strategy 1: Non-Executable Stack Regions 7
3.2 Strategy 2: Truncating the Data 8
3.3 Strategy 3: Data for Length and Content 8
3.4 Summary and Implementation 10

3.4.1 Summary of Mitigation Strategies 10
3.4.2 Wrapper Technology 11

4 Avoidance Strategies 13
4.1 Practice 1: Trusting Untrustworthy Data 14

4.1.1 Boundary 1: The Program User 14
4.1.2 Boundary 2: Administrative Domains 15
4.1.3 The Practice 15

4.2 Practice 2: Shedding Privileges 16
4.2.1 Temporarily Abandoning Privileges 16
4.2.2 Permanently Abandoning Privileges 17
4.2.3 The Practice 20

5 Design Notes 23
5.1 Note 1: Weak Authorization 23
5.2 Note 2: Subroutine Linkage Information 23
5.3 Note 3: Memory Management Units 25

6 Summary and Future Work 27

References 29

ii CMU/SEI-98-TR-017

CMU/SEI-98-TR-017
iii

List of Figures

Figure 1: Defective Code Segment 4
Figure 2: Truncating the Data 8
Figure 3: Checking for Length and Content 10
Figure 4: Only Use Privileges When Needed 17
Figure 5: rcmd Source Code 19
Figure 6: Irrevocably Abandoning Privileges 20

iv CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 v

Abstract

Coding defects account for a significant portion of the reports received by the CERT


Coordination Center (CERT/CC). Through in-depth analysis of these reports and gen-
eralizing our findings from those analyses, we have begun to create guidelines for
mitigation strategies for existing defects and avoidance strategies when coding new
software. In this document, we report the results of our analysis of the well-known
defect in the rlogin program. We discuss the coding defect in detail, three mitigation
strategies devised to remedy the defect, and two avoidance strategies offered as a
guide to reducing the instances of similar coding defects in new programs. We end
with three design notes aimed at eliminating these defects at the hardware and proto-
col design level.

 CERT is registered in the U.S. Patent and Trademark Office.

vi CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 1

1 Introduction

We at the CERT Coordination Center (CERT/CC) have analyzed coding defects with the goal
of understanding each well enough to communicate the details to those responsible for fixing
them (vendors) and those responsible for installing their fixes (systems administrators).
Through CERT Advisories, we have met these goals for many years.

Alas, after seeing the same defects over and over, we concluded that this surface analysis was
insufficient. We decided that we had to dig deeper to identify the root cause of each coding
defect. Once the cause is identified, we can devise mitigation strategies for field repair and
avoidance strategies for development environments. We will share our results with the devel-
oper and bug-fixing communities to attempt to change the way that program code is written
and fixed.

This report describes everything that we at the CERT/CC have learned and subsequently
synthesized from analyzing the rlogin defect [CERT 97a]. It is intended to stimulate thinking
about secure programming practices as well as the design of more secure hardware, operating
systems, and protocols.

The discussion begins with an extended description of what rlogin is trying to accomplish
and then moves to the actual coding defect (Section 2). Next, we examine three mitigation
strategies (Section 3), followed by two avoidance strategies (Section 4). Finally, we describe
two design notes, one dealing with the rlogin protocol and the other with hardware architec-
tures (Section 5).

2 CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 3

2 The rlogin Program

2.1 Description of rlogin
Many UNIX systems provide the rlogin program. rlogin establishes a remote login session
from its user’s terminal to a remote host computer. Here is an excerpt from Request for
Comment (RFC) 1282 that describes the elemental functionality of rlogin:

The rlogin facility provides a remote-echoed, locally flow-controlled virtual
terminal with proper flushing of output. It is widely used between UNIX hosts
because it provides transport of more of the UNIX terminal environment
semantics than does the Telnet protocol, and because on many UNIX hosts it can
be configured not to require user entry of passwords when connections originate
from trusted hosts [Kantor 91].

One feature of rlogin is that it passes the terminal type description from the local host com-
puter to the remote host computer. This functionality allows terminal-aware programs such as
full-screen text editors to operate properly across the computer-to-computer connection cre-
ated with rlogin.

To do this, rlogin passes the user’s current terminal definition as identified by the TERM en-
vironment variable to the remote host computer. RFC 1282 describes how this terminal in-
formation is passed from the local host computer, where the rlogin client program is running,
to the remote host computer, where service is sought.

2.2 Coding Defect in rlogin
Many implementations of the rlogin program contain a coding defect where the value of the
TERM environment variable is copied without due care to an internal buffer. This means that
the buffer holding the copied value of TERM can be overflowed. On some computer systems,
the buffer is a variable local to the main subroutine, meaning that the local host computer’s
subroutine linkage information can be overwritten with data from the TERM environment
variable.1 Once overwritten, control can be transferred to an arbitrary address in a computer
system’s memory.

1 We now know that buffer overflows that are not stack-based can be just as bad as their stack-based
counterparts. See http://www.geek-girl.com/bugtraq/1997_2/0274.html for details.

4 CMU/SEI-98-TR-017

Overrunning a local variable on the subroutine call stack is called stack smashing [Smith 97].
If the data that smashes the stack are carefully selected, control can be transferred to that
data. These data are then interpreted as instructions that are subsequently executed by the
local host computer.2 The nature of this code is completely under the control of the rlogin
program user.

In addition, rlogin requires set-user-id root privileges so it can obtain a port in the required
range, as described in the in.rlogind manual page. Here is an excerpt from that page:

The server checks the client’s source port. If the port is not in the range 0-1023,
the server aborts the connection [Sun 97a].

More specifically, Figure 1 shows the fragment from rlogin that contains the defective code.
In this code, data controlled by the user – the TERM environment variable – are copied with
strcpy into the stack-based variable, term. If those data in term contain instructions ap-
propriate for the local host computer that are properly synchronized with the subroutine link-
age requirements, then when strcpy returns to its caller, it will instead return to the code
that just smashed the stack. To compound the problem, rlogin has not yet shed its root privi-
leges at the time that the strcpy subroutine is called. That happens with the setuid call
later in the code. This means that when the smashed stack instructions are executed, they run
with full root privileges.

main(argc, argv)
 int argc;
 char *argv[];
{

…
int uid;
long omask;
struct passwd *pw;
char *host, *p, *user, term[1024];
struct servent *sp;

…
if (!(pw = getpwuid(uid = getuid()))) {

(void)fprintf(stderr, "rlogin: unknown user id.\n");
exit(1)

}
…
(void)strcpy(term, (p = getenv("TERM")) ? p : "network");
…
rem = rcmd(&host, sp->s_port, pw->pw_name, user, term, 0);
…
(void)setuid(uid);
doit(omask);
…

}

Figure 1: Defective Code Segment

2 There are many references that describe how to select these data: [One 96, Mudge 96, Mudge 95,
Lefty 96, Prym 96].

CMU/SEI-98-TR-017 5

To exploit this coding defect, one need only craft the appropriate value for the TERM envi-
ronment variable, place it in the environment that rlogin will inherit, and then run rlogin. In
the exploitation scripts that we have seen at the CERT/CC, the code that smashes the stack
starts a copy of /bin/sh, one of several standard command language interpreters typically
found on a UNIX system. The user can then execute any commands that he or she chooses,
and execute them as root.

2.3 Determining Vulnerability
For a computer system to be at risk, the computer system’s hardware and software architec-
ture must support a program’s ability to determine the location of the subroutine linkage in-
formation. Further, once located, that architecture must support a program’s ability to change
that information so that execution can continue at an arbitrary location in memory.

On most modern computer hardware and software architectures, a subroutine’s local vari-
ables are intermixed with subroutine linkage information. This means that the location of the
linkage information can be computed given the addresses of local variables. In fact, several
architectures place linkage information adjacent to a subroutine’s local variables. Because of
this adjacency, exceeding the size of the storage allocated to one of the subroutine’s local
variables can also change the subroutine linkage information. The key points here are the
ability to determine the location of the linkage information and to change it. The adjacency
attribute simplifies the location determination step. It is an aid, not a necessity.

The ability to execute instructions located in an arbitrary portion of a computer system’s
memory is another key hardware and software architectural requirement. Some hardware ar-
chitectures, notably Sun Microsystems’ SPARC® architecture, support the operating system’s
ability to define a section of memory as being non-executable. This means that on a SPARC-
based machine, the operating system can mark the instruction segments as executable and all
other segments as non-executable. Execution control can be successfully transferred only to
instruction segments, not an arbitrary location in memory. On the other hand, the Intel
Pentium® hardware architecture does not have the ability to enforce these restrictions. Con-
trol can be transferred to an arbitrary location in memory where execution can continue.

6 CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 7

3 Mitigation Strategies

What options do system managers have to reduce the risks to their systems once a defective
version of rlogin is installed? This section describes three mitigation strategies. They are pre-
sented in order from least effective to most effective.

3.1 Strategy 1: Non-Executable Stack Regions
The first mitigation strategy consists of removing execution permission from the stack seg-
ment of every process on a UNIX system. This means that the class of exploit scripts that
smash the stack and then execute instructions placed on the stack will not work. Methods to
remove execution permission from the stack are described in [Sun 97b] and [Dik 97]. This
strategy makes no changes to the rlogin source code and as such does not require that code to
proceed.

Unfortunately, some UNIX systems make legitimate use of an executable stack. For example,
Linux uses executable stacks for signal handling trampolines. Objective C uses other types of
trampolines that also require an executable stack. There are likely others.

To that end, then, is removing stack execution permissions worth the effort required to fix the
problems that it creates? Let’s look further at what it means to make such a change.

First, removing stack execution permissions only renders data on the stack non-executable.
Second, not all processor memory management units provide the granularity necessary to
enforce these permissions. Finally, even if so protected on computers that support it, the sub-
routine call stack can still be corrupted. This means that when the subroutine whose stack has
been corrupted attempts to return to its caller, that corrupted stack could transfer control to a
non-stack-based address, an address in the environment variables section for example. Exe-
cution can continue from that point.

While the exploit scripts being used today will no longer work, we believe that those scripts
can be easily changed so that they work for a system with a non-executable stack. The exploit
scripts can still cause a buffer overflow that corrupts the subroutine call stack and ultimately
executes arbitrary code located somewhere other than on the stack. Therefore, while this
mitigation strategy is a minor improvement, it is incomplete and has a potentially high cost.

8 CMU/SEI-98-TR-017

3.2 Strategy 2: Truncating the Data

The next mitigation strategy suggests that the data copied from the TERM variable be trun-
cated to fit into the term buffer. Some data may be lost if the size of the TERM variable ex-
ceeds that of the term buffer. How the remote computer system reacts to the truncated ter-
minal name is unpredictable.

There are two ways to implement this strategy. The first requires changing the code for
rlogin. It is easy to apply: Simply replace the instance of strcpy with strncpy followed
by inserting the NULL terminator at the end of the term string. Figure 2 shows the resulting
code.

(void)strncpy(term, (p = getenv("TERM")) ?
 p : "network", sizeof(term));
term[sizeof(term) - 1] = (char) NULL;

Figure 2: Truncating the Data

Many vendors used this method in the patches provided to their customers. It avoids the
buffer overflow, and it is easy to understand and apply.

The second implementation method consists of replacing rlogin with a wrapper program that
truncates the TERM variable before rlogin can operate on it. This strategy does not rely on the
source code. This scheme was proposed in [CERT 97a].

This strategy is an improvement. There are neither buffer overflows nor smashed stacks, but
the data resulting from the truncation operation may yield unpredictable results.

In addition, the replacement code does not check content. This means that potentially harmful
data are passed from computer to computer, perhaps causing problems along the way. The
next section suggests a way to solve this problem.

3.3 Strategy 3: Data for Length and Content

The key to this mitigation strategy is to inspect both the TERM variable’s length and its con-
tent. Data that do not fit or are incorrectly formed should be replaced by a meaningful default
value to ensure predictable results further down the line. As in Strategy 2, a wrapper or
changes to the source code can also implement this strategy. We will discuss the suggested
changes to the source code to achieve our desired result.

CMU/SEI-98-TR-017 9

To begin, there is nothing fundamentally wrong with the strcpy subroutine as long as the
data to be copied fit in the destination area provided. To that end, one need simply check the
length of TERM to see if it fits in the destination. If it does not fit, a suitable replacement
should be copied instead.

Next, let’s consider the content of TERM. We ask: What is the correct definition of a terminal
name object? All too often in the C programming language, the universal answer is “It’s a
string” or “It’s an integer.” In this case, the fundamental data type is not just a string, but
rather a string with a length and content definition.

Sadly, there are no standards or RFCs that define the form of a terminal name object. Instead,
we will have to deduce those attributes through ad hoc techniques. To do this, we will
examine a Sun Microsystems Solaris 2.5.1 system to help us define the form of a terminal
name object.

By looking at all of the terminal names used by the termcap and terminfo libraries in Solaris
2.5.1, we observe that the maximum size of a terminal name object is 26 characters. To be
safe, we will select 64 characters as the maximum. Further, we observe that the character set
appears to be drawn from the alphanumeric set plus the special characters plus (+), minus
(—), period (.), and forward slash (/). We will use that character set to define valid content.

Figure 3 shows the improved code segment based on the defective code in Figure 1. The im-
proved code uses this newly defined terminal name object. This code segment recognizes that
data that cross a boundary – the boundary between user and program – need to be inspected
before the data are used. (See Section 4.1 for a description of boundaries.)

The code inspects the data by checking the length and content of the value of the user-
provided TERM variable before sending it to the remote host computer. The strcpy subrou-
tine can safely operate without causing a buffer overflow that would render the local host
system vulnerable to attack. The wrapper that is proposed in Section 3.2 could do the same
thing shown Figure 3. This mitigation strategy is the most complete of the three presented.

10 CMU/SEI-98-TR-017

#define DEFAULT_TERM "network"
#define MAX_TERM_LENGTH 64

static char *Term_OK_Chars = "0123456789abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ+-/.";

main(argc, argv)
 int argc;
 char *argv[];
{

…
int uid;
long omask;
struct passwd *pw;
char *host, *p, *user, term[MAX_TERM_LENGTH];
struct servent *sp;

…
if (!(pw = getpwuid(uid = getuid()))) {

(void)fprintf(stderr, "rlogin: unknown user id.\n");
exit(1)

}
…
if (((p = getenv("TERM")) == (char) NULL) ||
 (strlen(p) >= sizeof(term)) ||
 (strspn(p, Term_OK_Chars) != strlen(p))) {

p = DEFAULT_TERM;
}
(void)strcpy(term, p);
…
rem = rcmd(&host, sp->s_port, pw->pw_name, user, term, 0);
…
(void)setuid(uid);
doit(omask);
…

}

Figure 3: Checking for Length and Content

3.4 Summary and Implementation
This section summarizes the mitigation strategies just discussed. It also proposes an alterna-
tive implementation using wrapper technology.

3.4.1 Summary of Mitigation Strategies
The first strategy, which was explained in Section 3.1 and which made rlogin’s stack not ex-
ecutable, is effective against the current exploit scripts. However, we feel that those scripts
need only minor changes to work correctly again. Therefore, that strategy is not recom-
mended as a complete solution to the coding defect in rlogin and similar defects in other pro-
grams. Nonetheless, where possible and practical, stack regions should be made not executa-
ble.

The second strategy, explained in Section 3.2, suggested truncating the TERM variable to a
defined length at the cost of unpredictable results. This strategy could be achieved through a
wrapper program or changes to rlogin’s source code. Because this strategy can produce un-
predictable results, it too is not recommended, though it has been widely used by vendors.

CMU/SEI-98-TR-017 11

The last strategy, explained in Section 3.3, suggested that TERM’s value be checked for length
and content before being used. The strategy also suggested that a reasonable default be sub-
stituted in the absence of conforming data. A wrapper or changes to source code are two im-
plementation methods. This strategy is recommended because it does mitigate the current
exploits and ensures predictable results.

3.4.2 Wrapper Technology
The last two strategies suggested a wrapper as a method for rendering the current exploit
scripts inoperative. Wrappers do indeed work, but their focus is narrow. A wrapper ad-
dresses only rlogin’s defect and nothing else. Similar defects in other programs require their
own wrappers.

Consider then a universal table-driven wrapper as a general-purpose solution. This wrapper
would intercede between the user and the program actually providing service in much the
same way that the TCP Wrappers [Venema 97] stand between a client program requesting a
network service using the Transmission Control Protocol (TCP) and the daemon that provides
it.

The wrapper could be directed not only to check environment variables for form and content
but also to validate arguments, reset resource limits, alter the disposition of signals, close un-
necessary file descriptors, and reestablish credentials. In short, it would examine all process
attributes that are preserved across the exec(2) family of UNIX system calls. The wrapper
could be directed to set the state of a soon-to-be-executed program to a known and well-
defined state based on a table that describes the operations it is to perform.

To install this general wrapper on a UNIX system, every set-user-id and set-group-id program
must first be relocated to another place in the fil e system. Once relocated, the set-user-id and
set-group-id permissions must be removed. This ensures that even if these defective programs
were executed directly – that is without benefit of the wrapper – they would not yield addi-
tional privileges to the executing user. The wrapper would then be installed in place of those
relocated set-user-id and set-group-id programs with the original permissions restored. Lastly,
the administrator needs to construct the table that defines the wrapper’s operations.

Not all sources of data are passed from process to process through the exec system calls. Pro-
grams also access data streams using fil e and network descriptors created as a program exe-
cutes. Data in those streams should also be cleansed where possible.3 The general wrapper
described here does not operate on that data stream, even in the specific case for a known
application and therefore a known data stream form. In the general case, the cleansing task is
even harder.

3 See the defect in rpc.statd (http://www.cert.org/advisories/CA-97.26.statd.html).

12 CMU/SEI-98-TR-017

The wrapper implementation method does reduce the effect of the type of coding defect
found in rlogin. However, the language needed to describe how to cleanse arguments, envi-
ronment variables, etc., may be cumbersome and therefore error prone. It seems likely that
legitimate combinations of arguments, environment variables, and such may be unnecessarily
cleansed, perhaps at the cost of desired functionality. Finally, the wrapper is not able to
cleanse all sources of data available to an arbitrary program. While wrapper technology is
more practical when the source is unavailable, its lack of coverage and complexity are draw-
backs. Therefore, wrappers should be used only when there are no other choices.

In summary, the best strategy suggested checking a data item for content and length, and the
best implementation method suggested changing the source code for the program in need of
repair. Because the best strategy required source code, it is likely a strong avoidance strategy
candidate as well. The next section describes general concepts for avoiding common coding
defects of which rlogin’s buffer overflow is but one type.

CMU/SEI-98-TR-017 13

4 Avoidance Strategies

The purpose of avoidance strategies is to eliminate the need for mitigation strategies. Pro-
grams written in anticipation of extraordinary conditions are more able to operate correctly
than programs written without such foresight. In other words, programs written correctly
from the beginning need not have coding defects repaired later in their life cycle.

Programs will evolve. Their requirements will change and their functionality will likely in-
crease to meet this demand. However, the implementation of that functionality should be
achieved without the programming flaws that frequently characterize modern software.

At the CERT/CC, we have coined the phrase defensive programming practices to encapsulate
this concept. It is patterned after the defensive driving techniques that many of us were taught
when we took Driver’s Education in secondary school.

Driver’s Education teaches prospective drivers to be prepared for unexpected driving situa-
tions. Examples are sudden stops, lane changes, road hazards, and mechanical malfunctions.
A defensive driver will be in a position to safely navigate the highway in spite of these con-
ditions.

The analog for programming is simple: Assume that those using your programs will not just
provide bad input to your program as the result of their ignorance; they will also consciously
provide malicious input designed to make your program operate in an unintended fashion.
The term input includes not only the files that a program reads and writes but also the entire
scope of a program’s operating conditions. Examples are arguments, environment variables,
credentials, open file descriptors, data streams, and system resources. A defensively written
program anticipates anomalies in such inputs.

For rlogin, the user did not just accidentally provide a TERM environment variable that hap-
pened to contain machine language instructions properly aligned with the requirements of the
subroutine call stack. He or she consciously created such a variable for the expressed purpose
of gaining access to resources to which that user was not entitled. The mitigation strategy that
inspected the data for length and content becomes the avoidance strategy that renders such
unwanted access impossible.

This section discusses two examples of defensive programming practices. The first deals with
examining data for length and content, and the second with program privileges.

14 CMU/SEI-98-TR-017

4.1 Practice 1: Trusting Untrustworthy Data
Sections 3.2 and 3.3 pointed out that data under the control of the user should be examined
before being used. This section covers the specific case of data that crosses a boundary – an
imaginary line separating two potentially competing domains. These data must be considered
untrustworthy and be made trustworthy before being used. The nature of the domains on ei-
ther side of these boundaries is the subject of the discussion below. Indeed, their very exis-
tence is a new concept about which programmers should be aware.

A boundary typically separates two potentially competing domains. The fact that these do-
mains compete, or rather have competing goals, frequently gives rise to attacks from comput-
ers on one side of a boundary targeted towards computers on the other side. Examples are
attacks against the Domain Name Service (DNS) [CERT 97b] and the Internet Protocol (IP)
[CERT 96]. Firewalls and other perimeter defenses are traditional countermeasures used to
stop these attacks. The firewall defines a boundary crossed by data that are untrustworthy.

In rlogin, there is a boundary between the program – more accurately, the programmer who
designed and wrote the program – and its user. When TERM crossed this boundary, the pro-
grammer, and subsequently the program, did not recognize that this boundary existed and did
not code appropriately. Had the programmer recognized this, the mitigation strategy de-
scribed in Section 3.3 could have been used to make the untrustworthy data trustworthy.

When the rlogin user is intending to be malicious, it is also clear that the programmer and the
user have competing goals. The programmer’s goal is to provide virtual terminal service as
defined by the relevant RFCs. In contrast, the malicious user’s goal is to gain extraordinary
access to the computer system where a defective rlogin has been installed. Because of the
coding defect, the malicious user’s goals can be achieved.

In the specific case of rlogin, there are other places where data cross a boundary. Two
boundaries are listed below. In all cases, the boundary exists between the programmer or pro-
gram and the domain listed.

4.1.1 Boundary 1: The Program User
This boundary has been discussed with respect to environment variables, but there is at least
one other boundary, namely program arguments. rlogin expects the following arguments:

[-e char] [-l username] host

where

• char is the escape character that when typed allows the user to control rlogin’s actions.
The value must be a legal ASCII character. This argument is optional.

CMU/SEI-98-TR-017 15

• username allows the user to specify a different user name for the remote host
computer login. If this option is not used, the local user name is used. The value must
adhere to the rules used to name users on the remote host computer, likely a string
composed of eight or fewer alphanumeric characters drawn from the ASCII character set.
This string must be able to be mapped onto an account on the remote host computer,
usually by an entry in the /etc/passwd file. This argument is optional.

• host is the name of the remote host computer from which virtual terminal service is
sought. The value here must conform to the host naming standards defined in RFC 952
[Harrenstien 85] and 1123 [Braden 89].

All arguments should be inspected for content and length before they are used.

4.1.2 Boundary 2: Administrative Domains
Another boundary is the boundary between administrative domains. In this case, the domains
that we are concerned about are those that are mapping host names to IP addresses and vice
versa. Usually, this mapping is done by data provided by a DNS server. In many cases, these
servers are beyond the administrative control of the rlogin user. The data exchanged must be
inspected for form and content as before, but then one additional check should be made.

If DNS servers are set up properly, the primary or canonical name of a host should be able to
be mapped to an IP address and then that address mapped back to a host name. The primary
host name should be the same as that host name discovered by the twice-applied mapping
process, independent of upper vs. lower case issues. If the host names are not the same, then
the administrator of the remote DNS server may be attempting to gain unauthorized access to
a resource, likely to a host to which they are not entitled such access.4 It is then reasonable to
assume that something is amiss and that attempting a virtual terminal connection should not
proceed. rlogin should first do this double mapping, and then continue only if valid data were
found. If an invalid mapping is discovered, rlogin should describe its findings and then
abandon the attempt to connect to the specified remote host.

4.1.3 The Practice
Making untrustworthy data trustworthy consists of the following steps:

1. Identify the boundaries in a program.

2. Identify data that cross boundaries in that program.

3. Examine that data for correct form, substituting meaningful and predictable defaults for
nonconforming data.

4 This is not the only reasonable conclusion to draw. DNS servers that do not provide consistent
information across the twice-mapped method may simply be badly managed by administrators who do
not know how to configure them correctly.

16 CMU/SEI-98-TR-017

4.2 Practice 2: Shedding Privileges
From a previous discussion, we know that rlogin must run with root privileges to gain access
to a reserved port as part of the authentication process. While this is a poor authentication
scheme (see Section 5.1), the rlogin program must nonetheless be securely programmed to
implement that scheme. To that end, where specifically does rlogin need root privileges? The
goal we are trying to achieve here is to use extraordinary privileges only where needed and
then give them up when they are no longer required. This section describes our attempts to
achieve this goal by several different methods.

rlogin needs root privileges so that the rcmd subroutine – the subroutine that makes the con-
nection to the remote host computer – can succeed. Here is an excerpt from the rcmd manual
page:

rcmd() is a routine used by the super-user to execute a command on a remote
machine using an authentication scheme based on reserved port numbers.
rresvport() is a routine which returns a descriptor to a socket with an address in
the privileged port space [Sun 97c].

4.2.1 Temporarily Abandoning Privileges
All of the code up to the rcmd call as shown in Figure 3 – including the defective code that
uses the TERM environment variable – does not need root privileges to operate, and all of the
code after rcmd does not need privileges either. If privileges can be temporarily given up,
reclaimed for rcmd, and then given up completely, rlogin can operate more safely with
privileges being enabled only when needed.

On a Solaris 2.5.1 system, this temporary privilege reduction and reclamation task can be
accomplished because of IEEE Standard Portable Operating System Interface for Computer
Environments (POSIX) saved set ids [POSIX 98] and the seteuid system call [Sun 97d].
Figure 4 shows how the original privileges are saved for later use with getuid and
geteuid, the current privileges are reduced and reclaimed with seteuid, and then privi-
leges are irrevocably abandoned with setuid.

CMU/SEI-98-TR-017 17

#define DEFAULT_TERM "network"
#define MAX_TERM_LENGTH 64

static char *Term_OK_Chars = "0123456789abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ+-/.";

main(argc, argv)
 int argc;
 char *argv[];
{

…
int original_ruid, original_euid;
long omask;
struct passwd *pw;
char *host, *p, *user, term[MAX_TERM_LENGTH];
struct servent *sp;

original_euid = geteuid();
seteuid(original_ruid = getuid());
…
if (!(pw = getpwuid(original_ruid))) {

(void)fprintf(stderr, "rlogin: unknown user id.\n");
exit(1)

}
…
if (((p = getenv("TERM")) == (char) NULL) ||
 (strlen(p) > sizeof(term)) ||
 (strspn(p, Term_OK_Chars) != strlen(0))) {

p = DEFAULT_TERM;
}
(void)strcpy(term, p);
…
seteuid(original_euid);
rem = rcmd(&host, sp->s_port, pw->pw_name, user, term, 0);
…
(void)setuid(original_ruid);
doit(omask);
…

}

Figure 4: Only Use Privileges When Needed

Sometimes, seteuid is the right call to use. It provides the flexibility needed to obtain a
privilege when required, yet it affords the chance to shed that privilege. Using seteuid
seems to be an effective strategy and was easy to implement. However, by slightly perturbing
the machine language instructions copied to and then executed from the stack, these tempo-
rarily waylaid privileges can be reclaimed, rendering the strategy ineffective. Therefore, if
privileges are required, they must be used and then abandoned completely. Temporarily cast-
ing privileges aside does not work. This means that the code fragment shown in Figure 4 is
not a good solution.

4.2.2 Permanently Abandoning Privileges
Within the confines of the way that rcmd is currently designed and implemented, the notion
of using privileges at the beginning of a program, rlogin for example, and then abandoning
them is impossible. However, if the reserved port could be allocated independent of rcmd
and then given to rcmd when needed, root privileges could be given up immediately after
that port is allocated. The intervening code could run as the real user without a loss of func-
tionality.

18 CMU/SEI-98-TR-017

From rcmd’s manual page description, we know that it uses the rresvport subroutine to
allocate a privileged port. Unfortunately, there is no other way to give that port to rcmd. As a
solution to this dilemma, we suggest that a new version of rcmd be written that accepts a
reserved port given as another argument. In fact, rcmd uses two privileged ports if it s last
argument is non-zero. This improved version must take this into account because programs
such as rsh use this argument. With this new version, the ports that rcmd needs can be given
as arguments, thereby removing rcmd’s need to run as root.

If we look closely at the source code for rcmd as shown in Figure 5, we see that it tries repeat-
edly to connect to the remote host computer. rcmd anticipates some subtle system timing
issues whereby a reserved port bound to an imprecise destination may be superceded by that
same port bound to a more specific destination. In response to this, rcmd allocates another
reserved port and attempts the connection again.

With the reserved port allocation code removed from our new version of rcmd, rcmd will
not be able to connect to the remote host computer if the selected port is not able. This is an
acceptable change as long as rcmd reflects this state to its caller.

For example, rlogin could re-execute itself to reclaim root privileges safely. The reserved
port allocation procedure would begin again, and if successful, the remote connection would
also be retried. Apart from minor performance issues, the rlogin user should not see any
change in functionality.

With these proposed changes to rcmd, it is now up to rlogin to allocate the reserved port and
then give up its root privileges. rlogin can easily allocate that port with rresvport but
giving up privileges is a little harder and, as we will see, non-portable. We will look first at
the Solaris implementation in detail and then talk about other versions of the UNIX Operating
System.

There are two ways for a set-user-id Solaris process to irrevocably abandon its privileges.
The key to both methods is their effect on the POSIX saved set ids.

The first way uses the setuid system call. If the effective id of the process is root, the
setuid system call works fine. That is, it sets the real, effective, and saved set user ids to its
argument, thereby giving up privileges forever. However, if the effective id is not root, then
the saved set id value remains unchanged. In this case, privileges are given up only tempo-
rarily. As we noted earlier, they can be reclaimed. Therefore, in the case of set-user-id root
programs, setuid is a complete solution, but in the case of set-user-id-not-root programs, it
is not.

CMU/SEI-98-TR-017 19

for (timo = 1, lport = IPPORT_RESERVED - 1;;) {
s = rresvport(&lport);
if (s < 0) {

if (errno == EAGAIN)
(void)fprintf(stderr, "rcmd: socket: All ports in use\n");

else
(void)fprintf(stderr, "rcmd: socket: %s\n", strerror(errno));

sigsetmask(oldmask);
return (-1);

}
fcntl(s, F_SETOWN, pid);
sin.sin_family = hp->h_addrtype;
bcopy(hp->h_addr_list[0], &sin.sin_addr, hp->h_length);
sin.sin_port = rport;
if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) >= 0)

break;
(void)close(s);
if (errno == EADDRINUSE) {

lport--;
continue;

}
if (errno == ECONNREFUSED && timo <= 16) {

(void)sleep(timo);
timo *= 2;
continue;

}
if (hp->h_addr_list[1] != NULL) {

int oerrno = errno;

(void)fprintf(stderr, "connect to address %s: ",
inet_ntoa(sin.sin_addr));

errno = oerrno;
perror(0);
hp->h_addr_list++;
bcopy(hp->h_addr_list[0], &sin.sin_addr, hp->h_length);
(void)fprintf(stderr, "Trying %s...\n",

inet_ntoa(sin.sin_addr));
continue;

}
(void)fprintf(stderr, "%s: %s\n", hp->h_name, strerror(errno));
sigsetmask(oldmask);
return (-1);

}

Figure 5: rcmd Source Code

The second way is with the setreuid system call. The key phrase from the Solaris 2.6
manual page [Sun 97e] is provided below:

… if the real user ID is being changed (that is, if ruid is not -1),or the effective
user ID is being changed to a value not equal to the real user ID, the saved set-
user ID is set equal to the new effective user ID .

This means that by setting the real user id to its current value, that is a value other than –1,
and also setting the effective user id to the real user id, the saved set user id is also set to the
real user id. All three ids have the same value, namely the value of the real user id. Privileges
are then irrevocably abandoned. Figure 6 shows the final version of rlogin that uses our new
version of rcmd and the concept of using and then shedding privileges as soon as possible.

20 CMU/SEI-98-TR-017

#define PATH_RLOGIN "/usr/bin/rlogin"
#define DEFAULT_TERM "network"
#define MAX_TERM_LENGTH 64

static char *Term_OK_Chars = "0123456789abcdefghijklmnopqrstuvwxyz\
ABCDEFGHIJKLMNOPQRSTUVWXYZ+-/.";

main(argc, argv)
 int argc;
 char *argv[];
{

…
int reserved_port;
char *host, *p, *user, term[MAX_TERM_LENGTH];
struct servent *sp;

/* Begin critical region – this region operates as root */
for (reserved_port = IPPORT_RESERVED – 1;;) {

if (rresvport(&reserved_port) < 0) {
/* error handling */

}
}
setreuid(getuid(), getuid());
/* End critical region – this region operates as the
…
if (((p = getenv("TERM")) == (char) NULL) ||
 (strlen(p) > sizeof(term)) ||
 (strspn(p, Term_OK_Chars) != strlen(0))) {

p = DEFAULT_TERM;
}
(void)strcpy(term, p);
…
rem = new_rcmd(&host, sp->s_port, pw->pw_name, user, term, 0,

reserved_port, 0);
if (rem == ERROR_CANNOT_BIND_TO_PORT) {

execv(PATH_RLOGIN, argv);
perror(argv[0]);
exit(1);

}
…
doit(omask);
…

}

Figure 6: Irrevocably Abandoning Privileges

Other operating systems, Hewlett-Packard’s HP-UX for example, contain the setresuid

[HP 97] system call where the values of the real, effective, and saved set user ids can be set
directly. The saved set user id is not set based on a side effect of setting other values. Instead,
setresuid lets you set these values directly, and their setting is clear from reading the pro-
gram code.

4.2.3 The Practice
When you need extraordinary privileges to accomplish a programming task, you should do
the following:

1. Use privileges at the beginning of your program.

2. Give up privileges immediately after you are done with them.

3. Give up privileges in a manner that they cannot be reclaimed. We know that temporarily
giving up privileges only slows the intruder but does not stop the attack.

CMU/SEI-98-TR-017 21

4. Write concise privileged code. Privileged code should be concise so that its operation
can be thoroughly inspected for defects.

5. Change the programming interfaces to vendor-provided software so you can isolate code
segments that require privileges.

22 CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 23

5 Design Notes

This section details three design notes aimed at eliminating the types of problems that ren-
dered rlogin and other similar program vulnerable to attack. They address protocol and
hardware design issues.

5.1 Note 1: Weak Authorization
Let’s summarize the rlogin problem. The rlogin protocol specifies that each connection from
an rlogin client to an rlogin server must originate on a privileged port, that is, a port in the
range of 512 to 1023 inclusive. On a UNIX system, this means that the client must have root
privileges to gain access to these ports. Because of a coding defect, an intruder can use this
extraordinary privilege to gain access to resources to which they are not entitled. This entire
problem is predicated on the simple idea that using privileged ports conveys a sufficient level
of authorization by the client. Let’s look more closely at what is really going on here.

The protocol requires that the source port number be within a specific range. Who sets that
value? The originating host does, meaning that that host is responsible for an important as-
pect of the connection. Furthermore, there is no means to verify the authenticity of the source
port number. It is meaningless to ask the attacker’s operating system if the source port num-
ber is correct and is being set properly. The rlogin server is, in essence, trusting untrust-
worthy information that cannot be vetted.

The bottom line is that the rlogin protocol as defined in RFC1282 is partially flawed because
it relies on information – the source port number – that cannot be verified. The design note to
be gleaned from this analysis is that unverifiable information must not be used, and certainly
must not be used in a network protocol.

5.2 Note 2: Subroutine Linkage Information
One of the key features of the buffer overflow in rlogin is the ability to redirect the flow of
execution to a memory location whose contents can be defined by the rlogin user. This is
straightforward to accomplish given the stack-based architecture of most modern computers.
Although recent discussions on the BUGTRAQ mailing list have suggested randomizing the
location of the subroutine linkage information [Kettlewell 98], this does not defeat – nor is it
intended to defeat – all attack types. This design note recommends a change in the location of
the subroutine linkage information and the rules that define how and when that information
can be modified under program control.

24 CMU/SEI-98-TR-017

We propose a change to the architecture of computers such that, at a minimum, the subroutine
return addresses be stored in their own protected area of computer memory. To implement
this, we recommend the following changes:

• Add one register to the computer’s register set. This register is called the return address
stack pointer (RASP). Its contents will always point to a memory location so it should be
sized appropriately.

• Change the operation of the subroutine call and return instructions to use the RASP. The
subroutine call instruction pushes the return address onto the memory cell pointed to by
the RASP and then transfers control to the specified address. Similarly, the subroutine
return instruction pops the return address from the memory cell pointed to by the RASP
and transfers control to that address. These instructions operate just as before except that
they use the RASP instead of the general-purpose stack pointer.

• Make RASP and the return address pool read only when the computer is operating in user
mode. The only exceptions are the subroutine call and return instructions as noted above.
There are no access restrictions when in kernel mode.

With these changes to the architecture, what software changes must be made? The following
list highlights the areas that need attention.

• The kernel. The kernel needs to manage this new data structure both on behalf of
processes and the kernel itself. The memory area used to hold the pool of return
addresses should be allowed to grow as a process evolves, similar to the way that the
stack grows as needed.

• Debuggers and postmortem analyzers. These tools need to know about the RASP and the
pool of return addresses so that they can properly display the stack trace that shows the
order of subroutine calls and the parameters passed to those subroutines.

• All programs that use setjmp(3) and longjmp(3) [Sun 97f]. The setjmp and
longjmp subroutines, available on most UNIX systems, provide a non-local goto to
languages that do not have such a facility. Programs can save many key components of
process state – usually the hardware register set and the current instruction pointer – with
setjmp and then return to that state with longjmp. While setjmp can record the
RASP, longjmp will be unable to set RASP to the saved value. Programs that use the
setjmp/longjmp pair must be rewritten to use either

− conventional subroutine returns. This is no small task. For example, in FreeBSD
Version 2.2.6, there are over 175 calls to setjmp affecting over 50 different
programs!

− a different programming interface to setjmp/longjmp. We suggest moving the
setjmp/longjmp functionality into the kernel. Instead of retaining state
information in a buffer held in the address space of a user process, the kernel would
manage the state information. setjmp would return a handle to an instance of state,
and longjmp would restore the state associated with that handle. Programmatically,
the changes needed in those 175 calls to setjmp noted above would still be needed,
but the overall logic of the associated 50 programs would not change.

The changes proposed in this section end the rash of buffer overflows that have been recently
brought to light. They provide a hardware solution that requires some complementary soft-

CMU/SEI-98-TR-017 25

ware changes. These changes do not require application-level changes like those presented in
Sections 3 and 4. We urge computer hardware designers to consider the suggestions put forth
here and to implement them where possible.

5.3 Note 3: Memory Management Units
Section 3.1 described a mitigation strategy that advocated removing execution permissions
from the stack segment of every process running on a UNIX system. While this strategy has its
limitations, it does defeat many of the exploitation scripts presently in use on the Internet.

The strategy also noted that removing such permissions was not always possible; that is, not
all memory management units provide the capability to enforce such restrictions at the hard-
ware level. Specifically, while Sun Microsystems’ SPARC architecture does provide this ca-
pability, Intel’s Pentium architecture does not.

We recommend that a memory management unit support all possible combinations of access
permissions at the lowest possible level, for example at the page level. By supporting all
combinations, operating systems developers can enforce whatever protection model they
deem appropriate for their domain. Further, by providing these permissions at the lowest pos-
sible level, operating systems developers are encouraged to use these facilities because they
are practical and complete.

26 CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 27

6 Summary and Future Work

This report describes the results of applying the detailed vulnerability analysis process to the
defect in rlogin. We first analyzed the code to determine the root cause. We decided that the
problem is not just a buffer overflow; rather, it is an instance of trusting untrustworthy data.
By recognizing this more encompassing classification, we devised a mitigation strategy
(Section 3.3) that fixed the defect in a way that operated predictably. Given the fundamental
flaw, we wrote a defensive programming practice (Section 4.1) aimed at eliminating these
types of defects in future products.

We could have stopped here; the defect was successfully repaired and we had written the
practice describing the conditions necessary to recognize the flaw and the steps to follow to
prevent a reoccurrence. We chose to go further to see what else we could find.

Through further analysis, we also discovered that the underlying computer hardware could be
changed to prevent related defects. These gave rise to two design notes (Sections 5.2 and
5.3). We went further.

The concept of privilege mode operation was an obvious area for exploration. When we ex-
amined the code from the perspective of privileges and how they were used, we identified
another fundamental flaw that we named shedding privileges. By considering changes to the
code, we devised another defensive programming practice (Section 4.2) and a design note
(Section 5.1). Our analysis was now complete.

We have begun to apply this analysis process to other defects so that we can discover more
root causes. We have created a classification of these flaws that we call the root cause taxon-
omy.5 This taxonomy will ultimately contain a set of root causes that is gleaned from that
detailed analysis and is independent of specific operating systems and programming lan-
guages. This forms the basis for the defensive programming practices. We can then add ex-
amples for a given programming language and operating system for specific user communi-
ties. Through its use, we expect to reduce the instances of the flaws that continue to render
systems vulnerable to attack.

5 Private communication with Jim Ellis.

28 CMU/SEI-98-TR-017

CMU/SEI-98-TR-017 29

References

 [Braden 89] Braden, R. Requirements for Internet Hosts -- Application and Support,
RFC 1123 [online]. Available FTP: <ftp://ftp.isi.edu/in-notes/rfc1123.txt>
(1989).

[CERT 96] CERT/CC. CERT* Advisory CA-96.21Topic: TCP SYN Flooding and IP
Spoofing Attacks [online]. Available WWW:
<http://www.cert.org/advisories/CA-96.21.tcp_syn_flooding.html> (1996).

[CERT 97a] CERT/CC. CERT* Advisory CA-97.06 Topic: Vulnerability in rlogin/term
[online]. Available WWW: <http://www.cert.org/advisories/CA-
97.06.rlogin-term.html> (1997).

[CERT 97b] CERT/CC. CERT* Advisory CA-97.22 Topic: BIND - the Berkeley Internet
Name Daemon [online]. Available WWW:
<http://www.cert.org/advisories/CA-97.22.bind.html> (1997).

[Dik 97] Dik, Casper. Re: Exploit for Buffer Overflow in /bin/eject - Solaris 2.X
[online]. Available WWW:<http://geek-
girl.com/bugtraq/1997_1/0289.html> (1997).

[Harrenstien 85] Harrenstien, K. DOD Internet Host Table Specification, RFC 952 [online].
Available FTP: <ftp://ftp.isi.edu/in-notes/rfc952.txt> (1985).

 [HP 97] Hewlett-Packard Company. setresuid, setresgid - Set Real, Effective, and
Saved User and Group IDs [online]. Available WWW:
<http://www.software.hp.com/STK/man/11.00/setresuid_2.html> (1997).

[Kantor 91] Kantor, B. BSD Rlogin [online]. RFC 1282. Available WWW:
<http://www.sunsite.auc.dk/RFC/rfc/rfc1282.html> (1991).

[Kettlewell 98] Kettlewell, R. Protecting Against Some Buffer-Overrun Attacks [online].
Available WWW: < http://www.greenend.org.uk/rjk/random-stack.text>
(1998).

30 CMU/SEI-98-TR-017

[Lefty 96] Lefty. Buffer Overruns, What’s the Real Story? [online]. Available WWW:
<http://reality.sgi.com/nate/machines/security/stack.nfo.txt> (1996).

[Mudge 95] Mudge. How to Write Buffer Overflows [online]. Available WWW:
<http://l0pht.com/advisories/bufero.html> (1995).

[Mudge 96] Mudge. Compromised – Buffer-Overflows, from Intel to SPARC Version 8
[online]. Available WWW: <http://l0pht.com/advisories/buf.ps> (1996).

[One 96] One, Aleph. Smashing The Stack For Fun And Profit [online]. Available
WWW: <http://reality.sgi.com/nate/machines/security/P49-14-Aleph-One>
(1996).

[POSIX 98] Institute of Electrical and Electronics Engineers. IEEE Standard Portable
Operating System Interface for Computer Environments. IEEE Std 1003.1-
1998. New York, New York: Institute of Electrical and Electronics Engi-
neers (1998).

[Prym 96] Prym. Finding and Exploiting Programs with Buffer Overflows [online].
Available WWW:
<http://reality.sgi.com/nate/machines/security/buffer.txt> (1996).

[Smith 97] Smith, Nathan P. Stack Smashing Vulnerabilities in the UNIX Operating
System [online]. Available WWW:
<http://reality.sgi.com/nate/machines/security/nate-buffer.ps> (1997).

[Sun 97a] Sun Microsystems, Inc. in.rlogind, rlogind – Remote Login Server [on-
line]. Available WWW:
<http://docs.sun.com/ab2/@LegacyPageView?toc=SUNWab_40_4:/safedi
r/space3/pkgs/collections/ab1/SUNWaman/toc/REFMAN1M:0155_in.rlog
ind.1m;bt=man+Pages(1M)%3A+System+Administration+Commands;ps
=ps/SUNWab_40_4/REFMAN1M/0155_in.rlogind.1m> (1996).

[Sun 97b] Sun Microsystems, Inc. Executable Stacks and Security [online]. Available
WWW:
<http://docs.sun.com/ab2/coll.47.4/SYSADMIN1/@Ab2PageView/91913
?DwebQuery=user+and+stack#FirstHit> (1997).

CMU/SEI-98-TR-017 31

[Sun 97c] Sun Microsystems, Inc. rcmd, rresvport, ruserok - Routines for Returning
a Stream to a Remote Command [online]. Available WWW:
<http://docs.sun.com/ab2/@LegacyPageView?toc=SUNWab_40_3:/safedi
r/space4/pkgs/addoldversion/ab1/SUNWaman/toc/REFMAN3:1020_rcmd.
3n;bt=man+Pages(3)%3A+Library+Routines;ps=ps/SUNWab_40_3/REF
MAN3/1020_rcmd.3n> (1997).

[Sun 97d] Sun Microsystems, Inc. setuid, setegid, seteuid, setgid - Set User and
Group IDs [online]. Available WWW:
<http://docs.sun.com/ab2/@LegacyPageView?toc=SUNWab_40_3:/safedi
r/space4/pkgs/addoldversion/ab1/SUNWaman/toc/REFMAN2:0127_setuid
.2;bt=man+Pages(2)%3A+System+Calls;ps=ps/SUNWab_40_3/REFMAN
2/0127_setuid.2> (1997).

[Sun 97e] Sun Microsystems, Inc. setreuid - Set Real and Effective User IDs. [on-
line]. Available WWW:
<http://docs.sun.com/ab2/@LegacyPageView?toc=SUNWab_40_4%3A%
2Fsafedir%2Fspace3%2Fpkgs%2Fcollections%2Fab1%2FSUNWaman%2
Ftoc%2FREFMAN2%3A0146_setreuid.2;bt=man+Pages(2)%3A+System
+Calls;ps=ps%2FSUNWab_40_4%2FREFMAN2%2F0146_setreuid.2>
(1997).

[Sun 97f] Sun Microsystems, Inc. setjmp, sigsetjmp, longjmp, siglongjmp - Non-
Local goto [online]. Available WWW:
<http://docs.sun.com/ab2/@LegacyPageView?toc=SUNWab_40_4:/safedi
r/space3/pkgs/collections/ab1/SUNWaman/toc/REFMAN3:2172_setjmp.3
c;bt=man+Pages(3)%3A+Library+Routines;ps=ps/SUNWab_40_4/REFM
AN3/2172_setjmp.3c> (1997).

[Venema 97] Venema, Wietse. TCP Wrappers [online]. Available WWW:
<ftp://ftp.win.tue.nl/pub/security/tcp_wrappers_7.6.BLURB> (1997).

32 CMU/SEI-98-TR-017

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE
November 1998

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

rlogin (1): The Untold Story

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Lawrence R. Rogers

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-98-TR-017
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-98-017

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Coding defects account for a significant portion of the reports received by the CERT Coordination Center.
Through in-depth analysis of these reports and generalizing our findings from those analyses, we have be-
gun to create guidelines for mitigation strategies for existing defects and avoidance strategies when coding
new software. In this document, we report the results of our analysis of the well-known defect in the rlogin
program. We discuss the coding defect in detail, three mitigation strategies devised to remedy the defect,
and two avoidance strategies offered as a guide to reducing the instances of similar coding defects in new
programs. We end with three design notes aimed at eliminating these defects at the hardware and protocol
design level.

14. SUBJECT TERMS CERT Coordination Center, coding defects, design notes, 15. NUMBER OF PAGES
40

defensive programming practice, mitigation strategies, rlogin program, vulner-
ability analysis

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 The rlogin Program
	2.1 Description of rlogin
	2.2 Coding Defect in rlogin
	2.3 Determining Vulnerability

	3 Mitigation Strategies
	3.1 Strategy 1: Non-Executable Stack Regions
	3.2 Strategy 2: Truncating the Data
	3.3 Strategy 3: Data for Length and Content
	3.4 Summary and Implementation

	4 Avoidance Strategies
	4.1 Practice 1: Trusting Untrustworthy Data
	4.2 Practice 2: Shedding Privileges

	5 Design Notes
	5.1 Note 1: Weak Authorization
	5.2 Note 2: Subroutine Linkage Information
	5.3 Note 3: Memory Management Units

	6 Summary and Future Work
	References

