Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Session 2: Linear and logistic regression as Generalized Linear Models

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Learning Objectives and Outline

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

1 define generalized linear models (GLM)

- 2 define linear and logistic regression as special cases of GLMs
- 3 distinguish between additive and multiplicative models
- 4 define Pearson and deviance residuals
- 5 describe application of the Wald test

Learning objectives

Outline

Session 2: Linear and logistic regression as Generalized Linear Models

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

- **1** Brief overview of multiple regression (Vittinghoff 4.1-4.3)
- 2 Linear Regression as a GLM (Vittinghoff 4.1-4.3)
- 3 Logistic Regression as a GLM (Vittinghoff 5.1-5.3)
- 4 Statistical inference for logistic regression (Vittinghoff 5.1-5.3)

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Review of multiple linear regression

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Systematic component

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- x_p are the predictors or independent variables
- y is the outcome, response, or dependent variable
- E[y|x] is the expected value of y given x
- β_p are the regression coefficients

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Systematic plus random component

$$y_i = E[y|x] + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon_i$$

Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

- Normal distribution
- Mean zero at every value of predictors
- Constant variance at every value of predictors
- Values that are statistically independent

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Linear Regression as a GLM

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Generalized Linear Models (GLM)

• Linear regression is a special case of a broad family of models called "Generalized Linear Models" (GLM)

- This unifying approach allows to fit a large set of models using maximum likelihood estimation methods (MLE) (Nelder & Wedderburn, 1972)
- Can model many types of data directly using appropriate distributions, e.g. Poisson distribution for count data
- Transformations of Y not needed

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Components of GLM

- **Random component** specifies the conditional distribution for the response variable
 - doesn't have to be normal
 - can be any distribution in the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- Link [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component
 - can be linear or nonlinear

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Linear Regression as GLM

• The model:

 $y_i = E[y|x] + \epsilon_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$

- Random component of y_i is normally distributed:

 ϵ_i ^{iid} ∼ N(0, σ_ϵ²)
- Systematic component (linear predictor): $\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi}$
- Link function here is the *identity link*: g(E(y|x)) = E(y|x). We are modeling the mean directly, no transformation.

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Logistic Regression as a GLM

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

The logistic regression model • The model:

$$Logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi}$$

- **Random component**: *y_i* follows a Binomial distribution (outcome is a binary variable)
- Systematic component: linear predictor

$$\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi}$$

• Link function: *logit* (log of the odds that the event occurs)

$$g(P(x)) = logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right)$$

$$P(\mathbf{x}) = g^{-1} \left(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} \right)$$

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

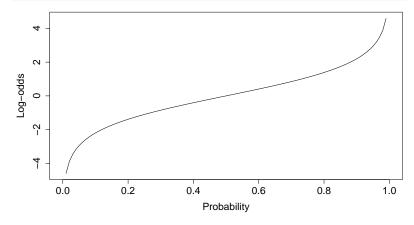
Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

The logit function



Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

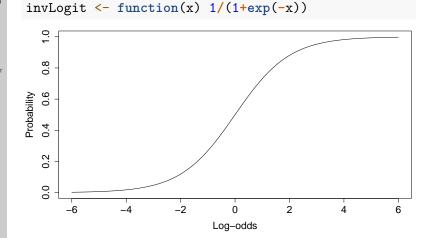
Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Inverse logit function



Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Example: contraceptive use data

Age (years)	<25	25-29	30-39	40-49	Overall
	(N=4)	(N=4)	(N=4)	(N=4)	(N=16)
education	()	()	()	()	()
high	2 (50.0%)	2 (50.0%)	2 (50.0%)	2 (50.0%)	8 (50.0%)
low	2 (50.0%)	2 (50.0%)	2 (50.0%)	2 (50.0%)	8 (50.0%)
wantsMore	()	· · ·	,	, ,	· · · ·
no	2 (50.0%)	2 (50.0%)	2 (50.0%)	2 (50.0%)	8 (50.0%)
ves	2 (50.0%)	2 (50.0%)	2 (50.0%)	2 (50.0%)	8 (50.0%)
percentusing	()	()	· · ·	· · ·	· · ·
Mean (SD)	18.8 (7.64)	27.1 (6.53)	38.8 (15.6)	46.9 (23.8)	32.9 (17.5)
Median [Min,	18.2 [10.2,	27.6 [18.9,	39.5 [22.8,	50.5 [14.6,	28.3 [10.2,
Max]	28.6]	34.5]	53.4]	72.1]	72.1]

Source: http://data.princeton.edu/wws509/datasets/#cuse. Note, this table represents rows of the source data, not number of participants. See the lab to make a table that summarizes the participants.

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Perform regression

- Outcome: whether using contraceptives or not
- Predictors: age, education level (high/low), whether wants more children or not

familv = binomial("logit"). data = cuse)

educationlow -0.3250 0.1240 -2.620 0.00879 **

0.3894

Number of Fisher Scoring iterations: 4

glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,

Estimate Std. Error z value Pr(>|z|)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Residual deviance: 29.917 on 10 degrees of freedom

Null deviance: 165.772 on 15 degrees of freedom

0.9086 0.1646 5.519 3.40e-08 *** 1.1892 0.2144 5.546 2.92e-08 ***

0.1590 -5.083 3.71e-07 ***

0.1759 2.214 0.02681 *

0.1175 -7.091 1.33e-12 ***

summary(fit1)

Coefficients:

age25-29

age40-49

##

##

##

age30-39

ATC: 113.43

(Intercept) -0.8082

wantsMoreyes -0.8330

Call: ## glm(f ## f

##

##

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Residuals for logistic regression

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Pearson residuals for logistic regression

- Traditional residuals $y_i E[y_i|x_i]$ don't make sense for binary y.
- One alternative is *Pearson residuals*
 - take the difference between observed and fitted values (on probability scale 0-1), and divide by the standard deviation of the observed value.
- Let \hat{y}_i be the best-fit predicted probability for each data point, i.e. $g^{-1}(\beta_0 + \beta_1 x_{1i} + ...)$
- y_i is the observed value, either 0 or 1.

$$r_i = rac{y_i - \hat{y}_i}{\sqrt{Var(\hat{y}_i)}}$$

Summing the squared Pearson residuals produces the *Pearson Chi-squared statistic*:

· · ·

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Deviance residuals for logistic regression

- Deviance residuals and Pearson residuals converge for high degrees of freedom
- Deviance residuals indicate the contribution of each point to the model *likelihood*
- Definition of deviance residuals:

$$d_i = s_i \sqrt{-2(y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i))}$$

Where $s_i = 1$ if $y_i = 1$ and $s_i = -1$ if $y_i = 0$.

• Summing the deviances gives the overall deviance: $D = \sum_{i} d_{i}^{2}$

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Likelihood and hypothesis testing

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

- The *likelihood* of a model is the probability of the observed outcomes given the model, sometimes written as:
 - $L(\theta|data) = P(data|\theta).$
- Deviance residuals and the difference in log-likelihood between two models are related by:

 $\Delta(D) = -2 * \Delta(\log likelihood)$

What is likelihood?

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Likelihood Ratio Test

- Use to assess whether the reduction in deviance provided by a more complicated model indicates a better fit
- It is equivalent of the nested Analysis of Variance is a nested Analysis of Deviance
- The difference in deviance under *H*₀ is *chi-square distributed*, with df equal to the difference in df of the two models.

```
Session 2:
 Linear and
   logistic
regression as
 Generalized
Linear Models
Levi Waldron
Learning
and Outline
Review of
multiple linear
regression
                                    family=binomial("logit"))
Linear
                   anova(fit0, fit1, test="LRT")
Regression as
a GLM
Logistic
Regression as
a GLM
Residuals for
logistic
regression
Likelihood
and
hypothesis
testing
Additive
vs. Multiplica-
tive models
```

Likelihood Ratio Test (cont'd)

```
fit0 <- glm(cbind(using, notUsing) ~ -1, data=cuse,</pre>
```

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Wald test for individual regression coefficients

• Can use partial Wald test for a single coefficient:

- $\frac{\hat{eta}}{\sqrt{\mathsf{var}(\hat{eta})}} \sim t_{n-1}$ • $\frac{(\hat{eta} - eta_0)^2}{\mathsf{var}(\hat{eta})} \sim \chi^2_{\mathsf{df}=1}$ (large sample)
- Wald CI for β : $\hat{\beta} \pm t_{1-\alpha/2,n-1}\sqrt{var(\hat{\beta})}$
- Wald CI for odds-ratio: $e^{\hat{eta} \pm t_{1-lpha/2,n-1}\sqrt{\mathsf{var}(\hat{eta})}}$

Note: Wald test confidence intervals on coefficients can provide poor coverage in some cases, even with relatively large samples

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Additive vs. Multiplicative models

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Additive vs. Multiplicative models

- Linear regression is an *additive* model
 - e.g. for two binary variables $\beta_1 = 1.5$, $\beta_2 = 1.5$.
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to E(y|x)
- Logistic regression is a *multiplicative* model
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to $log(\frac{P}{1-P})$
 - Odds-ratio $\frac{P}{1-P}$ increases 20-fold: exp(1.5 + 1.5) or exp(1.5) * exp(1.5)