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Learning objectives

define generalized linear models (GLM)

define linear and logistic regression as special cases of
GLMs

distinguish between additive and multiplicative models
define Pearson and deviance residuals

describe application of the Wald test
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Outline

Brief overview of multiple regression (Vittinghoff 4.1-4.3)
Linear Regression as a GLM (Vittinghoff 4.1-4.3)
Logistic Regression as a GLM (Vittinghoff 5.1-5.3)
Statistical inference for logistic regression (Vittinghoff
5.1-5.3)
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Systematic component

Ely|x] = Bo + Bix1 + Paxz + ... + BpXp

xp are the predictors or independent variables

y is the outcome, response, or dependent variable
Ely|x] is the expected value of y given x

Bp are the regression coefficients



Session 2:
Linear and
logistic
regression as
Generalized
Linear Models

Levi Waldron

Learning
Objectives
and Outline

Review of
multiple linear
regression

Linear
Regression as
a GLM

Logistic
Regression as
a GLM

Residuals for
logistic
regression

Likelihood
and
hypothesis
testing

Additive
vs. Multiplica-
tive models

Systematic plus random
component

vi = Ely|x] + e
yi = Bo + Pix1 + Baxa + ... + Bpxp + €
Assumption: ¢; "3 N(0,02)

Normal distribution

Mean zero at every value of predictors
Constant variance at every value of predictors
Values that are statistically independent
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Generalized Linear Models
(GLM)

Linear regression is a special case of a broad family of
models called "“Generalized Linear Models” (GLM)

This unifying approach allows to fit a large set of models
using maximum likelihood estimation methods (MLE)
(Nelder & Wedderburn, 1972)

Can model many types of data directly using appropriate
distributions, e.g. Poisson distribution for count data
Transformations of Y not needed
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Components of GLM

Random component specifies the conditional distribution
for the response variable

® doesn't have to be normal

® can be any distribution in the “exponential” family of

distributions

Systematic component specifies linear function of
predictors (linear predictor)
Link [denoted by g(.)] specifies the relationship between
the expected value of the random component and the
systematic component

® can be linear or nonlinear
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Linear Regression as GLM

The model:

yi = Ely|x] + €i = fo + Bix1i + Poxoi + ... + Ppxpi + €
Random component of y; is normally distributed:

€; i N(0, 0?)

Systematic component (linear predictor):

Bo + Bixii + Baxoi + ... + BpXpi

Link function here is the identity link:
g(E(y|x)) = E(y|x). We are modeling the mean directly,
no transformation.
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i The logistic regression model
Generalized [ ) The model:

Linear Models

Levi Waldron . P(x)
Logit(P(x)) = log = Bo + B1x1i + Baxai + .- + Bpxpi
1 — P(x)
Learning
Objectives . . . . .
and Outline ®* Random component: y; follows a Binomial distribution
Review of (outcome is a binary variable)

multiple linear
regression

Systematic component: linear predictor

Linear
Regression as
a GLM

Bo + Bixii + Baxai + ... + BpXpi
Logistic

Regression as

a GLM

Link function: /ogit (log of the odds that the event
occurs)

Residuals for
logistic
regression

Likelihood )
and _ . _ P(x
othests £(P(x)) = logit(P(x)) = log (1 — P(X))
testing

Additive 1
vs. Multiplica- P(x) =g~ (,Bo + Bix1i + Baxoj + ... + ﬁpxp,')
tive models
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The logit function

logit <- function(P) log(P/(1-P))
plot(logit, xlab="Probability", ylab="Log-odds",
cex.lab=1.5, cex.axis=1.5)

Log-odds
0
|
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Example: contraceptive use
data
Age (years) <25 25-29 30-39 40-49 Overall
(N=4) (N=4) (N=4) (N=4) (N=16)
education
high 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
low 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
wantsMore
no 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
yes 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
percentusing
Mean (SD) 18.8 (7.64) 27.1 (6.53) 38.8 (15.6) 46.9 (23.8) 32.9 (17.5)
Median [Min, 18.2 [10.2, 27.6 [18.9, 30.5 [22.8, 50.5 [14.6, 28.3 [10.2,
Max] 28.6] 34.5] 53.4] 72.1] 72.1]

Source: http://data.princeton.edu/wws509/datasets/#£cuse. Note, this table represents rows of the source
data, not number of participants. See the lab to make a table that summarizes the participants.


http://data.princeton.edu/wws509/datasets/#cuse

Linear and ]
i Perform regression
Generalized

e e ® Qutcome: whether using contraceptives or not
e T ® Predictors: age, education level (high/low), whether wants
more children or not

Lea.rnerg fitl <- glm(cbind(using, notUsing) ~ age + education + wantsMore,
ObJCCt"’c_s data=cuse, family=binomial("logit"))
and Outline summary (£it1)
Review of
multiple linear ##
regression ## Call:
. ## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
Linear ## family = binomial("logit"), data = cuse)
Regression as ##
aGLM ## Coefficients:
- ## Estimate Std. Error z value Pr(>|zl)
LeorEie ## (Intercept) -0.8082 0.1590 -5.083 3.71e-07 ***
Rf?{:;“°" as ## age25-29 0.3894 0.1759  2.214 0.02681 *
a ## age30-39 0.9086 0.1646 5.519 3.40e-08 **x*
Residuals for ## aged0-49 1.1892 0.2144 5.546 2.92e-08 **x*
logistic ## educationlow -0.3250 0.1240 -2.620 0.00879 *x*
## wantsMoreyes -0.8330 0.1175 -7.091 1.33e-12 *x*x

regression

#H -
Likelihood ## Signif. codes: O ’***’ 0.001 ’**’ 0.01 ’%’ 0.05 ’.” 0.1’ * 1
and ##
hypothesis ## (Dispersion parameter for binomial family taken to be 1)
testing ##

## Null deviance: 165.772 on 15 degrees of freedom
Additive ## Residual deviance: 29.917 on 10 degrees of freedom
vs. Multiplica- ## AIC: 113.43
tive models ##

## Number of Fisher Scoring iterations: 4
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Pearson residuals for logistic

regression
® Traditional residuals y; — E[y;j|x;] don't make sense for
binary y.
® One alternative is Pearson residuals

® take the difference between observed and fitted values (on
probability scale 0-1), and divide by the standard deviation
of the observed value.
Let y; be the best-fit predicted probability for each data
point, i.e. g 1(Bo + Buxti + ...)
y; is the observed value, either 0 or 1.

Yi — i
v Var(yi)
Summing the squared Pearson residuals produces the Pearson
Chi-squared statistic:

ri =
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Deviance residuals for logistic
regression

® Deviance residuals and Pearson residuals converge for high
degrees of freedom

® Deviance residuals indicate the contribution of each point
to the model likelihood

e Definition of deviance residuals:

di = si\/~2(yilog i + (1 - y;) log(1 — 1))

Wheres;=1if y;=1and s; = —1if y; = 0.

® Summing the deviances gives the overall deviance:
D= Zi di2
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Likelihood and hypothesis testing
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What is likelihood?

The likelihood of a model is the probability of the

observed outcomes given the model, sometimes written as:
® [(0|data) = P(datald).

® Deviance residuals and the difference in log-likelihood

between two models are related by:

A(D) = —2 % A(log likelihood)
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Wald test for individual
regression coefficients

® Can use partial Wald test for a single coefficient:

~ X%_; (large sample)

e Wald Cl for 3: A+ tl,a/z’,,,ly/var(é)
e Wald Cl for odds-ratio: eBitlw/Z"f1 Vvar(8)

Note: Wald test confidence intervals on coefficients can provide
poor coverage in some cases, even with relatively large samples
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