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Learning objectives

1 define generalized linear models (GLM)
2 define linear and logistic regression as special cases of

GLMs
3 distinguish between additive and multiplicative models
4 define Pearson and deviance residuals
5 describe application of the Wald test
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Outline

1 Brief overview of multiple regression (Vittinghoff 4.1-4.3)
2 Linear Regression as a GLM (Vittinghoff 4.1-4.3)
3 Logistic Regression as a GLM (Vittinghoff 5.1-5.3)
4 Statistical inference for logistic regression (Vittinghoff

5.1-5.3)
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Systematic component

E [y |x ] = β0 + β1x1 + β2x2 + ... + βpxp

• xp are the predictors or independent variables
• y is the outcome, response, or dependent variable
• E [y |x ] is the expected value of y given x
• βp are the regression coefficients
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Systematic plus random
component

yi = E [y |x ] + ϵi

yi = β0 + β1x1 + β2x2 + ... + βpxp + ϵi

Assumption: ϵi
iid∼ N(0, σ2

ϵ )

• Normal distribution
• Mean zero at every value of predictors
• Constant variance at every value of predictors
• Values that are statistically independent
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Generalized Linear Models
(GLM)

• Linear regression is a special case of a broad family of
models called “Generalized Linear Models” (GLM)

• This unifying approach allows to fit a large set of models
using maximum likelihood estimation methods (MLE)
(Nelder & Wedderburn, 1972)

• Can model many types of data directly using appropriate
distributions, e.g. Poisson distribution for count data

• Transformations of Y not needed
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Components of GLM

• Random component specifies the conditional distribution
for the response variable

• doesn’t have to be normal
• can be any distribution in the “exponential” family of

distributions
• Systematic component specifies linear function of

predictors (linear predictor)
• Link [denoted by g(.)] specifies the relationship between

the expected value of the random component and the
systematic component

• can be linear or nonlinear
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Linear Regression as GLM

• The model:
yi = E [y |x ] + ϵi = β0 + β1x1i + β2x2i + ... + βpxpi + ϵi

• Random component of yi is normally distributed:
ϵi

iid∼ N(0, σ2
ϵ )

• Systematic component (linear predictor):
β0 + β1x1i + β2x2i + ... + βpxpi

• Link function here is the identity link:
g(E (y |x)) = E (y |x). We are modeling the mean directly,
no transformation.
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The logistic regression model
• The model:

Logit(P(x)) = log
(

P(x)
1 − P(x)

)
= β0 + β1x1i + β2x2i + ... + βpxpi

• Random component: yi follows a Binomial distribution
(outcome is a binary variable)

• Systematic component: linear predictor

β0 + β1x1i + β2x2i + ... + βpxpi

• Link function: logit (log of the odds that the event
occurs)

g(P(x)) = logit(P(x)) = log
(

P(x)
1 − P(x)

)
P(x) = g−1

(
β0 + β1x1i + β2x2i + ... + βpxpi

)
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The logit function

logit <- function(P) log(P/(1-P))
plot(logit, xlab="Probability", ylab="Log-odds",

cex.lab=1.5, cex.axis=1.5)
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Inverse logit function

invLogit <- function(x) 1/(1+exp(-x))
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Example: contraceptive use
data

Age (years) <25 25-29 30-39 40-49 Overall

(N=4) (N=4) (N=4) (N=4) (N=16)
education
high 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
low 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
wantsMore
no 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
yes 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 8 (50.0%)
percentusing
Mean (SD) 18.8 (7.64) 27.1 (6.53) 38.8 (15.6) 46.9 (23.8) 32.9 (17.5)
Median [Min,
Max]

18.2 [10.2,
28.6]

27.6 [18.9,
34.5]

39.5 [22.8,
53.4]

50.5 [14.6,
72.1]

28.3 [10.2,
72.1]

Source: http://data.princeton.edu/wws509/datasets/#cuse. Note, this table represents rows of the source
data, not number of participants. See the lab to make a table that summarizes the participants.

http://data.princeton.edu/wws509/datasets/#cuse
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Perform regression
• Outcome: whether using contraceptives or not
• Predictors: age, education level (high/low), whether wants

more children or not
fit1 <- glm(cbind(using, notUsing) ~ age + education + wantsMore,

data=cuse, family=binomial("logit"))
summary(fit1)

##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
## family = binomial("logit"), data = cuse)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8082 0.1590 -5.083 3.71e-07 ***
## age25-29 0.3894 0.1759 2.214 0.02681 *
## age30-39 0.9086 0.1646 5.519 3.40e-08 ***
## age40-49 1.1892 0.2144 5.546 2.92e-08 ***
## educationlow -0.3250 0.1240 -2.620 0.00879 **
## wantsMoreyes -0.8330 0.1175 -7.091 1.33e-12 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 29.917 on 10 degrees of freedom
## AIC: 113.43
##
## Number of Fisher Scoring iterations: 4
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Pearson residuals for logistic
regression

• Traditional residuals yi − E [yi |xi ] don’t make sense for
binary y .

• One alternative is Pearson residuals
• take the difference between observed and fitted values (on

probability scale 0-1), and divide by the standard deviation
of the observed value.

• Let ŷi be the best-fit predicted probability for each data
point, i.e. g−1(β0 + β1x1i + ...)

• yi is the observed value, either 0 or 1.

ri = yi − ŷi√
Var(ŷi)

Summing the squared Pearson residuals produces the Pearson
Chi-squared statistic:

χ2 =
∑

i
r2
i
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Deviance residuals for logistic
regression

• Deviance residuals and Pearson residuals converge for high
degrees of freedom

• Deviance residuals indicate the contribution of each point
to the model likelihood

• Definition of deviance residuals:

di = si

√
−2(yi log ŷi + (1 − yi) log(1 − ŷi))

Where si = 1 if yi = 1 and si = −1 if yi = 0.

• Summing the deviances gives the overall deviance:
D =

∑
i d2

i



Session 2:
Linear and

logistic
regression as
Generalized

Linear Models

Levi Waldron

Learning
Objectives
and Outline

Review of
multiple linear
regression

Linear
Regression as
a GLM

Logistic
Regression as
a GLM

Residuals for
logistic
regression

Likelihood
and
hypothesis
testing

Additive
vs. Multiplica-
tive models

Likelihood and hypothesis testing
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What is likelihood?

• The likelihood of a model is the probability of the
observed outcomes given the model, sometimes written as:

• L(θ|data) = P(data|θ).
• Deviance residuals and the difference in log-likelihood

between two models are related by:

∆(D) = −2 ∗ ∆(log likelihood)
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Likelihood Ratio Test

• Use to assess whether the reduction in deviance provided
by a more complicated model indicates a better fit

• It is equivalent of the nested Analysis of Variance is a
nested Analysis of Deviance

• The difference in deviance under H0 is chi-square
distributed, with df equal to the difference in df of the two
models.
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Likelihood Ratio Test (cont’d)

fit0 <- glm(cbind(using, notUsing) ~ -1, data=cuse,
family=binomial("logit"))

anova(fit0, fit1, test="LRT")
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Wald test for individual
regression coefficients

• Can use partial Wald test for a single coefficient:
• β̂√

var(β̂)
∼ tn−1

• (β̂−β0)2

var(β̂)
∼ χ2

df =1 (large sample)

• Wald CI for β: β̂ ± t1−α/2,n−1

√
var(β̂)

• Wald CI for odds-ratio: eβ̂±t1−α/2,n−1
√

var(β̂)

Note: Wald test confidence intervals on coefficients can provide
poor coverage in some cases, even with relatively large samples
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Additive vs. Multiplicative
models

• Linear regression is an additive model
• e.g. for two binary variables β1 = 1.5, β2 = 1.5.
• If x1 = 1 and x2 = 1, this adds 3.0 to E (y |x)

• Logistic regression is a multiplicative model
• If x1 = 1 and x2 = 1, this adds 3.0 to log( P

1−P )
• Odds-ratio P

1−P increases 20-fold: exp(1.5 + 1.5) or
exp(1.5) ∗ exp(1.5)
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