Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Session 10: Repeated Measures and Longitudinal Analysis II

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Learning objectives and outline

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Learning objectives

- 1 Define mixed effects models and population average models
- 2 Perform model diagnostics for random effects models
- 3 Interpret random intercepts and random slopes
- 4 Define and perform population average models
- **5** Define assumptions on correlation structure in hierarchical models
- 6 Choose between hierarchical modeling strategies

Outline

Session 10: Repeated Measures and Longitudinal Analysis II

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

- 1 Review of fecal fat dataset
- 2 Summary of non-hierarchical approaches
- 3 Mixed effects models
- 4 Longitudinal data and the Georgia Birthweights dataset
- 5 Population average models and Generalized Estimating Equations (GEE)
- Vittinghoff sections 7.2, 7.3, 7.5

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Review

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Fecal fat dataset

- Lack of digestive enzymes in the intestine can cause bowel absorption problems.
 - This will be indicated by excess fat in the feces.
 - Pancreatic enzyme supplements can alleviate the problem.
 - fecfat.csv: a study of fecal fat quantity (g/day) for individuals given each of a placebo and 3 types of pills

Subject number	Pill type				Subject
	None	Tablet	Capsule	Coated	Average
1	44.5	7.3	3.4	12.4	16.9
2	33.0	21.0	23.1	25.4	25.6
3	19.1	5.0	11.8	22.0	14.5
4	9.4	4.6	4.6	5.8	6.1
5	71.3	23.3	25.6	68.2	47.1
6	51.2	38.0	36.0	52.6	44.5
Pill type					
average	38.1	16.5	17.4	31.1	25.8

Table 7.1 Fecal fat (g/day) for six subjects

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Fecal fat dataset

Warning: Using 'size' aesthetic for lines was depr ## i Please use 'linewidth' instead.

This warning is displayed once every 8 hours.

Call 'lifecycle::last_lifecycle_warnings()' to see
generated.

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Analysis strategies for hierarchical data

- Fixed effects and other non-hierarchical strategies
- Random / mixed effects models
 - model certain regression coefficients (intercept, slopes) as random variables
- Population average models
 - using Generalized Estimating Equations (GEE)

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Non-hierarchical analysis strategies

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Non-hierarchical analysis strategies for hierarchical data

- Analyses for each subgroup
 - e.g., look at each patient independently
 - doesn't work at all in this example, and in general is not an integrated analysis of the whole data
 - could sort of work for an example with many patients per doctor, a few doctors
- Analysis at the highest level in the hierarchy
 - first summarize data to highest level
 - doesn't work at all in this example
 - could sort of work for an example with few patients per doctor, many doctors
- Analysis on "Derived Variables"
 - consider each treatment type separately, take differences in fat levels between treatment/control for each patient and use paired t-tests
 - can work, but not for unbalanced groups
- Fixed-effects models

Levi Waldron

Learning objectives and outline

Review

- Nonhierarchical analysis strategies
- Mixed effects models
- Longitudinal data
- Population Average Models

When is hierarchical analysis definitely needed?

- 1 the correlation structure is of interest, *e.g.* familial aggregation of disease, or consistency of treatment within centers
- 2 we wish to "borrow strength" across the levels of a hierarchy in order to improve estimates
- 3 dealing with unbalanced data
- 4 we want to benefit from software designed for hierarchical data

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects models

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects models

• Model looks like two-way ANOVA:

 $\textit{FECFAT}_{ij} = \beta_0 + \beta_{\textit{subjecti}} \textit{SUBJECT}_i + \beta_{\textit{pilltypej}} \textit{PILLTYPE}_j + \epsilon_{ij}$

• Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

 But instead of fitting a β to each individual, we assume that the subject effects are selected from a distribution of possible subject effects:

 $\textit{FECFAT}_{ij} = \beta_0 + \textit{SUBJECT}_i + \beta_{\textit{pilltypej}}\textit{PILLTYPE}_j + \epsilon_{ij}$

Where we assume: $SUBJECT_i \stackrel{iid}{\sim} N(0, \tau_{00}^2)$

- This is a *mixed effects* model because:
 - the "true" intercept varies randomly from patient to patient
 - the "true" (population) coefficient of treatment is fixed (the same for everyone)

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Fit this mixed-effects model

Note: the 1me4 package is another popular alternative

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

```
Mixed effects 
models
```

Longitudinal data

Population Average Models

Mixed effects model coefficients, variances, ICC

```
## Linear mixed-effects model fit by REML
##
     Data: dat
##
     Log-restricted-likelihood: -84.55594
##
     Fixed: fecfat ~ pilltype
       (Intercept) pilltypetablet pilltypecapsule pilltypecoated
##
##
         38.083334
                        -21.550001
                                         -20.666667
                                                           -7.016668
##
## Bandom effects:
   Formula: ~1 | subject
##
##
           (Intercept) Residual
## StdDev:
              15 89557 10 34403
##
## Number of Observations: 24
## Number of Groups: 6
```

 $ICC = 15.9^2/(15.9^2 + 10.34^2) = 0.7 = 0.7.$

- Recall ICC is a measure of how large the subject effect is, in relation to the error term
- Variances were estimated directly by the model!

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Assumptions of the mixed model

$$FECFAT_{ij} = \beta_0 + SUBJECT_i + \beta_{pilltypej}PILLTYPE_j + \epsilon_{ij}$$

- Normally distributed residuals as in fixed effects model:
 - $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

ŀ

- Normally distributed latent variable:
 - SUBJECT_i $\stackrel{iid}{\sim} N(0, \tau_{00}^2)$

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects model results

A plot of the random intercept:

Levi Waldron

"

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects model diagnostics

QQ plot residuals

QQ plot random intercepts

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects model results

```
## Linear mixed-effects model fit by REML
##
     Data: dat
##
          ATC
                  BIC
                          logLik
    181,1119 187,0863 -84,55594
##
##
## Bandom effects:
  Formula: ~1 | subject
##
          (Intercept) Residual
##
## StdDev:
              15 89557 10 34403
##
## Fixed effects: fecfat ~ pilltype
##
                      Value Std.Error DF
                                           t-value p-value
## (Intercept)
                    38 08333 7 742396 15 4 918805
                                                    0.0002
## pilltypetablet -21.55000
                             5.972127 15 -3.608430
                                                    0.0026
## pilltypecapsule -20.66667
                             5.972127 15 -3.460521
                                                    0.0035
## pilltypecoated -7.01667
                              5.972127 15 -1.174903 0.2583
## Correlation:
##
                   (Intr) plltypt plltypcp
## pilltypetablet -0.386
## pilltypecapsule -0.386
                          0.500
## pilltypecoated -0.386 0.500
                                   0.500
##
## Standardized Within-Group Residuals:
##
           Min
                                      Med
                                                    03
                                                                Max
## -1.210052934 -0.615068039 -0.002727166
                                         0.457105344 1.725618643
##
## Number of Observations: 24
## Number of Groups: 6
```

- Note: correlation of the estimator of the fixed effects
 - high correlations may (but not necessarily) be due to collinearity

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Mixed effects model results

Inference for variance terms (and fixed effects):

```
## Approximate 95% confidence intervals
##
   Fixed effects:
##
##
                       lower
                                    est.
                                             upper
## (Intercept)
                    21.58081
                               38.083334 54.585860
## pilltypetablet -34.27929 -21.550001 -8.820714
## pilltypecapsule -33.39595 -20.6666667 -7.937381
## pilltypecoated -19.74595 -7.016668 5.712618
##
   Random Effects:
##
##
    Level: subject
##
                     lower
                                est.
                                        upper
## sd((Intercept)) 8.00117 15.89557 31.57904
##
   Within-group standard error:
##
##
      lower
                est.
                        upper
   7 23240 10 34403 14 79438
##
```

- Would conclude that variation of the intercept between subjects is non-zero
 - not attributable to within-subject variation

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Longitudinal data

Longitudinal data

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

- Interested in the change in the value of a variable within a "subject"
- Collect data repeatedly through time.
- For hierarchical longitudinal analysis to be effective, before/after measurements need to be positively correlated

Longitudinal data

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

- Interested in the change in the value of a variable within a "subject"
- Collect data repeatedly through time.
- For hierarchical longitudinal analysis to be effective, before/after measurements need to be positively correlated

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Longitudinal data examples

- Example 1: a measure of sleepiness before and after administration of treatment or placebo
- Example 2: Study of Osteoporotic Fractores (SOF dataset)
 - 9,704 women tracked with clinical visits every two years
 - Bone Mineral Density (BMD), Body Mass Index (BMI), many other variables
- Questions for Example 2:
 - 1 Is change in BMD related to age at menopause? This is a time-invariant predictor, age at menopause, with time-dependent changes in the outcome, BMD.
 - 2 Is change in BMD related to change in BMI? This is an analysis relating a time-varying predictor, BMI, with changes in the outcome, BMD. BMI varies quite a lot between women, but also varies within a woman over time.

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Longitudinal data examples

- birthweight and birth order
- provides birthweights and order of infants from mothers who had 5 children in Georgia
 - interested in whether birthweight of babies changes with order
 - whether this difference depends on the *mother's age at first childbirth* or on the *weight of initial baby.*

Levi Waldron

Learning objectives and outline

4000 -

3000

2000 -

1000 -

Birth Weight (g)

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Georgia Birthweights dataset

Georgia birthweight dataset

Birth order

Birth order

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Georgia Birthweights dataset

Does baseline birth weight vary by mother?
 random intercept

```
library(nlme)
```

Note: there are not enough degrees of freedom to also fit a random coefficient for birth order

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

momid

Longitudinal data

Population Average Models

Georgia Birthweights dataset

Random effects

Levi Waldron

Learning objectives and outline Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Georgia Birthweights dataset

summary(gafit1)

```
## Linear mixed-effects model fit by REML
##
     Data: ga
##
          ATC
                   BIC
                          logLik
     15321 65 15341 28 -7656 826
##
##
## Random effects:
##
   Formula: ~1 | momid
           (Intercept) Residual
##
              367.2676 445.0228
## StdDev:
##
## Fixed effects: bweight ~ birthord
                  Value Std.Error DF t-value p-value
##
## (Intercept) 2995.640 41.99615 799 71.33130
## birthord
                 46.608 9.95101 799 4.68374
                                                      0
  Correlation:
##
##
            (Intr)
## birthord -0.711
##
## Standardized Within-Group Residuals:
##
           Min
                                   Med
                                                            Max
                        Q1
                                                 ۵3
## -5 26801358 -0 43683345 0 05028638 0 52703429 3 30770805
##
## Number of Observations: 1000
## Number of Groups: 200
```

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Georgia Birthweights dataset

intervals(gafit1, which = "all")

Approximate 95% confidence intervals ## Fixed effects: ## ## lower est. upper (Intercept) 2913.20418 2995.640 3078.07582 ## birthord 27.07478 46.608 66 14122 ## ## Random Effects: Level: momid ## ## lower est. upper ## sd((Intercept)) 323.1724 367.2676 417.3794 ## ## Within-group standard error: ## lower est. upper ## 423.7298 445.0228 467.3859

- Does baseline birth weight vary by mother?
 - yes: the subject variance is significantly greater than zero
 - The variance between mothers is too much to be explained by within-mother variation in birth weights

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Population Average Models

Levi Waldron

Learning objectives and outline

Review

- Nonhierarchical analysis strategies
- Mixed effects models

Longitudinal data

Population Average Models

Population Average Models

- An alternative to random / mixed-effects models that is more robust to assumptions of:
 - distribution of random effects
 - correlation structure
- Estimates correlation structure from the data rather than assuming normality
 - Requires more clusters than observations per cluster
- Estimates regression coefficients and robust standard errors
 - commonly by Generalized Estimating Equations (GEE)

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Population Average Models

• Compare mixed model multiple linear regression:

 $E[Y_{ij}|X_{ij}] = \beta_0 + \alpha_{0j} + \beta_1 X_{ij}, \alpha_{0j} \sim N(0, \sigma)$

for subject i in group j.

• to a population average model:

$$E[Y_{ij}|X_{ij}] = \beta_0^* + \beta_1^* X_{ij}$$

- Interpretations of β^* and β are equivalent
- Numerically equivalent for linear and log-linear models (if specification of mixed model is correct), but not for logistic link.

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Fit a population average model

```
summary(gafit.gee)
 Session 10:
  Repeated
Measures and
                  ##
Longitudinal
                      GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
                  ##
 Analysis II
                  ##
                      gee S-function, version 4.13 modified 98/01/27 (1998)
                  ##
Levi Waldron
                  ## Model:
                  ## Link:
                                                 Identity
                  ## Variance to Mean Relation: Gaussian
Learning
                  ## Correlation Structure:
                                                 Exchangeable
objectives and
                  ##
outline
                  ## Call·
                  ## gee::gee(formula = bweight ~ birthord, id = momid, data = ga,
Review
                         corstr = "exchangeable")
                  ##
Non-
                  ##
hierarchical
                  ## Summarv of Residuals:
analysis
                  ##
                           Min
                                      10
                                            Median
                                                           3Q
                                                                    Max
strategies
                  ## -2795.464 -299.126
                                            48,840
                                                     341,144 1824,536
                  ##
Mixed effects
                  ##
models
                  ## Coefficients:
                  ##
                                 Estimate Naive S.E. Naive z Robust S.E. Bobust z
Longitudinal
                  ## (Intercept) 2995.640 41.973695 71.369462 38.808066 77.191170
                  ## birthord
                                   46.608 9.958128 4.680398 9.996256 4.662546
                  ##
Population
                  ## Estimated Scale Parameter: 332525.3
Average
                  ## Number of Iterations: 1
Models
                  ##
                  ## Working Correlation
                  ##
                               [.1]
                                         [.2]
                                                    [.3]
                                                              [.4]
                                                                        [.5]
                  ## [1,] 1.0000000 0.4035684 0.4035684 0.4035684 0.4035684
                  ## [2,] 0.4035684 1.0000000 0.4035684 0.4035684 0.4035684
                  ## [3,] 0.4035684 0.4035684 1.0000000 0.4035684 0.4035684
                  ## [4,] 0.4035684 0.4035684 0.4035684 1.0000000 0.4035684
                  ## [5,] 0.4035684 0.4035684 0.4035684 0.4035684 1.0000000
```

data

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Correlation assumptions for GEE

Must make some assumption about the form of correlation among grouped observations. Some options are:

- Independence:
 - no correlation between measurements within group
- Exchangeable:
 - all pairwise correlations are the same (in large-N limit)
 - nothing distinguishes one member of a cluster from another
 - appropriate in the absence of other data structures such as measurements taken through time or space
- Auto-regressive (AR-M):
 - observations taken more closely in time are more highly correlated

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Correlation assumptions for GEE (cont'd)

- Unstructured:
 - estimates a separate correlation between observations taken on each pair of "times"
- Non-stationary ("non_stat_M_dep"):
 - similar to unstructured, but assumes all correlations for pairs separated far enough in time are zero
- Stationary ("stat_M_dep"):
 - e.g. stationary of order 2: observations taken at time points 1 and 3 have the same correlation as time points 2 and 4
 - but this might be different from the correlation between observations taken at times 2 and 3
 - correlations for observations 3 or more time periods apart assumed to be zero

Fewer assumptions requires more data, and good assumptions improve results

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

Help in choosing a method

Characteristic	Marginal	Fixed-effect	Mixed-effec
Distinguishes observations belonging to the same or different subjects	Yes ^a	Yes	Yes
Reliant on distribution of subject-specific effects	No	No	Yes
Subjects considered a sample from a population larger than the sample itself	Yes ^a	No	Yes
Computation handles few subjects well	No	Yes	No
Computation handles a very large number of subjects well	Yes	No	Yes
Noisy for few observations per subject	No	Yes	No
Computation handles a large number of observations per subject	Depends ^b	Yes	Yes
Accommodates variable observations per subject	Yes	Yes	Yes

Note: ^aOnly for calculation of standard errors.

^bProblems can arise under some specifications of the working covariance structure and depending on the estimation method used.

doi:10.1371/journal.pone.0146721.t002

Figure 2: Hierarchical modeling decision table from Moen et al.

Conclusions

Session 10: Repeated Measures and Longitudinal Analysis II

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

- Ignoring within-subject correlations can produce very wrong results, and is not always "conservative"
- Hierarchical analysis strategies are needed for any of:
 - 1 When the correlation structure is of primary interest, *e.g.* familial aggregation of disease, or consistency of treatment within centers,
 - 2 When we wish to "borrow strength" across the levels of a hierarchy in order to improve estimates, and
 - 3 When dealing with unbalanced correlated data. E.g., no requirement that each Georgia mother have exactly 5 children.
- Population average models provide a robust alternative to mixed models
 - for one level of hierarchy

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

A final note on reporting results of hypothesis tests

- Include test statistic, a measure of "effect size", and test name if unclear from test statistic
- Write in plain language and let the statistics support, not lead. E.g.:
 - do: The 36 study participants had a mean age of 27.4 (SD = 12.6), significantly older than the university mean of 21.2 years (t(35) = 2.95, p = 0.01).
 - *don't*: A p-value of 0.01 indicated significant difference in age of study participants compared to all university students.
 - do: report confidence intervals where possible
- UW "Reporting Results of Common Statistical Tests in APA Format": specific examples of reporting a hypothesis test result
- STROBE guidelines for reporting observational studies: https://www.strobe-statement.org/
- A Guideline for Reporting Results of Statistical Analysis in Japanese Journal of Clinical Oncology: helpful guidelines for all parts of a manuscript

Levi Waldron

Learning objectives and outline

Review

Nonhierarchical analysis strategies

Mixed effects models

Longitudinal data

Population Average Models

CONGRATULATIONS!!!