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ABSTRACT
There are many existing native libraries and frameworks for
audio feature extraction used in multimedia information re-
trieval. Many are dependent on highly optimised low level
code to cope with the high performance requirements of
realtime audio analysis. In this paper, we present a new
audio feature extractor library, Meyda1, for use with the
JavaScript Web Audio API, and detail its benchmarking
results. Meyda provides the first library for audio feature
extraction in the web client, which will enable music infor-
mation retrieval systems, complex visualisations and a wide
variety of technologies and creative projects that previously
were relegated to native software. The Meyda project, in-
cluding source code and documentation is released under an
MIT license.
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1. INTRODUCTION
The Meyda (from Hebrew - “information”) library provides
a research basis for further development of real-time client-
side feature extraction in the context of the Web Audio API.
It consists of an initial set of useful features for potential
applications including multimedia information retrieval sys-
tems, complex audio visualisation, video game audio, and
accessible demonstrations of related concepts for education
across a variety of low-cost platforms. These initial features
were chosen with influence from the set of features imple-
mented in the YAAFE Audio Feature Extractor for Python,
filtered by what was feasible in the context of the Web Audio
API.

2. BACKGROUND
Audio feature extraction is a very important field of research
cultivated mainly in the Multimedia Information Retreival
(MIR) community, whose main purpose is to “provide new
paradigms and methods for searching through the myriad
variety of media all over the world” [1]. Technologies devel-
oped within this community include algorithms for computer
vision, media query-based search, media classification etc.

With the relatively recent emergence of the “Web APIs”
including the Web Audio API [2], we are convinced that
the Web is ultimately becoming a complete software plat-
form capable of results comparable to hardware-dependent
systems. It was with these facts in mind that we con-
ceived the idea of enabling high-fidelity feature extraction
in a Web environment, in particular the JavaScript-driven
Web Audio API, whose processing features including the
ScriptProcessorNode [2] are crucial for accessing raw audio
data and performing analysis.

The applications of such an implementation are numerous:
speech recognition, for instance, utilises the Mel-frequency
cepstral coefficients feature [3]. Despite the fact that there
have been efforts to integrate speech recognition in web
search interfaces [4], these included an integrated low-level
solution built in the browser architecture, not unlike other
Web APIs. Other applications may use a server-side extrac-
tion library. Using a lightweight JavaScript-based imple-
mentation to obtain necessary feature data and apply recog-
nition algorithms may prove a more flexible, customisable,
and broadband-independent option for professional and aca-
demic use.



3. RELATED RESEARCH
Research in audio feature extraction has, despite being quite
an established scientific field, found a great amount of new
applications in the past three decades, in particular in the
MIR community, with researchers beginning to adopt audio-
based algorithms for not only sound media, but also corre-
sponding video analysis, e.g. Rautiainen et al. [5]. Sub-
sequently, after 2000, a substantial amount of audio fea-
ture extraction methods have been implemented as software
products, even outside of academia. These are utilised in a
variety of instances, including speech recognition [6], music
identification [7], multi-modal video summarisation [8] etc.

Currently, there are already many native libraries for fea-
ture extraction on both Unix- and Windows-based systems.
In particular, we were influenced by YAAFE [9], an open-
source command line interface (CLI) for offline audio feature
extraction [9], with most features adopted from the extensive
list released as part of the CUIDADO project [10]. YAAFE
is implemented in C++ and provides a Python wrapper for
ease of use. We took cues as to which audio features to ini-
tially target for support from YAAFE’s feature list. What
is more, we used this library alongside the Java implementa-
tion of jAudio [11] during the testing process as a reference
for validating extraction output. As for jAudio, it is an audio
feature extraction library implemented in Java [11]. Acces-
sible through a CLI or through a graphical user interface
(GUI), it provides a number of statistical feature extractors
as well as several semantic, MIR-oriented functions such as
beat detection.

4. IMPLEMENTATION DECISIONS
4.1 Design
Perhaps the most significant design goal of Meyda was to
provide simple integration into the existing Web Audio API
node graph architecture. It integrates directly into the Web
Audio API by accepting an AudioContext[2] and any node
that implements the AudioNode interface as a source in the
constructor of the object to be connected to Meyda’s in-
ternal ScriptProcessorNode. We chose this architecture to
provide the maximum ease of integration for users of the
library. Meyda is intended as a terminating “pseudo-node”
in the graph of nodes because it does not provide any trans-
formations, rather, it takes data from the audio in the node
graph and exposes it for usage in other contexts. As such,
it does not implement the AudioNode interface because it
should not be connected to a DestinationNode or any other
further nodes.

There is significant continuing discussion as to how best to
provide frequency domain data in the Web Audio API work-
ing group, in particular a split [12] between providing a set of
Fourier Transforms in the web audio, or waiting for the Web
Array Math API[13] specification, which contains Fourier
Transform functionality, to be formally submitted, reviewed,
and implemented. Since the AnalyserNode containing an
FFT implementation has a ‘black box’-style interface with
few options and seemingly logarithmically scaled output, we
used the existing open source jsfft implementation of the
Fast Fourier Transform (FFT) in JavaScript[14] which was
released under an MIT License. Prior to the FFT, the time
domain data is passed through a Hanning windowing func-

tion to improve the accuracy of the resulting frequency spec-
trum data.

Meyda was intended to provide a real-time Audio Feature
Extraction API, and as such we placed great import on the
optimisation of the feature extraction implementations. At
a minimum, they were required to operate faster than real-
time on what we decided were ‘reasonable’ buffer sizes based
on research into typical usage implementations of feature
extraction on native platforms.

Concerning data output design, we found it important to
provide some level of flexibility to the user, in order to enable
both instantaneous (buffer-independent), and buffer-specific
extraction. This is to ensure that, although the user can
specify a custom extraction time or frequency, each ‘frame’
of the incoming audio stream can be analysed specifically.
Therefore we decided to implement two output systems:

• Immediate, with a Meyda.get(features) method re-
turning instantaneous data from the currently anal-
ysed real-time buffer.

• Synchronized, whereby a callback is specified in the
Meyda constructor, executing desired code in sync with
the internal ScriptProcessorNode. This is useful in in-
stances where output is required for every buffer that
is analysed by Meyda.

In order to simplify interaction with the API and to enable
development of richer application structures, we decided to
include a featureInfo object as a property of Meyda, carrying
useful information about each of the implemented feature
extractor functions, such as output type (“number”, “array”,
“multipleArrays”) and, for some of the features, output range
for automated visualisation.

4.2 Implemented Features
Our chosen implemented features fit into three distinct cate-
gories: perceptual features, time domain features, and spec-
tral domain features. Time domain features are generally
related to volume, while frequency statistics describe the
shape of the spectrum and imply certain timbral characteris-
tics. Perceptual features are features that are strongly corre-
lated with human perception. As Meyda is a real-time audio
analysis framework, the values are calculated on a per-frame
basis, where the user of the library can specify the frame-
length in the constructor of the Meyda instance. Meyda
provides a callback to its enclosed ScriptProcessorNode to
access each consecutive buffer of time and frequency domain
that passes into the node.

The following is a list of features, and their definitions as
implemented in Meyda2. These are identical in definition
to their corresponding features in YAAFE, unless indicated
otherwise.

2A more detailed description including implementation de-
tails, output information and sources is to be distributed as
a text file in Meyda’s production package



4.2.1 Time-Domain
RMS

The root mean square of the waveform calculated in
the time domain to indicate its loudness. Corresponds
to the ‘Energy’ feature in YAAFE, adapted from Loy’s
Musimathics [15].

Energy
The infinite integral of the squared signal. According
to Lathi [16].

Zero Crossing Rate
The number of times that the signal crosses the zero
value in the buffer. Corresponds to ZCR in jAudio.

4.2.2 Frequency-Domain
Amplitude Ratio Spectrum (transformation)

Frequency domain amplitude spectrum, a transforma-
tion from the complex FFT.

Power Ratio Spectrum (transformation)
Frequency domain power spectrum, a transformation
from the complex FFT.

Spectral Slope
A measure of how ‘inclined’ the shape of the spectrum
is. Calculated by performing linear regression on the
amplitude spectrum.

Spectral Rolloff
The frequency below which is contained 99% of the
energy of the spectrum.

Spectral Flatness
The flatness of the spectrum as represented by the ra-
tio between the geometric and arithmetic means. It is
an indicator of the ‘noisiness’ of a sound.

Spectral Centroid
An indicator of the brightness of a given spectrum,
represents the spectral centre of gravity.

Spectral Spread
Indicates the ‘fullness’ of the spectrum.

Spectral Skewness
Indicates whether or not the spectrum is skewed to-
wards a particular range of values.

Spectral Kurtosis
The ‘pointedness’ of a spectrum, can be used to indi-
cate ‘pitchiness’.

Mel Frequency Cepstral Coefficients
A widely used metric for describing timbral character-
istics based on the Mel scale. Implemented according
to Huang [17], Davis [18], Grierson [19] and the librosa3

library

4.2.3 Perceptual
Perceptual Loudness

The loudness of the spectrum as perceived by a hu-
man, using Bark bands. Outputs an object consisting
of Specific Loudness (calculated for each Bark band)
and Total Loudness (a sum of the specific loudness co-
efficients).

Perceptual Spread
How ‘full’ a human will perceive the sound to be.

Perceptual Sharpness
Perceived sharpness of the loudness Bark coefficients.

4.2.4 Utility extractors
3https://github.com/bmcfee/librosa

• Buffer: a simple Float32Array of sample values

• Complex Spectrum: a ComplexArray object carry-
ing both real and imaginary parts of the FFT.

4.3 Example implementation
We have written a basic example of a webpage implemen-
tation using Meyda4 to illustrate our design decisions with
regards to how Meyda integrates with the Web Audio API.
First, the Meyda library is included in the HTML source. An
AudioContext is then instantiated, from which the source
node for Meyda is created. The source node can be any of
the Audio Nodes in the Web Audio API specification, or a
node at the end of a chain in the context graph. At this
point, the programmer instantiates a new Meyda object,
passing the AudioContext, the source node, and the buffer
size for analysis. Once Meyda’s instantiation is complete,
the user can then query the Meyda instance for the results
of its feature extractors. This can be done as a one off query
using Meyda’s ‘get’ function, or repeatedly by passing a call-
back as an additional argument to Meyda constructor, and
calling ‘start’, which will pass data back to the program for
every buffer that is analysed.

5. TESTING AND BENCHMARKING
We ran some testing and benchmarking against Meyda on
a mid-2010 Macbook Pro with a 2.53GHz Intel Core i5 pro-
cessor with 4GB of RAM, using a Mozilla Firefox 32.0.3
browser. We feel that this machine represents a relatively
standard modern hardware setup for desktop browsing.

5.1 Testing
To ensure accuracy of the implemented feature extractors,
we tested the results of Meyda against those of YAAFE and
jAudio. The latter was used initially: since jAudio analyses
files on a frame average basis, we employed a rather tedious
procedure to ensure the same buffer was being analysed:

1. Log time domain buffer and feature set from Meyda in
the browser

2. Save the time domain data to a PCM audio file (using
a Puredata patch)

3. Load the file into jAudio, set buffer size and feature
extractors, and run extraction

4. Compare the results

This approach was partially useful for validating the output
of some features. However, we found the above workflow to
be rather costly in terms of time. Therefore, we decided to
rely on YAAFE, which has a more similar set of extractors
and outputs frame-by-frame results. The procedure was thus
largely simplified, using a 10-second recording of pure white
noise as the analysis input:

1. Log feature set from Meyda in the browser

4http://hughrawlinson.github.io/meyda/examples/basic.html



2. Run YAAFE extraction with the same buffer size from
the command line

3. Compare the results from YAAFE CSV and Meyda’s
console output

Figure 1: Spectral Rolloff comparison

Figure 2: Perceptual Spread comparison

Figure 3: Percentage Differences between YAAFE
and Meyda

5.1.1 Results
In figs. 1 to 3, we include plots demonstrating comparisons
between the output of several feature extractors in Meyda
and YAAFE. These, among others, were used to determine
the validity (“sanity-check”) of Meyda’s results. In partic-
ular, they were applied to a recording of pure white noise
(in 150 consecutive buffers), which is by definition bound

to produce certain logically inferrable values, even when the
analysed buffers are not exactly the same. Therefore the val-
ues do not match exactly, but rest in the same ranges. The
maximum percentage difference between Yaafe and Meyda
results was 0.003%(on features where we could calculate5

the difference), as shown in Figure 3. It is necessary to note
that we are still in the process of optimizing and modifying
certain algorithms, e.g. the MFCC implementation.

The ‘online’ extraction paradigm within which Meyda works
is reponsible for the slight error in comparison to YAAFE,
which works on non-realtime audio. The discrepancy in our
testing results is explained by the different start-points of
buffers between YAAFE and Meyda. Issues with the ‘phas-
ing’ of buffers in relation to the time domain samples of the
audio result in miniscule differences in the numerical results.
Our testing was intended to show that our feature extraction
algorithms produce ‘sane’ results, as Meyda is not intended
to precisely match YAAFE. When we start providing pa-
rameterisable extractors there will be greater discrepancies
between existing libraries as users start to tailor audio fea-
tures to meet their use case requirements.

5.2 Benchmarking
Assessing the performance of Meyda was necessary to de-
termine that the feature extractors could run comfortably
in real-time, and therefore were appropriate for the set of
applications that audio feature extraction is widely used in.
Despite the fact that there are no comparable implemen-
tations of feature extraction libraries specifically targeting
the Web Audio API, we ran benchmarking on Meyda to
confirm that it was running faster than real-time audio on
a relatively standard device. We used benchmark.js to de-
termine running times for each of the extractors separately,
then all of them simultaneously.

5.2.1 Results
Benchmarking indicated that Meyda can comfortably run
real-time feature extraction in the browser. Computing all
of the features simultaneously on one buffer of 512 samples
can be run at 288 operations per second, approximately 3.34
times realtime. Furthermore, specific features such as RMS
and spectral rolloff were computed on a much quicker time
frame, with RMS calculated approximately 700,000 times
per second and spectral rolloff slightly above 1,000,000 times
per second.

5.3 Mobile browsers
Meyda was tested on two mobile browsers; Firefox 33.0 run-
ning on a OnePlus One Android Smartphone (Cynanogen-
Mod version 11.0-XNPH38R), and a GeeksPhone Peak (Fire-
fox OS Boot2Gecko 1.3.9.9-prerelease). We were able to si-
multaneously run all feature extractors except ComplexSpec-
trum and Loudness on both devices. We aim to make Com-
plexSpectrum and Loudness both compatible with mobile
devices as part of our efforts towards cross-browser compat-
ibility. The fact that these extractors run on mobile devices
is very encouraging, as it indicates the potential for applica-

5The percentage differences were calculated by taking the
absolute value of the individual differences, divided by the
feature’s output range



Figure 4: Feature extraction times from a buffer of
512 samples

tions using feature extraction to be used on smaller, cheaper
devices, and broaden the potential uses of this technology.

6. FUTURE WORK
It is important to bear in mind that the Web Audio API
is an emerging specification, and while it is generally quite
feature complete, there are certain features that are impor-
tant for MIR applications and are not in the current version
of the specification. When a best practice method of us-
ing custom FFT procedures emerges, whether in the Web
Audio API or as part of the proposed Web Array Math
API, we intend to add extra feature extractors that depend
on it, that are currently unfeasible in real-time. Further-
more, plans have emerged within our team to implement
an API for higher-level, semantic sound description, using
Meyda. This would encompass tools for musical information
retrieval, such as beat detection, harmonic functions detec-
tion and timbral and temporal segmentation. Additionally,
speech recognition based on Meyda’s MFCC extraction may
be incorporated within this API.

Some features use constants that have been taken from other
papers. For example, spectral rolloff is the frequency below
which N% of the energy content is contained, where N is
95[10], 85[20] or 99[9] depending on the source. One way
to deal with this would be to add paramaterisation to the
feature extractors to allow the user to define the constants
that they wish to use, while also providing suitable values.

We intend to improve testing by writing automated unit
and integration tests as well as improving our benchmarking
suite to more comprehensively test the various combinations
of different features at different buffer sizes. There are vari-
ous tools for this including Travis-CI[21] and Jenkins[22].

Meyda is designed as an open source project, and as such
is very much open to contributions from the community in
the hopes that we will be left with a sustainable commu-
nity project. We are particularly interested in contributions
related to the optimisation of Meyda, as well as implemen-
tations of further feature extractors as listed in A large set
of audio features for sound description (similarity and clas-
sification) in the CUIDADO project [10].

7. CONCLUSIONS
Meyda provides a research basis on which to build further
technologies for live music information retrieval systems in
the browser. As demonstrated, we achieved our aims of
meeting the performance levels required for real-time query-
ing of a music information retrieval system, and anticipate
that Meyda will be useful for further applications in the web,
including but not limited to information retrieval, visualisa-
tion, and in-game use in conjunction with the HTML5 can-
vas element and WebGL. In order to ensure that Meyda pro-
vides accurate and reliable results, we have tested it against
several popular feature extraction libraries. In praticular, we
have performed extensive cross-checking of Meyda against
YAAFE, and proved that we meet the quality standards on
various types of audio content. We have also used YAAFE
in order to construct Meyda’s list of features for it to con-
tain the most relevant and useful features. Meyda is still an
ongoing project and the Web Audio API specification is un-
der active development, therefore, there is still further work
that would be implemented to Meyda in the near future.
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