
Semantic Hilbert Space for Text Representation Learning

Benyou Wang, Qiuchi Li, Massimo Melucci
University of Padua

Padua, Italy
wang,qiuchili,melo@dei.unipd.it

Dawei Song
Beijing Institute of Technology

Beijing, China
dawei.song@open.ac.uk

ABSTRACT
Capturing the meaning of sentences has long been a chal-
lenging task. Current models tend to apply linear combina-
tions of word features to conduct semantic composition for
a bigger-granularity units e.g. phrase, sentence and docu-
ments. However, the semantic linearity does not always hold
in human language. For instance, the meaning of the phrase
"ivory tower" can not be deduced by linearly combining the
meanings of "ivory" and "tower". To address this issue, we
propose a new framework that models different levels of
semantic units (e.g. sememe, word, sentence and semantic
abstraction) on a single Semantic Hilbert Space, which natu-
rally admits a non-linear semantic composition by means of
a complex-valued vector word representation. An end-to-end
neural network 1 is proposed to implement the framework
in the text classification task, and evaluation results on six
benchmarking text classification datasets demonstrate the
effectiveness, robustness and self-explanation power of the
proposed model. Furthermore, intuitive case studies are con-
ducted to help end users to understand how the framework
works.
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1 INTRODUCTION
In natural language understanding, it is crucial, yet challeng-
ing, to model sentences and capture their meanings. Essen-
tially, most statistical machine learning models [3, 9, 15, 20,
23] are built within a linear bottom-up framework, where
words are the basic features adopting a low-dimensional
vector representation, and a sentence is modeled as a lin-
ear combination of individual word vectors. Such linear se-
mantic composition is efficient, but does not always hold
in human language. For example, the phrase “ivory tower”,
which means “a state of privileged seclusion or separation
from the facts and practicalities of the real world”, is not a
linear combination of the individual meanings of “ivory” and
“tower”. Instead, it carries a new meaning. We are therefore
motivated to investigate a new language modeling paradigm
to account for such intricate non-linear combination of word
meanings.

Drawing inspiration from the recent findings in the emerg-
ing research area of quantum cognition, which suggest that
human cognition [1, 2, 8] especially language understand-
ing [6, 7, 29] exhibit certain non-classical phenomena (i.e.
quantum-like phenomena), we propose a theoretical frame-
work, named Semantic Hilbert Space, to formulate quantum-
like phenomena in language understanding and to model
different levels of semantic units in a unified space.
In Semantic Hilbert Space, we assume that words can be

modeled asmicroscopic particles in superposition states, over
the basic sememes (i.e. minimum semantic units in linguis-
tics), while a combination of word meanings can be viewed
as a mixed system of particles. The Semantic Hilbert Space
represents different levels of semantic units, ranging from
basic sememes, words and sentences, on a unified complex-
valued vector space. This is fundamentally different from
existing quantum-inspired neural networks for question an-
swering [31, 32] which are based on a real vector space. In
addition, we introduce a new semantic abstraction, named
as Semantic Measurements, which are also embedded in the
same vector space and trainable to extract high-level features
from the mixed system.
As shown in Fig. 1, the Semantic Hilbert Space is built

on the basis of quantum probability (QP), which is the prob-
ability theory for explaining the uncertainty of quantum
superposition. As quantum superposition requires the use
of the complex field, Semantic Hilbert Space has complex
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values and operators. In particular, the probability function
is implemented by a unique (complex) density operator.
Semantic Hilbert Space adopts a complex-valued vector

representation of unit length, where each component adopts
an amplitude-phase form z = reiϕ . We hereby hypothesize
that the amplitude r and complex phase ϕ can be used to
encode different levels of semantics such as lexical-level
co-occurrence, hidden sentiment polarity or topic-level se-
mantics. When word vectors are combined, even in a simple
complex-valued addition form, the resulting expression will
entail a non-linear composition of amplitudes and phases,
thus indicating a complicated fusion of different levels of
semantics. A more detailed explanation is given in Sec. 3. In
this way, the complex-valued word embedding is fundamen-
tally different from existing real-valued word embedding.
A series of ablation tests indicate that the complex-valued
word embedding can increase performance.

The Semantic Hilbert Space is an abstract representation of
our approach to modeling language through QP. At the level
of implementation, an efficient and effective computational
framework is needed to cope with large text collections. To
do so, we propose an end-to-end neural network architecture,
which provides means for training of the network compo-
nents. Each component corresponds to a physical meaning
of quantum probability with well-defined mathematical con-
straints. Moreover, each component is easier to understand
than the kernels in convolutional neural network and cells
in recurrent neural networks.
The network proposed in this paper is evaluated on six

benchmarking datasets for text classification and achieves a
steady increase over existing models. Moreover, it is shown
that the proposed network is advantageous due to its high
robustness and self-explanation capability.

2 SEMANTIC HILBERT SPACE
The mathematical foundation of Quantum Theory is estab-
lished on a Hilbert Space over the complex field. In order to
borrow the underlying mathematical formalism of quantum
theory for language understanding, it is necessary to build
such a Hilbert Space for language representation. In this
study, we build a Semantic Hilbert Space H over the complex
field. As is illustrated in Fig. 1, multiple levels of semantic
units are modeled on this common Semantic Hilbert Space.
In the rest of this section, the semantic units under modeling
are introduced separately.

We follow the standard Dirac Notation for Quantum The-
ory. A unit vector and its transpose are denoted as a ket
|µ⟩ and a bra ⟨µ |, respectively. The inner product and outer
product of two unit vectors ®u and ®v are denoted as ⟨u |v⟩ and
|u⟩ ⟨v | respectively.

2.1 Sememes
Sememes are the minimal non-separable semantic units of
word meanings in language universals [13]. For example, the
word “ironsmith” is composed of sememes “human”, “occupa-
tion”, “metal” and “industrial”. We assume that the Semantic
Hilbert Space H is spanned by a set of orthogonal basis
{|ej ⟩}

n
j=1 corresponding to a finite closed set of sememes

{ej }
n
j=1. In the quantum language, the set of sememes are

modeled as basis states, which is the basis for representing
any quantum state. In Fig. 1, the axes of the Semantic Hilbert
Space correspond to the set of sememe states, and semantic
units with larger granularity are represented on its basis.

2.2 Words
The meaning of a word is a combination of sememes. We
adopt the concept of superposition to formulate this combina-
tion. Essentially, a wordw is modeled as a quantum particle
in superposition state, represented by a unit-length vector in
the Semantic Hilbert Space H , as can be seen in Fig. 1. It
can be written as a linear combination of the basis states for
sememes:

|w⟩ =

n∑
j=1

r je
iϕj |ej ⟩ (1)

where the complex-valued weight r jeiϕj denotes how much
the meaning of word w is associated with the sememe ej .
Here {r j }nj=1 are non-negative real-valued amplitudes satis-
fying

∑n
j=1 r j

2 =1 and ϕ j ∈ [−π ,π ] are the corresponding
complex phases. We could also transfer the complex number
in a complex plane as reiϕ = r cosϕ + ir sinϕ.
It is worth noting that the complex phases {ϕ j } are cru-

cial as they implicitly entail the quantum interference be-
tween words. Suppose two wordsw1 andw2 are associated
to weights r (1)j eiϕ

(1)
j and r (2)j eiϕ

(2)
j for the sememe ej . The two

words in combination are therefore at the state ej with a
probability of���r (1)j eiϕ

(1)
j + r (2)j eiϕ

(2)
j

���2 = ���r (1)j

���2+���r (2)j

���2+2r (1)j r (2)j cos
(
ϕ(1)
j − ϕ(2)

j

)
(2)

where the term 2r (1)j r (2)j cos(ϕ(1)
j − ϕ(2)

j ) reflects the interfer-
ence between the two words, where as the classical case
corresponds to a particular case ϕ(1)

j = ϕ(2)
j = 0.

2.3 Semantic Compositions
As is illustrated in Fig. 1, we view a word composition (e.g. a
sentence) as a bag of words [14], each of which is modeled
as a particle in superposition state on the Semantic Hilbert
SpaceH . To obtain the semantic composition of words, we
leverage the concept of quantum mixture and formulate the
word composition as a mixed system composed of the word
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Figure 1: Illustration of SemanticHilbert Space. The green, blue and orange colors correspond to three differentwordsmodeled
as quantum particles. The black dotted circle represents the unit ball in the Semantic Hilbert Space. The ellipsoid in solid line
refers to the quantum probability distribution defined by the density matrix of the word composition. The purple lines are
semantic measurements. The intersections of the ellipsoids and semantic measurements are in thick red lines, the lengths of
which correspond to measurement probabilities.

superposition states. The system is in a mixed state repre-
sented by a n-by-n density matrix ρ on H , which is positive
semi-definite with trace 1. It is computed as follows:

ρ =
∑
i

p(i) |wi ⟩ ⟨wi |, (3)

where |wi ⟩ denotes the superposition state of the i-th word
and p(i) is the classical probability of the state |wi ⟩ with∑

i p(i) = 1. It determines the contribution of the wordwi to
the overall semantics.
The complex-valued density matrix ρ can be seen non-

classical distribution of sememes inH . Its diagonal elements
are real and form a classical distribution of sememes, while
its complex-valued off–diagonal entries encode the interplay
between sememes, which in turn gives rise to the interfer-
ence between words. A density matrix assigns a probability
value for any state on H such that the values for any set of
orthogonal states sum up to 1 [12]. Hence it is visualized as
an ellipsoid in Fig. 1, assigning a quantum probability to a
unit vector with the intersection length.

2.4 Semantic Measurements
As a non-classical probability distribution, a sentence density
matrix carries rich information and in particular it contains
all the information about a quantum system. In order to
extract the relevant information to a concrete task from the
semantic composition, we build a set of measurements and
compute the probability that the mixed system falls onto
each of the measurements as a high-level abstraction of the
semantic composition.

Suppose our proposed semantic measurements are associ-
ated with a set of measurement projectors {Pi }ki=1. According
to the Born’s rule [5], applying the measurement projector
Pi onto the sentence density matrix ρ yields the following
result:

pi = tr (Piρ) (4)
Here, we only consider pure states as measurement states,
i.e. Pi = |vi ⟩ ⟨vi |. Moreover, we ignore the constraints of
the measurements states {|vi ⟩}ki=1 (i.e. orthogonality or com-
pleteness), but keep them trainable, so that the most suitable
measurements can be determined automatically by the data
in a concrete task, such as classification or regression. In
this way, the trainable semantic measurements can be un-
derstood as a similar approach to supervised dimensionality
reduction [11], but in a quantum probability framework with
complex values.

3 QUANTUM PROBABILITY DRIVEN
NETWORK

In order to implement the proposed framework, we further
propose an end-to-end neural network on its basis. Fig. 2
shows the architecture of the proposed Quantum Probability
Driven Network (QPDN). The embedding layer, composed of
a unit complex-valued embedding and a term-weight lookup
table, captures the basic lexical features. While the mixture
layer is designed to combine the low-level bag-of-word fea-
tures with an additive complex-valued outer product opera-
tion. The measurement layer adopts a set of trainable seman-
tic measurements to extract the higher-level features for the
final linear classifier. In the following we will introduce the
architecture layer by layer.
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Figure 2: Architecture of Quantum probability-driven Neural Network.
⊙

means that amatrixmultiplies a number with each
elements.

⊕
refers to a element-wise addition.

⊗
denotes a outer production to a vector, m○means a measurement operation

according to Eq. 4.

3.1 Embedding Layer
The parameters of the embedding layer are {R,Φ,Π}, re-
spectively, denoting the amplitude embedding, the phase
embedding, and the term-weight lookup table. Eq. 1 ex-
presses a quantum representation as a unit-length, complex-
valued vector representation for a word w , i.e. |w⟩ =

[r1e
iϕ1 , r2e

iϕ2 ...rne
iϕn ]T . The term-weight lookup table is

used to weight words for semantic combinations, which will
be described in the next subsection. During training, word
embeddings need to be normalized to unit length after each
batch.
This representation allows for a non-linear composition

of amplitudes and phases in its mathematical form. Suppose
two wordsw1 andw2 are of weights r (1)j eiϕ

(1)
j and r (2)j eiϕ

(2)
j for

the jth dimension (corresponding to the jth sememe). The
combination of w1 and w2 gives rise to a weight r jeiϕj for
the jth dimension computed as

r je
iϕj = r (1)j eiϕ

(1)
j + r (2)j eiϕ

(2)
j

=

√
|r (1)j |2 + |r (2)j |2 + 2r (1)j r (2)j cos(ϕ(1)

j − ϕ(2)
j )

× e
i arctan

(
r (1)j sin(ϕ(1)j )+r (2)j sin(ϕ(2)j )

r (1)j cos(ϕ(1)j )+r (2)j cos(ϕ(2)j )

) (5)

Where both r j and ϕ j is a non-linear combination of
r (1)j ,r (2)j ,ϕ(1)

j and ϕ(2)
j . If the amplitudes and phases are associ-

ated to different levels of information, the amplitude-phase
representation then naturally gives rise to a non-linear fusion
of information.

3.2 Mixture Layer
A sentence is modeled as a density matrix, which is con-
structed in Sec. 2.3. Instead of using uniform weights in
Eq. 3, word-sensitive weights are used for each word, which
is commonly used in IR, e.g. inverse document frequency
(IDF) as a word-dependent weight in TF-IDF scheme [28].

In order to guarantee the unit trace length for density
matrix, the word weights which are from the lookup table
in a sentence are normalized to a probability value through
a softmax operation: p(i) = eπ (wi ) /

∑m
j eπ (w j ). Compared

to IDF weight, the normalized weight for a specific word
in our approach is not static but updated adaptively in the
training phase. Even in the inference/test phase, the real
term weight i.e. p(wi ) is also not static, but highly depends
on the neighbor context words through nonlinear softmax
function.

3.3 Measurement Layer
The measurement layer adopts a set of 1-order measurement
projectors {|vi ⟩ ⟨vi |}ki=1 where |vi ⟩ ⟨vi | is the outer product
of its corresponding state in Semantic Hilbert Space |vi ⟩.
After each measurement, we can obtain one probability for
each measurement state like qj = tr (ρ |vj ⟩ ⟨vj |). Finally, we
can obtain a vector ®q = [q1,q2, ...qk ]. Similarly to the word
vectors which are also represented as unit states, the states
|vi ⟩ are also normalized after several batches.

3.4 Dense Layer
The vector ®q in the measurement layer consists of k positive
scalar numbers and it is used to infer the label for a given
sentence. A dense layer with softmax activation is adopted
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Dataset train test vocab. task Classes
CR 4K CV 6K product reviews 2
MPQA 11k CV 6K opinion polarity 2
SUBJ 10k CV 21k subjectivity 2
MR 11.9k CV 20k movie reviews 2
SST 67k 2.2k 18k movie reviews 2
TREC 5.4k 0.5k 10k Question 6

Table 1: Dataset Statistics. (CV means 10-fold cross valida-
tion for testing performance.)

after the measurement layer to get a classification probability
distribution, i.e. ®̂y = softmax(®q ·W ). The loss is designed as
a cross-entropy loss between ®̂y and the one-hot label ®y.

4 EXPERIMENTS
Our model is evaluated on 6 datasets for text classification:
CR customer review [17], MPQA opinion polarity [30], SUBJ
sentence subjectivity [25], MRmovie review [25], SST binary
sentiment classification [27], and TREC question classifica-
tion [21]. The statistics of them are shown in Tab. 1.
We compared the proposed QPDN with various mod-

els, including Uni-TFIDF, Word2vec, FastText [18] and
Sent2Vec [24] as unsupervised representation learning base-
lines, CaptionRep [15] and DictRep [16] as supervised rep-
resentation learning baselines, as well as CNN [19] and BiL-
STM [10] for advanced deep neural networks. We report
the classification accuracy values of these models from the
original papers.

We used Glove word vectors [26] with 50,100,200 and 300
dimensions respectively. The amplitude embedding values
are initialized by L2-norm, while the phases in complex-
valued embedding are randomly initialized in −π to π . We
searched for the best performance in a parameter pool, which
contains a learning rate in {1E-3, 1E-4, 1E-5, 1E-6}, an L2-
regularization ratio in {1E-5, 1E-6, 1E-7, 1E-8}, a batch size
in {8, 16, 32, 64, 128}, and the number of measurements in
{5, 10, 20, 50, 100, 200}.
The main parameters in our model are R and Φ. Since

both of them are n × |V | in shape, the number of parameters
is roughly two times that of fastText [22]. For the other
parameters, Π is |V | ×1, {|vi ⟩}ki=1 is k ×2n, whileW is k × |L|
with L being the label set. Apart from word embeddings, the
model is robust with limited scale at k × 2n+n× |V | +k × |L|
for the number of parameters.

The results in Tab. 2 demonstrate the effectiveness of our
model, with improved classification accuracies over some
strong baseline supervised and unsupervised representation
models on most of the datasets except MPQA. In compar-
ison with more advanced models including BiLSTM and
CNN, ourmodel generally performs better than BiLSTMwith
increased accuracy values on the multi-class classification

Table 2: Experimental Results in percentage (%). The best
performed value (except for CNN/LSTM) for each dataset is
in bold. where † means a significant improvement over Fas-
Text.

Model CR MPQA MR SST SUBJ TREC
Uni-TFIDF 79.2 82.4 73.7 - 90.3 85.0
Word2vec 79.8 88.3 77.7 79.7 90.9 83.6
FastText [18] 78.9 87.4 76.5 78.8 91.6 81.8
Sent2Vec [24] 79.1 87.2 76.3 80.2 91.2 85.8
CaptionRep [15] 69.3 70.8 61.9 - 77.4 72.2
DictRep [16] 78.7 87.2 76.7 - 90.7 81.0
Ours: QPDN 81.0† 87.0 80.1† 83.9† 92.7† 88.2†

CNN [19] 81.5 89.4 81.1 88.1 93.6 92.4
BiLSTM [10] 81.3 88.7 77.5 80.7 89.6 85.2

dataset (TREC) and three binary text classification datasets
(MR, SST & SUBJ). However, it under-performs CNN on all
6 datasets with a difference of over 2% on 3 of them (MPQA,
SST & TREC), probably because that it uses fewer parameters
and simpler structures. We argue that QPDN achieves a good
balance between effectiveness and efficiency, due to the fact
that it outperforms BiLSTM.

5 DISCUSSIONS
This section discusses the power of self-explanation and con-
ducts an ablation test to examine the usefulness of important
components of the network, especially the complex-valued
word embedding.

Self-explanation Components. As is shown in Tab. 3, all
components in our model have a clear physical meaning
corresponding to quantum probability, where classical Deep
Neural Network (DNN) can not well explain the role each
component plays in the network. Essentially, we construct
a bottom-up framework to represent each level of semantic
units on a uniform Semantic Hilbert Space, from the mini-
mum semantic unit, i.e. sememe, to the sentence representa-
tion. The framework is operationalized through superposi-
tion, mixture and semantic measurements. On the one hand,
the explanation is reflected by well-designed constraints for
all the components. On the other hand, some intuitive expla-
nation can be performed on the crucial components of the
network i.e, measurements, as shown in Sec. 5.

Ablation Test. An ablation test is conducted to exam-
ine how each component influences the final performance
of QPDN. In particular, a double-length real word em-
bedding network is implemented to examine the use of
complex-valued word embedding, while mean weights and
IDF weights are used as alternative word weighting strate-
gies to check the necessity of introducing trainable weights.
A set of non-trainable orthogonal projectors and a dense
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Table 3: Physical meanings and constraints

Components DNN QPDN

Sememe -
basis vector / basis state
{w |w ∈ Cn, | |w | |2 = 1, }
complete &orthogonal

Word real vector
(−∞, ∞)

unit complex vector / superposition state
{w |w ∈ Cn, | |w | |2 = 1}

Low-level
representation

real vector
(−∞, ∞)

density matrix /mixed system
{ρ |ρ = ρ∗, tr (ρ) = 1}

Abstraction CNN/RNN
(−∞, ∞)

unit complex vector /measurement
{w |w ∈ Cn, | |w | |2 = 1}

High-level
representation

real vector
(−∞, ∞)

probabilities/measured probability
(0, 1)

Table 4: Ablation Test

Setting SST ∆

FastText [18] 0.7880 -0.0511
FastText [18] with double-dimension real word vectors 0.7883 -0.0508
fixed amplitude part but trainable phase part 0.8199 -0.0192
replace trainable weights with fixed mean weights 0.8303 -0.0088
replace trainable weights with fixed IDF weights 0.8259 -0.0132
non-trainable projectors with fixed orthogonal ones 0.8171 -0.0220
replace projectors with dense layer 0.8221 -0.0170
QPDN 0.8391 -

layer on top of the sentence density matrix are implemented
to analyze the effect of trainable semantic measurements.
Due to limited space, we only report the ablation test

result for SST, which is the largest and hence the most repre-
sentative dataset. We use 100-dimensional real-valued word
vectors and 50-dimensional complex-valued vectors for the
models in the ablation test. All models under ablation are
comparable in terms of time cost. Tab. 4 shows that each com-
ponent plays an important role in the QPDNmodel. In partic-
ular, replacing complex embedding with double-dimension
real word embedding leads to a 5% drop in performance,
which indicates that the complex-valued word embedding is
not merely doubling the number of parameters.
The comparison with IDF and mean weights shows that

the data-driven scheme gives rise to high-quality word
weights. The comparison with non-trainable projectors and
directly applying a dense layer on the density matrix shows
that trainable measurements bring benefits to the network.

Discriminative Semantic Directions. In order to better un-
derstand the well-trained measurement projectors, we ob-
tained the top 10 nearest words in the complex-valued vector
space for each trained measurement state (like |vi ⟩), using
KD tree [4]. Due to limited space, we take 5 measurements
from the trained model for the MR dataset, and select words
from the top 10 nearest words to each measurement. As can
be seen in Tab. 5, the first measurement is roughly about

Table 5: The learned measurement for dataset MR. They are
selected according to nearest words for a measurement vec-
tor in Semantic Hibert Space

Measurement Selected neighborhood words
1 change, months, upscale, recently, aftermath
2 compelled, promised, conspire, convince, trusting
3 goo, vez, errol, esperanza, ana
4 ice, heal, blessedly, sustains, make
5 continue, warned, preposterousness, adding, falseness

changes over time, the second concerning being motivated or
forced to do something. While the third measurement groups
uncommon non-English words together. The last two mea-
surements also group words sharing similar meanings. It is
therefore interesting to see that relevant words can somehow
be grouped together into certain topics during the training
process, which may be discriminative for the given task.

6 CONCLUSIONS
In order to better model the non-linearity of word semantic
composition, we have developed a quantum-inspired frame-
work that models different granularities of semantic units
on the same Semantic Hilbert Space, and implement this
framework into an end-to-end text classification network.
The network shows a promising performance on 6 bench-
marking text datasets, in terms of effectiveness, robustness
and self-explanation ability. Moreover, the complex-valued
word embedding approach, which inherently achieves the
non-linear combination of word meanings, does bring bene-
fits to the classification accuracy in a comprehensive ablation
study.
This work is among the first steps to apply the quantum

probabilistic framework to text modeling. We believe it is a
promising direction. In the future, we would like to further
extend this work by considering deeper and more compli-
cated structures such as attention or memory mechanism in
language, in order to investigate related quantum-like phe-
nomena on textual data to provide more intuitive insights.
Additionally, Semantic Hilbert Space in a tensor space is also
worthy to be explored like [32], which may provide more
interesting insights for current communities.
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