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Abstract

We propose to train trading systems by optimizing fi-
nancial objective functions via reinforcement learning.
The performance functions that we consider as value
functions are profit or wealth, the Sharpe ratio and
our recently proposed differential Sharpe ratio for on-
line learning. In Moody & Wu (1997), we presented
empirical results in controlled experiments that demon-
strated the advantages of reinforcement learning rela-
tive to supervised learning. Here we extend our pre-
vious work to compare Q-Learning to a reinforcement
learning technique based on real-time recurrent learn-
ing (RTRL) that maximizes immediate reward.
Our simulation results include a spectacular demon-
stration of the presence of predictability in the monthly
Standard and Poors 500 stock index for the 25 year
period 1970 through 1994. Our reinforcement trader
achieves a simulated out-of-sample profit of over 4000%
for this period, compared to the return for a buy and
hold strategy of about 1300% (with dividends rein-
vested). This superior result is achieved with substan-
tially lower risk.

Introduction:

Reinforcement Learning for Trading

The investor’s or trader’s ultimate goal is to optimize
some relevant measure of trading system performance,
such as profit, economic utility or risk-adjusted return.
In this paper, we propose to use reinforcement learn-
ing to directly optimize such trading system perfor-
mance functions, and we compare two different rein-
forcement learning methods. The first uses immediate
rewards to train the trading systems, while the sec-
ond (Q-Learning (Watkins)) approximates discounted
future rewards. These methodologies can be applied
to optimizing systems designed to trade a single secu-
rity or to trade a portfolio of securities. In addition,
we propose a novel value function for risk adjusted re-
turn suitable for online learning: the differential Sharpe
ratio.

* The authors are also with Nonlinear Prediction Sys-
tems, Tel: (503)531-2024. Copyright (c) 1998, American
Association for Artificial Intelligence (www.aaai.org). All
rights reserved.

Trading system profits depend upon sequences of in-
terdependent decisions, and are thus path-dependent.
Optimal trading decisions when the effects of transac-
tions costs, market impact and taxes are included re-
quire knowledge of the current system state. Reinforce-
ment learning provides a more elegant means for train-
ing trading systems when state-dependent transaction
costs are included, than do more standard supervised
approaches (Moody, Wu, Liao & Saffell). The reinforce-
ment learning algorithms used here include maximizing
immediate reward and Q-Learning (Watkins).

Though much theoretical progress has been made
in recent years in the area of reinforcement learning,
there have been relatively few successful, practical ap-
plications of the techniques. Notable examples include
Neuro-gammon (Tesauro), the asset trader of Neuneier
(1996), an elevator scheduler (Crites & Barto) and 
space-shuttle payload scheduler (Zhang & Dietterich).
In this paper we present results for reinforcement learn-
ing trading systems that outperform the S&P 500 Stock
Index over a 25-year test period, thus demonstrating the
presence of predictable structure in US stock prices.

Structure of Trading Systems and
Portfolios

Traders: Single Asset with Discrete
Position Size

In this section, we consider performance functions for
systems that trade a single security with price series zt.
The trader is assumed to take only long, neutral or short
positions Ft E {-1, 0, 1} of constant magnitude. The
constant magnitude assumption can be easily relaxed to
enable better risk control. The position Ft is established
or maintained at the end of each time interval t, and
is re-assessed at the end of period t + 1. A trade is
thus possible at the end of each time period, although
nonzero trading costs will discourage excessive trading.
A trading system return Rt is reMized at the end of
the time interval (t - 1, t] and includes the profit or
loss resulting from the position Ft-1 held during that
interval and any transaction cost incurred at time t due
to a difference in the positions Ft-1 and Ft.

In order to properly incorporate the effects of
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transactions costs, market impact and taxes ill a
trader’s decision making, the trader must have in-
ternal state information and must therefore be re-
current. An example of a single asset trading sys-
tem that could take into account transactions costs
and market impact would be one with tile following
decision function: Ft = F(Ot;Ft-x,It) with It =
{Zt, Zt-l, Zt-2,... ; Yt, Yt-1, Yt-2," ¯ ’} where Ot denotes
the (learned) system parameters at time t and h de-
notes the information set at time t, which includes
present and past values of the price series zt and an
arbitrary number of other external variables denoted
Yr.

Portfolios: Continuous Quantities of
Multiple Assets

For trading multiple assets in general (typically includ-
ing a risk-free instrument), a multiple output trad-
ing system is required. Denotiug a set of m markets
with price series {{z~’} : a = 1,...,m}, the market
return r~ for price series z~ for the period ending at

((za/~,atime t is defined as ~t t/-t-1) - 1). Defining portfolio
weights of the ath asset as Fa0, a trader that takes only
long positions must have portfolio weights that satisfy:
F~ _> 0 and m 1

Ea=l fa = ’
One approach to imposing the constraints on

the portfolio weights without requiring that a con-
strained optimization be performed is to use a trad-
ing system that has softmax outputs: Fa0 =
{exp[D()]}/{~]~_-t exp[ff()]} for a = 1,...,m. Here,
the fa0 could be linear or more complex functions of
the inputs, such as a two layer neural network with
sigmoidal internal units and linear outputs. Such a
trading system call be optimized using unconstrained
optimization methods. Denoting the sets of raw and
normalized outputs collectively as vectors f0 and F0
respectively, a recursive trader will have structure Ft =
softmax { ft ( Ot-1 ;Ft-,, It)}.

Financial Performance Functions

Profit and Wealth for Traders and
Portfolios

Trading systems can be optimized by maximizing per-
formance functions U0 such as profit, wealth, util-
ity functions of wealth or performance ratios like the
Sharpe ratio. The simplest and most natural perfor-
mance function for a risk-insensitive trader is profit. We
consider two cases: additive and multiplicative profits.
Tile transactions cost rate is denoted ~.

Additive profits are appropriate to consider if each
trade is for a fixed number of shares or contracts of secu-
rity zt. This is often the case, for example, when trading
small futures accounts or when trading standard US$
FX contracts ill dollar-denominated foreign currencies.
With tile definitions r t = zt -- zt-1 and r[ = z[ - z[_l
for the price returns of a risky (traded) asset and a risk-
free asset (like T-Bills) respectively, the additive profit
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accunmlated over T time periods with trading position
size p > 0 is then defined as:

T

PT = P E R, (1)
t=l

T

t=l

with P0 = 0 and typically FT = Fo = 0. Equation
(2) holds for continuous quantities also. The wealth 
defined as WT = Wo + PT.

Multiplicative profits are appropriate when a fixed
fraction of accumulated wealth v > 0 is invested in
each long or short trade. Here, rt = (zt/zt-1 - 1) and
,’I t = (zl/zit_ 1 - 1). If no short sales are allowed and
the leverage factor is set fixed at u = 1, the wealth at
time T is:

T

wr = Wo {l+R,} (2)
t=l

T

= WoII(l+(1-Ft-,)rIt+Ft-lrt)
t=l

(1 - alF, - F,-ll).
When multiple assets are considered, tile effective

portfolio weightings change with each time step due to
price movements. Thus, maintaining constant or de-
sired portfolio weights requires that adjustlnents in po-
sitions be made at each time step. The wealth after T
periods for a portfolio trading system is

WT = Wol-[{I+Rt}=WoU F~~]z~ "~,=l ,=l o:, ’-’ 4---, (3)
1 -6 IF: - ,

a=l

where Fta is the effective portfolio weight of asset a~
Fa Za Zabefore readjusting, defined as Fta { t-l( t/ t-l)}/

{~=l Fbt-ltlzblzbtl t-lJJ~l . In (4), the first factor in the
curly brackets is the increase in wealth over tile time
interval t prior to rebalancing to achieve the newly spec-
ified weights Ff. The second factor is the reduction in
wealth due to the rebalancing costs.

Risk Adjusted Return: The Sharpe and
Differential Sharpe Ratios
Rather than maximizing profits, most modern fund
managers attempt to maximize risk-adjusted return as
advocated by Modern Portfolio Theory. The Sharpe
ratio is tile most widely-used measure of risk-adjusted
return (Sharpe). Denoting as before the trading system
returns for period t (including transactions costs) as Rt,
tile Sharpe ratio is defined to be

ST =
Average(Rt)

(4)
Standard Deviation(Rt)



where the average and standard deviation are estimated
for periods t = {1,..., T}.

Proper on-line learning requires that we compute the
influence on the Sharpe ratio of the return at time t.
To accomplish this, we have derived a new objective
function called the differential Sharpe ratio for on-line
optimization of trading system performance (Moody,
Wu, Liao & Saffell). It is obtained by considering ex-
ponential moving averages of the returns and standard
deviation of returns in (4), and expanding to first order
in the decay rate .: St .~ St-1 + .aa-~lo=o + 0(.2) ¯

Noting that only the first order term in this expansion
depends upon the return Rt at time t, we define the
differential Sharpe ratio as:

dSt Bt-IAAt - 1At-IABt
Ot =- d~ -- (Bt-, - A2t_,)3/2 (5)

where the quantities At and Bt are exponential moving
estimates of the first and second moments of Rt:

At =- At-1 -1- .AAt = At-1 -t- .(Rt - At-l)

Bt = Bt-1 +.ABe = Bt-1 --b .(R2t -- Bt-1) .(6)

Treating At-1 and Be-1 as numerical constants, note
that, in the update equations controls the magnitude
of the influence of the return Rt on the Sharpe ratio
St. Hence, the differential Sharpe ratio represents the
influence of the return Rt realized at time t on St.

Reinforcement Learning for Trading
Systems and Portfolios

The goal in using reinforcement learning to adjust the
parameters of a system is to maximize the expected
payoff or reward that is generated due to the actions
of the system. This is accomplished through trial and
error exploration of the environment. The system re-
ceives a reinforcement signal from its environment (a
reward) that provides information on whether its ac-
tions are good or bad. The performance functions that
we consider are functions of profit or wealth U(WT) af-
ter a sequence of T time steps, or more generally of the
whole time sequence of trades U(W1, W2,..., WT) as
is the case for a path-dependent performance function
like the Sharpe ratio. In either case, the performance
function at time T can be expressed as a function of
the sequence of trading returns U(R1, R2,..., -RT). We
denote this by UT in the rest of this section.

Maximizing Immediate Utility

Given a trading system model Ft(O), the goal is to ad-
just the parameters 0 in order to maximize UT. This
maximization for a complete sequence of T trades can
be done off-line using dynamic programming or batch
versions of recurrent reinforcement learning algorithms.
Here we do the optimization on-line using a standard
reinforcement learning technique. This reinforcement
learning algorithm is based on stochastic gradient as-
cent. The gradient of UT with respect to the parameters

0 of the system after a sequence of T trades is

dUT(O) ~ dUT { dRt dFt dRt dFt-l ~
dO -- t=l -~t dFt dO- + dFt-1 -~ J (7)

The above expression as written with scalar Fi applies
to the traders of a single risky asset, but can be trivially
generalized to the vector case for portfolios.

The system can be optimized in batch mode by re-
peatedly computing the value of UT on forward passes
through the data and adjusting the trading system pa-
rameters by using gradient ascent (with learning rate p)
AO = pdUT(O)/dO or some other optimization method.
A simple on-line stochastic optimization can be ob-
tained by considering only the term in (7) that depends
on the most recently realized return Rt during a forward
pass through the data:

dUt(O) dUt { dR___~t dFt dRt dFt_, }
d7 - dRt dFt dO + dFt_~ d~

(8)

The parameters are then updated on-line using AOt =
pdUt (Or)/dOt. Such an algorithm performs a stochastic
optimization (since the system parameters Ot are varied
during each forward pass through the training data),
and is an example of immediate reward reinforcement
learning. This approach is described in (Moody, Wu,
Liao & Saffell) along with extensive simulation results.

Q-Learning

Besides explicitly training a trader to take actions, we
can also implicitly learn correct actions through the
technique of value iteration. In value iteration, an esti-
mate of future costs or rewards is made for a given state,
and the action is chosen that minimizes future costs or
maximizes future rewards. Here we consider the spe-
cific technique named Q-Learning (Watkins), which es-
timates future rewards based on the current state and
the current action taken. We can write the Q-function
version of Bellman’s equation as

Q*(=,a)= ,
y=0

(9)
where there are n states in the system and p=~(a) is
the probability of transitioning from state x to state y
given action a. The advantage of using the Q-function
is that there is no need to know the system model
p=y(a) in order to choose the best action. One simply
calculates the best action as a* = argmaxa(Q*(x, a)).
The update rule for training a function approximator is
Q(~, a) = Q(x, a) + p(U(z, a) + 3’ maxb q*(y, b)), where
p is a learning rate.

Empirical Results

Long/Short Trader of a Single Security

We have tested techniques for optimizing both profit
and the Sharpe ratio in a variety of settings. We present
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Figure 1: Boxplot for ensembles of 100 experi-
ments comparing the performance of the "RTRL" and
"Qtrader" trading systeins on artificial price series.
"Qtrader" outperforms the "RTRL" system in terms
of both (a) profit and (b) risk-adjusted returns (Sharpe
ratio). The differences are statistically significant.

results here on artificial data comparing the perfor-
mance of a trading system, "RTRL", trained using real
time recurrent learning with the performance of a trad-
ing system, "Qtrader", implemented using Q-Learning.
We generate log price series of length 10,000 as ran-
dom walks with autoregressive trend processes. These
series are trending on short time scales and have a high
level of noise. The results of our simulations indicate
that the Q-Learning trading system outperforms the
"RTRL" trader that is trained to maximize immediate
reward.

The "RTP~L" system is initialized randomly at the
beginning, trained for a while using labelled data to
initialize the weights, and then adapted using real-time
recurrent learning to optimize the differential Sharpe
ratio (5). The neural net that is used in the "Qtrader"
system starts from random initial weights. It is trained
repeatedly on the first 1000 data points with the dis-
count parameter 7 set to 0 to allow the network to learn
immediate reward. Then 7 is set equal to 0.9 and train-
ing continues with the second thousand data points be-
ing used as a validation set. The value function used
here is profit.

Figure 1 shows box plots summarizing test perfor-
mances for ensembles of 100 experiments. In these sim-
ulations, the data are partitioned into a training set
consisting of the first 2,000 samples and a test set con-
taining the last 8,000 samples. Each trial has different
realizations of the artificial price process and different
random initial parameter values. The transaction costs
are set at 0.2%, and we observe the cumulative profit
and Sharpe ratio over the test data set. We find that
the "Qtrader" system, which looks at future profits, sig-
nificantly outperforms the "RTRL" system which looks
to maximize immediate rewards because it is effectively
looking farther into the future when making decisions.

S&:P 500 / TBill Asset Allocation System

Long/Short Asset Allocation System and Data
A long/short trading system is trained on monthly SgzP
500 stock index and 3-month TBill data to maximize

282 Moody

the differential Sharpe ratio. The S&P 500 target se-
ries is the total return index computed by reinvesting
dividends. The 84 input series used in the trading sys-
tems include both financial and macroeconomic data.
All data are obtained from Citibase, and the maeroeco-
nomic series are lagged by one month to reflect report-
ing delays.

A total of 45 years of monthly data are used, from
January 1950 through December 1994. The first 20
years of data are used only for the initial training of
the system. The test period is the 25 year period from
January 1970 through December 1994. Tile experimen-
tal results for the 25 year test period are true ex ante
simulated trading results.

For each year dnring 1970 through 1994, the system
is trained on a moving window of the previous 20 years
of data. For 1970, the system is initialized with random
parameters. For the 24 subsequent years, the previously
learned parameters are used to initialize the training. In
this way, the system is able to adapt to changing mar-
ket and economic conditions. Within the moving train-
ing window, the "RTRL" systems use the first 10 years
for stochastic optimization of system parameters, and
the subsequent 10 years for validating early stopping of
training. The networks are linear, and are regularized
using quadratic weight decay during training with a reg-
ularization parameter of 0.01. The "Qtrader" systems
use a bootstrap sample of the 20 year training window
for training, and the final 10 years of the training win-
dow are used for validating early stopping of training.
The networks are two-layer feedforward networks with
30 tanh units in the hidden layer.

Experimental Results The left panel in Figure 2
shows box plots summarizing the test performance for
the full 25 year test period of the trading systems with
various realizations of the initial system parameters
over 30 trials for the "RTRL" system, and 10 trials for
the "Qtrader" system1. The transaction cost is set at
0.5%. Profits are reinvested during trading, and multi-
plicative profits are used when calculating the wealth.
The notches in the box plots indicate robust estimates
of the 95% confidence intervals on the hypothesis that
the median is equal to the performance of the buy and
hold strategy. The horizontal lines show the perfor-
mance of the "RTRL" voting, "Qtrader" voting and buy
and hold strategies for the same test period. The annu-
alized monthly Sharpe ratios of the buy and hold strat-
egy, the "Qtrader" voting strategy and the "RTRL"
voting strategy are 0.34, 0.63 and 0.83 respectively. The
Sharpe ratios calculated here are for the excess returns
of the strategies over the 3-month treasury bill rate.

Figure 2 shows results for following the strategy of
taking positions based on a majority vote of the ensem-
bles of trading systems compared with the buy and hold
strategy. We can see that the trading systems go short
the S&P 500 during critical periods, such as the oil price

ITen trials were done for the "Qtrader" system due to
the amount of computation required in training the systems
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Figure 2: Test results for ensembles of simulations us-
ing the S~:P 500 stock index and 3-month Treasury Bill
data over the 1970-1994 time period. The figure shows
the equity curves associated with the voting systems
and the buy and hold strategy, as well as the voting
trading signals produced by the systems. The solid
curves correspond to the "RTlq.L" voting system per-
formance, dashed curves to the "Qtrader" voting sys-
tem and the dashed and dotted curves indicate the buy
and hold performance. Initial equity is set to 1, and
transaction costs are set at 0.5%. In both simulations,
the traders avoid the dramatic losses that the buy and
hold strategy incurred during 1974. In addition, the
"R.TRL" trader makes money during the crash of 1987,
while the "Qtrader" system avoids the large losses asso-
ciated with the buy and hold strategy during the same
period.

shock of 1974, the tight money (high interest rate) pe-
riods of the early 1980’s, the market correction of 1984
and the 1987 crash. This ability to take advantage of
high treasury bill rates or to avoid periods of substantial
stock market loss is the major factor in the long term
success of these trading models. One exception is that
the "I~TRL" trading system remains long during the
1991 stock market correction associated with the Per-
sian Gulf war, though the "Qtrader" system does iden-
tify the correction. On the whole though, the "Qtrader"
system trades much more frequently than the "RTRL"
system, and in the end does not perform as well on this
data set.

From these results we find that both trading sys-
tems outperform the buy and hold strategy, as mea-
sured by both accumulated wealth and Sharpe ratio.
These differences are statistically significant and sup-
port the proposition that there is predictability in the
U.S. stock and treasury bill markets during the 25 year
period 1970 through 1994. A more detailed presenta-
tion of the "R.TRL" results is presented in (Moody, Wu,
Liao & Saffell).

Conclusions and Extensions

In this paper, we have trained trading systems via rein-
forcement learning to optimize financial objective func-
tions including our recently proposed differential Sharpe
ratio for online learning. We have also provided sim-
ulation results that demonstrate the presence of pre-
dictability in the monthly SSzP 500 Stock Index for the
25 year period 1970 through 1994. We have previously
shown with extensive simulation results (Moody, Wu,
Liao L; Saffell) that the "RTRL" trading system signif-
icantly outperforms systems trained using supervised
methods for traders of both single securities and portfo-
lios. The superiority of reinforcement learning over su-
pervised learning is most striking when state-dependent
transaction costs are taken into account. Here we show
that the Q-Learning approach can significantly improve
on the "lq.TRL" method when trading single securi-
ties, as it does for our artificial data set. However,
the "Qtrader" system does not perform as well as the
"RTlq.L" system on the S~zP 500 / TBill asset alloca-
tion problem, possibly due to its more frequent trading.
This effect deserves further exploration.
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