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Abstract

Object detection is an important and challenging prob-

lem in computer vision. Although the past decade has

witnessed major advances in object detection in natural

scenes, such successes have been slow to aerial imagery,

not only because of the huge variation in the scale, orien-

tation and shape of the object instances on the earth’s sur-

face, but also due to the scarcity of well-annotated datasets

of objects in aerial scenes. To advance object detection re-

search in Earth Vision, also known as Earth Observation

and Remote Sensing, we introduce a large-scale Dataset for

Object deTection in Aerial images (DOTA). To this end, we

collect 2806 aerial images from different sensors and plat-

forms. Each image is of the size about 4000 × 4000 pix-

els and contains objects exhibiting a wide variety of scales,

orientations, and shapes. These DOTA images are then an-

notated by experts in aerial image interpretation using 15
common object categories. The fully annotated DOTA im-

ages contains 188, 282 instances, each of which is labeled

by an arbitrary (8 d.o.f.) quadrilateral. To build a baseline

for object detection in Earth Vision, we evaluate state-of-

the-art object detection algorithms on DOTA. Experiments

demonstrate that DOTA well represents real Earth Vision

applications and are quite challenging.

1. Introduction

Object detection in Earth Vision refers to localizing ob-

jects of interest (e.g., vehicles, airplanes) on the earth’s sur-

face and predicting their categories. In contrast to conven-

tional object detection datasets, where objects are gener-

ally oriented upward due to gravity, the object instances in

aerial images often appear with arbitrary orientations, as il-

lustrated in Fig. 1, depending on the perspective of the Earth

Vision platforms.

∗DOTA website is https://captain-whu.github.io/DOTA.
†Equal contribution
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Figure 1: An example taken from DOTA. (a) Typical im-

age in DOTA consisting of many instances across multiple

categories. (b) Illustration of the variety in instance orien-

tation and size. (c),(d) Illustration of sparse instances and

crowded instances, respectively. Here we show four out of

fifteen of the possible categories in DOTA. Examples shown

in (b),(c),(d) are cropped from source image (a). The his-

tograms (e),(f) exhibit the distribution of instances with re-

spect to size and orientation in DOTA.

Extensive studies have been devoted to object detection

in aerial images [24, 15, 18, 3, 20, 39, 19, 32, 31, 22],

drawing upon recent advances in Computer Vision and ac-

counting for the high demands of Earth Vision applications.

Most of these methods [39, 19, 32, 3] attempt to transfer ob-

ject detection algorithms developed for natural scenes to the

aerial image domain. Recently, driven by the successes of

deep learning-based algorithms for object detection, Earth

https://captain-whu.github.io/DOTA


Vision researchers have pursued approaches based on fine-

tuning networks pre-trained on large-scale image datasets

(e.g., ImageNet [6] and MSCOCO [14]) for detection in the

aerial domain, see e.g. [19, 30, 2, 3].

While such fine-tuning based approaches are a reason-

able avenue to explore, images such as Fig. 1 reveals that

the task of object detection in aerial images is distinguished

from the conventional object detection task:

- The scale variations of object instances in aerial im-

ages are huge. This is not only because of the spatial

resolutions of sensors, but also due to the size varia-

tions inside the same object category.

- Many small object instances are crowded in aerial im-

ages, for example, the ships in a harbor and the vehi-

cles in a parking lot, as illustrated in Fig. 1. Moreover,

the frequencies of instances in aerial images are un-

balanced, for instance, some small-size (e.g. 1k × 1k)

images contain 1900 instances, while some large-size

images (e.g. 4k × 4k) may contain only a handful of

small instances.

- Objects in aerial images often appear in arbitrary ori-

entations. There are also some instances with an ex-

tremely large aspect ratio, such as a bridge.

Besides these difficulties, the studies of object detection

in Earth Vision are also challenged by the dataset bias prob-

lem [29], i.e. the degree of generalizability across datasets

is often low. To alleviate such biases, the dataset should be

annotated to reflect the demands of real world applications.

Therefore, it is not surprising that the object detectors

learned from natural images are not suitable for aerial im-

ages. However, existing annotated datasets for object detec-

tion in aerial images, such as UCAS-AOD [41] and NWPU

VHR-10 [2], tend to use images in ideal conditions (clear

backgrounds and without densely distributed instances),

which cannot adequately reflect the problem complexity.

To advance the object detection research in Earth Vision,

this paper introduces a large-scale Dataset for Object de-

Tection in Aerial images (DOTA). We collect 2806 aerial

images from different sensors and platforms with crowd-

sourcing. Each image is of the size about 4k × 4k pix-

els and contains objects of different scales, orientations and

shapes. These DOTA images are annotated by experts in

aerial image interpretation, with respect to 15 common ob-

ject categories. The fully annotated DOTA dataset contains

188,282 instances, each of which is labeled by an arbitrary

quadrilateral, instead of an axis-aligned bounding box, as is

typically used for object annotation in natural scenes. The

main contributions of this work are:

- To our knowledge, DOTA is the largest annotated ob-

ject dataset with a wide variety of categories in Earth

Vision.1 It can be used to develop and evaluate object

1The DIUx xView Detection Challenge with more categories and in-

stances opened in Feb. 2018: http://xviewdataset.org

detectors in aerial images. We will continue to update

DOTA, to grow in size and scope and to reflect evolv-

ing real world conditions.

- We also benchmark state-of-the-art object detection al-

gorithms on DOTA, which can be used as the baseline

for future algorithm development.

In addition to advancing object detection studies in Earth

Vision, DOTA will also pose interesting algorithmic ques-

tions to conventional object detection in computer vision.

2. Motivations

Datasets have played an important role in data-driven re-

search in recent years [36, 6, 14, 40, 38, 33]. Large datasets

like MSCOCO [14] are instrumental in promoting object

detection and image captioning research. When it comes to

the classification task and scene recognition task, the same

is true for ImageNet [6] and Places [40], respectively.

However, in aerial object detection, a dataset resembling

MSCOCO and ImageNet both in terms of image number

and detailed annotations has been missing, which becomes

one of the main obstacles to the research in Earth Vision,

especially for developing deep learning-based algorithms.

Aerial object detection is extremely helpful for remote ob-

ject tracking and unmanned driving. Therefore, a large-

scale and challenging aerial object detection benchmark,

being as close as possible to real-world applications, is im-

perative for promoting research in this field.

We argue that a good aerial image dataset should possess

four properties, namely, 1) a large number of images, 2)

many instances per categories, 3) properly oriented object

annotation, and 4) many different classes of objects, which

make it approach to real-world applications. However, ex-

isting aerial image datasets [41, 18, 16, 25] share in com-

mon several shortcomings: insufficient data and classes,

lack of detailed annotations, as well as low image resolu-

tion. Moreover, their complexity is inadequate to be con-

sidered as a reflection of the real world.

Datasets like TAS [9], VEDAI [25], COWC [21]

and DLR 3K Munich Vehicle [16] only focus on vehi-

cles. UCAS-AOD [41] contains vehicles and planes while

HRSC2016 [18] only contains ships even though fine-

grained category information are given. All these datasets

are short in the number of classes, which restricts their

applicabilities to complicated scenes. In contrast, NWPU

VHR-10 [2] is composed of ten different classes of objects

while its total number of instances is only around 3000. De-

tailed comparisons of these existing datasets are shown in

Tab. 1. Compared to these aerial datasets, as we shall see

in Section 4, DOTA is challenging for its tremendous object

instances, arbitrary but well-distributed orientations, vari-

ous categories and complicated aerial scenes. Moreover,

scenes in DOTA is in coincidence with natural scenes, so

DOTA is more helpful for real-world applications.

http://xviewdataset.org


Dataset Annotation way #main categories #Instances #Images Image width

NWPU VHR-10 [2] horizontal BB 10 3651 800 ∼1000

SZTAKI-INRIA [1] oriented BB 1 665 9 ∼800

TAS [9] horizontal BB 1 1319 30 792

COWC [21] one dot 1 32716 53 2000∼19,000

VEDAI [25] oriented BB 3 2950 1268 512, 1024

UCAS-AOD [41] oriented BB 2 14,596 1510 ∼1000

HRSC2016 [18] oriented BB 1 2976 1061 ∼1100

3K Vehicle Detection [16] oriented BB 2 14,235 20 5616

DOTA oriented BB 14 188,282 2806 800∼4000

Table 1: Comparison among DOTA and object detection datasets in aerial images. BB is short for bounding box. One-dot

refers to annotations with only the center coordinates of an instance provided. Fine-grained categories are not taken into

account. For example, DOTA consists of 15 different categories but only 14 main categories, because small vehicle and large

vehicle are both sub-categories of vehicle.

When it comes to general objects datasets, ImageNet and

MSCOCO are favored due to the large number of images,

many categories and detailed annotations. ImageNet has

the largest number of images among all object detection

datasets. However, the average number of instances per im-

age is far smaller than MSCOCO and our DOTA, plus the

limitations of its clean backgrounds and carefully selected

scenes. Images in DOTA contain an extremely large number

of object instances, some of which have more than 1,000 in-

stances. PASCAL VOC Dataset [7] is similar to ImageNet

in instances per image and scenes but the inadequate num-

ber of images makes it unsuitable to handle most detection

needs. Our DOTA resembles MSCOCO in terms of the in-

stance numbers and scene types, but DOTA’s categories are

not as many as MSCOCO because objects which can be

seen clearly in aerial images are quite limited.

Besides, what makes DOTA unique among the above

mentioned large-scale general object detection benchmarks

is that the objects in DOTA are annotated with properly ori-

ented bounding boxes (OBB for short). OBB can better

enclose the objects and differentiate crowded objects from

each other. The benefits of annotating objects in aerial im-

ages with OBB are further described in Section 3. We draw

a comparison among DOTA, PASCAL VOC, ImageNet and

MSCOCO to show the differences in Tab. 2.

Dataset Category
Image

quantity

BBox

quantity

Avg. BBox

quantity

PASCAL VOC

(07++12)
20 21,503 62,199 2.89

MSCOCO

(2014 trainval)
80 123,287 886,266 7.19

ImageNet

(2017train)
200 349,319 478,806 1.37

DOTA 15 2,806 188,282 67.10

Table 2: Comparison among DOTA and other general ob-

ject detection datasets. BBox is short for bounding boxes,

Avg. BBox quantity indicates average bounding box quan-

tity per image. Note that for the average number of in-

stances per image, DOTA surpasses other datasets hugely.

3. Annotation of DOTA

3.1. Images collection

In aerial images, the resolution and variety of sensors be-

ing used are factors to produce dataset biases [5]. To elim-

inate the biases, images in our dataset are collected from

multiple sensors and platforms (e.g. Google Earth) with

multiple resolutions. To increase the diversity of data, we

collect images shot in multiple cities carefully chosen by

experts in aerial image interpretation. We record the exact

geographical coordinates of the location and capture time of

each image to ensure there are no duplicate images.

3.2. Category selection

Fifteen categories are chosen and annotated in our DOTA

dataset, including plane, ship, storage tank, baseball dia-

mond, tennis court, swimming pool, ground track field, har-

bor, bridge, large vehicle, small vehicle, helicopter, round-

about, soccer ball field and basketball court.

The categories are selected by experts in aerial image in-

terpretation according to whether a kind of objects is com-

mon and its value for real-world applications. The first

10 categories are common in the existing datasets, e.g.,

[16, 2, 41, 21], We keep them all except that we further

split vehicle into large ones and small ones because there

is obvious difference between these two sub-categories in

aerial images. Others are added mainly from the values in

real applications. For example, we select helicopter con-

sidering that moving objects are of significant importance

in aerial images. Roundabout is chosen because it plays an

important role in roadway analysis.

It is worth discussing whether to take “stuff” categories

into account. There are usually no clear definitions for the

”stuff” categories (e.g. harbor, airport, parking lot), as is

shown in the SUN dataset [34]. However, the context in-

formation provided by them may be helpful for detection.

We only adopt the harbor category because its border is rela-

tively easy to define and there are abundant harbor instances



in our image sources. Soccer field is another new category

in DOTA.

In Fig.2, we compare the categories of DOTA with

NWPU VHR-10 [2], which has the largest number of cate-

gories in previous aerial object detection datasets. Note that

DOTA surpass NWPU VHR-10 not only in category num-

bers, but also the number of instances per category.
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Figure 2: Comparison between DOTA and NWPU VHR-10

in categories and responding quantity of instances.

3.3. Annotation method

We consider different ways of annotating. In computer

vision, many visual concepts such as region descriptions,

objects, attributes, and relationships, are annotated with

bounding boxes, as shown in [12]. A common description

of bounding boxes is (xc, yc, w, h), where (xc, yc) is the

center location, w, h are the width and height of the bound-

ing box, respectively.

Objects without many orientations can be adequately an-

notated with this method. However, bounding boxes labeled

in this way cannot accurately or compactly outline oriented

instances such as text and objects in aerial images. In an ex-

treme but actually common condition as shown in Fig. 3 (c)

and (d), the overlap between two bounding boxes is so large

that state-of-the-art object detection methods cannot differ-

entiate them. In order to remedy this, we need to find an

annotation method suitable for oriented objects.

An option for annotating oriented objects is θ-based ori-

ented bounding box which is adopted in some text detec-

tion benchmarks [37], namely (xc, yc, w, h, θ), where θ
denotes the angle from the horizontal direction of the stan-

dard bounding box. A flaw of this method is the inabil-

ity to compactly enclose oriented objects with large defor-

mation among different parts. Considering the complicated

scenes and various orientations of objects in aerial images,

we need to abandon this method and choose a more flex-

ible and easy-to-understand way. An alternative is arbi-

trary quadrilateral bounding boxes, which can be denoted

as {(xi, yi), i = 1, 2, 3, 4}, where (xi, yi) denotes the posi-

tions of the oriented bounding boxes’ vertices in the image.

The vertices are arranged in a clockwise order. This way is

widely adopted in oriented text detection benchmarks [11].

We draw inspiration from these researches and use arbitrary

quadrilateral bounding boxes to annotate objects.

To make a more detailed annotation, as shown in Fig. 3,

we emphasize the importance of the first point (x1, y1),
which normally implies the “head” of the object. For he-

licopter, large vehicle, small vehicle, harbor, baseball dia-

mond, ship and plane, we carefully denote their first point to

enrich potential usages. While for soccer-ball field, swim-

ming pool, bridge, ground track field, basketball court and

tennis court, there are no visual clues to decide the first

point, so we choose the top-left point as the starting point.

Some samples of annotated patches (not the whole orig-

inal image) in our dataset are shown in Fig. 4.

It is worth noticing that, Papadopoulos et al. [23] have

explored an alternative annotation method and verify its ef-

ficiency and robustness. We assume that the annotations

would be more precise and robust with more elaborately de-

signed annotation methods, and alternative annotation pro-

tocols would facilitate more efficient crowd-sourced image

annotations.

3.4. Dataset splits

In order to ensure that the training data and test data dis-

tributions approximately match, we randomly select half of

the original images as the training set, 1/6 as validation set,

and 1/3 as the testing set. We will publicly provide all the

original images with ground truth for training set and val-

idation set, but not for the testing set. For testing, we are

currently building an evaluation server.

4. Properties of DOTA

4.1. Image size

Aerial images are usually very large in size compared to

those in natural images dataset. The original size of images

in our dataset ranges from about 800 × 800 to about 4k ×
4k while most images in regular datasets (e.g. PASCAL-

VOC and MSCOCO) are no more than 1k × 1k. We make

annotations on the original full image without partitioning

it into pieces to avoid the cases where a single instance is

partitioned into different pieces.

4.2. Various orientations of instances

As shown in Fig.1 (f), our dataset achieves a good bal-

ance in the instances of different directions, which is signif-

icantly helpful for learning a robust detector. Moreover, our

dataset is closer to real scenes because it is common to see

objects in all kinds of orientations in the real world.



(a) (b) (c) (d)

Figure 3: Visualization of adopted annotation method. The yellow point represents the starting point, which refers to: (a) top

left corner of a plane, (b) the center of sector-shaped baseball diamond, (c) top left corner of a large vehicle. (d) is a failure

case of the horizontal rectangle annotation, which brings high overlap compared to (c).

Figure 4: Samples of annotated images in DOTA. We show three samples per each category, except six for large-vehicle.

(a) (b) (c)

Figure 5: Statistics of instances in DOTA. AR denotes the aspect ratio. (a) The AR of horizontal bounding box. (b) The AR

of oriented bounding box. (c) Histogram of number of annotated instances per image.



4.3. Spatial resolution information

We also provide the spatial resolution for each image in

our dataset, which implies the actual size of an instance and

plays a significant role in aerial object detection. The impor-

tance of spatial resolution for detection task are two folds.

First, it allows the model to be more adaptive and robust for

varieties of objects of the same category. It’s known that ob-

jects appear smaller when seen from a distance. The same

object with different sizes will trouble the model and hurt

classification. However, a model can pay more attention to

the shape with resolution information provided instead of

objects’ size. Second, it’s better for fine-grained classifica-

tion. For example, it will be simple to distinguish a small

boat from a large warship.

Spatial resolution can also be used to filter mislabeled

outliers in our dataset, as intra-class varieties of actual sizes

for most categories are limited. Outliers can be found by

selecting the objects whose size is far different from those

of the same category in a small range of spatial resolution.

4.4. Various pixel size of categories

Following the convention in [35], we refer to the height

of a horizontal bounding box, which we call pixel size for

short, as a measurement for instance size. We divide all the

instances in our dataset into three splits according to their

height of horizontal bounding box: small for range from

10 to 50, middle for range from 50 to 300, and large for

range above 300. Tab. 3 illustrates the percentages of three

instance splits in different datasets. It is clear that the PAS-

CAL VOC dataset, NWPU VHR-10 dataset and DLR 3K

Munich Vehicle dataset are dominated by middle instances,

middle instances and small instances, respectively. How-

ever, we achieve a good balance between small instances

and middle instances, which is more similar to real-world

scenes and thus, helpful to better capture different size of

objects in practical applications.

It’s worth noting that pixel size varies in different cate-

gories. For example, a vehicle may be as small as 30, how-

ever, a bridge can be as large as 1200, which is 40 times

larger than a vehicle. The huge differences among instances

from different categories make the detection task more chal-

lenging because models have to be flexible enough to handle

extremely tiny and huge objects.

Dataset 10-50 pixel 50-300 pixel above 300 pixel

PASCAL VOC 0.14 0.61 0.25

MSCOCO 0.43 0.49 0.08

NWPU VHR-10 0.15 0.83 0.02

DLR 3K Munich Vehicle 0.93 0.07 0

DOTA 0.57 0.41 0.02

Table 3: Comparison of instance size distribution of some

datasets in aerial images and natural images.

4.5. Various aspect ratio of instances

Aspect ratio (AR) is an essential factor for anchor-based

models, such as Faster RCNN [27] and YOLOv2 [26]. We

count two kinds of AR for all the instances in our dataset to

provide a reference for better model design: 1) AR of mini-

mally circumscribed horizontal rectangle bounding box, 2)

AR of original quadrangle bounding box. Fig. 5 illustrates

these two types of distribution of aspect ratio for instances

in our dataset. We can see that instances varies greatly in as-

pect ratio. Moreover, there are a large number of instances

with a large aspect ratio in our dataset.

4.6. Various instance density of images

It is common for aerial images to contain thousands of

instances, which is different from natural images. For ex-

ample, images in ImageNet [6] contain on the average 2

categories and 2 instances, while MSCOCO contains 3.5

categories and 7.7 instances, respectively. Our dataset is

much richer in instances per image, which can be up to

2000. Fig. 5 illustrates the number of instances in our

DOTA dataset.

With so many instances in a single image, it is unavoid-

able to see areas densely crowded with instances. For

COCO, instances are not annotated one by one because oc-

clusion makes it difficult to distinguish an instance from its

neighboring instances. In these cases, the group of instances

is marked as one segment with attribute named “crowd”.

However, this is not the case for aerial images because there

are rarely occlusion due to the perspective from the above.

Therefore, we can annotate all the instances in a dense area

one by one. Fig. 4 shows examples of densely packed in-

stances. Detecting objects in these cases poses an enormous

challenge for the current detection methods.

5. Evaluations

We evaluate the state of the art object detection methods

on DOTA. For horizontal object detection, we carefully se-

lect Faster R-CNN2 [27], R-FCN3 [4], YOLOv24 [26] and

SSD3 [17] as our benchmark testing algorithms for their ex-

cellent performance on general object detection. For ori-

ented object detection, we modify the original Faster R-

CNN algorithm such that it can predict properly oriented

bounding boxes denoted as {(xi, yi), i = 1, 2, 3, 4}.

Note that, the backbone networks are ResNet-101 [8] for

R-FCN and Faster R-CNN, InceptionV2 [10] for SSD and

customized GoogLeNet [28] for YOLOv2, respectively.

2https://github.com/msracver/

Deformable-ConvNets
3https://github.com/tensorflow/models/tree/

master/research/object_detection
4https://github.com/pjreddie/darknet

https://github.com/msracver/Deformable-ConvNets
https://github.com/msracver/Deformable-ConvNets
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/pjreddie/darknet


5.1. Evaluation tasks

To evaluate the state-of-the-art deep learning based de-

tection methods on DOTA, we propose two tasks, namely

detection with horizontal bounding boxes (HBB for short)

and detection with oriented bounding boxes (OBB for

short). To be more specific, we evaluate those methods on

two different kinds of ground truths, HBB or OBB, no mat-

ter how those methods were trained.

YOLOv2[26] R-FCN[4] FR-H[27] SSD[17]

Plane 76.9 81.01 80.32 57.85

BD 33.87 58.96 77.55 32.79

Bridge 22.73 31.64 32.86 16.14

GTF 34.88 58.97 68.13 18.67

SV 38.73 49.77 53.66 0.05

LV 32.02 45.04 52.49 36.93

Ship 52.37 49.29 50.04 24.74

TC 61.65 68.99 90.41 81.16

BC 48.54 52.07 75.05 25.1

ST 33.91 67.42 59.59 47.47

SBF 29.27 41.83 57 11.22

RA 36.83 51.44 49.81 31.53

Harbor 36.44 45.15 61.69 14.12

SP 38.26 53.3 56.46 9.09

HC 11.61 33.89 41.85 0

Avg. 39.2 52.58 60.46 29.86

Table 4: Numerical results (AP) of baseline models eval-

uated with HBB ground truths. The short names for cate-

gories are defined as: BD–Baseball diamond, GTF–Ground

field track, SV–Small vehicle, LV–Large vehicle, TC–Tennis

court, BC–Basketball court, SC–Storage tank, SBF–Soccer-

ball field, RA–Roundabout, SP–Swimming pool, and HC–

Helicopter. FR-H means Faster R-CNN [27] trained on

Horizontal bounding boxes.

YOLOv2 [26] R-FCN [4] SSD [17] FR-H [27] FR-O

Plane 52.75 39.57 41.06 49.74 79.42

BD 24.24 46.13 24.31 64.22 77.13

Bridge 10.6 3.03 4.55 9.38 17.7

GTF 35.5 38.46 17.1 56.66 64.05

SV 14.36 9.1 15.93 19.18 35.3

LV 2.41 3.66 7.72 14.17 38.02

Ship 7.37 7.45 13.21 9.51 37.16

TC 51.79 41.97 39.96 61.61 89.41

BC 43.98 50.43 12.05 65.47 69.64

ST 31.35 66.98 46.88 57.52 59.28

SBF 22.3 40.34 9.09 51.36 50.3

RA 36.68 51.28 30.82 49.41 52.91

Harbor 14.61 11.14 1.36 20.8 47.89

SP 22.55 35.59 3.5 45.84 47.4

HC 11.89 17.45 0 24.38 46.3

Avg. 25.492 30.84 17.84 39.95 54.13

Table 5: Numerical results (AP) of baseline models eval-

uated with OBB ground truths. FR-O means Faster R-

CNN [27] trained on Oriented bounding boxes.

5.2. Evaluation prototypes

Images in DOTA are so large that they cannot be directly

sent to CNN-based detectors. Therefore, we crop a series of

1024× 1024 patches from the original images with a stride

set to 512. Note that some complete objects may be cut into

two parts during the cropping process. For convenience, we

denote the area of the original object as Ao, and the area of

divided parts Pi as ai, (i = 1, 2). Then we compute the

parts areas over the original object area, Ui =
ai

Ao

. Finally,

we label the part Pi with Ui < 0.7 as difficult and for the

other one, we keep it the same as the original annotation.

For the vertices of the newly generated parts, we need to

ensure they can be described as an oriented bounding box

with 4 vertices in the clockwise order with a fitting method.

In the testing phase, first we send the cropped image

patches to obtain temporary results and then we combine

the results together to restore the detecting results on the

original image. Finally, we use non-maximum suppression

(NMS) on these results based on the predicted classes. We

keep the threshold of NMS as 0.3 for the HBB experiments

and 0.1 for the oriented experiments. In this way, we indi-

rectly train and test CNN-based models on DOTA.

For evaluation metrics, we adopt the same mAP calcula-

tion as for PASCAL VOC.

5.3. Baselines with horizontal bounding boxes

Ground truths for HBB experiments are generated by

calculating the axis-aligned bounding boxes over original

annotated bounding boxes. To make it fair, we keep all the

experiments’ settings and hyper parameters the same as de-

picted in corresponding papers [27, 4, 26, 17].

The results of HBB prediction are shown in Tab. 4. Note

that results of SSD is a little bit lower than other models. We

suspect it should be attributed to the random crop operation

in SSD’s data augmentation strategies, which is quite use-

ful in general object detection while degrades in aerial ob-

ject detection for tremendous small training instances. The

results further indicate the huge differences between aerial

and general objects with respect to instance sizes.

5.4. Baselines with oriented bounding boxes

Prediction of OBB is difficult because the state of the

art detection methods are not designed for oriented objects.

Therefore, we choose Faster R-CNN as the base framework

for its accuracy and efficiency and then modify it to predict

oriented bounding boxes.

RoIs (Region of Interests) generated by RPN (Region

Proposal Network) are rectangles which can be written as

R = (xmin, ymin, xmax, ymax), for a more detailed in-

terpretation, R = {(xi, yi), i = 1, 2, 3, 4}, where x1 =
x4 = xmin, x2 = x3 = xmax, y1 = y2 = ymin, y3 =
y4 = ymax. In R-CNN procedure, each RoI is at-

tached to a ground truth oriented bounding box written as

G = {(gxi, gyi), i = 1, 2, 3, 4}. Then R-CNN’s output tar-

get T = {(txi, tyi), i = 1, 2, 3, 4} is calculated as, txi =
(gxi−xi)/w, tyi = (gyi−yi)/h, where w = xmax−xmin,

and h = ymax − ymin, similar as [13].

Other settings and hyper parameters are kept the same as

depicted in Faster R-CNN [27]. The numerical results are

shown in Tab. 5. To compare with our implemented Faster



R-CNN for OBB, we evaluate YOLOv2, R-FCN, SSD and

Faster R-CNN trained on HBB with the OBB ground truth.

As shown in Tab.5, the results of those methods trained on

HBB are much lower than Faster R-CNN trained on OBB,

indicating that for oriented object detection in aerial scenes,

those methods should be adjusted accordingly.

5.5. Experimental analysis

When analyzing the results exhibited in Table. 4, perfor-

mances in categories like small vehicle, large vehicle and

ship are far from satisfactory, which attributes to their small

size and densely crowded locations in aerial images. As a

contrast, large and discrete objects, like planes, swimming

pools and tennis courts, the performances are rather fair.

In Fig. 6, we compare the results between object detec-

tion experiments of HBB and OBB. For densely packed and

oriented objects shown in Fig. 6 (a) and (b), location preci-

sion of objects in HBB experiments are much lower than

OBB experiments and many results are suppressed through

post-progress operations. So OBB regression is the correct

way for oriented object detection that can be really inte-

grated to real applications. In Fig. 6 (c), large aspect ratio

objects annotated in OBB style like (harbor, bridge) are hard

for current detectors to regress. But in HBB style, those

objects usually have normal aspect ratios and as a conse-

quence, results seem to be fairly good as shown in Fig. 6 (d).

However in extremely dense scenes, e.g in Fig. 6 (e) and (f),

results of HBB and OBB are all not satisfying which implies

the defects of current detectors.

(a)

(b) (f)

(e)

(d)

(c)

Figure 6: Visualization results of testing on DOTA using

well-trained Faster R-CNN. TOP and Bottom respectively

illustrate the results for HBB and OBB in cases of orienta-

tion, large aspect ratio, and density.

6. Cross-dataset validations

The cross dataset generalization [29] is an evaluation

for the generalization ability of a dataset. We choose the

UCAS-AOD dataset [41] to do cross-dataset generalization

for its comparatively large number of data comparing to

other aerial object detection datasets. For there are no of-

ficial data splits for UCAS-AOD, we randomly select 1110

for training and 400 for testing. We choose YOLOv2 as

the testing detector for all experiments described below and

HBB-style annotations for all ground truths. Input image

size is changed to 960×544 around the original image sizes

in UCAS-AOD while other setting kept unchanged.

Results are shown in Tab. 6. The performance differ-

ence across two datasets is 35.8 for YOLOv2-A and 15.6

for YOLOv2-D models, respectively. It suggests that DOTA

hugely covers UCAS-AOD and furthermore has more pat-

terns and properties that are not shared in UCAS-AOD. And

both models get a low results on DOTA which reflects that

DOTA is much more challenging.

Testing set Detector Plane Small-vehicle Avg.

UCAS-AOD
YOLOv2-A 90.66 88.17 89.41

YOLOv2-D 87.18 65.13 76.15

DOTA
YOLOv2-A 62.92 44.17 53.55

YOLOv2-D 74.83 46.18 60.51

Table 6: Results of cross-dataset generalization. Top: De-

tection performance evaluated on UCAS-AOD. Bottom:

Detection performance evaluated on DOTA. YOLOv2-A

and YOLOv2-D are trained with UCAS-AOD and DOTA,

respectively.

7. Conclusion

We build a large-scale dataset for oriented objects de-

tection in aerial images which is much larger than any ex-

isting datasets in this field. In contrast to general object

detection benchmarks, we annotate a huge number of well-

distributed oriented objects with oriented bounding boxes.

We assume this dataset is challenging but similar to natu-

ral aerial scenes, which are more appropriate for practical

applications. We also establish a benchmark for object de-

tection in aerial images and show the feasibility to produce

oriented bounding boxes by modifying a mainstream detec-

tion algorithm.

Detecting densely packed small instances and extremely

large instances with arbitrary orientations in a large picture

would be particularly meaningful and challenging. We be-

lieve DOTA will not only promote the development of ob-

ject detection algorithms in Earth Vision, but also pose in-

teresting algorithmic questions to general object detection

in computer vision.
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