
Symbolic Security Predicates

Hunt Program Weaknesses

Alexey Vishnyakov @VishnyaSweet

Vlada Logunova

Eli Kobrin

Daniil Kuts

Darya Parygina

Andrey Fedotov @xfedotoffx

December 3, 2021

ISP RAS

arxiv.org/abs/2111.05770

https://twitter.com/VishnyaSweet
https://twitter.com/xfedotoffx
https://arxiv.org/abs/2111.05770

Motivation

• Novel code inevitably brings new bugs and weaknesses

• The security development lifecycle (SDL) improves application

quality and defends it from malicious attacks

• Fuzzing is continuously applied to detect crashes during

development process

• Advanced hybrid fuzzing benefits from dynamic symbolic execution

(DSE) that

• explores complex program states and

• automatically detects weaknesses

• We focus on automatic detection for undefined behavior and

memory access violation errors

• DSE generates seeds that trigger integer overflow, out-of-bounds

access, etc.

1/18

Hybrid Fuzzing Setup

• Build target with sanitizers for fuzzer

• Build target without sanitizers for Sydr

• Sydr explores new program states via branch inversion

• Fuzzer takes seeds from Sydr that increase code coverage

• Sydr runs on corpus and generates new seeds that trigger errors

• Generated seeds are verified on sanitizers

github.com/ispras/oss-sydr-fuzz 2/18

https://github.com/ispras/oss-sydr-fuzz

Dynamic Symbolic Execution

Dynamic symbolic execution with Sydr:

= + +

• Sydr uses DynamoRIO as a DBI framework

• Sydr uses Triton as a DSE engine

• Triton uses Z3 as an SMT solver

• Each input byte is modeled by a free symbolic variable

• Instructions interpretation produce SMT formulas

• Symbolic state maps registers and memory to SMT formulas

• Path predicate contains taken branch constraints

• Path predicate slicing removes irrelevant constraints from path

predicate

3/18

https://dynamorio.org/
https://triton.quarkslab.com/
https://github.com/Z3Prover/z3

Contributions

• Symbolic function semantics for common C/C++ standard library

functions

• Security predicates for undefined behavior and memory access

violation errors

• Juliet Dynamic measures dynamic bug detection tools accuracy on

Juliet test suite

github.com/ispras/juliet-dynamic 4/18

https://github.com/ispras/juliet-dynamic
https://github.com/ispras/juliet-dynamic

Function Semantics

• We just skip some functions to increase performance and reduce

overconstrainting (malloc, strcpy, printf, etc.)

• Both uppercase and lowercase characters are permissible for

tolower(int ch)

• However, relying on concrete execution trace ends up in

overconstrainting to single letter case

• We always update concrete state via DBI, but we skip symbolic

execution of functions

• We propose functions semantic models which can incorporate more

symbolic states and speed up the execution:

ite(ch − ’A’ < 26, ch − (’A’− ’a’), ch)

• Function semantics extend symbolic states and assist bug detection

• Moreover, we can perform function level security checks

5/18

String Comparison

• Character search: memchr, strchr, strstr, strlen, etc.

• Lexicographical comparison: memcmp, strcmp, etc.

• memcmp(lhs, rhs, count):

lhs[0] − rhs[0] +

count−1∑
i=1

(lhs[i] − rhs[i]) ∗ ite

(
i−1∧
k=0

lhs[k] = rhs[k], 1, 0

)

6/18

String to Integer Conversion

• strtol, strtoul, strtoll, std::cin, etc.

• atoi and scanf("%d", &x) call strto*l inside

• We compute in twice bigger bit vector and add constraints

LONG MIN ≤ x ≤ LONG MAX to overcome overflow

± (cncn−1...c1c0)b −→ x (1)

ak = ite(ck ≥ ’0’ ∧ ck ≤ ’9’ ∧ ck < ’0’ + b,

ck − ’0’,

ite(ck ≥ ’a’ ∧ ck < ’a’ + b − 10,

ck − ’a’ + 10, ck − ’A’ + 10))

(2)

|x | =
n∑

k=0

akb
k , x = ite(sign = ’-’,−|x |, |x |) (3)

(ck ≥ ’0’ ∧ ck ≤ ’9’ ∧ ck < ’0’ + b) ∨

(ck ≥ ’a’ ∧ ck < ’a’ + b − 10) ∨

(ck ≥ ’A’ ∧ ck < ’A’ + b − 10)

(4)

7/18

Function Semantics Benchmarking – Path Predicate

Application
Default Function Semantics

Branches Time Branches Time

bzip2recover 5131 6s 5131 6s

cjpeg 8008 19s 6992 18s

faad 470585 21m 466697 15m52s

foo2lava 910737 21m9s 905592 18m20s

hdp 66070 43s 29265 20s

jasper 837643 14m47s 771806 10m37s

libxml2 53400 40s 8873 12s

minigzip 8977 1m4s 8977 1m3s

muraster 7102 5s 4453 4s

pk2bm 3665 2s 658 1s

pnmhistmap pgm 967187 9m21s 967155 9m2s

pnmhistmap ppm 7864 12s 7822 11s

readelf 62713 41s 13649 10s

yices-smt2 19352 17s 10340 11s

yodl 8329 9s 5340 5s

8/18

Function Semantics Benchmarking – 2-Hour Benchmark

Application
Default Function Semantics

Accuracy SAT Queries Time Accuracy SAT Queries Time

bzip2recover 100% 2101 5131 47m35s 100% 2101 5131 45m38s

cjpeg 100% 50 2656 120m 100% 50 3750 120m

faad 97.11% 1974 3072 120m 98.91% 1560 2414 120m

foo2lava 87.1% 31 5998 120m 99.02% 205 6668 120m

hdp 76.69% 1171 4122 120m 72.22% 5893 12172 120m

jasper 99.62% 8457 22538 120m 96.61% 9528 24472 120m

libxml2 51.27% 1063 18485 120m 82.44% 1247 8970 5m53s

minigzip 51.47% 7569 8977 16m16s 51.47% 7569 8977 16m16s

muraster 99.94% 3304 6041 120m 100% 360 470 120m

pk2bm 99.45% 183 3664 15m55s 100% 189 657 4m55s

pnmhistmap pgm 99.99% 19351 28932 120m 100% 19964 29369 120m

pnmhistmap ppm 99.07% 107 7990 27m26s 99.12% 114 7948 25m31s

readelf 87.38% 1022 9541 120m 85.82% 2363 6541 120m

yices-smt2 73.79% 4258 16222 120m 70.27% 5534 11753 11m5s

yodl 36.25% 1153 9403 51m3s 98.26% 1150 6414 1m50s

9/18

Security Predicates

• Security predicate for some error type (weakness) is a Boolean

predicate that holds true iff the instruction (or function) triggers an

error

• We symbolically execute a program with input that doesn’t lead to

crash

• We construct security predicates that check for undefined behavior

and memory access violation

• We conjunct a security predicate with sliced branch constraints from

the path predicate, i.e. constraints over symbolic variables that are

relevant to variables in security predicate

• If SAT, Sydr reports an error and generates new seed reproducing

the error

10/18

Supported Security Predicates

• Division by zero

• Null pointer dereference

• Out-of-bounds access

• Integer overflow

11/18

Out-of-bounds Access

• We build security predicate at each symbolic pointer dereference

(that depends on user input)

• We maintain shadow heap and stack to determine address bounds

• However, both bounds cannot be always determined in binary code

• Sydr can heuristically retrieve the array base from concrete part of

symbolic address expression:

• [rdx + rax] – rax is concrete array base and rdx is symbolic index

• Moreover, Sydr wraps memory copy functions (memcpy, memmove,

memset, strncpy, etc.) to detect buffer overflows

12/18

Integer Overflow

• Integer overflow occurs quite often in binary code

• Checking all these situations slows down analysis and leads to false

positives

• Source is an instruction where integer overflow may happen

• Sink is a place in code where preceding flaw may lead to critical error

• We call solver in error sinks that use potentially overflowed value

• Conditional branches

• Memory access addresses

• Function arguments

• We create security predicates for unsigned (CF) and signed (OF)

overflows that are true when the corresponding flag is equal to 1

13/18

Signedness Detection

• We detect operation signedness in binary code:

• Iterate backwards over branch constraints that use variables from sink

• Conditional branches help to detect signedness (for instance, jl is

signed branch)

• We can also guess signedness when input data came from strto*l

14/18

DEMO: Integer Overflow to Buffer Overflow (Juliet Test)

• 32-bit program

• Input: +00000000002

• strtol in line 6

• Integer overflow in line 9

• Buffer overflow in line 12

• Solution: +01073741825

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main() {

5 int size;

6 fscanf(stdin, "%d", &size);

7 if (size <= 0) return 1;

8 size_t i;

9 int *p = malloc(size * sizeof(int));

10 if (p == NULL) return 1;

11 for (i = 0; i < (size_t)size; i++) {

12 p[i] = 0;

13 }

14 printf("%d\n", p[0]);

15 free(p);

16 }

15/18

Juliet Dynamic

• We adopted Juliet build system to make it suitable for dynamic

analysis

• We build each test case in separate binary

• Two versions: with sanitizers and without them

• We measure TP, TN, FP, FN based on Sydr output for version

without sanitizers

• Then we verify generated seeds on sanitizers

• Sydr evaluation artifacts are available in Juliet Dynamic repository

github.com/ispras/juliet-dynamic 16/18

https://github.com/ispras/juliet-dynamic
https://github.com/ispras/juliet-dynamic

Security Predicates Evaluation

CWE P=N
Textual errors Sanitizers verification

TPR TNR ACC TPR TNR ACC

Stack BOF 188 100% 100% 100% 100% 100% 100%

Heap BOF 376 100% 100% 100% 100% 100% 100%

Buffer Underwrite 188 100% 100% 100% 100% 100% 100%

Buffer Overread 188 100% 100% 100% 100% 100% 100%

Buffer Underread 188 100% 100% 100% 100% 100% 100%

Integer Overflow 2580 99.92% 90.89% 95.41% 98.10% 90.89% 94.50%

Integer Underflow 1922 99.90% 91% 95.45% 97.45% 91% 94.22%

Unexpected Sign Ext 752 100% 100% 100% 100% 100% 100%

Signed to Unsigned 752 99.87% 100% 99.93% 99.87% 100% 99.93%

Divide by Zero 564 66.67% 100% 83.33% 66.67% 100% 83.33%

Int Overflow to BOF 188 100% 100% 100% 100% 100% 100%

TOTAL 7886 97.55% 94.83% 96.19% 96.36% 94.83% 95.59%

github.com/ispras/juliet-dynamic 17/18

https://github.com/ispras/juliet-dynamic

FreeImage

We found some integer overflow errors during security audit of FreeImage

unsigned off_head, off_setup, off_image, i;

...

fseek(ifp, off_setup + 792, SEEK_SET);

dcraw_common.cpp:15545 - add eax, 0x318 - unsigned integer overflow

dcraw_common.cpp:15545 - call rax - error sink

Found new input "out/int_overflow_10_unsigned"

18/18

https://freeimage.sourceforge.io/

Questions?

No Symbolic Computation

• We just skip some functions to increase performance and reduce

overconstrainting

• Dynamic memory: malloc, calloc, realloc, free

• Data movement: strcpy, memcpy, memmove, etc.

• Printing omission: printf, std::cout, fprintf(stdout), etc.

Out-of-bounds Access Strong Precondition

• Sydr conjuncts security predicate with strong precondition to make

error most likely cause a crash, i.e. overwrite return address or

dereference negative address

• If UNSAT, Sydr falls back to solving the original security predicate

Strong Preconditions and Corner Cases

Strong preconditions:

• Overflowed *alloc size argument should be less than original

concrete value but not zero

• Overflowed memcpy size argument should be greater than original

concrete value

Corner cases:

• SHL/SAL flags do not distinguish integer overflow

• Compiler replaces sub eax, 1 with add eax, 0xffffffff

• Large number arithmetics (int64 t on 32-bit)

• Integer promotion and further truncation:

char a, b, c;

c = a + b;

add edx, esi

mov BYTE PTR [ebp-0x7], dl

	Motivation
	Background
	Contributions
	Function Semantics
	Security Predicates
	Out-of-bounds Access
	Integer Overflow

	Juliet Dynamic
	FreeImage
	Appendix

