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Abstract

Prompt-based learning has emerged as a suc-
cessful paradigm in natural language processing,
where a single general-purpose language model
can be instructed to perform any task specified by
input prompts. Yet task specification in robotics
comes in various forms, such as imitating one-
shot demonstrations, following language instruc-
tions, and reaching visual goals. They are often
considered different tasks and tackled by special-
ized models. We show that a wide spectrum of
robot manipulation tasks can be expressed with
multimodal prompts, interleaving textual and vi-
sual tokens. Accordingly, we develop a new sim-
ulation benchmark that consists of thousands of
procedurally-generated tabletop tasks with mul-
timodal prompts, 600K+ expert trajectories for
imitation learning, and a four-level evaluation
protocol for systematic generalization. We de-
sign a transformer-based robot agent, VIMA, that
processes these prompts and outputs motor ac-
tions autoregressively. VIMA features a recipe
that achieves strong model scalability and data
efficiency. It outperforms alternative designs in
the hardest zero-shot generalization setting by up
to 2.9× task success rate given the same train-
ing data. With 10× less training data, VIMA
still performs 2.7× better than the best competing
variant. Code and video demos are available at
vimalabs.github.io.

1. Introduction
Transformer models (Vaswani et al., 2017) have given rise
to remarkable multi-task consolidation across many AI do-
mains. For example, users can describe a task using natural
language prompt to GPT-3 (Brown et al., 2020), allowing
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the same model to perform question answering, machine
translation, text summarization, etc. Prompt-based learning
provides an accessible and flexible interface to communicate
a natural language understanding task to a general-purpose
model.

We envision that a generalist robot should have a similarly in-
tuitive and expressive interface for task specification. What
does such an interface for robot learning look like? As a
motivating example, consider a personal robot tasked with
household activities. We can ask the robot to bring us a cup
of water by a simple natural language instruction. If we
require more specificity, we can instead instruct the robot to
“bring me <image of the cup>”. For tasks requiring
new skills, the robot should be able to adapt, preferably
from a few video demonstrations (Duan et al., 2017). Tasks
that need interaction with unfamiliar objects can be eas-
ily explained via a few image examples for novel concept
grounding (Hermann et al., 2017). Finally, to ensure safe
deployment, we can further specify visual constraints like
“do not enter <image> room”.

To enable a single agent with all these capabilities, we make
three key contributions in this work: 1) a novel multimodal
prompting formulation that converts a wide spectrum of
robot manipulation tasks into one sequence modeling prob-
lem; 2) a large-scale benchmark with diverse tasks to
systematically evaluate an agent’s scalability and generaliza-
tion; and 3) a multimodal-prompted robot agent capable
of multi-task and zero-shot generalization.

We start with the observation that many robot manipu-
lation tasks can be formulated by multimodal prompts
that interleave language and images or video frames
(Fig. 1). For example, Rearrangement (Batra et al., 2020),
a type of Visual Goal, can be formulated as “Please re-
arrange objects to match this {scene image}”; Few-
shot Imitation can embed video snippet in the prompt
“Follow this motion trajectory for the wooden cube:
{frame1}, {frame2}, {frame3}, {frame4}”. Multi-
modal prompts not only have more expressive power than
individual modalities but also enable a uniform sequence
IO interface for training generalist robots. Previously, dif-
ferent robot manipulation tasks required distinct policy ar-
chitectures, objective functions, data pipelines, and training
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Figure 1: Multimodal prompts for task specification. We observe that many robot manipulation tasks can be expressed as
multimodal prompts that interleave language and image/video frames. We introduce VIMA, an embodied agent capable of
processing mulitimodal prompts (left) and controlling a robot arm to solve the task (right).

procedures (Aceituno et al., 2021; Stengel-Eskin et al., 2022;
Lynch & Sermanet, 2021), leading to siloed robot systems
that cannot be easily combined for a rich set of use cases. In-
stead, our multimodal prompt interface allows us to harness
the latest advances in large transformer models (Lin et al.,
2021; Tay et al., 2020; Khan et al., 2021) for developing
scalable multi-task robot learners.

To systematically evaluate agents with multimodal prompts,
we develop a new benchmark, named VIMA-BENCH, built
on the Ravens simulator (Zeng et al., 2020; Shridhar et al.,
2021). We provide 17 representative tasks with multimodal
prompt templates. Each task can be procedurally instanti-
ated into thousands of instances by various combinations of
textures and tabletop objects. VIMA-BENCH establishes a
four-level protocol to evaluate progressively stronger gener-
alization capabilities, from randomized object placement to
novel tasks (Fig. 2).

To this end, we introduce the VisuoMotor Attention agent
(VIMA) to learn robot manipulation from multimodal
prompts. The model architecture follows the encoder-
decoder transformer design proven to be effective and scal-
able in NLP (Raffel et al., 2020). VIMA encodes an input se-
quence of interleaving textual and visual prompt tokens with
a pre-trained language model (Tsimpoukelli et al., 2021)
and decodes robot control actions autoregressively for each
environment interaction step. The transformer decoder is
conditioned on the prompt via cross-attention layers that

alternate with the usual causal self-attention. Instead of
operating on raw images, VIMA adopts an object-centric
approach. We parse all images in the prompt or observa-
tion into objects by off-the-shelf then domain fine-tuned
detectors (He et al., 2017) and flatten them into sequences
of object tokens. To demonstrate the scalability of VIMA,
we train a spectrum of 7 models ranging from 2M to 200M
parameters. Our approach outperforms other design alterna-
tives, such as image patch tokens (Reed et al., 2022), image
Perceiver (Jaegle et al., 2021b; Alayrac et al., 2022), and
decoder-only conditioning (Radford et al., 2018). VIMA
obtains consistent performance gains across all four levels
of zero-shot generalization and all model capacities, in some
cases by a large margin (up to 2.9× task success rate given
the same amount of training data, and 2.7× better even
with 10× less data). We open-source the simulation envi-
ronment, training dataset, algorithm code, and pre-trained
model checkpoints to ensure reproducibility and facilitate fu-
ture work from the community. These materials along with
video demos are available at vimalabs.github.io.

2. Multimodal Prompts for Task Specification
A central and open problem in robot learning is task specifi-
cation (Agrawal, 2022). In prior literature (Stepputtis et al.,
2020; Dasari & Gupta, 2020; Brunke et al., 2021b), differ-
ent tasks often require diverse and incompatible interfaces,
resulting in siloed robot systems that do not generalize well
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Figure 2: Evaluation Protocol in VIMA-BENCH. We design 4 levels of evaluation settings to systematically measure the
zero-shot generalization capability of an agent. Each level deviates more from the training distribution, and thus is strictly
more challenging than the previous level.

across tasks. Our key insight is that various task specifica-
tion paradigms (such as goal conditioning, video demon-
stration, natural language instruction) can all be instantiated
as multimodal prompts (Fig. 1). Concretely, a multimodal
prompt P of length l is defined as an ordered sequence of ar-
bitrarily interleaved texts and images P :=

[
x1, x2, . . . , xl

]
,

where each element xi ∈ {text, image}.

Task Suite. The flexibility afforded by multimodal
prompts allows us to specify and build models for a
variety of task specification formats. Here we consider the
following six categories.

1. Simple object manipulation. Simple tasks like “put
<object> into <container>”, where each image
in the prompt corresponds to a single object;

2. Visual goal reaching. Manipulating objects to reach a
goal configuration, e.g., Rearrangement (Batra et al.,
2020);

3. Novel concept grounding. The prompt contains un-
familiar words like “dax” and “blicket”, which are
explained by in-prompt images and then immediately
used in an instruction. This tests the agent’s ability to
rapidly internalize new concepts;

4. One-shot video imitation. Watching a video demon-
stration and learning to reproduce the same motion
trajectory for a particular object;

5. Visual constraint satisfaction. The robot must ma-
nipulate the objects carefully and avoid violating the
(safety) constraints;

6. Visual reasoning. Tasks that require reason-
ing skills, such as appearance matching “move
all objects with same textures as <object>
into <container>”, and visual memory “put
<object> in <container> and then restore to
their original position”.

Note that these six categories are not mutually exclusive.
For example, a task may introduce a previously unseen
verb (Novel Concept) by showing a video demonstration, or
combine goal reaching with visual reasoning. More details
about the task suite are discussed in Appendix, Sec. B.

3. VIMA-BENCH: Benchmark for
Multimodal Robot Learning

Simulation Environment. Existing benchmarks are
generally geared towards a particular task specification.
To our knowledge, there is no benchmark that provides a
rich suite of multimodal tasks and a comprehensive testbed
for targeted probing of agent capabilities. To this end, we
introduce a new benchmark suite for multimodal robot
learning called VIMA-BENCH. We build our benchmark
by extending the Ravens robot simulator (Zeng et al.,
2020). VIMA-BENCH supports extensible collections of
objects and textures to compose multimodal prompts and to
procedurally generate a large number of tasks. Specifically,
we provide 17 tasks with multimodal prompt templates,
which can be instantiated into thousands of task instances.
Each task belongs to one or more of the 6 task categories
mentioned above. VIMA-BENCH can generate large
quantities of imitation learning data via scripted oracle
agents. More details are elaborated in Appendix, Sec. A.

Observation and Actions. The observation space of our
simulator includes RGB images rendered from both frontal
view and top-down view. Ground-truth object segmentation
and bounding boxes are also provided for training object-
centric models (Sec. 4). We inherit the high-level action
space from Zeng et al. (2020), which consists of primitive
motor skills like “pick and place” and “wipe”. These are
parameterized by poses of the end effector. Our simulator
also features scripted oracle programs that can generate
expert demonstrations by using privileged simulator state in-
formation, such as the precise location of all objects, and the
ground-truth interpretation of the multimodal instruction.

3



VIMA: General Robot Manipulation with Multimodal Prompts

Object Encoder

Multimodal Prompt Interaction

Cross-Attention

Self-Attention

Self-Attention

T5

Prompt Tokens

Text Token

Object token

Action token

History Tokens

Cross-Attention

Object Encoder Object Encoder

Sweep all into

without touching

Figure 3: VIMA Architecture. We encode the multimodal prompts with a pre-trained T5 model, and condition the
robot controller on the prompt through cross-attention layers. The controller is a causal transformer decoder consisting of
alternating self and cross attention layers that predicts motor commands conditioned on prompts and interaction history.

Training Dataset. We leverage oracles to generate a large
offline dataset of expert trajectories for imitation learning.
Our dataset includes 50K trajectories per task, and 650K
successful trajectories in total. We hold out a subset of
objects and textures for evaluation and designate 4 out of
17 tasks as a testbed for zero-shot generalization.

Evaluating Zero-Shot Generalization. Each task in
VIMA-BENCH has a binary success criterion and does not
provide partial reward. During test time, we execute agent
policies in the simulator for multiple episodes to compute
a percentage success rate. The average success rate over
all evaluated tasks will be the final reported metric.

We design a four-level evaluation protocol (Fig. 2) to sys-
tematically probe the generalization capabilities of learned
agents. Each level deviates more from the training distribu-
tion, and is thus strictly harder than the previous one.

1. Placement generalization. All prompts are seen ver-
batim during training, but only the placement of objects
on the tabletop is randomized at testing;

2. Combinatorial generalization. All textures and ob-
jects are seen during training, but new combinations of
them appear in testing;

3. Novel object generalization. Test prompts and the
simulated workspace include novel textures and ob-
jects;

4. Novel task generalization. New tasks with novel
prompt templates at test time.

4. VIMA: Visuomotor Attention Agent
Our goal is to build a robot agent capable of performing
any task specified by multimodal prompts. There is no
prior method that works out of the box with multimodal
prompts. To learn an effective multi-task robot policy, we
propose VIMA, a robot agent with a multi-task encoder-
decoder architecture and object-centric design (Fig. 3).
Concretely, we learn a robot policy π(at|P,H), where
H :=

[
o1, a1, o2, a2, . . . , ot

]
denotes the past interaction

history, and ot ∈ O, at ∈ A are observations and actions
at each interaction steps. We encode multimodal prompts
via a frozen pre-trained language model and decode robot
waypoint commands conditioned on the encoded prompts
via cross-attention layers. Unlike prior work (Florence et al.,
2019; Sieb et al., 2019; Zhu et al., 2022), VIMA adopts
an object-centric representation that computes tokens from
bounding box coordinates and cropped RGB patches.
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Figure 4: Scaling model and data. Top: We compare performance of different methods with model sizes ranging from 2M
to 200M parameters. Across all model sizes and generalization levels, VIMA outperforms baseline variants. Bottom: For a
fixed model size of 92M parameters we compare the effect of imitation learning dataset size with 0.1%, 1%, 10%, and full
data. VIMA is extremely sample efficient and can achieve performance comparable to other methods with 10× less data.

Tokenization. There are 3 formats of raw input in the
prompt — text, image of a single object, and image of a
full tabletop scene (e.g., for Rearrangement or imitation
from video frames). For text inputs, we use pre-trained T5
tokenizer and word embedding to obtain word tokens. For
images of full scenes, we first extract individual objects
using domain fine-tuned Mask R-CNN (He et al., 2017)
(Appendix, Sec. C.4). Each object is represented as a bound-
ing box and a cropped image. We then compute object
tokens by encoding them with a bounding box encoder and
a ViT (Dosovitskiy et al., 2020), respectively. Since Mask
R-CNN is imperfect, the bounding boxes can be noisy and
the cropped images may have irrelevant pixels. For images
of single objects, we obtain tokens in the same way except
with a dummy bounding box. Prompt tokenization produces
a sequence of interleaved textual and visual tokens. We then
follow the practice in Tsimpoukelli et al. (2021) and encode
the prompt via a pre-trained T5 encoder (Raffel et al., 2020).
Since T5 has been pre-trained on large text corpora, VIMA
inherits the semantic understanding capability and robust-
ness properties. To accommodate tokens from new modal-
ities, we insert MLPs between non-textual tokens and T5.

Robot Controller. A challenging aspect of designing
a multi-task policy is to select a suitable conditioning
mechanism. In our schema (Fig. 3), the robot controller
(decoder) is conditioned on the prompt sequence P by a
series of cross-attention layers between P and the trajectory

history sequence H. We compute key KP and value VP
sequences from the prompt and query QH from the tra-
jectory history, following the encoder-decoder convention
in Raffel et al. (2020). Each cross-attention layer then
generates an output sequence H′ = softmax

(
QHK⊺

P√
d

)
VP ,

where d is the embedding dimension. Residual connections
are added to connect higher layers with the input rollout
trajectory sequence. The cross-attention design enjoys three
advantages: 1) strengthened connection to prompt; 2) intact
and deep flow of the original prompt tokens; and 3) better
computational efficiency. VIMA decoder consists of L
alternating cross-attention and self-attention layers. Finally,
we follow common practice (Baker et al., 2022) to map
predicted action tokens to discretized poses of the robot
arm. See Appendix, Sec. C.2 for more details.

Training. We follow behavioral cloning to train our
models by minimizing the negative log-likelihood of
predicted actions. Concretely, for a trajectory with T steps,
we optimize minθ

∑T
t=1 − log πθ(at|P,H). The entire

training is conducted on an offline dataset with no simulator
access. To make VIMA robust to detection inaccuracies and
failures, we apply object augmentation by randomly inject-
ing false-positive detection outputs. After training, we select
model checkpoints for evaluation based on the aggregated
accuracy on a held-out validation set. The evaluation in-
volves interacting with the physics simulator. We follow the
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best practices to train Transformer models. See Appendix,
Sec. D for comprehensive training hyperparameters.

5. Experiments
In this section, we aim to answer three main questions:

1. What is the best recipe for building multi-task
transformer-based robot agents with multimodal
prompts?

2. What are the scaling properties of our approach in
model capacity and data size?

3. How do different components, such as visual tokeniz-
ers, prompt conditioning, and prompt encoding, affect
robot performance?

5.1. Baselines

Because there is no prior method that works out of the box
with our multimodal prompting setup, we make our best
effort to select a number of representative transformer-based
agent architectures as baselines, and re-interpret them to be
compatible with VIMA-BENCH:

Gato (Reed et al., 2022) introduces a decoder-only model
that solves tasks from multiple domains where tasks are
specified by prompting the model with the observation and
action subsequence. For a fair comparison, we provide the
same conditioning as VIMA, i.e., our multimodal encoded
prompts. Input images are divided into patches and encoded
by a ViT model to produce observation tokens. This variant
is referred to as “VIMA-Gato”.

Flamingo (Alayrac et al., 2022) is a vision-language model
that learns to generate textual completion in response to
multimodal prompts. It embeds a variable number of prompt
images into a fixed number of tokens via Perceiver (Jaegle
et al., 2021b), and conditions the language decoder on the
encoded prompt by cross-attention. Flamingo does not work
with embodied agents out of the box. We adapt it to support
decision-making by replacing the output layer with robot
action heads. We denote the method as “VIMA-Flamingo”.

VIMA-GPT is a decoder-only architecture conditioned on
tokenized multimodal prompts. It autoregressively decodes
the next actions given instructions and interaction histories.
Similar to prior work (Chen et al., 2021; Janner et al., 2021),
it encodes an image into a single state token by a ViT en-
coder and prepends the rollout trajectory with prompt tokens.
This baseline does not use cross-attention.

A more detailed comparison between these variants can be
found in Appendix, Sec. C.1.
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Figure 5: VIMA incurs much less performance drop than
baselines as we evaluate on progressively harder settings.

5.2. Evaluation Results

We compare VIMA against the baseline variants on four
levels of generalization provided in our benchmark for dif-
ferent model and training dataset sizes. Our empirical results
demonstrate that VIMA’s choice of object tokens combined
with cross-attention conditioning is the most effective recipe
among the model designs we consider.

Model Scaling. We train all methods for a spectrum of
model capacities from 2M to 200M parameters, evenly
spaced on the log scale (Fig. 4). The encoder size is kept
constant (T5-Base, 111M) for all methods and excluded
from the parameter count. Across all levels of zero-shot
generalization, we find that VIMA strongly outperforms
other alternatives. Although models like VIMA-Gato
and VIMA-Flamingo show improved performance with
bigger model sizes, VIMA consistently achieves superior
performance over all model sizes. We note that this can
only be achieved with both cross-attention and object token
sequence representations — altering any component will
significantly degrade the performance, especially in the low
model capacity regime (ablations in Sec. 5.3).

Data Scaling. Next we investigate how different methods
scale with varying dataset sizes. We compare model perfor-
mance at 0.1%, 1%, 10% and full imitation learning dataset
provided in VIMA-BENCH (Fig. 4). Note that to ensure
all methods are fairly pre-trained on the same amount of
data, we initialize baseline variants that directly learn from
raw pixels with MVP pre-trained ViT (Xiao et al., 2022;
Radosavovic et al., 2022). It is further MAE fine-tuned (He
et al., 2021), using the same in-domain data as for the
Mask R-CNN object detector. See Appendix, Sec. E.3 for
detailed setup. VIMA is extremely sample efficient and,
with just 1% of the data, can achieve performance similar
to baseline methods trained with 10× more data on L1 and
L2 levels of generalization. In fact, for L4 we find that with
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Figure 6: Ablation on visual tokenizers. We compare the performance of VIMA-200M model across different visual
tokenizers. Our proposed object tokens outperform all methods that learn directly from raw pixels, and Object Perceiver that
downsamples the object sequence to a fixed number of tokens.

just 1% of training data, VIMA already surpasses other
variants trained with entire dataset. Finally, across all levels
with just 10% of the data, VIMA can outperform other
architectures trained with the full dataset by a significant
margin. We hypothesize that the data efficiency can be
attributed to the object-centric representation employed
in the VIMA recipe, which is less prone to overfitting than
learning directly from pixels in the low-data regime. This
is consistent with findings from Sax et al. (2018), which
demonstrates that embodied agents conditioned on mid-
level visual representations tend to be significantly more
sample-efficient than end-to-end control from raw pixels.

Progressive Generalization. Finally, we compare the rel-
ative performance degradation as we test the models on pro-
gressively challenging zero-shot evaluation levels without
further fine-tuning (Fig. 5). Our method exhibits a minimal
performance regression, especially between L1 → L2 and
L1 → L3. In contrast, the baselines can degrade as much as
20%, particularly in more difficult generalization scenarios.
Although all methods degrade significantly when evaluated
on L4 (Novel Tasks), the performance drop for VIMA is
only half as severe as all other baselines. These results sug-
gest that VIMA has developed a more generalizable policy
and robust representations than the alternative approaches.

5.3. Ablation Studies

Through extensive experiments, we ablate different design
choices in VIMA and study their impact on robot decision
making. We focus on four aspects: visual tokenization,
prompt conditioning, prompt-encoding language models,
and policy robustness against distractions and corruptions.

Visual Tokenization. As explained in Sec. 4, VIMA
processes the prompt and observation images into a variable
number of object tokens with a domain fine-tuned Mask
R-CNN implementation. How important is this particular
choice of visual tokenizer? We study 5 different variants
and empirically evaluate their 4 levels of generalization per-
formance on VIMA-BENCH. 1) Ours (Oracle): instead of
using Mask R-CNN, we directly read out the ground-truth
bounding box from the simulator. In other words, we use
a perfect object detector to estimate the upper bound on the
performance of this study; 2) Object Perceiver: we apply a
Perceiver module to convert the variable number of objects
detected in each frame to a fixed number of tokens. Per-
ceiver is more computationally efficient because it reduces
the average sequence length; 3) Image Perceiver: the same
architecture as the Perceiver Resampler in VIMA-Flamingo,
which converts an image to a small, fixed number of tokens;
4) Image patches: following VIMA-Gato, we divide an
RGB frame into square patches, and extract ViT embedding
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Figure 7: Ablation on prompt conditioning. We compare our method (xattn: cross-attention prompt conditioning) with a
vanilla transformer decoder (gpt-decoder) across different model sizes. Cross-attention is especially helpful in low-parameter
regime and for harder generalization tasks.

tokens. The number of patches is greater than the output of
Image Perceiver; 5) Single image: VIMA-GPT’s tokenizer,
which encodes one image into a single token.

Fig. 6 shows the ablation results. We highlight a few find-
ings. First, we note that our Mask R-CNN detection pipeline
(Appendix, Sec. C.4) incurs a minimal performance loss
compared to the oracle bounding boxes, thanks to the object
augmentation (Sec. 4) that boosts robustness during train-
ing. Second, tokenizing from raw pixels (Image Perceiver,
patches, or single embedding) consistently underperforms
our object-centric format. We hypothesize that these tok-
enizers have to allocate extra internal capacity to parse the
objects from low-level pixels, which likely impedes learning.
Sax et al. (2018) echoes our finding that using mid-level
vision can greatly improve agent generalization compared to
an end-to-end pipeline. Third, even though Ours and Object
Perceiver both use the same object bounding box inputs,
the latter is significantly worse in decision making. We
conclude that it is important to directly pass the variable-
length object sequence to the robot controller rather than
downsampling to a fixed number of tokens.

Prompt Conditioning. VIMA conditions the robot con-
troller (decoder) on the encoded prompt by cross-attention.
A simple alternative is to concatenate the prompt P and in-
teraction history H into one big sequence, and then apply a
decoder-only transformer like GPT (Radford et al., 2018) to
predict actions. In this ablation, we keep the object tokenizer
constant and only switch the conditioning mechanism to
causal sequence modeling. Note that this variant is concep-
tually “VIMA-Gato with object tokens”. Fig. 7 shows the
comparison of VIMA (xattn) and the gpt-decoder
variant across 4 generalization levels. While the variant
achieves comparable performance in larger models,
cross-attention still dominates in the small-capacity range
and generalizes better in the most challenging L4 (Novel
Task) setting. Our hypothesis is that cross-attention helps
the controller stay better focused on the prompt instruction
at each interaction step. This bears a resemblance to the

empirical results in Sanh et al. (2021); Wang et al. (2022b),
which show that well-tuned encoder-decoder architectures
can outperform GPT-3 in zero-shot generalization.

Prompt Encoding. We vary the size of the pre-trained
T5 encoder to study the effect of prompt encoding. We
experiment with three T5 capacities: small (30M), base
(111M), and large (368M). We further fix the parameter
count of the decision-making part to be 200M. For all T5
variants, we fine-tune the last two layers and freeze all other
layers. We find no significant difference among the variants
(Appendix, Sec. E.4), thus we set base as default for all
our models.

Policy Robustness. We study the policy robustness
against increasing number of distractors and corrupted task
specifications, including incomplete prompts (randomly
masking out words with <UNK> token) and corrupted
prompts (randomly swapping words, which could have
changed the task meaning altogether). See Appendix,
Sec. E.5 for exact setup and results. VIMA exhibits minimal
performance degradation with increased distractors and
minor decrease with corrupted prompts. We attribute this
robustness to the high-quality pre-trained T5 backbone.

6. Related Work
Multi-Task Learning by Sequence Modeling. Trans-
formers (Vaswani et al., 2017) have enabled task unification
across many AI domains (Brown et al., 2020; Chen et al.,
2022a;b; Lu et al., 2022; Wang et al., 2022c). For example,
in NLP, the Natural Language Decathlon (McCann et al.,
2018) adopts a consistent question-answering format for
a suite of 10 NLP tasks. T5 (Raffel et al., 2020) unifies
all language problems into the same text-to-text format.
GPT-3 (Brown et al., 2020) and Megatron (Shoeybi et al.,
2019) demonstrate emergent behaviours of intuitive task
specifications by zero-shot prompting. In computer vision,
Pix2Seq (Chen et al., 2022b) casts many vision problems
into a unified sequence format. Florence (Yuan et al., 2021),
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BiT (Kolesnikov et al., 2020), and MuST (Ghiasi et al.,
2021) pre-train shared backbone models at scale for general
visual representations and transfer them to downstream
tasks. In multimodal learning, Perceiver (Jaegle et al.,
2021b;a) proposes an efficient architecture to handle
structured inputs and outputs. Flamingo (Alayrac et al.,
2022) and Frozen (Tsimpoukelli et al., 2021) design a
universal API that ingests interleaving sequences of images
and text and generates free-form text. Gato (Reed et al.,
2022) is a massively multi-task model across NLP, vision,
and embodied agents. Our work is most similar in spirit
to Gato, but we focus primarily on enabling an intuitive
multimodal prompting interface for a generalist robot agent.

Foundation Models for Embodied Agents. Foundation
models (Bommasani et al., 2021) have demonstrated
strong emergent properties. There are many ongoing
efforts to replicate this success for embodied agents (Yang
et al., 2023), focusing on 3 aspects. 1) Transformer
agent architecture: Decision Transformer and Trajectory
Transformer (Chen et al., 2021; Janner et al., 2021; Zheng
et al., 2022; Xu et al., 2022; 2023) leverage the powerful
self-attention models for sequential decision making. CLI-
Port (Shridhar et al., 2021), Perceiver-Actor (Shridhar et al.,
2022), and RT-1 (Brohan et al., 2022) apply large trans-
formers to robot manipulation tasks. BeT (Shafiullah et al.,
2022) and C-BeT (Cui et al., 2022) design novel techniques
to learn from demonstrations with multiple modes with
transformers. 2) Pre-training for better representations:
MaskViT (Gupta et al., 2022b), R3M (Nair et al., 2022),
VIP (Ma et al., 2022), and VC-1 (Majumdar et al., 2023)
pre-train general visual representations for robotic percep-
tion. Li et al. (2022b) fine-tunes from LLM checkpoints
to accelerate policy learning. MineDojo (Fan et al., 2022)
and Ego4D (Grauman et al., 2021) provide large-scale mul-
timodal databases to facilitate scalable policy training. 3)
LLMs for robot learning: SayCan (Ahn et al., 2022) lever-
ages PaLM (Chowdhery et al., 2022) for zero-shot concept
grounding. Huang et al. (2022a), Inner Monologue (Huang
et al., 2022b) and LM-Nav (Shah et al., 2022) apply LLMs to
long-horizon robot planning. PaLM-E (Driess et al., 2023)
is instead a multimodal language model that can be repur-
posed for sequential robotic manipulation planning. Ours
differs from these works in our novel multimodal prompting
formulation, which existing LLMs do not easily support.

Robot Manipulation and Benchmarks. A wide range
of robot manipulation tasks require different skills and
task specification formats, such as instruction follow-
ing (Stepputtis et al., 2020), one-shot imitation (Finn
et al., 2017; Duan et al., 2017), rearrangement (Batra
et al., 2020), constraint satisfaction (Brunke et al., 2021a),
and reasoning (Shridhar et al., 2020). Multiple physics
simulation benchmarks are introduced to study the above

tasks. For example, iGibson (Shen et al., 2020; Li et al.,
2021; Srivastava et al., 2021; Li et al., 2022a) simulates
interactive household scenarios. Ravens (Zeng et al., 2020)
and Robosuite (Zhu et al., 2020; Fan et al., 2021) design
various tabletop manipulation tasks with realistic robot
arms. CALVIN (Mees et al., 2021) develops long-horizon
language-conditioned tasks. Meta-World (Yu et al., 2019)
is a widely used simulator benchmark studying robotics
manipulation with tabletop settings. CausalWorld (Ahmed
et al., 2021) is a benchmark for causal structure and transfer
learning in manipulation, requiring long-horizon planning
and precise low-level motor control. AI2-THOR (Ehsani
et al., 2021; Deitke et al., 2022) is a framework that supports
visual object manipulation and procedural generation of
environments. Our VIMA-BENCH is the first robot learning
benchmark to support multimodal-prompted tasks. We
also standardize the evaluation protocol to systematically
measure an agent’s generalization capabilities.

An extended review can be found in Appendix, Sec. F.

7. Conclusion
In this work, we introduce a novel multimodal prompting
formulation that converts diverse robot manipulation tasks
into a uniform sequence modeling problem. We instantiate
this formulation in VIMA-BENCH, a diverse benchmark
with multimodal tasks and systematic evaluation protocols
for generalization. We propose VIMA, a conceptually sim-
ple transformer-based agent capable of solving tasks such
as visual goal reaching, one-shot video imitation, and novel
concept grounding with a single model. Through compre-
hensive experiments, we show that VIMA exhibits strong
model scalability and zero-shot generalization. Therefore,
we recommend our agent design as a solid starting point for
future work.
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A. Simulator Details
We build our VIMA-BENCH simulation suite upon the Ravens physics simulator (Zeng et al., 2020; Shridhar et al., 2021).
Specifically, it is supported by PyBullet (Coumans & Bai, 2016–2021) with a Universal Robot UR5 arm. The size of the
tabletop workspace is 0.5× 1m. Our benchmark contains extensible sets of 3D objects and textures. Instantiated from an
object-texture combination, all object instances can be rendered as RGB images appeared in multimodal prompts. Figure A.1
displays all 3D objects. Figure A.2 displays all textures.

L-shaped block block bowl container cross diamond

flower frame heart hexagon letter A letter E

letter G letter M letter R letter T letter V line

pallet pan pentagon ring round shorter block

small block square star three-sided
 rectangle

triangle

Figure A.1: Object Gallery in VIMA-BENCH textured with random textures. Bowl and pan are from Google Scanned
Objects (Downs et al., 2022), while others are from Ravens (Zeng et al., 2020).

The observation space of VIMA-BENCH includes RGB images from both frontal and top-down views. It also includes
a one-hot vector ∈ {0, 1}2 to indicate type of the end-effector ∈ {suction cup, spatula}. While a suction cup is equipped
in most manipulation tasks, a spatula is used in particular for visual constraint tasks, where an agent is asked to “wipe”
objects. VIMA-BENCH inherits the same action space from Zeng et al. (2020) and Shridhar et al. (2021), which consists of
primitive actions of “pick and place” for tasks with a suction cup as the end effector, or “push” for tasks with a spatula. Both
primitive actions contain two poses ∈ SE(2) specifying target poses of the end effector. For the “pick and place” primitive,
they represent the pick pose and the place pose. For the “push” primitive, they represent the push starting pose and push
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ending pose.

Similar to prior work (Zeng et al., 2020; Shridhar et al., 2021), VIMA-BENCH provides scripted oracles to generate
successful demonstrations for all tasks. We leverage them to construct an offline imitation dataset for behavioral cloning.
Given a prompt, these programmed bots can access privileged information, such as the correct object to pick and target
location to place.
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Figure A.2: Texture Gallery in VIMA-BENCH. The first row of image-based textures is from Blender Cloud Li-
braries (Weikert et al., 2022), while others are hard-coded.
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B. Task Suite
We develop 17 task templates that belong to 6 diverse categories. Thousands of individual task instances and their
corresponding multimodal prompts can be procedurally generated from these task templates. We use PyBullet (Coumans &
Bai, 2016–2021) as our backend and the default renderer to produce the RGB frames for training data and interactive test
environments. For demonstration purpose, we apply the NVISII (Morrical et al., 2020) ray tracing to enhance the visual
quality. We elaborate on each task in the following subsections.

B.1. Simple Object Manipulation

This task category asks agents to follow basic instructions specified by multimodal prompts.

Task 01: Pick the specified object(s) and place it (them) into the specified container.

• Prompt: Put the {object}1 into the {object}2.

• Description: The image placeholder {object}1 is the object to be picked and the {object}2 is the container
object. The agent requires to recognize the objects with the correct color-shape combinations. To extend the difficulties,
it supports more than one object to be picked or placed. For example, the prompt “Put the {object}1 and
{object}2 into the {object}3” asks to pick two different objects and place into a target container. We
uniformly sample different color-shape combos for objects to be picked and containers.

• Success Criteria: All specified object(s) to pick are within the bounds of the container object(s), with specified shapes
and textures provided in the prompt.

• Oracle Trajectory: Shown in Fig. A.3 with its multimodal prompt.

Put the             into the                      .

Figure A.3: Simple Object Manipulation: Task 01

Task 02: In the workspace, put the objects with a specified texture shown in the scene image in the prompt into container
object(s) with a specified color. This task requires the agent to find the correct object to manipulate by grounding the textural
attributes from both natural language descriptions and the visual scene images.

• Prompt: Put the {texture}1 object in {scene} into the {texture}2 object.

• Description: The text placeholder {texture}1 and {texture}2 are sampled textures for objects to be picked and
the container objects, respectively. The number of dragged objects with the same texture can be varied. {scene} is the
workspace-like image placeholder. There is a designated number of distractors with different textures (and potentially
different shapes) in the scene. For each distractor in the workspace, it has 50% chance to be either dragged or container
distractor object with different textures from those specified in the prompt.

• Success Criteria: All objects in the workspace with {texture}1 are within the bounds of the container object with
{texture}2.
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• Oracle Trajectory: Shown in Fig. A.4 with its multimodal prompt.

Put the green and blue stripe object in into the yellow paisley object.

Figure A.4: Simple Object Manipulation: Task 02

Task 03: Rotate objects clockwise by certain degrees along z-axis. Only rotationally asymmetric objects are considered in
this task.

• Prompt: Rotate the {object}1 {angles} degrees.

• Description: The agent is required to rotate all objects in the workspace specified by the image placeholder {object}1.
There are also objects with different color-shape combinations in the workspace as distractors. {angles} is the
sampled degree that needs to be rotated. A target angle is sampled from 30◦, 60◦, 90◦, 120◦, and 150◦.

• Success Criteria: The position of the specified object matches its original position, and the orientation matches the
orientation after rotating specific angles.

• Oracle Trajectory: Shown in Fig. A.5 with its multimodal prompt.

Rotate the             120 degrees.

Figure A.5: Simple Object Manipulation: Task 03
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B.2. Visual Goal Reaching

This task category requires agents to manipulate objects in the workspace to reach goal states represented as images shown
in prompts.

Task 04: Rearrange target objects in the workspace to match goal configuration shown in prompts. Note that to achieve
the goal configuration, distractors may need to be moved away first.

• Prompt: Rearrange to this {scene}.

• Description: Objects in the scene placeholder {scene} are target objects to be manipulated and rearranged. In the
workspace, the same target objects are spawned randomly, potentially with distractors randomly spawned as well. With
a pre-defined distractor conflict rate, the position of each distractor has this probability to occupy the position of any
target object such that the rearrangement can only succeed if moving away that distractor first.

• Success Criteria: The configuration of target objects in the workspace matches that specified in the prompt.

• Oracle Trajectory: Shown in Fig. A.6 with its multimodal prompt.

Rearrange to this                                                .

Figure A.6: Visual Goal Reaching: Task 04

Task 05: Extend the task 04 by requiring the agent to restore rearranged objects to the initial setup after the “rearranging”
phase.

• Prompt: Rearrange objects to this setup {scene} and then restore.

• Description: Same as the task 04, except introducing the instruction “restore”.

• Success Criteria: Meet the success criteria of the task 04, and then within the allowed max steps restore all target
objects to their initial configurations.

• Oracle Trajectory: Shown in Fig. A.7 with its multimodal prompt.
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Rearrange objects to this setup                                                   and then restore.

Figure A.7: Visual Goal Reaching: Task 05

B.3. Novel Concept Grounding

This task category requires agents to ground new concepts of adjectives, nouns, or verbs via visual perception and language
understanding. Similar task design can be found in prior work (Hill et al., 2021). Completing these tasks are challenging,
because the model should a) first understand prompts with interleaved texts, images, and even video frames; b) quickly
internalize new concepts that are different across task instances, which even tests the ability to meta-learn; and c) do
complicated reasoning such as comparing between “taller” vs “less taller” vs “shorter” and then ground this reasoning into
the robot action space.

Prompts consist of two parts: a definition part followed by an instruction part. In the definition part, novel concepts are
defined by multimodal illustrations with multiple support examples. In the instruction part, agents are asked to achieve
the goal by properly applying concepts from the definition part. The assignment of dummy object names is varied and
independent for each task instance such that tasks can only be solved if the agent applies the reasoning correctly. This ability
is also referred to as fast-mapping (Heibeck & Markman, 1987).

Task 06: Ground comparative adjectives by comparing the size or the textural saturation of objects and manipulating the
correct object(s) instructed in the prompt.

• Prompt: {demo object}1 is {novel adj} than {demo object}2. Put the {adv}
{novel adj} {object}1 into the {object}2.

• Description: The sampled adjective {novel adj} is a dummy adjective placeholder for agent to ground. By
default, the novel adjective set is {daxer, blicker, modier, kobar}. The real meaning can be related to
size (smaller/larger) or textural saturation (lighter/darker texture). The image placeholders {demo object}1 and
{demo object}2 illustrate how the novel adjective is defined. For example, if the real comparison is ”taller”, then
the sampled object in {demo object}1 is taller than {demo object}2. The choices of the novel adjective and the
real meaning are independently sampled for different task instances. For the instruction part, this task is similar to task
01, where the agent is required to pick the specified object(s) with the novel adjective attribute and then place it into the
specified container object. To avoid revealing the correct object to manipulate, we use a neutral texture for objects
appeared in the instruction part.

• Success Criteria: All target objects with the specified adjective attribute are within the bounds of the specified
container object.

• Oracle Trajectory: Shown in Fig. A.8 with its multimodal prompt.
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            is kobar than              .               is kobar than          .                is kobar than               .   Put the kobar             into the                      .

Figure A.8: Novel Concept Grounding: Task 06

Task 07: Orthogonal to task 06 by requiring to learn mappings of novel nouns.

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}2
{object}2. Put {novel name}1 into a {novel name}2.

• Description: Novel noun words are defined with the text placeholders {novel name}1 and {novel name}2,
following their image placeholders {object}1 and {object}2, for the target object and container object, respectively.
Novel nouns are sampled from {dax, blicket, wug, zup}. In the instruction part, objects are expressed as
novel nouns defined in the previous definition part. Distractors are defined the same as task 01.

• Success Criteria: All target object(s) are within the bounds of the container object(s).

• Oracle Trajectory: Shown in Fig. A.9 with its multimodal prompt.

This is a blicket                  . This is a zup               . Put a zup into a blicket.

Figure A.9: Novel Concept Grounding: Task 07

Task 08: Combination of tasks 06 and 07.

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}2
{object}2. {demo object}1 is {adj} than {demo object}2. Put the

{adv} {novel adj} {novel name}1 into the {novel name}2.

• Description: See task description for task 06 and task 07.

• Success Criteria: Similar as tasks 06 and 07.

• Oracle Trajectory: Shown in Fig. A.10 with its multimodal prompt.
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This is a wug              . This is a zup            .             is blicker than            .             is blicker than           .

              is blicker than            . Put the blicker zup into the wug.

Figure A.10: Novel Concept Grounding: Task 08

Task 09: A novel verb “twist” is defined as rotating a specific angle illustrated by several examples. This task is similar to
task 03, but it requires the agent to infer what is the exact angle to rotate from the prompt and to ground novel verbs that are
semantically similar but different in exact definitions.

• Prompt: "Twist" is defined as rotating object a specific angle.
For examples: From {before twist}i to {after twist}i. Now twist
all {texture} objects.

• Description: Both {before twist}i and {after twist}i are scene placeholders where {before twist}i
shows a randomly sampled object before “twisting” and {after twist}i shows the same object pose after “twisting”.
All examples illustrate the same sampled angle to rotate. In the workspace, the target objects have the texture specified
by {texture} and randomly sampled shapes.

• Success Criteria: Same as the task 03.

• Oracle Trajectory: Shown in Fig. A.11 with its multimodal prompt.
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Figure A.11: Novel Concept Grounding: Task 09
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B.4. One-Shot Video Imitation

This task category requires agents to imitate motions demonstrated through videos shown in prompts. We follow prior
works (Finn et al., 2017; Dasari & Gupta, 2020; Duan et al., 2017) to formulate the problem by giving one video
demonstration (represented as key frames in prompts), then test the learned imitator’s ability to produce target trajectories.
This setup is challenging because a) only one demonstration is available to the agent; b) the model needs to understand video
frames interleaved with textual instructions; and c) missing correspondences between demonstrations and target trajectories
since demonstrations only show partial key frames.

Task 10: Follow motions for specific objects.

• Prompt: Follow this motion for {object}: {frame}1...{frame}i... {frame}n.

• Description: Image placeholder {object} is the target object to be manipulated and {{frame}i} is set of workspace-
like scene placeholders to represent a video trajectory, where n is the trajectory length. There is an object spawned at
the center in both the workspace and the prompt video but with different textures as a distractor. The initial position of
the target object matches that in {frame}1.

• Success Criteria: In each step, the pose of the target object matches the pose in the corresponding video frame.
Incorrect manipulation sequences are considered as failures.

• Oracle Trajectory: Shown in Fig. A.12 with its multimodal prompt.

Follow this motion for                      :                                                                                                                           .

Figure A.12: One-shot video imitation: Task 10

Task 11: Stack objects with the order illustrated in the prompt video.

• Prompt: Stack objects in this order {frame}1...{frame}i...{frame}n.

• Description: There are multiple objects with the same shape but different textures spawned in the workspace without
any stacking initially. Distractor objects with different shapes are spawned in the workspace but not in the prompt
video. At each step of the prompt video, one object is stacked over another or put at an empty position.

• Success Criteria: Similar as task 10.

• Oracle Trajectory: Shown in Fig. A.13 with its multimodal prompt.

B.5. Visual Constraint Satisfaction

This task category requires agents to wipe a specific number of objects in the workspace to a goal region while also satisfy
the given visual constraint.
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Stack objects in this order                                                                                                                                        ..

Figure A.13: One-shot video imitation: Task 11

Task 12: Sweep the designated number of objects into a specified region without exceeding the boundary.

• Prompt: Sweep {quantifier} {object} into {bounds} without exceeding
{constraint}.

• Description: {object} is the image placeholder of the target object to be swept spawned with a random amount in
the workspace. Distractors have the same amount, same shape, but different color from target objects. {quantifier}
is the text placeholder to determine the target quantity of objects to be wiped, sampled from any, one, two, three,
and all. {bounds} is the image placeholder for a three-sided rectangle as the goal region. {constraint} is the
constraint line.

• Success Criteria: The exact number of target objects to be swept are all inside the specified region. Potential failure
cases include 1) any distractor being wiped into the region, 2) target object exceeding the constraint, or 3) incorrect
number of target objects being swept into the goal region.

• Oracle Trajectory: Shown in Fig. A.14 with its multimodal prompt.

Sweep any             into                           without exceeding                       .

Figure A.14: Visual Constraint Satisfaction: Task 12

Task 13: Sweep the designated number of objects into a specified region without touching the constraint.

• Prompt: Sweep {quantifier} {object} into {bounds} without touching {constraint}.

• Description: Similar as task 12 but requiring a different way to satisfy the constraint. The agent has to learn to avoid
contacting the constraint line in this case.

• Success Criteria: Similar as task 12 except that the constraint is to not touch the red line.

• Oracle Trajectory: Shown in Fig. A.15 with its multimodal prompt.
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Sweep two             into                           without touching                       .

Figure A.15: Visual Constraint Satisfaction: Task 13

B.6. Visual Reasoning

This task category requires agents to make decisions by reasoning over or memorizing information conveyed through
multimodal prompts.

Task 14: By reasoning the “same texture”, the agent is required to pick all objects in the workspace with the same texture
as the container objects specified in the prompt and place them into it.

• Prompt: Put all objects with the same texture as {object} into it.

• Description: {object} is the sampled goal container object. In the workspace, there are objects with the same
texture as the container but potentially different shapes. Distractors with different textures are spawned.

• Success Criteria: All objects with the same texture as the goal container are within the bounds of the container.

• Oracle Trajectory: Shown in Fig. A.16 with its multimodal prompt.

Put all objects with the same texture as                          into it.

Figure A.16: Visual Reasoning: Task 14

Task 15: By reasoning the “same shape”, the agent is required to pick all objects in the workspace with the same top-down
profile as the goal container specified in the prompt and place them into it. For example, blocks and boxes have the same
rectangular profile.

• Prompt: Put all objects with the same profile as {object} into it.

• Description: Similar to the task 14 except the objects to be picked and placed have the same shape. There are three
different shapes: rectangular-like (e.g. block and pallet), circle-like (e.g. ring and bowl), and undetermined for the rest.
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• Success Criteria: All objects with the same shape as the container are within the container.

• Oracle Trajectory: Shown in Fig. A.17 with its multimodal prompt.

Put all objects with the same profile as                      into it.

Figure A.17: Visual Reasoning: Task 15

Task 16: Put the target object into the container, and then put one of its old neighbors into the same container.

• Prompt: First put {object}1 into {object}2 then put the object that was
previously at its {direction} into the same {object}2.

• Description: Objects in image placeholders {object}1 and {object}2 are the target object to be picked and the
container, respectively. We then ask the agent to put one of old neighbors of the previous target object into the same
container. The old neighboring object is specified through cardinal directions {north, south, west, east}.

• Success Criteria: The target object and the correct neighboring object are inside the container.

• Oracle Trajectory: Shown in Fig. A.18 with its multimodal prompt.

First put into then put the object that was previously at its west into the same .

Figure A.18: Visual Reasoning: Task 16

Task 17: Pick and place the target object specified in the prompt into different containers in order then restore to the initial
container.

• Prompt: Put {object}1 into {object}2 . Finally restore it into its original
container.

• Description: The object in the image placeholder {object}1 is the target object to be manipulated across the
task. There are more than one target containers (e.g. “Put {object}1 into {object}2 then {object}3.
Finally restore it into its original container” for two target containers to be placed in order).
The rest of spawned containers naturally becomes distractors.
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• Success Criteria: The target object is first put into multiple containers following the specific order. Finally it should
be restored into its original container.

• Oracle Trajectory: Shown in Fig.A.19 with its multimodal prompt.

Put              into                       then                    .  Finally restore it into its original container.

Figure A.19: Visual Reasoning: Task 17
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C. Model Architecture
In this section, we provide comprehensive details about VIMA model architecture as well as other adapted baseline methods.
We implement all models in PyTorch (Paszke et al., 2019) and adapt Transformer-related implementation from Wolf et al.
(2019).

C.1. Summary of Different Methods

We summarize differences between VIMA and other baseline variants in Table 1. In the column “Prompt Conditioning”,
an alternative to cross-attention is to first concatenate prompt and interaction into a big sequence, then repetitively apply
transformer decoders to predict actions. It is referred to as “Direct modeling”. The relative computation cost is quadratically
proportional to the number of observation tokens.

Table 1: Comparison of different methods.

Visual Tokenizer Prompt Conditioning Number of Observation Tokens per Step

Ours
Object tokens consisting of
cropped images and bounding boxes Cross-attention Equal to number of objects, typically 3 to 8

VIMA-Gato
(Reed et al., 2022) Image patch tokens encoded by a ViT Direct modeling Equal to number of image patches, 16

VIMA-Flamingo
(Alayrac et al., 2022)

Image patch tokens encoded by a ViT,
further downsampled by a Perceiver module Cross-attention Equal to number of learned query vectors, 4

VIMA-GPT
(Brown et al., 2020) Single image token encoded by a ViT Direct modeling Single visual feature, 1

C.2. VIMA Architecture

C.2.1. MULTIMODAL PROMPT TOKENIZATION

As introduced in Section 4, there are 3 types of input formats in multimodal prompts, namely (1) text inputs, (2) images of
full scenes, and (3) images of single objects.

For text inputs, we follow the standard pipeline in NLP to first tokenize raw language to discrete indices through pre-trained
t5-base tokenizer. We then obtain corresponding word tokens from the embedding look-up of the pre-trained t5-base
model. For images of full scenes, we first parse the scene through a fine-tuned Mask R-CNN detection model (He et al.,
2017; Wu et al., 2019) to extract individual objects. Each object representation contains a bounding box and a cropped
image. The bounding box is in the format of

[
xcenter, ycenter, height,width

]
. We normalize it to be within [0, 1] by dividing

each dimension with corresponding upper-bound value. We then pass it through a bounding box encoder MLP and obtain
a feature vector. To process the cropped image, we first pad non-square image to a square by padding along the shorter
dimension. We then resize it to a pre-configured size and pass it through a ViT (trained from scratch) to obtain the image
feature. Finally, an object token is obtained by concatenating the bounding box feature and the image feature and mapping to
the embedding dimension. For images of single objects, we obtain tokens in the same way except with a dummy bounding
box. Detailed model hyperparameters about tokenization are listed in Table 2.

After obtaining a sequence of prompt tokens, we follow Tsimpoukelli et al. (2021) to pass it through a pre-trained t5-base
encoder to obtain encoded prompt. Note that we add adapter MLP between object tokens and the T5 encoder. To prevent
catastrophic forgetting, VIMA only fine-tunes the last two layers of the language encoder with layer-wise learning rate
decay (He et al., 2021) but freezes all other layers. We adopt learned absolute positional embedding. Model hyperparameters
are listed in Table 2 as well.

C.2.2. OBSERVATION ENCODING

Since all RGB observations are images of full scenes, we follow the same procedure discussed above to obtain flattened
object tokens. Because we provide RGBs from two views (frontal and top-down), we order object tokens by following the
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Table 2: Model hyperparameters for multimodal prompt tokenization.

Hyperparameter Value

Text Tokenization

Tokenizer t5-base tokenizer
Embedding Dimension 768

Image Tokenization

ViT Input Image Size 32 × 32
ViT Patch Size 16
ViT Width 768
ViT Layer 4
ViT Number of Heads 24

Bounding Box MLP

Hidden Dimension 768
Hidden Depth 2

Prompt Encoding

Pre-Trained LM t5-base
Unfrozen Last N Layers 2
Positional Embedding Absolute
Token Adapter MLP Depth 2

order of
[
frontal, top-down

]
. We one-hot encode the state of the end effector. We then concatenate object tokens with the

end-effector state and transform to observation tokens. We adopt learned absolute positional embedding. Detailed model
hyperparameters about observation encoding is provided in Table 3.

Table 3: Model hyperparameters for observation encoding.

Hyperparameter Value

Observation Token Dimension 768
End Effector Embedding Dimension 2
Positional Embedding Absolute

C.2.3. ACTION ENCODING

Since our model is conditioned on observation-action interleaved history, we also tokenize past actions. We follow common
practice in Chen et al. (2021); Zheng et al. (2022) to encode past actions with a two-layer MLP. It has a hidden dimension of
256. We then map outputs to token dimension and obtain action tokens.

C.2.4. SEQUENCE MODELING

The robot controller in VIMA is a causal decoder that autoregressively predicts actions. To condition the decoder on prompt
tokens, we perform cross-attention between history tokens and prompt tokens (Figure 3). Concretely, we pass history tokens
as the query sequence and prompt tokens as the key-value sequence into cross-attention blocks. The output prompt-aware
trajectory tokens then go through causal self-attention blocks. We alternate cross-attention and self-attention L times. This
procedure is technically described in Pseudocode 1.
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def xattn_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
traj_pos_embd, # learned positional embedding for trajectory
prompt_pos_embd, # learned positional embedding for prompt

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# add positional embedding to trajectory tokens
x = traj_tokens + traj_pos_embd
# add positional embedding to prompt tokens
prompt_tokens = prompt_tokens + prompt_pos_embd

# apply xattn and causal self-attn
for i in range(num_layers):

# cross-attention
x = x + attn_i(q=x, kv=prompt_tokens)
# feed forward
x = x + ffw_xattn_i(x)
# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 1: Cross-attention operation that conditions the trajectory history on prompt. We repetitively alternate cross-
attention and self-attention to model the trajectory given a specific task.

C.2.5. ACTION DECODING

After obtaining the predicted action token, we map it to the action space A and obtain the predicted action. This is achieved
though a group of action heads. Since the action space consists of two SE(2) poses, for each pose we use six independent
heads to decode discrete actions (two for xy coordinate and four for rotation represented in quaternion). These discrete
actions are then integrated and mapped to continuous actions through affine transformation. The two poses are modeled
independently. Early ablations show that this independent modeling is equally good as alternative techniques, such as
autoregressive decoding (Vinyals et al., 2019; OpenAI et al., 2019). Detailed model hyperparameters are listed in Table 4.

Table 4: Model hyperparameters for action decoders.

Hyperparameter Value

Hidden Dimension 512
Hidden Depth 2
Activation ReLU
X-Axis Discrete Bins 50
Y-Axis Discrete Bins 100
Rotation Discrete Bins 50

C.3. Baselines Architectures

In this section, we elaborate model architectures for adapted baseline methods. Some components such as the action decoder
are same across all models. Therefore, we only discuss unique model components.
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C.3.1. VIMA-GATO

Gato (Reed et al., 2022) introduces a decoder-only model that solves tasks from multiple domains including robotics,
video game, image captioning, language modeling, etc. Different tasks are specified by supplying the model with an initial
sequence of corresponding tokens. For example, in tasks involving decision making, these tokens include observation and
action tokens. For fair comparison, we provide the same conditioning as VIMA, i.e., our multimodal tokenized prompts.
This adapted baseline variant is referred to as “VIMA-Gato”. Similar to our method, VIMA-Gato also predicts actions
in an autoregressive manner. VIMA-Gato and our method share the same training philosophy to only optimize the causal
behavior cloning objective. However, unlike our method that adopts an object-centric representation to treat individual
objects as observation tokens, VIMA-Gato divides input images into patches and encodes them by a ViT (Dosovitskiy et al.,
2020) to produce observation tokens. Furthermore, VIMA-Gato relies on causal self-attention to model entire trajectory
sequences starting with prompt tokens. Hyperparameters of VIMA-Gato’s ViT is listed in Table 5. The transformer-decoder
style sequence modeling is technically illustrated in Pseudocode 2.

Table 5: Model hyperparameters for ViT used in baseline methods.

Hyperparameter Value

Image Size 64 × 128
Patch Size 32
ViT Width 768
ViT Layers 4
ViT Heads 24

def causal_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
sep_token, # the [1, d] learned token to separate prompt and trajectory history
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
pos_embd, # learned positional embedding

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# assemble input tokens
x = concat([prompt_tokens, sep_token, traj_tokens])
x = x + pos_embd

# apply GPT layers with causal mask
for i in range(num_layers):

# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 2: Plain sequence modeling that directly concatenates prompt and trajectory history and repetitively perform
causal self-attention operation.

C.3.2. VIMA-FLAMINGO

Flamingo (Alayrac et al., 2022) is a vision-language model that learns to generate textual completion in response to
multimodal prompts. It embeds a variable number of prompt images into a fixed number of tokens via the Perceiver
Resampler module (Jaegle et al., 2021b), and conditions the language decoder on encoded prompts by cross-attention.
Flamingo does not work with embodied agents out of the box. We adapt it by replacing the output layer with robot action
heads (hyperparameters listed in Table 4) and using tokenized rollout histories as inputs. We thus call it “VIMA-Flamingo”.
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We train it end-to-end with causal behavior cloning loss. VIMA-Flamingo differs from ours since it processes image
observations into a fixed number of visual tokens through a learned Perceiver Resampler. Model hyperparameters for our
reimplementation of the Perceiver Resampler is listed in Table 6.

Table 6: Model hyperparameters for Perceiver Resampler used in VIMA-Flamingo method.

Hyperparameter Value

Number of Latent Queries 4
Number of Blocks 4
Self-Attn per Block 4
Self-Attn Heads 24
Cross-Attn Heads 24

C.3.3. VIMA-GPT

VIMA-GPT is a GPT-based behavior cloning agent conditioned on tokenized multimodal prompts with the GPT architecture.
It autoregressively decodes next actions given multimodal prompts and interaction histories. We optimize this method
end-to-end with causal behavior cloning loss. Similar to prior works of casting RL problems as sequence modeling (Chen
et al., 2021; Janner et al., 2021; Zheng et al., 2022), it encodes an image into a single “state” token through a learned ViT
encoder. It also directly models entire trajectory sequences prepended with prompt tokens. Therefore, it differs from our
method in the representation of observation tokens and prompt conditioning. For visual tokenizer, we employ a learned ViT
with hyperparameters listed in Table 5.

C.4. Mask R-CNN Detection Model

Finally, we elaborate on the mask R-CNN model (He et al., 2017) for scene parsing and object extraction. We fine-tune a
pre-trained lightweight mask R-CNN (mask rcnn R 50 FPN 3x) from Wu et al. (2019) to adapt to scenes and images in
our tabletop environment. We fine-tune it on a subset of agent training dataset. It contains 100 trajectories for each task,
resulting in 22,741 images and 61,822 annotations in total. We use learning rate 5× 10−4 and train for 10 epochs. During
model selection, we particularly favor models with high recall to reduce the number of missed objects. To compensate for
resulting false-positives, we adopt object augmentation during agent training (Appendix, Sec. D).

A visualization of its output is provided in Figure A.20. We do not use the predicted object names in our models.

Figure A.20: Visualization of fine-tuned mask R-CNN. Left: Prediction from the detection model. Right: Ground-truth
scene parsing. The detection model agrees well with ground-truth objects.
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D. VIMA Training Details
We follow the best practice to train Transformer models using the AdamW optimizer (Loshchilov & Hutter, 2019), learning
rate warm-up, cosine annealing (Loshchilov & Hutter, 2017), etc. Training hyperparameters are provided in Table 7. We use
GEGLU activation (Shazeer, 2020) inside Transformer models across all methods.

Table 7: Hyperparameters used during training.

Hyperparameter Value

Learning Rate 0.0001
Warmup Steps 7K
LR Cosine Annealing Steps 17K
Weight Decay 0
Dropout 0.1
Gradient Clip Threshold 1.0

To make trained models robust to detection inaccuracies and failures, we apply object augmentation by randomly injecting
false-positive detection outputs. Concretely, for observation at each time step, we sample number of augmented objects i.i.d.
naugmented objects ∼ Cat(K,p), where Cat(·) denotes a categorical distribution with K supports parameterized by p. For each
augmented object, we then randomly sample a bounding box and corresponding cropped image to add to object tokens. In
our experiments, we set p = {0 : 0.95, 1 : 0.05} with K = 2.

D.1. Vary Model Capacity

We train a spectrum of 7 models ranging from 2M to 200M parameters. To vary the model capacity, we follow prior
work (Chowdhery et al., 2022) to change embedding dimension and number of layers. We list configurations for methods
with cross-attention prompt conditioning (i.e., ours and VIMA-Flamingo) in Table 8, and configurations for methods only
with causal self-attention (i.e., VIMA-Gato and VIMA-GPT) in Table 9.

Table 8: Configurations for differently sized models with cross-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks X-Attn Heads Self-Attn Heads

2 256 1 8 8
4 256 2 8 8
9 320 3 10 10
20 384 4 12 12
43 512 5 16 16
92 640 7 20 20

200 768 11 24 24

Table 9: Configurations for differently sized models with causal self-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks Self-Attn Heads

2 64 1 2
4 96 2 3
9 192 3 6

20 320 4 10
43 512 5 16
92 768 7 24
200 768 18 24
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E. Extended Experiment Results
E.1. Training Time and Compute

All experiments are conducted on cluster nodes, each with 8 NVIDIA V100 GPUs. The largest experiment takes approxi-
mately one day. We utilize DDP (distributed data parallel) to accelerate the training.

E.2. Model Scaling

E.2.1. NUMERICAL RESULTS

We present numerical results that constitute Fig. 4 in Table 10. The claim of “up to 2.9× improvement” made in Abstract
and Sec. 1 is calculated as follows. The best competing variant is VIMA-Gato. On the hardest L4, our method shows the
most significant relative improvement with a model size of 20M. We compute the performance gap, divide by VIMA-Gato’s
performance, and only keep the first digit after decimal to obtain the result.

Table 10: Model scaling numerical results that constitute Fig. 4. Numbers in the first row indicate robot controller parameter
count.

Level Method 2M 4M 9M 20M 43M 92M 200M

L1

Ours 76.5 79.2 77.4 77.1 78.2 79.3 81.5
VIMA-Gato 37.6 42.6 44.2 46.1 49.5 57.0 58.0

VIMA-Flamingo 42.4 48.9 45.6 46.6 47.0 47.2 47.4
VIMA-GPT 30.0 37.0 44.9 48.5 48.0 47.9 46.9

L2

Ours 77.1 79.2 78.2 77.6 77.6 80.1 81.5
VIMA-Gato 35.9 39.3 41.3 44.1 46.6 53.9 53.1

VIMA-Flamingo 41.0 46.5 44.6 44.6 45.4 47.1 46.0
VIMA-GPT 29.8 35.0 43.3 45.8 45.9 47.4 46.9

L3

Ours 77.3 77.8 78.5 77.3 81.8 81.9 78.7
VIMA-Gato 29.0 33.2 37.5 40.2 42.5 45.6 46.0

VIMA-Flamingo 35.0 41.9 39.2 40.5 40.3 42.1 40.7
VIMA-GPT 25.3 29.3 39.0 43.5 43.0 42.6 42.2

L4

Ours 25.7 49.0 47.1 48.8 49.0 49.6 48.6
VIMA-Gato 13.3 13.2 12.2 12.3 12.8 13.5 16.8

VIMA-Flamingo 12.3 11.6 10.7 12.1 10.7 11.1 12.1
VIMA-GPT 11.1 10.3 12.7 14.2 11.8 12.1 12.1

E.3. Data Scaling

E.3.1. DETAILED SETUP

To ensure all methods are fairly pre-trained on the same amount of data (i.e., they have roughly the same amount of built-in
information, thus the x-axis in Fig. 4 faithfully corresponds to the extra bits of information seen during further training), we
initialize variants that directly learn from raw pixels with MVP pre-trained ViT (Xiao et al., 2022; Radosavovic et al., 2022).
It is further MAE fine-tuned (He et al., 2021), using the same in-domain data as for the Mask R-CNN object detector. Note
that the MVP pre-trained then domain fine-tuned ViT also updates weights jointly with robot controllers later on. We use the
ViT-B backbone from MVP. The in-domain data for fine-tuning include 100 trajectories for each task.

E.3.2. NUMERICAL RESULTS

We present numerical results that constitute Fig. 4 in Table 11. The claim of “2.7× improvement” made in Abstract and
Sec. 1 is calculated as follows. The best competing variant is VIMA-Gato that achieves 12.2% average success rate trained
with full data on L4. Our method trained with 10% data achieves 46% average success rate on the same level. We compute
the performance gap, divide by VIMA-Gato’s performance, and only keep the first digit after decimal to obtain the result.
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Table 11: Data scaling numerical results that constitute Fig. 4. Numbers in the first row indicate the size of training dataset.

Level Method 0.1% 1% 10% Full (100%)

L1

Ours 0.0 36.3 76.3 79.3
VIMA-Gato 0.0 11.5 41.5 57.5

VIMA-Flamingo 0.0 2.0 37.7 52.3
VIMA-GPT 0.0 6.0 30.9 52.8

L2

Ours 0.0 34.3 75.8 80.1
VIMA-Gato 0.0 10.1 37.9 41.2

VIMA-Flamingo 0.0 2.0 33.8 32.6
VIMA-GPT 0.0 6.0 29.7 40.3

L3

Ours 0.0 15.4 73.2 81.9
VIMA-Gato 0.0 10.2 34.8 40.9

VIMA-Flamingo 0.0 1.0 33.1 33.6
VIMA-GPT 0.0 5.5 28.6 39.2

L4

Ours 0.0 17.0 46.0 49.6
VIMA-Gato 0.0 2.7 10.8 12.2

VIMA-Flamingo 0.0 0.5 11.2 12.0
VIMA-GPT 0.0 1.1 7.1 14.3

E.3.3. WHAT IF BASELINE VARIANTS’ VIT IS TRAINED FROM SCRATCH?

We further investigate what if baseline variants’ ViT is trained from scratch and end-to-end with the robot controllers. We
visualize the results in Fig. A.21 and numerically present them in Table 12. We annotate with arrows to indicate performance
increase (↑) and decrease (↓). We highlight two findings.

First, MVP pre-trained ViT is most beneficial in the setting with sufficient in-domain training data (i.e., the 10% data
scenario). It boosts the performance for the most competing baseline variant VIMA-Gato. However, in other settings
with abundant in-domain data (i.e., the full data scenario) or insufficient in-domain data (i.e., 1% and 0.1% scenarios), the
advantage of MVP pre-trained ViT diminishes and it even becomes detrimental. This aligns with the finding in previous
empirical studies (Hansen et al., 2022). Second, in settings with reasonable amounts of in-domain data (i.e., the 1%, 10%,
and 100% scenarios), our recommended recipe always outperforms other variants. We notice that such a data demand
generally can be satisfied by both simulated robotics data (Mandlekar et al., 2021) and real robotics data (Dasari et al.,
2019; Brohan et al., 2022). Therefore, it demonstrates that our recommended recipe is highly sample-efficient compared to
alternative designs, especially under practical settings.
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Figure A.21: Data scaling when baseline variants’ ViT is trained from scratch. In settings with reasonable amounts of
in-domain data (i.e., the 1%, 10%, and 100% scenarios), our recommended recipe always outperforms other variants.

E.4. Vary T5 Encoder Sizes

We vary the size of the pre-trained T5 encoder (Raffel et al., 2020) to study the effect of prompt encoding. We experiment
with three T5 model capacities: t5-small (30M), t5-base (111M), and t5-large (368M). For all T5 variants, we
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Table 12: Data scaling when baseline variants’ ViT is trained from scratch, indicated inside parentheses. ↑ and ↓ denote
performance increase and decrease. Numbers in the first row represent the size of training dataset.

Level Method 0.1% 1% 10% Full (100%)

L1

Ours 0.0 36.3 76.3 79.3
VIMA-Gato 0.0 (2.2 ↑) 11.5 (11.9 ↑) 41.5 (26.5 ↓) 57.5 (57.0 ↓)

VIMA-Flamingo 0.0 (0.0) 2.0 (6.2 ↑) 37.7 (33.9 ↓) 52.3 (47.2 ↓)
VIMA-GPT 0.0 (0.0) 6.0 (17.0 ↑) 30.9 (38.9 ↑) 52.8 (47.9 ↓)

L2

Ours 0.0 34.3 75.8 80.1
VIMA-Gato 0.0 (2.0 ↑) 10.1 (11.4 ↑) 37.9 (24.6 ↓) 41.2 (53.9 ↑)

VIMA-Flamingo 0.0 (0.0) 2.0 (6.0 ↑) 33.8 (34.1 ↑) 32.6 (47.1 ↑)
VIMA-GPT 0.0 (0.0) 6.0 (15.2 ↑) 29.7 (36.7 ↑) 40.3 (47.4 ↑)

L3

Ours 0.0 15.4 73.2 81.9
VIMA-Gato 0.0 (1.1 ↑) 10.2 (10.1 ↓) 34.8 (22.6 ↓) 40.9 (45.6 ↑)

VIMA-Flamingo 0.0 (0.0) 1.0 (5.4 ↑) 33.1 (31.0 ↓) 33.6 (42.1 ↑)
VIMA-GPT 0.0 (0.0) 5.5 (15.0 ↑) 28.6 (35.7 ↑ ) 39.2 (42.2 ↑)

L4

Ours 0.0 17.0 46.0 49.6
VIMA-Gato 0.0 (0.0) 2.7 (2.5 ↓) 10.8 (5.8 ↓) 12.2 (13.5 ↑)

VIMA-Flamingo 0.0 (0.0) 0.5 (0.0 ↓) 11.2 (8.3 ↓) 12.0 (11.1 ↓)
VIMA-GPT 0.0 (0.0) 1.1 (4.1 ↑) 7.1 (9.0 ↑) 14.3 (12.1 ↓)

fine-tune the last two layers and freeze all other layers. We fix the parameter count of the decision-making part to be 200M.
As shown in Table 13, we find no significant difference among the variants. Thus we set the standard t5-base as default
for all our models.

Table 13: Performances of our method with differently sized pre-trained T5 prompt encoder. We fix the parameter count of
the decision-making part to be 200M.

t5-small (30M) t5-base (111M) t5-large (368M)

L1 78.8 81.5 80.8
L2 79.0 81.5 81.0
L3 80.3 78.7 81.0
L4 49.1 48.6 49.3

E.5. Policy Robustness

Increasing Amounts of Distractors. We study the policy robustness against increasing amounts of distractors in scenes.
For all tasks being evaluated, we add one more distractor object. We run our largest VIMA model with 200M parameters.
The result is presented in Table 14.

It turns out that the performance of VIMA degrades minimally with more distractors than the training distribution. This
indicates that our agent has learned a reasonably robust policy against objects that are irrelevant to the task.

Table 14: Evaluation results on tasks with increased amounts of distractors. We fix the parameter count of the decision-
making part to be 200M.

L1 L2 L3 L4

Original 81.5 81.5 78.7 48.6
More Distractors 78.5 78.6 72.9 47.8

Relevant Performance Decrease (%) 3.6 3.5 7.3 1.6
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Imperfect Prompts. We then study the policy robustness against imperfect prompts, including incomplete prompts
(randomly masking out words with <UNK> token) and corrupted prompts (randomly swapping words, which could have
changed the task meaning altogether). We run our largest VIMA model with 200M parameters, results are shown in Table 15.

Our well-trained model exhibits minimal performance decrease when evaluated on masked prompts and minor decrease on
corrupted prompts. We attribute this robustness to the high-quality pre-trained T5 language backbone.

Table 15: Evaluation results with incomplete and corrupted prompts. We fix the parameter count of the decision-making part
to be 200M.

L1 L2 L3 L4

Original 81.5 81.5 78.7 48.6
Incomplete Prompts 80.8 81.1 77.0 48.0
Corrupted Prompts 78.2 78.1 73.8 45.3

Relevant Performance Decrease w/ Incomplete Prompts (%) 0.8 0.4 2.1 1.2
Relevant Performance Decrease w/ Corrupted Prompts (%) 4.2 4.3 6.6 7.2
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F. Extended Related Work
In this section, we provide an extended review of related work as complementary to Section 6.

Multi-Task Learning by Sequence Modeling. In computer vision, Mask R-CNN (He et al., 2017), UberNet (Kokkinos,
2016), and 12-in-1 (Lu et al., 2020) leverage a single backbone model with multiple independent heads for different tasks.
UVim (Kolesnikov et al., 2022) is another unified approach for vision that uses a language model to generate the guiding
code for a second model to predict raw vision outputs. In multimodal learning, numerous works (Lu et al., 2022; Wang
et al., 2022a; Zellers et al., 2021; 2022; Buch et al., 2022; Fu et al., 2021; Yang et al., 2022) investigate the unification
of image, video, audio, and/or language modalities to deliver multi-purpose foundation models, although most of which
are not equipped with decision-making capabilities. BEiT-3 (Wang et al., 2022c) performs masked data modeling on images,
texts and image-text pairs to pre-train a backbone for various downstream tasks. MetaMorph (Gupta et al., 2022a) learns
a universal controller over a modular robot design space.

Foundation Models for Embodied Agents. Embodied agent research (Duan et al., 2022; Batra et al., 2020; Ravichandar
et al., 2020; Collins et al., 2021) is adopting the large-scale pre-training paradigm (Yang et al., 2023), powered by a collection
of learning environments (Abramson et al., 2020; Shridhar et al., 2020; Savva et al., 2019; Puig et al., 2018; Team et al., 2021;
Toyama et al., 2021; Shi et al., 2017). From the aspect of pre-training for better representations, Reid et al. (2022) fine-
tunes from LLM checkpoints to accelerate policy learning. LaTTe (Bucker et al., 2022) and Embodied-CLIP (Khandelwal
et al., 2021) leverage the frozen visual and textual representations of CLIP (Radford et al., 2021) for robotic manipulation.
MaskDP (Liu et al., 2022a) pre-trains bidirectional transformers for various downstream embodied tasks. From the perspec-
tive of leveraging transformer as agent architecture, methods such as Dasari & Gupta (2020) and MOSAIC (Zhao et al.,
2022) achieve superior performance in one-shot video imitation tasks. They both use the self-attention mechanism with
auxiliary losses such as inverse dynamics loss (Dasari & Gupta, 2020) and contrastive loss (Zhao et al., 2022) to learn robot
controllers. InstructRL (Liu et al., 2022b) leverages jointly pre-trained vision-language models as robot agents to perform
manipulation tasks. From the perspective of large language models for robot learning, Socratic Models (Zeng et al., 2022)
composes multiple vision and language foundation models for multimodal reasoning in videos. ROSIE (Yu et al., 2023)
leverages text-to-image diffusion models to augment existing robotic dataset (Brohan et al., 2022) via inpainting. MOO (Min-
derer et al., 2022) adopts a similar object-centric representation as ours for open-world object manipulation. Furthermore,
Voyager (Wang et al., 2023) develops a LLM-powered agent operating in an open-ended virtual world (Fan et al., 2022).

Robot Manipulation and Benchmarks. There are many prior works that are not mentioned in the main paper that
study different robotic manipulation tasks, such as instruction following (Shridhar et al., 2021; Lynch & Sermanet, 2021),
constraint satisfaction (Bharadhwaj et al., 2021; Srinivasan et al., 2020; Thananjeyan et al., 2021), one-shot imitation (Paine
et al., 2018; Huang et al., 2019; Dasari & Gupta, 2020; Aceituno et al., 2021; Zhao et al., 2022), rearrangement (Weihs
et al., 2021; Szot et al., 2021; Liu et al., 2021; Ehsani et al., 2021; Gan et al., 2021; Stengel-Eskin et al., 2022), and
reasoning (Gupta et al., 2019; Ahmed et al., 2021; Toyer et al., 2020; Lim et al., 2021). Multiple simulation benchmarks
are introduced to study the above tasks: 1) Indoor simulation environments: Habitat (Savva et al., 2019; Szot et al., 2021)
is equipped with a high-performance 3D simulator for fast rendering and proposes a suite of common tasks for assistive
robots. 2) Tabletop environments: RLBench (James et al., 2019) and SURREAL (Fan et al., 2018; 2019) are other widely
used simulator benchmarks studying robotics manipulation with tabletop settings. STRETCH-P&P (Zhang & Weihs,
2023) studies generalization across goals for reset-free reinforcement learning. All these aforementioned simulators and
benchmarks do not natively support task specification and prompting with multiple modalities.
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G. Limitations and Further Discussions
Reliance on a separate object detector. VIMA inherits the errors from the standalone object detector, which may struggle
in the cases of occlusion or out-of-distribution object forms. However, using object detectors is not entirely without merits.
First, it allows us to seamlessly switch to stronger detection models when they become available. For example, we can switch
to object detectors that are more robust and open-vocabulary, such as OWL-ViT (Minderer et al., 2022). This would enable
VIMA to transfer to real-world scenarios with minimal modifications. Second, by leveraging pre-trained vision pipelines,
several concurrent works have demonstrated the superiority of object-centric representation in robot manipulation. For ex-
ample, VIOLA (Zhu et al., 2022) achieves better performance with a pre-trained Region Proposal Network (Ren et al., 2015).
MOO (Stone et al., 2023) also shows that a robot agent with OWL-ViT (Minderer et al., 2022) as the object detector sig-
nificantly outperforms RT-1 (Brohan et al., 2022), which directly learns from raw pixels, on various real-world manipulation
tasks. In fact, MOO (Stone et al., 2023) includes a baseline called “VIMA-like” that already demonstrates strong perfor-
mance on real robots under real-world scenarios. As we witness image segmentation is becoming more robust and general-
purpose (Kirillov et al., 2023), we envision such design choice will become more effective and further gain more popularity.

Limited simulator realism and task complexity. Our goal with VIMA-BENCH is to explore the multi-task ability,
generalization, and understanding of multi-modality. Therefore, these aspects are not the primary focus of this work.
However, we envision future works can combine this formulation with more physically realistic simulators such as Zhu
et al. (2020), Srivastava et al. (2021), and Mittal et al. (2023).

Limited action primitives. We inherit the same high-level action space from well-established prior works, such as
Transporter (Zeng et al., 2020). While “pick-and-place” and “wipe” seem simple, they do cover a wide range of tabletop
manipulation tasks and are crucial to industrial use cases like warehouse robots (Yoon et al., 2003; Berscheid et al.,
2020; Devin et al., 2020; Song et al., 2019). While VIMA is currently using these two actions, the algorithm design is
general-purpose and does not make assumptions about the particular action choices. For example, VIMA would require
only minimal modifications to support more low-level action spaces like joint-torque control.
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H. Full Tables
This section contains more detailed tables that correspond to the results in Figure 4. Specifically, we show breakdown results
on each task that constitute the model scaling results in Tables 16, 17, 18, and 19.

Table 16: L1 level generalization results. Model indicates robot controller parameter count. Integers in the first row refer to
indices of tasks described in Appendix, Sec. B.

Model Method 01 02 03 04 05 06 07 09 11 12 15 16 17

2M

Ours 100.0 100.0 100.0 96.0 37.0 100.0 100.0 9.5 87.0 64.0 93.5 45.0 63.0
VIMA-Gato 62.0 61.0 22.5 13.5 7.0 44.5 54.0 4.0 48.0 85.0 44.5 43.0 0.0

VIMA-Flamingo 56.0 56.0 53.5 36.5 37.5 45.0 55.5 3.5 54.0 83.5 40.5 28.5 2.0
VIMA-GPT 59.5 50.5 7.5 7.0 0.5 43.5 49.5 2.0 61.5 76.5 27.5 5.0 0.0

4M

Ours 100.0 100.0 100.0 99.5 45.5 100.0 100.0 10.5 90.5 90.0 96.5 46.5 51.0
VIMA-Gato 61.0 61.5 8.0 46.0 32.5 45.5 57.0 1.0 64.5 86.0 46.5 42.5 2.0

VIMA-Flamingo 61.0 62.0 57.5 47.5 45.0 49.5 59.5 5.5 80.0 83.5 40.5 43.0 2.0
VIMA-GPT 58.0 55.0 17.5 25.0 12.0 47.5 54.5 3.0 59.5 80.5 27.0 41.5 0.5

9M

Ours 100.0 100.0 100.0 99.5 51.5 100.0 100.0 13.0 82.5 58.5 96.0 42.0 63.5
VIMA-Gato 59.0 61.0 41.0 50.5 38.5 47.5 59.5 9.5 58.0 80.5 44.0 24.0 2.5

VIMA-Flamingo 58.5 60.0 46.0 49.0 42.5 45.5 60.5 4.0 66.5 81.5 36.5 41.5 1.0
VIMA-GPT 58.5 54.5 40.5 47.5 37.5 47.5 58.5 9.0 72.0 85.0 38.5 34.0 1.0

20M

Ours 100.0 100.0 100.0 100.0 59.5 100.0 100.0 13.5 74.0 72.5 96.5 39.5 47.5
VIMA-Gato 61.5 62.0 32.5 49.0 38.0 46.0 60.0 5.0 68.0 83.0 47.0 46.5 2.0

VIMA-Flamingo 63.0 61.5 55.0 50.0 42.5 41.5 58.0 6.0 62.0 83.0 44.0 38.5 1.0
VIMA-GPT 60.5 64.0 50.5 44.0 41.0 48.0 61.5 7.0 85.0 84.0 44.5 39.0 2.5

43M

Ours 100.0 100.0 100.0 100.0 57.0 99.5 100.0 15.0 86.0 69.5 99.0 40.0 51.5
VIMA-Gato 57.0 65.5 59.0 57.5 43.5 50.0 56.0 5.0 67.0 83.5 63.0 37.0 0.0

VIMA-Flamingo 54.5 57.0 54.5 54.0 45.0 43.5 55.5 6.0 67.5 82.5 49.0 40.5 1.5
VIMA-GPT 58.0 60.5 69.5 53.5 41.5 47.0 55.5 4.0 66.5 81.5 45.0 40.5 1.5

92M

Ours 100.0 100.0 99.5 100.0 58.0 100.0 100.0 14.0 80.5 92.0 98.5 40.5 48.5
VIMA-Gato 76.5 59.5 90.0 56.5 44.5 48.5 68.5 14.0 64.5 89.5 85.0 43.0 1.5

VIMA-Flamingo 56.0 56.0 65.5 50.5 41.0 48.0 56.0 3.0 70.0 87.0 41.5 38.0 2.0
VIMA-GPT 57.0 57.5 58.5 53.0 45.0 51.0 61.0 8.0 65.5 87.0 46.0 33.0 1.0

200M

Ours 100.0 100.0 99.5 100.0 56.5 100.0 100.0 18.0 77.0 93.0 97.0 76.5 43.0
VIMA-Gato 79.0 68.0 91.5 57.0 44.5 54.0 74.0 18.0 61.0 88.5 83.5 33.5 2.5

VIMA-Flamingo 56.0 58.5 63.0 48.5 38.0 48.5 62.5 3.5 66.5 86.0 40.0 43.5 2.5
VIMA-GPT 62.0 57.5 41.0 55.5 45.5 47.5 54.5 8.5 77.0 81.5 41.0 38.0 0.5
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Table 17: L2 level generalization results. Model indicates robot controller parameter count. Integers in the first row refer to
indices of tasks described in Appendix, Sec. B.

Model Method 01 02 03 04 05 06 07 09 11 12 15 16 17

2M

Ours 100.0 100.0 100.0 95.5 37.5 100.0 100.0 17.5 87.5 67.0 97.5 46.0 54.5
VIMA-Gato 49.5 49.0 23.0 17.5 5.0 47.5 46.5 5.5 50.0 82.5 49.0 42.0 0.5

VIMA-Flamingo 45.5 46.0 56.0 39.5 35.5 49.0 47.0 9.0 53.0 80.0 43.0 29.5 1.0
VIMA-GPT 51.0 45.5 9.5 7.0 0.5 45.5 45.0 0.0 65.0 81.5 32.0 5.0 0.0

4M

Ours 100.0 100.0 100.0 99.5 44.5 99.5 100.0 14.5 89.5 91.5 95.5 43.0 52.5
VIMA-Gato 44.5 52.0 9.0 39.0 28.0 49.5 48.5 2.0 64.0 86.5 44.5 42.5 2.0

VIMA-Flamingo 49.5 50.5 51.0 48.0 43.0 50.5 53.5 5.5 81.5 82.5 48.5 39.5 1.0
VIMA-GPT 50.5 49.5 16.5 25.5 12.0 41.0 47.0 4.0 63.0 79.0 28.5 39.0 0.0

9M

Ours 100.0 100.0 100.0 100.0 49.5 100.0 100.0 19.0 80.5 65.0 95.5 42.0 66.0
VIMA-Gato 47.0 44.5 39.5 46.5 37.5 48.5 51.0 5.5 59.0 83.0 51.5 23.5 1.0

VIMA-Flamingo 48.0 47.5 49.0 52.5 42.0 47.5 48.5 8.5 66.0 81.5 45.5 42.0 2.0
VIMA-GPT 48.5 47.0 43.5 47.0 37.0 47.5 45.5 10.5 74.5 85.0 43.5 33.0 1.0

20M

Ours 100.0 100.0 100.0 100.0 61.0 100.0 100.0 16.5 75.5 75.0 96.0 37.5 47.5
VIMA-Gato 44.0 51.5 39.0 51.0 38.5 47.5 52.5 6.0 65.5 84.0 52.5 40.5 1.0

VIMA-Flamingo 48.5 49.0 55.5 48.0 42.5 46.5 52.0 6.0 66.0 82.0 47.5 37.0 0.5
VIMA-GPT 50.5 49.5 53.0 44.5 43.5 47.0 46.0 8.0 83.5 80.0 46.5 41.0 2.5

43M

Ours 100.0 100.0 100.0 100.0 54.5 100.0 100.0 14.5 83.5 69.0 98.0 38.5 51.5
VIMA-Gato 50.0 51.5 53.0 57.5 42.5 47.0 51.0 8.5 67.0 83.0 63.5 32.0 0.5

VIMA-Flamingo 48.0 46.5 52.0 51.5 43.5 45.0 51.5 5.0 68.0 81.5 52.5 44.0 1.5
VIMA-GPT 45.0 49.0 64.5 53.5 40.0 46.5 48.5 8.5 68.0 82.0 50.0 40.0 1.5

92M

Ours 100.0 100.0 99.0 100.0 57.5 99.5 100.0 19.5 81.5 92.0 97.5 42.0 53.5
VIMA-Gato 64.5 50.0 83.0 56.5 46.0 55.5 54.5 10.5 64.5 92.5 81.0 42.0 1.0

VIMA-Flamingo 53.0 48.5 67.5 53.0 43.0 49.0 53.0 4.5 67.0 84.0 50.0 40.0 1.0
VIMA-GPT 50.5 55.0 55.5 54.5 43.0 51.5 54.5 10.5 68.5 87.0 49.5 34.0 3.0

200M

Ours 100.0 100.0 99.5 100.0 54.5 100.0 100.0 17.5 77.0 93.0 98.5 75.0 45.0
VIMA-Gato 56.5 53.5 88.0 55.5 43.5 55.5 53.0 14.0 63.0 90.5 81.5 33.0 4.0

VIMA-Flamingo 51.0 52.5 61.5 49.5 38.5 47.5 55.5 5.5 70.5 82.0 42.0 39.0 3.0
VIMA-GPT 52.0 52.0 49.5 54.5 45.5 52.5 51.0 11.0 76.5 84.0 43.0 38.0 0.5
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Table 18: L3 level generalization results. Model indicates robot controller parameter count. Integers in the first row refer to
indices of tasks described in Appendix, Sec. B.

Model Method 01 02 03 04 05 06 07 09 11 15 16 17

2M

Ours 100.0 100.0 100.0 98.0 34.5 100.0 99.5 17.0 97.5 94.0 48.5 39.0
VIMA-Gato 45.5 48.0 28.0 23.0 3.0 45.5 45.0 2.5 40.5 29.5 37.0 1.0

VIMA-Flamingo 41.5 54.5 50.5 39.5 29.0 45.0 49.5 5.5 57.5 22.5 25.0 0.0
VIMA-GPT 48.5 50.0 5.0 7.0 2.5 47.0 45.5 2.0 69.5 22.5 5.0 0.0

4M

Ours 99.5 100.0 100.0 98.0 44.0 99.5 99.5 12.0 92.5 98.5 47.0 43.5
VIMA-Gato 44.5 55.0 9.5 37.5 24.5 47.0 50.0 3.5 60.0 30.5 37.5 0.0

VIMA-Flamingo 46.0 53.5 59.0 49.5 35.5 47.5 48.0 7.0 87.5 30.5 39.5 0.0
VIMA-GPT 44.0 47.0 14.5 22.0 9.0 39.5 40.0 2.0 62.0 28.5 43.0 1.0

9M

Ours 99.5 100.0 100.0 98.5 44.5 99.5 99.5 18.5 88.5 98.5 48.5 46.5
VIMA-Gato 44.5 53.5 42.5 52.0 28.0 46.5 51.5 6.0 67.0 35.0 23.0 0.5

VIMA-Flamingo 44.5 53.0 53.0 48.5 33.0 41.0 45.5 8.0 72.5 27.0 44.5 0.5
VIMA-GPT 49.0 50.5 39.0 46.5 30.5 43.0 52.0 6.5 84.0 31.5 35.0 0.5

20M

Ours 98.0 100.0 100.0 98.5 55.5 100.0 99.5 15.0 88.5 99.5 44.0 29.5
VIMA-Gato 46.5 55.0 44.5 57.0 31.5 47.5 51.5 2.5 72.5 30.5 44.0 0.0

VIMA-Flamingo 47.0 54.5 53.0 55.0 36.0 42.5 48.0 6.5 70.0 33.0 41.5 0.0
VIMA-GPT 50.0 60.5 56.5 48.0 33.5 51.0 46.0 6.5 92.5 32.5 43.5 1.5

43M

Ours 99.0 100.0 100.0 98.0 47.5 100.0 99.5 18.5 93.0 98.0 45.0 84.0
VIMA-Gato 44.0 55.0 59.5 58.0 34.0 49.0 54.0 7.0 74.0 40.0 35.0 0.5

VIMA-Flamingo 47.0 54.0 56.5 52.5 37.0 46.5 44.5 6.5 69.5 27.0 43.0 0.0
VIMA-GPT 47.5 57.0 61.0 50.0 34.5 48.0 53.5 8.0 74.0 40.5 41.5 0.5

92M

Ours 99.0 99.5 99.5 97.0 58.0 100.0 99.0 13.0 94.5 99.0 42.0 82.5
VIMA-Gato 61.5 54.0 73.0 56.0 36.0 50.0 48.0 17.0 66.5 44.0 41.5 0.0

VIMA-Flamingo 51.0 51.5 68.0 51.5 36.5 50.5 47.0 6.0 69.5 28.0 45.5 0.5
VIMA-GPT 50.0 56.5 63.0 52.5 32.0 49.5 53.0 5.0 78.0 34.5 37.5 0.0

200M

Ours 99.0 100.0 100.0 97.0 54.5 100.0 99.0 17.5 90.5 97.5 46.0 43.5
VIMA-Gato 51.0 58.0 84.5 56.5 35.5 53.5 49.0 15.0 65.0 52.0 33.0 0.0

VIMA-Flamingo 49.0 50.0 66.5 47.0 35.0 47.5 50.0 4.0 66.0 30.5 43.5 0.5
VIMA-GPT 52.0 51.0 55.0 49.5 40.0 46.0 50.5 5.0 82.0 37.0 38.0 1.5
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Table 19: L4 level generalization results. Model indicates robot controller parameter count. Integers in the first row refer to
indices of tasks described in Appendix, Sec. B.

Model Method 08 10 13 14

2M

Ours 6.5 0.0 0.0 96.5
VIMA-Gato 21.0 0.5 0.0 32.0

VIMA-Flamingo 22.0 0.0 0.0 27.5
VIMA-GPT 22.5 0.0 0.0 22.0

4M

Ours 97.0 0.0 0.0 99.0
VIMA-Gato 17.0 2.0 0.0 34.0

VIMA-Flamingo 17.0 0.5 0.0 29.0
VIMA-GPT 19.0 0.0 0.0 22.5

9M

Ours 92.0 0.0 0.0 96.5
VIMA-Gato 18.0 0.0 0.0 31.0

VIMA-Flamingo 21.5 0.0 0.0 21.5
VIMA-GPT 20.5 0.0 0.0 30.5

20M

Ours 100.0 0.0 0.0 95.5
VIMA-Gato 20.5 0.0 0.0 29.0

VIMA-Flamingo 21.0 0.0 0.0 27.5
VIMA-GPT 20.5 0.5 0.0 36.0

43M

Ours 99.0 0.0 0.0 97.0
VIMA-Gato 21.0 0.0 0.0 30.5

VIMA-Flamingo 18.5 0.0 0.0 24.5
VIMA-GPT 17.5 0.0 0.0 30.0

92M

Ours 100.0 0.0 0.0 98.5
VIMA-Gato 22.0 0.0 0.0 32.0

VIMA-Flamingo 19.5 0.0 0.0 25.0
VIMA-GPT 18.5 0.5 0.0 29.5

200M

Ours 100.0 0.0 0.0 94.5
VIMA-Gato 30.5 0.0 0.0 37.0

VIMA-Flamingo 24.5 0.0 0.0 24.0
VIMA-GPT 20.0 0.0 0.0 28.5
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