
SHADES OF RED: REDXOR LINUX BACKDOOR
AND ITS CHINESE ORIGINS
Avigayil Mechtinger & Joakim Kennedy
Intezer, Israel

avigayil@intezer.com
joakim@intezer.com

7 - 8 October, 2021 / vblocalhost.com

www.virusbulletin.com

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

2 VIRUS BULLETIN CONFERENCE OCTOBER 2021

ABSTRACT
2020 set a record [1] for new Linux malware families. New malware families targeting Linux systems are now being
discovered on a regular basis. However, Linux backdoors attributed to advanced threat actors are disclosed less frequently.

Intezer has discovered an undocumented backdoor targeting Linux systems, masquerading as polkit daemon [2]. We named
it RedXOR for its network data-encoding scheme based on XOR.

Based on victimology, as well as similar components and tactics, techniques and procedures (TTPs), we believe RedXOR
was developed by high-profile Chinese threat actors. The samples, which had low detection rates in VirusTotal at the time,
were uploaded from Indonesia and Taiwan, both countries known to be targeted by Chinese threat actors. The samples are
compiled with a legacy GCC compiler on an old release of Red Hat Enterprise Linux, hinting that RedXOR is used in
targeted attacks against legacy Linux systems.

During our investigation we experienced an ‘on and off’ availability of the command-and-control (C2) server, indicating
that the operation was active.

In this paper we will explain in depth the attribution of RedXOR to Chinese advanced threat actors and provide a deep
technical analysis of the malware.

INTRODUCTION
A huge majority of today’s important infrastructure, including the cloud, runs on Linux servers. Also, many enterprises use
Linux servers to house their important data and cluster environments. Unfortunately, when it comes to security, Linux
environments have not received as much attention from security vendors as endpoint operating systems such as Windows
have. This, together with what might be stored on the machines, makes Linux servers a juicy target for threat actors. In this
paper we document a previous undetected advanced persistent threat (APT) malware that is likely being used by the Winnti
umbrella group to target older Linux servers.

Many nation-state threat actors have malware that is used to target Linux machines. This includes, for example, Turla with
its Penquin Turla [3] malware family and Lazarus Group with its MATA [4] malware framework. In May 2019, Chronicle
released a report [5] on a Linux version of Winnti’s malware that had been used in an intrusion at a Vietnamese gaming
company. Last year, JPCERT published two analyses, on TSCookie [6] and Plead [7], both Linux versions of malware used
by a threat actor tracked by the name of BlackTech. It’s also important not to forget that Linux versions of WellMess, a
piece of malware attributed to APT29, have also been used. All of this is strong evidence that Linux machines are a target of
nation-state threat actors.

Many of these pieces of malware are relatively simple backdoors but some are more complex and even include the use of
rootkits. The Winnti malware reported by Chronicle utilized a rootkit to hide its activity. In 2020 BlackBerry released a report
[8] on more uses of Linux malware by threat actors falling under the Winnti umbrella. The malware they analysed and named
PWNLNX also used rootkits. In this case they were based on open-source rootkits that were available on GitHub. The rootkit
gave the attackers the ability to hide both the malware’s process and its network connections, making it hard to detect if the
machine had been compromised. In March 2020 Sophos released a report on a campaign called Cloud Snooper [9]. In this
campaign the threat actor used a rootkit to get around firewalls in cloud environments. The rootkit intercepted all network
packets received by the infected machine and, based on different source port values, different actions were taken. This
established a highly covert communication channel between the infected machine and the operator of the malware.

As is the case with Windows, previous reports have shown that rootkits also exist for Linux. There are essentially two
avenues that an attacker can use for a rootkit. The first is a userland-based rootkit and the second is a kernel module rootkit
via a Linux kernel module (LKM). Userland rootkits usually hook functions in libc, the ‘Linux API’, to achieve their
effects. Linux has a functionality called LD_PRELOAD which essentially tells the linker to load a specific shared object
(SO) file before it loads all the other required SOs needed to execute the binary. This allows the malicious SO to hijack the
libc functions of its choosing and can scrub out data to make processes and files hidden. One example of this approach is
libprocesshider [10], which is open-sourced on GitHub. The limitation of this approach is that the malicious SO file can be
discovered and an entry for it in the /etc/ld.so.preload file is present, making it possible to discover this attack. The more
technically advanced method is to use a LKM.

With Linux being open source it is easy to write your own code and run it as part of the kernel in ring0. A common way of
running within ring0 is via a module. A LKM can be thought of as a kernel driver. While Microsoft allows third parties to
develop drivers, Windows 10 requires a kernel driver to be signed and approved by Microsoft. The same is not the case for
Linux. ELF files are not signed, which makes it hard for the Linux kernel to enforce a signature requirement. This means
there is no authority approving the code and it is up to the administrator of the machine to decide. While this might sound
like a golden opportunity for threat actors to develop a rootkit and use it as part of all of their attacks, luckily this is not the
case. There is another caveat when it comes to LKMs. For the kernel to load a module, it has to have been compiled against
the exact version of the kernel, and sometimes also the same compiler. While this enforcement is something that can be
configured when compiling the kernel, all the major Linux distributions use this enforcement. To handle drivers that are not
part of the kernel source tree, Linux distributions usually use Dynamic Kernel Module Support (DKMS) [11]. DKMS is a

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

3VIRUS BULLETIN CONFERENCE OCTOBER 2021

project created by Dell that recompiles the LKMs that are not part of the kernel automatically when a new kernel is
installed. From the attacker’s perspective, they would need either to maintain rootkits compiled for different Linux
distributions and kernel updates or compile them on-the-fly. If the compilation is performed on the infected machine, they
risk the source code of the rootkit being captured by the defender. In essence, the large diversity makes LKM rootkits a
problem that is hard to scale.

TECHNICAL ANALYSIS
The RedXOR samples we identified are both unstripped 64-bit ELF files called po1kitd-update-k. Uploaded to VirusTotal
from Taiwan and Indonesia, they had a low detection rate at the time of Intezer’s research.

Figure 1: 2bd6e2f8c1a97347b1e499e29a1d9b7c in VirusTotal.

Malware installation

Upon execution RedXOR forks off a child process, allowing the parent process to exit. The purpose is to detach the process
from the shell. The new child determines if it has been executed as the root user or as another user on the system. It does
this to create a hidden folder, called ‘.po1kitd.thumb’, inside the user’s home folder which is used to store files related to
the malware. The malware creates a hidden file called ‘.po1kitd-2a4D53’ inside the folder. The file is locked to the current

Figure 2: The malware creates a ‘mutex’ file, locking it to the process ID.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

4 VIRUS BULLETIN CONFERENCE OCTOBER 2021

running process, seen in Figure 2, essentially creating a mutex. If another instance of the malware is executed, it also tries
to obtain the lock but ultimately fails. Upon this failure the process exits.

After the malware creates the mutex, it installs itself on the infected machine. As shown in Figure 3, the malware looks up
its current path and moves the binary to the created folder. It hides the file by naming it ‘.po1kitd-update-k’.

Figure 3: Malware moves the binary to the hidden folder ‘po1kitd.thumb’ created earlier. It first tries to use the ‘rename’
function provided by libc. If this fails, it executes an ‘mv’ shell command via the ‘system’ function.

After installing the binary to the hidden folder, the malware sets up persistence via ‘init’ scripts. The following files are
created after executing the malware on boot:

• /usr/syno/etc/rc.d/S99po1kitd-update.sh

• /etc/init.d/po1kitd-update

• /etc/rc2.d/S99po1kitd-update

The malware checks if the rootkit is active by creating a file and removing it. Then the malware compares the ‘saved
set-user-ID’ of the process to the user ID. If they don’t match, the rootkit is enabled. If they match, it looks to see if the user
ID is ‘10’. If this is the case, the rootkit is enabled. This logic is shown in Figure 4.

The ‘CheckLKM’ logic is almost identical to the ‘adore_init’ function [12] in the ‘adore-ng’ rootkit. Adore-ng is a Chinese
open-source LKM (Loadable Kernel Module) rootkit. This technique allows the malware to stay under the radar by hiding
its processes. The code for the init function is shown in Figure 5.

Configuration

The malware stores the configuration encrypted within the binary. In addition to the command-and-control (C2) IP address
and port it can also be configured to use a proxy. The configuration includes a password, as can be seen in Figure 6. This
password is used by the malware to authenticate to the C2 server.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

5VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 4: Logic used by RedXOR to check if the rootkit is enabled.

Figure 5: Client authentication code for the adore-ng rootkit.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

6 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 6: Configuration options for the malware.

The configuration values are decrypted by the ‘doXor’ function. A pseudo-code representation of the function is shown in
Figure 7. The decryption logic is a simple XOR against a byte key. The byte key is incremented by a constant for each item
in the buffer. The only configuration value that is not encrypted is the server port. The port value is used to derive the key
and the adder. The key is derived from bit shifting the port value eight steps to the right. The constant uses the port value.

Figure 7: Decryption logic of the configuration data. The data is XORed against a key byte that is incremented by a
constant for each entry in the buffer.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

7VIRUS BULLETIN CONFERENCE OCTOBER 2021

Communication with the C2

The malware communicates with the C2 server over a TCP socket. The traffic is made to look like HTTP traffic. Figure 8
shows a pseudo-code representation of the function used by the malware to prepare data that is to be sent to the C2 server.
First, it fills the buffer with null bytes. The request body is XORed against a key. The malware uses the buffer length as the
key. This value is also passed into the function as the ‘total_length’ argument.

Figure 8: Function for preparing data to be sent to the C2 server.

The same logic is used to decrypt the response body from the C2 server. From the response, the malware extracts
‘JSESSIONID’, ‘Content-Length’, ‘Total-Length’ and the response body. The data is added to a struct with the following layout:

0x0 JSESSIONID as int

0x8 Content-Length as long

0x10 Total-Length as long

0x18 Response body

The content length is the length of the response body but also used as the key. The total length value is used as a constant
which is added to the key in each iteration. The JSESSIONID value holds the command ID for the job the C2 wants the
malware to perform.

Commands

The C2 server tells the malware to execute different commands via a command code that is returned in the ‘JSESSIONID’
cookie. The codes are encoded as decimal integers. A full list of commands supported by the analysed malware sample are
shown in Table 1. They can be grouped into command types. Commands in the 2000 range provide ‘filesystem’ interaction,
commands in the 3000 range handle ‘shell’ commands, and those in the 4000 range handle network tunnelling.

Code Command Code Command

0000 System information 2060 Remove folder

0008 Update 2061 Rename

0009 Uninstall 2062 Create new folder

1000 Ping 2066 Write content to file

1010 Install LKM 3000 Start shell

2049 List folder 3058 Exec shell command

2054 Upload file 3999 Close tty

2055 Open file 4001 Portmap (Proxy)

2056 Execute with system 4002 Kill portmap

2058 Remove file

Table 1: Commands supported by the malware.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

8 VIRUS BULLETIN CONFERENCE OCTOBER 2021

System information

When the malware first contacts the C2 server it sends a password encoded in the request body. The C2 server responds
with the command code 0 to collect system information. The information about the system collected by the malware is
listed in Table 2. The data is serialized into a URL query-like string, encrypted and then sent as the request body.

URL key Description Comment

hostip IP Hard coded to 127.0.0.1

softtype Hard coded to ‘Linux’

pscaddr MAC address

hostname Machine name

hosttar Username Possibly ‘host target’

hostos Distribution Extracted from /etc/issue or /etc/redhat-release

hostcpu Clock speed /proc/cpuinfo

hostmem Amount of memory /proc/meminfo

hostpack Hard coded to ‘Linux’

lkmtag Is rootkit enabled

kernel Kernel version Extracted from uname

Table 2: Data collected by the malware and sent back to the C2 server.

Figure 9 shows the communication between RedXOR and the C2. The malware sends the password ‘pd=admin’ and the C2
responds with ‘all right’ (JSESSIONID=0000). Next, the malware sends the system information and the C2 replies with the
ping command (JSESSIONID=1000).

Figure 9: RedXOR communication with C2.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

9VIRUS BULLETIN CONFERENCE OCTOBER 2021

Update functionality

The malware can be updated by the threat actor. This is performed by sending command code 8 to the malware. When the
malware receives this code the following actions are taken:

• The malware opens the mutex file for writing.

• It sends a request with the command code 8 and an empty request body to the C2 server.

• The response body from the server is written to the mutex file. The response body is not encrypted.

• The lock is released on the mutex file.

• The malware executes ‘chmod’ to set the execution flag on the file via the libc system function to hide the file with the
rootkit.

• The malware sleeps and tries to obtain the lock on the file again when it wakes up. If it fails, it assumes the update was
successful, closes the connection to the C2 server and exits.

Shell functionality

The malware has the ability to provide its operator with a ‘tty’ shell. If a shell is requested via the command code 3000, the
malware creates a new thread executing ‘/bin/sh’. In the newly spawned shell, the malware executes python -c “import
pty;pty.spawn(‘/bin/sh’)” to get a pseudo-terminal (pty) interface. Any shell commands sent to the malware with the
command code 3058 are executed in the pty and the response is returned to the operator.

Network tunnelling

Network tunnelling is enabled by sending the command code 4001 to the malware. As part of the request, a ‘configuration’
is sent as part of the response body. The configuration consists of three items separated by a ‘#’ character. The items are: a
port to bind to, the IP to connect to, and a port to connect to. The malware uses a modified version of the open-source
project rinetd [13] for the tunnelling logic. Rinetd is designed to use a configuration file stored on the machine. To get
around this, the malware author has modified the function that parses the configuration in order to directly take the required
values normally found in the configuration file.

CONNECTIONS TO CHINESE THREAT ACTORS
We uncovered key similarities between RedXOR and previously reported malware associated with the Winnti umbrella
threat group. The pieces of malware in question are the PWNLNX backdoor, and XOR.DDOS and Groundhog, two botnets
attributed to Winnti by BlackBerry [8].

The samples listed below can be used for reference:

• PWNLNX – 6a9f16440b9319f427825bb12d7a0cda89b101cf7b8b15ec7dd620b4d68db514

• XOR.DDOS – 628391e35c830a9278a9001aa94ad53af6f894975c9b08c8967e026120cb1112

Similarities between the samples are as follows:

1. Use of old open-source kernel rootkits: RedXOR uses an open-source LKM rootkit called ‘Adore-ng’ [14] to hide
its process. Based on a FireEye report [15], Winnti used this rootkit in the ‘ADORE.XSE’ Linux backdoor.
Embedding open-source LKM rootkits is a common Winnti technique. The group has been documented using
Azazel [5] and Suterusu [8].

2. The CheckLKM function used by RedXOR, which is in charge of checking for the existence of the LKM (Loadable
Kernel Module) rootkit, has also been used in PWNLNX and XOR.DDOS, as illustrated in Figure 10.

3. Provides the operator with a pseudo-terminal: RedXOR uses a Python pty shell by importing the Python pty
library [16]. PWNLNX implements the pty shell function in C. Figure 11 shows the implementation of the Python
pty shell in RedXOR and Figure 12 shows the ELF symbols related to the pty shell implementation (source file and
functions) in PWNLNX.

4. Encoding network with XOR: the backdoor encodes its network data with a scheme based on XOR. Encoding
network data with XOR has been used in previous Winnti malware including PWNLNX.

5. Persistence service name: as part of its persistence methods, RedXOR attempts to create a service under rc.d. The
developer added ‘S99’ before the name of the service to lower its priority and make it run last on system initiation.
This technique was used in XOR.DDOS and Groundhog samples where the malware developer added ‘S90’ to the
service name.

6. Main functions flow: PWNLX and RedXOR have a main function which is in charge of initialization. In both
backdoors, the main function calls another function which is in charge of the main logic. The main logic function
names are main_process in RedXOR and MainThread in PWLNX. Both main functions daemonize the process to
detach from the terminal and run in the background.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

10 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 10: CheckLKM function used in RedXOR, XOR.DDOS and PWNLNX.

Figure 11: Python pty shell used in RedXOR.

Figure 12: pty shell related symbols in PWNLNX.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

11VIRUS BULLETIN CONFERENCE OCTOBER 2021

7. XML for file listing: RedXOR’s directory function and PWNLNX’s getfiles function are both in charge of directory
listing. Their code flow implementation is different, however, as both pieces of malware send the directory listing as
an XML file to the C2 server. Figure 13 shows the XML structure used in PWNLNX and RedXOR. The file’s data
used in both functions are: path, name, type, user, permission, size, time.

Figure 13: The XML structure used by PWNLNX’s getfiles function and RedXOR’s directory function.

8. Legacy Red Hat compilers: RedXOR and PWNLNX were both compiled with a Red Hat 4.4.7 compiler. This
compiler is the default GCC compiler on RHEL6.

9. Chown connection: Both PWNLNX and RedXOR change the file’s user and group owner to a large ID. Usually
user IDs start at 1000. The values used by this malware are extremely high, which means they would never be a
valid user or group ID. The same technique has been used by the XOR.DDoS malware, as referenced in the analysis
by MalwareMustDie [17]. The LKM rootkit used by RedXOR listens for this call and when it receives it, the rootkit
hides the file from userspace applications. The rootkit used by PWNLNX and XOR.DDoS does not behave this
way. Instead, the malware communicates with the rootkit via ioctls.

Figure 14: Similarity between PWNLNX and RedXOR of the UID and GID used with ‘lchown’ function call.

 PWNLNX uses the ‘lchown’ call in two places. The first is at the end of its main function, as shown in Figure 15.
The file parameter is passed in argv from the main function, meaning that this action would hide the current running
process’s file.

Figure 15: PWNLNX1 calling lchown in the main function to hide its file.

 The second place in which it uses the ‘lchown’ call is in part of the command processing logic shown in Figure 16.
In Figure 16, it can be seen that it has the option of hiding a file via the ‘HideFile’ function through ioctls or the
‘lchown’ function. It can also be seen that changing the ownership of the file to root is an option. The adore-ng
LKM rootkit uses this signal to unhide the file.

 So far, a combination of PWNLNX and the adore-ng rootkit has not been reported publicly. Of the reported
samples, they all appear to be using a modified version of the suterusu rootkit but PWNLNX has the awareness of
the rootkit used by RedXOR. With this, it is not hard to conclude that the operator of PWNLNX also uses the
adore-ng rootkit.

10. Overall flow and functionalities: The overall code flow, behaviour and capabilities of RedXOR are very similar to
PWNLNX. Both have file uploading and downloading functionalities together with a running shell. The network
tunnelling functionality in both families is called ‘PortMap’.

11. Unstripped ELF binaries: Malware developers will often tamper with a file’s symbols and/or sections, making it
harder for researchers to analyse them. However, RedXOR and various Winnti malware, including PWNLNX and
XOR.DDOS, are unstripped.

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

12 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 16: PWNLNX is able to talk to different LKM rootkits for hiding files.

DISCUSSION
Attackers use different techniques to compromise Linux machines. Some common entry points are the use of compromised
credentials or by exploiting a vulnerability or misconfiguration. Another possible method for initial compromise is via a
different endpoint, meaning the threat actor moves laterally to a Linux machine where the actual attack payload is delivered.
As the initial compromise of this campaign is not known, we assess that it was via one of the methods mentioned above.

Interestingly, Winnti is not the only APT group that did not bother to strip symbols from its ELF malware. Figure 17 shows
cleartext function names from Russia’s APT29 WellMess sample.

Figure 17: Unstripped APT29’s WellMess sample (5988539d17d940cd7f51d9eb9fc2541c).

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

13VIRUS BULLETIN CONFERENCE OCTOBER 2021

In general, many ELF binaries developed by APTs are not stripped nor obfuscated. We estimate that these groups rely on
the immaturity of Linux malware detection or lack of runtime detection and proper monitoring on the targeted Linux
machines.

CONCLUSION

Chinese attackers are targeting new victims and environments. In this paper, we have detailed RedXOR, which is the latest
documented backdoor attributed to the Winnti umbrella group targeting Linux endpoints and servers. RedXOR is not
designed to attack as many machines as possible. Instead, it is designed to stay hidden, allowing the operator to perform
their mission without getting detected.

The targeting of Linux environments by attackers is an emerging trend. In 2020, 56 new Linux malware families were
discovered, the highest total ever according to data compiled by Intezer. For a long time Linux has not been seen as a
serious target of threat actors. This operating system makes up such a small percentage of the desktop market share
compared to Windows, it’s no surprise that threat actors would mostly focus their attention on attacking Windows
endpoints.

Times are changing as more companies migrate from traditional on-premise Windows endpoints to Linux-based servers and
containers in the cloud. For perspective, 90% of the public cloud runs Linux. Linux threats pose an imminent risk to
enterprise cloud security now and in the near future. Traditional Windows endpoint security products are struggling to
detect Linux threats. This is probably why this threat had very low detections on VirusTotal. Specialized threat detection
solutions designed to protect Linux systems are the need of the hour.

REFERENCES

[1] Intezer. 2020 Set a Record for New Linux Malware Families. February 2021. https://www.intezer.com/blog/
cloud-security/2020-set-record-for-new-linux-malware-families/.

[2] die.net. polkitd(8) - Linux man page. https://linux.die.net/man/8/polkitd.

[3] Baumgartner, K.; Raiu, C. The ‘Penquin’ Turla. Securelist. December 2014.
https://securelist.com/the-penquin-turla-2/67962/.

[4] Securelist. MATA: Multi-platform targeted malware framework. July 2020.
https://securelist.com/mata-multi-platform-targeted-malware-framework/97746/.

[5] Chronicle. Winnti: More than just Windows and Gates. May 2019. https://medium.com/chronicle-blog/winnti-
more-than-just-windows-and-gates-e4f03436031a.

[6] Tomongaga, S. ELF_TSCookie – Linux Malware Used by BlackTech. JPCERT/CC Eyes. March 2020.
https://blogs.jpcert.or.jp/en/2020/03/elf-tscookie.html.

[7] Tomongaga, S. ELF_PLEAD – Linux Malware Used by BlackTech. JPCERT/CC Eyes. November 2020.
https://blogs.jpcert.or.jp/en/2020/11/elf-plead.html.

[8] Blackberry. Decade of the RATs. 2020. https://www.blackberry.com/content/dam/blackberry-com/asset/enterprise/
pdf/direct/report-bb-decade-of-the-rats.pdf.

[9] Shevchenko, S. Cloud Snooper Attack Bypasses AWS Security Measures. Sophos. March 2020.
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-cloud-snooper-report.pdf.

[10] gianlucaborello / libprocesshider. https://github.com/gianlucaborello/libprocesshider.

[11] dell / dkms. https://github.com/dell/dkms.

[12] yaoyumeng / adore-ng. https://github.com/yaoyumeng/adore-ng/
blob/522c80a2dc043c2d523256472becc88c90d66337/libinvisible.c#L61.

[13] Rinetd. http://www.rinetd.com/.

[14] yaoyumeng / adore-ng. https://github.com/yaoyumeng/adore-ng.

[15] FireEye. Double Dragon APT41, a dual espionage and cyber crime operation. https://content.fireeye.com/apt-41/
rpt-apt41/.

[16] Python. pty – Pseudo-terminal utilities. https://docs.python.org/3/library/pty.html.

[17] The MalwareMustDie Blog (blog.malwaremustdie.org). MMD-0028-2014 - Linux/XOR.DDoS : Fuzzy reversing a
new China ELF. September 2014. https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-
china.html.

https://www.intezer.com/blog/cloud-security/2020-set-record-for-new-linux-malware-families/
https://linux.die.net/man/8/polkitd
https://securelist.com/the-penquin-turla-2/67962/
https://securelist.com/mata-multi-platform-targeted-malware-framework/97746/
https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
https://blogs.jpcert.or.jp/en/2020/03/elf-tscookie.html
https://blogs.jpcert.or.jp/en/2020/11/elf-plead.html
https://www.blackberry.com/content/dam/blackberry-com/asset/enterprise/pdf/direct/report-bb-decade-of-the-rats.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-cloud-snooper-report.pdf
https://github.com/gianlucaborello/libprocesshider
https://github.com/dell/dkms
https://github.com/yaoyumeng/adore-ng/blob/522c80a2dc043c2d523256472becc88c90d66337/libinvisible.c#L61
http://www.rinetd.com/
https://github.com/yaoyumeng/adore-ng
https://content.fireeye.com/apt-41/rpt-apt41/
https://docs.python.org/3/library/pty.html
https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html

SHADES OF RED: REDXOR LINUX BACKDOOR AND ITS... MECHTINGER & KENNEDY

14 VIRUS BULLETIN CONFERENCE OCTOBER 2021

IOCs

RedXOR

0a76c55fa88d4c134012a5136c09fb938b4be88a382f88bf2804043253b0559f

0423258b94e8a9af58ad63ea493818618de2d8c60cf75ec7980edcaa34dcc919

4f159f6a745752e3211ca1146830c86075fd8f5db60f704605a57db904dcf5c5

Network

update[.]cloudjscdn[.]com

www[.]centosupdateonline[.]com

158[.]247[.]208[.]230

34[.]92[.]228[].216

Process name

po1kitd-update-k

File and directories created on disk

.po1kitd-update-k

.po1kitd.thumb

.po1kitd-2a4D53

.po1kitd-k3i86dfv

.po1kitd-nrkSh7d6

.po1kitd-2sAq14

.2sAq14

.2a4D53

po1kitd.ko

po1kitd-update.desktop

S99po1kitd-update.sh

