
CTO (Call Tree Overviewer)
Yet Another Function Call Tree Viewer

Hiroshi Suzuki
Malware & Forensic Analysist

Internet Initiative Japan Inc.



Who Am I

• Hiroshi Suzuki is from “Internet Initiative Japan Inc.” that is 
called “IIJ” for short.
• IIJ is a Japanese ISP.

• We are the first commercial ISP in Japan.

• I belong to “IIJ-SECT”, which is the CSIRT team of our company.
• I’m a malware analyst, a forensic investigator, an incident 

responder and a security researcher.

• I have been a Black Hat Briefing speaker (USA, Europe and 
Asia). And I have also been a trainer at Black Hat (USA and 
Japan).

2Copyright Internet Initiative Japan Inc. 



What is CTO?

• CTO is an IDA Pro plugin for visualizing function call tree.

• It can also:
• Summarize function information such as:

• Internal function calls
• API calls
• Static linked library function calls
• Unresolved function calls
• String references
• Structure member accesses
• Comments

• Find paths to/from a function.
• Get arguments of unresolved calls by applying type information.
• Collect other tools result such as ironstrings and fincrypt.py.
• And so on.

Copyright Internet Initiative Japan Inc. 3



Motivation
- Why did I develop CTO? 



Motivation - Why did I develop CTO? (1)

• There are already two features related to function call tree graph in 
IDA Pro. 

• One is called the "Graphs" or “Chart” feature, and another one is 
called "Proximity Browser". 

• Despite of them, why did I decide to develop this plugin? Let me 
explain about it.

Copyright Internet Initiative Japan Inc. 5



Motivation - Why did I 
develop CTO? (2)
• The "Graphs" or “Chart” feature 

does NOT generate clickable 
graphs and lacks of path filter 
feature because it generates a 
graph with a modified version of 
WinGraph.

Copyright Internet Initiative Japan Inc. 6



Motivation - Why did I develop CTO? (3)

• On the other hand, 
“Proximity Browser” is 
more sophisticated feature 
than the former one. 

• You can click nodes and 
there are filter feature and 
path discovery feature as 
well. 

Copyright Internet Initiative Japan Inc. 7



Motivation - Why I developed CTO? (3)
However, it tends to follow unnecessary
paths and xrefs, and an area per node is
large because of the menu bar on every
node.
This is an example of a result comparing
CTO (on the left) with Proximity Browser
(on the right) at the same address.

Compared to CTO’s result, Proximity
Browser traced another path that is not
listed in the xrefs of the function.

Copyright Internet Initiative Japan Inc. 8



Motivation - Why did I develop CTO? (5)

• You can also see Proximity 
Browser shows four paths, 
which you can see four 
arrows are connected to 
“StartAddress” function, 
while IDA’s xrefs window 
for it shows only one xref. 

Copyright Internet Initiative Japan Inc. 9



Motivation - Why did I develop CTO? (6)

• Furthermore, Proximity browser always displays all types of nodes.

• The figure below shows us Proximity Browser displays a string node and 
a global variable node.

• Large number of nodes makes us difficult to understand the 
relationships due to the complexity. 

• These disadvantages made me to develop CTO.

Copyright Internet Initiative Japan Inc. 10



Introducing CTO



Introducing CTO (1) CTO’s Widgets

Copyright Internet Initiative Japan Inc. 12

CTO’s main window

CTO function lister



Introducing CTO (2) Main Window

• Graphical function call tree 
viewer.

• It is aimed to:
• Grasp function relationships.
• Check important information in a 

function.
• Functions
• Strings
• Global/Static variables
• Structure offsets
• Comments

• Find paths to/from a function
• Handle IDA such as

• Renaming a function/variable
• Applying a structure to an offset
• Applying a function definition to a 

indirect function call

Copyright Internet Initiative Japan Inc. 13



Introducing CTO (3) 
CTO Function Lister
• Enhanced function list.

• It is aimed to:
• Check/Find important information in a function.

• Functions

• Strings

• Global/Static variables

• Structure offsets

• You can use a regex filter to find nodes with 
a specific pattern.

Copyright Internet Initiative Japan Inc. 14



Main Features of CTO (1)
Simple But Sufficient Tree (1)
• Only function callees

(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller 

nodes as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 15



Main Features of CTO (1)
Simple But Sufficient Tree (2)
• Only function callees

(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller 

nodes as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 16

Caller nodes Callee nodes



• Only function callees
(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller 

nodes as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 17

Main Features of CTO (1)
Simple But Sufficient Tree (3)



Main Features of CTO (1)
Simple But Sufficient Tree (4)
• Why do I include callers by 

default?

Copyright Internet Initiative Japan Inc. 18

You can check code around a node on 
CTO when you click a caller node since 
this is not a callee but a caller and CTO 
synchronizes the address on IDA View 
with a node on CTO.



Main Features of CTO (1)
Simple But Sufficient Tree (5)
• Only function callees

(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller 

nodes as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 19

String reference and String itself



Main Features of CTO (1)
Simple But Sufficient Tree (6)
• Only function callees

(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller 

nodes as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 20

Stop tracing



Main Features of CTO (1)
Simple But Sufficient Tree (1)
• Only function callees

(function pointers) and 
callers (references) are 
displayed by default.
• You can omit even caller nodes 

as well.
• Other nodes can be displayed 

with a shortcut key.

• Stop tracing if CTO finds a 
static liked-library

• Omit child nodes in parent 
functions

Copyright Internet Initiative Japan Inc. 21

You can include/exclude 
child nodes in parent 
functions with a 
shortcut key. It depends 
on your needs.



Main Features of CTO (2) 
Function Summary (1)

Copyright Internet Initiative Japan Inc. 22

You can check a function summary as 
a popup hint if you point the mouse 
cursor on an callee node. 



Main Features of CTO (1) 
Function Summary

Copyright Internet Initiative Japan Inc. 23

If you want to access the information, 
you can use “Print hint feature”. It 
dumps the same information to the 
output window with a shortcut key.



Main Features of CTO (3) 
3rd Party Tool Corroboration
• CTO collects repeatable comments and specific regular comments, 

which are outputted from several tools. They are also useful to 
identify functions’ roll.

Copyright Internet Initiative Japan Inc. 24

This function clearly indicates that it will create a 
file path “C:\Windows\AppPatch\msmain.sdb”.



Main Features of CTO (4)
Find Paths

• You can find paths to/from a 
node including an API pointer 
on the import table.

• This figure on the right is an 
example of the result of “Find 
Paths” feature for CreateFileW.
• You can easily understand there 

are three paths and one is from 
inside a static linked library and 
the others are from two entry 
points.

Copyright Internet Initiative Japan Inc. 25



Main Features of CTO (5) 
IDA’s Shortcuts Redirection
• Even if you focus the CTO window, you can still use several IDA’s 

shortcuts such as renaming a function/variable (N), finding xrefs (x), 
commenting (: or ;) since CTO redirects them to IDA.

Copyright Internet Initiative Japan Inc. 26

If you press “x” on the 
node, you will see the 
xrefs like this.



Main Features of CTO (6) 
Applying Function Definition to a Indirect Call

If you set an API name as a comment on an 
unresolved indirect call, CTO will set its 
arguments on IDA View.
These two figures show us before and after 
putting a comment on a call instruction. You 
can see IDA recognized the arguments after 
setting the comment on the figure below.

Before

Setting a comment

Copyright Internet Initiative Japan Inc. 27

After



How CTO works - Inside CTO



How CTO works - Inside CTO (1)
Core Structures of CTO
• In order to synchronize with IDA View, CTO utilizes two hooks.

• UI hooks (UI_Hooks class)
• View hooks (View_Hooks class)

• UI hooks and view hooks are in ida_kernwin.py.

• CTO also inherits graph viewer class (GraphViewer class) in 
ida_graph.py. 

• Since IDA’s GUI related APIs are in these two modules, if you 
want to create a GUI-based IDA plugin, you should look into 
them first.

Copyright Internet Initiative Japan Inc. 29



How CTO works - Inside CTO (2)
UI_Hooks Class (1)
• You can catch all UI events, which are called “actions” by Hex-Rays, by 

inheriting this class. 
• For example, the “MakeName” action will be issued if you press “N” key on a 

variable name.
• You can check all defined actions by executing get_registered_actions() API on 

ida_kernwin.py.

• CTO inherits this class to update node information on CTO by overwriting 
these methods (See sync_ui.py).
• preprocess_action()
• postprocess_action()
• updating_actions()

Copyright Internet Initiative Japan Inc. 30



How CTO works - Inside CTO (3)
UI_Hooks Class (2)
• For example, if you set an API name as a comment, CTO will create an 

additional node on CTO. And CTO will also make IDA to set its 
arguments as comments. This feature is implemented by catching the 
“MakeComment” event.

Copyright Internet Initiative Japan Inc. 31

Setting a comment



How CTO works - Inside CTO (4)
View_Hooks Class (1)
• CTO utilizes the “View_Hooks” class to synchronize a CTO’s node with 

the address in IDA View.

• CTO observes location change events by overwriting 
view_loc_changed() method in the class. If the address on IDA View 
is changed, CTO colors the corresponded node on CTO. On the other 
hand, if a different node on CTO is selected, CTO changes the location 
on IDA View with jumpto() API.

Copyright Internet Initiative Japan Inc. 32



How CTO works - Inside CTO (5)
View_Hooks Class (2)

Copyright Internet Initiative Japan Inc. 33

If you click an address on IDA view 
and if the address is included in 
CTO’s window, CTO will color the 
node. 

On the other hand, If you click a 
CTO’s node, the cursor on IDA view 
will move to the address.



How CTO works - Inside CTO (6)
GraphViewer Class
• In order to create a custom graph like CTO, inheriting the GraphViewer

class is the simplest way. You can create a graph by overwriting the 
AddNode() method to add a box called a “node”, and the AddEdge() 
method to add an arrow connector called an “edge”.

• You can also hook many events on your widget as well. For example, 
• Keyboard events

• OnViewKeydown()

• Mouse events
• OnClick() for click events
• OnDblClick() for double-click events
• OnPopup() for right-click events
• OnHint() for on-mouse-over events for nodes
• OnEdgeHint() for on-mouse-over events for edges

Copyright Internet Initiative Japan Inc. 34



How CTO works - Inside CTO (7)
jumpto API (1)

• CTO tweaks the cursor position on IDA View 
when a node is clicked.

• For example, if a callee node is clicked, CTO 
will change the cursor position to a function 
name, not the first instruction.

• On the other hand, a caller node is clicked, 
CTO will change the position to a variable 
name in a instruction, not the head of the 
instruction.

• It’s necessary if a user wants to rename the 
function.

Copyright Internet Initiative Japan Inc. 35



How CTO works - Inside CTO (8)
jumpto API (2)
• In order to tweak the cursor position, CTO utilizes two variants of jumpto() 

APIs. According to ida_kernwin.py, there are two definitions of jumpto() 
APIs.

• The former definition is used for jumping into in the middle of an 
instruction on the given address. If you pass the second argument 
“opnum”, that is an operand number, you can easily tweak the horizontal 
position of the cursor.

• If you want to move the cursor vertically and/or horizontally, 
you can use the second definition of the API.

Copyright Internet Initiative Japan Inc. 36

jumpto(ea, opnum=-1, uijmp_flags=0x0001) -> bool
jumpto(custom_viewer, place, x, y) -> bool



Closing Remarks



Summary

• CTO is an IDA Pro plugin for visualizing function call tree.

Copyright Internet Initiative Japan Inc. 38



Future Work

• Collaborating with some more tools

• Collecting more instructions to be observed

• Implementing more efficient way to collect paths

• Enhancing the speed

• Improving stability

Copyright Internet Initiative Japan Inc. 39



FAQ

• Where will you disclose the source code?
• I will do it on the following URL.

• https://github.com/herosi/CTO

• Will you create CTO for Ghidra or other RE tools?
• No, I won’t. I’m already an IDA Pro user. You can port it to Ghidra or other 

tools since I will disclose the source code.

Copyright Internet Initiative Japan Inc. 40



Thank you for
watching my presentation!

@herosi_t


