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The main problems associated with debugging concurrent programs are increased 
complexity, the “probe effect,” nonrepeatability, and the lack of a synchronized global 
clock. The probe effect refers to the fact that any attempt to observe the behavior of a 
distributed system may change the behavior of that system. For some parallel programs, 
different executions with the same data will result in different results even without any 
attempt to observe the behavior. Even when the behavior can be observed, in many 
systems the lack of a synchronized global clock makes the results of the observation 
difficult to interpret. This paper discusses these and other problems related to debugging 
concurrent programs and presents a survey of current techniques used in debugging 
concurrent programs. Systems using three general techniques are described: traditional or 
breakpoint style debuggers, event monitoring systems, and static analysis systems. In 
addition, techniques for limiting, organizing, and displaying a large amount of data 
produced by the debugging systems are discussed. 
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INTRODUCTION 

The interest in parallel programming has 
grown dramatically in recent years. New 
languages, such as Ada’ and Modula II, 
have built-in features for concurrency. 
Older languages, such as C and FORTRAN, 
have been extended in a variety of ways in 
order to support parallel programming 
[Gehani and Roome 1985; Karp 19871. 

The added complexity of expressing 
concurrency has made debugging parallel 

‘Ada is a registered trademark of the U.S. Govern- 
ment (Ada Joint Program Office). 

programs even harder than debugging se- 
quential programs. In the remainder of this 
section we will justify this claim and outline 
the basic approaches currently used for de- 
bugging parallel programs. In Sections l-4 
we discuss each of these approaches in de- 
tail. We conclude with Section 5 and an 
appendix with tables that summarize the 
features of 35 systems designed for debug- 
ging parallel programs. 

Difficulty Debugging Concurrent Programs 

The classic approach to debugging sequen- 
tial programs involves repeatedly stopping 
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the program during execution, examining 
the state, and then either continuing or 
reexecuting in order to stop at an earlier 
point in the execution. This style of debug- 
ging is called cyclical debugging. Unfortu- 
nately, parallel programs do not always 
have reproducible behavior. Even when 
they are run with the same inputs, their 
results can be radically different. These 
differences are caused by races, which occur 
whenever two activities are allowed to pro- 
gress in parallel. For example, one process 
may attempt to write a memory location 
while a second process is reading from that 
memory cell. The second process’s behavior 
may differ radically, depending on whether 
its reads the new or old value. 

The cyclical debugging approach often 
fails for parallel programs because the un- 
desirable behavior may not appear when 
the program is reexecuted. If the undesira- 
ble behavior occurs with very low probabil- 
ity, the programmer may never be able to 
recreate the error situation. In fact, any 
attempt to gain more information about the 
program may contribute to the difficulty of 
reproducing the erroneous behavior. This 
has been referred to as the “Heisenberg 
Uncertainty” principle applied to software 
[LeDoux and Parker 19851 or the “Probe 
Effect” [Gait 19851. For programs that con- 
tain races, any additional print or debug- 
ging statements may modify a crucial race, 
lowering the probability that the interest- 
ing behavior occurs. This interference can 
be disastrous when attempting to diagnose 
an error in a parallel program. 

The nondeterminism arising from races 
is particularly difficult to deal with because 
the programmer often has little or no con- 
trol over it. The resolution of a race may 
depend on each CPU’s load, the amount of 
network traffic, and nondeterminism in the 
communication medium (e.g., exponential 
backoff protocols [Tannenbaum 1981, pp. 
292-2951). It is this nondeterministic 
behavior that tends to make understand- 
ing, writing, and debugging parallel pro- 
grams more difficult than their sequential 
counterparts. 

An additional problem found in distrib- 
uted systems is that the concept of “global 
state” can be misleading or even non- 
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existent [Lamport 19781. Without a syn- 
chronized global clock, it may be difficult 
to determine the precise order of events 
occurring in distinct, concurrently execut- 
ing processors. 

Basic Approaches 

Some researchers distinguish between 
monitoring and traditional debugging 
[Joyce et al. 19871. Monitoring is the pro- 
cess of gathering information about a pro- 
gram’s execution. Debugging, as defined in 
the current ANSI/IEEE standard glossary 
of software engineering terms, is “the pro- 
cess of locating, analyzing, and correcting 
suspected faults,” where a fault is defined 
to be an accidental condition that causes a 
program to fail to perform its required func- 
tion. Since monitoring is often an effective 
procedure for locating incorrect behavior, 
it should be considered a debugging tool. 

For the purposes of this survey, tech- 
niques for debugging concurrent systems 
have been organized into four groups: 

(1) 

(2) 

(3) 

(4) 

Traditional debugging techniques can 
be applied with some success to parallel 
programs. These are discussed in Sec- 
tion 1. 
Event-based debuggers view the exe- 
cution of a parallel program as a se- 
quence (or several parallel sequences) 
of events. The generation and analysis 
of these sequences or event histories is 
the subject of Section 2. 
Techniques for displaying the flow of 
control and distributed data associated 
with parallel programs are presented in 
Section 3. 
Static analysis techniques based on 
dataflow analysis of parallel programs 
are presented in Section 4. These tech- 
niques allow some program errors to 
be detected without executing the 
program. 

This survey covers a large number of 
research and commercial projects designed 
to help produce error-free concurrent soft- 
ware. It focuses primarily on systems that 
are directed toward isolating program er- 
rors. A large body of work in formal pro- 
gram verification and in program testing 



has been explicitly excluded from this sur- 
vey. Most of the systems surveyed fall into 
one of two general categories, traditional 
parallel debuggers (or what are sometimes 
called “breakpoint” debuggers) and event- 
based debuggers. Of course, some systems 
contain aspects of both classes. All of the 
systems (or in some cases proposed sys- 
tems) in these two general categories are 
listed in the tables in Appendix A. 

In addition to traditional parallel debug- 
gers and event-based debuggers, some static 
analysis systems are included. The static 
analysis systems surveyed fall somewhere 
between debugging and testing. The static 
analysis systems are distinguished from 
testing by not requiring program execution 
and by generally checking for structural 
faults instead of functional faults. That is, 
the analysis tools have no knowledge of the 
intended function of the program and sim- 
ply identify program structures that are 
generally indicative of an error. These 
systems do not appear in the comparison 
table in Appendix A but are discussed in 
Section 4. 

Each of the three types of systems sur- 
veyed takes a different approach to the 
debugging problem. The traditional parallel 
debuggers are the easiest to build and there- 
fore provide an immediate partial solution. 
They provide some control over program 
execution and provide state examination. 
They are also severely limited by the probe 
effect. 

Event-based debuggers provide better 
abstraction than that provided by tradi- 
tional style debuggers. They also address 
the probe effect by permitting deterministic 
replay of nondeterministic programs. If it 
is not possible to record event histories 
continuously, however, the probe effect will 
still be a problem. Also, event-based debug- 
gers are generally research prototypes, ap- 
plicable only to systems without shared 
memory. A notable exception is instant 
replay [LeBlanc and Mellor-Crummey 
19871, which supports event tracing and 
replay on the shared memory BBN Butter- 
fly provided OS protocol routines are used 
for all shared memory accesses. 

Static analysis tools avoid the probe ef- 
fect entirely by not executing the programs. 
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They have the potential of identifying a 
large class of program errors that are par- 
ticularly difficult to find using current dy- 
namic techniques. These techniques have 
been applied mostly to parallel versions of 
FORTRAN that do not support recursion. 
As with the event-based debuggers, static 
analysis systems are still in the prototype 
stage. The primary problem with most 
static analysis algorithms is that their 
worst-case computational complexity is 
often exponential. 

All three types of debugging systems have 
made some progress in presenting the com- 
plex concurrent program state and the ac- 
companying massive amounts of data to 
the user. Multiple windows is a useful 
mechanism for interfacing with traditional 
style debuggers for parallel systems. The 
abstraction capabilities of event-based de- 
buggers (see Section 2) have been used to 
present interesting and potentially useful 
views of system states graphically [Hough 
and Cuny 19871. 

1. EXTENDING TRADITIONAL DEBUGGING 
TO PARALLEL PROGRAMS 

The simplest type of debugger to imple- 
ment for parallel systems is (or behaves 
like) a collection of sequential debuggers, 
one per parallel process. To date, all com- 
mercially available debuggers for parallel 
programs fit this description. The primary 
differences lie in how the output from the 
several sequential debuggers is displayed 
and how the separate sequential debuggers 
are controlled. We will call these collections 
of sequential debuggers traditional parallel 
debuggers. 

The probe effect, discussed in the Intro- 
duction, has gone mostly unaddressed by 
traditional parallel debuggers. This makes 
traditional parallel debuggers ineffective 
against timing dependent errors. The probe 
effect, however, does not always rear its 
ugly head, allowing many program errors 
to be isolated using traditional cyclic de- 
bugging techniques. This can be attributed 
to two factors. First, those errors in parallel 
programs that are not timing dependent 
would never be masked by the probe effect. 
Second, even for timing related errors, the 
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effect of the probe may not disturb the 
outcome of the critical races. 

Another criticism of traditional parallel 
debuggers is that they operate at too low a 
level. For programs consisting of many con- 
currently executing processes, the major 
difficulty may be in understanding what is 
happening at the interprocess level. Tradi- 
tional debugging techniques work well for 
viewing the behavior at the instruction 
level or at the procedure level. In Section 
2.4 some recent developments for viewing 
program behavior at a more abstract level 
are presented. 

1.1 Coordinating Several Sequential 
Debuggers 

In addition to the sequential capabilities of 
standard sequential debuggers, traditional 
parallel debuggers should be able to do the 
following: 

1. direct any sequential debugger com- 
mand to a specific task, 

2. direct any sequential debugger com- 
mand to an arbitrary set of tasks, 

3. differentiate the terminal output from 
the different tasks. 

The most primitive debugger for parallel 
programs would be nothing more than a 
sequential debugger capable of attaching to 
any single process in a parallel program. 
All that would then be necessary is to pro- 
vide the user with multiple real or virtual 
terminals from which to execute the mul- 
tiple copies of the debugger. Today’s mul- 
tiple window workstations make this more 
practical than it might have been a few 
years ago. With a window manager [Schei- 
fler and Gettys 1986; Sun Microsystems 
19861 points 1 and 3 could be satisfied by 
selecting the desired window. Satisfying 
point 2 could be achieved simply by repeat- 
ing the desired command in each of the 
desired windows. This approach, however, 
would become fairly unwieldy for more 
than a few processes. Furthermore, the time 
lapse between sending the command to the 
first and last processes in the set could 
aggravate the probe effect. This is particu- 
larly true for commands such as “stop” and 
“continue.” 
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The Sun Microsystems’ dbxtool is an ex- 
ample of applying a set of sequential de- 
buggers to concurrent programs without 
any explicit coordination. It is capable of 
attaching to an existing UNIX’ process, 
making it possible to debug a system of 
communicating UNIX processes by attach- 
ing a separate copy of dbxtool to each pro- 
cess. (The UNIX process may not contain 
process creation calls such as “fork,” and 
the executable image being debugged can- 
not be shared.) 

An alternative to relying on a window 
manager to direct commands to the proper 
sequential debugger is to control all of the 
debuggers from a single terminal or window 
[Sequent Corp. 19861. Commands are then 
directed at a specific process using a com- 
mand parameter or by defaulting to a 
specific “current” process. For example, 
“continue Pl” would continue process Pl, 
and “continue” without a parameter would 
continue the “current” process. The “cur- 
rent” process can be changed at any time. 
The use of a single control window also 
permits the commands to be sent to all 
processes. For example, “continue all” 
would continue all currently suspended 
processes. In general, all processes will not 
receive the command at the same instant. 
The commands will, however, arrive at 
times that differ by an amount approxi- 
mating the communication delay in the 
system. If all processes could be instanta- 
neously stopped (and started) then, in the 
absence of timeouts, “stop all” breakpoints 
would not cause any probe effect. This is, 
of course, impossible, but anything that can 
be done to minimize the time difference 
for receipt of stop signals should reduce 
the probe effect. In addition to reducing 
the probe effect, broadcasting a single 
command to a set of processes is a useful 
feature. 

The “current” task notion is generalized 
in Griffin [1987] and Intel Corp. [1987] to 
a current set of processes that all receive 
any process-related commands. In Griffin 
[ 19871, processes can be added to or re- 
moved from the set simply by pointing to a 
symbol for the process in a special window. 

* UNIX is a trademark of AT&T Bell Laboratories. 
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This could be generalized to permit arbi- 
trary groupings of processes. For instance, 
it might be desirable to alternate com- 
mands between two disjoint sets of pro- 
cesses. With only a single “current” set and 
no overlap between the desired sets, this 
would require as many commands from the 
user as would be required with no support 
for process grouping. It would, however, 
still reduce the probe effect. It appears that 
the macro capability of Intel Corp. [1987] 
combined with their “context” command 
for specifying the current set of pro- 
cesses would support this toggling back and 
forth between disjoint sets of processes. 

1.2 Breakpoints 

The ability to set breakpoints is possibly 
the most important feature of a sequential 
debugger. (Since tracing is equivalent to 
setting a breakpoint that, when encoun- 
tered, prints some information and auto- 
matically continues, the discussion in this 
section will refer only to breakpoints.) Tra- 
ditional parallel debuggers generally sup- 
port the same types of breakpoints as those 
found in sequential debuggers. These 
breakpoints include stop at a source state- 
ment, stop on the occurrence of an excep- 
tion or some user detectable event, stop 
when a specific variable is accessed, and 
stop when some conditional expression is 
satisfied [Seidner and Tindall 19831. Un- 
like sequential debuggers, there are two 
possible actions to take when a breakpoint 
is encountered. Either all of the processes 
in the parallel program can be stopped im- 
mediately or only the process encountering 
the breakpoint can be stopped. The former 
can be difficult to achieve within a suffi- 
ciently small interval of time, and the latter 
can have a serious impact on systems that 
contain such things as timeouts. Assuming 
message passing is the communication 
mechanism, an algorithm to stop all pro- 
cesses in a consistent state is presented in 
Miller and Choi [1988a]. 

Using breakpoints to debug systems with 
explicit time-dependent operations (such as 
timeouts) can be especially difficult. Some 
systems have attempted to deal with such 
explicit race conditions by supporting a 

notion of logical time that stops when any 
process reaches a breakpoint [Cooper 1987; 
DiMaio et al. 19851. In systems that sus- 
pend only the selected process, other pro- 
cesses will continue to execute until they 
encounter some explicitly time-dependent 
operation. In that case, the logical clock is 
the one used for time in the time-dependent 
operation. For example, if a breakpoint is 
encountered, no timeouts will expire until 
the suspended process is continued. In sys- 
tems that stop all processes upon encoun- 
tering a breakpoint, logical time is stopped 
so that all of the suspended processes can 
be continued with minimal impact. This 
will certainly not eliminate the probe effect, 
but it can permit some traditional style 
debugging in the presence of such explicitly 
time-dependent operations. 

The domain of expressions or predicates 
used to describe a breakpoint is larger for 
parallel programs than for sequential pro- 
grams. These predicate expressions may 
involve both process state and events. An 
event can be loosely defined as any atomic 
action visible beyond the scope of a single 
process. 

Predicates involving global state in an 
executing parallel program can be a prob- 
lem. This results from the lack of global 
clock in most systems. For example, an 
expression such as “process A never modi- 
fies variable X while process B is modifying 
variable X” may appear to be true due to 
the delay in communicating this informa- 
tion to the debugger, when in fact concur- 
rent modification has occurred. The use of 
events and some notion of consistent global 
time can be used to address this (see Sec- 
tion 2). Possibly more important is that it 
may not be possible to stop the desired 
processes after detecting that the predicate 
is satisfied yet before the state has changed. 

The distinction between events and 
global states is admittedly vague in general 
but is usually well defined for any particular 
system. For example, an event-based pred- 
icate might be “process A sends a message,” 
and a global state-based predicate might be 
“the message buffer contains a message 
from process A.” This could even be repre- 
sented as a collection of program counter- 
based breakpoints, one immediately follow- 
ing each send statement in process A. In 
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systems that deal with event-based predi- 
cates, there must be some language for de- 
scribing events. The language may be as 
simple as naming one of a finite set of 
events such as “taskstart” or “sendmes- 
sage”; or it may support relatively powerful 
abstractions such as those described in Sec- 
tion 2. Table A.4 summarizes the break- 
point capabilities of the systems surveyed. 

1.3 OS Support for Parallel Debuggers 

Parallel debuggers that support global 
state-based breakpoints and event-based 
breakpoints place greater demands on the 
operating system than sequential debug- 
gers. This is just one more step in the 
evolution of debuggers. Early debuggers 
only needed the ability to examine core 
memory and the saved values of CPU reg- 
isters after the program terminated. Next 
was added the ability to set breakpoints. 
The operating system provided a means of 
modifying the executable image and of 
passing control to the debugger when the 
breakpoint instruction was encountered. 
Most operating systems also pass control 
to the debugger for most program excep- 
tions. Some hardware architectures now 
also include a special trace mode to facili- 
tate single stepping. The final feature that 
is provided is a mechanism for passing con- 
trol to the debugger when a specific memory 
location is accessed. To summarize, a state- 
of-the-art sequential debugger may need 
the following capabilities to be provided by 
the operating system or hardware: 

l the ability to read or write a register or 
memory location, 

l the ability to set and trap breakpoints, 
l the ability to trap program exceptions, 
l the ability to single step a program, 
l the ability to trap memory accesses. 

Traditional parallel debuggers that go 
beyond being simply a collection of sequen- 
tial debuggers acting together may require 
more of the underlying operating system. 
Debuggers that fit the traditional cyclic 
debugging paradigm, using breakpoints and 
tracing, require one or more of the following 
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facilities: 

l the ability to trap on any interprocess 
communication (IPC), 

l the ability to modify/insert/delete IPC 
messages, 

l the ability to control the clock used for 
timeouts. 

Several approaches have been taken to 
provide these capabilities. Some debugging 
systems modify the program source in order 
to provide the necessary hooks for the de- 
bugger at run time. This avoids the need 
for modifying the operating system at the 
expense of slower performance and re- 
stricted capability. A second approach is to 
provide an alternative set of system rou- 
tines. This permits the debugger to inter- 
vene in any interaction between the user 
and system. The final approach is actually 
to modify the operating system to provide 
the necessary hooks. At some point it may 
become cost effective to implement more of 
the debugging hooks directly in the ma- 
chine architecture. The interface entry in 
Table A.2 summarizes where the hooks 
were placed for the systems surveyed. 

2. EVENT HISTORIES 

Since the various debuggers surveyed were 
designed for different environments, it is 
only natural that they do not agree on the 
definition of “event.” For example, in the 
DISDEB system events are memory ac- 
cesses, in Radar each message send or re- 
ceive is an event, in Instant Replay an 
event is the access of an object, and in 
YODA events represent Ada tasking activ- 
ity. In some systems, such as TSL and 
EDL, events can be defined by the pro- 
grammer. In systems with explicit inter- 
process communication, events can be 
divided into two classes: those representing 
inter-process communication activity and 
those representing activity internal to a 
single process. This distinction does not 
seem to hold for shared memory systems, 
since each memory access is a potential 
interprocess communication. 

Some systems merely display the events 
as they occur (see Appendix A). A more 
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powerful approach is to record an event 
history containing all of the events gener- 
ated by the program. The history can then 
be examined by the user after the program 
has completed. Since the event history is 
often very large, some debuggers provide 
facilities to browse or query the history. 
Event histories can also be used to guide 
the program’s execution, allowing the re- 
production of erroneous computations. If 
the history is complete enough, a single 
process can be debugged in isolation with 
the history providing the needed commu- 
nication. Finally, some systems can auto- 
matically check the history for suspicious 
behavior or transform the lower level his- 
tory of events into more meaningful high- 
level events. 

2.1 Recording Event Histories 

A common approach is for the debugger to 
do as little as possible, mainly recording 
information, at run time. By limiting the 
debugger’s activity, the probe effect should 
be reduced. The recorded information can 
then be analyzed following the program’s 
execution. 

2.1.1 Which Information to Record 

The amount of information that must be 
recorded for each event depends upon how 
the event history is going to be used. Three 
general levels of use that require increasing 
amounts of detail to be recorded for each 
event are the following: 

(1) 

(2) 

(3) 

Browsing-The event history is exam- 
ined possibly through the use of spe- 
cialized tools. Examination methods 
range from text editors to “movies” 
showing the state changes caused by 
events [Hough and Cuny 1987; 
Le Blanc and Robbins 19851. 
Replay-The debugger uses the event 
history to control a reexecution of the 
program. This permits the use of con- 
ventional debugging techniques, such 
as breakpoints, state examination, and 
single stepping, without changing the 
behavior of the program. 
Simulation-The event history can be 
used to simulate the environment of 

any single process. This permits the 
use of a sequential debugger on a pro- 
cess without reexecuting the entire 
program. 

Browsing requires only minimal infor- 
mation about each event. Simply recording 
the kinds of events executed by a process 
can help isolate an error. Of course, if more 
information is recorded, then more infor- 
mation will be available to the programmer. 

One problem with browsing event histo- 
ries is that the histories frequently contain 
enormous numbers of events, making it 
difficult to locate the events of interest. 
Some systems allow selective recording of 
information, and others include powerful 
mechanisms for examining the event his- 
tory (see Section 2.2). 

To replay an execution requires enough 
information so that the next event in which 
each process participates can be deter- 
mined. LeBlanc and Mellor-Crummey 
[1987] describe a method that reduces the 
amount of information needed for replay 
compared with previous methods that re- 
corded the complete contents of all mes- 
sages. Their ideas work because the 
program generates the contents of the mes- 
sages during the reexecution. 

Simulating the rest of the program so 
that a single process can be debugged in 
isolation requires that all events visible to 
the process be recorded. This includes both 
the contents of messages and the values 
written to shared memory. Note that reex- 
ecuting a single process requires more in- 
formation than reexecuting the entire 
system. 

If the interesting portion of the execution 
can be identified, then the amount of infor- 
mation required for replay can be consid- 
erably reduced. Instead of recording the 
entire history, the debugger can take a 
snapshot of the program’s state and keep 
only that part of the history that follows 
the snapshot. It may, however, be difficult 
to obtain accurate snapshots in distributed 
systems efficiently (see Chandy and 
Lamport [1985] for one method). This tech- 
nique may work best for simulating a single 
process, since only that process’s state 
needs to be recorded. 
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2.1.2 How the History Gets Recorded 

In addition to the amount of information 
recorded in an event history, some atten- 
tion must be given to how the recording is 
done and the resulting impact on perfor- 
mance and the probe effect. In the systems 
surveyed, the methods used to generate the 
event history varied from inserting appro- 
priate statements in the original source 
program to monitoring the buses passively. 
An intermediate method of recording event 
histories is to provide modified system rou- 
tines. These modified routines record the 
history in addition to performing their nor- 
mal system functions. In some cases such 
as LeBlanc and Mellor-Crummey [1987] it 
is the user’s responsibility to insert system 
calls that record the event information. In 
others it is only necessary to link the pro- 
gram using special monitoring versions (see 
the interface entry in Table A.2). 

With the exception of the bus monitor- 
ing, all other recording methods resulted in 
possible changes in timing and hence are 
potentially susceptible to the probe effect. 
In some papers (see the probe effect in 
Table A-2) it was argued that the perfor- 
mance impact of monitoring was suffi- 
ciently small to justify leaving the recording 
permanently enabled. In other papers it 
was argued that the perturbations caused 
by the monitoring software were suffi- 
ciently small to avoid the probe effect in 
most cases. 

2.1.3 Linear Versus Partially Ordered Event 
Histories 

An issue that arises in distributed systems 
is whether the event history should be par- 
tially or linearly (i.e., totally) ordered. On 
the one hand, a linearly ordered history is 
simpler to understand and can be easier to 
work with. On the other hand, a linear 
stream is often misleading since it implies 
an ordering between every pair of events- 
even when the events are completely unre- 
lated. A partial ordering on the events is 
necessary to reflect the behavior of a dis- 
tributed system accurately. 

One way to represent the partial order 
(used by Instant Replay [LeBlanc and 
Mellor-Crummey 19871) is to record a sep- 
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arate history tape for each process. Al- 
though each history tape is a linear stream, 
together they (with the program) represent 
the partial ordering of the events in 
the computation. The Traveler debugger 
[Manning 19871 for Acore (a LISP-like lan- 
guage) keeps a history tape (“lifeline” in 
their terminology) for each object in the 
program. In addition, the Traveler system 
records the partial order by explicitly link- 
ing each action to the child actions it causes 
(or parent action it allows to continue). 

A general technique for obtaining the 
partial order involves associating each 
event with a vector of “logical timestamps” 
[Fidge 1988; Haban and Weisel19881. The 
order (or absence thereof) between two 
events can be easily determined by com- 
paring the vectors of timestamps associated 
with the events. 

2.2 Browsing Event Histories 

Many systems recognize the need for facil- 
ities that help interpret massive event his- 
tories. Graphical techniques such as time- 
process diagrams and animation are dis- 
cussed in Section 3. A simple feature found 
in many systems is filtering, whereby the 
events that the programmer feels are un- 
important are automatically discarded, 
usually based on process or kind of event 
(see Table A.@. Two systems go further, 
storing the event history in a database for 
easy examination. 

The YODA system for Ada tasking pro- 
grams [LeDoux and Parker 19851 stores the 
event history as Prolog facts. Prolog pred- 
icates define the common temporal rela- 
tionships such as during, before, and after. 
The user is able to define and store addi- 
tional predicates (either temporal or non- 
temporal). Existential queries, such as 
“which tasks updated variable X before 
task T,” are used to retrieve information 
from the history. Note that the YODA 
system stores when (using a global event 
counter) and to what values variables are 
updated, as well as the explicit intertask 
communications. 

In [Snodgrass 19841, the events are 
captured in a relational database. In addi- 
tion to the event relations, the database 
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regard. On one example (gaussian elimina- 
tion of a 400 X 400 matrix on up to 64 
processors) they report that (with tuned 
monitoring) the overhead involved in col- 
lecting the event history amounts to less 
than 1 percent. Furthermore, there was no 
additional decrease in performance when 
the execution was replayed. 

Replaying real-time systems has several 
additional problems. The external I/O and 
interrupts must be recorded in addition to 
the communications between the processes. 
Since real-time systems generally have a 
strong time dependency, it may be impor- 
tant to simulate time during the replay. If 
behavior due to the absence of communi- 
cation, such as timeouts, takes place, then 
faithfully reproducing such behavior re- 
quires that additional events appear in the 
history. 

2.4 Checking and Transforming 
the Event History 

Several debugging systems compare the 
event history generated by the program 
with a set of predicates. These systems are 
more than browsers since the analysis is 
done at run time. In addition, the violation 
of a predicate can trigger additional debug- 
ging action. Because the analysis is done at 
run time, all of the predicates to be tested 
must be written before the program starts 
executing. This disadvantage can be re- 
duced if the event history is recorded so 
that the execution can be replayed. 

The DISDEB system [Lazzerini and 
Prete 19861 relies on programmable debug- 
ging aids that eavesdrop on bus traffic, 
avoiding the probe effect. Although this 
system contains several interesting fea- 
tures, it has a very low-level interface. An 
event definition is of the form “process P 
with certain permissions accesses memory 
location X reading/writing value V.” The 
memory location is mandatory, and the 
value may be a range. If part of the event 
definition is omitted, then that part is 
treated as “don’t care.” DISDEB allows 
state to be stored in two ways. First, 
counters and timers can be defined and 
used; second, event definitions can be en- 
abled and disabled. Once a suitable set of 
events has been defined, it can be used to 
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contains interval relations indicating be- 
havior with duration. Time is kept in mi- 
croseconds, presumably using a global 
clock. TQuel, a version of Quel augmented 
with temporal constructs, is used to build 
new relations from those in the event his- 
tory. The user queries the history by build- 
ing and printing the appropriate relation. 

2.3 Replaying Event Histories 

Several of the debugging systems allow a 
program to be reexecuted under the control 
of an event history (see Table A.5). We call 
this capability replay. If the history cor- 
rectly reflects the interprocess communi- 
cation of the original execution, then the 
replay produces the same results. Although 
replay helps solve the reproducibility prob- 
lems, it is useful only if additional infor- 
mation is gained. 

One way to gain information is to replay 
the program in “debug mode,” with a tra- 
ditional sequential debugger attached to 
each process. This allows the internal state 
of the processes to be examined, giving the 
programmer significantly more informa- 
tion than a stream of IPC events. Some 
systems allow a single suspect process to be 
replayed in isolation, with the remainder of 
the program simulated by the event history. 
This approach reduces the parallel debug- 
ging problem to that of debugging a single 
sequential process, once the faulty process 
is identified. 

Another way of gaining information is to 
execute a modified program under the con- 
trol of an event history. The event history 
can control the new program as long as 
its behavior is compatible with the old 
[Curtis and Wittie 1982; LeBlanc and 
Mellor-Crummey 19871. This facility al- 
lows the programmer to add additional 
debugging statements or experiment with 
modified algorithms. Another advantage of 
this feature is that corrected programs can 
be tested against the same input and his- 
tory that caused the previous version to 
fail. 

The added synchronization involved dur- 
ing replay can dramatically slow down a 
parallel program. The Instant Replay sys- 
tem [LeBlanc and Mellor-Crummey 19871 
reported some of the best results in this 



602 l C. E. McDowell and D. P. Helmbold 

trigger debugging actions; for example, 
“when El occurs, display counter C and 
stop process N.” Other potential actions 
include starting and stopping traces 
of memory locations and manipulating 
timers. 

A similar approach is taken by the 
HARD system for Ada tasking programs 
[Di Maio et al. 19851. There the predicates 
and debugging actions are encoded in spe- 
cial Ada tasks called D tasks. Manually 
inserted calls to the D tasks enable them 
to obtain information about the program’s 
execution. Based on this information, they 
can call routines that display or modify the 
program state. All of the Ada facilities can 
be used inside of a D task, so the program- 
mer can use a familiar high-level language 
to control the debugging process. 

Rather than using the stream of events 
to control debugging activity, the following 
systems automatically check specifications 
for the program. Although this requires 
that the programmer learn an additional 
language, it can complement a formal spec- 
ification/verification approach to program 
development. Most of these systems have 
their own way of specifying complex event 
formulas, usually based on the sequential 
and parallel composition of events. 

The IDD system [Harter et al. 19851 uses 
an interval logic specification of the pro- 
gram. This specification is checked against 
the program’s behavior. When a specifica- 
tion is violated, the program is stopped for 
inspection. Temporal logic views the com- 
putation as a sequence of states. The main 
operators are “always” and “eventually,” 
meaning that the following predicate on the 
state is either always true or eventually 
becomes true. Interval logic adds expressi- 
bility by restricting the temporal operators 
to portions of the computation. 

The ECSP debugger [Baiardi et al. 19861 
can check behavior specifications that 
completely describe the allowable commu- 
nication behavior of the processes. The 
specifications can refer to various commu- 
nication activity and can contain assertions 
on the process’s state. One of the constructs 
in their language causes control to be re- 
turned to the user (presumably so that the 
process can be examined). The ordering of 
events and checking of specifications in 
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this system is simplified by the restriction 
that each specification can only refer to 
events from a single process. 

The TSL system [Helmbold and Luck- 
ham 1985a] automatically checks specifi- 
cations against the events generated by an 
Ada tasking program. Each TSL specifica- 
tion is of the form “when this occurs then 
that occurs before something else,” where 
each of the three parts is an event formula. 
TSL contains placeholders allowing a sin- 
gle specification to constrain multiple 
tasks. Additional abstraction is gained by 
using macros for event subformulas. An 
important contribution of the TSL system 
is its use of Ada semantics to guarantee 
that, even in distributed systems, certain 
pairs of events appear in the history in the 
correct order. 

The Event Description Language (EDL) 
takes a slightly different approach [Bates 
and Wileden 19831. Instead of checking 
specifications against the event history, it 
provides a method for defining multiple 
levels of abstract events from the primitive 
events generated by the program. Each 
high-level event is defined by an event for- 
mula over lower level events. There is one 
clause that constrains the values associated 
with the lower level events and another that 
determines the values associated with the 
higher level event. The Belvedere system 
uses EDL to help control its display (see 
Section 3.3). 

All of these specification methods have 
simplifying restrictions. In EDL, an accu- 
rate global clock is assumed, the event 
recognizer is a potential bottleneck, and 
some ambiguity arises when a low-level 
event can be used in multiple higher level 
events (see, however, Bates [1988]). The 
TSL specification checker requires a lin- 
early ordered stream of events and is also 
a bottleneck in the current application. In 
the IDD system, events are restricted to 
broadcasts on a shared medium (such as an 
Ethernet). A tree structure method for eval- 
uating the IDD interval logic expressions is 
briefly described. The ECSP assertion 
checker is for a hierarchical fork-join 
method of parallelism. Its main disadvan- 
tages are that each specification deals only 
with the activity of one process and all 
processes must be completely specified. 
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3. GRAPHICS 

Sequential programs lend themselves rea- 
sonably well to being debugged with a single 
sequential output device. There is only one 
thread of execution that can accurately be 
displayed as sequential text. Also, the data 
are logically stored in one place and can be 
displayed when desired. Parallel programs 
are different in these two areas. In parallel 
programs, there are multiple threads of 
control and the data may be logically as 
well as physically distributed. An impor- 
tant goal of research into parallel debugging 
systems is to find ways of presenting the 
distributed data and control of parallel pro- 
grams to users in a manner that aids in 
comprehension. 

Four basic techniques for displaying de- 
bugging information are as follows: 

(1) 

(2) 

(3) 

(4) 

Textual presentation of the data, which 
may involve color, highlighting, or a 
display of control flow information. 
Time may not progress monotonically 
from the top of the screen to the 
bottom. 

Time-process diagrams that present the 
execution of the program in a two- 
dimensional display with time on one 
axis and individual processes on the 
other axis. The points in the display 
are labeled to indicate the activity of 
the specified process at the specified 
time. 

Animation of the program execution, 
whereby both dimensions of the display 
are spatial dimensions. The display 
corresponds to a single instant in time, 
or snapshot of the program state. These 
snapshots can be displayed one after 
another, animating the program’s exe- 
cution. The actual format of a single 
frame can take many forms as dis- 
cussed below. 

Multiple windows, whose use permits 
several simultaneous views of the pro- 
gram being debugged. This frequently 
involves using one window per process. 

Each of these approaches will be discussed 
below with examples taken from the sur- 
veyed papers. 

proc Simple = reply(request(A) + request(B) 
+ request(C)); 

proc A = reply(request(X) + request(Y)); 
proc B = reply(b); 
proc C = reply(c); 
proc X = reply(r); 
proc Y = reply(y); 

Figure 1. A stylized transaction program. 

3.1 Text Windows 

A simple text presentation of the debugging 
information is the most common type of 
display. All of the systems make use of 
some simple text displays. For a traditional 
parallel debugger, this may be the only type 
of data display (see Section 1.1). In an 
event-based system, a sequential display of 
the events as seen by a particular process 
can be useful. The Traveler [Manning 
19871, which is an object-based system, can 
display a “lifeline” that is a sequential list 
of processes in the order that they accessed 
a particular shared object. 

It is not always necessary for time to 
progress monotonically from the top of a 
sequential text display to the bottom. In 
Traveler events are displayed in their 
causal order instead of in their temporal 
order. Traveler is used to debug message 
passing programs. In their model, all mes- 
sages come in pairs, with a request and a 
reply. All requests block until a reply is 
received, and the programming model is 
such that making one request may result in 
many more nested requests before a reply 
is sent. Also, one process may send several 
requests concurrently. The Traveler dis- 
play presents these nested request-reply 
pairs, which they call transactions, in such 
a way as to emphasize the nested structure. 
Requests sent concurrently will be dis- 
played paired with their responses and 
nested within the send-receive pair that 
caused them to occur. Figure 1 gives a styl- 
ized example program using requests and 
replies. “Request(A)” sends a message to 
request a response from process A. “Re- 
ply(x)” sends the reply “x”. Figure 2 gives 
a possible sequential ordering of the events 
for a partial execution of the request “re- 
quest(Simple)“. Figure 3 gives the nested 
transaction display for the same partial 
execution. 
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request(Simple) 
request(A ) 
reauest(B) 

Figure 2. A sequential display. 
re&estiXj 
request(C) 
request(Y) 
reply(y) 
reply(c) 

request(Simple) 
request(A) 

request(X) 
[no response] 
request(Y) 

Figure 3. A nested display. reply(y) 
[no response] 
Iequest(B) 
[no response] 
request(C) 
reply(c) 

[no response] 

For large programs, all transactions and 
their subtransactions might not fit on the 
display simultaneously. To handle this, the 
user may selectively open and close trans- 
actions. When a transaction is closed, all 
of its subtransactions are hidden. For 
example, in Figure 3, if the transaction 
for “request(A)” were closed, then “re- 
quest(X)“, “request(Y)“, and their corre- 
sponding response lines would not be 
shown. As the computation advances, 
the various “ [no response] ” entries will 
be filled in. 

3.2 Time-Process Diagrams 

A time-process diagram is a two-dimen- 
sional representation of the state of a par- 
allel system over time. One axis represents 
time, and the other axis represents the 
processes. Each point in the display gives 
some information regarding the state of the 
corresponding process at the corresponding 
time. For example, a simple time-process 
diagram for a hypothetical system is shown 
in Figure 4. Each row describes the events 
in which a process engages, and each col- 
umn describes the state of the system at a 
particular instant in time. At time 1, pro- 
cess 1 engages in event A; at time 2, process 
2 engages in event B and process 3 engages 
in event C; and so on. 

Figure 4. A simple time-process diagram. 

In Griffin [ 19871 time-process diagrams 
are used without enhancement to display 
the activity of this shared memory-based 
system. It has the advantage that it can be 
presented on a simple text screen (see Fig- 
ure 5). This system is actually a uniproces- 
sor simulation of a multiprocessor, and this 
is evident in the display. The unit of time 
is the occurrence of an event. A single char- 
acter is used to represent each of the pos- 
sible events in which a process may engage. 
Because this is a uniprocessor, each column 
will have one event character and all other 
active processors will have a “.” in that 
column. The last character other than “.” 
in a row corresponds to the last event in 
which the process engaged. This can be 
thought of as the process’s current state. 
The display can be scrolled forward or 
backward in time. The last non “.” in each 
row that was scrolled off to the left is 
maintained in the leftmost column. The 
display contains additional text that pro- 
vides additional information about the 
current (rightmost column) state. This in- 
cludes such things as which signal a process 
is waiting for and which signals have been 
posted. (To avoid confusion with our 
broader use of the word event, we use signal 
here where the mtdbx system [Griffin 
19871 uses event.) 

In [Harter et al. 19851 the message-pass- 
ing system, Idd, there is heavier use of 
graphics. Instead of placing one character 
at each point in the display, two points 
in the display are connected by a line to 
indicate the transmission and receipt of 
a message (see Figure 6). To aid in compre- 
hension of a potentially very cluttered dis- 
play, the user can magnijl or scroll to see 
only a selected portion of the display. The 
display option allows the user to rearrange 
the rows so that related processes can be 
placed close together. The user may also 
select various filters to be used in displaying 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 



Debugging Concurrent Programs l 605 

1 STRRT] 1 STOP 11 CONT 11 QUIT 1 Display Rate Chm~l: tOI O-10 

MRIN -............................... 
TRSK 1 i? : : : . SC- . . . . I...(-)(-..I.( . . . . 
TRSK2 . R. . . : : : : : : . SP. UJ.. . . . . . . . . . . . . . . . . 
TRSK3 . . R.. SI . . . I. : : . . 1 -I(. . . . . -1. (. -I(- 
TRSK4.. . R.. -SPUl.. . . . . . ::. . . . . . . . . . . . . . . . . 

TASK ID STATUS TASK IO STATUS LOCK STRTUS OWNER 
0 MAIN running 3 3 1 off 

t 
1 lockwait on 2 
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4 4 eventwait on 4 2 on 3 

2 eventwait on 3 

Figure 5. The mtdbx time-process diagram. 

Display Filter 

w Time in MS (Freers) Time in MS 

< <oo 

Figure 6. The Idd time-process diagram. Used with permission [Harter 198510 1985 IEEE. 

subsets of the messages that fall within the message. Figure 7 shows process histories 
time-process space currently being dis- for three processes and the corresponding 
played. Similar displays are included in concurrency map. The horizontal lines 
PPUTT [Fowler et al. 19881 in which the (partially obscured by the boxes) corre- 
emphasis is on the programmer noticing spond to logical time divisions. An event 
irregularities in the patterns of communi- may have occurred during any time division 
cation. touched by the box containing the event. 

For many of the variations on time- 
process diagrams a global clock is required. 
At least one system [Stone 19881, however, 
uses a type of time-process display without 
needing a global clock. This display is called 
a concurrency map. Instead of displaying 
exactly when events occurred based on a 
global clock, events are arranged to show 
only the order in which they occurred. This 
order is derived from the time dependencies 
in the program. For example, the receipt of 
a message must follow the sending of a 

Time-process displays appear to have a 
definite place in viewing the activity of 
parallel systems. They do have their limi- 
tations. As the number of processes be- 
comes large, the display may become too 
cluttered with information to be useful. 
This can be addressed to a degree with 
filtering and such features as the display 
and magnify options described above for 
Idd. In the next section, we present an 
alternative display that gives a much dif- 
ferent view of the system. 
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3.3 Animation 

An alternative to time-process displays is 
to place each process (or selected portions 
of distributed data) at a different point in 
a two-dimensional display and have the 
entire display represent the system at a 
single instant in time. As time advances, 
the display changes and these changes can 
be played in sequence to give a type of 
animated movie. This movie displays the 
evolution of the state of the system. The 
placement of the processes (or data) in the 
two-dimensional display could be arbitrary, 
be under user control, or correspond to the 
underlying structure of the program (or 
data) being represented. 

In Belvedere [Hough and Cuny 19871, 
the placement of processes is very impor- 
tant and is specified by the user. The basic 
animation elements are depicted in Fig- 
ure 8. This system animates primitive 
events and user defined events specified 
using EDL. To further help organize the 
display, the user may request that events 
be displayed from different perspectives: 
that of a processor, a channel or a data 
item. For example, when viewed from the 
perspective of a single processor, the events 
will be displayed in the order that they 
appeared to that processor. Examples of 
this can be found in Hough and Cuny 
[1987] and in Figure 8. Figure 8 is a snap- 
shot of message traffic animation during a 
traveling salesman program. Activity is de- 
picted by highlighting the appropriate ports 
(small boxes) and channels (lines). A port 
is highlighted during a receive and a chan- 
nel during a send. Arrowheads indicate di- 
rection for sends, with multiple arrowheads 
indicating more than one message in the 
buffer. 

Figure 8. Animation using Belvedere. Used with per- 
mission of Hough and Cuny [1988]. 

can use existing views or build new ones. 
Four views have been constructed and are 
described in Socha et al. [1988]: icon view, 
vector view, trace view, and linked-list 
view. 

In the icon view, the events indicate 
where in a two-dimensional picture a par- 
ticular icon should be drawn and when to 
start a new animation frame. By observing 
the position of the icons within a single 
frame and their change in position from 
frame to frame, several errors have been 
detected. The vector view is a variation of 
this where instead of drawing icons, vectors 
are drawn. 

The Radar [LeBlanc and Robbins 19851 
system also uses animation of messages. In 
Radar, the user can control how long each 
time frame is displayed. Also, at any time, 
the user can have the contents of any mes- 
sage displayed. 

Voyeur [Socha 19881 is a prototype sys- 
tem for the construction of application spe- 
cific “views” of parallel programs. Its input 
is a sequence of events generated from user- 
inserted instrumentation code. The user 

The trace view provides a small box (win- 
dow) for each process. Connections to other 
processors are shown as lines to other 
boxes. Values local to the process are then 
displayed inside the box. The linked-list 
view is a variation of the trace view that 
displays a linked-list data structure from 
the program. The nodes are drawn as boxes, 
with the actual data values displayed. The 
boxes are then connected to show the actual 
link structure. 

The emphasis in Voyeur is the ability to 
provide an easy method for programmers 
to animate their parallel programs for the 
purpose of uncovering errors. 

l 607 
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3.4 Animation Versus Time Process 

It should come as no surprise that neither 
animation nor time-process diagrams alone 
is sufficient to detect all of the errors in 
parallel programs easily. Animation is good 
for observing the instantaneous state of the 
system. By only displaying a single instant 
of time, more state information can be dis- 
played simultaneously. This may mean 
more information per process or more pro- 
cesses. Patterns of concurrent behavior can 
also be viewed (e.g., all processes except one 
are sending messages to their neighbor). 
Animation, however, does not clearly show 
patterns of behavior that occur across time. 
This is addressed to some degree in Belve- 
dere by the use of high-level abstract events 
that may encompass an interval of time. 

Time-process diagrams can display pat- 
terns of behavior over time. This can be 
especially helpful in finding performance 
bugs. The trade-off is that only a very small 
amount of information can be displayed for 
each process at any point in time. In mtdbx 
[Griffin 19871 only a single character is 
displayed for the entire state of a process. 
In PPUTT a process is either waiting, run- 
ning, sending, or receiving. 

It appears that the ideal debugger for 
complex concurrent systems would support 
both animation and time-process displays. 
Two pieces of evidence to support this 
claim are the following: 

The animation systems find some errors 
by noticing changes from one frame to 
the next (the passage of time), and 
The time-process displays generally pro- 
vide some mechanism for displaying de- 
tailed system state for a particular 
instant in time. 

One approach to combining the two ._. 
would be simultaneously to present a time- 
process diagram in one window of a graphic 
workstation and an animation in another. 
The time-process display would guide the 
programmer to the important point in time, 
and the animation display would present 
detailed information about the state of the 
program in a comprehensible way. An al- 
ternative method of displaying both time 
and the detail found in animation frames 

would be to display several animation 
frames simultaneously. Using the abstrac- 
tion of Belvedere, it might even be useful 
to display several different perspectives in 
different windows simultaneously. It may 
be that the flexibility of a system like 
Voyeur will be necessary because no single 
view is sufficient for the many different 
types of errors that must be addressed. 

4. STATIC ANALYSIS FOR DEBUGGING 
PARALLEL PROGRAMS 

When the probe effect renders the tech- 
niques in Sections 1 and 2 useless, what 
options are left to a programmer to debug 
a parallel program? Some researchers are 
pursuing static analysis techniques for de- 
tecting certain classes of anomalies in par- 
allel programs. This is distinct from formal 
proof of correctness, because no attempt is 
made to prove conformance with a written 
specification. Instead, an attempt is made 
to give assurance that the program can- 
not enter certain predefined states that 
generally indicate errors. 

Static analysis is being used to detect two 
classes of errors in parallel programs: syn- 
chronization errors and data-usage errors. 
Synchronization errors include such things 
as deadlock and wait forever. Data-usage 
errors include the usual sequential data- 
usage errors, such as reading an uninitial- 
ized variable, and parallel data-usage errors 
typified by two processes simultaneously 
updating a shared variable. 

There appear to be two related but dis- 
tinct areas being investigated. One is apply- 
ing dataflow analysis techniques, similar to 
those used by optimizing and vectorizing 
compilers, to determine data-usage prop- 
erties in parallel programs. The other is 
answering the question, 

Is it possible for two statements Sl and S2 
in a parallel program to execute in parallel? 

These two areas are discussed in the re- 
mainder of this section. Some closely re- 
lated work on combining static analysis 
with dynamic debugging and a system de- 
signed to aid in the development of parallel 
algorithms are presented at the end of 
Section 4. 
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(6) a process waiting for the completion of 
another process that is guaranteed to 
have already completed, and 

(7) a process that is scheduled to execute 
in parallel with itself. 

In addition to not permitting recursion, 
the algorithm for item (2) assumes the exis- 
tence of an algorithm for determining if 
two statements can execute in parallel. 
This is the subject of Section 4.2. Also, it 
is recognized that it is impossible to “create 
a fixed static procedure capable of con- 
structing the PAF of any program written 
in a language which allows run-time deter- 
mination of tasks to be scheduled and 
waited for.” 

The difficulty of using dataflow to ana- 
lyze parallel programs is clearly shown in 
Callahan and Subhlok [1988]. They present 
an algorithm for determining which data 
dependencies present in a sequential exe- 
cution of a program are preserved in a 
parallel execution of the program. They 
then show that determining if all data de- 
pendencies are maintained is Co-NP-hard 
using only the information found in their 
verison of the PAF which they call the 
synchronized control flow graph. They also 
present approximations that execute in 
polynomial time on programs written using 
a simple programming model. Two notable 
limitations of the model are that no syn- 
chronization operations are permitted 
within loops and all synchronization is 
done with event variables that cannot be 
cleared. 

4.2 Parallel (i, j) 

A Boolean function parallel (i, j), which 
returns true if it is possible for program 
points “i” and “j ” to execute in parallel, 
can be used to detect parallel access errors. 
These occur when a variable is being read 
and written in parallel or when two pro- 
cesses can simultaneously write to the same 
variable. If the program can be represented 
as a Petri net [Peterson 19771, then this 
function can be implemented by examining 
the reachable states for the net. Unfortu- 
nately, the number of reachable states in a 
bounded Petri net grows exponentially with 
the number of places (nodes) in the net. 
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4.1 Dataflow Analysis of Parallel Programs 

Probably the most frequently referenced 
work on dataflow analysis of parallel pro- 
grams is that of Taylor and Osterweil 
[ 19801. Their algorithms generate four 
data-usage sets for each node of a program 
flow graph: gen, kill, live, and avail. These 
correspond to the sets by the same names 
used in the global dataflow analysis of op- 
timizing compilers [Fosdick and Osterweil 
1976; Hecht and Ullman 19751. The origi- 
nal algorithms used to compute live and 
avail have been extended to pass data-usage 
information across edges in the flow graph 
corresponding to synchronization opera- 
tions. By reinterpreting the meaning of gen 
and kill, it is possible to use the modified 
data-usage sets to arrive at algorithms to 
detect anomalies in parallel programs. 

The algorithms in Taylor and Osterweil 
[1980] assume a simple process synchroni- 
zation model. One process may cause an- 
other process to begin execution with the 
statement “schedule X” and wait for the 
completion of another process with “wait 
X”. Their model does not permit a process 
to execute (be scheduled) in parallel with 
itself. This would correspond to a recursive 
process invocation. Recursion is also not 
allowed within any single process. They 
present algorithms based on their modified 
data-usage sets that operate on a represen- 
tation of the program called a Process 
Augmented Flowgraph (PAF). This is con- 
structed by taking the flowgraphs of the 
individual processes and connecting them 
with edges to indicate process synchroni- 
zation constraints. For example, there 
would be an edge connecting the “schedule 
X” statement in one process with the initial 
statement in process X. Their algorithms 
can detect the following: 

(1) a reference to an uninitialized variable, 
(2) a variable that is referenced while being 

defined in parallel, 
(3) a definition of a variable that is never 

referenced, 
(4) a variable that may have an indeter- 

minate value, 
(5) a process waiting for the completion of 

an unscheduled process, 
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An algorithm similar to computing the 
reachable states in a Petri net applied to 
Ada programs is presented by Taylor 
[1983]. Like the Petri net algorithm, the 
number of states generated by Taylor’s al- 
gorithm can increase exponentially with 
the number of parallel tasks in the Ada 
program. 

An algorithm presented in McDowell 
[ 19891 computes parallel (i, j ) for programs 
written in FORTRAN with extensions to 
support explicit parallelism. Whereas the 
simple language in Taylor and Osterweil 
[1980] explicitly prohibits the execution of 
a process with itself, the algorithm in 
McDowell [1989] uses the fact that many 
parallel numerical applications are ex- 
pressed as collections of identical tasks ex- 
ecuting in parallel on shared data. The 
result is that many fewer states are gener- 
ated. This algorithm is being used in a 
prototype debugging tool [Appelbe and 
McDowell 19851. 

A somewhat different approach to com- 
puting parallel (i, j ) was taken in Bristow 
et al. [1979a]. Their algorithms operate on 
the same PAF representation of a program 
described in Section 4.1. They can build 
PAFs for the real language HAL/S. Al- 
though more powerful than the simple lan- 
guage used in Taylor and Osterweil [ 19801, 
HAL/S is still nonrecursive and con- 
tains relatively simple synchronization 
operators. 

Instead of computing a single function, 
parallel (i, j), they compute eleven func- 
tions which they call execution sequence 
sets. Included are three execution sequence 
sets: concurrent, always-concurrent, and 
possibly-concurrent. The sets are computed 
for each node in the PAF. The set concur- 
rent for node N contains all nodes M such 
that on all execution paths on which both 
M and N occur, they occur with no forced 
ordering. The set always-concurrent is a 
subset of concurrent that satisfies the ad- 
ditional restriction that all program exe- 
cution paths containing N also contain M. 
Node M is in the set possibly-concurrent 
for node N if there is some execution path 
in which both M and N occur with no forced 
ordering between the two. For use in the 
anomaly detection algorithms of Taylor 
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and Osterweil [ 19801, if a node M is in any 
of the above three execution sets at node 
N, then the nodes N and M would be as- 
sumed to execute in parallel. The result of 
this could be a potentially large number of 
extraneous anomaly reports corresponding 
to infeasible paths. 

The three functions are actually repre- 
sented as execution sequence sets attached 
to each node of the PAF. The algorithms 
for computing the execution sequence sets 
are very similar to the dataflow analysis 
algorithms mentioned in Section 4.1. The 
details of the algorithms can be found in 
Bristow et al. [ 1979131. For the nonrecursive 
language HAL/S, the execution sequence 
sets can all be computed in polynomial 
time. 

The result of applying the analysis men- 
tioned above is an anomaly report. It should 
be possible to provide the user with suffi- 
cient information to determine what source 
statements are involved in the anomaly. 
There are, however, two problems related 
to presenting the anomaly report. One 
problem is that the anomaly report may 
contain many anomalies that are the result 
of infeasible paths and do not correspond 
to a real error in the program. Some prog- 
ress in removing infeasible paths from 
static analysis of sequential programs has 
been reported [Werner 19881. There is, 
however, nothing in the literature concern- 
ing the removal of infeasible paths from 
static analysis of concurrent programs. 

The second problem with presenting the 
anomaly report is presenting the informa- 
tion in such a way that the user under- 
stands how the erroneous concurrent state 
could arise. It may not be sufficient to 
report that variable X is modified concur- 
rently by a process executing line 100 and 
another process executing line 200. If the 
user cannot understand how lines 100 and 
200 can execute in parallel, then it may be 
difficult to determine how to resolve the 
problem. Furthermore, the user may simply 
decide (erroneously) that this situation 
could never arise and that the anomaly 
report should be ignored. 

The approach taken in Applebe and 
McDowell [1988] allows the user to exam- 
ine not only the concurrency state causing 
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the anomaly report but also the concur- 
rency states that led up to that state. A 
multiwindow user interface is provided that 
displays an anomalous concurrency state 
along with a description of the anomaly 
[McDowell 19881. The concurrency state is 
represented by displaying a small portion 
of the source for each concurrent task in a 
separate window. The user may then dis- 
play any previous or successor concurrency 
state to determine how the situation arose. 
This is somewhat like performing a coarse 
forward or backward simulation. 

4.3 Combining Static Analysis with 
Dynamic Debugging 

Taylor [1984] describes several ways in 
which static analysis could be productively 
combined with dynamic analysis. One ap- 
proach would be to use the information 
from static analysis to help develop test 
data for use in conjunction with a dynamic 
debugger. Conversely, information from dy- 
namic monitoring could be used to guide 
partial static analysis when complete static 
analysis would generate too many states. If 
subparts of a program could be shown to be 
free of errors using static analysis, then 
those portions of the program would not 
need monitoring. This could reduce the 
overhead associated with monitoring. If 
run-time assertion testing is included in the 
program, then the static analyzer could as- 
sume that the assertions are true, reducing 
the number of states that must be exam- 
ined. A related technique is the use of sym- 
bolic execution to reduce the state space of 
a static analysis tool by eliminating infeas- 
ible paths [Young and Taylor 19861. 

A somewhat different combined use of 
static and dynamic techniques is described 
in Allen and Padua [ 19871, Miller and Choi 
[1988b], and Stone [1989]. Each of these 
systems applies static analysis to a dynam- 
ically generated trace in order to identify 
parallel access anomalies that they call 
races. If a particular trace can be shown to 
be free of races, then the program is free of 
races for the given input. This does not 
mean that the program is free of races in 
general. For example, a race condition 
could be present in a conditionally executed 

block that is not executed with the given 
input. The analysis performed to identify 
races can also be used to help with break- 
point debugging. If the critical point in each 
process involved in a race can be identified, 
then a breakpoint can be placed just before 
that point in each process. This will stop 
the system in the state necessary to induce 
the race and permit close examination. In 
addition, by selectively continuing the 
processes, alternative race outcomes can be 
explored. 

4.4 Static Analysis in the Development 
Process 

In addition to analyzing parallel programs 
statically, and debugging them with run 
time debuggers and monitors, there is the 
possibility of eliminating the errors in pro- 
grams before they occur. Here we would 
like to present some current work that 
seeks to aid in the development of parallel 
programs that are free of the kinds of errors 
outlined at the beginning of Section 4. 

Automatic vectorizing compilers are the 
predecessors of the work presented here. 
They represent a very restricted form of 
parallel programs that are free of parallel 
bugs, assuming, of course, that the compi- 
lers are correct. This work has been ex- 
tended most notably by Banerjee et al. 
[ 19791 to permit parallel execution of a wide 
range of loops. Again, assuming that both 
the sequential programs and the compilers 
are correct, the parallel programs that re- 
sult will also be correct. 

In addition to the fully automatic tech- 
niques of Banerjee et al., researchers at 
Rice University are working on a system 
called PTOOL [Allen et al. 19861. PTOOL 
performs interprocess dataflow analysis to 
determine when a loop can be parallelized. 
It does this only for loops selected by the 
programmer. It interacts with the program- 
mer for three reasons. First, the amount of 
time to perform the analysis for all loops 
and all combinations of loops is prohibitive. 
It is assumed that the programmer under- 
stands the overall structure of the program 
and knows which sections are most suitable 
for parallelization. Second, the programmer 
can make a judgment about the typical 
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values of certain variables at run time that 
affect the decision of whether to parallelize 
a particular loop. This is particularly im- 
portant when the overhead for parallel ex- 
ecution is relatively high. Finally, by 
interacting with the programmer, PTOOL 
can provide information that might permit 
the programmer to change the program 
slightly, thereby allowing an important 
loop to be parallelized. In a fully automatic 
system the compiler would have to reject 
the loop as a candidate, possibly missing 
an important opportunity for parallel 
speedup. 

By using automatic or semiautomatic 
techniques based on correctness preserving 
transformations, it is possible to debug a 
sequential version of a program using con- 
ventional debugging tools and then trans- 
form it into an equivalent parallel version. 

5. CONCLUSION 

Having completed the survey, the question 
remains, What progress has been made and 
where is more work needed? Because of the 
diversity of applications, languages, and 
systems, no single approach can satisfy all 
parallel debugging needs. The following 
paragraphs summarize what has been 
achieved and speculate on possible research 
directions. 

The deficiencies of both static and dy- 
namic techniques have been discussed in 
this paper. One promising approach that 
alleviates some of these deficiencies is the 
creation of a toolkit that integrates both 
approaches (see Section 4.3). 

As the saying goes, “A picture is worth a 
thousand words.” With program activities 
distributed across both space and time, 
simple sequential displays of program ac- 
tivity are inadequate. The time-process dia- 
grams (see Section 3.2) give a compact view 
of the event history, whereas the animation 
diagrams (see Section 3.3) give a more 
detailed view of a single instant in time. 
Both representations are valuable, and the 
use of multiwindow workstations makes it 
possible to have both. 

The appropriateness of each of these dia- 
grams needs further research. For example, 
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a major problem with the animation dia- 
grams is the placement of the symbols rep- 
resenting the processes. Hough and Cuny 
[1987] make it clear that proper placement 
can be very important in comprehension of 
the display (see Figure 8). 

In addition to the problem of placement 
is the problem of too much information- 
even for a picture. A possible solution is a 
language for abstracting low-level events 
into higher level events for display. Event 
description languages can also be used 
to filter out irrelevant events, reducing 
the amount of information that must be 
displayed. 

One prominent feature of several systems 
is modularity [Joyce et al. 1987; Victor 
19771. By carefully designing a modular 
system, the addition or modification of var- 
ious features can be managed easily. An 
event-based system might have modules for 
low-level event monitoring, filtering, and 
recording of events (from the low-level 
event modules), display of recorded events, 
analysis of recorded events, and controlled 
reexecution of the program. In traditional 
parallel debuggers as described in Section 
1, there may be separate modules for inter- 
acting with the low-level machine and for 
interacting with the user. “Plug compati- 
ble” modules are advantageous because 
they allow experimentation with different 
debugger functions. 

A well-defined interface (or hierarchy of 
interfaces) between the user and the low- 
level machine isolates most components 
from changes in any one part of the system. 
The user modules become machine inde- 
pendent; the low-level machine modules 
become user interface and language 
independent; and possibly some user in- 
terface modules may become language 
independent. 

The probe effect is possibly the most 
significant difference between debugging 
parallel programs and sequential programs. 
The most obvious solution to the problem 
of the probe effect is to have the probes 
permanently in place. This does not help 
with breakpoint debugging, but it solves 
the problem for event-based debugging 
using monitoring and event histories. The 
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problem with this solution is the perfor- 
mance penalty for having software probes 
permanently enabled. The use of hardware 
assistance for high-level debugging was 
proposed in Gentleman and Hoeksma 
[ 19831, and systems using hardware moni- 
toring for multiprocessors are described in 
Lazzerini and Prete [ 19861 and Rubin et al. 
[1988]. 

Before hardware designers will dedicate 
precious silicon to “hooks” for parallel de- 
buggers, it will be necessary to identify just 
what hooks are useful. Having specified the 
hooks, a cost-benefit analysis could deter- 
mine which low-level debugging elements 
should be implemented in hardware. Most 
uniprocessors today have hardware hooks 
for breakpointing and single stepping. It 
seems only natural that hooks for parallel 
debugging be added to parallel systems. 

Event histories may be the most natural 
abstraction of distributed systems. A vari- 
ety of tools and methods for examining 
them have been developed. For small and 
simple parallel programs, it may suffice to 
print the events as they occur. In larger 
systems, it may be preferable to save the 
event history for later examination. An 
alternative to examining the event history 
manually is to check the event history 
against a set of specifications as it is gen- 
erated. Although this approach incurs a 
large overhead, it may be the only effective 
way to monitor large continually executing 
systems. Ideally, specifications from the 
program’s design phase would be used to 
detect errors. In current systems, the pro- 
grammer must write the specifications 
for checking the event history. This is 
usually done as part of a testing phase and 
is not directly connected to any design 
specification. 

The event specification languages we 
have seen [Baiardi et al. 1986; Harter et al. 
1985; Helmbold and Luckham 1985b] can 
all express simple constraints on the event 
stream. It is unreasonable, however, to ex- 
pect the programmer to specify completely 
the intended behavior of a program with 
these languages. Much work needs to be 
done before we know what kinds of asser- 
tions are most useful and the best languages 

for expressing them. Furthermore, the issue 
of integrating design specifications with 
run-time checking has not been addressed. 

A variation of the specification approach 
is taken by EDL [Bates and Wileden 19831. 
They do not check the event history against 
specifications but instead transform it into 
a higher level history. This approach may 
help bridge the gap between low-level com- 
munication primitives and the more ab- 
stract communication mechanisms used in 
the program. EDL has been successfully 
used to control the presentation of graphic 
data in the Belvedere system [Hough and 
Cuny 19871. 

We have seen some attempts at software 
solutions to the probe effect. These involve 
some mechanism for the debugger to ma- 
nipulate the logical passage of time. In none 
of the systems surveyed was this completely 
successful; real-time events do not lend 
themselves well to manipulations of logical 
time. Although appearing unsolvable in 
general, software solutions might be attain- 
able for some systems such as message- 
passing systems without timeouts. It 
certainly appears that designers of new 
parallel languages and synchronization 
constructs should keep the probe effect in 
mind. 

Perhaps the best way to avoid the bugs 
associated with current parallel constructs 
is to design languages for parallel machines 
that make such errors impossible. Dataflow 
and functional languages are one example 
of systems that attempt to “define away the 
problem.” Still other examples can be found 
in declarative languages such as Prolog 
or higher level languages as described in 
Goldberg [ 19861. A somewhat less radical 
approach is the use of tools for automati- 
cally detecting parallelism. These may be 
fully automatic or require some user inter- 
action. In either case, such systems would 
ensure that the parallel program produces 
exactly the same results as the sequential 
version. 
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APPENDIX A. SUMMARY TABLES 

The tables in this appendix present brief 
descriptions of the systems surveyed in a 
form that permits quick comparisons. To 
make it possible to place as much infor- 
mation as possible in each summary table, 
we use one- or two-word descriptors in 
the tables. Informal explanations of the 
descriptors are given before the tables. 

A.1 General Characteristics Part 1 

O.S. Operating system debug- 
ger runs under 

Hardware 

Status 

partial 

production 

prototype 

n/s 

Hardware configuration 
debugger uses or re- 
quires 

Completeness of debugger 
implementation 

Prototype missing major 
features 

Production version avail- 
able 

Complete in-house system 

Not specified 

System 

Table A.l. General Characteristics Part 1 

OS. Hardware Status 

Agora 
Amoeba 
belvedere 
BUGNET 
CBUG 
cdbg 
dbxtool 
defence 
DISDEB 
EDL 
HARD 
IDD 
Instant 
Jade 
MAD 
Meglos 
mtdbx 
Multibug 
Parasight 
pdbx 
Pilgram 
PPD 
RADAR 
Recap 
Traveler 
TSL 
Voyeur 
YODA 

[For881 
[Els88] 

[HC87] 
[CW82] 
[Gai85] 
[Int87] 

[AM861 

yiE; 
[BW83] 

[ MCR85] 
[HHK85] 

[LM87] 
[ JLSU87] 

[RRZ88] 
[GK86] 
[Gri87] 
[CP86] 
[AG88] 
[Se@61 
[Coo871 

[MC88b] 
[LR85] 
PLW 

[Man871 
[HL85b] 
[SBN88] 

[LP85] 
[AP87] 

[BDV86] 
[GB85] 

[GGKSI] 
[GKY88] 

Agora 
Amoeba 
simple sim 
MICROS 
UNIX 
iPSC 
UNIX(Sun) 
n/s 
Mara 
VMT UMass 
UNIX 
UNIX 
Chrysalis 
Jipc 
n/s 
UNIX 
UNIX/COS 
n/s 
Mach/Umax 
Dynix 
Mayflower 
n/s 
n/s 
n/s 
Apiary 
any 
n/s 
n/s 
Cedar 
MuTEAM 
PathPascal 
n/s 
any 
UNIX 
Medusa/StarOS 

LAN 
n/s 
emulator 
MICRONET 
any UNIX 
iPSC 
Sun 
uniprocessor 
Mara 
VMT UMass 
any UNIX 
network(Sun) 
BBN butterfly 
vax/Sun 
mimd sh. bus 
MC68000 
Sun/Gray 
multi-macro-proc 
Multimax 
Sequent 
Cambridge DCS 
n/s 
PERQ 
n/s 
emulator 
any 
n/s 
n/s 
n/s 
MuTEAM 
n/s 
n/s 
any 
any UNIX 
Cm* 

prototype 
prototype 
partial 
partial 
prototype 
prototype 
production 
partial 
prototype 
partial 
prototype 
partial 
prototype 
prototype 
prototype 
production 
prototype 
prototype 
prototype 
production 
partial 
partial 
prototype 
proposed 
prototype 
prototype 
prototype 
prototype 
partial 
partial 
partial 
prototype 
prototype 
prototype 
prototype 
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A.2 General Characteristics Part 2 

Interface 

hardware 

manual 

object 

oper sys 

source 

Probe Effect 

fast calls 

leave in 

logical time 

How the debugger hooks 
into the program 

Additional hardware is 
used instead of a soft- 
ware interface 

Calls to the debugger are 
manually inserted by the 
programmer 

Compiler modifies the ob- 
ject code 

Debugger interacts with 
the normal operating 
system 

Automatic insertion of 
source code statements 
calling the debugger 

How the debugger ad- 
dresses the Probe Effect 

Fast monitoring opera- 
tions minimize the effect 
on program timing 

Leave the debugger in the 
system 

Logical time hides the 
effects of debugging 
operations 

Global Clock Whether debugger re- 
quires a global clock 

assumed Debugger assumes the 
existence of an accurate 
global clock 

self-timed Debugger simulates its 
own global time 

uniprocessor Debugger is for a single 
processor system or 
simulation 

Languages Languages the debugger 
supports 

Model The model of communica- 
tion 

block-send Message passing with 
blocking sends 

gmem A bank of global memory 
equidistant from all 
processors 

hybrid Has both shared memory 
and message passing 

lmem The shared memory is lo- 
cated at the processors 

messages Message passing 
rndzv Ada rendezvous 
WC Remote procedure call 

n/s Not specified 

Table A.2. General Characteristics Part 2 

System Interface Probe Effect Global Clock Languages Model 

Agora [For881 oper sys leave in self-timed n/s lmem 
Amoeba [Els88] object n/s none n/s messages 
belvedere [HC87] object logical time uniprocessor Simple Simon messages 
BUGNET [CWSZ] object n/s self-timed Modula2 messages 
CBUG [Gai85] source fast calls none C 23-m 
cdbg [I&37] oper sys n/s none C, Ftn messages 
dbxtool [AM861 oper sys n/s none C, Pscl, Ftn messages 
defence [~;UJ object n/s uniprocessor Cont. Euclid monitors 
DISDEB hardware none’ none any gmem + lmem 
EDL [BW83] n/s n/s assumed n/s n/s 
HARD [MCR85] source logical time assumed Ada rndzv + gmem 
IDD [HHK85] object n/s none C, ModulaQ messages 
Instant [LM87] object leave in none several gmem 
Jade [ JLSU87] object n/s none several block-send 
MAD [RRZ88] man + hard leave in assumed PARC(C) gmem 
Meglos GK861 y-c; n/s none C messages 
mtdbx [Gri87] logical time uniprocessor f77 + Cray gmem 
Multibug [CP86] oper sys n/s none low level messages 
Parasight [AGW oper sys fast calls none C gmem 

’ DISDEB uses additional hardware to eavesdrop on the network traffic. This allows the DISDEB debuggers 
to run transparently, without disturbing the program’s timing. 

(continued) 
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System Interface 

Table A.2. (Continued) 

Probe Effect Global Clock Languages Model 

pdbx 
Pilgram 
PPD 
RADAR 
Recap 
Traveler 
TSL 
Voyeur 
YODA 

Bw861 
[Coo871 

[MC88b] 
[LR85] 
[PL88] 

[Man871 
[HL85b] 
[SBN88] 

[LP85] 
[AP87] 

[BDV86] 
[GB85] 

[GGK84] 
[GKY88] 

[MMSSG] 
[Sno84] 

oper sys 
object 
object 
object 
object 
oper sys 
source 
manual 
source 
oper sys 
object 
oper sys 
oper sys 
source 
oper sys 
object 

n/s 
logical time 
n/s 
n/s 
n/s 
n/s 
n/s 
n/s 
n/s 
n/s 
logical time 
n/s 
none 
fast calls 
fast calls 
n/s 

none 
none 
none 
none 
none 
uniprocessor 
none 
assumed 
assumed 
none 
none 
none 
none 
none 
none 
assumed 

C, P, F + dynix 
Cont. Clu 
C 
Pronet 
n/s 
Acore(lisp) 
Ada 
several 
Ada 
FORTRAN 
ECSP 
Path Pascal 
n/s 
Occam, NIL 
C 
n/s 

gmem 
WC 
gmem 
messages 
hybrid 
messages 
rndzv 
hybrid 
rndzv + gmem 
gmem 
messages 
gmem 
messages 
messages 
messages 
hybrid 

A.3 User Interface 

Exam/Mod State 

global, glb 

ipc 

local 

+ 

sequent 

Rename Objects 

no 

procs 

yes 

Graphics 

commun 

Capabilities for ex- 
amining/modifying 
the program’s state 

Global state can be 
examined 

Communication state 
can be examined 

Local states can be 
examined 

Modification of state 
is also possible 

(Plans to) interface 
with a sequential 
debugger 

Whether program 
objects are given 
special names dur- 
ing debugging 

No objects can be 
given names 

Only processes can 
be given names 

Most objects can be 
given names 

Whether debugger 
uses graphics 

Animated view of 
interprocess 
communications 

Time-process 
diagrams can 
be displayed 

windows, win 

Exam Event 
History 

browser 

( law-we > 

replay 

scroll tp 

Event Lang 

Control Sched 

hist 

select, se1 

sus/cont, SC 

n/s 

Processes are dis- 
played in separate 
windows 

How user examines 
a recorded event 
history 

Using an 
editor/browser 

Using queries in the 
indicated language 

Only examination 
is to replay the 
history 

Scrollable time- 
process diagrams 

What language (if 
any) is used to 
express patterns 
of events 

Whether user can 
control scheduling 
of the program 

History guides to 
scheduling 

Can select which 
process to run next 

Can suspend or con- 
tinue individual 
processes 

Not specified 
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System 

Examine 
Exam/Mod Rename Event Event Control 

State Objects Graphics History Lang Sched 

Agora 
Amoeba 
belvedere 
BUGNET 
CBUG 
cdbg 
dbxtool 
defence 
DISDEB 
EDL 
HARD 
IDD 
Instant 
Jade 
MAD 
Meglos 
mtdbx 
Multibug 
Parasight 
pdbx 
Pilgram 
PPD 
RADAR 
Recap 
Traveler 
TSL 
Voyeur 
YODA 

[For881 
[El9881 
[HC87] 
[CWSZ] 
[Gai85] 
[Int87] 

[AM861 
[Web831 

[LP86] 
[BW83] 

[MCR85] 
[HHK85] 

[LM87] 
[ JLSU87] 

[RRZ88] 
[GK86] 
[Gri87] 
[CP86] 
[AG88] 
L%W 
[Coo871 

[MC88b] 
[ LR85] 
[PL88] 

[Man871 
[HL85b] 
[SBN88] 

[LP85] 
[AP87] 

[BDV86] 
[GB85] 

[GGK84] 
[GKY88] 

[MMS86] 
[Sno84] 

local 
local+ 
ipc 
local, ipc 
local, ipc 
local+ 
local+ 
local+ 
global+ 
n/s 
glb+, ipc+ 
local, ipc 
sequent 
sequent 
global 
local+ 
global+ 
local+ 
local+ 
local+ 
global+ 
local, ipc 
ipc 
sequent 
n/s 
sequent 
global 
ipc 
n/s 
sequent 
global+ 
local+ 
glb+, ipc+ 
n/s 
local 

no 
no 
no 
no 
no 
yes 
no 
no 
no 
no 
no 
no 
no 
yes 
no 
no 
no 
yes 
no 
no 
no 
no 
no 
no 
no 
yes 
yes 
no 
no 
no 
no 
no 
no 
no 
no 

windows 
none 
commun 
none 
windows 
none 
windows 
none 
none 
none 
none 
tP 
tP” 
tp, commun 
tP 
none 
tp, win 
none 
none 
windows 
none 
b 

commun 
none 
windows 
none 
programmable 
none 
none 
none 
win, commun 
none 
windows 
none 
none 

replay 
replay 
replay 
replay 
none 
none 
none 
none 
none 
replay 
none 
scroll tp 
replay 
browser 
browser 
none 
scroll tp 
none 
none 
none 
none 
replay 
replay 
replay 
browser 
browser 
browser 
prolog 
none 
none 
replay 
scroll tp 
browser 
browser 
TQuel 

none 
reg. exp. 
EDL 
none 
none 
none 
none 
none 

;DL 
Adad 
int. log. 
none 
none 
path rules 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
TSL 
none 
none 
none 
BS 
yes, n/s 
yes, n/s 
temp. logic 
none 
TQuel 

sus/cont 
sus/cont 
hist 
sus/cont 
sus/cont 
sus/cont 
sus/cont 
sus/cont 
sus/cont 
none 
sus/cont 
SC, hist 
hist 
sel, hist 
n/s 
sus/cont 
SC, sel, hist 
sus/cont 
sus/cont 
sus/cont 
sus/cont 
sus/cont 
none 
hist 
select 
select 
none 
none 
none 
none 
sus/cont 
sus/cont 
SC, select 
none 
none 

“In Fowler et al. [1988] a toolkit by the same authors includes process time diagrams that require a global 
clock. The process time diagrams are not presented in the 1987 paper. 
b PPD generates and displays dynamic dependence graphs. 
’ DISDEB allows complex events to be built out of very low-level machine code like events using a low-level 
language. For example, the language can only refer to physical addresses rather than using identifiers from the 
source code. 
d There is a facility for calling the debugger from special tasks. These tasks can be used to implement arbitrarily 
complex breakpoints. 

A.4 Breakpoints 

State Breakpoints 

global 

Types of 
state-based 
breakpoints 
supported 

Breakpoints can 
be set on global 
(and local) 
state 

local Breakpoints can 
be set on local 
state 

stmt Breakpoints 
can be set at 
a source 
statement 

Event Breakpoints Types of 
event-based 
breakpoints 
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mult. ( language) Breakpoints on 
conjunction, 
disjunction, or Breakpoint Effect 
repetition of 
events 

seq. ( language ) 

single 

Breakpoints on 
complex 
sequence 
of events 

either 

Breakpoints on 
the occurrence 
of single events 

Modify Breakpoints Whether break- 
points can be 
added/disabled 

process 

program 

n/a 
n/s 

during program 
execution 

What is halted 
when a break- 
point is reached 

Either one pro- 
cess or the 
entire program 
may be halted 

One process is 
halted 

The entire pro- 
gram is halted 

Not applicable 
Not specified 

Table A.4. Breakpoints 

System 
State 

Breakpoints 
Event 

Breakpoints 
Modify 

Breakpoints 
Breakpoint 

Effect 

Agora 
Amoeba 
belvedere 
BUGNET 
CBUG 
cdbg 
dbxtool 
defence 
DISDEB 
EDL 
HARD 
IDD 
Instant 
Jade 
MAD 
Meglos 
mtdbx 
Multibug 
Parasight 
pdbx 
Pilgram 
PPD 
RADAR 
Recap 
Traveler 
TSL 
Voyeur 
YODA 

[For881 
[El&] 
[HC87] 

ME; 
[I&37] 

[AM861 
[Web831 

[LP86] 
[BW83] 

[MCR85] 
[HHK85] 

[LM87] 
[JLSU87] 

[ RRZ88] 
[GK86] 
[Gri87] 
[CP86] 
[AG88] 
Pw861 
[Coo871 

[MC88b] 

EEli; 
[Man871 
[HLSW] 
[SBN88] 

[LP85] 
[AP87] 

[BDV86] 
[GB85] 

[GGKM] 
[GKY88] 

[MMS86] 
[ Sno84] 

local 
local + stmt 
no 
n/s 
stmt 
local + stmt 
local + stmt 
local + stmt 
no 
no 
local + stmt 
global 
local + stmt 
no 
n/s 
local 
local + stmt 
local + stmt 
stmt 
local + stmt 
stmt 
stmt + local 

gal + stmt 
no 
no 
n/s 
no 
n/a 
local 

$a1 + global 
stmt + global 
no 
no 

single 
seq(reg. expr.) 
none 
single 
none 
single 
none 
none 
multiple 
none 
multiple 
seq 
none 
single 
n/s 
single 
none 
single 
none 
none 
none 
none 
none 
n/s 
no (planned) 
seq(TSL) 
n/s 
none 
n/a 
seq(BS) 
-2 
seq 
single 
none 
none 

yes 
yes 
no 
yes 
yes 
yes 
yes 
yes 
no 
n/a 
remove 
n/s 
yes 
yes 
n/a 
yes 
yes 
yes 
yes 
yes 
3-s 
yes 
n/a 
yes 
n/a 
no 
n/s 
n/a 
n/a 
no 
yes 
yes 
no 
n/a 
n/a 

-. 
either 
n/a 
either 
process 
process 
process 
program 
either 
n/a 
process 
program 
program 

n/a 
either 
either 
process 
process 
process 
process 
program 
n/a 
process 
n/a 
process 
n/s 
n/a 
n/a 
process 
process 
either 
program 
n/a 
n/a 
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A.5 Event Monitoring 

Event Type 
ipc 

sh mem 
stmt 

History 

buffer 

chk pt 

complete 

sparse 

Filtering 

event 

global 

What is an event 
Every (explicit) interpro- 

cess communication 
Shared memory references 
Each statement execution 
Kind of event history 

recorded 
Last n events are stored in 

a buffer 
All events since the last 

checkpoint are saved 
All events are recorded and 

preserved 
Some events are kept; 

others are not 
How the information 

recorded (or replayed) 
can be reduced 

Using predicates on single 
events 

Global state 

history 

(language > 

local 
process 

Replay 

commun 

complete 

Ordering 

linear 

partial 

n/a 
n/s 

Table AS. Event Monitoring 

Using predicates on the 
history of events 

Specified language 
describes “interesting” 
events 

Local state 
Specifying important 

process(es) 
How complete are the 

replay facilities 
Communication state can 

be deduced 
Entire state (including 

local vars) is available 
How are event histories 

ordered 
All events are forced into a 

linear history 
“Concurrent” events are 

not ordered 

Not applicable 
Not specified 

System Event Type History Filtering Replay Ordering 

Agora [For881 sh mem chk. pt. n/s complete partial 
Amoeba [Els88] ipc chk. pt. history complete partial 
belvedere [HC87] ipc complete none commun partial 
BUGNET [CW82] ipc chk. pt. proc, event complete linear 
CBUG [Gai85] ipc none none none n/a 
cdbg [Int87] ipc none n/a n/a n/a 
dbxtool [AM861 stmt none none none n/a 
defence [Web831 stmt none n/a n/a n/a 
DISDEB [LP86] ipc, sh mem none a none linear 
EDL [BW83] n/s complete EDL commun linear 
HARD [MCR85] stmt none none none partial 
IDD [HHK85] ipc buffer proc, event none linear 
Instant [LM87] sh mem complete none complete partial 
Jade [JLSU87] ipc complete proc, event complete linear 
MAD 

[gEEi; 
stmt sparse history none linear 

Meglos sh mem none none none partial 
mtdbx [Gri87] ipc complete none complete linear 
Multibug [CP86] ipc none n/a n/a n/a 
Parasight [AG88] stmt none none none n/a 
pdbx [SeqW stmt none none none n/a 
Pilgram [Coo871 stmt none none none n/a 
PPD [MC88b] sh mem complete none none partial 
RADAR [ LR85] ipc complete none complete partial 
Recap [PL88] ipc, sh mem chk. pt. process complete partial 

’ DISDEB allows complex events to be built out of very low-level machine code like events using a low-level 
language. For example, the language can only refer to physical addresses rather than using identifiers from the 
source code. 
’ Filtering is done by transactions. The nested function calls can be hidden, giving a clearer picture of the high- 
level activity (see Section 3.1). 

(continued) 
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Tadle AS. (Continued) 

System Event Type 

Traveler [Man871 ipc 
TSL [HL85b] ipc 
Voyeur [SBN88] stmt 
YODA [LP85] ipc, sh mem 

[AP87] ipc, sh mem 
[BDV86] ipc 

[GB85] ipc 
[GGK84] n/s 
[GKY88] ipc, stmt 

[MMS86] ipc 
[Sno84] stmt 

History Filtering 

complete b 
complete TSL 
complete n/s 
complete none 
sparse none 
none n/a 
complete n/s 
complete suggested 
complete history 
complete event 
sparse event 

Replay 

none 
(planned) 
none 
none 
none 
n/a 
commun 
complete 
complete 
none 
none 

Ordering 

partial 
linear 
linear 
linear 
partial 
n/a 
partial 
partial 
linear 
linear 
linear 

REFERENCES 

[ABKP86] ALLEN, R., BAUMGARTNER, D., KEN- 
NEDY, K., AND PORTERFIELD, A. 1986. Ptool: A 
semiautomatic parallel programming assistant. 
In Proceedings of the International Conference on 
Parallel Processing. IEEE, pp. 164-170. 

[AG88] ARAL, Z., AND GERTNER, I. 1988. High-level 
debugging in parasight. In Proceedings of Work- 
shop on Parallel and Distributed Debugging. 
ACM, pp. 151-162. 

[AM851 APPELBE, W. F., AND MCDOWELL, C. E. 1985. 
Anomaly reporting: A tool for debugging and 
developing parallel numerical algorithms. In Pro- 
ceedings of the 1st International Conference on 
Supercomputing Systems. IEEE, pp. 386-391. 

[AM861 ADAMS, E., AND MUCHNICK, S. S. 1986. 
Dbxtook A window-based symbolic debugger for 
sun workstations. Softw. Pratt. Exper. 16,7,653- 
669. 

[AM881 APPELBE, W. F., AND MCDOWELL, C. E. 1988. 
Developing multitasking applications programs. 
In Proceedings of Hawaii International Confer- 
ence on System Sciences. IEEE, pp. 94-101. 

[AP87] ALLEN, T. R., AND PADUA, D. A. 1987. 
Debugging FORTRAN on a shared memory 
machine. In Proceedings of the International Con- 
ference on Parallel Processing. Penn State 
University, pp. 721-727. 

[Bat881 BATES, P. 1988. Debugging heterogeneous 
distributed systems using event-based models of 
behavior. In Proceedings of Workshop on Parallel 
and Distributed Debugging. ACM, pp. 11-22. 

[BCKT79] BANERJEE, U., CHEN, S., KUCK, D. J., 
AND TOWLE, R. A. 1979. Time and parallel pro- 
cessor bounds for fortran-like loops. IEEE Trans. 
Comput. 28,9 (Sept.), 660-670. 

[BDER79a] BRISTOW, G., DRAY, C., EDWARDS, B., 
AND RIDDLE, W. 1979. Anomaly detection in 
concurrent programs. In Proceedings of the 4th 
International Conference on Software Engineer- 
ing. IEEE. 

[BDER79b] BRISTOW, G., DREY, C., EDWARDS, B., 
AND RIDDLE, W. 1979. Design of a system for 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 

anomaly detection in HAL/S programs. Tech. 
Rep. CU-CS-151-79. Univ. of Colorado at Boul- 
der. 

BDV86] BAIARDI, F., DEFRANCESCO, N., AND 
VAGLINI, G. 1986. Development of a debugger 
for a concurrent language. IEEE Trans. Softw. 
Eng. SE-12,4 (Apr.), 547-553. 

BW83] BATES, P. C., AND WILEDEN, J. C. 1983. 
High-level debugging of distributed systems: The 
behavioral abstraction approach. J. Syst. Softw. 
3, 255-264. Also COINS Tech. Rep. #83-29. 

[CL851 CHANDY, K. M., AND LAMPORT, L. 1985. 
Distributed snapshots: Determining global states 
of distributed systems. ACM Trans. Comput. 
Syst. 3, 1 (Feb.), 63-75. 

[Coo871 COOPER, R. 1987. Pilgram: A debugger for 
distributed systems. In Proceedings of the 7th 
International Conference on Distributed Comput- 
ing Systems. IEEE, pp. 458-465. 

[CP86] CORSINI, P., AND PRETE, C. A. 1986. 
Multibug: Interactive debugging in distributed 
systems. IEEE Micro 6, 3, 26-33. 

[CS881 CALLAHAN, D., AND SUBHLOK, J. 1988. 
Static analysis of low-level synchronization. In 
Proceedings of Workshop on Parallel and Distrib- 
uted Debugging. ACM, pp. 100-111. 

[CW82] CURTIS, R. S., AND WITTIE, L. D. 1982. 
BugNet: A debugging system for parallel pro- 
gramming environments. In Proceedings of the 
3rd International Conference on Distributed Com- 
puting Systems. ACM, pp. 394-399. 

[Els88] ELSHOFF, I. J. P. 1988. A distributed debug- 
ger for amoeba. In Proceedings of Workshop on 
Parallel and Distributed Debugging. ACM, pp. 
l-10. 

[Fid88] FIDGE, C. J. 1988. Partial orders for parallel 
debugging. In Proceedings of Workshop on 
Parallel and Distributed Debugging. ACM, pp. 
183-194. 

[FLM88] FOWLER, R. J., LEBLANC, T. J., AND 
MELLOR-CRUMMEY, J. M. 1988. An integrated 
approach to parallel program debugging and per- 
formance analysis on large-scale multiprocessors. 
In Proceedings of Workshop on Parallel and Dis- 
tributed Debugging. ACM, pp. 163-173. 



Debugging Concurrent Programs 621 

[HW88] HABAN, D., AND WEIGEL, W. 1988. Global 
events and global breakpoints in distributed sys- 
tems. In Proceedings of Hawaii Znternational Con- 
ference on System Sciences. IEEE, pp. 166-175. 

[Int87] INTEL CORP. 1987. iPSC Concurrent Debug- 
ger Manual. 

[JLSU87] JOYCE, J., LOMOW, G., SLIND, K., AND 
UNGER, B. 1987. Monitoring distributed sys- 
tems. ACM Trans. Comput. Syst. 5, 2 (May), 
121-150. 

[Kar87] KARP, A. H. 1987. Programming for paral- 
lelism. Computer 20, 5, 43-57. 

[Lam781 LAMPORT, L. 1978. Time, clocks, and the 
ordering of events in a distributed system. 
Commun. ACM 21,7,558-565. 

[LM87] LEBLANC, T. J., AND MELLOR-CRUMMEY, 
J. M. 1987. Debugging parallel programs with 
instant replay. IEEE Trans. Comput. C-36, 4 
(Apr.), 471-482. 

[LP85] LEDOUX, C. H., AND PARKER, D. S., JR. 1985. 
Saving traces for ada debugging. In Ada In Use, 
Proceedings of the Ada International Conference. 
ACM, Cambridge University Press, pp. 97-108. 

[LP86] LAZZERINI, B., AND PRETE, C. A. 1986. 
Disdeb: An interactive high-level debugging sys- 
tem for a multi-microprocessor system. Micropro- 
cess. Microprogram. 18, 401-408. 

[LR85] LEBLANC, R. J., AND ROBBINS, A. D. 1985. 
Event-driven monitoring of distributed programs. 
In Proceedings of the 5th International Conference 
on Distributed Computing Systems. IEEE, pp. 
515-522. 

[Man871 MANNING, C. R. 1987. Traveler: The api- 
ary observatory. In Proceedings of European 
Conference on Object Oriented Programming. 
pp. 97-105. 

[MC88a] MILLER, B. P., AND CHOI, J.-D. 1988a. 
Breakpoints and halting in distributed systems. 
In Proceedings of International Conference on 
Distributed Computing Systems. IEEE. 

[MC88b] MILLER, B. P., AND CHOI, J.-D. 1988. A 
mechanism for efficient debugging of parallel pro- 
grams. In Proceedings of Workshop on Parallel 
and Distributed Debugging. ACM, pp. 141-150. 

[McD88] MCDOWELL, C. E. 1988. Viewing anoma- 
lous states in parallel programs. In Proceedings 
of the Znternutionul Conference on Parallel Pro- 
cessing. Penn State University, pp. 54-57. 

[McD89] MCDOWELL, C. E. 1989. A practical algo- 
rithm for static analysis of parallel programs. 
Journal of Parallel and Distributed Computing 6, 
3 (June), 515-536. 

[MCR85] DI MAIO, A., CERI, S., AND REGHIZZI, S. 
C. 1985. Execution monitoring and debugging 
tool for ada using relational algebra. In Ada In 
Use, Proceedings of the Ada International Confer- 
ence. ACM, Cambridge University Press. 

[MMS86] MILLER, B. D., MACRANDER, C., AND 
SECHREST, S. 1986. A distributed programs 
monitor for Berkeley UNIX. Softw. Pruct. Exper. 
16,2,183-200. 

[F076] FOSDICK, L. D., AND OSTERWEIL, L. J. 1976. 
Data flow analysis in software reliability. ACM 
Comput. Surv. 8 (Sept.), 305-330. 

[For881 FORIN, A. 1988. Debugging of heteroge- 
neous parallel systems. In Proceedings of Work- 
shop on Parallel and Distributed Debucminp. 
AC-M, pp. 130-140. 

-- - 

[Gai85] GAIT, J. 1985. A debugger for concurrent 
programs. Softw. Pratt. Exper. 15,6, 539-554. 

[GB85] GARCIA, M. E., AND BERMAN, W. J. 1985. 
An approach to concurrent systems debugging. In 
Proceedings of the 5th International Conference 
on Distributed Computing Systems. IEEE, pp. 
507-514. 

[GGK84] GARCIA-M• LINA, H., GERMANO, F., JR., 
AND KOHLER, W. H. 1984. Debugging a distrib- 
uted computing system. IEEE Trans. Softw. Eng. 
SE-IO, 2 (Mar.), 210-219. 

[GH83] GENTLEMAN, W. M., AND HOEKSMA, H. 
1983. Hardware assisted high level debugging. 
SZGPLAN Notices 18,8 (August), 140-144. 

[GK86] GAGLIANELLO, R. D., AND KATSEFF, H. P. 
1986. The meglos user interface. In Proceedings 
of Full Joint Computer Conference. ACM, pp. 
169-177. 

[GKY88] GOLDSZMIDT, G., KATZ, S., AND YEMINI, 
S. 1988. Interactive blackbox debugging for con- 
current languages. In Proceedings >? %‘ork.shop 
on Parallel and Distributed Debu,&ng. ACM, 
pp. 271-282. 

[Go1861 GOLDBERG, A. T. 1986. Knowledge-based 
programming: A survey of program design and 
construction techniques. IEEE Trans. Softw. 
Eng. SE-12,4 (Apr.), 752-768. 

[GR85] GEHANI, N. H., AND ROOME, W. D. 1985. 
Concurrent C. Tech. Rep., AT&T Bell Labora- 
tories. 

[Gri87] GRIFFIN, J. 1987. Parallel debugging system 
user’s guide. Tech. Rep., Los Alamos National 
Laboratory. 

[HC87] HOUGH, A. A., AND CUNY, J. 1987. 
Belvedere: Prototype of a pattern-oriented debug- 
ger for highly parallel computation. In Proceed- 
ings of the International Conference on Parallel 
Processing. Penn State University, pp. 735-738. 

[HHK85] HARTER, P. K., JR., HEIMBIGNER, D. M., 
AND KING, R. 1985. IDD: An interactive distrib- 
uted debugger. In Proceedings of the 5th Znter- 
national Conference on Distributed Computing 
Systems. IEEE, pp. 498-506. 

[HL85a] HELMBOLD, D., AND LUCKHAM, D. 1985. 
Debugging ada tasking programs. IEEE Softw. 2, 
2, 47-57. 

[HL85b] HELMBOLD, D., AND LUCKHAM, D. 1985. 
TSL: Task Sequencing Language. In Ada In Use, 
Proceedings of the Ada International Conference. 
ACM, Cambridge University Press. 

[HU75] HECHT, M. S., AND ULLMAN, J. D. 1975. A 
simple algorithm for global data flow analysis 
problems. SIAM J. Comput. 4,519-532. 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 



622 l C. E. McDowell and D. P. Helmbold 

[Pet771 PETERSON, J. L. 1977. Petri nets. ACM 
Comput. Surv. 9, 3 (Sept.), 223-252. 

[PL88] PAN, D. Z., AND LINTON, M. A. 1988. 
Supporting reverse execution of parallel pro- 
arams. In Proceedings of Workshop on Parallel 
and Distributed Debugging. ACM. Published 
as SZGPLAN Notices 24, 1 (January 1989). pp. 
124-129. 

lRRZ881 RUBIN, R. V., RUDOLPH, L., AND ZERNIK, 
D. i988. Debugging parallel programs in paral- 
lel. In Proceedings of Workshop on Parallel and 
Distributed Debugging. ACM. Published as SZG- 
PLAN Notices 24, 1 (January 1989). pp. 216-225. 

lSBN881 SOCHA, D., BAILEY, M. L., AND NOTKIN, D. 
1988. Voyeur: Graphical views of parallel pro- 
mams. In Proceedings of Workshop on Parallel 
and Distributed Deb&g&. ACM. -Published as 
SZGPLAN Notices 24, 1 (January 1989). pp. 
206-215. 

[Seq86] SEQUENT CORP. 1986. Dynix Pdbx Parallel 
Debugger User’s Manual. 

[SG86] SCHEIFLER, R. W., AND GETTYS, J. 1986. 
The X window system. ACM Trans. Graph. 5, 2 
(Apr.). 

[Sno84] SNODGRASS, R. 1984. Monitoring in a soft- 
ware development environment: a relational 
approach. In Proceedings of the Software 
Engineering Symposium on Practical Software 
Development Environments. SIGPLAN, ACM 
SIGSOFT. 

[ST831 SEIDNER, R., AND TINDALL, N. 1983. 
Interactive debug requirements. SZGPLAN No- 
tices 9-22. 

Received July 1988; final revision accepted January 1989. 

[Sto88] STONE, J. M. 1988. A graphical represen- 
tation of concurrent processes. In Proceedings of 
Workshop on Paralleiand Distributed Debugging. 
ACM. Published as SZGPLAN Notices 24.1 (Jan- 
uary 1989). pp. 226-235. 

I  

[Sun861 SUN MICROSYSTEMS. 1986. NeWS Prelim- 
inary Technical Overview. 

[Tan811 TANENBAUM, A. S. 1981. Computer Net- 
works. Prentice-Hall, Englewood Cliffs, N.J. 

[Tay83] TAYLOR, R. N. 1983. A general-purpose 
algorithm for analyzing concurrent programs. 
CACM 26,5,362-376. 

[Tay84] TAYLOR, R. N. 1984. Debugging real-time 
software in a host-target environment. Tech. Rep. 
212, Univ. of California at Irvine. 

[TO801 TAYLOR, R. N., AND OSTERWEIL, L. J. 1980. 
Anomaly detection in concurrent software by 
static data flow analysis. IEEE Trans. Softw. 
Eng. SE-6,3 (May), 265-278. 

[Vic77] VICTOR, K. E. 1977. The design and imple- 
mentation of DAD, a multiprocess, multima- 
chine, multilanguage interactive debugger. In 
Proceedings of Hawaii International Conference 
on System Sciences. IEEE, pp. 196-199. 

[Web831 WEBER, J. C. 1983. Interactive debugging 
of concurrent programs. SZGPLAN Notices 18,8, 
112-113. 

[Wer88] WERNER, L. L. 1988. Fault detection in 
production programs by means of data usage 
analysis. Ph.D. dissertation UCSD. 

[YT86] YOUNG, M., AND TAYLOR, R. N. 1986. 
Combining static concurrency analysis with sym- 
bolic execution. In Proceedings of Workshop on 
Software Testing. pp. 10-178. 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 


