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Abstract

I gather together known results on fundamental solutions to the wave

equation in free space, and Greens functions in tori, boxes, and other

domains. From this the corresponding fundamental solutions for the

Helmholtz equation are derived, and, for the 2D case the semiclassical

approximation interpreted back in the time-domain. Utility: scarring via

time-dependent propagation in cavities; Math 46 course ideas.

1 Introduction

The homogeneous wave equation in a domain Ω ⊂ Rd with initial conditions is

utt − ∆u = 0 in Ω × (0,∞) (1)

u(x, 0) = f(x) x ∈ Ω initial displacement data (2)

ut(x, 0) = g(x) x ∈ Ω initial velocity data (3)

If Ω has boundary then we have boundary conditions such as

u = 0 on ∂Ω × (0,∞) (4)

which corresponds to sound-soft walls. We won’t consider mixed, time-dependent,
or inhomogeneous boundary conditions. Notation: we use plain letters x, etc,
to indicate points in Rd.

We seek the time-dependent Greens function Gt(x, y) (where the subscript
indicates time as a parameter) which gives the solution at any future time,

u(x, t) =

∫

Ω

∂tGt(x, y)f(y)dy +

∫

Ω

Gt(x, y)g(y)dy (5)

Note G depends on Ω. When Ω = Rd we will use the symbol W instead of G
which indicates a fundamental solution. Also by Duhamel’s principle the same
Greens function may be used to write the solution for the inhomogeneous wave
equation, namely replacing (1) by utt −∆u = h where h is a source function on
Ω × (0,∞). The solution (5) then has the added ‘volume’ term

∫

Ω

∫ t

0

Gt−s(x, y)h(y, s)dsdy (6)
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Deriving this required rewriting the wave equation as a first-order system and
is explained well by Ch. 5 of [1]. If this term is to be written as a convolution
in time, then G must be defined for all real t by setting G to zero for t < 0
(causality). Then the time-dependent Greens function satisfies

(∂tt − ∆x)Gt(x, y) = δ(x − y)δ(t), x, y ∈ Ω (7)

in the sense of distributions. Note boundary conditions and domain are constant
in time, so only time differences t need be considered rather than absolute times.

2 Free space Rd

Our Fourier transform convention is

û(k) =

∫
eik·xu(x)dx; u(x) =

1

(2π)d

∫
e−ik·xû(k)dk (8)

where integrals are over Rd.
Then (1) becomes at each fixed k, the ODE

ûtt(k, t) = −|k|2û(k, t) (9)

whose solution is found for t > 0 by matching the initial conditions,

û(k, t) = f̂(k) cos |k|t + ĝ(k)
sin |k|t
|k| . (10)

In the case k = 0 the limit k → 0 of the above should be taken. Back in
real space, the above products become convolutions over Rd, according to the
convolution theorem which is with our convention

ûv̂ = û ∗ v; ûv =
1

(2π)d
(û ∗ v̂). (11)

Returning to real space the solution is then

u(·, t) = ∂tWt ∗ f + Wt ∗ g (12)

where the fundamental solution is given by the inverse Fourier transform

Wt(x) =
1

(2π)d

∫
e−ik·x sin |k|t

|k| dk (13)

Notation: subscript t here indicates Wt(·) is a function on Rd which has t as a
parameter. We now evaluate this integral directly for particular dimensions d.

As an aside, note that [5] (for whom the above is equation [27]) performs this

integral by analytic continuation (y → iy) from the Poisson kernel e−y
√
−∆, then

the ‘subordination identity’ which allows e−y
√
−∆ to be written as a weighted
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t-integral of et∆, based on the heat kernel form. This gives the nice result for
all d,

Wt(x) = lim
ǫ→0+

Cd

d − 1
Im[|x|2 − (t − iǫ)2]−(d−1)/2 (14)

where Cd = π−(d+1)/2Γ((d + 1)/2) appears to be 2 divided by the surface area
of a (d+1)-dimensional hypersphere. This is in Taylor’s book on PDEs, volume
1.

d = 3 Writing dk = k2dkdµdφ where µ = cos θ, and (k, θ, φ) is the wavenumber
in spherical polar coordinates, and r = |x|, then (13) becomes

Wt(x) =
1

(2π)3

∫ 2π

0

dφ

∫ ∞

0

k2dk
sin kt

k

∫ 1

−1

e−ikµrdµ

= − 1

8π2r

∫ ∞

0

[eik(t+r) + eik(t−r)]dk + c.c.

=
1

4πr
[δ(t − r) − δ(t + r)]

=
δ(t − r)

4πr
(15)

The k-integral was performed by recognising that 2πδ(x) =
∫

eikxdk which
follows from (8) and is a special case of (30). Notice the second delta vanishes
since we consider the causal case t > 0. Note this differs from the ‘method of
spherical means’ [1] which converts the d = 3 (or higher odd number) case to a
1D PDE, the Euler-Poisson-Darboux equation, which is satisfied by the integral
of u over an expanding sphere. That avoids Fourier methods altogether.

d = 2 Consider ũ satisfying the wave equation in R3, launched with initial
conditions invariant in the 3-direction:

ũ(x1, x2, x3, 0) = f̃(x1, x2, x3) = f(x1, x2),

ũt(x1, x2, x3, 0) = g̃(x1, x2, x3) = g(x1, x2),

for all x3. Then any slice through ũ perpendicular to the 3-direction, for instance
u(x1, x2, t) := ũ(x1, x2, 0, t), is a solution to the 2D wave equation with initial
conditions f and g. This follows since ũ remains 3-invariant for all t > 0, so the
3D ∆ operator acting on it is identical to the 2D ∆ operator. Considering for
now the second term in (12), and using (15), we have for any x ∈ R3,

ũ(x, t) =
1

4πt

∫

∂Bt(0)

g̃(y − x)dy

=
1

4πt

∫

Bt(0)

g(y1 − x1, y2 − x2)
2t√

t2 − |x|2
dx1dx2 (16)

where the Jacobean of the projection of the spherical shell onto the 2D ball was
used (noting the factor of 2 since there are 2 hemispheres). This Jacobean is
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the same as that from the circle in the plane to a line. (16) is now in the form
of a 2D convolution u = Wt ∗ g where

Wt(x) =
1

2π(t2 − |x|2)1/2
for |x| < t, zero otherwise. (17)

This is Hadamard’s method of descent. Notice the 2D fundamental solution Wt

is the projection of the 3D one W̃t,

Wt(x1, x2) =

∫

R

W̃t(x1, x2, x3)dx3. (18)

Equivalently one might start with an initial condition lying solely in the 1-
2 plane (i.e. f̃ = f(x1, x2)δ(x3) etc) then integrate the resulting 3D solution
along the 3-direction to get the 2D solution.

An alternative based on Folland: the Fourier transform proved in (15) is

sin |k|t
|k| =

∫

R3

eik·x δ(t − |x|)
4πt

dx. (19)

The delta restricts the integral to be over a spherical shell. If we set k =
(κ1, κ2, 0) where κ is a 2D wavevector, then e−ik·x is invariant in the 3-direction,
and integral may be projected down to the disc of radius t in the 1-2 plane. The
Jacobean of the transformation is the same as that from the circle in the plane
to a line, and gives (using now x ∈ R2)

sin |κ|t
|κ| =

∫

R2,|x|<t

eiκ·x
[

1

4πt

2t√
t2 − |x|2

]
dx. (20)

This now expresses a 2D Fourier transform, thus the term in square brackets
must be the fundamental solution.

d = 1 The above method of descent may be used from 3D to 1D. Since the
projection of a spherical shell of radius t to a line is the constant function 2πt
within t of the origin and zero outside (a fact known as far back as Archimedes
2200 years ago), this immediately defines the form for Wt in 1D,

Wt(x1) =

∫

Rd

W̃t(x1, x2, x3)dx2dx3

=
1

2
H(t − |x|)

where H(·) is the Heaviside step function. Note of course there are more direct
and elementary ways to get this result, for instance via factorization of the 1D
wave equation operator into two advection operators [1].

2.1 Summary for free space

The fields Wt due to a velocity point source (and for comparison ∂tWt due to
displacement point source), are given by
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dimension d Wt (velocity IC) ∂tWt (displacement IC)
1 1

2H(t − |x|) 1
2 [δ(t − x) + δ(t + x)]

2 1
2π (t2 − |x|2)−1/2 for |x| < t

3 1
4π|x|δ(t − |x|)

So the often-heard statement that both 1D and 3D propagate on a spherical
shell whereas 2D is the ‘odd one out’ is misleading: when velocity initial condi-
tions are considered, in 1D propagation is over a ball and in 3D a shell (2D is
somewhere inbetween). As d increases, the fundamental solution becomes more
singular (less continuous).

Note for all d we have
∫

Wtdx = t so
∫

∂tWtdx = 1. The linear growth
of Wt follows from that of the k → 0 limit of the ODE (10); free space has a
zero-frequency mode.

3 Torus Td

Consider Ω = Td = [0, 2π)d, that is, periodic boundary conditions.
The solution may be written in two ways:

1. periodic image sum of fundamental solutions (real-space lattice),

2. spectral sum over eigenmodes of the torus (Fourier-space lattice).

Their equivalence gives the trace formula on the torus (the real-space lattice
corresponds to periodic orbits on the torus). We will show below how their
equivalence follows via the Poisson summation formula. We won’t do all the
correct analysis here [4, 3].

The Greens function must be equal to Wt plus some homogeneous solution
to the wave equation. In order to match the boundary conditions, we must
choose this homogeneous solution to be the infinite array of image points (Wt

itself provides the single source point lying within Ω), giving

G(x, y, t) =
∑

n∈Zd

Wt(x − y − 2πn) (21)

Alternatively, in any compact domain Ω the Laplacian has a discrete spec-
trum {Ej}, j = 1, 2, . . . accumulating only at infinity, with corresponding or-
thonormal eigenmodes defined by

−∆φj = Ejφj , (22)

where Ej := k2
j where kj ≥ 0 is the eigenwavenumber. At each t the solution

may be expressed

u(x, t) =

∞∑

j=1

aj(t)φj(x). (23)
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Inserting into (1) gives a second-order ODE for each j, so, matching initial
conditions,

aj(t) = f̂j cos kjt + ĝj
sin kjt

kj
(24)

analogous to (10); again the limit kj → 0 should be taken whenever kj = 0. Here

f̂j = 〈φj , f〉 are the mode coefficients of f , etc. Substituting these coefficients
and writing out the inner product gives

u(x, t) =

∫

Ω

∑

j

(cos kjt)φj(x)φj(y)f(y)dy +

∫

Ω

∑

j

sin kjt

kj
φj(x)φj(y)g(y)dy,

(25)
Comparing to (5) we see the Greens function is a spectral sum

G(x, y, t) =
∑

j

sin kjt

kj
φj(x)φj(y) (26)

For the torus the wavevectors lie on a lattice, which motivates using the
following.

Theorem 1 (Poisson summation formula). Given dimension d ≥ 1, and L > 0,
and a smooth function f which decays faster than any power of distance from

the origin, i.e. f ∈ S(Rd) a Schwarz function, then,

∑

n∈Zd

f(Ln) =
1

Ld

∑

m∈Zd

f̂

(
2π

L
m

)
. (27)

Proof. The proof (from D. Bump notes) relies on realizing that the following
left-hand side is a periodic function, which therefore has a Fourier series thus,

∑

n∈Zd

f(x + Ln) =
∑

m∈Zd

ame−im·x. (28)

We find the jth coefficient by multiplying by eij·x and integrating over the unit
cell Ω = [0, L)d,

∑

n∈Zd

∫

Ω

f(x + Ln)eij·xdx =
∑

m∈Zd

am

∫

Ω

ei(j−m)·xdx. (29)

The sum in the left hand side tiles the whole of space, so the expression is just
f̂j. The only integral which survives in the right hand side is when m = j, with

the value Ld. Thus we have aj = f̂j/Ld and the theorem is proved by setting
x = 0.

A corollary is the delta comb written as an exponential sum,
∑

n∈Zd

eiy·n = (2π)d
∑

m∈Zd

δ(y − 2πm) (30)
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in the sense of distributions, which results from the choice f(x) = e−iy·x and
L = 1.

Returning to the torus, it is convenient to label the spectrum via j ∈ Zd, for
which the modes are φj(x) = 1

(2π)d/2 eij·x with eigenvalues Ej = |j|2; here | · |
indicates the l2-norm. The wavevectors j lie on the integer lattice. Thus (26)
gives

G(x, y, t) =
1

(2π)d

∑

j∈Zd

sin |j|t
|j| eij·(x−y) (31)

Firstly as a special case consider y = x, i.e. the returning amplitude to the
point x after time t. It is tempting to apply Poisson summation directly using
f = Wt and L = 2π, thus

G(x, x, t) =
1

(2π)d

∑

j∈Zd

sin |j|t
|j| (32)

=
∑

n∈Zd

Wt(2πn) (33)

This is the correct expression; it agrees with (21). However, the function Wt is
not smooth, so the Fourier coefficients do not decay fast enough—this is evident
as the sum over j is not even absolutely convergent for d = 1 and becomes worse
for higher d. Thus Thm. 1 cannot be applied directly. In order to analyse such
lattice sums rigorously, the sum over j must be regularized. Ways to do this
include i) an exponentially-decaying term, which makes the sum convergent and
then taking the limit of infinite decay length [4], and ii) integrating with respect
to t over a Schwartz test function which has the effect of killing the sum again
superalgebraically for large |j| [3].

Note for all d we still have
∫
Ω Wtdx = t. This follows from the presence of a

zero-frequency mode.

3.1 1D Dirichlet box

If instead Ω = [0, 2π) with Dirichlet boundary conditions the modes are given
by kj = j/2, and φj(x) = 1√

π
sin(jx/2), for j = 1, 2, . . . It is simplest to consider

the time-derivative of Greens function

∂tG(x, x, t) =
1

2π

∑

j

[1 − cos jx] cos
jt

2
(34)

=
∑

n∈Z

[δ(t − 4πn) − 1
2δ(t − 4πn − 2x) − 1

2δ(t − 4πn + 2x)](35)

This can be interpreted as the repeated boundary reflections (including sign-
changes) of the two delta functions launched from a displacement source. The
Greens function itself is a periodic square-wave-like signal.

Note the integral
∫
Ω Wtdx = t now breaks down beyond the first reflection.

This can be interpreted as the lack of a zero-frequency mode.
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3.2 General domains

In 2D there are other domains (namely the tiling triangles) for which the image
sources (and also the eigenwavevectors) lie on a lattice, thus may handled as
the torus.

The Selberg trace formula exists for certain negatively curved manifolds. I
don’t know whether anyone has deduced things about G(x, y, t) on such mani-
folds.

In more general cases a modal sum is all that can be done analytically.

4 Helmholtz equation

We use tilde to indicate a Fourier transform from time to frequency, which
follows the one-dimensional version of the convention (8). Given a frequency ω,
the Helmholtz equation fundamental solution Wω is defined distributionally in
Rd by

(−∆x − ω2)Wω(x) = δ(x). (36)

More generally if we have a domain Ω with Dirichlet boundary conditions then
the domain Greens function is

(−∆x − ω2)Gω(x, y) = δ(x − y), x, y ∈ Ω

Gω(x, y) = 0, x, y ∈ ∂Ω (37)

One can check that the above definitions of Gω (or the free-space case Wω) are
obtained by Fourier transforming in time the definition of the wave equation
Greens function (7). Thus we can get Helmholtz Greens functions by Fourier
transforming in time the above wave equation Greens functions.

4.1 Free space

d = 3 We use notation r := |x|. The fact that the t−1 behavior in Wt in 3D
can be written instead as r−1, therefore t-independent, makes for a quick result:

Wω(x) =

∫ ∞

−∞
Wt(x)eiωtdt (38)

=
eiωr

4πr
(39)

d = 2 Now there is a t−1/2 tail in Wt(x) for fixed r, but by changing variable
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t = r cosh θ the integral is a standard form for the Hankel function,

Wω(x) =

∫ ∞

r

eiωt

2π
√

t2 − r2
dt (40)

=
1

2π

∫ ∞

0

eiωr cosh θdθ (41)

=
i

4
H

(1)
0 (ωr) (42)

The integral forms of Bessel functions are in Abramowitz and Stegun 9.1.23.

d = 1 The tail in Wt(x) for fixed x now does not decay, so the integral does
not converge. It only has meaning if we take the limit of a positive vanishing
imaginary part to ω in which case the boundary term at ∞ vanishes:

Wω(x) =
1

2

∫ ∞

r

eiωtdt (43)

=
eiωr

2iω
(44)

This is the correct form for the outgoing 1D Greens function. The convergence
of the integral is not yet clear to me.

Notice as d = 1, 2, 3, . . . we have the power of ω in front of the oscillation
being −1,−1/2, 0, . . ., and the power of r being 0,−1/2,−1, . . ..

4.2 Semiclassical limit in d = 2

The Helmholtz fundamental solution Wω(r) given by (42) is a Hankel function
and we may use its well-known large-argument limit [7]

i

4
H

(1)
0 (ωr) =

i

4

√
2

πωr

[
1 − 8i

ωr
− 9

128(ωr)2
+ · · ·

+
[(2n − 1)!!]2

(8i)nn!

1

(ωr)n
+ · · ·

]
ei(ωr−π/4) (45)

It is common in physics to use only the first term (Boasman, Smilansky, Gutzwiller,
etc). We wish to understand the time-domain fundamental solution correspond-
ing to this approximation. We will show that the above asymptotic series cor-
responds, term by term, to the following expansion of the time-domain funda-
mental solution Wt(r), where we use τ = t − r,

1

2π
√

t2 − r2
=

1

2π
√

τ(2r + τ)
=

1

2π
√

2r
τ−1/2

(
1 +

τ

2r

)−1/2

=
1

2π
√

2r

(
τ−1/2 − 1

4r
τ1/2 + · · · + Γ(n + 1

2 )

Γ(1
2 )Γ(n)

τn−1/2

(−2r)n
+ · · ·

)
(46)
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We consider only the nonvanishing region τ > 0. Note this is the Frobenius
series (with respect to t) of Wt(r) about the singular point (first arrival time)
t = r. This is a Taylor series offset by the factor (t− r)−1/2 which accounts for
all nonanalyticity there.

To show the correspondence we first need the Fourier transform of a power-
law on the positive real line, in the sense of distributions. By substituting ω = iα
and rotating the contour by π/2 we have, for any real p > −1,

∫ ∞

0

τpeiωτdτ =

(
i

ω

)p+1

Γ(p + 1) (47)

which we may interpret as the function H(τ)τp being the pth fractional integral
of δ(τ). The time shift from t to τ then introduces a factor eiωr. So the Fourier
transform the nth term (including prefactors) in (46) is

(−1)nin+1/2Γ(n + 1
2 )2

(ωr)p+1/2(2π)p+3/2p!
(48)

which, using the property Γ(n + 1
2 ) =

√
π(2n + 1)!!/2n for integer n, matches

the nth term (including prefactors) in (45). This is essentially the same as the
manipulation carried out to derive (45) for general order in Chapter VII.6.2 of
[6].

Thus keeping only the first term in (45) corresponds to assuming precisely a
(t−r)−1/2 singularity in the time-domain, rather than the true form (t2−r2)−1/2.
Their relative difference only becomes large at large times t ≫ r.
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