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Abstract—Refactoring detection is crucial for a variety of applications and tasks: (i) empirical studies about code evolution, (ii) tools for
library API migration, (iii) code reviews and change comprehension. However, recent research has questioned the accuracy of the
state-of-the-art refactoring mining tools, which poses threats to the reliability of the detected refactorings. Moreover, the majority of
refactoring mining tools depend on code similarity thresholds. Finding universal threshold values that can work well for all projects,
regardless of their architectural style, application domain, and development practices is extremely challenging. Therefore, in a previous
work [1], we introduced the first refactoring mining tool that does not require any code similarity thresholds to operate. In this work, we
extend our tool to support low-level refactorings that take place within the body of methods. To evaluate our tool, we created one of the
most accurate, complete, and representative refactoring oracles to date, including 7,226 true instances for 40 different refactoring types
detected by one (minimum) up to six (maximum) different tools, and validated by one up to four refactoring experts. Our evaluation
showed that our approach achieves the highest average precision (99.6%) and recall (94%) among all competitive tools, and on
median is 2.6 times faster than the second faster competitive tool.
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1 INTRODUCTION

R EFACTORING is a very common practice that helps
developers to complete maintenance tasks (i.e., imple-

ment new features and fix bugs), and eliminate various
design and code smells [2]. Many researchers empirically
investigated the benefits of refactoring based on refactoring
operations collected from open source projects by studying
how the renaming of identifiers affects code readability [3],
how and why developers rename identifiers [4], the impact
of refactoring on code naturalness [5], the impact of refac-
toring on code smells [6], the co-occurrence of refactoring
and self-admitted technical debt removal [7], and how the
introduction of Lambda expressions affects program com-
prehension [8].

Despite the benefits, in some contexts, refactoring is
perceived as change noise, which makes more difficult the
completion of various software evolution related tasks. For
instance, refactoring operations can cause merge conflicts
when merging development branches [9], distract develop-
ers when reviewing behavior-altering changes [10], make
bug-inducing analysis algorithms (e.g., SZZ [11], [12], [13])
to erroneously flag behavior-preserving changes (i.e., refac-
torings) as bug-introducing [14], cause breaking changes to
clients of libraries and frameworks [15], cause unnecessary
test executions for behavior-preserving changes [16]. For
this reason, many refactoring-aware techniques have been de-
veloped to merge branches [17], [18], detect bug-introducing
changes [19], adapt client software to library and framework
updates [20], [21], [22], select regression tests [23], [24],
and assist code review [25], [26], [27] in the presence of
refactoring operations.
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Both refactoring-aware tool builders and empirical re-
searchers need accurate refactoring information at the finest
level of code evolution granularity (i.e., commit level) to
improve the efficacy of their tools and draw safer conclu-
sions for their research questions, respectively. In our previ-
ous work [1], we developed a refactoring mining tool and
showed that it has superior accuracy and faster execution
time than a competitive tool, REFDIFF [28].

REFACTORINGMINER 2.0 builds upon its predecessor (ver-
sion 1.0) to support the detection of low-level or submethod-
level refactorings (i.e., taking place within the body of a
method), such as RENAME/EXTRACT VARIABLE. According to
Murphy-Hill et al. [29] submethod-level refactorings are
not supported by the vast majority of refactoring detection
tools, despite the fact that developers tend to apply such
refactorings more frequently than high-level refactorings.

REFACTORINGMINER takes as input two revisions (i.e., a
commit and its parent in the directed acyclic graph that
models the commit history in git-based version control
repositories) of a Java project, and returns a list of refac-
toring operations applied between these two revisions. It
supports the detection of 40 refactoring types for 6 different
kinds of code elements (i.e., packages, type declarations,
methods, fields, local variables/parameters, and type ref-
erences). The list of supported refactoring types is shown in
Table 1 highlighting those present in Fowler’s catalog [30],
supported by IDEs, and applied manually by developers.

Unlike other existing refactoring detection approaches,
such as REF-FINDER [31], REFACTORINGCRAWLER [32], and
JDEVAN [33], which analyze all files in two versions of a
Java project, REFACTORINGMINER analyzes only the added,
deleted, and changed files between the two revisions. This
makes REFACTORINGMINER not only more efficient, because
it has less code elements to analyze and compare, but also
more accurate, because the number of code element combi-
nations to be compared is significantly less, thus reducing
the probability of incorrect code element matches.

In addition, REFACTORINGMINER is the first refactoring
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detection tool that does not rely on code similarity thresh-
olds. We utilize novel techniques, such as abstraction and
argumentization to deal with changes taking place in code
statements due to refactoring mechanics, and apply syntax-
aware replacements of AST nodes when matching two state-
ments to deal with overlapping refactorings (e.g., variable
renames), or changes caused by other maintenance activities
(e.g., bug fixes). This approach allows to differentiate pure-
refactoring edits from overlapping non-refactoring edits.

TABLE 1
Refactoring types supported by REFACTORINGMINER versions

1.0 (15 refactoring types) 2.0 (+25 refactoring types, 40 in total)

EXTRACT METHOD EXTRACT CLASS

INLINE METHOD EXTRACT SUBCLASS

RENAME METHOD EXTRACT VARIABLE/FIELD

MOVE METHOD/FIELD RENAME VARIABLE/PARAMETER/FIELD

PULL UP METHOD/FIELD MOVE & RENAME METHOD/FIELD

PUSH DOWN METHOD/FIELD MOVE & INLINE METHOD

EXTRACT SUPERCLASS PARAMETERIZE VARIABLE

EXTRACT INTERFACE INLINE VARIABLE

MOVE CLASS MERGE VARIABLE/PARAMETER/FIELD

RENAME CLASS SPLIT VARIABLE/PARAMETER/FIELD

EXTRACT & MOVE METHOD MOVE & RENAME CLASS

CHANGE PACKAGE REPLACE VARIABLE/FIELD WITH FIELD

CHANGE VARIABLE/PARAMETER/RETURN/FIELD TYPE

Present in Fowler’s catalog [30] Supported in IDEs Manual change
This work is an extension over our previous work [1]

with the following novel contributions:
1) We extend the list of supported refactoring types from

15 to 40 (Table 1). The current list covers the majority
of the most popular refactoring types applied by devel-
opers [34]. To the best of our knowledge, REFACTORING-
MINER 2.0 is the only tool operating at commit-level that
supports such low-level refactorings.

2) We support new replacement types (Section 4.3) and
heuristics (Section 3.3) to match statements, which im-
prove the quality of the statement mappings produced by
our tool, and consequently lead to an increased precision
and recall over its predecessor.

3) We address previous limitations, such as the detection
of nested refactoring operations (Section 4.4), e.g., when
an EXTRACT METHOD refactoring is applied within the
body of another extracted method, and the detection of
signature-level refactorings for abstract/interface meth-
ods not having a body (Section 4.5).

4) We extend our original refactoring oracle [35] from 3,188
to 7,226 true instances (Section 5.2) to enable the com-
putation of precision and recall for the newly supported
refactoring types. These true refactoring instances were
found in 536 commits from 185 open-source projects [2],
and were validated with multiple tools and experts.

5) We compare the precision and recall of REFACTORING-
MINER 2.0 with its predecessor, and two competitive
tools, REFDIFF [28], [36] and GUMTREEDIFF [37], and show
that it has a superior accuracy (Sections 5.3 and 5.4).

6) We compare the execution time of REFACTORINGMINER 2.0
with its predecessor and REFDIFF [28], and show that it is
much faster (Section 5.6).

2 RELATED WORK

2.1 Refactoring Detection Tools
Demeyer et al. [38] proposed the first technique for detecting
the refactorings applied between two versions of a software
system. They defined heuristics as a combination of change

metrics that identify a refactoring type, such as Split/Merge
Class, and Move/Split Method. They performed case stud-
ies on different versions of three software systems, and con-
cluded that these heuristics are extremely useful in a reverse
engineering process, because they reveal where, how, and
why an implementation has drifted from its original design.

Antoniol et al. [39] used a technique inspired from Infor-
mation Retrieval (based on Vector Space cosine similarity) to
detect discontinuities in classes (e.g., a class replaced with
another one, a class split into two, or two classes merged
into one). They performed a case study on 40 releases of the
dnsjava project, and reported potential refactorings that they
detected. Godfrey and Zou [40] implemented a tool that can
detect structural refactorings like rename, move, split, and
merge for procedural code. They employ origin analysis
along with a more expensive call graph analysis to detect
and classify these changes. They performed a case study
on 12 releases of the PostgreSQL system, and discovered
different patterns of code evolution.

Weißgerber and Diehl [41] developed the first technique
for the detection of local-scope and class-level refactorings
in the commit history of CVS repositories. They first detect
refactoring candidates by finding pairs of code elements
(i.e., classes, methods, fields) with some differences in their
signatures. Next, for each refactoring candidate they use the
clone detection tool CCFINDER [42] to compare the bodies of
the code elements. They configured CCFINDER to match code
fragments with differences in whitespaces and comments,
and with consistently renamed variable identifiers, method
names, and references to member names. They manually
inspected the commit log messages of two open-source
projects to find documented refactorings and compute the
recall, and used random sampling to estimate the precision
of their approach.

Dig et al. [32] developed REFACTORINGCRAWLER, which
first performs a fast syntactic analysis to find refactoring
candidates, and then a precise semantic analysis to find
the actual refactorings. The syntactic analysis is based on
Shingles encoding to find similar pairs of entities (methods,
classes, and packages) in two versions of a project. Shingles
are “fingerprints” for strings (e.g., method bodies) and
enable the detection of similar code fragments much more
robustly than the traditional string matching techniques that
are not immune to small deviations like renamings or minor
edits. The semantic analysis is based on the similarity of
references (e.g., method calls) to the entities of a candidate
refactoring in the two versions of the project. To compute the
recall, the authors manually discovered the applied refactor-
ings in three projects by inspecting their release notes, while
they inspected the source code to compute precision.

Xing and Stroulia [43] developed JDEVAN [33], which
detects and classifies refactorings based on the design-level
changes reported by UMLDIFF [44]. UMLDIFF is a domain-
specific structural differencing algorithm that takes as input
two class models of an object-oriented software system,
reverse engineered from two corresponding code versions,
and automatically detects elementary structural changes on
packages, classes, interfaces, fields and methods, based on
their name and structure similarity. They evaluated the
recall of JDEVAN on two software systems, and found that
all documented refactorings were recovered.
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Prete et al. [45] developed REF-FINDER [31], which detects
the largest number of refactoring types (63 of 72) from
Fowler’s catalog [30], including several low-level refactor-
ings. REF-FINDER encodes each program version using logic
predicates that describe code elements and their contain-
ment relationships, as well as structural dependencies (i.e.,
field accesses, method calls, subtyping, and overriding), and
encodes refactorings as logic rules. In addition, each refac-
toring type is encoded as a logic rule, where the antecedent
predicates represent pre-requisite refactorings or change-
facts, and the consequent predicate represents a target refac-
toring type to be inferred. The detection of concrete refac-
toring instances is achieved by converting the antecedent
of each rule into a logic query and invoking the query
on the database of logic facts. Some refactoring rules use
a special predicate that checks if the word-level similarity
between two candidate methods is above a threshold σ. This
predicate is implemented as a basic block-level clone detec-
tion technique, which removes any beginning and trailing
parenthesis, escape characters, white spaces and return
keywords, and computes word-level similarity between the
two code fragments using the longest common subsequence
algorithm. Prete et al. created a set of correct refactorings by
running REF-FINDER with a low similarity threshold (σ=0.65)
and manually verified them. Then, they computed recall by
comparing this set with the results found using a higher
threshold (σ=0.85) and computed precision by inspecting a
sampled data set.

Silva and Valente [28] developed a tool, REFDIFF, which
takes as input two revisions of a git repository and employs
heuristics based on static analysis and code similarity to
detect 13 refactoring types. REFDIFF represents a source code
fragment as a bag of tokens, and computes the similarity
of code elements using a variation of the TF-IDF weight-
ing scheme to assign more weight to tokens that are less
frequent, and thus have more discriminative power than
other tokens. To compute the similarity of fields, REFDIFF

considers as the “body” of a field, all statements that access
this field in the source code of the system. To determine the
similarity threshold values for different kinds of code ele-
ment relationships, the authors applied a calibration process
on a randomly selected set of ten commits from ten different
open-source projects, for which the applied refactorings are
known and have been confirmed by the project developers
themselves [2] in order to find the threshold values that
yield the best compromise between precision and recall.
They evaluated the accuracy of their tool using an oracle
of seeded refactorings applied by graduate students in 20
open-source projects.

Silva et al. [36] developed REFDIFF 2.0, as the first multi-
language refactoring detection tool, which relies on the
Code Structure Tree (CST) source code representation that
abstracts away the specificities of particular programming
languages. In its core, REFDIFF 2.0, uses the same approach
as its predecessor, i.e., it extracts a multiset of tokens for
each program element, computes a weight for each token of
the source code using a variation of the TF-IDF weighting
scheme, and uses a generalization of the Jaccard coefficient,
known as weighted Jaccard coefficient, to compute the
similarity between two code elements. In contrast to its
predecessor that applied a calibration process to determine

the similarity threshold values, REFDIFF 2.0 uses a single
similarity threshold, defined as 0.5 by default, for all kinds
of code element relationships. To evaluate the accuracy of
the tool on Java projects, they relied on our refactoring
oracle [1], [35] constructed from a publicly available dataset
of refactoring instances [2], comprising 536 commits from
185 open-source GitHub-hosted projects monitored over a
period of two months. For JavaScript and C projects, they
manually validated the refactorings detected by the tool
to evaluate precision, while they searched for documented
refactorings in commit messages to evaluate recall.

A totally different approach to detect refactorings in real-
time is to continuously monitor code changes inside the
IDE. BENEFACTOR [46] and WITCHDOCTOR [47] detect manual
refactorings in progress and offer support for completing the
remaining changes, whereas CODINGTRACKER [34], GHOST-
FACTOR [48] and REVIEWFACTOR [27] infer fully completed
refactorings. While these tools highlight novel usages of
fine-grained code changes inside the IDE, REFACTORING-
MINER 2.0 focuses on changes from commits, thus it can be
more broadly applied as it is not dependent on an IDE or
text editor.

2.2 Limitations
Dependence on thresholds: The majority of the refactoring
detection tools use some kind of similarity metric to mea-
sure the code similarity of program elements (e.g,. method
declarations) between two software versions or revisions,
and use thresholds to determine whether the program ele-
ments should be matched, in order to deal with the noise
introduced by overlapping refactorings or changes caused
by other maintenance activities (e.g., bug fixes) on the same
program elements. Typically, each tool provides a set of
default threshold values that are empirically determined
through experimentation on a relatively small number of
projects (one for UMLDIFF, three for REF-FINDER and REFAC-
TORINGCRAWLER, and ten for REFDIFF). The derived threshold
values are possibly overfitted to the characteristics of the
examined projects, and thus cannot be general enough to
take into account all possible ways developers apply refac-
torings in projects from different domains. As a result, these
threshold values might require a calibration to align with the
particular refactoring practices applied in a project. This is a
tedious task, since it requires an iterative manual inspection
of the reported refactorings against the source code to find
false positives and re-adjustment of the thresholds.

The problem of deriving appropriate threshold values, in
the context of software measurement and metric-based code
smell detection, has been extensively investigated by several
researchers, who applied various statistical methods and
machine learning techniques on a large number of software
projects [49], [50], [51], [52], [53]. Dig [54] showed that preci-
sion and recall can vary significantly for the same software
system based on the selected threshold value. Moreover,
Aniche et al. [55] has shown that software systems relying
on different architectural styles and frameworks require
different threshold values for source code metrics. There-
fore, experience has shown that it is very difficult to derive
universal threshold values that can work well for all projects,
regardless of their architectural style, application domain,
and development practices.
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Dependence on built project versions: Several tools require
to build the project versions under comparison. For instance,
REFACTORINGCRAWLER requires method call information to
perform semantic analysis, while REF-FINDER and UMLDIFF

require field access, method call, subtyping and overrid-
ing information to extract structural dependencies. This
information can be reliably obtained through type, method,
and variable bindings resolved by the compiler. A project
build can be more easily achieved when comparing released
project versions, which are usually shipped with a built
binary. However, it can be extremely challenging to build a
project when comparing two commits, because only a small
portion (38%) of the commits can be successfully compiled,
and most of them are recent commits [56]. Therefore, the
dependence on built project versions is a serious obstacle
for performing large-scale refactoring detection in the entire
commit history of projects.
Incomplete oracle: Dig et al. [32] created an oracle by
inspecting release notes to find information related to refac-
toring operations. However, Moreno et al. [57] manually
inspected 990 release notes from 55 open source projects
to analyze and classify their content, and found out that
only 21% of the release notes include refactoring operations,
and those are usually general statements specifying the
refactored code components (i.e., they lack details about the
kinds of refactoring performed). Moreover, in [32], the de-
velopers never provided documentation for the “internal”
refactorings, but only documented those affecting the pub-
lic APIs and would therefore be backwards incompatible.
Weißgerber and Diehl [41] created an oracle by inspecting
commit messages for references to refactoring operations.
However, Murphy-Hill et al. [29] have shown that devel-
opers do not reliably indicate the presence of refactoring in
commit log messages. Therefore, an oracle created just by
inspecting release notes or commit messages, will probably
miss a significant number of undocumented refactorings.
Biased oracle: Prete et al. [45] created an oracle based on
the findings of a single tool, namely REF-FINDER, configured
with a more relaxed similarity threshold value in order to
detect more refactoring instances, and then removed any
false positives through manual inspection. Next, they eval-
uated the precision and recall of the same tool configured
with a more strict similarity threshold value. However, this
tool might still miss a large number of true instances due
to an algorithm design flaw, implementation error, or inap-
propriate threshold value, leading to a biased and inaccurate
oracle. As a matter of fact, a subsequent independent study
has shown that REF-FINDER had an overall precision of 35%
and an overall recall of 24% [58], while a more recent one
has shown that REF-FINDER had an overall average precision
of 27% [59], in contrast to the high precision and recall
values (74% and 96%, respectively) reported by Prete et
al. [45] using the oracle explained above. On the other hand,
there exist state-of-the-art procedures that use triangulation
between multiple tools and experts for determining the
ground truth. Such procedures have been used in many soft-
ware engineering fields, such as design pattern mining [60],
[61], [62], to create unbiased benchmarks for evaluating the
precision and recall of tools.
Artificial oracle: Silva and Valente [28] created an oracle by
asking graduate students of a Software Architecture course

to apply refactorings in open-source projects. This kind
of oracle, known as seeded refactorings [63], can be used
to reliably compute the recall of a tool, since all applied
refactorings are known. However, seeded refactorings are
not representative of real refactorings for two main reasons.
First of all, they are artificial in the sense that they do
not necessarily serve an actual purpose (i.e., facilitate a
maintenance task, eliminate a code smell, improve code
understandability), but are rather random refactoring op-
erations. Second, they are isolated from other maintenance
activities, and thus their detection is less challenging. Actual
code evolution contains significant noise coming from over-
lapping changes (e.g., bug fixes, new features, sequential
refactoring operations), and thus most real refactorings are
not isolated in the commit history of a project. As a matter
of fact, Negara et al. [64] have shown that 46% of refactored
program entities are also edited or further refactored in the
same commit.

Table 2 provides a comprehensive overview of the lim-
itations of previous refactoring mining tools, with respect
to their input, detection method, and evaluation approach.
Unlike these previous tools, REFACTORINGMINER 2.0 neither
requires similarity thresholds (that are tedious to calibrate,
and might not be generalizable), nor does it require oper-
ating on fully built versions of software systems, thus it
is applicable in many more contexts. Moreover, whereas
previous tools have been evaluated against 2-3 projects with
a small number of refactoring instances (a notable exception
is REFDIFF, which was evaluated on 20 projects with 448
seeded refactorings), our oracle is orders of magnitude
larger comprising 185 projects and 7,226 true refactoring
instances. We use triangulation between multiple sources
to create one of the most reliable, comprehensive, and
representative oracles to date.

TABLE 2
Limitations of refactoring mining tools

Tool Input Detection Evaluation
Supported
Languages

Weißgerber
& Diehl [41]

CVS
commits

1
CCFINDER

configuration
3 commit messages 4 Java 7

Dig et al. [32]
project

versions
2

shingles +
references

3 release notes 4 Java 7

Xing &
Stroulia [33]

project
versions

2
UMLDIFF

configuration
3

change
documents

4 Java 7

Kim et al. [31]
project

versions
2

block-level
clone detector

3 single tool 5 Java 7

Silva &
Valente [28]

Git
commits

− TF-IDF
(variant threshold)

3
seeded

refactorings
6 Java 7

Silva et al. [36]
Git

commits
− TF-IDF

(fixed threshold)
3

oracle [1]
commit messages

−
4

Java, C++
JavaScript

1 obsolete VCS 2 source code build requirement 3 similarity threshold definition
4 incomplete oracle 5 biased oracle 6 artificial oracle 7 language-specific − N/A

3 SOURCE CODE MATCHING

The matching of the statements between two code frag-
ments (i.e., method bodies) is a core function that we
use throughout the refactoring detection rules described
in Section 4.2. Although this Section focuses on constructs
and practices specific to the Java programming language,
several concepts, such as the abstraction and argumentization
of statements, and the matching of statements in rounds, can
be applied to other programming languages and paradigms.
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3.1 Source code representation
private static Address[] createAddresses(int count) {
  

    Address[] addresses = new Address[count] ;

    for (int i = 0; i < count; i++) {
        try {

            addresses[i] = new Address("127.0.0.1", PORTS.incrementAndGet());
        } 
        catch (UnknownHostException e) {
            e.printStackTrace();
        }
    } 
    return addresses;
}

M

T

L VVC

D

VV VV

V Variable Identifier
T Type

D Variable Declaration
L Literal

C Class Instantiation M Method Invocation

VV VVC

Fig. 1. Representation of a method body as a tree.

The body of a method is represented as a tree capturing
the nesting structure of the code, where each node corre-
sponds to a statement, similar to the representation used by
Fluri et al. [65]. For a composite statement (i.e., a statement
that contains other statements within its body, such as for,
while, do-while, if, switch, try, catch, synchronized

block, label), the node contains the statement’s type and
the expression(s) appearing within parenthesis before the
statement’s body. For a leaf statement (i.e., a statement
without a body), the node contains the statement itself.
Storing AST nodes into memory is not efficient, because a
reference to a single AST node results in having the entire
CompilationUnit in memory, as AST nodes are linked to
their parent nodes. In order to avoid storing AST nodes into
memory, for each statement/expression we keep its string
representation in a pretty-printed format where all redun-
dant whitespace and multi-line characters are removed. For
the pretty-printing of statements/expressions, we rely on
Eclipse JDT ASTNode.toString(), which uses the internal
API NaiveASTFlattener to generate the string representa-
tion of AST nodes for debug printing. NaiveASTFlattener
extends the ASTVisitor and each overridden visit()

method uses a standard format to represent the visited
AST node type. This means two syntactically identical AST
nodes will have the same string representation, as returned
by ASTNode.toString(), regardless of their differences in
whitespace characters. In addition, we use an AST Visitor to
extract all variable identifiers, method invocations, class in-
stantiations, variable declarations, types, literals, and opera-
tors appearing within each statement/expression and store
them in a pretty-printed format within the corresponding
statement node. Figure 1 shows the tree-like representation
of the body of method createAddresses, along with the
information extracted by the AST Visitor for two of its
statements.

3.2 Statement matching
Our statement matching algorithm has been inspired by
Fluri et al. [65], in the sense that we also match the state-
ments in a bottom-up fashion, starting from matching leaf
statements and then proceeding to composite statements.
However, in our solution, outlined in Algorithm 1, we do
not use any similarity measure to match the statements,
and thus we do not require the definition of similarity
thresholds.

To reduce the chances of erroneous matches, we follow
a conservative approach, in which we match the statements
in rounds, where each subsequent round has a less strict

match condition than the previous round. Thus, the state-
ments matched in earlier rounds are “safer” matches, and
are excluded from being matched in the next rounds. In
this way, the next round, which has a more relaxed match
condition, has fewer statement combinations to check.

Algorithm 1: Statement matching
Input : Trees T1 and T2

Output: Set M of matched node pairs, Sets of
unmatched nodes UT1

, UT2
from T1 and T2

1 M ← ∅, UT1
← ∅, UT2

← ∅
2 L1 ← T1.leafNodes, L2 ← T2.leafNodes
3 condition1 (n1, n2)→ n1.text = n2.text ∧ n1.depth =

n2.depth
4 condition2 (n1, n2)→ n1.text = n2.text
5 condition3 (n1, n2)→ replacements (n1.text, n2.text)
6 L′1 , L′2 = matchNodes (L1, L2, condition1) // round #1

7 L′′1 , L′′2 = matchNodes (L′1, L′2, condition2) // round #2

8 matchNodes (L′′1 , L′′2 , condition3) // round #3

9 C1 ← T1.compositeNodes, C2 ← T2.compositeNodes
10 condition4 (n1, n2)→
∃ (k1, k2) ∈ M | k1 ∈ n1.children ∧ k2 ∈ n2.children

11 condition1 (n1, n2) = condition1 ∧ condition4
12 condition2 (n1, n2) = condition2 ∧ condition4
13 condition3 (n1, n2) = condition3 ∧ condition4
14 C′1 , C′2 = matchNodes (C1, C2, condition1) // round #1

15 C′′1 , C′′2 = matchNodes (C′1, C′2, condition2) // round #2

16 matchNodes (C′′1 , C′′2 , condition3) // round #3

17 UT1
← T1.nodes \ MT1

, UT2
← T2.nodes \ MT2

1 Function matchNodes(N1, N2, matchCondition)
2 foreach n1 ∈ N1 do
3 P ← ∅
4 foreach n2 ∈ N2 do
5 pn1, pn2 ← preprocessNodes(n1,n2)

6 if matchCondition(pn1,pn2) then
7 P ← P ∪ (n1, n2)

8 end
9 end

10 if |P | > 0 then
11 bestMatch← findBestMatch(P)

12 M ← M ∪ bestMatch
13 N1 ← N1 \ bestMatch.n1

14 N2 ← N2 \ bestMatch.n2

15 end
16 end
17 return N1, N2

18 end

Algorithm 1 takes as input trees T1 and T2 representing
the nesting structure of the statements inside the body of
a method (as shown in Figure 1) from the parent and
child commit, respectively. We match leaf statements in
three rounds (lines 2-8). In the first round, we match the
statements with identical string representation and nesting
depth. In the second round, we match the statements with
identical string representation regardless of their nesting
depth. In the last round, we match the statements that
become identical after replacing the AST nodes being dif-
ferent between the two statements. We match composite
statements in three rounds as well (lines 9-16), using exactly
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Before After

A

B

C

D

E

F

G

1A

2B

4C

5D

6E

7F

9G

 private static List<Address> createAddresses(AtomicInteger ports, int count) {
     List<Address> addresses = new ArrayList<Address>(count);
     for (int i = 0; i < count; i++) {
 
           addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));
 
 
 

 
     }
     return addresses;
}

1

2

3

protected static Address createAddress(String host, int port) {
    try {
        return new Address(host, port);
 
    } catch (UnknownHostException e) {
        e.printStackTrace();
    }
    return null;
}

4

5

6

7

8

9

"127.0.0.1"

ports.incrementAndGet()

Matched
Statements

Replacement Addition Abstraction Argumentization

private static Address[] createAddresses(int count) {
    Address[] addresses = new Address[count];
    for (int i = 0; i < count; i++) {
        try {
            addresses[i] = 
                 new Address("127.0.0.1", PORTS.incrementAndGet());
        } 
        catch (UnknownHostException e) {

e.printStackTrace();
        }
    } 
    return addresses;
}

Fig. 2. Statement matching for an EXTRACT METHOD refactoring in https://github.com/hazelcast/hazelcast/commit/76d7f5

the same match conditions as those used for leaf statements
combined with an additional condition that requires at least
one pair of their children to be matched (line 10), assuming
that both composite statements have children.

In all rounds, we apply two pre-processing techniques
on the input statements (line 5 in function matchNodes),
namely abstraction and argumentization to deal with specific
changes taking place in the code when applying EXTRACT,
INLINE, and MOVE METHOD refactorings.
Abstraction: Some refactoring operations, such as EXTRACT

and INLINE METHOD, often introduce or eliminate return

statements when a method is extracted or inlined, respec-
tively. For example, when an expression is extracted from
a given method, it appears as a return statement in the
extracted method. To facilitate the matching of statements
having a different AST node type, we abstract the statements
that wrap expressions. When both statements being com-
pared follow one of the following formats:
• expression; i.e., expression statement
• return expression; i.e., returned expression
• Type var = expression; i.e., initializer of a variable

declaration
• var = expression; i.e., right hand side of an assignment
• if/while/switch/try(expression) i.e., condition of a

composite statement
then they are abstracted to expression before their
comparison. Figure 2 shows an example of abstraction,
where the assignment statement D from the code be-
fore refactoring, and the return statement 5 from the
code after refactoring, are abstracted to expressions new

Address("127.0.0.1", PORTS.incrementAndGet()) and
new Address(host, port), respectively.
Argumentization: Some refactoring operations may replace
expressions with parameters, and vice versa. For example,
when duplicated code is extracted into a common method,
all expressions being different among the duplicated code
fragments are parameterized (i.e., they are replaced with
parameters in the extracted method). The duplicated code
fragments are replaced with calls to the extracted method,
where each expression being different is passed as an argu-
ment. In many cases, the arguments may differ substantially
from the corresponding parameter names, leading to a low
textual similarity of the code before and after refactor-
ing. Argumentization is the process of replacing parameter
names with the corresponding arguments in the code after
refactoring. Figure 2 shows an example of argumentization,
where parameter names host and port are replaced with

arguments "127.0.0.1" and ports.incrementAndGet(),
respectively, in statement 5 .

The same process is applied to the statements of inlined
and moved methods. In particular, when an instance
method is moved to a target class, we might have a
parameter (or a source class field access) of target type that
is removed from the original method, or a parameter of
source type that is added to the original method. In the case
of removal, the removed parameter (or field access) might
be replaced with this reference in the moved method,
while in the case of addition, this reference might be
replaced with the added parameter in the moved method.

By applying abstraction and argumentization, the original
statements D and 5 in Figure 2 are transformed to
new Address("127.0.0.1", PORTS.incrementAndGet())
new Address("127.0.0.1", ports.incrementAndGet()),
respectively, and thus can be identically matched by
replacing static field PORTS with parameter ports. On the
other hand, string similarity measures would require a very
low threshold to match these statements. For instance, the
Levenshtein distance [66] (commonly used for computing
string similarity) between the original statements D and
5 is 44 edit operations, which can be normalized to a

similarity of 1− 44/65 = 0.32, where 65 is the length of the
longest string corresponding to statement D . The bigram
similarity [67] (used by CHANGEDISTILLER [65]) between
statements D and 5 is equal to 0.3. It is clear that the string
similarity measures used by the majority of the refactoring
detection tools are susceptible to code changes applied
by some refactoring operations, such as parameterization,
especially when the arguments differ substantially from the
parameter names. Therefore, our pre-processing techniques
facilitate the matching of statements with low textual
similarity.

Function matchNodes finds all possible matching nodes
in tree T2 for a given node in tree T1 and stores the
matching node pairs into set P . There are certain kinds of
statements, such as return, break, continue, assertions in
tests, exception throwing, logging, System.out.print and
other common external API invocations, try blocks, and
control flow structures, which tend to be repeated in many
different parts of a method and are textually identical. In
such cases, matchNodes will return multiple matching node
pairs. Function findBestMatch(P) (line 11), sorts the node
pairs in P and selects the top-sorted one, in order to break
the ties when having multiple matching node pairs. Leaf
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node pairs are sorted based on 3 criteria. First, based on
the string edit distance [66] of the nodes in ascending order
(i.e., more textually similar node pairs rank higher). Second,
based on the absolute difference of the nodes’ depth in
ascending order (i.e., node pairs with more similar depth
rank higher). Third, based on the absolute difference of the
nodes’ index in their parent’s list of children in ascending
order (i.e., node pairs with more similar position in their
parent’s list of children rank higher). Composite node pairs
are sorted with an additional criterion, which is applied
right after the first criterion: based on the ratio of the nodes’
matched children in descending order (i.e., node pairs with
more matched children rank higher).

Algorithm 2: Replacements of AST nodes
Input : Statements s1 and s2

Output: Set of syntax-aware replacements
1 Function replacements(s1, s2)

2 Ns1 ← ∅, Ns2 ← ∅, R← ∅
3 foreach t ∈ nodeTypes do
4 commont ← s1.nodest ∩ s2.nodest
5 Ns1 ← Ns1 ∪ { s1.nodest \ commont }
6 Ns2 ← Ns2 ∪ { s2.nodest \ commont }
7 end
8 d = distance(s1,s2)

9 foreach ns1 ∈ Ns1 do
10 C ← ∅
11 foreach ns2 ∈ Ns2 do
12 if compatibleForReplacement(ns1,ns2)

then
13 d′ = distance(s1.replace(ns1,ns2),s2)

14 if d′ < d then
15 C ← C ∪ (ns1 , ns2 )
16 end
17 end
18 end
19 if |C| > 0 then
20 best← smallestDistance(C)

21 d = best.distance
22 r = best.replacement
23 R← R ∪ r

24 s1 = s1.replace(r.ns1,r.ns2)
25 end
26 end
27 if s1 = s2 then
28 return R

29 else
30 return null
31 end

Function replacements (Algorithm 2) takes as input two
statements and performs replacements of AST nodes until
the statements become textually identical. This approach
has two main advantages over existing methods relying on
textual similarity. First, there is no need to define a similar-
ity threshold. There is empirical evidence that developers
interleave refactoring with other types of programming ac-
tivity (e.g., bug fixes, feature additions, or other refactoring
operations) [2], [29], [34]. In many cases, the changes caused
by these different activities may overlap [64]. Some of these

changes may even change substantially the original code
being part of a refactoring operation. For example, a code
fragment is originally extracted, and then some temporary
variables are inlined in the extracted method. The longer
the right-hand-side expressions assigned to the temporary
variables, the more textually different the original state-
ments will be after refactoring. Therefore, it is impossible
to define a universal similarity threshold value that can
cover any possible scenario of overlapping changes. On
the other hand, our approach does not pose any restriction
on the replacements of AST nodes, as long as these re-
placements are syntactically valid. Second, the replacements
found within two matched statements can help to infer
other edit operations taking place on the refactored code
(a phenomenon called refactoring masking [68]), such as re-
naming of variables, generalization of types, and merging of
parameters. As a matter of fact, we rely on the replacements
returned by Algorithm 2 to infer low-level refactorings that
take place within the body of methods (Section 4.3). On the
other hand, similarity-based approaches lose this kind of
valuable information.

Initially, our algorithm computes the intersection be-
tween the sets of sub-expressions, such as variable identifiers,
method invocations, class instantiations, types, literals, and
operators, extracted from each statement, respectively, in
order to exclude from replacements the AST nodes being
common in both statements, and include only those being
different between the statements (lines 3-7). AST nodes
that cover the entire statement (e.g., a method invocation
followed by ;) are also excluded from replacements in order
to avoid having an excessive number of matching statement
combinations. All attempted replacements are syntax-aware:
1) We allow only compatible AST nodes to be replaced (line
12), i.e., types can be replaced only by types, operators
can be replaced only by operators, while all remaining
expression types can be replaced by any of the remaining ex-
pression types (e.g., a variable can be replaced by a method
invocation), 2) We allow replacements of AST nodes having
the same structural properties, e.g., an argument of a method
invocation in the first statement can be replaced with an
argument of a method invocation in the second statement.
Out of all possible replacements for a given node from the
first statement that decrease the original edit distance of the
input statements, we select the replacement corresponding
to the smallest edit distance (line 20).

In the special case when two method invocation
sub-expressions are considered for replacement, function
compatibleForReplacement(ns1,ns2) examines the expres-
sions used for invoking the methods (i.e., receiver objects).
If these expressions are chains of method invocations, as
the case shown in Figure 3 (commonly known as the Fluent
Interface [69] pattern in API design), then we extract the
individual method invocations being part of each chain and
compute their intersection ignoring any differences in the
order of the invocations inside each chain. If the number
of common invocations is larger than the uncommon ones,
then we consider the original method invocations as com-
patible for replacement. In the example of Figure 3, there are
9 common invocations (two of them are identically matched
after applying the argumentization technique), and only 1
uncommon. Notice that string similarity measures produce
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...
NeuralNetConfiguration conf = 
 new NeuralNetConfiguration.Builder()
 .lossFunction(LossFunctions.LossFunction.MCXENT)
 .optimizationAlgo(
      OptimizationAlgorithm.ITERATION_GRADIENT_DESCENT)
 .activationFunction("softmax")
 .iterations(10)
 .weightInit(WeightInit.XAVIER)
 .learningRate(1e-1)
 .nIn(4) 
 .nOut(3)
 .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer())
 .build();
...

static OutputLayer getIrisLogisticLayerConfig(String activationFunction, int iterations){
  NeuralNetConfiguration conf = 
     new NeuralNetConfiguration.Builder()
      .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer())
      .nIn(4)
      .nOut(3)
      .activationFunction(activationFunction)
      .lossFunction(LossFunctions.LossFunction.MCXENT)
      .optimizationAlgo(
           OptimizationAlgorithm.ITERATION_GRADIENT_DESCENT)
      .iterations(iterations)
      .weightInit(WeightInit.XAVIER)
      .learningRate(1e-1)
      .seed(12345L)
      .build();
}

Invocation Addition Argumentization OutputLayer layer = getIrisLogisticLayerConfig("softmax", 10);
...

"softmax"

10

Fig. 3. Method invocation chains following the Fluent Interface [69] pattern in https://github.com/eclipse/deeplearning4j/commit/91cdfa

very low similarity value for this case. For instance, the nor-
malized Levenshtein similarity between the two statements
is 0.47, while the bigram similarity is 0.46.

3.3 Matching AST nodes covering the entire statement

As mentioned before, AST nodes covering the entire state-
ment are excluded from replacements to avoid having an ex-
cessive number of matching statements. We consider as AST
nodes covering the entire statement, the method invocations
and class instance creations matching with expression
in the statement abstraction templates (Section 3.2). Such
method invocations and class instance creations might have
changes in their list of arguments that cannot be handled
by Algorithm 2, such as the insertion or deletion of an
argument, and the replacement of multiple arguments with
a single one and vice versa. This is because we designed
the algorithm to perform only one-to-one AST node re-
placements and does not support one-to-many, many-to-
one, one-to-zero (i.e., deletion), zero-to-one (i.e., insertion)
replacements, as this would increase substantially its com-
putational cost. To overcome this limitation, we allow the
matching of textually different method invocations and class
instance creations covering the entire statement, as long
as they satisfy the heuristics shown in Table 3. Heuristics
10 - 13 enable matching one-to-one statements with sig-
nificantly different AST structures, as well as one-to-many
statements. Typical AST diff tools, such as GUMTREEDIFF and
CHANGEDISTILLER, either produce very complex edit opera-
tion scripts, or fail to match such cases. Similar heuristics
are used to match textually different class instance creations,
array creations, and super method invocations covering the
entire statement.

4 REFACTORING DETECTION

In this section, we present rules for the detection of 40 refac-
toring types based on the statement mapping information
and AST node replacements collected with the algorithms
described in Section 3. Although REFACTORINGMINER 2.0
supports refactorings for Java programs, the detection rules
are general enough to be applied to any language follow-
ing the object-oriented programming paradigm. Moreover,
some of the supported refactoring types are common to
many different programming paradigms.

TABLE 3
Heuristics for matching textually different method invocations covering

the entire statement
Heuristic Examples of pairs of matched statements

1 + 2 + 4
log("Drill Logical",drel);

log("Drill Logical",drel,logger);

1 + 2 + 5
schema.indexCreate(state,labelId,propertyKeyId);

schema.indexCreate(state,descriptor)

1 + 2 + 6
output.push(op);

output.push(new OperatorNode(op));

1 + 2 + 7
connection.getOrConnect(possibleAddress,true);

connection.getOrConnect(getAddress(),true);

1 + 3 + 8
FunctionResolverFactory.getResolver(castCall);

FunctionResolverFactory.getExactResolver(castCall);

2 + 3 + 9
attribute.getDefinition().validate(operation,model);

attribute.validate(operation,model);

10
this.fileExtension = fileExtension;

setFileExtension(fileExtension);

11
new ResponseEnvelope(status,actionResponse,headers);

new Builder().status(status).entity(actionResponse)

.headers(headers).build();

12
appView = makeWebView();

appView = appView != null ? appView : makeWebView();

13

((MeterView)findViewById(R.id.battery))

.setBatteryController(batteryController);

MeterView v = ((MeterView)findViewById(R.id.battery));

v.setBatteryController(batteryController);

1 identical receiver expression
2 identical method invocation name
3 identical list of arguments
4 argument added/deleted 5 argument split/merged
6 argument wrapped 7 argument replaced
8 renamed method invocation 9 different receiver expression
10 field assignment replaced with setter invocation
11 class instance creation replaced with builder call chain
12 method invocation replaced with conditional expression
13 split/merge invocation to/from multiple statements

4.1 Notation

We adopt and extend the notation defined by Biegel et
al. [70] for representing the information that we extract
from each revision using the Eclipse JDT Abstract Syntax
Tree (AST) Parser. Notice that we configure the parser to
create the ASTs of the added, deleted, and changed Java
compilation units in each revision without resolving binding
information from the compiler, and thus there is no need
to build the source code. Consequently, all referenced types
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(e.g., parameters, variable/field declarations, extended su-
perclass, implemented interfaces) are stored as they appear
in the AST, as we are not able to obtain their fully qualified
names. For each revision r, we extract the following infor-
mation:
• TDr: The set of type declarations (i.e., classes, interfaces,

enums) affected in r. For a child commit, this set includes
the type declarations inside changed and added Java files,
while for a parent commit, this set includes the type
declarations inside changed and removed Java files. Each
element td of the set is a tuple of the form (p, n, F , M ),
where p is the parent of td, n is the name of td, F is the set
of fields declared inside td, and M is the set of methods
declared inside td. For a top-level type declaration p
corresponds to the package of the compilation unit td
belongs to, while for a nested/inner type declaration p
corresponds to the package of the compilation unit td
belongs to concatenated with the name of the outer type
declaration under which td is nested.

• Fr: The set of fields inside the type declarations of TDr .
It contains tuples of the form (c, t, n), where c is the fully
qualified name of the type declaration the field belongs to
(constructed by concatenating the package name p with
the type declaration name n), t is the type of the field, and
n is the name of the field.

• Mr : The set of methods inside the type declarations of
TDr . It contains tuples of the form (c, t, n, P , b), where
c is the fully qualified name of the type declaration the
method belongs to, t is the return type of the method, n is
the name of the method, P is the ordered parameter list
of the method, and b is the body of the method (could be
null if the method is abstract or native).

• Dr : The set of directories containing the modified Java
files in commit r, extracted from the Git tree object rep-
resenting the hierarchy between files. Each directory is
represented by its path p.

4.2 Refactoring detection based on matched state-
ments
The detection of refactorings takes place in two phases. The
first phase is less computationally expensive, since the code
elements are matched only based on their signatures. Our
assumption is that two code elements having an identical
signature in two revisions correspond to the same code
entity, regardless of the changes that might have occurred
within their bodies. The second phase is more computa-
tionally expensive, since the remaining code elements are
matched based on the statements they have in common
within their bodies. In a nutshell, in the first phase, our
algorithm matches code elements in a top-down fashion,
starting from classes and continuing to methods and fields.
Two code elements are matched only if they have an identi-
cal signature. Assuming a and b are two revisions of a project:
• Two type declarations tda and tdb have an identical sig-

nature, if tda.p = tdb.p ∧ tda.n = tdb.n
• Two fields fa and fb have an identical signature, if
fa.c = fb.c ∧ fa.t = fb.t ∧ fa.n = fb.n

• Two methods ma and mb have an identical signature, if
ma.c = mb.c ∧ma.t = mb.t ∧ma.n = mb.n ∧ma.P =
mb.P

• Two directories da and db are identical, if da.p = db.p
After the end of the first phase, we consider the un-

matched code elements from revision a as potentially deleted,
and store them in sets TD−, F−, M−, and D−, respectively.
We consider the unmatched code elements from revision b
as potentially added, and store them in sets TD+, F+, M+,
and D+, respectively. Finally, we store the pairs of matched
code elements between revisions a and b in sets TD=, F=,
M=, and D=, respectively.

In the second phase, our algorithm matches the remain-
ing code elements (i.e., the potentially deleted code elements
with the potentially added ones) in a bottom-up fashion,
starting from methods and continuing to classes, to find
code elements with signature changes or code elements
involved in refactoring operations.
Examination order of refactoring types: We detect the
refactoring types in the order they appear in Table 4 by
applying the rules shown in the second column of the
table. The order of examination is very important for the
accuracy of our approach. We order the refactoring types
according to their spatial locality with respect to moving
code, starting from refactorings that do not move code (i.e.,
refactorings changing the signature of a method/type dec-
laration), then proceeding with refactorings that move code
locally within the same container (i.e., extracting/inlining
a local method), followed by refactorings that move code
between existing containers (i.e., moving a method to an-
other existing class), and ending with refactorings that move
code to new containers (i.e., moving methods to a newly
extracted class, or moving classes to a newly introduced
package). The intuition behind this order comes from em-
pirical evidence showing that small and local refactorings
are more frequent than big and global ones [34], [71],
and thus there is a higher probability that the potentially
added/deleted code elements resulted from local rather
than global refactorings. Whenever a refactoring type is
processed, we remove the matched code elements from the
sets of potentially deleted/added code elements, and add
them to the corresponding sets of matched code elements.
This decreases the number of code elements examined in
the refactoring types that follow, thus reducing the noise
level and improving accuracy. For example, by matching
the pairs of methods with changes in their signature, we
exclude these methods from being considered as sources
or targets of MOVE METHOD refactorings, and also enable
the detection of extracted/inlined methods from/to meth-
ods with changes in their signature. By finding the locally
extracted/inlined methods, we exclude them from being
considered as sources or targets of MOVE METHOD refactor-
ings. By finding the moved/renamed classes, we exclude
the methods/fields they contain from being considered
as sources or targets of MOVE METHOD/FIELD refactorings.
As we discuss in the evaluation (Section 5.3), missing the
detection of moved/renamed classes can lead to the erro-
neous detection of the methods/fields they contain as being
moved, which affected the precision of REFDIFF 0.1.1.

Previous works have also investigated the detection
order of different refactoring types. In REF-FINDER (Prete
et al. [45]), the refactoring detection rules have a topo-
logical order, because the logical queries used to detect
some composite refactorings depend on other prerequisite
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TABLE 4
Refactoring detection rules

Refactoring type Rule

Change Method

∃ (M,UT1
, UT2

) = matching(ma.b,mb.b) |ma ∈M− ∧mb ∈M+ ∧ma.c = mb.c ∧

Signature

1 (UT1
= ∅ ∧ UT2

= ∅ ∧ allExactMatches(M)) ∨

ma to mb

2 (|M | > |UT1
| ∧ |M | > |UT2

| ∧ locationHeuristic(ma,mb) ∧ compatibleSignatures(ma,mb)) ∨
3 (|M | > |UT2

| ∧ locationHeuristic(ma,mb) ∧ ∃ extract(ma,mx)) ∨
4 (|M | > |UT1

| ∧ locationHeuristic(ma,mb) ∧ ∃ inline(mx,mb))
ma.n 6= mb.n⇒ RENAME METHOD ma.t 6= mb.t⇒ CHANGE RETURN TYPE

Change Class Signature ∃ (tda, tdb) | tda ∈ TD− ∧ tdb ∈ TD+ ∧ (tda.M ⊇ tdb.M ∨ tda.M ⊆ tdb.M) ∧ (tda.F ⊇ tdb.F ∨ tda.F ⊆ tdb.F )

tda to tdb
tda.p 6= tdb.p⇒ MOVE CLASS tda.n 6= tdb.n⇒ RENAME CLASS

tda.p 6= tdb.p ∧ tda.n 6= tdb.n⇒ MOVE & RENAME CLASS

Extract Method ∃ (M,UT1
, UT2

) = matching(ma.b,mb.b) | (ma,ma′ ) ∈M= ∧mb ∈M+ ∧ma.c = mb.c ∧
mb from ma ¬calls(ma,mb) ∧ calls(ma′ ,mb) ∧ |M | > |UT2

|

Inline Method ∃ (M,UT1
, UT2

) = matching(mb.b,ma′ .b) | (ma,ma′ ) ∈M= ∧mb ∈M− ∧ma′ .c = mb.c ∧
mb to ma′ calls(ma,mb) ∧ ¬calls(ma′ ,mb) ∧ |M | > |UT1

|

Move Method
∃ (M,UT1

, UT2
) = matching(ma.b,mb.b) |ma ∈M− ∧mb ∈M+ ∧ma.c 6= mb.c ∧ |M | > |UT1

| ∧ |M | > |UT2
| ∧

ma to mb

(tda, tda′ ) ∈ TD= ∧ma ∈ tda ∧ (tdb, tdb′ ) ∈ TD= ∧mb ∈ tdb′ ∧
(importsType(tda′ ,mb.c) ∨ importsType(tdb,ma.c))
subType(ma.c,mb.c)⇒ PULL UP METHOD subType(mb.c,ma.c)⇒ PUSH DOWN METHOD

Move Field fa to fb

∃ (fa, fb) | fa ∈ F− ∧ fb ∈ F+ ∧ fa.c 6= fb.c ∧ fa.t = fb.t ∧ fa.n = fb.n ∧
(tda, tda′ ) ∈ TD= ∧ fa ∈ tda ∧ (tdb, tdb′ ) ∈ TD= ∧ fb ∈ tdb′∧
(importsType(tda′ , fb.c) ∨ importsType(tdb, fa.c))
subType(fa.c, fb.c)⇒ PULL UP FIELD subType(fb.c, fa.c)⇒ PUSH DOWN FIELD

Extract mb from ma & ∃ (M,UT1
, UT2

) = matching(ma.b,mb.b) | (ma,ma′ ) ∈M= ∧mb ∈M+ ∧ma.c 6= mb.c ∧
Move to mb.c ¬calls(ma,mb) ∧ calls(ma′ ,mb) ∧ |M | > |UT2

| ∧ (tda, tda′ ) ∈ TD= ∧ma ∈ tda ∧ importsType(tda′ ,mb.c)

Move mb to ma′.c & ∃ (M,UT1
, UT2

) = matching(mb.b,ma′ .b) | (ma,ma′ ) ∈M= ∧mb ∈M− ∧ma′ .c 6= mb.c ∧
Inline to ma′ calls(ma,mb) ∧ ¬calls(ma′ ,mb) ∧ |M | > |UT1

| ∧ (tda, tda′ ) ∈ TD= ∧ma′ ∈ tda′ ∧ importsType(tda,mb.c)

Extract Supertype ∃ (tda, tdb) | (tda, tda′ ) ∈ TD= ∧ tdb ∈ TD+ ∧ subType(type(tda′),type(tdb))

tdb from tda
∃ pullUp(ma,mb) |ma ∈ tda ∧mb ∈ tdb ∨ ∃ pullUp(fa, fb) | fa ∈ tda ∧ fb ∈ tdb ⇒ EXTRACT SUPERCLASS

∃ (ma,mb) |ma ∈ tda ∧mb ∈ tdb ∧ identicalSignatures(ma,mb) ∧mb.b = null⇒ EXTRACT INTERFACE

Extract Subtype ∃ (tda, tdb) | (tda, tda′ ) ∈ TD= ∧ tdb ∈ TD+ ∧ subType(type(tdb),type(tda′))
tdb from tda ∃ pushDown(ma,mb) |ma ∈ tda ∧mb ∈ tdb ∨ ∃ pushDown(fa, fb) | fa ∈ tda ∧ fb ∈ tdb ⇒ EXTRACT SUBCLASS

Extract Type ∃ (tda, tdb) | (tda, tda′ ) ∈ TD= ∧ tdb ∈ TD+ ∧ ¬subType(type(tda′),type(tdb))∧

tdb from tda
¬subType(type(tdb),type(tda′)) ∧ importsType(tda′ , type(tdb))
∃ move(ma,mb) |ma ∈ tda ∧mb ∈ tdb ∨ ∃ move(fa, fb) | fa ∈ tda ∧ fb ∈ tdb ⇒ EXTRACT CLASS

Change Package pa to pb ∃ (pa, pb) | path(pa) ∈ D− ∧ path(pb) ∈ D+ ∧ ∃ MoveClass(tda, tdb) | tda.p = pa ∧ tdb.p = pb

matching(T1, T2) returns a set of matched statement pairs (M ) between the trees T1 and T2 representing method bodies, and two sets of unmatched statements
from T1 (UT1

) and T2 (UT2
), respectively indexOf(m, td) returns the position of m inside type declaration td

typeDecl(c) returns the type declaration of type c type(td) returns the qualified name of type declaration td
locationHeuristic(ma,mb) = |indexOf(ma,typeDecl(ma.c))− indexOf(mb,typeDecl(mb.c))| ≤ |M−c −M+

c |
importsType(td, t) returns true if type declaration td depends on type t calls(ma,mb) returns true if method ma calls directly or indirectly mb

compatibleSignatures(ma,mb) = ma.P ⊇ mb.P ∨ma.P ⊆ mb.P ∨ |ma.P ∩mb.P | ≥ |(ma.P ∪mb.P ) \ (ma.P ∩mb.P )|
subType(ca, cb) returns true if ca is a direct or indirect subclass of cb or implements interface cb path(p) returns the directory path for package p

basic refactorings. However, Prete et al. do not discuss
about the detection order of basic refactoring types that do
not depend on others. Our refactoring detection rules are
independent from each other, with the exception of CHANGE

PACKAGE, which depends on previously detected MOVE

CLASS refactorings. We also have composite refactorings,
which are composed from basic ones. For example, EXTRACT

CLASS is composed of MOVE METHOD/FIELD refactorings.
However, these are moves to newly added classes in the
child commit (i.e., the extracted classes), while the refac-
torings detected by the MOVE METHOD/FIELD rules involve
only methods/fields moved between previously existing
classes in the parent commit. In REFACTORINGCRAWLER (Dig
et al. [32]), the refactoring detection rules are applied in a
top-down fashion following the containment relationship
between program elements. For example, the detection rules
first establish renamings on packages, then on classes within
the matched packages, and finally on methods within the
matched classes. However, this order requires to run each
detection strategy multiple times, since the detection of

refactorings on child program elements may enable the
discovery of new refactorings on their parent container that
could not be established in the previous run. Obviously,
the repeated execution of the detection rules may introduce
a considerable computation overhead. In our approach,
each detection rule is executed only once by ordering the
refactoring types based on their spatial locality.

When comparing two sets of potentially added/deleted
code elements, we always place the set with smaller cardi-
nality in the outer loop, and the set with larger cardinality
in the inner loop. In this way, we avoid “forced” matches of
code elements, which might occur if some elements of the
smaller set are actually added/deleted, and thus have no true
match in the larger set. Having the larger set in the outer loop
might result in matching pairs of actually added/deleted
elements, which marginally pass the rules shown in Table 4.
Best match selection: For the refactoring types involving
statement matching in their detection rule, when a code
element (i.e., method declaration) has multiple matches, we
always select the best match. The reason is that the same
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method declaration signature cannot be part of multiple
refactoring operations. For example, a method cannot be re-
named to multiple methods. However, parts of the method
declaration’s body can participate in other refactoring op-
erations, such as EXTRACT METHOD or INLINE METHOD. A
notable exception is PUSH DOWN refactoring, where it is
possible that the same method or field is pushed down
from the superclass to multiple subclasses. Our algorithm
sorts the matching method pairs based on 4 criteria, which
serve as proxies for method similarity at statement level.
First, based on the total number of matched statements in
descending order (i.e., method pairs with more matched
statements rank higher). Second, based on the total number
of exactly matched statements in descending order (i.e.,
method pairs with more identical statements rank higher).
Third, based on the total edit distance [66] between the
matched statements in ascending order (i.e., method pairs
with more textually similar statements rank higher). Fourth,
based on the edit distance between the method names in
ascending order (i.e., method pairs with more textually
similar names rank higher).

As Table 4 shows, the refactoring types examined first
have more elaborate and strict rules. This is crucial to avoid
early erroneous matches that would negatively affect the
accuracy of the detected instances for the refactoring types
that follow. For example, the location heuristic applied in
sub-rules 2 , 3 , and 4 of the Change Method Signature
refactoring type, ensures that the positional difference of
two matched methods is less or equal to the absolute differ-
ence in the number of methods added to and deleted from
a given type declaration. The intuition behind this heuris-
tic is that developers do not tend to change the position
of an already existing method inside its type declaration
when changing its signature. Assuming that only method
renames take place in a type declaration, the number of
potentially added and deleted methods will be equal, and
thus the location heuristic will be satisfied only for the
method pairs having the same position before and after
refactoring. This heuristic is particularly effective in cases
of extensive method signature changes in test classes (e.g.,
see the case of extensive unit test renames in project cas-
sandra1), where developers tend to copy-and-modify older
unit tests to create new ones [72], and thus several methods
share very similar statements with each other. Sub-rules
3 and 4 take into account the case where a method

with a signature change has a significant portion of its
body extracted or inlined, respectively. For instance, in the
case shown in Figure 2, the result of statement matching
between methods createAddresses before and after refac-
toring is M = {(A, 1), (B, 2), (G, 9)}, i.e., |M| = 3, while
UT1

= {C,D,E, F}, i.e., |UT1
| = 4, and UT2

= {3}, i.e.,
|UT2
| = 1, and thus sub-rule 2 fails to match the methods.

On the other hand, sub-rule 3 matches successfully the
methods, because |M| > |UT2

| and there exists at least one
method extracted from the original createAddresses.

1. https://github.com/apache/cassandra/commit/446e25#diff-
8d5005607847694afae01a22fa8fdbce

TABLE 5
Supported replacement types within matched statements

AST node Replacement Example

Variable

Variable filePath→file

Array access paras.add(id)→paras.add(id[0])

Invocation rdbms.setconf(conf)→
rdbms.get().setConf(conf)

Literal Joiner.on("\n")→Joiner.on(newLine)

Method
Invocation

Invocation p.newChildbuilder().executor(e).build()→
p.newChildbuilder().build()

Variable return Arrays.asList(files);→
return files;

Literal map.put(nameSpace,call.isSourceFile())→
map.put(nameSpace,false)

Literal
Number 3→3L

String "1"→"1.0"

Class
Instance
Creation

Type new ArrayList<>()→new HashSet<>()

Array
creation

new ArrayList<>(len)→
new H1SampleWrapper[len]

Invocation f = new File(root,path);→
f = root.resolve(path);

Type Type int i = 0;→byte i = pos;

Operator
Prefix if(passes.isEmpty())→if(!passes.isEmpty())

Infix period != null→period == null

Operand Add/
Delete

String s = "[" + getID() + "]";↔
String s = getType() + "[" + getID() + "]";

Argument
List

Split/
Merge

functionType(returnType,parameters)↔
functionType(returnType,required,optional)

Add/
Delete

s = save(outStream,flags)↔
s = save(outStream,flags,pswrd)

Wrap output.push(op);→
output.push(new OperatorNode(op));

4.3 Refactoring detection based on replacements
At the end of the process explained in Section 4.2, we
obtain statement mappings between the pairs of matched
methods with identical or changed signatures, between the
pairs of moved methods, and between the methods ex-
tracted/inlined from/to other methods. Each one of the ob-
tained statement mappings may contain AST node replace-
ments that were performed to make the statements textually
identical (Algorithm 2). We rely on these replacements to
infer low-level refactorings that take place within the body
of methods. Table 5 shows an overview of the replacement
types that are currently supported by REFACTORINGMINER

2.0.
Detection of renamed variables: To detect variable renames
we utilize all replacements of Variable→Variable type
found in matched statements present within the scopes of
the two variables. The scope of a local variable extends from
its declaration statement until the end of the parent block in
which it is declared. The scope of a parameter is the entire
body of the method in which it is declared. The scope of
a field is the entire type declaration in which it is declared,
as well as the type declarations inheriting the field’s type
declaration, if the field is not declared as private.

To report that variable x is renamed to y, we perform the
following consistency checks:
1) For all replacements found in matched statements within

the scopes of variables x and y, if x appears on the left
side, y should appear on the right side and vice versa.
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2) No reference of x should appear in statements within the
scope of y in the child commit.

3) No reference of y should appear in statements within the
scope of x in the parent commit.

4) If x and y are local variables, there should exist a map-
ping containing their declaration statements.

5) Assuming x is a local variable declared inside method m

in the parent commit, its declaration should not appear
inside a method extracted from m in the child commit.

The last check ensures that variable x is not erroneously
reported as renamed, because of new statements added in
method m that reference variable y and are coincidentally
matched with statements referencing x.

Based on the kinds of variables x and y, a different
refactoring type is reported:
1) Both x and y are local variables⇒ RENAME VARIABLE

2) Both x and y are parameters⇒ RENAME PARAMETER

3) x is not parameter and y is parameter ⇒ PARAMETERIZE

VARIABLE

4) x is not field and y is field ⇒ REPLACE VARIABLE WITH

FIELD

5) Both x and y are fields declared in tdx, tdy, respectively
a) If ∃ (tdx, tdy) ∈ TD=| x ∈ F− ∧ y ∈ F+ ⇒ RENAME

FIELD

b) If ∃ (tdx, tdy) ∈ TD=| x ∈ F= ∧ y ∈ F+ ⇒ REPLACE

FIELD

c) If @ (tdx, tdy) ∈ TD= ⇒ MOVE AND RENAME FIELD

Our approach for detecting variable renames is based
on the references of the variables. However, there are some
cases where it is not possible to obtain references for a
variable, e.g., if parameter x of an abstract method declared
in an interface or an abstract class is renamed to y, because
abstract methods do not have a body. To overcome this
limitation, we examine if a similar parameter rename x→y

occurred in any of the overriding methods having a body. In
this way, we indirectly infer parameter renames in abstract
methods.
Detection of extracted variables: To detect extracted vari-
ables we utilize all replacements of *→Variable type,
where * can be a method invocation, class instance creation,
or literal expression, found in matched statements present
within the scope of the variable on the right hand side of
each replacement.

To report that variable y is extracted, we perform the
following checks:
1) If y is a local variable, it should be a newly added variable

in the child commit.
2) If y is a field, it should be a newly added field in the child

commit.
3) The initializer of y should be textually identical with the

expression on the left hand side of a replacement within
the scope of y, tolerating any overlapping refactorings
that affect the expression, such as variable or method
renames.

Detection of inlined variables: To detect inlined variables
we utilize all replacements of Variable→* type, where *
can be a method invocation, class instance creation, or literal
expression, found in matched statements present within
the scope of the variable on the left hand side of each
replacement.

To report that variable x is inlined, we perform the
following checks:
1) If x is a local variable, it should be a deleted variable from

the parent commit.
2) If x is a field, it should be a deleted field from the parent

commit.
3) The initializer of x should be textually identical with the

expression on the right hand side of a replacement within
the scope of x, tolerating any overlapping refactorings
that affect the expression, such as variable or method
renames.

Detection of merged variables: To detect merged variables
we utilize all replacements of Set<Variable>→Variable

type (i.e., merge of n > 1 variables, appearing as ar-
guments, to a single variable), and all replacements of
Variable→Variable.Invocation, found in matched state-
ments within the scope of the variables on the left and
right hand side of each replacement. Variable.Invocation
refers only to cases where the Variable is a Parameter
Object [30], and Invocation is a call to a getter method.
In many cases, merged variables are extracted into a class
and become fields accessed through getter methods.

To report that a set X of variables {x1, .., xn} is merged
to variable y, we perform the following checks:
1) All variables/parameters/fields in X should be deleted

from the parent commit.
2) Variable/Parameter/Field y should be a newly added

variable in the child commit.
3) For all replacements found in matched statements within

the scopes of the variables in set X and variable y, if X

appears on the left side, y should appear on the right
side and vice versa.

4) All replacements of Variable→Variable.Invocation

type should follow the pattern xi→y.getter, where
xi∈X and getter is a call to the getter method returning
the field corresponding to xi.

Detection of split variables: To detect split variables
we utilize all replacements of Variable→Set<Variable>

type (i.e., split of a single variable to n > 1 vari-
ables appearing as arguments), and all replacements of
Variable.Invocation→Variable, found in matched state-
ments within the scope of the variables on the left and right
hand side of each replacement.

To report that a variable x is split to a set Y of variables
{y1, .., yn}, we perform the following checks:
1) Variable/Parameter/Field x should be deleted from the

parent commit.
2) All variables/parameters/fields in Y should be newly

added in the child commit.
3) For all replacements found in matched statements within

the scopes of variable x and the variables in set Y, if x

appears on the left side, Y should appear on the right
side and vice versa.

4) All replacements of Variable.Invocation→Variable

type should follow the pattern x.getter→yi, where
yi∈Y and getter is a call to the getter method returning
the field corresponding to yi.

Detection of variable type changes: To detect changes in
the type of local variables we utilize all replacements of
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Type→Type type. Such replacements occur in matched vari-
able declaration statements, in the parameter of matched
enhanced-for loops, in the initializer(s) of matched for

loops, in the exception of matched catch clauses, and in the
resource(s) of matched try statements. We report a CHANGE

VARIABLE TYPE refactoring, if the names of the variables
related to the type change are the same, or these variables
are involved in a RENAME VARIABLE refactoring.

4.4 Nested refactoring operations
A refactoring operation that takes place in code resulting
from the application of another refactoring operation is a
nested refactoring. For example, the renaming or extraction
of local variables inside the body of an extracted method
are nested refactoring operations. Such low-level nested
refactorings are detected using the same rules defined
in Section 4.3 based on the replacements found in the
statements of extracted methods. However, the detection
of nested EXTRACT METHOD refactoring operations is more
challenging for two reasons. First, the call sites of the nested
extracted methods are not present in the original method
from which the code was extracted, but are dispersed in
multiple different methods. The rule defined in Table 4
assumes only direct calls to extracted methods inside the
body of the original method. Second, the code extracted
from the original method needs to be matched with the code
of multiple methods (i.e., the directly and nested extracted
methods).

Figure 4 shows a real case of nested EXTRACT METHOD

refactorings found in project spring-boot. By observing the
call graph shown at the bottom-left of Figure 4, there
are 3 levels of nested extracted methods. Each extracted
method calls the subsequent one, until we reach method
mockPropertySource(). The developer performed these
code extractions to reuse methods createPreparedEvent(),
createEnvironment() and mockPropertySource() and at
the same time eliminate duplicated code existing in method
overridePidFileWithSpring().

To enable the detection of nested EXTRACT METHOD refac-
torings, we first construct a partial call tree of the original
method in the child commit (i.e., ma′ ) that includes only
newly added methods in the child commit, which have not
been matched with previously existing ones in the parent
commit (i.e., mb∗ ∈ M+). Next, we traverse the call tree
in breadth-first order and attempt to match the statements
of the original method (ma) with the statements of the cur-
rently visited method in the call tree (mb∗ ). If the conditions
of the EXTRACT METHOD rule defined in Table 4 hold, then
we report that mb∗ was extracted from ma.

In the example of Figure 4, the first method in the partial
call tree is createPreparedEvent(). The result of state-
ment matching between methods differentEventTypes()

and createPreparedEvent() is M = {(F, 4)}, i.e., |M| =
1, and UT2

= {3}, i.e., |UT2
| = 1. We ignore the

unmatched statement from createPreparedEvent(), be-
cause it contains a call to createEnvironment(), which
is a subsequent method in the partial call tree. This un-
matched statement did not originally exist and it is ac-
tually introduced from a nested EXTRACT METHOD refac-
toring. Next, we match the statements between meth-
ods differentEventTypes() and createEnvironment().

The result is M = {(B, 6), (E, 7)}, i.e., |M| = 2, and
UT2

= {5}, i.e., |UT2
| = 1. Again, the unmatched statement

from createEnvironment() is ignored, because it contains
a call to mockPropertySource(), which is a subsequent
method in the partial call tree. Finally, we match the
statements between methods differentEventTypes() and
mockPropertySource(). It should be emphasized that the
argumentization process is propagated throughout the call
tree traversal, which means that parameter name is replaced
with "spring.pidfile" and parameter value is replaced
with file.getAbsolutePath(). Therefore, the matching
result is M = {(C, 8), (D, 9)}, i.e., |M| = 2, and UT2

= {},
i.e., |UT2

| = 0. In all 3 examined methods in the partial call
tree, the rule |M| > |UT2

| holds, and thus we report that the
3 methods are extracted from differentEventTypes().

TABLE 6
Commits with nested refactorings

Refactoring Type Commit

Extract Method

https://github.com/spring-projects/spring-boot/commit/becce
https://github.com/skylot/jadx/commit/2d8d
https://github.com/belaban/JGroups/commit/f1533
https://github.com/facebook/buck/commit/7e104c
https://github.com/google/closure-compiler/commit/ea96643
https://github.com/checkstyle/checkstyle/commit/5a9b72
https://github.com/google/j2objc/commit/d05d9
https://github.com/infinispan/infinispan/commit/043030

Inline Method
https://github.com/wildfly/wildfly/commit/4aa2e8
https://github.com/jfinal/jfinal/commit/881b

As shown in Table 6, in our dataset of 536 commits
from 185 projects, we found 8 commits from 8 different
projects with nested EXTRACT METHOD, and 2 commits from
2 different projects with nested INLINE METHOD refactorings.
The percentage of commits having nested method extrac-
tions/inlines is small (5%) in our dataset, which includes
commits between June 8th and August 7th 2015. However,
we assume that nested refactorings occur more frequently
when squashing commits (git squash converts a series of
commits into a single commit), because the longer the com-
mit sequence for a given maintenance task, the larger the
probability of performing overlapping edits, and thus over-
lapping refactorings. Squashing is a highly promoted and
adopted practice [73], [74], because it improves the quality
of the change history. Developers tend to squash all commits
in a pull request before merging to the development branch.

4.5 Refactoring inference

An inherent limitation of our approach is its inability to
detect signature-level refactorings for methods not having
a body (i.e., abstract and interface methods), since our
refactoring detection rules rely on statement mapping infor-
mation. To overcome this limitation, we infer refactorings
for methods not having a body from already detected refac-
toring operations on methods having identical signatures
with abstract and interface methods. Our intuition is that a
change in the signature of an abstract or interface method
should propagate to all concrete implementations of that
method (i.e., overriding methods) to ensure that the commit-
ted code can be compiled successfully. For every combina-
tion of abstract/interface method pairs inside matched type
declarations in TD=, we search for pairs of already matched
method declarations inM= having identical signatures, and
their container type declaration extends/implements the
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 public void differentEventTypes() throws Exception {
     File file = this.temporaryFolder.newFile();
     SpringApplicationEvent event = createPreparedEvent(
     // more code                          "spring.pidfile", file.getAbsolutePath());
}
private SpringApplicationEvent createPreparedEvent(String propName, String propValue) {
     ConfigurableEnvironment environment = createEnvironment(propName, propValue);
     return new ApplicationEnvironmentPreparedEvent(new SpringApplication(),
             new String[] {}, environment);
}
private ConfigurableEnvironment createEnvironment(String propName, String propValue) {
     MockPropertySource propertySource = mockPropertySource(propName, propValue);
     ConfigurableEnvironment environment = new StandardEnvironment();
     environment.getPropertySources().addLast(propertySource);
     return environment;
}
private MockPropertySource mockPropertySource(String name, String value) {
     MockPropertySource propertySource = new MockPropertySource();
 

     propertySource.setProperty(name, value);
     return propertySource;
}

1

2

4

3

"spring.pidfile"

file.getAbsolutePath()

Matched
Statements

Invocation Addition Argumentization

public void differentEventTypes() throws Exception {
   File file = this.temporaryFolder.newFile();
   ConfigurableEnvironment environment = new StandardEnvironment();
   MockPropertySource propertySource = new MockPropertySource();
   propertySource.setProperty("spring.pidfile", file.getAbsolutePath());
   environment.getPropertySources().addLast(propertySource);
   ApplicationEnvironmentPreparedEvent event = new 
           ApplicationEnvironmentPreparedEvent(new SpringApplication(), 
        new String[] {}, environment);

   // more code
}

6

5

7

8

9

Call Graph

differentEventTypes()

createPreparedEvent(String, String)

createEnvironment(String, String)

mockPropertySource(String, String)

Fig. 4. Nested EXTRACT METHOD refactorings in https://github.com/spring-projects/spring-boot/commit/becce

type containing the abstract/interface method pair. If the
matching method pairs are involved in RENAME METHOD,
CHANGE RETURN TYPE, RENAME PARAMETER, CHANGE PARAM-
ETER TYPE refactoring types, and the same change appears in
the abstract/interface method pair, then we match the pair
of abstract/interface methods and report the corresponding
refactorings.

Finally, we use type change information to infer refactor-
ings for renamed classes that could not be matched by the
rule described in Table 4. Our intuition is that a rename of a
local type declaration should propagate to all references of
this type to ensure that the committed code can be compiled
successfully. First, we extract recurring type changes (two
or more occurrences) from already detected type-related
refactoring operations on variables, parameters, fields and
method return types. For each type change pattern T1→T2,
we search if there exist a deleted type declaration in TD−

named T1 and an added type declaration in TD+ named T2.
If such a pair of matching type declarations is found, then
we report the corresponding RENAME CLASS refactoring.

5 EVALUATION

The two main criteria to evaluate a refactoring mining tool
is accuracy and execution time. A high accuracy will increase
the reliability of studies collecting refactoring operations
from the commit history of projects to investigate various
software evolution phenomena, as well as the effectiveness
of tools that depend on refactoring information, or are
affected by refactoring noise. A fast execution time will
allow to create larger refactoring datasets to strengthen the
validity of empirical studies or train learning-based refactor-
ing recommendation systems, and enable novel applications
of refactoring mining at commit time.

In information retrieval, accuracy is typically computed
by measuring precision ( TP

TP+FP ) and recall ( TP
TP+FN ),

where TP is the number of true positives (i.e., valid refac-
toring operations mined by a tool), FP is the number of
false positives (i.e., invalid refactoring operations reported
by a tool), and FN is the number of false negatives (i.e.,
valid refactoring operations missed by a tool). True and false
positives can be measured through manual validation, i.e.,
experts can inspect the refactoring operations reported by a
tool and determine whether they are valid or not. However,

to measure false negatives, there should exist a ground truth
of all true positives. As discussed in Section 2, there are
many challenges to create a ground truth of refactoring
operations at commit level, because the developers rarely
or vaguely mention their refactoring activity in commit
messages, release notes, and changelogs.

In our previous work [1], we created an oracle by con-
sidering as ground truth the union of valid refactoring op-
erations reported by two tools, namely REFACTORINGMINER

1.0 and REFDIFF 0.1.1 [28]. We selected REFDIFF, because
it is the only other refactoring mining tool operating at
commit level, and it outperforms other widely used refac-
toring detection tools, such as REF-FINDER and REFACTOR-
INGCRAWLER [28]. REFDIFF supports the detection of only 12
refactoring types, and cannot be extended to support the
detection of sub-method level refactoring types, because it
represents the bodies of methods as bags of tokens, and
thus the structure of method bodies is completely lost after
tokenization.

5.1 Extending GUMTREEDIFF to report refactorings

To build a ground truth for the new submethod-level refac-
toring types supported by REFACTORINGMINER 2.0, we relied
on GUMTREEDIFF [37], which is a generic Abstract Syntax
Tree (AST) differencing tool that can consume raw source
code (i.e., does not require compiled source code) and
return changes at the finest level of granularity (i.e., AST
leaf nodes). Given the ASTs of two Java compilation units,
GUMTREEDIFF computes the shortest possible script of edit
operations to convert one tree to the other. GUMTREEDIFF

reports four edit operations in the computed scripts, namely
Update Value, Add, Delete, and Move AST node. We gave as
input to GUMTREEDIFF all pairs of Java compilation units
having an identical file path in the parent and child commit,
and collected all Update Value operations in the computed
edit scripts. It should be noted that GUMTREEDIFF does not
accept as input two sets of Java compilation units corre-
sponding to the added, deleted, and changed files in a
commit, and thus it is impossible to infer refactoring op-
erations involving the move of program elements between
different files or packages. The rules we used to infer rename
and type-change related refactoring operations are shown in
Table 7 and their implementation is publicly available [75].
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TABLE 7

GUMTREEDIFF refactoring detection rules

Refactoring Type Rule

Given an Update Value operation on a pair of mapped SimpleName AST nodes (src, dst) from the parent and child commit, respectively
Rename Method The parent node of src is a MethodDeclaration

Rename Variable (1)
The parent node of src is a VariableDeclarationFragment, the grandparent node of src is a VariableDeclarationStatement
or VariableDeclarationExpression, and there exist at least two Update Value operations involving src and dst nodes in the compilation unit 1

Rename Variable (2) The parent node of src is a SingleVariableDeclaration, the grandparent node of src is an EnhancedForStatement or a CatchClause
Rename Parameter The parent node of src is a SingleVariableDeclaration, and the grandparent node of src is a MethodDeclaration

Rename Field
The parent node of src is a VariableDeclarationFragment, the grandparent node of src is a FieldDeclaration,
and there exist at least two Update Value operations involving src and dst nodes in the compilation unit 1

Given an Update Value operation on a pair of mapped Type AST nodes (src, dst) from the parent and child commit, respectively
Change Return Type The parent node of src is a MethodDeclaration
Change Variable Type (1) The parent node of src is a VariableDeclarationStatement or VariableDeclarationExpression
Change Variable Type (2) The parent node of src is a SingleVariableDeclaration, the grandparent node of src is an EnhancedForStatement or a CatchClause
Change Parameter Type The parent node of src is a SingleVariableDeclaration, and the grandparent node of src is a MethodDeclaration
Change Field Type The parent node of src is a FieldDeclaration

1 to ensure that at least one reference of the variable/field declaration is updated in the same way

5.2 Oracle extension

The original oracle [1] was constructed from a publicly
available dataset of refactoring instances [2], comprising
536 commits from 185 open-source GitHub-hosted projects
monitored over a period of two months (between June 8th

and August 7th, 2015). This dataset is highly reliable, since
all instances went through rigorous manual validation by
multiple authors and in several cases were confirmed by the
developers who actually performed them. It is one of the
most representative datasets to date, since all instances are
real refactorings found in 185 Java projects from different
domains, they are motivated by a variety of reasons [2],
and take place along with other changes/refactorings in the
same commit.

Tsantalis et al. [1], executed the prior version of REFAC-
TORINGMINER and REFDIFF on all 536 commits of the dataset.
For the validation process, they created a web applica-
tion [35], which listed all refactorings reported by the two
tools, along with links to the corresponding GitHub com-
mits. Through this web application, the validators were
able to inspect the change diff provided by GitHub, and
enter their validation and comments. In total, they manually
validated 4,108 unique refactoring instances detected by
the two tools, out of which 3,188 were true positives and
920 were false positives. The validation process was labor-
intensive and involved 3 validators for a period of 3 months
(i.e., 9 person-months).

To extend the oracle, we executed REFACTORINGMINER

2.0, GUMTREEDIFF and two newer versions of REFDIFF,
namely version 1.0 and 2.0, on all 536 commits of the dataset,
added all new refactorings reported by the tools in the
web application [35], and considered the union of all true
positives as the ground truth. We extended the code of all
aforementioned tools to report the refactoring instances they
detect in the format used by REFACTORINGMINER 2.0, and
made the extended tools available in a publicly accessible
repository [75] to enable the replication of our experiments.
To reduce the effort of the validation process, we also
extended the web application to provide direct links to
the refactored code elements (i.e., the exact line of code
in which the refactored code element is declared on the
left and right hand side of the change diff provided by
GitHub). This feature allowed us to locate the refactored
code elements instantly, while in the manual process we had
to first use the browser’s Find feature to locate the Java file

containing the refactored code element, then scroll through
and expand hidden parts of the change diff, until we locate
the refactored code element itself.

The first two authors of the paper validated the new
refactoring instances for a period spanning over a year,
as new features were added to REFACTORINGMINER 2.0 and
more refactoring types were supported. In total, we vali-
dated 5,830 new unique refactoring instances, out of which
4,038 were true positives and 1,792 were false positives. To
the best of our knowledge, this is the largest refactoring
oracle of validated instances to date, including 7,226 true
positives in total, for 40 different refactoring types detected
by one (minimum) up to six (maximum) different tools.

5.3 Comparison of precision/recall with REFDIFF

Table 8 shows a comparison of precision and recall between
REFACTORINGMINER 2.0 and three different versions of REFD-
IFF for the commonly detected refactoring types. We can
observe that our tool has better precision than all versions
of REFDIFF for all refactoring types. The precision of REFAC-
TORINGMINER 2.0 is ranging between 98.2 and 100 percent
with an average of 99.7 percent. It has also better recall for
all refactoring types, except for EXTRACT & MOVE METHOD,
for which REFDIFF 0.1.1 applies a very lenient similarity
threshold, as can be inferred from the low precision and
high recall scores it achieves. It should be noted that REFDIFF

2.0 discontinued the support of all field-related refactoring
types, and thus we were not able to compute its precision
and recall for three refactoring types (i.e., the rows in Table 8
with N/A).

Compared to its predecessor, REFACTORINGMINER 2.0
achieves a much higher recall for all refactoring types. This
improvement can be mainly attributed to the extensions
made to the tool, such as the implementation of new replace-
ment types (Section 4.3) and heuristics (Section 3.3) to match
statements, and the detection of nested refactorings opera-
tions (Section 4.4). The new features improve the overall
quality of the obtained statement mappings, which in turn
boosts the recall of the tool for refactoring types relying on
the number of matched/unmatched statements.

As discussed in [1], the Achilles’ heel of REFDIFF 0.1.1,
in terms of precision, is the detection of MOVE METHOD

and MOVE FIELD refactorings (28.6 and 32.3 percent, respec-
tively). We found two recurring scenarios causing such false
positives for REFDIFF 0.1.1. In the first scenario, REFDIFF 0.1.1
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TABLE 8
Precision and recall per refactoring type

Refactoring Type #TP

REFACTORINGMINER 2.0 REFACTORINGMINER 1.0 REFDIFF 0.1.1 REFDIFF 1.0 REFDIFF 2.0

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Inline Method 107 100 95.3 97.8 85.0 81.0 79.4 97.1 61.7 88.8 66.4

Extract Method 957 99.8 95.8 97.6 75.5 94.6 79.3 98.7 39.8 98.5 61.4

Move Field 249 98.4 96.0 84.1 93.6 32.3 42.6 55.5 44.6 N/A
Move Class 1091 100 99.3 99.5 93.4 99.3 89.9 99.6 95.8 99.8 97.3

Extract Interface 21 100 100 95.0 90.5 80.0 57.1 61.1 52.4 87.5 100

Push Down Method 43 100 97.7 100 74.4 100 44.2 100 44.2 87.8 83.7

Push Down Field 33 100 100 100 78.8 100 90.9 100 78.8 N/A
Pull Up Method 291 100 97.9 100 93.5 97.6 28.2 97.1 22.7 96.4 92.1

Pull Up Field 129 100 99.2 100 98.4 100 24.0 100 17.8 N/A
Move Method 283 99.6 92.9 96.2 79.9 28.6 91.5 58.7 90.8 76.2 80.2

Rename Method 371 98.2 87.9 94.7 67.4 85.8 76.5 94.4 59.6 90.9 62.3

Extract Superclass 71 100 100 100 100 100 18.3 89.3 70.4 98.1 71.8

Rename Class 56 100 89.3 97.4 67.9 92.3 85.7 97.7 76.8 96.1 87.5

Extract & Move Method 166 100 54.2 73.3 19.9 65.6 75.9 91.5 25.9 63.7 39.2

Move & Rename Class 41 100 90.2 70.0 51.2 74.2 56.1 92.0 56.1 80.0 68.3

Move & Inline Method 19 100 73.7 N/A 92.9 68.4 100 15.8 100 57.9

Average 3938 99.7 94.2 96.5 81.3 72.9 73.1 88.3 60.7 93.8 76.9

misses the detection of a class move to another package, and
consequently reports the methods and fields of that class
as being moved from the original class, which is assumed
to be deleted, to another class, which is assumed to be
newly added. In the second scenario, a subclass extend-
ing/implementing a given superclass/interface is deleted,
and a new subclass is added, which overrides the su-
perclass/interface methods in a similar way. REFDIFF 0.1.1
reports these methods as being moved from the deleted to
the added subclass. These limitations have been addressed
in the next versions of REFDIFF, as can be inferred from
the increase of recall for MOVE CLASS refactoring, which
contributed to the increase of precision for MOVE METHOD

and MOVE FIELD refactorings.
A major change between REFDIFF 0.1.1 and the next

versions, affecting its precision and recall, is related to the
similarity thresholds used in the rules that determine the
relationships between the program elements in the child
and parent commit. REFDIFF 0.1.1 uses thresholds that were
calibrated based on a randomly selected set of ten commits
from ten different projects, drawn from a publicly available
dataset of refactoring instances [2], which were confirmed
by the developers who actually performed them. On the
other hand, the next versions of REFDIFF use a single fixed
threshold for all relationships, which is equal to 0.5. Since
the newly adopted similarity threshold is more conservative
than the previously used thresholds (ranging between 0.1
and 0.3), we can observe an increase of precision along
with a significant decrease of recall for the refactoring types
relying heavily on code similarity, such as EXTRACT METHOD,
INLINE METHOD and RENAME METHOD. This result proves
our argument about the inherent limitation of approaches
relying on code similarity thresholds to detect refactorings.
Even small variations in threshold values can lead to large
differences in precision and recall [54].

REFACTORINGMINER and REFDIFF follow contrary ap-
proaches in the way they handle source code structure
to match code elements. REFACTORINGMINER relies heavily
on the structure of source code statements, while REFDIFF

ignores it completely by treating code fragments as bags

of tokens. Ignoring the structure of source code statements
makes the detection approach robust to major structural
changes (e.g., merging/splitting of conditionals, as in the
case found in project jetty2), as long as the variable and
method identifiers used in the restructured statements re-
main the same. On the other hand, treating source code as
bags of tokens makes the detection approach unable to deal
with changes in the tokens caused by the refactoring itself
(e.g., parameterization of expressions in EXTRACT METHOD

refactoring), or other overlapping refactorings (e.g., local
variable renames inside the body of a refactored method).
REFACTORINGMINER deals robustly with such token changes
by applying statement pre-processing techniques, such as
argumentization, and allowing syntax-aware replacements
of AST nodes within matched statements, which are fur-
ther utilized to infer submethod-level refactorings. Further
research on hybrid methods that combine the advantages
of REFACTORINGMINER and REFDIFF seems to have great
potential.

5.4 Comparison of precision/recall with GUMTREEDIFF

Table 9 shows a comparison of precision and recall between
REFACTORINGMINER 2.0 and GUMTREEDIFF 2.1.2 for the com-
monly detected refactoring types. We can observe that our
tool has better precision and recall than GUMTREEDIFF for all
refactoring types commonly detected by the two tools.

There are three main factors that contribute negatively
to the precision and recall of GUMTREEDIFF, with a notable
lowest precision of 28.2% for RENAME METHOD refactoring.
1) GUMTREEDIFF is a language-independent tool, and thus it
may match AST nodes that are semantically incompatible.
For example, we found many cases where the formal pa-
rameter of an enhanced-for statement is matched with a pa-
rameter of a method declaration, because they both have the
same AST node type (i.e., SingleVariableDeclaration).
2) The addition of new methods or the reordering of meth-
ods in a commit, may result in incorrect AST node matches,

2. https://github.com/eclipse/jetty.project/commit/1f3be6#diff-
ff02a462f6cc50644669e515c691229dR580



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

TABLE 9
Precision and recall per refactoring type

Refactoring Type #TP

REFACTORINGMINER 2.0 GUMTREEDIFF 2.1.2

Precision Recall Precision Recall

Rename Method 371 98.2 87.9 28.2 74.9

Rename Variable 273 98.8 93.8 65.1 56.8

Rename Parameter 497 99.3 91.3 64.4 66.6

Rename Field 133 99.1 85.7 78.3 70.7

Change Return Type 400 99.5 96.5 65.3 52.3

Change Variable Type 691 99.7 93.9 82.4 60.9

Change Parameter Type 632 99.8 94.5 80.1 63.8

Change Field Type 222 99.5 95.5 75.0 62.2

Average 3219 99.4 93.0 60.1 63.0

because the applied tree differencing algorithm tends to
match the method declarations in the order they appear
inside their parent type declarations. For example, in project
aws-sdk-java3, the position of 130 pairs of getter and setter
methods has been swapped, and GUMTREEDIFF matched
all getters with their corresponding setters and vice versa,
resulting in 260 RENAME METHOD false positives within a
single commit.
3) The applied tree differencing algorithm is not refactoring-
aware. For example, when a relatively large portion of a
method is extracted to a new method, GUMTREEDIFF tends
to match the original method in the parent commit with the
extracted method in the child commit, resulting in RENAME

METHOD false positives.
On the other hand, our tool matches method declara-

tions based on their signatures (regardless of their relative
location in their parent type declarations) in the first phase,
and then matches the remaining unmatched method dec-
larations with potential signature changes based on their
source code contents in the second phase (Section 4.2). In
addition, the rule we defined for detecting methods with
changes in their signature (Table 4), takes into consideration
the presence of overlapping EXTRACT METHOD or INLINE

METHOD refactorings, which may change significantly the
source code contents of a method, making more challenging
the matching of renamed methods. Finally, since our tool
is specifically designed to analyze Java code, it is semantic-
aware and does not allow to match AST nodes appearing in
semantically incompatible contexts.

5.5 Precision for refactoring types supported only by
REFACTORINGMINER 2.0

Table 10 shows the number of true positives and precision
for the refactoring types detected only by REFACTORING-
MINER 2.0. In our manual inspection of the detected in-
stances, we did not find any false positives, and thus the
precision is 100 percent for all refactoring types, similar to
the general precision trend we observed for all refactoring
types. Obviously, it is quite possible that our tool missed
some true instances, but we did not find any tool operating
at commit level that can detect these refactoring types to
build a more reliable ground truth.

5.6 Comparison of execution time
Figure 5 shows the distribution of the execution time of
REFACTORINGMINER 2.0 and 1.0 and REFDIFF 2.0, 1.0, and

3. https://github.com/aws/aws-sdk-java/commit/4baf0

TABLE 10
Precision for refactoring types detected by REFACTORINGMINER 2.0

Refactoring Type TP Precision Refactoring Type TP Precision

Replace Field w/ Field 1 100 Merge Variable 4 100
Extract Subclass 5 100 Merge Parameter 26 100
Extract Class 53 100 Merge Field 5 100
Change Package 27 100 Split Variable 1 100
Extract Variable 112 100 Split Parameter 6 100
Extract Field 5 100 Split Field 2 100
Inline Variable 31 100 Move & Rename Field 6 100
Parameterize Variable 38 100 Replace Variable w/ Field 16 100

0.1.1 for all 536 commits in our oracle (the y-axis has a
logarithmic scale). We executed separately each tool on
the same machine with the following specifications: Intel
Core i7-3770 CPU @ 3.40GHz, 16 GB DDR3 memory, 256GB
SSD, Windows 10 OS, and Java 11.04 x64. For each tool,
we recorded the time taken for parsing the source code of
the examined and its parent commit, and the time taken
to detect refactorings using the System.nanoTime Java
method. To make a fair comparison, we excluded the time
needed to checkout commits, or access the .git folder of
the repository, because these two different approaches to
obtain the added, deleted, and changed files between the
parent and child commits have a vast computational cost
difference, as we will discuss later.

On median, REFACTORINGMINER 2.0 is 2.6× faster than
REFDIFF 2.0 and 2.3× faster than its predecessor, while it is
31× and 33× faster than REFDIFF 0.1.1 and 1.0, respectively.
On average, REFACTORINGMINER 2.0 is 1.2× faster than REFD-
IFF 2.0 and 5.8× faster than its predecessor, while it is 11×
and 11.5× faster than REFDIFF 0.1.1 and 1.0, respectively. As
it can be observed from the first violin plot shown in Fig-
ure 5, REFACTORINGMINER 2.0 is able to process each commit
in our oracle in less than 5 seconds, except for one commit,
which takes 13 seconds and corresponds to the Max value of
the distribution. To assess if there is a statistical difference
among these distributions, we perform the Kruskal-Wallis
test. We reject the null hypothesis that the medians of all
distributions are equal (p-value = 1.7 × 10−3). We also
perform the pair-wise post-hoc Dunn’s test to compare the
distributions with visibly close medians. We reject the null
hypothesis that the distribution of REFACTORINGMINER 2.0
has an equal median with that of REFACTORINGMINER 1.0 (p-
value = 3.6×10−28) and REFDIFF 2.0 (p-value = 4.1×10−52).

The main performance bottleneck in the algorithm of
REFACTORINGMINER is the matching of large statements,
which include anonymous class declarations or lambda
expressions. Performing all possible combinations of AST
node replacements to match large statements (Algorithm 2)
can lead to a combinatorial explosion, when the number of
uncommon AST nodes between the statements is large. To
overcome this problem, we match separately the statements
inside the methods of anonymous class declarations and the
bodies of lambda expressions. If the number of matching
statements is larger than the number of unmatched state-
ments, then we consider the parent statements as matching
without performing AST node replacements. This change
explains to a large extent the improvement in the execution
time of REFACTORINGMINER 2.0 over its predecessor.

REFDIFF 0.1.1 and 1.0 require to checkout the parent and
child commits in a repository to detect the refactoring
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Fig. 5. Execution time per commit in milliseconds.

operations performed in the child commit. The checkout
command updates the files in the working tree to match
the version in the index of the specified tree (i.e., commit).
By performing checkout, REFDIFF has access to all repository
files in the version corresponding to a given commit. Then,
REFDIFF extracts the source folders of the repository to setup
the Eclipse JDT ASTParser in a way that enables the reso-
lution of partial binding information, which is used to infer
method call and type hierarchy relationships between code
elements. Although the refactoring detection is performed
only on the added, deleted, and changed files between
the parent and child commits, the binding information is
resolved using the entire repository. The checkout command
is a hard disk write-operation, and thus it has a vast execu-
tion time overhead, especially for large repositories. To give
an idea about the checkout overhead, it takes 4 hours to
process all 536 commits by checking out all parent and child
commits (i.e., 2×536 commits). For very large repositories,
checking out a single commit can take several minutes. The
difference in the execution time between REFDIFF 0.1.1 and
1.0, and the other three tools, as shown in Figure 5, is mainly
due to the fact that prior REFDIFF versions were setting up
the Eclipse JDT ASTParser to perform binding resolution,
and thus the ASTParser was analyzing all source folders
of the repository introducing an additional execution time
overhead. This overhead along with the checkout overhead
makes REFDIFF 0.1.1 and 1.0 unsuitable for performing live
refactoring detection, and very slow for mining refactoring
operations from the entire commit history of a project.

On the other hand, REFACTORINGMINER 2.0 uses the JGit
API to obtain the contents of the added, deleted, and
changed files between the parent and child commits directly
from the .git folder of the repository. This is a hard disk read-
operation that takes significantly less time than executing
the checkout command two times for each analyzed commit,

and allows to mine refactoring operations from the entire
commit history of a project with the least overhead (i.e., one
hard disk write-operation to clone the repository locally, and
one hard disk read-operation to load the .git folder infor-
mation in memory). In addition, REFACTORINGMINER 2.0 can
fetch the contents of the added, deleted, and changed files
directly from GitHub using the GitHub API. This feature
enables a series of applications that require live refactoring
information for a given commit, without having to clone
locally the repository under analysis. To give an idea about
the execution time gain over the checkout approach, it takes
less than 20 minutes to process all 536 commits using the
JGit API with locally cloned repositories, and 40 minutes
using the GitHub API to download the files.

REFDIFF 2.0 adopts a similar to REFACTORINGMINER 2.0
strategy for obtaining and parsing the contents of the added,
deleted, and changed files, which explains the significant
reduction of execution time over its predecessors. Since both
tools use the same strategy for obtaining and parsing the
files, the difference in their execution time can be attributed
solely to the algorithms used for detecting refactorings.
REFACTORINGMINER 2.0 has a twice faster detection algo-
rithm, despite the fact that it supports a much larger number
of refactoring types (40 vs. 13).

5.7 Limitations and Threats to Validity
Missing context: As explained in Section 4.1, REFACTORING-
MINER 2.0 analyzes only the added, deleted, and changed
files between two revisions. However, the missing con-
text (i.e., the unchanged files) can make the tool report
an incorrect refactoring type for certain operations. For
example, if a method or field is pulled multiple levels
up to the inheritance hierarchy and some classes between
the source and destination are unchanged, then REFACTOR-
INGMINER 2.0 will report it as a move, because it cannot
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detect the inheritance relationship between the source and
destination classes due to the missing context. In our or-
acle, this scenario occurred only once in project cascad-
ing4, where four methods were pulled three levels up
TezNodeStats→ BaseHadoopNodeStats→ FlowNodeStats

→ CascadingStats, but class FlowNodeStats remained un-
changed in the commit. Given that processing all repository
source code files has a tremendous performance overhead,
as shown in the experiments with prior versions of REFDIFF

(Section 5.6), and the only advantage is labelling properly
certain refactoring types in rare scenarios, we conclude that
missing context is not a major weakness of our tool.
Language specificity: REFACTORINGMINER 2.0 currently sup-
ports only Java programs. Extending the tool to support
other languages has challenges that go beyond a simple
engineering task. First, there are language-specific refactor-
ing types, which are not applicable in other programming
paradigms, or even languages from the same paradigm.
For example, Go is an object-oriented language that uses
struct embedding (i.e., type composition) instead of inheri-
tance, making all inheritance-related refactorings inapplica-
ble. Second, the type system used by a language affects the
source code matching process. For example, in dynamically
typed languages, function signatures consist only of the
function name and number of arguments, thus making
signature-based matching more ambiguous than statically
typed languages. The matching of variable declaration state-
ments is also more ambiguous in dynamically typed lan-
guages, because we can rely only on variable identifiers and
optional initializer expressions to match variable declara-
tions, as variable types are not available in the source code.
External Validity (generalizability to unsupported refac-
toring types): In this work, we present and evaluate the
detection rules for 40 refactoring types. Fowler’s book [30]
covers around seventy different types, and several new
types have been added to the book’s companion website
over time. Despite not supporting all refactoring types, we
have shown that our approach based on statement map-
ping information is reliable and capable of achieving very
high precision and recall for both high-level and low-level
refactoring types. Thus, we conclude that any refactoring
type that can be detected based on statement mapping
information will also have high precision and recall.
Internal Validity (experimenter bias): Although we did our
best effort to reduce bias in the construction of our oracle by
incorporating the input of six different tools and manual
validations by multiple authors, we cannot claim the oracle
is completely unbiased, as all validators are co-authors of
this work and our previous one [1]. Overall, around 72
percent of the true refactoring instances in our oracle are
detected by two or more tools. More specifically, 2,117 are
detected by two tools, 555 by three tools, 689 by four tools,
1,711 by five tools, and 144 by six tools. In addition, two
up to four validators inspected around eight percent of
the refactoring instances (671 instances were validated by
two, 144 by three, and 12 by four different validators),
which were more challenging to analyze. In general, the vast
majority of the detected instances were straightforward to
inspect and assess their validity.

4. https://github.com/cwensel/cascading/commit/f9d31

6 CONCLUSION

In this work, we presented the newer version of our refac-
toring mining tool. REFACTORINGMINER 2.0 has some unique
features that distinguish it from other competitive tools: (1)
it does not rely on code similarity thresholds, (2) it supports
low-level refactorings that take place within the body of
methods, (3) it can detect nested refactoring operations
within a single commit. To evaluate our tool, we created
one of the most accurate, complete, and representative refac-
toring oracles to date, including 7,226 true instances for 40
different refactoring types detected by one (minimum) up
to six (maximum) different tools, and validated by one up
to four refactoring experts. Our evaluation showed that our
approach achieves the highest average precision (99.6%) and
recall (94%) among all competitive tools, and on median is
2.6 times faster than the second faster competitive tool (on
median, it takes 44 ms to process a commit in our oracle).
Implications: The high accuracy and fast execution time
of REFACTORINGMINER 2.0, along with its ability to operate
on the commits of a locally cloned repository, or fetch the
contents of the added/deleted/changed files in a commit
directly from GitHub, enable novel applications:
1) We can provide live refactoring information to assist the

code review process. As a matter of fact, we created an
extension for the Chrome browser [76] that enhances the
GitHub commit diff webpage with overlaid refactoring
information.

2) Empirical researchers can create refactoring datasets fast
and with high precision from the commit history of
projects, and study various software evolution phenom-
ena at the finest level of granularity.

3) Several code evolution analysis techniques that are sus-
ceptible to refactoring noise can become refactoring-aware
and improve their accuracy.

4) Refactoring operations can be automatically documented
at commit-time to provide a more detailed description of
the applied changes in the commit message, and help
in the untangling of behavior-preserving changes from
behavior-altering changes.
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