
Accurate and Efficient Refactoring Detection in Commit History

Nikolaos Tsantalis, Matin Mansouri,
Laleh M. Eshkevari, Davood Mazinanian
Concordia University, Montreal, Quebec, Canada

Danny Dig
Oregon State University
Corvallis, Oregon, USA

ABSTRACT

Refactoring detection algorithms have been crucial to a variety
of applications: (i) empirical studies about the evolution of code,
tests, and faults, (ii) tools for library API migration, (iii) improving
the comprehension of changes and code reviews, etc. However,
recent research has questioned the accuracy of the state-of-the-art
refactoring detection tools, which poses threats to the reliability of
their application. Moreover, previous refactoring detection tools are
very sensitive to user-provided similarity thresholds, which further
reduces their practical accuracy. In addition, their requirement to
build the project versions/revisions under analysis makes them
inapplicable in many real-world scenarios.

To reinvigorate a previously fruitful line of research that has sti-
fled, we designed, implemented, and evaluated RMiner, a technique
that overcomes the above limitations. At the heart of RMiner is
an AST-based statement matching algorithm that determines refac-
toring candidates without requiring user-defined thresholds. To
empirically evaluate RMiner, we created the most comprehensive
oracle to date that uses triangulation to create a dataset with con-
siderably reduced bias, representing 3,188 refactorings from 185
open-source projects. Using this oracle, we found that RMiner
has a precision of 98% and recall of 87%, which is a significant
improvement over the previous state-of-the-art.
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1 INTRODUCTION

Refactoring [28, 37, 60] is a key practice in agile development pro-
cesses, and is well supported by refactoring tools that are standard
with all major IDEs. Refactoring research is approaching now 30
years. A very active line of research focused on refactoring detec-
tion algorithms [4, 15, 18, 27, 31, 34–36, 46, 56, 62, 65, 74, 78] that
compute a (likely) set of refactorings that developers applied on
the source code. Other researchers used refactoring detection to
empirically study [4, 6, 7, 45, 61, 63, 73] software evolution, and to
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support other software engineering tasks, such as library adapta-
tion [5, 18, 40, 79], software merging [21], code completion [27, 31],
and code review [1, 33, 34].

However, the accuracy of refactoring detection tools has been
recently questioned. An independent study [67] has shown that Ref-
Finder [46, 62] (one of the most widely used refactoring detection
tools) had an overall precision of 35% and an overall recall of 24%,
while a more recent study [39, 42] has shown that Ref-Finder had
an overall average precision of 27%. Missing refactorings (false neg-
atives) is a serious threat to the generalizability of empirical studies,
or can cause other dependent tools to carry incomplete operations.
Detecting incorrect refactorings (false positives) is even more se-
vere as it makes the conclusions of the empirical study wrong, or
causes other dependent tools to apply the wrong operations.

Moreover, the majority of the refactoring detection tools use sim-
ilarity thresholds, and provide a set of default threshold values that
are empirically determined through experimentation on a (rather
small) number of projects (e.g., one project for UMLDiff [77], three
for Ref-Finder [62] and RefactoringCrawler [18], and ten for
RefDiff [65]). The derived threshold values are possibly overfitted
to the characteristics of the examined projects, and thus cannot be
general enough to take into account all possible ways developers
apply refactorings in projects from different domains. As a result,
these threshold values require a calibration to align with the par-
ticular refactoring practices applied in a project, which is tedious.
Moreover, finding a universal threshold value might be infeasible.
Several researchers proposed methods for deriving threshold values
in metric-based detection techniques [2, 22, 25, 26, 59]. However,
the precision and recall can vary significantly even for the same
software system when using different threshold values [17], and
software systems relying on different architectural styles and frame-
works require different threshold values [3]. Therefore, research has
shown that it is very difficult to derive universal threshold values
that can work well for all projects, regardless of their architectural
style, application domain, and development practices.

Furthermore, most refactoring detection tools take as input two
fully built versions of a software system that contain binding in-
formation for all named code entities, linked across all library de-
pendencies. However, a recent study [71] has shown that only
38% of the change history of software systems can be successfully
compiled. This is a serious limitation for performing longitudinal
refactoring detection in the commit history of projects, posing a
threat to the external validity of empirical studies, since only a small
number of project versions can be effectively used for extracting
refactoring datasets.

Thus, we designed, implemented, and evaluated RMiner, a novel
technique that overcomes the above limitations. RMiner takes as
input two revisions (i.e., a commit and its parent from the commit
history in git-based version control repositories) of a Java project,
and returns a list of refactoring operations applied between these

483

2018 ACM/IEEE 40th International Conference on Software Engineering



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Tsantalis et al.

two revisions. RMiner provides highly accurate, efficient, and scal-

able refactoring detection in the commit history of a project without
requiring to build each individual commit.

At the heart of RMiner is an AST-based statement matching
algorithm that does not require user-specified thresholds, yet it
is immune to the noise introduced by the statement restructuring
during refactoring operations. It relies on our two novel techniques:
abstraction deals with changes in statements’ AST type due to refac-
toring, and argumentization deals with changes in sub-expressions
within statements due to parameterization. Using the matched AST
statements, we designed powerful detection rules for 15 represen-
tative refactoring types.

To empirically evaluate RMiner, we first needed to create a reli-
able, comprehensive, and representative oracle. This is a daunting
task that mounts tremendous challenges on its own. First is the
danger of creating an incomplete oracle. Researchers previously
created such oracles by inspecting release notes [18, 20] or commit
messages [74]. However, only a small percentage (21%) of the re-
lease notes include refactoring operations (and only for a subset
of refactorings that affect the backward compatibility of public
APIs) [54]. Moreover, developers do not reliably indicate the pres-
ence of refactoring operations in commit log messages [55].

Second is the danger of creating a biased oracle. For example,
researchers [62] created an oracle based on the findings of a single
tool (i.e., Ref-Finder) configured with a more relaxed similarity
threshold value in order to detect more refactoring instances (fol-
lowed by removing false positives through manual inspection), and
then evaluated the precision and recall of the same tool configured
with a more strict similarity threshold value. However, this might
still miss a large number of true instances due to an algorithm
design flaw, implementation error, or inappropriate threshold value,
leading to precision and recall that are significantly different than
those reported by independent researchers (i.e., 35% precision and
recall of 24% [67], and an overall average precision of 27% [39, 42]
vs. the authors’ [62] reported precision and recall of 74% and 96%).

Third is the danger of creating an artificial oracle. For example,
researchers [65] created an oracle by asking students to apply refac-
torings in open-source projects. These seeded refactorings [11], can
be used to reliably compute the recall, since all applied refactorings
are known a-priori. However, seeded refactorings are not represen-
tative of real refactorings for two reasons: (i) they are artificial, i.e.,
they do not carry higher-level intents (e.g., facilitate a maintenance
task, eliminate a code smell, improve code understandability), and
(ii) they are isolated and do not overlap with typical maintenance
activities (e.g., other edits in the same commit to fix bugs, add new
features). A significant percentage (46% [57]) of refactored program
entities are also edited or further refactored in the same commit,
a practice commonly referred as floss refactoring [55–57, 64]. Not
accounting for this real code evolution, significantly and artificially
increases the signal-to-noise ratio, thus making the detection less
challenging than in real-world scenarios.

To avoid the above problems with refactoring oracles, we rely
on state-of-the-art procedures [24, 30, 48] that use triangulation
between multiple sources (human experts and tools) to determine
the ground truth. We started from an award-winning, publicly
available dataset of refactoring instances [64], originating from

538 commits from 185 open-source GitHub projects. Moreover, the
refactoring instances from 222 of these commits were confirmed
by the developers who actually performed the refactorings (i.e., the
commit authors) through surveys, and further re-validated by us
manually to ensure correctness. To ensure the completeness of the
dataset, we executed two tools that analyze repository commits
without requiring to build the project, namely our RMiner and the
previous state-of-the-art RefDiff [65], on all 538 commits of the
dataset. These tools use complementary detectionmethods, thus are
likely to detect a more comprehensive set of refactoring instances.
Then we manually validated 4,108 unique refactoring instances
detected by the two tools, out of which 3,188 were true positives.
The validation process took 9 person-months to be completed, and
involved up to three refactoring experts per instance to negotiate
agreement. With this oracle we evaluate the precision and recall of
RMiner and the previous state-of-the-art tool, RefDiff.

Based on these results, we launch a community call to action
related to refactoring detection and refactoring oracles.We offer sev-
eral actionable implications and results for researchers, tool builders,
and developers. First, our oracle of 3,188 true refactorings from 538
commits across 185 projects provides an invaluable resource for
validating novel refactoring tools and for comparing existing ap-
proaches. Educators can use our dataset when teaching software
engineering to show examples of refactorings in their real-life con-
texts. Using RMiner, researchers can replicate existing empirical
studies and refute or confirm previously-held beliefs. Moreover,
researchers can use RMiner to reduce the noise [12, 13] created
by refactorings, such as file/directory renaming, and significantly
improve the accuracy of other tools. For example, tools that identify
bug-introducing changes (e.g., the widely used SZZ [47, 66, 76])
can utilize RMiner to avoid flagging changes that do not alter the
program behavior (i.e., refactorings) as bug-introducing. Tools that
trace requirements to code [51, 52] could use RMiner to recover
traceability links that are broken due to applied refactorings.

Practical aspects, such as RMiner’s speed and consumption of
raw code changes from commits, enable novel applications not
possible before, such as online refactoring detection on partial input,
when a developer inspects a code diff to review a change, or tries
to understand code evolution selectively (e.g., using the “blame”
feature on a program element of interest). Asfloss refactoring [55–57,
64] is prevalent, the trace of code changes left behind by refactorings
can mask the changes actually intended by developers [16, 44].
Moreover, refactorings distract developers during code reviews [33],
when the changes are inspected with text diff tools (commonly
used in IDEs, repository hosting services, and code review tools).
Integrating RMiner with the diff and code review tools can raise the
level of abstraction for code changes originating from refactorings,
thus helping developers better understand the code evolution.

This paper makes the following contributions:

(1) We present the first refactoring detection algorithm that does
not require any code similarity thresholds to operate.

(2) We implement our detection algorithm into a tool, RMiner
(short for RefactoringMiner [69]), which operates on version
control commits, and provides an API for external use.

(3) We create themost accurate, complete, and representative oracle
of refactoring operations to date, comprising 3,188 refactorings
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found in 538 commits from 185 open-source projects, which we
validate with multiple tools and experts [70].

(4) We evaluate RMiner and find that it achieves 98% precision
and 87% recall, and takes on median 58 ms to analyze a commit,
a significant improvement over the previous state-of-the-art.

(5) We release a tool infrastructure to compare the accuracy of
multiple refactoring detection tools, either using a user-defined
fixed oracle, or a dynamically generated oracle based on tool
agreement [53].

2 APPROACH

RMiner takes as input two revisions (i.e., a commit and its parent
in the directed acyclic graph that models the commit history in
git-based version control repositories) of a Java project, and returns
a list of refactoring operations applied between these two revisions.
It supports the detection of 15 refactoring types for 4 different kinds
of code elements, as shown in Table 1. This is a representative set of
refactoring types, because it covers all structural code elements (i.e.,
packages, types, methods, and fields), and also covers control-flows
of program statements (e.g., Extract and Inline Method).

Table 1: Refactorings detected by RMiner

Code element Refactorings

package Change Package (move, rename, split)

type
Move Class, Rename Class
Extract Superclass/Interface

method

Extract Method, Inline Method
Pull Up Method, Push Down Method
Rename Method, Move Method
Extract and Move Method

field
Pull Up Field, Push Down Field
Move Field

Unlike other existing refactoring detection approaches, such as
Ref-Finder [46], RefactoringCrawler [18], and JDEvAn [80],
which analyze all files in two snapshots/versions of a Java project,
RMiner analyzes only the added, deleted, and changed files between
the two revisions. This makes RMiner not only more efficient,
because it has less code elements to analyze and compare, but also
more accurate, because the number of code element combinations
to be compared is significantly less, thus reducing the probability
of incorrect code element matches.

2.1 Notation

We adopt and extend the notation defined by Biegel et al. [8] for
representing the information that we extract from each revision us-
ing the Eclipse JDT Abstract Syntax Tree (AST) Parser. Notice that
we configure the parser to create the ASTs of the added, deleted,
and changed Java compilation units in each revision without re-
solving binding information from the compiler, and thus there is
no need to build the source code. Consequently, all referenced types
(e.g., parameters, variable/field declarations, extended superclass,
implemented interfaces) are stored as they appear in the AST, as we
are not able to obtain their fully qualified names. For each revision
r , we extract the following information:

• TDr : The set of type declarations (i.e., classes, interfaces, enums)
affected in r . For a child commit, this set includes the type decla-
rations inside changed and added Java files, while for a parent
commit, this set includes the type declarations inside changed
and removed Java files. Each element td of the set is a tuple of
the form (p, n, F , M), where p is the parent of td , n is the name
of td , F is the set of fields declared inside td , and M is the set
of methods declared inside td . For a top-level type declaration p
corresponds to the package of the compilation unit td belongs to,
while for a nested/inner type declaration p corresponds to the
package of the compilation unit td belongs to concatenated with
the name of the type declaration td is nested under.

• Fr : The set of fields inside the type declarations of TDr . It con-
tains tuples of the form (c , t , n), where c is the fully qualified
name of the type declaration the field belongs to (constructed
by concatenating the package name p with the type declaration
name n), t is the type of the field, and n is the name of the field.

• Mr : The set of methods inside the type declarations of TDr . It
contains tuples of the form (c , t , n, P , b), where c is the fully
qualified name of the type declaration the method belongs to, t
is the return type of the method, n is the name of the method, P
is the ordered parameter list of the method, and b is the body of
the method (could be null if the method is abstract or native).

• Dr : The set of all directories in r as returned by command git
ls-tree. Each directory is represented by its path p.

private static Address[] createAddresses(int count) {
  
    Address[] addresses = new Address[count] ;
    for (int i = 0; i < count; i++) {
        try {

            addresses[i] = new Address("127.0.0.1", PORTS.incrementAndGet());
        } 
        catch (UnknownHostException e) {
            e.printStackTrace();
        }
    } 
    return addresses;
}

M

T

L VVC

D

VV VV

V Variable Identifier
T Type

D Variable Declaration
L Literal

C Class Instantiation M Method Invocation

VV VVC

Figure 1: Representation of a method body as a tree.

The body of a method is represented as a tree capturing the
nesting structure of the code, where each node corresponds to a
statement, similar to the representation used by Fluri et al. [23]. For
a composite statement (i.e., a statement that contains other state-
ments within its body, such as for, while, do-while, if, switch,
try, catch, synchronized block, label), the node contains the
statement’s type and the expression(s) appearing within parenthe-
sis before the statement’s body. For a leaf statement (i.e., a state-
ment without a body), the node contains the statement itself. In
order to avoid storing AST information into memory, for each
statement/expression we keep its string representation in a pretty-
printed format where all redundant whitespace and multi-line char-
acters are removed. In addition, we use an AST Visitor to extract all
variable identifiers, method invocations, class instantiations, vari-
able declarations, types, literals, and operators appearing within
each statement/expression and store them in a pretty-printed for-
mat within the corresponding statement node. Figure 1 shows the
tree-like representation of the body of method createAddresses,
along with the information extracted by the AST Visitor for two of
its statements.
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2.2 Statement matching

The matching of the statements between two code fragments is
a core function that we use throughout the refactoring detection
rules described in this paper. Our statement matching algorithm
has been inspired by Fluri et al. [23], in the sense that we also match
the statements in a bottom-up fashion, starting from the matching
of leaf statements and then proceeding to composite statements.
However, in our solution, outlined in Algorithm 1, we do not use
any similarity measure to match the statements, and thus we do
not require the definition of similarity thresholds.

To reduce the chances of erroneous matches, we follow a con-
servative approach, in which we match the statements in rounds,
where each subsequent round has a less strict match condition

than the previous round. Thus, the statements matched in earlier
rounds are “safer” matches, and are excluded from being matched
in the next rounds. In this way, the next round, which has a more
relaxed match condition, has fewer statement combinations to
check.

We match leaf statements in three rounds (lines 2-8). In the first
round, we match the statements with identical string representation
and nesting depth. In the second round, we match the statements
with identical string representation regardless of their nesting depth.
In the last round, we match the statements that become identical
after replacing the AST nodes being different between the two
statements. We match composite statements in three rounds as
well (lines 9-16), using exactly the same match conditions as those
used for leaf statements combined with an additional condition that
requires at least one pair of their children to be matched (line 10),
assuming that both composite statements have children.

In all rounds, we apply two pre-processing techniques on the
input statements (line 5 in function matchNodes), namely abstrac-

tion and argumentization to deal with specific changes taking place
in the code when applying Extract, Inline, and Move Method
refactorings.
Abstraction: Some refactoring operations, such as Extract and
Inline Method, often introduce or eliminate return statements
when a method is extracted or inlined, respectively. For example,
when an expression is extracted from a given method, it appears
as a return statement in the extracted method. To facilitate the
matching of statements having a different AST node type, we ab-
stract the statements that wrap expressions. When both statements
being compared follow one of the following formats:

• return expression; i.e., returned expression
• Type var = expression; i.e., initializer of a variable declaration
• var = expression; i.e., right hand side of an assignment
• call(expression); i.e., single argument of amethod invocation
• if(expression) i.e., condition of a composite statement

then they are abstracted to expression before their comparison.
Figure 2 shows an example of abstraction, where the assignment
statement D from the code before refactoring, and the return state-

ment 5 from the code after refactoring, are abstracted to expres-
sions new Address("127.0.0.1", PORTS.incrementAndGet())
and new Address(host, port), respectively.
Argumentization: Some refactoring operations may replace ex-
pressions with parameters, and vice versa. For example, when du-
plicated code is extracted into a common method, all expressions

Algorithm 1: Statement matching

Input :Trees T1 and T2
Output :SetM of matched node pairs, Sets of unmatched

nodesUT1 ,UT2 from T1 and T2, respectively
1 M ←�,UT1 ←�,UT2 ←�

2 L1 ← T1.leafNodes, L2 ← T2.leafNodes

3 condition1 (n1, n2)→ n1.text = n2.text ∧ n1.depth = n2.depth

4 condition2 (n1, n2)→ n1.text = n2.text

5 condition3 (n1, n2)→ replacements (n1.text, n2.text)

6 L′1 , L
′
2 = matchNodes (L1, L2, condition1) // round #1

7 L′′1 , L
′′
2 = matchNodes (L′1, L

′
2, condition2) // round #2

8 matchNodes (L′′1 , L
′′
2 , condition3) // round #3

9 C1 ← T1.compositeNodes, C2 ← T2.compositeNodes

10 condition4 (n1, n2)→
∃ (k1,k2) ∈ M | k1 ∈ n1.children ∧ k2 ∈ n2.children

11 condition1 (n1, n2) = condition1 ∧ condition4

12 condition2 (n1, n2) = condition2 ∧ condition4

13 condition3 (n1, n2) = condition3 ∧ condition4

14 C ′
1 , C

′
2 = matchNodes (C1, C2, condition1) // round #1

15 C ′′
1 , C

′′
2 = matchNodes (C ′

1, C
′
2, condition2) // round #2

16 matchNodes (C ′′
1 , C

′′
2 , condition3) // round #3

17 UT1 ← T1.nodes \MT1 ,UT2 ← T2.nodes \MT2

1 Function matchNodes(N1, N2, matchCondition)
2 foreach n1 ∈ N1 do

3 P ←�

4 foreach n2 ∈ N2 do

5 pn1, pn2 ← preprocessNodes(n1,n2)

6 if matchCondition(pn1,pn2) then
7 P ← P ∪ (n1,n2)

8 end

9 end

10 if |P | > 0 then
11 bestMatch← findBestMatch(P)

12 M ←M ∪ bestMatch

13 N1 ← N1 \ bestMatch.n1
14 N2 ← N2 \ bestMatch.n2
15 end

16 end

17 return N1, N2

18 end

being different among the duplicated code fragments are param-

eterized (i.e., they are replaced with parameters in the extracted
method). The duplicated code fragments are replaced with calls
to the extracted method, where each expression being different is
passed as an argument. In many cases, the arguments may differ
substantially from the corresponding parameter names, leading
to a low textual similarity of the code before and after refactor-
ing. Argumentization is the process of replacing parameter names
with the corresponding arguments in the code after refactoring.
Figure 2 shows an example of argumentization, where parameter
names host and port are replaced with arguments "127.0.0.1"
and ports.incrementAndGet(), respectively, in statement 5 .
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 private static List<Address> createAddresses(AtomicInteger ports, int count) {
     List<Address> addresses = new ArrayList<Address>(count);
     for (int i = 0; i < count; i++) {

           addresses.add(createAddress("127.0.0.1", ports.incrementAndGet()));

     }
     return addresses;
}

1

2

3

protected static Address createAddress(String host, int port) {
    try {
        return new Address(host, port);

    } catch (UnknownHostException e) {
        e.printStackTrace();
    }
    return null;
}

4

5

6

7

8

9

"127.0.0.1"

ports.incrementAndGet()

Matched
Statements

Replacement Addition Abstraction Argumentization

private static Address[] createAddresses(int count) {
    Address[] addresses = new Address[count];
    for (int i = 0; i < count; i++) {
        try {
            addresses[i] = 
                 new Address("127.0.0.1", PORTS.incrementAndGet());
        } 
        catch (UnknownHostException e) {
            e.printStackTrace();
        }
    } 
    return addresses;
}

Figure 2: Statement matching for an Extract Method refactoring in project hazelcast [38].

The same process is applied to the statements of inlined and
moved methods. In particular, when an instance method is moved
to a target class, we might have a parameter (or a source class field
access) of target type that is removed from the original method, or
a parameter of source type that is added to the original method. In
the case of removal, the removed parameter (or field access) might
be replaced with this reference in the moved method, while in the
case of addition, this reference might be replaced with the added
parameter in the moved method.

By applying the techniques of abstraction and argumentization
the original statements D and 5 in Figure 2 are transformed to
new Address("127.0.0.1", PORTS.incrementAndGet()) and
new Address("127.0.0.1", ports.incrementAndGet()), re-
spectively, and thus can be identically matched by replacing static
field PORTS with parameter ports. On the other hand, string simi-
larity measures would require a very low threshold to match these
statements. For instance, the Levenshtein distance [50] (commonly
used for computing string similarity) between the original state-
ments D and 5 is 44 edit operations, which can be normalized to
a similarity of 1−44/65 = 0.32, where 65 is the length of the longest
string corresponding to statement D . The bigram similarity [49]

(used by ChangeDistiller [23]) between statements D and 5
is equal to 0.3. It is clear that the string similarity measures used
by the majority of the refactoring detection tools are susceptible
to code changes applied by some refactoring operations, such as
parameterization, especially when the arguments differ substan-
tially from the parameter names. Therefore, our pre-processing
techniques facilitate the matching of statements with low textual
similarity.

Function matchNodes, finds all possible matching nodes in tree
T2 for a given node in tree T1 and stores the matching node pairs
into set P . Function findBestMatch(P) (line 11), sorts the node
pairs in P and selects the top-sorted one. Leaf node pairs are sorted
based on 3 criteria. First, based on the string edit distance [50] of
the nodes in ascending order (i.e., more textually similar node pairs
rank higher). Second, based on the absolute difference of the nodes’
depth in ascending order (i.e., node pairs with more similar depth
rank higher). Third, based on the absolute difference of the nodes’
index in their parent’s list of children in ascending order (i.e., node
pairs with more similar position in their parent’s list of children
rank higher). Composite node pairs are sorted with an additional
criterion, which is applied right after the first criterion: based on

the ratio of the nodes’ matched children in descending order (i.e.,
node pairs with more matched children rank higher).

Algorithm 2: Syntax-aware replacements of AST nodes

Input :Statements s1 and s2
Output :True if statements can be identically matched after

syntax-aware replacements, otherwise false
1 Function replacements(s1, s2)
2 N s1 ←�, N s2 ←�, R ←�

3 foreach t ∈ nodeTypes do

4 commont ← s1.nodest ∩ s2.nodest
5 N s1 ← N s1 ∪ { s1.nodest \ commont }

6 N s2 ← N s2 ∪ { s2.nodest \ commont }

7 end

8 d = distance(s1,s2)

9 foreach ns1 ∈ N s1 do

10 C ←�

11 foreach ns2 ∈ N s2 do

12 if compatibleForReplacement(ns1,ns2) then
13 d ′ = distance(s1.replace(ns1,ns2),s2)

14 if d ′ < d then

15 C ← C ∪ (ns1 , ns2 )

16 end

17 end

18 end

19 if |C | > 0 then
20 best← smallestDistance(C)

21 d = best.distance

22 r = best.replacement

23 R ← R ∪ r

24 s1 = s1.replace(r.ns1,r.ns2)

25 end

26 end

27 if s1 = s2 then
28 return true

29 else

30 return false

31 end

Function replacements (Algorithm 2), takes as input two state-
ments and performs replacements of AST nodes until the statements
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...
NeuralNetConfiguration conf = 
 new NeuralNetConfiguration.Builder()
 .lossFunction(LossFunctions.LossFunction.MCXENT)
 .optimizationAlgo(
      OptimizationAlgorithm.ITERATION_GRADIENT_DESCENT)
 .activationFunction("softmax")
 .iterations(10)
 .weightInit(WeightInit.XAVIER)
 .learningRate(1e-1)
 .nIn(4) 
 .nOut(3)
 .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer())
 .build();
...

static OutputLayer getIrisLogisticLayerConfig(String activationFunction, int iterations){
  NeuralNetConfiguration conf = 
     new NeuralNetConfiguration.Builder()
      .layer(new org.deeplearning4j.nn.conf.layers.OutputLayer())
      .nIn(4)
      .nOut(3)
      .activationFunction(activationFunction)
      .lossFunction(LossFunctions.LossFunction.MCXENT)
      .optimizationAlgo(
           OptimizationAlgorithm.ITERATION_GRADIENT_DESCENT)
      .iterations(iterations)
      .weightInit(WeightInit.XAVIER)
      .learningRate(1e-1)
      .seed(12345L)
      .build();
}

Replacement Addition Argumentization OutputLayer layer = getIrisLogisticLayerConfig("softmax", 10);
...

"softmax"

10

(a) Method invocation chains following the Fluent Interface [29] pattern in project deeplearning4j [14].

public IndexDescriptor indexCreate(
     KernelStatement state, int labelId, int propertyKeyId) {
 return schemaWriteOperations.indexCreate(state, labelId, propertyKeyId);
}

public IndexDescriptor indexCreate( 
     KernelStatement state, NodePropertyDescriptor descriptor) {
  return schemaWriteOperations.indexCreate(state, descriptor);
}

(b) Method invocation having two arguments replaced with a single argument in project neo4j [58].

Figure 3: Replacement of method invocations.

become textually identical. This approach has two main advantages
over existing methods relying on textual similarity. First, there is
no need to define a similarity threshold. There is empirical evidence
that developers interleave refactoring with other types of program-
ming activity (e.g., bug fixes, feature additions, or other refactoring
operations) [55, 56, 64]. In many cases, the changes caused by these
different activities may overlap [57]. Some of these changes may
even change substantially the original code being part of a refactor-
ing operation. For example, a code fragment is originally extracted,
and then some temporary variables are inlined in the extracted
method. The longer the right-hand-side expressions assigned to
the temporary variables, the more textually different the original
statements will be after refactoring. Therefore, it is impossible to
define a universal similarity threshold value that can cover any
possible scenario of overlapping changes. On the other hand, our
approach does not pose any restriction on the replacements of AST
nodes, as long as these replacements are syntactically valid. Second,
the replacements found within two matched statements can help
to infer other edit operations taking place on the refactored code
(a phenomenon called refactoring masking [68]), such as renaming
of variables, generalization of types, and merging of parameters.
On the other hand, similarity-based approaches lose this kind of
valuable information.

Initially, our algorithm computes the intersection between the
sets of variable identifiers, method invocations, class instantiations,
types, literals, and operators extracted from each statement, re-
spectively, in order to exclude from replacements the AST nodes
being common in both statements, and include only those being
different between the statements (lines 3-7). AST nodes that cover
the entire statement (e.g., a method invocation followed by ;) are
also excluded from replacements in order to avoid having an exces-
sive number of matching statements. All attempted replacements
are syntax-aware, in the sense that only compatible AST nodes are
allowed to be replaced (line 12), i.e., types can be replaced only
by types, operators can be replaced only by operators, while all
remaining expression types can be replaced by any of the remain-
ing expression types (e.g., a variable can be replaced by a method

invocation). Out of all possible replacements for a given node from
the first statement that decrease the original edit distance of the
input statements, we select the replacement corresponding to the
smallest edit distance (line 20).

In the special case when two method invocations are considered
for replacement, function compatibleForReplacement(ns1,ns2)
examines the expressions used for invoking the methods. If these
expressions are chains of method invocations, as the case shown in
Figure 3a (commonly known as the Fluent Interface [29] pattern in
API design), then we extract the individual method invocations be-
ing part of each chain and compute their intersection ignoring any
differences in the order of the invocations inside each chain. If the
number of common invocations is larger than the uncommon ones,
then we consider the original method invocations as compatible
for replacement. In the example of Figure 3a, there are 9 common
invocations (two of them are identically matched after applying
the argumentization technique), and only 1 uncommon. Notice that
string similarity measures produce very low similarity value for this
case. For instance, the normalized Levenshtein similarity between
the two statements is 0.47, while the bigram similarity is 0.46.
Handling of changes not supported by Algorithm 2: As ex-
plained before, AST nodes covering the entire statement, such as
the method invocations shown in Figure 3b, are excluded from
replacements to avoid having an excessive number of matching
statements. However, there might be changes in their list of argu-
ments that cannot be handled by Algorithm 2, such as the insertion
or deletion of an argument, and the replacement of multiple argu-
ments with a single one and vice versa. This is because we designed
the algorithm to perform only one-to-one AST node replacements
and does not support one-to-many, many-to-one, one-to-zero (i.e.,
deletion), zero-to-one (i.e., insertion) replacements, as this would
increase substantially its computational cost. To overcome this lim-
itation, we allow the replacements of textually different method
invocations covering the entire statement, as long as they have an
identical invocation expression, an identical method name, and a
non-empty intersection of arguments (e.g., argument state in the
example of Figure 3b).
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Table 2: Refactoring detection rules
Refactoring type Rule

Change Method Signature
∃ (M, UT1 , UT2 ) = matching(ma .b,mb .b) |ma ∈ M− ∧mb ∈ M+ ∧ma .c =mb .c ∧ ma .n �mb .n ⇒ Rename Method

ma tomb

1 (UT1
= � ∧UT2

= � ∧ allExactMatches(M)) ∨ 2 ( |M | > |UT1
| ∧ |M | > |UT2

| ∧ locationHeuristic(ma,mb ) ∧ compatibleSignatures(ma,mb )) ∨
3 ( |M | > |UT2 | ∧ locationHeuristic(ma,mb ) ∧ ∃ extract(ma,mx )) ∨ 4 ( |M | > |UT1 | ∧ locationHeuristic(ma,mb ) ∧ ∃ inline(mx ,mb ))

Extract Methodmb fromma ∃ (M, UT1 , UT2 ) = matching(ma .b,mb .b) | (ma,ma′ ) ∈ M= ∧mb ∈ M+ ∧ma .c =mb .c ∧ ¬calls(ma,mb ) ∧ calls(ma′,mb ) ∧ |M | > |UT2 |

Inline Methodmb toma′ ∃ (M, UT1 , UT2 ) = matching(mb .b,ma′ .b) | (ma,ma′ ) ∈ M= ∧mb ∈ M− ∧ma′ .c =mb .c ∧ calls(ma,mb ) ∧ ¬calls(ma′,mb ) ∧ |M | > |UT1 |

Change Class Signature ∃ (tda, tdb ) | tda ∈ TD− ∧ tdb ∈ TD+ ∧ (tda .M ⊇ tdb .M ∨ tda .M ⊆ tdb .M ) ∧ (tda .F ⊇ tdb .F ∨ tda .F ⊆ tdb .F )

tda to tdb tda .p � tdb .p ⇒ Move Class tda .n � tdb .n ⇒ Rename Class

Move Methodma tomb

∃ (M, UT1 , UT2 ) = matching(ma .b,mb .b) |ma ∈ M− ∧mb ∈ M+ ∧ma .c �mb .c ∧ |M | > |UT1 | ∧ |M | > |UT2 | ∧
(tda, tda′ ) ∈ TD

= ∧ma ∈ tda ∧ (tdb , tdb′ ) ∈ TD
= ∧mb ∈ tdb′ ∧ (importsType(tda′,mb .c) ∨ importsType(tdb ,ma .c))

subType(ma .c,mb .c)⇒ Pull Up Method subType(mb .c,ma .c)⇒ Push Down Method

Move Field fa to fb

∃ (fa, fb ) | fa ∈ F− ∧ fb ∈ F+ ∧ fa .c � fb .c ∧ fa .t = fb .t ∧ fa .n = fb .n ∧
(tda, tda′ ) ∈ TD

= ∧ fa ∈ tda ∧ (tdb , tdb′ ) ∈ TD
= ∧ fb ∈ tdb′ ∧ (importsType(tda′, fb .c) ∨ importsType(tdb , fa .c))

subType(fa .c, fb .c)⇒ Pull Up Field subType(fb .c, fa .c)⇒ Push Down Field

Extractmb fromma & ∃ (M, UT1 , UT2 ) = matching(ma .b,mb .b) | (ma,ma′ ) ∈ M= ∧mb ∈ M+ ∧ma .c �mb .c ∧
Move tomb .c ¬calls(ma,mb ) ∧ calls(ma′,mb ) ∧ |M | > |UT2

| ∧ (tda, tda′ ) ∈ TD
= ∧ma ∈ tda ∧ importsType(tda′,mb .c)

Extract Supertype
∃ (tda, tdb ) | (tda, tda′ ) ∈ TD

= ∧ tdb ∈ TD+ ∧ subType(type(tda′),type(tdb ))

tdb from tda
∃ pullUp(ma,mb ) |ma ∈ tda ∧mb ∈ tdb ∨ ∃ pullUp(fa, fb ) | fa ∈ tda ∧ fb ∈ tdb ⇒ Extract Superclass

∃ (ma,mb ) |ma ∈ tda ∧mb ∈ tdb ∧ identicalSignatures(ma,mb ) ∧mb .b = null ⇒ Extract Interface

Change Package pa to pb ∃ (pa, pb ) | path(pa) ∈ D− ∧ path(pb ) ∈ D+ ∧ ∃ MoveClass(tda, tdb ) | tda .p = pa ∧ tdb .p = pb

matching(T1, T2) returns a set of matched statement pairs (M ) between the trees T1 and T2 representing method bodies, and two sets of unmatched statements from T1 (UT1 ) and T2 (UT2 ), respectively
indexOf(m, td) returns the position ofm inside type declaration td typeDecl(c) returns the type declaration of type c type(td) returns the qualified name of type declaration td
locationHeuristic(ma,mb ) = |indexOf(ma, typeDecl(ma .c))− indexOf(mb , typeDecl(mb .c)) | ≤ |M−

c −M+c | importsType(td, t) returns true if type declaration td depends on type t
compatibleSignatures(ma,mb ) =ma .P ⊇ mb .P ∨ma .P ⊆ mb .P ∨ |ma .P ∩mb .P | ≥ |(ma .P ∪mb .P ) \ (ma .P ∩mb .P ) | calls(ma,mb ) returns true if methodma callsmb

subType(ca, cb ) returns true if ca is a direct or indirect subclass of cb or implements interface cb path(p) returns the directory path for package p

2.3 Refactoring detection

The detection of refactorings takes place in two phases. The first
phase is less computationally expensive, since the code elements
are matched only based on their signatures. Our assumption is that
two code elements having an identical signature in two revisions
correspond to the same code entity, regardless of the changes that
might have occurred within their bodies. The second phase is more
computationally expensive, since the remaining code elements are
matched based on the statements they have in common within
their bodies. In a nutshell, in the first phase, our algorithm matches
code elements in a top-down fashion, starting from classes and
continuing to methods and fields. Two code elements are matched
only if they have an identical signature. Assuming a and b are two
revisions of a project:

• Two type declarations tda and tdb have an identical signature, if
tda .p = tdb .p ∧ tda .n = tdb .n

• Two fields fa and fb have an identical signature, if
fa .c = fb .c ∧ fa .t = fb .t ∧ fa .n = fb .n

• Two methodsma andmb have an identical signature, if
ma .c =mb .c ∧ma .t =mb .t ∧ma .n =mb .n ∧ma .P =mb .P

• Two directories da and db are identical, if da .p = db .p

After the end of the first phase, we consider the unmatched code
elements from revision a as potentially deleted, and store them in
setsTD−, F−,M−, andD−, respectively.We consider the unmatched
code elements from revision b as potentially added, and store them
in sets TD+, F+, M+, and D+, respectively. Finally, we store the
pairs of matched code elements between revisions a and b in sets
TD=, F=,M=, and D=, respectively.

In the second phase, our algorithm matches the remaining code
elements (i.e., the potentially deleted code elements with the poten-
tially added ones) in a bottom-up fashion, starting from methods
and continuing to classes, to find code elements with signature
changes or code elements involved in refactoring operations.

Examination order of refactoring types:We detect the refactor-
ing types in the order they appear in Table 2 by applying the rules
shown in the second column of the table. The order of examination
is very important for the accuracy of our approach. We order the
refactoring types according to their locality of change [19], start-
ing from local refactoring types (i.e., within a single method/class)
and proceeding with global ones (i.e., among different classes or
packages). The intuition behind this order comes from empirical ev-
idence showing that small and local refactorings are more frequent
than big and global ones [9, 56], and thus there is a higher prob-
ability that the potentially added/deleted code elements resulted
from local rather than global refactorings. Whenever a refactoring
type is processed, we remove the matched code elements from the
sets of potentially deleted/added code elements, and add them to
the corresponding sets of matched code elements. This affects the
code elements examined in the refactoring types that follow, thus
reducing the noise level and improving accuracy.

Best match selection: For the refactoring types involving state-
ment matching in their detection rule, when a code element (i.e.,
method) has multiple matches, we always select the best match.
The reason is that the same piece of code cannot be part of multiple
refactoring operations. For example, a method cannot be renamed to
multiple methods. Our algorithm sorts the matching method pairs
based on 4 criteria, which serve as proxies for method similarity at
statement level. First, based on the total number of matched state-
ments in descending order (i.e., method pairs with more matched
statements rank higher). Second, based on the total number of ex-
actly matched statements in descending order (i.e., method pairs
with more identical statements rank higher). Third, based on the
total edit distance [50] between the matched statements in ascend-
ing order (i.e., method pairs with more textually similar statements
rank higher). Fourth, based on the edit distance between the method
names in ascending order (i.e., method pairs with more textually
similar names rank higher).
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As Table 2 shows, the refactoring types examined first have
more elaborate and strict rules. This is crucial to avoid early er-
roneous matches that would negatively affect the accuracy of the
detected instances for the refactoring types that follow. For exam-
ple, the location heuristic applied in sub-rules 2 , 3 , and 4 of
the Change Method Signature refactoring type, ensures that the
positional difference of two matched methods is less or equal to
the absolute difference in the number of methods added to and
deleted from a given type declaration. The intuition behind this
heuristic is that developers do not tend to change the position of an
already existing method inside its type declaration when changing
its signature. Assuming that only method renames take place in
a type declaration, the number of potentially added and deleted
methods will be equal, and thus the location heuristic will be sat-
isfied only for the method pairs having the same position before
and after refactoring. This heuristic is particularly effective in cases
of extensive method signature changes in test classes (e.g., see
the case of extensive unit test renames in project cassandra [10]),
where developers tend to copy-and-modify older unit tests to cre-
ate new ones [72], and thus several methods share very similar
statements with each other. Sub-rules 3 and 4 take into account
the case where a method with a signature change has a significant
portion of its body extracted or inlined, respectively. For instance,
in the case shown in Figure 2, the result of statement matching
between methods createAddresses before and after refactoring
isM = {(A, 1), (B, 2), (G, 9)}, i.e., |M | = 3, while UT1 = {C,D,E, F },
i.e., |UT1 | = 4, and UT2 = {3}, i.e., |UT2 | = 1, and thus sub-rule 2
fails to match the methods. On the other hand, sub-rule 3 matches
successfully the methods, because |M | > |UT2 | and there exists at
least one method extracted from the original createAddresses.

3 EVALUATION

We empirically evaluate the usefulness of RMiner by answering
the following research questions:
RQ1: What is the accuracy of RMiner and how does it compare

to the previous state-of-the-art?
RQ2: What is the execution time of RMiner and how does it com-

pare to the previous state-of-the-art?
We answer the first research question by computing standard

metrics from information retrieval (i.e., precision and recall). As
these metrics require having a reliable oracle, we use complemen-
tary methods to create the most accurate oracle to date. Moreover,
we compare the accuracy and running time of RMiner against
that of the previous state-of-the-art tool, RefDiff, as Silva and Va-
lente [65] established that RefDiff significantly outperforms other
widely used refactoring detection tools, such as Ref-Finder and
RefactoringCrawler.

3.1 Oracle construction

Having a correct, complete and representative oracle of refactor-
ings is fundamental for computing precision and recall in a reliable
manner. Therefore, we used a publicly available dataset of refactor-
ing instances [64], comprising 538 commits from 185 open-source
GitHub-hosted projects monitored over a period of two months
(between June 8th and August 7th , 2015). The authors of [64] man-
ually validated all refactoring instances in the dataset. Moreover,

Table 3: Precision and recall per refactoring type

Refactoring Type
RMiner RefDiff

Precision Recall Precision Recall

Inline Method 98.96 86.36 84.35 88.18

Extract Method 98.63 84.72 93.03 90.95

Move Field 88.42 95.45 30.19 45.45

Move Class 100 96.24 99.90 93.53

Extract Interface 100 100 76.92 55.56

Push Down Method 100 100 95.00 61.29

Push Down Field 100 86.21 100 100

Change Package 85.00 100 N/A N/A

Pull Up Method 100 90.48 80.60 85.71

Pull Up Field 100 96.30 64.00 59.26

Move Method 95.17 76.36 32.25 92.25

Rename Method 97.78 83.28 85.54 89.59

Extract Superclass 95.08 100 100 18.97

Rename Class 98.33 71.08 89.71 73.49

Extract & Move Method 95.92 41.23 73.02 80.70

Overall 97.96 87.20 75.71 85.76

the instances found in 222 of these commits were confirmed by
the developers who actually performed the refactorings (i.e., the
commit authors) through surveys. We re-validated all instances to
ensure their correctness. Fourteen cases actually corresponded to
multiple instances summarized as a single refactoring operation
(e.g., a refactoring reported as “method foo extracted from bar and
x other methods” corresponds to x + 1 separate Extract Method
instances). We broke down these cases to separate instances by
manually finding the summarized code elements. This dataset can
be considered correct, since all instances went through rigorous
manual validation by multiple authors and in several cases were
confirmed by the developers who actually performed them. It is
one of the most representative datasets to date, since all instances
are real refactorings found in 185 different Java projects, they are
motivated by a variety of reasons [64], and take place along with
other changes/refactorings in the same commit. However, the com-
pleteness of the dataset is not guaranteed, since there is no reported
recall for the refactoring detection tool used in [64]. To ensure the
completeness of the dataset, we executed two tools that analyze
repository commits without requiring to build the project, namely
RMiner and RefDiff [65], on all 538 commits of the dataset. These
tools use complementary detection methods (i.e., a more conser-
vative threshold-free approach based on statement matching vs. a
more relaxed threshold-based approach based on token similarity),
thus are likely to detect a more comprehensive set of refactoring
instances. For the validation process, we created a web application,
which listed all detected refactorings along with links to the cor-
responding GitHub commits. Through this web application, the
validators were able to inspect the change diff provided by GitHub,
and enter their validation and comments. In total, we manually
validated 4,108 unique refactoring instances detected by the two
tools, out of which 3,188 were true positives and 920 were false
positives. The validation process was labor-intensive and involved
3 validators for a period of 3 months (i.e., 9 person-months). To give
a sense of the manual inspection difficulty, on average, a commit
contained 7.89 refactoring instances (median = 2), 14.25 changed
files (median = 5), and 1,047 changed lines of code (median = 211).
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3.2 Precision and Recall

Since RefDiff does not support the detection of Change Package
refactoring, we did not consider the instances detected by RMiner
as false negatives for RefDiff. Moreover, to ensure a fair com-
parison for RMiner, we considered all classes within a changed
package as being moved from the original package to the new
one, and added the corresponding Move Class instances to those
originally detected by RMiner.

Table 3 shows the precision and recall of RMiner and RefDiff.
Notice that RMiner has better precision than RefDiff in all refac-
toring types, except for Extract Superclass (95% vs. 100%), where
RefDiff seems to be extremely conservative due to its low recall.
This is a result of RMiner following a conservative threshold-free
approach for detecting refactorings, which results in high precision.
The lowest precision for RMiner is observed for Change Package
and Move Field (85% and 88.4%, respectively), while it has over
95% precision in all other refactoring types. The Achilles’ heel of
RefDiff, in terms of precision, is the detection of Move Method
and Move Field refactorings (32% and 30%, respectively). We found
two recurring scenarios causing such false positives for RefDiff. In
the first scenario, RefDiff misses the detection of a class move to
another package, and consequently reports the methods and fields
of that class as being moved from the original class, which is as-
sumed to be deleted, to another class, which is assumed to be newly
added. In the second scenario, a subclass extending/implementing
a given superclass/interface is deleted, and a new subclass is added,
which overrides the superclass/interface methods in a similar way.
RefDiff reports these methods as being moved from the deleted to
the added subclass. We believe both scenarios occur because RefD-
iff does not examine if there is an import dependency between
the source and target class of a candidate Move Method/Field
refactoring, but relies only on code similarity.

Since RMiner achieves very high precision, does RefDiff have
better recall due to its less conservative threshold-based approach?
We found this is true only for 7 refactoring types, while for the
other 7 types RMiner has better recall. In particular, RMiner has
an increased recall of 37% to 81% for inheritance-related refactor-
ings (i.e., Pull Up Field, Push Down Method, Extract Super-
class/Interface), and 50% for Move Field refactoring, while the
increase in recall forMove Class and Pull UpMethod refactorings
is smaller, 3% and 5%, respectively. In contrast, RefDiff has only a
slightly increased recall of 2% to 6% for local refactorings, such as
Extract/Inline/Rename Method and Rename Class, while the
increase in recall for inter-class refactorings, such as Push Down
Field, Move Method, and Extract and Move Method, is larger,
14%, 16% and 39%, respectively.

An inherent advantage of RefDiff, helping it to achieve higher
recall in refactoring types involving code similarity, is that it ig-
nores the structure of the code by treating code fragments as bags
of tokens. Therefore, any change in the structure of the code (e.g.,
merging/splitting of conditionals, as in the case found in project
jetty [41]) before or after the actual refactoring will not affect its
detection ability, as long as the tokens remain the same. A disadvan-
tage of RefDiff is its inability to deal with changes in the tokens
caused by the refactoring itself (e.g., parameterization of expres-
sions in Extract Method refactoring), or another overlapping

RMiner

RefDiff

      2 128,622    425     58

Figure 4: Execution time per commit (ms).

refactoring (e.g., local variable renames inside the body of a refac-
tored method). On the other hand, RMiner deals robustly with this
kind of changes by applying statement pre-processing techniques,
such as argumentization, and allowing syntax-aware replacement
of AST nodes within matched statements. Further research on hy-
brid methods that combine the advantages of RMiner and RefDiff
seems to have great potential.

3.3 Execution Time

Figure 4 shows the distribution of the execution time of RMiner
and RefDiff for each examined commit, collected by executing
separately each tool on the samemachine with the following specifi-
cations: Intel Core i7-2620M CPU@ 2.70GHz, 16 GB DDR3memory,
1 TB SSD, Windows 10 OS, and Java 1.8.0 x64. For each tool, we
recorded the time taken for parsing the source code of the examined
and its parent commit, and the time taken to detect refactorings
using the System.nanoTime Java method. On median, RMiner is
7 times faster than RefDiff (58 vs. 425 ms). We also applied the
Wilcoxon signed rank test on the paired samples of the time execu-
tion for each commit, which rejected the null hypothesis “RefDiff
execution time is smaller than that of RMiner” with a p-value <
2.2e-16, and thus we can statistically conclude that RMiner is faster
on our commit sample. We should note that RMiner has 70 outlier
commits that were processed in over one second, representing 13%
of the examined commits. Among these commits 39 took between
1-5 sec, 14 between 5-10 sec, 11 between 10-30 sec, and 6 took over
30 sec with the most time consuming commit taking 128 sec.

3.4 Limitations

Missing context: As explained in Section 2, RMiner analyzes
only the added, deleted, and changed files between two revisions.
However, the missing context (i.e., the unchanged files) can make
RMiner to report an incorrect refactoring type for certain opera-
tions. For example, if a method or field is pulled multiple levels up to
the inheritance hierarchy and some classes between the source and
destination are unchanged, then RMiner will report it as a move,
because it cannot detect the inheritance relationship between the
source and destination classes due to the missing context. In our
oracle, this scenario occurred only once in project cascading [75],
where 4 methods were pulled three levels up (TezNodeStats →

BaseHadoopNodeStats → FlowNodeStats → CascadingStats),
but class FlowNodeStats remained unchanged in the commit.

Nested refactorings: RMiner is currently unable to detect nested
refactoring operations, e.g., Extract Method applied within an
extracted method. A notable exception is the detection of Extract
and Move Method, which is a sequence of two nested refactoring
operations. A possible solution is to include recursively the state-
ments of called methods when performing the statement matching

491



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden N. Tsantalis et al.

process. In this way, it will be possible to reconstruct the sequence
of nested refactoring operations, regardless of the nesting depth.
Unsupported refactorings: In this paper, we present and eval-
uate the detection rules for 15 refactoring types, while Fowler’s
catalog [28] includes 72 different types. RMiner already supports
the detection of refactorings related to method signature changes
(add/remove parameter, change return/parameter type, hide/unhide
method), but we didn’t validate the detected instances in our dataset
due to their large number and time constraints. Moreover, the refac-
toring types taking place within method bodies, such as rename
variable/parameter/field, extract/inline variable, and replace magic
number with constant, can be inferred by utilizing the AST node
replacements collected through the statement matching process.
With these additions, RMiner will be able to support the majority of
the most popular refactoring types applied by developers [55, 56].
Oracle bias: Although we did our best effort to reduce bias in the
construction of our oracle by incorporating the input of two tools
and manual validations by multiple authors, we cannot claim the
oracle is unbiased. We tried to incorporate the input of snapshot-
based tools, such as Ref-Finder, but the vast majority of commits
failed to build due to broken dependencies. Moreover, whenever the
inspection of a case was challenging, multiple authors performed an
independent validation followed by a thorough discussion. Overall,
3,333 cases were inspected by one validator (out of which 1,411
cases were already assessed as true positives by the authors of [64]),
652 by two validators, and 123 by three validators.

4 RELATEDWORK

Weißgerber and Diehl [74] developed the first technique for the
detection of local-scope and class-level refactorings in the commit
history of CVS repositories. Their approach uses a clone detection
tool (CCFinder [43]) to compare the bodies of the code elements that
are candidates for refactorings. They manually inspected the com-
mit log messages of two open-source projects to find documented
refactorings and compute the recall, and used random sampling to
estimate the precision of their approach. Dig et al. [18] developed
a tool, RefactoringCrawler, which first performs a fast syntac-
tic analysis (based on techniques from Information Retrieval) to
find refactoring candidates, and then a precise semantic analysis
(based on similarity of call graphs) to find the actual refactorings.
To compute the recall, the authors manually discovered the ap-
plied refactorings in three projects by inspecting their release notes,
while they inspected the source code to compute precision. Xing
and Stroulia [78] developed a tool, JDEvAn [80], which detects and
classifies refactorings based on the design-level changes reported
by UMLDiff [77]. They evaluated the recall of JDEvAn on two
software systems, and found that all documented refactorings were
recovered. Prete et al. [46, 62] developed a tool, Ref-Finder, which
detects the largest number of refactoring types (63 of 72) from
Fowler’s catalog [28]. Ref-Finder encodes each program version
using logic predicates that describe code elements and their contain-
ment relationships, as well as structural dependencies, and encodes
refactorings as logic rules. Prete et al. created a set of correct refac-
torings by running Ref-Finder with a low similarity threshold
(σ=0.65) and manually verified them. Then, they computed recall
by comparing this set with the results found using a higher thresh-
old (σ=0.85) and computed precision by inspecting a sampled data

set. Silva and Valente [65] developed a tool, RefDiff, which takes as
input two revisions of a git repository and employs heuristics based
on static analysis and code similarity to detect 13 refactoring types.
RefDiff represents a source code fragment as a bag of tokens, and
computes the similarity of code elements using a variation of the
TF-IDF weighting scheme. To determine the similarity threshold
values the authors applied a calibration process on a randomly
selected set of ten commits from ten different open-source projects,
for which the applied refactorings are known and have been con-
firmed by the project developers themselves [64]. They evaluated
the accuracy of their tool using an oracle of seeded refactorings
applied by graduate students in 20 open-source projects.

Unlike these previous tools, RMiner neither requires similarity
thresholds (that are tedious to calibrate, and might not be gen-
eralizable), nor does it require operating on fully built snapshots
of software systems, thus it is applicable in many more contexts.
Moreover, whereas previous tools have been evaluated against 2-3
projects with a small number of refactoring instances (a notable
exception is RefDiff, which was evaluated on 20 projects with
448 seeded refactorings), our oracle is orders of magnitude larger
comprising 185 projects and 3,188 true refactoring instances. We
use triangulation between multiple sources to create one of the
most reliable, comprehensive, and representative oracles to date.

A totally different approach to detect refactorings in real-time
is to continuously monitor code changes inside the IDE. BeneFac-
tor [31] and WitchDoctor [27] detect manual refactorings in
progress and offer support for completing the remaining changes,
whereas CodingTracker [56], GhostFactor [32] and Review-
Factor [34] infer fully completed refactorings. While these tools
highlight novel usages of fine-grained code changes inside the IDE,
RMiner focuses on changes from commits, thus it can be more
broadly applied as it is not dependent on an IDE or text editor.

5 CONCLUSIONS

In this work, we presented the first refactoring detection algorithm
that does not rely on code similarity thresholds. We utilize novel
techniques, such as abstraction and argumentization to deal with
changes taking place on code statements during refactoring. In
addition, we apply syntax-aware replacement of AST nodes when
matching two statements to deal with overlapping refactorings
(e.g., variable renames), or changes caused by other maintenance
activities (e.g., bug fixing). Our evaluation, using one of the most
accurate, complete, and representative refactoring oracles to date,
showed that our approach achieves very high precision (98%) with
a recall that is competitive to the previous state-of-the-art (87%),
and has very small computation cost (on median, it takes 58 ms
to process a commit). Moreover, RMiner’s ability to operate on
commits opens new avenues: (1) empirical researchers can create
refactoring datasets with high precision from the entire commit his-
tory of projects, and study various software evolution phenomena
at a fine-grained level, (2) bug-inducing analysis techniques can
improve their accuracy utilizing commit-level refactoring informa-
tion, (3) refactoring operations can be automatically documented at
commit-time to provide a more detailed description of the applied
changes in the commit message, (4) commit diff visualization can
be overlaid with refactoring information to assist code review and
evolution comprehension.
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