
iQCAR: inter-Query Contention Analyzer for Data
Analytics Frameworks

Prajakta Kalmegh

Duke University

Durham, North Carolina

pkalmegh@cs.duke.edu

Shivnath Babu

Unravel Data Systems

Palo Alto, California

shivnath@unraveldata.com

Sudeepa Roy

Duke University

Durham, North Carolina

sudeepa@cs.duke.edu

ABSTRACT
Resource interferences caused by concurrent queries is one of

the key reasons for unpredictable performance and missed

workload SLAs in cluster computing systems. Analyzing

these inter-query resource interactions is critical in order

to answer time-sensitive questions like ‘who is creating re-

source conflicts to my query’. More importantly, diagnosing

whether the resource blocked times of a ‘victim’ query are

caused by other queries or some other external factor can

help the database administrator narrow down the many pos-

sibilities of query performance degradation. We introduce

iQCAR, an inter-Query Contention Analyzer, that attributes

blame for the slowdown of a query to concurrent queries.

iQCAR models the resource conflicts using a multi-level di-

rected acyclic graph that can help administrators compare

impacts from concurrent queries, identify most contentious

queries, resources and hosts in an online execution for a se-

lected time window. Our experiments using TPCDS queries

on Apache Spark show that our approach is substantially

more accurate than other methods based on overlap time

between concurrent queries.

KEYWORDS
Performance evaluation; contention analysis; blame attribu-

tion; resource interference; data analytics frameworks

ACM Reference Format:
Prajakta Kalmegh, Shivnath Babu, and Sudeepa Roy. 2019. iQCAR:

inter-Query Contention Analyzer for Data Analytics Frameworks.

In 2019 International Conference on Management of Data (SIGMOD
’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3299869.3319904

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319904

1 INTRODUCTION
In today’s data-driven world, there is a growing demand of

autonomous data processing systems [10]. One of the critical

roadblocks in achieving the desired goal of automation is

ensuring predictable query performance in multi-tenant sys-

tems. The question – “Why is my query slow?" – is nontrivial

to answer in standard big data processing systems employ-

ing shared clusters. The authors have seen firsthand how

enterprises use an army of support staff to solve problem

tickets filed by end users whose queries are not perform-

ing as they expect. An end user can usually troubleshoot

causes of slow performance that arise from her query (e.g.,

when the query did not use the appropriate index, data skew,

change in execution plans, etc.). However, often the primary

cause of a poorly-performing query is low-level resource

contentions caused by other concurrently executing queries

in a multi-tenant system [5, 9, 14, 16, 32]. For example, in one

of our experiments, one query was found to be 178% slower

than its unconstrained execution due to resource conflicts.

Diagnosing such causes of unpredictable performance is dif-

ficult and time consuming requiring in-depth expertise of

the system and the workload. Today, cluster administrators

have to manually traverse through intricate cycles of query

interactions to identify how interferences on resources affect

desired performances of concurrently running queries.

Should the solution be prevention or diagnosis (and
cure)? To ensure a predictable query performance, preven-

tive measures often provide query execution isolation at

the resource allocation level. For example, an admin tries

to reduce conflicts by partitioning resources among tenants

using capped capacities [2], reserving shares of the cluster

[18], or dynamically regulating offers to queries based on

the configured scheduling policies like max-min fair [30] or

First-In-First-Out (FIFO). Despite such meticulous measures,

providing performance isolation guarantees is still challeng-

ing since resources are not governed at a fine-granularity.

The allocations are primarily based on only a subset of the re-

sources leaving the requirements for other shared resources

unaccounted for. An approach solely based on preventive

techniques will also have other limitations since real-life

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

918

https://doi.org/10.1145/3299869.3319904
https://doi.org/10.1145/3299869.3319904

Figure 1: Execution DAG of TPCDS Query 3 showing the
computation that each stage performs). Stages S0, S1 and S2
are IO intensive as they scan input data. S3, S4 are network,
IO intensive owing to shuffle operation required for Join. S5
is more CPU bound due to the aggregate operation.

workloads are a mix of very diverse types of queries. There-

fore, low-level resource conflicts continue to impact queries

in shared clusters, thus inviting a need to supplement preven-

tion techniques with techniques for diagnosis of contentions

such that required actions can be taken.

Our research focuses on the latter. In this paper, we present

iQCAR - a tool to detect resource contentions between con-

current queries using blocked times (time a task is blocked

for a resource) [24]. While there have been several attempts

to diagnose root causes (systemic, configuration, external

or plan-related) for the slowdown of a query [17, 20, 23, 29],

to the best of our knowledge iQCAR is the first attempt to

answer an important question - whether and how the blocked
times of a query are affected by low-level conflicts caused by

other concurrent queries.

1.1 Data analytics frameworks
This paper focuses on query/job execution on data analyt-

ics frameworks like MapReduce [19] and Spark [31]. These

frameworks are designed to perform complex logic on large

distributed datasets by parallelizing computations. Every

query is broken down into a DAG of stages where each stage

accomplishes a particular piece of overall logic on the input

or intermediate data. Figure 1 shows an example of a query

that is broken into six stages. A stage consists of multiple

parallel tasks, where the tasks are the actual execution units

that perform the same computation on different blocks of

the input data. Since these blocks are distributed across the

cluster, tasks of a stage execute in parallel on different hosts

and their output is exchanged in a shuffle operation with

tasks of dependent stages.

In these frameworks, tasks are executed using pipelining

to enable parallel use of CPU, disk and network. They ex-

ecute in a single thread and use an iterator model to read,

process and output each record through the pipeline. As disk

and network requests are handled in the background by OS,

a task can use and wait for multiple resources at the same

Figure 2: The execution timeline of a single task. Task exe-
cution is blocked for different resources during its execution
and does not always synchronize with resource wait times.

time. It can however be completely blocked only when the

specific resource required for the execution of next line of

code is not available. Figure 2 shows the execution timeline

of a single task. It uses network and disk for reading data,

CPU for processing and again disk for writing the results.

The execution logic of this task is to first read and process

data from remote machine and then process local disk data.

The program flow of the task is the following: a network

read request is issued at time t0 and the task is blocked for

availability of first block of network data until t1. Task execu-
tion continues until t2 when it is blocked for CPU allocation

by the OS. The task resumes and continues execution until t3
on previously retrieved network data (even though no new

data is received from network in this duration). At t3, the
task blocks again for more remote data until t4 when data is

ready. The task blocks again at t5 for OS CPU allocation and

completes processing remote data by t6. At t6, it issues re-
quest for disk IO read and is blocked until t7 when some data

is available. The task continues its execution without any

further blocking despite more wait time for disk IO. This is

because it has enough data to process without being blocked

at every instance of its remaining execution.

BlockedTime: During its execution, a task can wait mul-

tiple times for network and disk data (refer to Disk Data Wait
and Network Data Wait in Figure 2). However, the sum of

these wait times does not add up to its total blocked time

(refer to Task Blocked in Figure 2). This is because waiting

for a resource does not imply that a task is unable to make

progress. The effective impact of any concurrent task/pro-

cess on the slowdown of a task is therefore only to the ex-

tent to which it increases the blocked time of the task. In

[24], authors demonstrated the role of using the time tasks

are blocked on disk IO and network for effective perfor-

mance analysis of data analytical workloads; in iQCAR, we
use blocked times of tasks on disk IO, network, CPU and

memory as the basis to calculate the metrics of slowdown

and blame attribution.

1.2 Challenges in Contention Analysis
Consider the dataflow-DAGof a data analytical TPCDSQuery

3 (referred to as Q0 henceforth) shown in Figure 1. Suppose

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

919

Figure 3: Example overlap between four tasks.

an admin notices a slowdown forQ0 compared to a previous

execution using some automated tool or manual analysis -

then we designate Q0 as our victim query. As a first step of

troubleshooting, she wants to identify whetherQ0 was a vic-

tim of concurrency-caused contention or not (i.e., whether

the reasons were systemic or configuration instead). If yes,

which of the concurrent queries, say, Q1 or Q2 is more re-

sponsible for the slowdown of Q0.

The common approach adopted today toward addressing

such questions may involve different steps: (1) using histori-

cal executions, identify which stages of the query slowed it

down. (2) for each stage, use low-level monitoring tools (e.g.,

[8]) to identify the intervals or hosts with unusual activity,

and find resources responsible for its bottlenecks. (3) finally,

find the overlapping queries/stages/tasks and analyze their

resource utilization further to diagnose whether and why

they caused the bottlenecks. We call this approach of blame

attribution as Deep-Overlap. This process is time-consuming

and error-prone since it requires expertise of the involved

systems, and an in-depth understanding of the workload. In

particular, an administrator faces the following challenges.

Challenge 1. Analyzing Contentions on Dataflows: A
query can slowdown due to delay in one or more of its com-

ponent stages. Some delays propagate to the endwhile others

get mitigated by faster later stages. Figure 1 has two such

paths, delay-path1 and delay-path2 that get mitigated, but the

critical-path contributes to the final slowdown. Identifying

and accounting for paths of highest impact is important and

challenging for contention analysis
1
.

Challenge 2. Analyzing Multi-Resource Contentions:
In data analytics frameworks, tasks interleave their resource

usages due to the pipelining model of execution (see Sec-

tion 1.1). The consumption and contention for any resource

is non-uniform and depends on the mix of concurrent tasks.

We identify two issues that arise from this:

Challenge 2a: Deep-Overlap can be misleading: As an
example, consider the tasks in Figure 3. Though all three

tasks (Task1, Task2 and Task3) execute in parallel between

1
The number of paths is typically very high for analytical queries that

involve many joins and aggregations.

time t0 to t4, tasks Task2 and Task3 do not cause any con-

tention to each other due to no overlap for any resource.

On the other hand, they have complete overlap for both re-

sources (CPU and disk IO) between time t4 and t7, thereby
facing high contention.

Challenge 2b: Quantifying blame for contentions is
hard: Since tasks contend for multiple resources simultane-

ously, a task may get one resource faster but other resource

slower than a competing task. Even when tasks are con-

tending for single resource, some tasks may cause greater

slowdown than others. In Figure 3, both Task3 and Task4
overlap for same resource withTask2 between t7 and t8. The
impact caused by Task4 is however higher as it gets the

highest share. In fact, Task3 and Task2 impact each other

equally. Identifying such complex interactions is difficult but

necessary to accurately capture and quantify contentions.

1.3 Our Contributions
We have built the system iQCAR with a goal to address the

above challenges. The explanations generated by iQCAR can

help an admin understand why a query is slow in an exe-

cution, or isolate the most contentious queries that use the

same resources or nodes in the cluster, which might take

hours of effort without the help of iQCAR. We present the

system architecture of iQCAR in Section 2, and make the

following contributions:

● Blame Attribution: We use the Blocked Times [24] val-

ues for multiple resources (CPU, Network, IO, Memory
2
)

to develop a metric called Resource Acquire Time Penalty
(RATP) that aids us in computing blame towards a concur-
rent task while addressing Challenge 2 (Section 3).
● Explanations and blame analysis: We present a multi-

level Directed Acyclic Graph (DAG), called iQC-Graph,
that enables distribution of blame at different granularity.

We generate explanations for resource conflicts faced by a

query by traversing this graph (Section 4).
● End-to-end system:Wehave instrumentedApache Spark

[31] to collect the time-series data on the blocked time and

resource usage metrics for tasks. Our web-based front-

end [22] allows users to get workload-level contention

summary plots, or perform step-wise exploration of im-

pacts using iQC-Graph. We discuss our implementation

and the current limitations of iQCAR system (Section 5).
● Experimental evaluations: We evaluated iQCAR using

various test-cases conducted on TPCDS workloads run-

ning on Apache Spark. We also compare iQCAR with two

alternative approaches and demonstrate its better accuracy

compared to them (Section 6).

2
It is not the physical memory but application memory cache managed by

frameworks like [31] to dynamically trade between storage of intermediate

data and execution requirements [4].

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

920

Figure 4: iQCAR System Architecture

Section 7 discusses the related work and we conclude in

Section 8 with directions for future research. Some details

are moved to the appendix due to space constraints.

2 SYSTEM OVERVIEW OF IQCAR
The iQCAR system enables users to detect contentions online

while the queries are executing, and perform a deep explo-

ration of contentious scenarios in the cluster offline. Figure 4

shows the architecture of iQCAR. In Step (1), an admin uses

the available user interface (UI) to identify a set of queries to

be analyzed. Each of the queries chosen for deep exploration

in Step (2) is termed as a victim query, its stages as victim
stages, and its tasks as victim tasks. Once the user submits

victim queries to iQCAR in Step (3), the Graph Constructor
builds a multi-level DAG (Section 4) for these queries in Step

(4). In addition, users can configure the resources or hosts for

which they want to analyze the contentions. For example,

users can diagnose the impact of concurrency on only CPU

contention on all or a subset of hosts, or originating from

potential culprit queries submitted by a particular user, etc.

The Blame Attributor module (Section 3) then computes

and distributes blame to all vertices in the graph in Step

(5), which are then used to update the edge weights of the

graph subsequently. The edge weights are then used by the

Explanations Generator module to generate explanations

(defined in Section 4.2) of one query impacting another in

Step (6). The edge weights are also used to update a degree of
responsibility (DOR) metric for each node in the graph to as-

sign relative impact values and enable a ranking. Finally, the

potential queries (creating contention) with their scores pro-

duced by the Explanation Generator module are examined

by the admin to understand the contention in the system in

Step (7)
3
.

3
Our system also includes a prototype of a basic Rule Generator module that

suggests heuristics to avoid contentions (like alternate query placement,

dynamic priority readjustment for stages and queries, etc.). However, build-

ing a sophisticated rule generator is a focus of our current research and is

3 BLAME ATTRIBUTION
In this section we explain the key concept in iQCAR: how
it attributes blame to concurrent queries. An important as-

pect of iQCAR is that it does not rely on any information of

previous executions. A query is considered to be running

slow if its execution is blocked (see Blocked Time in Sec-

tion 1.1) because some other concurrent query is using the

same resource. A concurrent query is blamed for slowdown

if it consumes resources at a higher rate than the victim

query
4
. If more than one concurrent query is responsible

for blocking then their blame values are in the ratio of their

resource consumption rates. Specifically, a concurrent query

acquires blame for the slowdown of a victim query if its tasks

(1) execute on the same machine as the victim tasks, (2) have

overlapping run times with the victim tasks, and (3) consume

the same resources at a higher rate than the victim tasks.

3.1 Resource Acquire Time Penalty (RATP)
First we define a measure called RATP to denote the time

spent by a task to acquire one unit of resource (e.g., CPU,

Disk, Network, etc.) on a host. For example, RATPnetwork is

the time spent fetching a single record (or byte) of data from

the network.

Definition 3.1. For a given resource r and a hosth, suppose
a victim task vt consumes δr units of resource in a small
time interval δt seconds. Then the Resource Acquire Time
Penalty (RATP) for task vt for resource r on host h in the
interval δt is

RATPδtvt,r,h =
δt

δr
(1)

In the remaining section, we assume that the resource r ,
host h and the interval δt are fixed unless mentioned oth-

erwise, so we omit r ,h in the subscripts and δt from super-

scripts for simplicity where it is clear from the context. This

simplifies Equation (1) for a task vt to

RATPvt =
δt

δr
sec / unit resource (2)

3.2 Slowdown of a Task
Let the capacity of host h to serve resource r be 𝒞 unit re-
source/sec. The minimum time to acquire one unit of r on
this host can be expressed as (omitting subscript h):

RATP∗ = 1

𝒞 sec / unit resource (3)

out of scope of this paper. Instead, here we focus on the topic of contention

analysis and detection of contention creating queries.

4
This assumes that both queries have equal right on the resource. It is easy

to incorporate weights/priorities into this definition by normalizing the

consumption rates by weights/priorities.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

921

Definition 3.2. The total slowdown of task vt in time
interval δt due to unavailability of resource r is defined as:

𝒮vt =
(RATPvt − RATP∗)

RATP∗
(4)

where RATP∗ is the capacity of host h for resource r (see (3)).

Example 3.3. Consider three tasks Task1, Task2 and Task3
reading 30, 60 and 120 bytes of data from disk in 1 second
on a machine with 210 bytes/sec IO speed. In this single time
interval, vt = Task1 is thus slowed by 6 times the ideal rate
(𝒮vt = 210

30
− 1 = 6 from (4)).

Intuitively, the slowdown captures the deviation from the

ideal resource acquisition rate on the host h and gives a

measure of the excess delay incurred for unit resource in the

δt execution interval. The slowdown ofvt will be zero when
it has the entire resource to itself. Thus, 𝒮vt is the slowdown

caused by all other running processes in the system. We

classify them into 3 categories:

(1) concurrently running tasks,

(2) known external processes (e.g., framework processes

common to all tasks), and

(3) unknown external processes (e.g., processes not known

in advance or not managed).

Thus the slowdown is expressed as:

𝒮vt = (
n
∑
ct=1

βct→vt)

)︁⌊︂]︂⌊︂)︂
p1

+(
M
∑
i=1

βknown,i→vt) + βunknown→vt

)︁⌊︂]︂⌊︂)︂
p2

(5)

Here βct→vt is the blame assigned to each of the n tasks

ct = 1,⋯,n concurrently running with vt ; βknown,i→vt is
the blame assigned to other known i = 1,⋯,M non-conflict-

related causes that contribute to thewait time ofvt . βunknown→vt
captures the blame attributable to unknown factors.

3.3 Blame with RATPs
The first term, p1, in equation (5) is a sum of the blame values

of n concurrent tasks of a victim task. The blame βct→vt for
the contention caused for resource r by a concurrent task ct
to a victim taskvt on host h can be expressed as equation (6).

How equation (6) can be derived from equations (4) and (5)

is given in Appendix A and B, and we outline the intuition

and illustrate with examples below:

βct→vt =
⎨⎝⎝⎝⎪
∑

δt∈𝒪

RATPδtvt

RATPδtct

⎬⎠⎠⎠⎮
(6)

Here𝒪 is the set of δt time intervals in which tasks ct andvt
overlap, and we omit the subscripts r and h. Figure 5 shows
an example overlap of four concurrent tasks with vt inm+ 1
intervals of its execution.

Example 3.4. In Example 3.3, the blame value for Task2 is
60⇑30 = 2 and blame for Task3 is 120⇑30 = 4 using (6).

Figure 5: An example overlap between concurrent tasks.

The above blame formulation is based on RATP values

which are by definition resource specific (we are omitting

subscripts r for simplicity). A concurrent task can only be

blamed if it uses the same resource at a higher rate (addresses

Challenge 2a). Since blame is also a ratio of RATP values, the

value of blame is thus more for tasks consuming at higher

rate with respect to the victim task (addresses Challenge 2b).

In the next subsection, we give a more accurate computation

of blame using blocked times.

3.4 Incorporating Blocked Time in Blame
As discussed in Section 1.1, in data analytics frameworks

tasks can continue to execute even when they wait for some

of the resources. In such scenarios, the blame computed us-

ing equation (6) can be inaccurate. Suppose in Examples 3.3

and 3.4, while Task1 waits 210−30
210
= 6

7
sec within the δt = 1

sec interval, it is only blocked for
1

4
sec (in the rest of the time

it is still running). The absence of concurrent tasks Task2
and Task3 can only speed it up by

1

4
sec at most and hence

they only deserve to be blamed to that extent. Therefore us-

ing blocked time for calculation of RATP of victim task gives

a more accurate blame value. In another scenario, say the

tasks also contend for CPU in the same 1sec and receive CPU
time slots in the same proportion. If we sum the blame for all

resources in an interval, then it will double although there

might be a overlap in wait times for resources (CPU and IO).

This can again be mitigated if we ensure that there is no

overlap between wait times used in blame calculation. The

solution again is to use blocked times. As by definition, the

blocked time of a task is from the view point of its computa-

tion progress, it is only counted once even if it is due to wait

on more than one resource. We now update the definition of

RATP from Equation 2 using blocked time as:

RATP-blockedvt =
BTvt
δrvt

(7)

where BTvt = the blocked time of the victim task vt when
it consumed δrvt units of resource in interval δt . Using this

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

922

definition, the blame value in Equation 6 is re-written as:

ˆβct→vt = ∑
δt∈m

RATP-blocked vt

RATPct
(8)

Any concurrent task (irrespective of the amount of its

resource consumption) is considered blocking if it consumes

the same resource on which the impacted task is blocked.

However, in this new formulation, the blame attributed is

more for tasks that consume more resource. As a result,

while all concurrent tasks block each other, the impact from

a concurrent task with the highest resource share is highest.

The RATP value of a concurrent task ct (denominator) is

still based on the entire time interval for two reasons: First,

it ensures that the slowdown based on blocked time has

an upper bound as derived in Equation 5. The numerator

on every term on the right hand side (RHS) decreases (as

blocked time in any interval strictly bound by it) but the

denominators have no change. If we were to change the RATP
of concurrent tasks also to be based on blocked time then

terms on the RHS could either increase or decrease which

does not guarantee any bound. Second, for the other known

and unknown processes entities in p2 term in Equation 5, it

is easier to obtain the resource consumed in an interval by

any external process in comparison to its blocked time.

4 GLOBAL BLAME DISTRIBUTION
In the previous section, we discussed our methodology to

assign blame to a concurrent task ct for causing contention
to a victim task vt . As discussed in Section 1.1, a query in

data analytics frameworks is processed by multiple stages

that have many parallel tasks. iQCAR uses a multi-layered

directed acyclic graph to capture, aggregate, and compute

contentions between queries at different granularity and

dimensions (i.e., stage level, resource level and also host level).

The different levels in our graph-based model are chosen

carefully to address the challenges discussed in Section 1.2.

4.1 iQC-Graph
Our graph model consists of seven levels designed to (i) drill

down from a query to its tasks for every resource and host,

(b) assign blame to concurrent tasks, and finally (c) aggregate

blame to concurrent stages and queries. The vertices are con-

structed bottom-up from Level-0 to Level-6. For each node u
in the graph, we assign weights, called Blame Contributions
(denoted by BCu) that are used later for analyzing impact

and generating explanations. The BC values are computed

for Level-3 first using Equation 9 (discussed shortly), and

are then updated middle-out for all other levels. This blame

value represents accountability towards the blocked time

faced by the victim query, and is distributed to all nodes in

the graph. Thus, the unit of BC for each node at every level is

in seconds . Intuitively, it represents the fraction of the total

blocked time in seconds faced by a victim query that is attrib-

uted to that node. A detailed construction of the graph is ex-

plained in Appendix C. Thus for all levels, BCu measures the

blame assigned to u for causing slowdown to a single victim

query vertex in Level-0. Figure 6 illustrates the distribution of

blame for all levels in an example iQC-Graph. Level-5 shows
the stages of only concurrent queries. There are, however,

other causes that can cause contention like external known

processes and unknown processes (see Section 5.1), which

are not broken down into stages. In Figure 6, we therefore

short-circuit their impact from Level-4 to Level-6 (notice no

vertices at Level-5 for External-IO and Unknown).

Level-0 to 3 - TrackingBlockedTimes atDifferentGran-
ularity: The BC of vertices from Level-0 to 3 represent their

contribution towards the delay faced by Qi node at Level-0.

For a node u in each level, BCu gives the blocked time for the

entity represented at that level.

● BCℓ3u (Level-3): represents the cumulative blocked time for

all tasks of a victim stage node u for resource r on host h.
It is the lowest level of granularity in the iQC-Graph.
● BCℓ2u (Level-2): The values at Level-3 are aggregated per

resource to capture resource level blocked times in Level-2,

i.e., BCℓ2u = ∑h∈hosts BC
ℓ3
h . In data analytics frameworks, the

computation done by each task is completely independent

of other tasks in the same stage. The tasks can all run in

parallel or sequentially one at a time depending on the

cluster workload and scheduling situation. To make the

logic of iQC-Graph independent of task parallelism, the

blocked times are aggregated to reflect the total potential

improvement if there was no blocked time. Moreover, since

the unit of blame attributed is in seconds , these impacts

on tasks of the same stage executing across different hosts

can be aggregated at Level-2. The invariant in equation

(12) is valid per host/machine. Hence, the blame values

are assigned to concurrent tasks executing on same ma-

chine, and thus clock synchronization is not required when

aggregating the blame values.

● BCℓ1u (Level-1): The blame for victim stages at Level-1 is

the aggregate value of blocked times due to individual

resources i.e., BCℓ1u = ∑r∈r esources BC
ℓ2
r .

● BCℓ0u (Level-0): BCℓ0u = ∑vs∈vic_staдes BC
ℓ1
r . A query DAG

can consist of multiple parallel paths (see Challenge 1),

the blocked time of a query cannot be computed by sum-

ming up the blocked time of all its stages. To address this

concern, we consider only the stages on the critical path
of a query’s executionas its victim stages. These are the

sequence of stages that form the longest chain of execution

forQi (sum of run times of stages on the critical path gives

the total runtime of the query). In our example in Figure 1,

stages s0 → s3 → s4 → s5 form the critical path of Q0.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

923

𝟐𝟎𝟎

Level-0
(Victim	Query)

Level-1
(Victim	Stages)

Level-2
(Resources)

Level-3
(Hosts)

Level-4
(Blame	Attribution)

Level-5
(Concurrent	Stages)

Level-6
(Concurrent	Queries)

1000

800

700

100

100

100

650

150

800

𝜷 𝑪𝟏→𝑽𝟏
𝑹𝟏,𝑯𝟐

𝜷 𝑪𝟐→𝑽𝟏
𝑹𝟏,𝑯𝟐

200

500

50

50

100

100

100
𝑸𝟎

𝑽𝟏

𝑽𝟐

𝑽𝟏𝑹𝟏

𝑽𝟏𝑹𝟐

𝑽𝟏𝑹𝟏𝑯𝟏

𝑽𝟏𝑹𝟏𝑯𝟐

V1R1H1C1

𝑽𝟐𝑹𝟏

𝑽𝟐𝑹2

𝑽𝟐𝑹𝟐𝑯𝟏

𝑽𝟐𝑹𝟐𝑯𝟐

V1R1H2C1

V1R1H2C2

V2R2H2C2

V2R2H1C1

𝑪𝟏

𝑪𝟐

𝑸𝟏

𝑽𝟏𝑹𝟐𝑯𝟏

𝑽𝟐𝑹𝟏𝑯2

𝑬𝒙𝒕𝒆𝒓𝒏𝒂𝒍 − 𝑰𝑶

Unknown
100

V2R1H2Unknown

200

400

100

50

50

100

100

V1R2H1External-IO

Figure 6: An example iQC-Graph. The labels above nodes represent the entity ID, and the values in the vertices give the
BC. The highlighted β values show an example of how Equation 8 is used to distribute blame (blocked-time) from Level-3
vertex to Level-4 vertices. The unit of blame contribution of each node in iQC-Graph is in seconds. The path in red shows the
highest-impact path. Figure shows how iQCAR attributes blame to other external apps causing, say, IO impact. All unaccounted
blocked-time is attributed to Unknown source.

Level-4 - Linking Cause to Effect: For every victim stage,

we begin by identifying all tasks concurrent to tasks of this

stage and compute their blames using Equation 8 for every

r ,h combination. The blame for a single concurrent stage Cj
of another query is then computed by aggregating individual

blames assigned to its tasks ct , and the victim tasks vt :

ˆβcs→vs = ∑
ct,vt

ˆβr,hct→vt (9)

The BCℓ3u at Level-3 for a u = (vs, r ,h) is then distributed

among Level-4 nodes (we addm nodes Pu in Level-4 for m

concurrent stages, see Appendix C) in proportion to their

blames values. That is,

BCℓ4u =
ˆβcs→vs

∑cs ′∈Pu
ˆβcs ′→vs

∗ BCℓ3u (10)

Intuitively, it gives the fraction of the total blocked-time

on host h for resource r (Level-3 node) which is attributed

to Cj . For example, if BCℓ3u = 500sec , and the ratio of blames

fromC1 ∶ C2 are 4 ∶ 1 respectively (from above equation), then

BCℓ4V 1,R1,H2,C1
= 400 and BCℓ4V 1,R1,H2,C2

= 100 (see Figure 6).

Level-5 and 6 - Aggregating Blame: After we compute

BC values at Level-4, we track the sources of their incoming

edges (concurrent stages). For each outgoing edge ∐︀u,ṽ︀ from
Level-5 to all Level-4 vertices corresponding to a single victim

query, the value of BCℓ5u = ∑v∈edдe_tarдets BC
ℓ4
v . Similarly, we

compute BCℓ6u = ∑v∈edдe_tarдets BC
ℓ5
v . These BCs give the total

impact originating from this source (stage or query) toward

a single victim query. For multiple victim queries at Level-0,

we maintain a map of BC values originating from each node

at Levels 5 and 6 towards each victim.

4.2 Explanations and their Scores
While the BC values are sufficient to answer the question

“who is slowing me down?" for a particular victim query, we

cannot use this measure as-is to compare the impacts caused

or received by queries. For example, supposeQ3 causes an im-

pact of 500sec to each ofQ1 andQ2. It is possible that this im-

pact was just 1% of the total impact received by Q1, whereas

it was 100% of the impact received by Q2. The responsibility

of Q3 toward the slowdown of each query is thus different.

We thus cannot use the blame value of 1000sec originating
from it towards two victims to rank its outgoing impact. To

address this, the Explanations Generator module uses the BC
values to compute two measures, namely the Impact Factor
(IF) and the Degree of Responsibility (DOR) that together
provide a normalized basis for comparing impacts. We set

the IF as edge weights and DOR as the node properties.

Impact Factor (IF): From Level-0 to 4, for every edge ∐︀u,ṽ︀
in iQC-Graph, its Impact Factor IFuv is the normalized im-

pact received by each child node v from its parent nodes u-s.
For instance, the impact from a Level-3 node u to a Level-2

node v is IFuv =
BC

ℓ
3

v

BC
ℓ
2

u
. Figure 7 shows an example of the

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

924

Figure 7: Example computation of IF and DOR from BC.

impact received by child node v1 from its parents u1,u2,u3.

For edges ∐︀u,ṽ︀ from Level-5 to 4, IFuv =
BC

ℓ
4

v

BC
ℓ
5

u
, and from

Level-6 to 5, IFuv =
BC

ℓ
5

v

BC
ℓ
6

u
.

Degree of Responsibility (DOR): iQCAR consolidates the IF
further to aggregate responsibility of each entity (queries,

stages, resources and hosts) towards the contention faced by

every victim query. The value of DORu is in the range (︀0, 1⌋︀
and is computed as the sum of the weights of all paths from any
node u to the victim query node t , where the weight of a path
is the product of all IFvw values of all the edges (v,w) on this
path. However, the DOR values can be efficiently computed

in linear time by graph traversal as illustrated in Figure 7

for node v3. If we choose more than one query at Level-0 for

analysis, a mapping of the values of DOR toward each query

is stored on nodes at Level-5 and 6.

Candidate Explanations: A path in iQC-Graph starting

from a culprit query cq and culminating at a victim query

vq, thus, represents a candidate explanation for the con-

tention caused by cq to vq. We represent it as follows: ϕ =
Expl(vq, vs, res, res′, host, cs, cq, 𝒫)
where ,

vq and vs denote the victim query and stage being explained

by ϕ resp;

res ∈ CPU ,Memory, IO,Network ;
res’ is the type of resource impacted (see Section 5.2);

host is the host of impact;

cs is the impacting stage of the concurrent query;

cq is the impacting concurrent query;

𝒫 is the cumulative weight of the path originating from cq
and ending at vq. Users can rank the explanations using 𝒫 to

filter top paths of contentions from cq Level-6 to its victim.

We show various use-cases in which iQCAR uses the can-
didate explanations and their DOR scores in Appendix E.

5 IMPLEMENTATION
In this section, we discuss some specific details of our im-

plementation of iQCAR on Apache Spark [31]. They include

the supported resources, instrumentation in the framework,

frequency of metrics collection and our approach to handle

the terms in p2 in Equation 5.

5.1 Impact of Non-Query Processes
In Section 3.2 we separated the causes for query slowdown

into three categories. While iQCAR is designed to accurately

handle the blame due to the first category (concurrent queries)

it can also be used to identify contentions due the second

category (other known processes) and classify remaining

blame to final category.

Known Processes: iQCAR is pre-configured for attributing

blame to select known causes i.e., in every interval iQCAR
identifies the resource consumption of these processes/threads

to calculate their blame. Its API allows users with domain

knowledge to configure support for more external processes.

For instance, consider the Java garbage collector (GC) pro-

cess. As Spark runs on JVM its tasks are subject to GC pauses.

We model this as a long running concurrent queryGCQ with

one task on every host. The metrics collector captures the

time spent on GC in every interval of blame calculation and

attributes the appropriate blame to this task. If a query is

running slow because of high garbage collection activity

then iQCAR identifies GCQ as the cause.

External ProcessesWe model two constant long running

queries External-IO, External-Network with one task each

on every host. We keep a track of the total system resource

usage for disk and network during each execution window.

This information is used to compute the resource consumed

by external processes (by subtracting the aggregate resource

usage for all tasks from the total system usage). The External-
IO and External-Network synthetic queries are then attributed
blame using these computed values.

5.2 Supported Resources
Our implementation supports contention analysis for all

four system resources network, disk, cpu and memory. We

collect system-level metrics by deploying per-host agents

that capture and report with every heartbeat. For query level

metrics, we use existing Spark metrics where available and

our instrumentation for additional metrics as outlined below:

● Network: Existing fetch-wait-time and shuffle-bytes-read
are used.

● Memory: Spark manages application memory by splitting

them into execution and storage memory buckets. Instru-

mentation is used to capture storage memory wait time,
storage memory acquired, execution memory wait time and
execution memory acquired metrics.

● IO: Existing scan-time and bytes read metrics are used for

disk read. For disk write, shuffle-write-time and shuffle-
bytes-written metrics are used.

● CPU: This contention has two components (a) Lock and
Block wait due to contention for common data-structures

(locks, monitors, etc). Java JMX based instrumentation is

used to capture these wait time metrics (b) OS scheduling

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

925

wait owing to usage being 100% (as more tasks need CPU

than max runnable cores). It is computed by subtracting

all above blocked times from the interval wall time
5
.

5.3 Frequency of Metrics Collection
For each task vt , we added support to collect the time-series

data for its blocked-time and the corresponding data pro-

cessed metrics at the boundaries of task start and finish for

all other tasks ct concurrent to vt . Figure 5 shows the four
cases of task start end boundaries concurrent to taskvt . Note
that with this approach, the length of intermediate δt de-
pends on the frequency of arrival and exit of concurrent

tasks, thus enabling us to capture the effects of concurrency

on the execution of a task more accurately. For workloads

consisting of tasks with sub-second latency, our approach

gives fine-grained windows for analysis. However, if the ar-

rival rate of concurrent tasks is low (long-running tasks), this

can affect the distributions of our metric values. To address

this, we also record the metrics at heartbeat intervals in ad-

dition to above task entry and exit boundaries. Section 6.3.1

compares the impact of both the approaches on the quality

of our explanations.

5.4 Limitations
Concurrently executing queries can cause impacts in many

indirect ways too. The indirect impacts are more profound

when queries share common framework and/or process re-

sources like process managed shared memory, shared cache

etc. As an example, in our environment (Spark SQL over

Thriftserver), tasks of multiple queries run in the same JVM

process thereby having a high heap memory coupling. If a

task related to one query puts stress on the heap memory

then the resultant garbage collection pause impacts all other

tasks. In iQCAR we handle this specific issue by creating

a separate GC task in the list of our known causes as dis-

cussed previously to avoid incorrect blame attribution but

still fall short of accurately pinning the blame to problematic

task. Another challenge arises when the impact from con-

current queries is not negative. In some cases they may aide

faster processing. Incorporating such indirect slowdowns

and accounting for positive vs negative impacts is part of

our on-going effort.

5.5 Discussion
While our focus in this paper is on SQL workloads on Spark,

iQCAR’s approach of (a) using blocked times, (b) its blame

attribution model and (c) DAG based blame propagation

5
It is commonly recommended to run more task threads than CPU

threads [25] for increased CPU utilization; but, this also leads to contention

in some intervals. It is a trade off that users make based on experience. Our

implementation is on default values

generalize well to other workloads on any data-flow based

processing system. Spark was our choice of implementation

owing to its ability to process different workloads like SQL,

machine learning, graph analytics, etc. within a common

framework. All the existing metrics (except scan-time) and
those from our instrumentation are in its core engine and

could be used for any workload. iQCAR could be adapted

to work with any other similar system by implementing

metrics collection module for that system. The complexity

of this task depends on existing support (metrics) from the

system and instrumentation effort for missing metrics. In

Appendix F we describe the implementation of our metrics

collector module in another sql-on-hdfs system Presto [12].

6 EXPERIMENTAL EVALUATION
Our experiments were conducted on Apache Spark 2.2 [31]

deployed on a 20-node local cluster (master and 19 slaves).

Spark was setup to run using the standalone scheduler in

fair scheduling mode [30] with default configurations. Each

machine in the cluster has 8 cores, 16GB RAM, and 1 TB

storage. A 300 GB TPCDS [15] dataset was stored in HDFS

and accessed through Spark SQL in Parquet [3] format. The

SQL queries were taken from [27] without any modifications.

Workload: Our analysis uses a TPCDS benchmark work-

load that models multiple users running a mix of data ana-

lytical queries in parallel. We have 6 users (or tenants) sub-

mitting their queries to dedicated queues. Each user runs 15

sequential queries randomly chosen from the TPCDS query

set. The query schedules were serialized and re-used for all

experiments to compare results across executions. We iden-

tify a victim query as the one that took most hit (suffered

maximum slowdown) compared to its unconstrained execu-

tion (when run in isolation). The queryQ43, which was 178%

slower, is the victim discussed in the rest of this section.

6.1 Debugging Challenges Without iQCAR
The purpose of this experiment is to show how iQCAR en-

ables deeper diagnosis of contentions compared to other ap-

proaches. For comparisonwith baseline, we use the following

metrics: (a) Blocked-Time Analysis (BTA): blocked times

for IO and Network [24] aggregated at stage and query levels,

(b) Naive-Overlap: based only on the overall query overlap

times (a technique popularly used by support staff trying

to resolve who is affecting my query tickets), and (c) Deep-
Overlap: we compute the cumulative overlap time between

all tasks of concurrent queries. In this approach, overlap time

of tasks executing in parallel is aggregated in comparison

to previous one where only the maximum overlap is consid-

ered. For both overlap-based approaches, highest blame is

attributed to query with most overlap.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

926

(a) (b) (c)

Figure 8: (a) Cumulative blocked times from iQCAR and BTA approach; (b) Blocked times for IO, CPU and Network; (c) Com-
parison of RATP for IO and CPU for top-5 impacted stages of Q43.

Figure 8a compares the blocked times observed (y-axis

is plotted on log-scale) with the BTA method vs captured

by iQCAR for its top-5 victim stages. Since iQCAR accrues

blocked times for additional supported resources (discussed

in Section 5.2), it gives more insight into the slowdown for

stages like 21 and 23. Figure 8b compares the relative per re-

source blocked times. However, to identify disproportionality

in these blocked-times (i.e. understanding impact) RATP is

better. Blocked-time gives the possible speed-up only if there

are no resource constraints, i.e., infinite resource supply, it

is still insufficient to provide relative impact in a real cluster

with resource constraints. Here it is difficult for the admin to

infer whether stage 20 or 22 caused more impact due to con-

currency. Based on cumulative-blocked times alone, stage 20

stands out as cause for query slowdown. However, when we

compare the RATPs for these stages using iQCAR, we see in
Figure 8c that the CPU RATP was much higher for multiple

stages compared to their IO RATP, whereas the network RATP
was significantly low to even compare. If we analyze the im-

pact on each of these stages generated using the explanations

module of iQCAR, query Q43 received highest impact from

victim stage 22 through CPU.

Clearly, Block Time helps in identifying the parts of a

query whose speed-up would help the most but not neces-

sarily the parts that are hit due to contention. In a resource

constrained environment it is the latter that is more help-

ful for administrators to align at-least the query scheduling

strategies.

We now compare the results of different overlap time

approaches for two stages 20 and 22. An admin, based on

higher blocked times, would infer that queries concurrent (or

the ones with highest overlap) to these stages have caused

highest impact to Q43. However, as shown in Figure 9, the

top overlapping or concurrent queries differ significantly

between Naive-Overlap and Deep-Overlap. The queries with
minimal overlap shown in Naive-Overlap (Q4 and Q27) have

relatively more tasks executing in parallel on the same host

as that of victim query, causing higher cumulative Deep-
Overlap. Clearly, using Naive-Overlap can lead to misleading

results for blame attribution.

The output from iQCAR is more comparable toDeep-Overlap,
but has different contributions. Especially forQ11, where the

tasks had a high overlap with tasks of our victim query Q43,

the impact paths showed low path weights between these

end points. A further exploration revealed that only 18% of

the execution windows (captured via the time-series metrics),

showed increments in CPU and IO acquired values forQ11 in

the matching overlapping windows. Q11 itself was blocked

for these resources in 64% of the overlapping windows. With-

out the impact analysis API of iQCAR, an admin will need

significant effort to unravel this and is more subject to falsely

attribute blame to either Q52 with Naive-Overlap or to Q11

with Deep-Overlap.

6.2 Test Cases
While it is important to diagnose and distribute accurate

blames, it is also required in a timely manner for any ac-

tionable measures. The purpose of these experiments is to

demonstrate how iQCAR can perform a time-series analysis

to detect culprit queries induced in an online workload. For

ease of exposition, we restrict our definition of culprit to the

most impacting query for a single victim. For each test-case,

the culprit query was formulated to create a specific resource

Figure 9: Compare top-5 impacting queries between (a)
Naive-Overlap (b) Deep-Overlap and (c) iQCAR.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

927

(a) (b) (c)

Figure 10: CPU-Internal experiment: (a) Ganglia snapshot showing higher CPU Utilization when Qcpu−int was running; (b)
DOR of Qcpu−int is about 27% towards query Q43 during CPU induction; (c) Overlap-based impact from concurrent queries.

Table 1: Summary of Induced Contention Scenarios

Test-Case Detail

CPU-Internal run CPU-intensive query after Q43 starts.

IO-External read a large file on every host after Q43.

Mem-Internal Cache web_sales table before Q43 starts.

contention scenario as summarized in Table 1. Note that, (a)

test-case of Memory-external is out of scope since iQCAR de-

tects contentions only for managed memory in Spark, (b)

inducing only network contention in our SQL workload was

not possible as our attempts to increase shuffle data resulted

in an increase IO contention owing to heavy shuffle write.

6.2.1 CPU-Internal. Listing 1 shows our induced culprit

query Qcpu−int :

Listing 1: Qcpu−int : CPU-Internal Induction query
with temp (s e l e c t c1 . c _ f i r s t _ n ame as f i r s t _name ,

sum (sha2 (r e p e a t (c1 . c_ las t_name , 4 5 0 0 0) , 5 1 2)) as ssum

from cus tomer c1 , cus tomer c2

where c1 . c_cus tomer_sk = c2 . c_cus tomer_sk

group by c1 . c _ f i r s t _ n ame)

s e l e c t max (ssum) from temp l imi t 1 0 0 ;

We first discuss the characteristics of Qcpu−int : (a) low-
overhead of IO read owing to a scan over two small TPCDS

customer tables each containing 5 million records stored in

parquet format, (b) low network overhead since we project

only two columns, (c) minimal data skew between partitions

as the join is on c_customer_sk column which is a unique

sequential id for every row and shuffle operation used hash-

partitioning, and (d) high CPU requirements owing to the

sha2 function on a long string (generated by using the repeat

function on a string column). Figure 10a shows that the CPU

utilization reaches almost 80% during our induction.

Observations: iQCAR is used to analyze the contentions

in different time windows of the workload execution (here

cpu_live_1, cpu_live_2, cpu_live_3, and cpu_live_total). Fig-
ure 10b shows the change in DOR values of the concurrent

queries towardsQ43. As it starts execution only in the second

window, we skip cpu_live_1 in the figure. The stacked bars

show the relative contribution from each of the top-5 culprit

queries, and their heights denote the total contribution from

them. Qcpu−int was induced at the end of cpu_live_2, hence
no contribution from Qcpu−int in this window. As seen in

cpu_live_3, once we induce Qcpu−int when Q43 starts, iQCAR
correctly detects its contribution of 27%.

The end-of-window analysis in cpu_live_total shows the
overall impact to Q43 from all concurrent queries during

its end-to-end execution. Although Qcpu−int caused high

contention to Q43 for a period, its overall impact was still

limited (0.05%). Without iQCAR, if the admin performs Naive-
Overlap and Deep-Overlap in cpu_live_3 window to attribute

blame as shown in Figure 10c, she will be wrongly attributing

about 35% of received impact to Q11, whereas, the actual

impact shows less than 10% overall impact from Q11.

6.2.2 IO-External. In this test-case, we show how iQCAR
can be used to detect impact from culprit processes that

run outside the Spark framework. To create an IO-intensive

external culprit process, we read and dump a large file on

every host in the cluster after the workload stabilizes (at least

one query is completed for each user). Let us call this culprit

process as IO −Other . The timing of induction was chosen

such that it overlaps with the scan stage of Q43. We created

a 60GB file on each host and used the command in Listing 2

to read in blocks of size 256MB using the below command:

Listing 2: IO −Other : IO-External Induction query
dd i f =~/ f i l e _ 6 0GB o f =/ dev / n u l l bs =256

Observations: Ganglia showed over 1600% aggregate disk

utilization for all nodes (19 slaves) in the cluster during this

period of IO induction. We analyze impacts for the following

windows: (a) Q43 had not started in io_live_1, (b) io_live_2

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

928

Figure 11: DOR of culprit query IO−Other towards queryQ43

changes as the workload progresses.

analysis was done for victim query Q43 just before we in-

duced IO −Other , (c) io_live_3 to io_live_5windows while
IO −Other is running concurrently withQ43 (we omit show-

ing io_live_4 due to plotting space constraints), (d) Q43 fin-

ishes execution before io_live_6, and (e) the io_live_total
window to analyze overall impact onQ43 from the beginning

of the workload till the end. Figure 11 shows the relative

contributions from each of the concurrent queries, show-

ing that iQCAR detects the culprit process first in io_live_3
(shown in dark blue), and outputs an increasing impact dur-

ing io_live_5 when it peaks.

6.2.3 Mem-Internal. In this third test-case we show how

iQCAR distinguishes between multi-resource interferences

and rightly detects a culprit that impacts a single resource

largely. To achieve this, we create a memory contention sce-

nario which should potentially also cause heavy IO conflict.

Since we monitor contention only for the managed mem-

ory within Spark, our internal memory-contention test-case

caches a large TPCDS table (web_sales) in memory just be-

foreQ43 is submitted. Let’s call this query asQmem−int . Note,
with alternate approaches like CPU Stolen Time [9], this

induced culprit causing memory conflict will go undetected.

Observations: We now analyze the impact on Q43 for

the following four windows: (a)mem_live_2 is the period

where bothQ43 andQmem−int had begun execution together

Figure 12: Impact of induced memory contention on Q43.

(Q43 had not started in mem_live_1), (b) mem_live_3
shows a window where some other queries had entered the

workload, and both Q43 and Qmem−int were still running, (c)
mem_live_4 andmem_live_5 are the windows when Q43

was still running and Qmem−int had finished execution, and

(d)mem_live_total analyzes the overall impact onQ43 from

top-5 culprit queries during its complete execution window.

While Q43 was running concurrently with multiple other

queries, Qmem−int causes more than 40% share of the total

impact received via memory once it begins as shown in Fig-

ure 12. Note that Q43 scans store and store_sales, whereas
we cached web_sales in our induction query. This created

high IO interference, but the value of blame distributed via

memory was noted to be highest.

6.3 Instrumentation
In this section, we analyze the impact of our instrumentation

on the quality of explanations and query runtimes.

6.3.1 Frequency of Data Collection. iQCAR aggregates re-

source usage and blocked times metrics from small intervals

to calculate blame. The explanations (i.e., DOR values) are

derived from these blame values and are sensitive to the

interval size. In this experiment, we show that the accuracy

of explanation improves with decrease in interval length. In

Section 5.3 we describe how a combination of regular interval

and task event based metrics gives most accurate blame (TE)
and use it as ideal value to calculate DOR deviation. Figure 13
shows that the DOR values vary for different heartbeat inter-

vals and their average deviation (vector distance) from ideal

(shown on secondary y-axis as ‘DOR distance from Ideal

(TE)’ and depicted in red) tends to improve with decreasing

intervals. While lower interval lengths give higher accuracy

the ideal interval size depends on average task runtimes of

the workload. In our workload (TPCDS), task runtimes vary

highly so we used a lower value (2s) to ensure better ac-

curacy. We next discuss the overheads associated with this

instrumentation.

6.3.2 Instrumentation Overhead. Many metrics relevant to

iQCAR are already provided by frameworks (e.g., Spark (Sec-

tion 5.2) and Presto (Section F)) and instrumentation for

additional metrics is very low (book-keeping instructions to

capture time and bytes used). Although the absolute over-

head increases with frequency of metrics collection for larger

tasks it is still a small fraction of their runtime. The metrics

are also collected asynchronously to avoid tasks from block-

ing. Figure 14 shows the overhead (collection interval of

2s) over baseline (collection interval 10s) as the query con-

currency increases. Increase in concurrency increases the

average runtime of tasks due to resource contentions. The

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

929

Figure 13: Impact of varying intervals of metrics collection
on explanation DORs. TE denotes the metrics collection at
task-event boundaries (Section 5.3) in addition to 2s logging.

Figure 14: Instrumentation in Spark - Percentage overhead
over baseline.

overhead increases only by 1.4% for 5 fold increase in con-

currency.

6.4 Analysis
In this section we discuss the performance of analytic com-

ponents of iQCAR for entire workload (offline) and describe

the changes in online analysis.

6.4.1 Graph Construction. In Figure 15a, we observe (a) an

increase in size of iQC-Graph and (b) time taken for execu-

tion of different components, as the number of concurrent

queries increases. The window of analysis here is the entire

runtime of workload and the graph is built for every query.

For example, for 6 concurrent queries, iQC-Graph was built

with six vertices at Level-0, all their stages in Level-1 and so

on. The size of the graph therefore grows very quickly as the

concurrency increases. This is shown on the right y-axis. The

graph size increases from under 100 for 2 queries to about

120k for 11 queries. The time for constructing the graph is

shown on the left y-axis. Even for a single threaded execution

it only grows at half the rate of graph size. It increases from

under 2s for 2 queries to 60s for 11 queries. This is still under

2.5% of the runtime of the workload. The computation time

(a)

(b)
Figure 15: (a) Graph Construction - The time taken by the
Graph Constructor module in various steps. (b) Explana-
tions Generation - The time taken by the Explanations Gen-
eratormodule to invoke its BlameAnalysis API for different
use-cases.

of IF and DORs is still lower, under 1% of the workload time.

In a live scenario the window of analysis is much smaller and

hence the size of the iQC-Graph reduces significantly. The
nodes in Levels 2, 3, and 4 corresponds to a particular victim

stage, the subgraph formed by these nodes for one victim

stage at Level 1 is disjoint from the subgraph formed by the

nodes for another victim stage. They are connected back at

Level 5 if multiple victim stages execute concurrently with

the same culprit stage. This property allows the construction

of subgraphs from Level 0 to Level 4 in parallel.

6.4.2 Explanations Generation. In Figure 15b, we present

the times spent for different types of analysis algorithms.

The process of generating textual explanations from the

contention iQC-Graph (the plot-line for ‘Generating Expla-
nations’ depicted in red) dominates the runtime of our Blame
Analysis process. The y-axis values for this measure ac-

count for the time to generate explanations for all the use-

cases (a top-k query) listed in the figure. However, in a live-

contention analysis scenario, a user will be performing a

single use-case at a time. Moreover, since our API uses cus-

tomized Cypher [6] queries on Neo4j to retrieve data and

generates plots in real-time using Plotly [11], users can in-

teractively explore contentions.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

930

Table 2: Comparison of iQCAR with other approaches

(Category)

Related Work

No

His-

torical

data

Detects

slow-

down

Detects

bottle-

necks

Blame

attri-

bu-

tion

Dataflow

Aware

(1) Ganglia,

Spark UI, Am-

bari

✓ ✓

(2) Starfish, Dr.

Elephant, Otter-

Tune

✓ ✓

(3) PerfXplain,

Blocked Time,

PerfAugur

✓ ✓

(3) Oracle

ADDM, DIADS

✓ ✓ ✓

(3) DBSherlock ✓ ✓
(4) CPI

2 ✓ ✓ ✓CPU ✓

iQCAR
✓ ✓ ✓ ✓ ✓

7 RELATEDWORK
iQCAR is designed to analyze inter-query resource contentions
in near real-time. It does not aim to understand impact of

configuration changes and does not use data of any pre-

vious execution. While the contention analysis logic of

iQCAR is not dependent on previous data, identifying specific

queries (among entire workload) to analyze will be easier

with some reference information. In this paper, we use the

unconstrained execution (without any interference) time of

a query for this purpose. In practice, as mentioned in Sec-

tion 1.2, an admin may identify victim queries using other

performance criteria (e.g., SLA, missed-deadline etc.). or by

simply looking for query with maximum blocked time. To

the best of our knowledge, there is no system today that

performs inter-query contention analysis on data analytics

frameworks without any data from previous executions. We

compare our work with other approaches below and give a

summary in Table 2.

(1) Monitoring Tools: Cluster monitoring tools like Ganglia

[8] and application tools like Spark UI [13] and Ambari [1]

provide query metrics at a high level. They do not capture

low-level resource interactions.

(2) Configuration recommendation: Tools like Starfish

[21], Dr.Elephant [7], and OtterTune [28] analyze perfor-

mance and suggest changes in configuration. However, it

is difficult to predict how these system-wide changes will

affect inter-query interactions in an online workload.

(3) Root Cause Diagnosis tools: Performance diagnosis has

been studied in the database community [17, 20, 29], for clus-

ter computing frameworks [23, 24], and in cloud based ser-

vices [26]. While the design of iQCAR is motivated by some

concepts from such prior work, the techniques and goals dif-

fer as follows: (a) Database Community: In ADDM [20],

Database Time of a SQL query is used for impact analysis.

iQCAR instead takes an approach to provide an end-to-end

contention analysis while also enabling deep exploration

of contention symptoms. DIADS [17] uses Annotated Plan

Graphs that combine the details of database operations and

Storage Area Networks (SANs) to provide an integrated diag-

nosis tool. The problem addressed in DIADS is not related,

but ourmulti-level explanation framework bears similarity to

their multi-level analysis. Causality based monitoring tools

like DBSherlock [29] diagnose problems using data from

previous executions. (b) Cluster Computing: PerfXplain
is a debugging toolkit that uses a decision-tree approach

to provide explanations for the performance of MapReduce

jobs. Unlike iQCAR, it also depends on previous executions.

Blocked Time metric [24] emphasizes the need for using

resource blocked times for performance analysis of data an-

alytical workloads; we critically use blocked time but do

a finer analysis to identify the role of concurrent queries

in causing these blocked tmes. (c) Cloud: PerfAugur [26]
detects anomalous system behavior and generates detailed

explanations for them, whereas iQCAR generates explana-

tions for the slowdown due to resource conflicts.

(4) Detecting Antagonist Queries: CPI
2
[32] uses Cycles-

Per-Instruction data from hardware counters to identify an-

tagonist queries but is limited to CPU contention.

8 CONCLUSION
Resource interferences due to concurrent executions are one

of the primary and yet highly misdiagnosed causes of query

slowdowns in shared clusters today. This paper discusses

some of thechallenges in detecting accurate causes of con-

tentions, and illustrateswhy blame attribution using existing

methodologies can be inaccurate. We propose a theory for

quantifying blame for slowdown, and present techniques to

filter genuine concurrency related slowdowns from other

known and unknown issues. We further showed how our

graph-based framework allows for consolidation of blame

and generate explanations allowing an admin to explore the

contentions and contributors of these contentions systemati-

cally. An interesting direction of future research is to develop

a contention-aware cluster scheduler that can dynamically

reprioritize contentious or victim queries, and/or delay stage

submissions to avoid possible resource conflicts.

ACKNOWLEDGMENTS
We are thankful to our anonymous reviewers for their valu-

able feedback that helped us improve the paper. This work

was supported in part byNSF awards IIS-1408846, IIS-1423124,

IIS-1552538, IIS-1703431 and NIH Award 1R01EB025021-01.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

931

REFERENCES
[1] 2019. Apache Ambari. http://ambari.apache.org.

[2] 2019. Apache Hadoop Capacity Scheduler. http://hadoop.apache.

org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.

html.

[3] 2019. Apache Parquet. https://parquet.apache.org.

[4] 2019. Apache Spark: Memory Management Overview

. https://spark.apache.org/docs/latest/tuning.html#

memory-management-overview.

[5] 2019. Collection of small tips in further analyzing your hadoop cluster.

https://www.slideshare.net/Hadoop_Summit/t-325p210-cnoguchi.

[6] 2019. Cypher Query Language. https://neo4j.com/developer/cypher.

[7] 2019. Dr. Elephant. http://www.teradata.com.

[8] 2019. Ganglia Monitoring System. http://ganglia.info.

[9] 2019. Netflix and Stolen Time. https://www.sciencelogic.com/blog/

netflix-steals-time-in-the-cloud-and-from-users.

[10] 2019. Oracle Autonomous Database. https://www.oracle.com/

database/autonomous-database/index.html.

[11] 2019. Plotly: Modern Visualization for the Data Era. https://plot.ly.

[12] 2019. Presto: Distributed SQL Query Engine for Big Data. https:

//prestodb.github.io.

[13] 2019. Spark Monitoring and Instrumentation. http://spark.apache.org/

docs/latest/monitoring.html.

[14] 2019. The Noisy Neighbor Problem. https://www.liquidweb.com/blog/

why-aws-is-bad-for-small-organizations-and-users/.

[15] 2019. TPC Benchmark™DS . http://www.tpc.org/tpcds/.

[16] 2019. Understanding AWS stolen CPU and how it af-

fects your apps. https://www.datadoghq.com/blog/

understanding-aws-stolen-cpu-and-how-it-affects-your-apps/.

[17] Nedyalko Borisov, Shivnath Babu, Sandeep Uttamchandani, Ramani

Routray, and Aameek Singh. 2009. Why Did My Query Slow Down?

arXiv preprint arXiv:0907.3183 (2009).
[18] Carlo Curino, Djellel E Difallah, Chris Douglas, Subru Krishnan, Raghu

Ramakrishnan, and Sriram Rao. 2014. Reservation-based scheduling:

If you’re late don’t blame us!. In Proceedings of the ACM Symposium
on Cloud Computing. ACM, 1–14.

[19] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data

processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[20] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,

and Graham Wood. 2005. Automatic Performance Diagnosis and

Tuning in Oracle.. In CIDR. 84–94.
[21] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang

Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: a self-

tuning system for big data analytics.. In Cidr, Vol. 11. 261–272.
[22] Prajakta Kalmegh, Harrison Lundberg, Frederick Xu, Shivnath Babu,

and Sudeepa Roy. 2018. iqcar: A demonstration of an inter-query

contention analyzer for cluster computing frameworks. In Proceedings
of the 2018 International Conference on Management of Data. ACM,

1721–1724.

[23] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012.

Perfxplain: debugging mapreduce job performance. PVLDB 5, 7 (2012),

598–609.

[24] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and

Byung-Gon Chun. 2015. Making Sense of Performance in Data An-

alytics Frameworks. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15). USENIX Association, 293–

307. https://www.usenix.org/conference/nsdi15/technical-sessions/

presentation/ousterhout

[25] Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ail-

amaki. 2013. Task scheduling for highly concurrent analytical and

transactional main-memory workloads. In Proceedings of the Fourth In-
ternational Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures (ADMS 2013).
[26] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar.

2015. Perfaugur: Robust diagnostics for performance anomalies in

cloud services. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 1167–1178.

[27] spark-sql-perf team. 2016. Spark SQL Performance. https://github.

com/databricks/spark-sql-perf. [Online; accessed 01-Nov-2016].

[28] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.

2017. Automatic database management system tuning through large-

scale machine learning. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1009–1024.

[29] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSher-

lock: A Performance Diagnostic Tool for Transactional Databases. In

Proceedings of the 2016 International Conference on Management of
Data (SIGMOD ’16). ACM, New York, NY, USA, 1599–1614. https:

//doi.org/10.1145/2882903.2915218

[30] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-

egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple

technique for achieving locality and fairness in cluster scheduling. In

Proceedings of the 5th European conference on Computer systems. ACM,

265–278.

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-

ing Sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud’10). USENIX Association, Berkeley, CA,

USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113

[32] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,

and John Wilkes. 2013. CPI 2: CPU performance isolation for shared

compute clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. ACM, 379–391.

A SLOWDOWN OF A TASK FROM
CONCURRENCY

In this section, we derive Equation 6 from Equation 4. For

ease of presentation, we repeat some details as we intend to

present the entire derivation with a single continuity.

Consider a victim task vt that wants to consume resource

r on host h. In the δt interval, let the capacity of the host h
to serve the resource r be 𝒞 unit resource/sec. The minimum
time to acquire one unit of r on host h can be expressed as:

RATP∗ = 1

𝒞 sec / unit resource (11)

The total capacity 𝒞 (of a resource) is consumed by all the

processes running on the system. These processes include (a)

tasks related to queries, (b) known processes (e.g.common

framework services) (refer Section 3) and (c) other unknown

system processes. This can be expressed as

𝒞 = 𝒞vt + 𝒞1 + 𝒞2 + ⋅ ⋅ ⋅ + 𝒞n +
M
∑
i=1
𝒞known,i + 𝒞unknown (12)

Here, 𝒞vt is the capacity used by the victim taskvt ; 𝒞1, . . . 𝒞n
are the capacities used by n concurrent tasks; and 𝒞known,i ,

i = 1⋯M , and 𝒞unknown denote capacities used byM known

causes and any unknown cause. Using Equation 3, for victim

task vt and concurrent tasks ct-s,

𝒞vt =
1

RATPvt
and 𝒞ct =

1

RATPct
for ct = 1⋯n (13)

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

932

http://ambari.apache.org
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://parquet.apache.org
https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
https://spark.apache.org/docs/latest/tuning.html#memory-management-overview
https://www.slideshare.net/Hadoop_Summit/t-325p210-cnoguchi
https://neo4j.com/developer/cypher
http://www.teradata.com
http://ganglia.info
https://www.sciencelogic.com/blog/netflix-steals-time-in-the-cloud-and-from-users
https://www.sciencelogic.com/blog/netflix-steals-time-in-the-cloud-and-from-users
https://www.oracle.com/database/autonomous-database/index.html
https://www.oracle.com/database/autonomous-database/index.html
https://plot.ly
https://prestodb.github.io
https://prestodb.github.io
http://spark.apache.org/docs/latest/monitoring.html
http://spark.apache.org/docs/latest/monitoring.html
https://www.liquidweb.com/blog/why-aws-is-bad-for-small-organizations-and-users/
https://www.liquidweb.com/blog/why-aws-is-bad-for-small-organizations-and-users/
http://www.tpc.org/tpcds/
https://www.datadoghq.com/blog/understanding-aws-stolen-cpu-and-how-it-affects-your-apps/
https://www.datadoghq.com/blog/understanding-aws-stolen-cpu-and-how-it-affects-your-apps/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://doi.org/10.1145/2882903.2915218
https://doi.org/10.1145/2882903.2915218
http://dl.acm.org/citation.cfm?id=1863103.1863113

We abuse the notation to extend this concept also to other

known and unknown causes as:

𝒞known,i =
1

RATPknown,i
for i = 1⋯M and 𝒞unknown =

1

RATPunknown
(14)

Definition A.1. The total slowdown of task vt in time
interval δt due to unavailability of resource r is defined as:

𝒮vt =
(RATPvt − RATP∗)

RATP∗
(15)

where, RATPvt is computed as per Equation (2).

It is the deviation from ideal resource acquisition rate on

host h and gives a measure of the excess delay incurred for

unit resource in δt interval. The slowdown of vt will be zero
when the entire resources is available only to the task vt .

The slowdown given in Definition 3.2 corresponds to the

total blame to be attributed to (p1) other tasks running con-
currently with vt on h during its execution, and (p2) other
known or unknown factors. This gives another expression

for slowdown:

𝒮vt = (
n
∑
ct=1

βct→vt)

)︁⌊︂]︂⌊︂)︂
p1

+(
M
∑
i=1

βknown,i→vt) + βunknown→vt

)︁⌊︂]︂⌊︂)︂
p2

(16)

Here βct→vt is the blame assigned to each of the n tasks ct =
1⋯n concurrently running with vt ; βknown,i→t t gives the
blame assigned to other known non-conflict-related causes

that contribute to the wait time of the task vt . However
these processes are identified and captured in iQCAR. Hence
we categorize them as known processes. Finally, slowdown

could be due to a variety of other causes which are either not

known or cannot be attributed to any concurrent tasks like

systemic issues (executors getting killed, external processes,

etc), and so on; βunknown→t t captures this value of slowdown
due to such unknown factors.

B COMPUTATION OF BLAME BY RATPS
We now derive the blame values (β terms) in Equation (5)

in terms of RATPs. First we discuss a simpler case to present

the main ideas - when there is a full overlap of vt with all

concurrent tasks. Then we discuss the general case with

arbitrary overlap between ct-s and vt .

B.1 Full overlap of vt with concurrent
tasks

Rewriting Equation (12) for 𝒞 = 1

RATP∗ from Equations (3),

(13), and (14),

1

RATP∗
= 1

RATPvt
+

n
∑
ct=1

1

RATPct
+
M
∑
i=1

1

RATPknown,i
+ 1

RATPunknown
Multiplying by RATPvt and subtracting 1 on both sides yield,

RATPvt − RATP∗
RATP∗

=
n
∑
ct=1

RATPvt
RATPct

+
M
∑
i=1

RATPvt
RATPknown,i

+ RATPvt
RATPunknown

The left hand side above represents the slowdown 𝒮vt of vt
given by Definition 3.2. Therefore,

𝒮δtvt =
n
∑
ct=1

RATPvt
RATPct

)︁⌊︂]︂⌊︂)︂
p1

+
M
∑
i=1

RATPvt
RATPknown,i

+ RATPvt
RATPunknown

(17)

Each individual term inside the summation of p1 is con-
tributed by one of the tasks concurrent to task vt , and corre-

sponds to blame attributable to a concurrent task ct in this

interval. Comparing Equations (17) and (5) and assuming

full overlap we get,

β
f ull_over lap
ct→vt = RATPvt

RATPct
(18)

Similarly, for known and unknown factors,

β
f ull_over lap
known,i→vt =

RATPvt
RATPknown,i

for i = 1⋯M (19)

β
f ull_over lap
unknown→vt =

RATPvt
RATPunknown

(20)

B.2 Partial overlap of vt with concurrent
tasks

The above derivation assumes an interval δt in which all

concurrent tasks have a total overlap with vt . In practice,

they overlap for different length of intervals as illustrated in

Figure 5. So we divide the total duration T = vtend −vtstar t
of the execution time of task vt into small δt intervals such
that in each δt time Equation (17) holds.

Let 𝒮1,𝒮2, . . . ,𝒮m be the slowdown in eachm = T
δt inter-

val of execution. The total slowdown of vt then is:

𝒮vt =
m
∑
k=1
𝒮k

Substituting the value of slowdown 𝒮k in the k-th interval

using Equation (17), 𝒮vt =

m
∑
k=1

⎨⎝⎝⎝⎝⎪
∑

ct∈θk

RATPδtvt

RATPδtct
+ ∑
known∈ηk

RATPδtvt

RATPδtknown

+ RATPδtvt

RATPδtunknown

⎬⎠⎠⎠⎠⎮
where, θk and ηk are the set of concurrent tasks and known

factors respectively in the k-th interval impacting task vt .
Note that the RATP values in the above equation depend on

the intervals δt .
Rearranging the summations, we get the expression of

blame for general overlaps as follows:

Proposition B.1. The blame βct→vt for the contention
caused for resource r by a concurrent task ct of a victim task
vt on host h can be expressed as:

βct→vt =
⎨⎝⎝⎝⎪

m
∑
k=1

RATPδtvt

RATPδtct

⎬⎠⎠⎠⎮
(21)

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

933

Figure 16: An instance of iQC-Graph illustrating the impact
on query depicted in Figure 1.

C IQC-GRAPH CONSTRUCTION
iQC-Graph has 7 levels from Level 0 to Level 6. Each level

in the graph represents an entity to which we assign the

blame for the slowdown of a victim query. Level-0 represents

victim queries; for every victim query vertex Qi we add its

victim stages as vertices in Level-1. Nodes in Levels 2 and 3

respectively capture the impacts coming from resources and

hosts. That is, for each victim stage vertexVi, j in Level-1, we

add five resource-level vertices (CPU, network, memory, IO,

slots) at Level-2 to store the blame originating from them.

For every Level-2 node, we addℋ vertices in Level-3 where

each node represents the host on which the tasks of victim

stage Vi, j were executing and using resource r .
Nodes in Level 4 act as a bridge in connecting the con-

current stages (Level-5) with the host-level nodes at Level-3,

and do not represent any culpable entity unlike other levels.

Each Level-4 vertex captures the blame attributed to some

concurrent stage Cm,n of a concurrent query Qn executing

on host h and contending for resource r with victim stage

Vi, j . Finally, we connect these blame-attribution vertices to

the respective concurrent stages and their corresponding

queries at Level 5 and Level 6 respectively. Figure 6 shows a

subset of an example iQC-Graph for a single victim queryQ0

that captures the distribution of blame among two resources

R1,R2, two hosts H1,H2, two concurrent stages C1,C2 of a

single query Q1, an External-IO process (a known factor),

and an Unknown factor.

D IQC-GRAPH BY EXAMPLE
In the example of Q3 shown in Figure 1, suppose the user

selects Q0 as the victim query, and wants to analyze the con-

tention of the stages on the critical path. First, we add a node

for Q0 in Level 0, and nodes for s1, s3, s4, s5 in Level 1. Then

in Level 2, for each of these stages, the admin can see five

nodes corresponding to different resources. Although both

s1 and s5 faced high contentions, using iQC-Graph the admin

can understand questions such as whether the network con-

tention faced by stage s5 was higher than the IO contention

faced by stage s1, and so on.

Suppose only the trailing tasks of stage s1 executing

on host Y faced IO contention due to data skew. Us-

ing iQC-Graph, a deep explanation tells the user that

IO_BYTES_READ_RATP on host Y for these tasks of s1 was
much less compared to the average RATP for tasks of stage
s1 executing on other hosts. This insight tells the user that

the slowdown on host Y for tasks of s1 was not an issue due

to IO contention. If the user lists the top-k nodes at Level-3

using our blame analysis API, she can see that the network

RATP for tasks of stage s5 on host X was the highest, and can

further explore the Level-4 nodes to find the source of this

disproportionality.

Since stage r3 of culprit query Q1, and stages u5,u7,u9 of
another concurrent query Q2 were executing concurrently

on host X with stage s5 ofQ0, the user lists the top-k Level-4

vertices responsible for this network contention for s5. The
blame analysis API outputs stage u7 of query Q2 as the top

source of contention. Figure 16 shows some relevant vertices

for this example to help illustrate the levels in iQC-Graph.

E IQCAR USE-CASES
In this section, we present how iQCAR can be used to perform
the following use-cases:

● Finding Top-K Contentions for Victim Queries: For
any query, users can find answers for: (a) What is the im-

pact of resource r for slowdown? This is computed by

filtering the candidate explanations originating from all

concurrent queries for the input resource r , and then ag-

gregating the DOR values at Level-2. (b) What is the impact

through host h for resource r? The candidate explanations
with h and r on its paths are filtered and their DOR values

at Level-3 are aggregated. Finally, (c) What is the impact

through each culprit query or culprit stage for a host and

resource combination? The candidate explanations for cul-

prit query or culprit stage are filtered and the aggregate

DOR at Level-5 or Level-6 respectively are output.

● Identifying Slow Nodes and Hot Resources: Perform-

ing top-k analysis on levels 2 (resources) and 3 (hosts) will

yield the hot resource and its corresponding slow node

with respect to a particular victim query. To get the over-

all impact of each resource or host on all victim queries,

iQCAR provides an API to (i) detect slow nodes, i.e., for all
explanation paths in the graph, groups all nodes in Level

3 by hosts and returns the total outgoing impact per host,

and (ii) detect hot resources, i.e., - return the total outgoing

impact per resource nodes in Level 2.

● Detecting Culprit Queries: To detect culprit queries, we
find the top-k Level 6 nodes with highest total DOR to-

wards all queries. As the framework incorporates impacts

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

934

Figure 17: Pull vs Push based Query Engines
originating from other non-query sources, it enables an

admin to rule out slowdown due to concurrency issues if

the impact through these nodes is high.

F IMPLEMENTATION ON PRESTO
Presto is a distributed query engine whose execution model

is similar to Spark. There are however some key differences

that need to be considered before adapting iQCAR .

(1) Tasks vs Drivers: In Presto a task contains one or more

parallel drivers which are the actual execution units. The

invariant in Equation 12 is thus applicable to drivers in

Presto (not Tasks). Adapting iQCAR required calculating

and aggregating blame over drivers (tasks were bypassed

and aggregation was done over all drivers of a stage on

a host).

(2) Split Multiplexing on Threads: The TaskExecutor on

worker nodes runs long running threads that process

splits using round robin scheduling. A driver could run

on different threads in different time quanta. This is differ-

ent compared to other systems where a task runs entirely

on one single thread.

(3) Pull vs Push: Presto Drivers use a push approach. An oper-

ator generates a page with getOutput and calls addInput

on its dependent. This is different from the pull based

approach, where getNext calls are chained in reverse

direction of data flow. This is depicted in Figure 17

We adapted iQCAR to run on Facebook Presto 0.216 de-

ployed on our cluster described in section 6. The same TPCDS

dataset was stored in HDFS and accessed through Hive (ver-

sion 2.33) using the Presto Hive Connector.

F.1 Supported Resources
In this section we describe our implementation to support

metrics collection for all four system resources:

● CPU: Presto already captures the totalCpuTime and elapsed-
Time for every driver in its DriverStats. We further instru-

mented the code to additionally capture cpulockwait and

cpublockwait time using the JMX API. The OSScheduling-
Wait is computed as described in section 5.2

● IO: Presto captures the rawInputDataSize for source oper-
ators. We instrumented the code to identify IO data based

on the source operator types used in our workload (Scan-

FilterProject, PageSource and TableScan). As the execution

follows a push based approach, IO blocked time does not

equate to time between page results of source operator.

In every interval we consider this wait time as blocking

only if other operators in pipeline could not make progress

due to missing input. This required instrumentation to the

operator pipeline execution in the processInternal method

of Driver.

● Network: Similar to IO, we use the rawInputDataSize met-

ric of source operators but only when the operator is of

type ExchangeOperator. The networkBlockTime is captured
by instrumenting the ExchangeClient to identify response

time of asynchronous HttpPageBufferClient requests. Due

to the push based approach this time is considered as net-

work blocked time only if other operators in the pipeline

cannot make progress due to missing data in an interval.

● Memory: Presto manages application memory by splitting

them into memory pools (General and Reserved). Queries

consume memory from the pools with limits defined by

configuration parameters. A query consumes three types

of memory: user, revocable and system. The memory con-

sumption of each driver is already captured in its driver-
MemoryContext. The time spent waiting for memory is

captured by tracking the memoryFuture of operator con-
texts. This time is considered blocking only if all dependent

operators in the pipeline cannot make progress.

F.2 Metrics Collection
Presto schedules drivers for small intervals (splitRunQuanta).
While this provides an opportunity to all queued drivers to

make progress, it also results in more dynamic resource inter-

actions. To ensure that iQCAR captures these accurately, we

captured the metrics with frequency close to splitRunQuanta
but in a separate thread to ensure that driver runtime is not

affected by metric collection.

F.3 Discussion
As discussed in section 5.5 iQCAR can work with a system

like Presto by implementing the required metrics collection

component. This specifically required three aspects (a) under-

standing its execution model (push vs pull, task vs driver etc)

(b) instrumenting some missing metrics and (c) collecting

the instrumented (and existing) metrics.

Research 9: Query Processing & Optimization 2 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

935

	Abstract
	1 Introduction
	1.1 Data analytics frameworks
	1.2 Challenges in Contention Analysis
	1.3 Our Contributions

	2 System Overview of iQCAR
	3 Blame Attribution
	3.1 Resource Acquire Time Penalty (RATP)
	3.2 Slowdown of a Task
	3.3 Blame with RATPs
	3.4 Incorporating Blocked Time in Blame

	4 Global Blame Distribution
	4.1 iQC-Graph
	4.2 Explanations and their Scores

	5 Implementation
	5.1 Impact of Non-Query Processes
	5.2 Supported Resources
	5.3 Frequency of Metrics Collection
	5.4 Limitations
	5.5 Discussion

	6 Experimental Evaluation
	6.1 Debugging Challenges Without iQCAR
	6.2 Test Cases
	6.3 Instrumentation
	6.4 Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Slowdown of a Task from Concurrency
	B Computation of Blame by RATPs
	B.1 Full overlap of vt with concurrent tasks
	B.2 Partial overlap of vt with concurrent tasks

	C iQC-Graph Construction
	D iQC-Graph by example
	E iQCAR Use-Cases
	F Implementation on Presto
	F.1 Supported Resources
	F.2 Metrics Collection
	F.3 Discussion

