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ABSTRACT

Database systems have a large number of configuration parame
ters that control memory distribution, 1/0O optimizatiomysting of
query plans, parallelism, many aspects of logging, regowend
other behavior. Regular users and even expert databaseiatia
tors struggle to tune these parameters for good performahie
wave of research on improving database manageability ngaslya
overlooked this problem which turns out to be hard to solvee W
describe iTuned, a tool that automates the task of identifgood
settings for database configuration parameters. iTunedhnas
novel features: (i) a technique called Adaptive Samplirag ginoac-
tively brings in appropriate data through planned expernitaeo
find high-impact parameters and high-performance paransete
tings, (ii) an executor that supports online experimentgroduc-
tion database environments through a cycle-stealing garathat
places near-zero overhead on the production workload; aind (
portability across different database systems. We shoveffiee-
tiveness of iTuned through an extensive evaluation basetiffen-
ent types of workloads, database systems, and usage sxenari

1. INTRODUCTION

Consider the following scenario from a small to medium busi-
ness (SMB) enterprise. Peter, a Web-server administrgttnain-
ing, maintains the Web-site of a ticket brokering comparat #m-
ploys eight people. Over the past few days, the Web-site bas b
sluggish. Peter collects monitoring data, and tracks tlodlpm
down to poor performance of queries issued by the Web semer t
backend database.

Realizing that the database needs tuning, Peter runs thieadat
tuning advisor. (SMBs often lack the financial resourcesite h
full-time database administrators, or DBAs.) Peter usessy logs
to identify the workload/” of queries and updates to the database.
With W as input, the advisor recommends a database design (e.g.
which indexes to build, which materialized views to mainfdiow
to partition the data). However, this recommendation do¢solve
the current problem: Peter has already designed the datdhias
way based on a previous invocation of the advisor.

Peter recalls that the database basfiguration parameterd~or
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lack of better understanding, he had set them to defaulegadiur-
ing installation. Maybe the parameters need tuning, sorPpetts
out the 1000+ page database tuning manual. He finds manyslozen
of configuration parameters like buffer pool sizes, numberom-
current /0O daemons, parameters to tune the query optifaizest
model, and others. Being unfamiliar with most of these param
ters, Peter has no choice but to follow the tuning guideligiesn.
One of the guidelines look promising: if the I/O rate is higieen
increase the database buffer pool size. However, on faligihis
advice, the database performance drops even further. (Viieemo
tarily show an example of such behavior.) Peter is puzzled-f
trated, and undoubtedly displeased with the database xendo

Most of us would have faced similar situations before. Tgnin
database configuration parameters is hard but critical:sk&ihgs
can be orders of magnitude worse in performance than gocsl one
Changes to some parameters cause local and incrementetseffe
on resource usage, while others cause drastic effectshifeging
query plans or shifting bottlenecks from one resource tatearo
These effects vary depending on hardware platforms, watklo
and data properties. Groups of parameters can have nomindep
dent effects, e.g., the performance impact of changing ananpe-
ter may vary based on different settings of another paramete
iTuned: Our central contribution is a tool, callé@uned that auto-
mates parameter tuning. iTuned can provide a very diffesrpéri-
ence to Peter. He starts iTuned in the background with trebdae
workload W as input, and resumes his other work. He checks back
after half an hour, but iTuned has nothing to report yet. \MReter
checks back thirty minutes later, iTuned shows him an iiveivi-
sualization of the performance impact each database coafign
parameter has ofl/. iTuned also reports a setting of parameters
that is 18% better than the current one. Another hour latenéd
has a 35% better configuration, but Peter wants more impremem
Three hours into its invocation, iTuned reports a 52% better-
figuration. Now, Peter asks for the configuration to be apple
the database. Within minutes, the actual database penfoarien-
proves by 52%; and Peter is very happy.

To understand the technical innovations in iTuned, let us no
consider a simple, but real, example. Figure 1 iggponse sur-
facethat shows how the performance of a complex TPC-H query
[18] in a PostgreSQL database depends orstteedbuffersand
effectivecachesizeparameterssharedbuffersis the size of Post-
greSQL’s main buffer pool for caching disk blocks. The vabfe
effectivecachesizeis used to determine the chances of an /O hit-
ting in the OS file cache; so its recommended setting is thredfiz
the OS file cache. Some observations from Figure 1:

e The surface is complex and nonmonotonic.
e Performance drops sharply abaredbuffersis increased be-
yond 20% (200MB) of available memory; causing a “increase
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Figure 1: 2D projection of a response surface for TPC-H Query
18; Total database size = 4GB, Physical memory = 1GB

buffer pool size” rule of thumb to degrade performance.

e The effect of changingffectivecachesizeis different for dif-
ferent settings osharedbuffers Surprisingly, the best perfor-
mance comes when both parameters are set low.

Typical database systems contain few tens of parametersergded-
tings can significantly impact workload performartcevhat auto-
mated tools do users have today for holistic tuning of thesampe-
ters? Perhaps shockingly, the answer would be “very few neho

The majority of tuning tools focus on the logical or physical
design of the database. For example, index tuning toolsedae r
tively mature (e.g., [4]). These tools use the query optariézcost
model to answewhat-if questionf the form: how will perfor-
mance change if index were to be created? Unfortunately, such
tools do not apply to parameter tuning because the settimgsiay
high-impact parameters are not accounted for by these model

Many tools (e.g., [16, 19]) are limited to specific classepaf
rameters like buffer pool sizes. IBM DB2’s Configuration Astr
recommends default parameter settings based on answerdguo
by users to some high-level questions (e.g., is the enviesnm
OLTP or OLAP?) [10]. These tools are based on predefined mod-
els of how parameter settings affect performance. Devetppiich
models is nontrivial [20] or downright impossible becausggonse
surfaces can differ markedly across database systems [HB@.
Vs. PostgreSQL), platforms (e.g., Linux Vs. Solaris; datds
that are run on virtual machines), workloads, and data ptizse
Furthermore, DB2's Configuration Advisor is helpless if thee-
ommended defaults are still unsatisfactory.

Users are forced to rely on trial-and-error or rules-ofsttiufrom
manuals and experts. The following tuning rule from an aritho
tive PostgreSQL source [12] highlights their predicamerdrmem
is memory used by sort and hash operators):

Adjust workmemupwards for: large databases, com-
plex queries, lots of available RAM. Adjust it down-
wards for: low available RAM or many concurrent
users. Finding the right balance spot can be hard.

How do expert DBAs overcome these hurdles? They ofteresun
perimentsto perform what-if analysis during parameter tuning. A
typical experiment would consist of:

e Create a replica of the production database on a test system.

e Initialize database parameters on the test system to amhose

iTuned takes a leaf from the book of expert DBAs. Each expenim
gives a point on the response surface. Since reliable tgcbsi
for parameter tuning have to be aware of the underlying nespo
surface, a series of carefully-planned experiments is arabap-
proach to parameter tuning. iTuned is not the first to adweat
experiment-driven approach for parameter tuning. Referdh7]
applied such an approach to tune four parameters in Belk&ey
The tuned settings were impressive, however, 37 days went sp
in running experiments in parallel on five machines.

Users don't always expect instantaneous results from petem
tuning; they would rather get recommendations that workes d
scribed. (Reference [10] estimates that configuring laegalthse
systems takes on the order of 1-2 weeks.) Nevertheless,fitabe
tical, an automated parameter tuning tool has to produce geo
sults within few hours. In addition, several questions nedak an-
swered like: which experiments to run? where to run expenise
what-if the SMB does not have a test database platform?

1.1 Our Contributions

To our knowledge, iTuned is the first practical tool that uses
planned experiments to tune database configuration pagesn&te
make the following contributions.

Planner: iTuned’s experiment planner uses a novel and methodical
technique, called\daptive Samplingto select which experiments
to conduct. Adaptive Sampling uses the information fromegxp
ments done so far to estimate the utility of new candidateeexp
ments. No assumptions are made about the shape of the uinderly
response surface, so it can deal with simple to complex cesfa

Executor: iTuned’s experiment executor uses a novel approach to
conduct online experiments in a production environmentawin-
suring near-zero overhead on the production workload. Keewe

tor is controlled through high-level policies. It hunts patively for

idle capacity on the production database, hot-standbypdaés, as
well as databases for testing and staging of software updatee
executor’s design is particularly attractive for datalsasget run in
cloud computing environments providing pay-as-you-goueses.

Representation of uncertain response surfacesiTuned intro-
ducesGRS for Gaussian process Representation of a response Sur-
face (GRS)to represent an approximate response surface derived
from a set of experiments. GRS enables: (i) visualizatiomeef
sponse surfaces with confidence intervals on estimatedrpeahce;

(ii) visualization and ranking of parameter effects aneirparameter
interactions; and (iii) recommendation of good paramedttiregys.

Scalability: iTuned incorporates a number of features to reduce
tuning time and to scale to many parameters: (i) a sengiavialysis
algorithm that quickly eliminates parameters with insfgrant ef-
fect; (ii) planning and conducting parallel experiments) &bort-

ing low-utility experiments early, and (iv) workload congsssion.

Evaluation: We establish the advantages of iTuned comprehen-
sively through an empirical evaluation along a number ofetim
sions: multiple workload types, data sizes, databasersgsfRost-
greSQL and MySQL), and number of parameters. We compare
iTuned with recent techniques proposed for parameter tubath

in the database [5] as well as other literature [17, 22]. Wesimter
how good the results are and the time it takes to produce them.

2. ABSTRACTION OF THE PROBLEM

setting. Run the workload that needs tuning, and observe the Response SurfacesConsider a database system with workload

resulting performance.

W andd parametersey, ..., zq that a user wants to tune. (The
notation used throughout this paper is summarized in Tapl€He

The total number of parameters may be more than a hundred, butvalues of parameter;, 1 < i < d, come from a known domain

most have reasonable defaults.
2Section 7 provides empirical evidence.

dom(z;). Let DOM, whereDOM C II ; dom(z;), represent the
space of possible settings®f, . . . , x4 that the database can have.



[ Notation

Description |

T1,...,Tq Parameters for tuning
dom(z;) Domain of feasible settings far;
X A setting ofz1, . .., x4 from the respective domaing
y Performance metric of interest for tuning
W Workload of interest for tuning
X? Transpose ofX
9(X) Mean of the estimation af at settingX
v2(X) Variance of the estimation af at settingX
Y (X) Probability density function of the estimation f
(X@,4®) | samples collected so far through experiments
f(X) Vector of basis functions
5 Vector of regression coefficients
GRS Gaussian process representation of response surface
corr(X, X") | Correlation function used in GRS
Z(X) Zero-mean Gaussian process used in GRS
EIP(X) Expected improvement when next expt. is don&at

Table 1: Notation used in the paper

Let y denote the performance metric of interest. Then, theraexis
a response surface, denotég,, that determines the value gf
for workload W for each setting ofc1, ...,z in DOM. That is,

y = Sw(x1,...,xq). Sw is unknown to iTuned to begin with.
The core task of iTuned is to find settingsf, ..., z4 in DOM
that give close-to-optimal values ¢f In iTuned:

e Because iTuned runs experiments, itis very flexible in hasv th
database workloadll” can be specified. iTuned supports the
whole spectrum from the conventional format whéfeis a set
of queries with individual query frequencies [4], to mixels o
concurrent queries at some multi-programming level, ad wel
as real-time workload generation by an application.

e yis any performance metric of interest, eggin Figure 1 is the
time to completion of the workload. In OLTP settingscould
be, e.g., average transaction response time or throughput.

e Parameter:; can be one of three types: (i) database or system
configuration parameters (e.g., buffer pool size); (i) ksador
physical resource allocation (e.g., % of CPU); or (iii) ksdbr
workload admission control.

Experiments and SamplesParameter tuning is performed through
experiments planned by iTuned’s planner, which are coredllby
iTuned’s executor. An experiment involves the followingians
that leverage mechanisms provided by the executor (Seg}ion

1. Setting each; in the database to a chosen setting: dom(z;).

2. Running the database worklo&d.

3. Measuring the performance metgic= p for the run.

The above experiment is represented by the settfig= (z1 =
v1,...,&4 = vq). The outcome of this experiment issample
from the response surfage = Sw (z1,...,z4). The sample in
the above experiment (s, y) = (1 = v1,...,Zd = va,y = P).
As iTuned collects such samples through experiments, lihtea

more about the underlying response surface. However, enpats
cost time and resources. Thus, iTuned aims to minimize thebeu
of experiments required to find good parameter settings.

3. OVERVIEW OF ITUNED

Gridding: Griddingis a straightforward technique to decide which
experiments to conduct. Gridding works as follows. The doma
dom(z;) of each parameter; is discretized intd: values;i, . . ., Lik.
(A different value ofk could be used per;.) Thus, the space of
possible experimentOM C T1¢_, dom(z;), is discretized into a
grid of sizek?. Gridding conducts experiments at each of thebe
settings. Gridding is reasonable for a small number of patars.
This technique was used in [17] while tuning four parameters
the Berkeley DB database. However, the exponential coritplex

makes gridding infeasible (curse of dimensionality) asrtheber
of parameters increase. For example, it takes 22 days toqeare
iments via gridding ford = 5 parametersk = 5 distinct settings
per parameter, and average run-time of 10 minutes per expati

SARD: The authors of [5] propose8ARD(Statistical Approach
for Ranking Database Parameters) to address a subset @frdrap
eter tuning problem, namely, ranking, . .., z4 in order of their
effect ony. SARD decides which experiments to conduct using a
technigue known in Statistics as tRéackett Burmann (PB) Design
[9]. This technique considers only two settings per paramet
giving a2¢ grid of possible experiments—and picks a predefined
2d number of experiments from this grid. Typically, the two-set
tings considered far; are the lowest and highest valuesiinn(x;).
Since SARD only considers a linear number of corner pointsef
response surface, it can be inaccurate for surfaces wheaepa
ters have nonmonotonic effects (Figure 1). The corner paiftine
can paint a misleading picture of the shape of the full sefac

Adaptive Sampling: The problem of choosing which experiments
to conduct is related to the sampling problem in databasescai/
consider the information about the full response surfégeto be
stored as records in a (large) tatlilg- with attributese, . . . , x4, y.

An example recordz: = v1,...,2q4 = vq,y = p) in Tw says
that the performance at the settifign Uiy @d = Uq) ISP
for the workloadW under consideration. Experiment selection is
the problem of sampling from this table. However, the difere
with respect to conventional sampling is that the talie is never
fully available. Instead, we have to pay a cost—namely, tst of
running an experiment—in order to sample a record ffBsn.

The gridding and SARD approaches collect a predetermined se
of samples fronTy,. A major deficiency of these techniques is
that they are noteedback-drivenThat is, these techniques do not
use the information in the samples collected so far in oroleeter-
mine which samples to collect next. (Note that conventioaat
dom sampling in databases is also not feedback-driven.)s&on
quently, these techniques either bring into too many sasnpiéoo
few samples to address the parameter tuning problem.

iTuned uses a novel feedback-driven algorithm, cafddptive
Sampling for experiment selection in parameter tuning. Adaptive
Sampling analyzes the samples collected so far to undersian
the surface looks like, and where the good settings areylikebe.
Based on this analysis, more experiments are done to coléyet
samples that add maximum utility to the current samples.

Suppose: experiments have been run at settidgs), 1 < i <
n, so far. Let the corresponding performance values obsedreed
y@ = y(X). Thus, the samples collected so far k&, (V).

Let X* denote the best-performing setting found so far. Without
loss of generality, we assume that the tuning goal is to mz@m.

* _ ; (©)
X" =arg 1Iéﬂélny()( )
Which sample should Adaptive Sampling collect next? Suppos
the next experiment is done at settixg and the performance ob-
served igy(X). Then, the improvemenP(X) achieved by the new
experimentX over the current best-performing settiag" is:

) { 200

3The authors of SARD mentioned this problem [5]. They recom-
mended that, before invoking SARD, the DBA should split each
parameterr; with nonmonotonic effect into distinct artificial pa-
rameters corresponding to each monotonic range of his task is
nontrivial since the true surface is unknown to begin withedlly,

the DBA, who may be a naive user, should not face this burden.

if y(X) <y(X7)
otherwise

@)




) . ) . ’ e In general, experiments done through LHS give much better
Adaptive Sampling: Algorithm run by iTuned's Planner space coverage than through random sampling. LHS guaran-

L |n|t:ja!|;?t|?n: g;nsdum;)ip_enmehts ba;teg on_lt_:tm”HyftZe Sam’lj“n_g’ tees that the settings in the chosen experiments are sprealg e
and initialize and*=arg min y( ) with collected samples; over the ranges of each parameter.

2. Until the stopping condition is reached, do However, LHS by itself does not rule out bad spreads (e.4., al

3. FindXnext= argX?S%ME'P(X); samples spread along the diagonal). iTuned addresses by pro

4. Executor conducts the next experimen&aiextto get a new sample; lem by generating multiple sets of LHS samples, and finalbosh

5. Update the GRS an¥ * with the new sample; Go to Line 2; ing the one which maximizes the minimum distance between any

Figure 2: Steps in iTuned’s Adaptive Sampling algorithm pair of samples. That is, supposedifferent sets of LHS samples

L1, ..., L; were generated. iTuned will select the &étsuch that:

Ideally, we would like to pick the next experimeit so that the . . . G) (k)

improvementP(X) is maximized. However, a proverbial chicken- L7 = arg max X0, x P er, j2k dist(X7, X)

and-egg problem arises here since the improvement deperttie o
value ofy(X) which will be known only after the experiment is  Here,dist is a common distance metric like the Euclidean dis-
done. We can instead compuEP(X), the expected improvement  tance. This technique avoids bad spreads.

when the next experiment is done at settiXig Then, the experi- 4.2 Picking the Next Experiment

ment that gives the maximum expected improvement is selecte . ) )
Let the samples collected so far b& ), ), 1 < i < n. As

Xnpext=arg max EIP(X) ) discussed in Section 3, we need to compute the expectedvsipro
xeDOM ment that comes from doing the next experiment at a sefting
p=+oo One approach is to deriveragression modg] that can estimate
EIP(X) = / IP(X)paf (Y (X) = p)dp @) y(X) based on thé Xy} samples available so far. Such a
H a£ (Y (X) p:;"_o " bability density functi ‘1 regression model would have the form:
ere,p = p) is the probability density function of the _ g Z
predicted performancg(X) at X. IP(X) is defined by Equation 1. y=1(X)8+eX) “)
Recall thatDOM is the set of all feasible parameter settings. Here, f(X) = [f1(X), fa(X),..., fa(X)]* is a vector of basis
iTuned’s Workflow: The challenge in Adaptive Sampling is to 7

functions, and3 is the corresponding x 1 vector of regression
coefficients. The notation is used to represent the matrix transpose
operation.e(X), given bys(X) = y(X) — f1(X)3, is called the
residualbecause it represents the difference between the true value
and the value estimated via regression. The residuals averesi
to follow identical and independent normal distributions.

For example, some response surface may be representedywell b

computeEIP(X)based on théx (V) (") samples collected so far.
The crux of this challenge turns out to be the generation ef th
probability density function of the predicted performarateX .

Figure 2 shows iTuned’s workflow for parameter tuning. Once
invoked, iTuned starts with an initialization phase wheyme ex-
periments are conducted for bootstrapping. Adaptive Sengpl
starts with the initial set of samples, and continues todtim . _ 9 )
new samples through experiments selected baselB(X). Ex- the regression mode}) = 2'1 j;’xl — 2z172 + 3. In this c?se,
periments are conducted in a seamless fashion in the pioduct F(X) = [, 21,22, 2122, 21, 23]", and5 = (0.1, 3,0, ~2,0, 1",
environment using mechanisms provided by the executor. Problems with conventional regression models, and iTuned’

Roadmap: Section 4 describes Adaptive Sampling. Details of the solution: Conventional regression models assume that the residu-

executor are presented in Section 5. iTuned's scalatlignted IS¢ ande; atany pair of settings’ ¥ and X' are independent.
features are described in Section 6 However, the response surface of performance with respgua-t

rameter settings is predominantly continuous. Thus, thiduals at

4. ADAPTIVE SAMPLING two nearby settings tend to be correlated, violating themgsion
4.1 |Initialization of independent errors in the model. A related, but biggesbfam
with these models is that they do not capture the probaluiy-
sity functionpdf (Y (X)) of the performance metric. Recall from
Equation 3 thapdf (Y (X)) is required to compute the expected
improvements from experiments that have not been done yet.

iTuned addresses both these problems by modeling the e¢sidu
e(X) using aGaussian proces& (X). We first define Gaussian
processes, and then describe how iTuned uses them to cheate t
Gaussian process Representation of a response Surface (GRS

As the name suggests, this phase bootstraps Adaptive Sampli
by bringing in samples from an initial set of experiments.traight-
forward technique is random sampling which will pick the-ini
tial experiments randomly from the space of possible erpenis.
However, random sampling is often ineffective when only & fe
samples are collected from a fairly high-dimensional spadere
effective sampling techniques come from the familgpéce-filling
designs[13]. iTuned uses one such sampling technique, called

Latin Hypercube Sampling (LH®)], for initialization. Definition 1. Gaussian ProcessLet x be a subspace @OM.
LHS selectsn experiments from a space of dimensibfi.e., pa- We say thatZ(X), for X € x, is a Gaussian process provided

rametersey, . . ., xq) as follows: (1) the domaidom(z;) of each that for anyl > 1 and any choice oK, ..., X" in x, the vec-

parameter is partitioned int equal subdomains; and (2) ex- tor [Z(XW), ..., Z(XW)] has a multivariate normal distribution.

periments are chosen from the space such that each subdofmain Z(X) is determined by its mean and covariance functians.
any parameter has one and only one sample in it. LHS has two
important advantages:

e LHS samples are very efficient to generate because of their si

Intuitively, a Gaussian process is a stochastic processtiah any
finite linear combination of samples are normally distréalit

ilarity to permutation matricefrom matrix theory. Generating Definition 2. Gaussian process Representation of a response
m LHS samples involves generatingindependent permuta- ~ Surface (GRS):A GRS represents a response surfg¢&() as:
tions of 1,...,m, and joining the permutations on a position- y = f7 (X)B+ Z(X). Here, the residual in the regression is mod-

by-position basis. eled by a Gaussian proceg$.X ) with zero mean and covariance



function Cov(Z(X¥), Z(X9)) = a?corr(X®, XD). corr
is a pairwise correlation function defined asr(X®, X)) =
¢ exp(—0x |zl —z ). o, 0, > 0,7, > 0,1 < k < dare
constantsD

GRS's covariance functiotov(Z(X V), Z(X 7)) represents the
predominant phenomenon in response surfaces that ifgefifi’
and X“) are close to each other, then their respective residual val-
ues are correlated. As the distance betwg&® and X’ in-
creases, the correlation decreases. The parameter-sgecifitants

0r andv; capture the fact that each parameter may have its own rate
at which the residuals become uncorrelated. We will desdnitowv
these constants are set and give an example momentarilyh@RS
the following attractive features:

e Unlike conventional regression models, GRS enables ug#o ca
ture the probability density functiopdf (y(X)) based on the
samples collected through experiments conducted so far. We
prove that GRS helps even further by enabling us to derive a
closed form forEIP(X)from Equation 3.

e We will prove empirically using real and synthetic data that

GRS is powerful enough to capture the response surfaces that

arise in parameter tuning. (Gaussian processes have beén us
to great success on complex tasks like simulation of fireLevol
tion and aircraft flight [13].)

e As we show momentarily, GRS enables us to naturally balance
the twin tasks ofexploration(understanding the surface) and
exploitation(going after known high-performance regions) that
arise in parameter tuning. It is nontrivial to achieve thi-b
ance, and many previous techniques [5, 17] lack it. Further-
more, GRS enables easy update as well as validation.

Lemma 1.Prediction using GRS:Suppose a GRS is generated
from n collected sample$X ™, y(), 1 < i < n. For anyX,
the GRS generates an estimate/ 0K ) that is normally distributed
with meanj(X) and variance? (X)) where:

§(X) = FH(X)F+&(X)C™ (7 - FP)

V(X)) = o[l — &(X)C1EX)] ®)

&(X) = [corr(X, XM, ... corr(X,X™)]t, Cis annxn ma-

trix with elementi, j equal tocorr(X, X)), 1 < i,j < n,

7= [Y,...,y™]t, andF is annxh matrix with theith row
composed offt(X®).0

®)

Proof: Recall that the joint distribution of/(X) and Y™
[y(X1),y(X2),...,y(Xn)]" is a (1 + n)-dimensional Gaussian

distribution
( )N Niow (ft%X)> 57a2< )

The conditional distribution ofy(X) givenY™ is still a Gaussian
distribution with mean and variance as expressed in Equ#&p
and (6) [13]:

W™ = [y1, 92, -

y(X)
Yn

1
&(x)

#(X)
C

cyn]") ~ N [5(X),0*(X)]

|

Note thatf* (X)ﬁin Equation 5 is simply a plug in oKX into the
regression model from Definition 2. The second term in Equmati

5 is an adjustment of the prediction based on the errorsdirats)
seen at the sampled settings, i) — f/(X)3, 1 < i < n.
Intuitively, the prediction atX can be seen as a weighted sum of
the valuesy™ observed through experiments; where the weights
are determined by the correlation function from Definitior&nce
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Figure 4: Example of EIP computation
the correlation function weighs nearby settings more thiatadt
settings, the prediction & is affected more by values observed
at the nearby settings.

Also note that the variance &t—which is theuncertaintyin the
GRS's estimatéj(X) at X—depends on the distance betwegn
and the setting&x () where experiments were done to collect sam-
ples. Intuitively, if X is close to one or more settings’ where
we have collected samples, then we will have more confidemce i
the prediction than the case wheXeis far away from all settings
where experiments were done. Thus, GRS captures the uimtgrta
in estimated values in an intuitive fashion.

Lemma 1 gives us the necessary building blocks to compute the
expected improvements from experiments that have not beea d
yet. We first give an example to illustrate the basic ideasREG

Example 1. The solid (red) line near the top of Figure 3 is a
true one-dimensional response surface. Suppose five mqres
are done, and the collected samples are shown as circlesgn Fi
ure 3. iTuned creates a GRS from these samples. The (green)
line marked with “+” symbols represents the predictiog$X)
generated by the GRS as per Lemma 1. The two (black) dotted
lines around this line denote the 97% confidence intervainelg,
[9(X) —2v(X),5(X)+2v(X)]. Forexample, a1 = 8, the pre-
dicted value is 7.2 with confidence interval [6.4, 7.9]. Ntiat,
at all points, the true value (solid line) is within the corigte in-
terval; meaning that the GRS learned from the five samples
good approximation of the true response surface. Also, tiae
at points close to the collected samples, the uncertainpredic-
tion is low. The uncertainty increases as we move furthen frioe
collected samples

Recall from Lemma 1 that the estimate ¢fX) based on the:
collected samplesX .y}, 1 < i < n, is normally distributed
with meang(X) and variancev®(X). Hence it follows that the
probability density function ofy(X) is:
— 1 —(p—Q(X))2) (7)
V2ru(X) 20*(X)
Theorem 1.The expected improvement from conducting an ex-
perimentatX is: . x+

S a

pdf (Y (X) = p) exp(

EPC) = [ X —ppas(Y(X) = p)dp (8)
EIP(X) has the following closed form:
EIP(X) = o(X)[u(X)2(1(X)) + o(u(X))] 9)



Here,u(X) = X028 @ andg are N (0, 1) normal cumula-
tive distribution and density functions respectively.

Proof: Substituting Equation 1 into Equation 3, we have
/‘P=+oo
p=—00

/'p:y(X*)
p=—o00
p=y(X™) .
[ ey -

9(X) — plpaf (Y/(X)

EIP(X)

IP(X)paf (Y (X) = p)dp

(y(X*) = p)pdf (Y (X) = p)dp

9(X)

p)dp

p=y(X*)
Note that/i y(X™) — §(X)lpdf (Y (X)

p=—o00

p)dp

o
(n(X))

[y(X") —

v(X)pu(X
p=y(X™*)

and / () - plpaz(v ()

b B(XF)—9(X)

/ T
t=—o0

v(X)p(p(X))

9(X
)®

p)dp

txu(X)p(t)dt {let t =2 )

So

EIP(X) Jn(X)@(p(X)) + v(X)p(p(X))

= v(X
= v(X) P(u(X))]

O
Therefore, the next experiment should be run at the setting

X =arg max EIP(X
next=a1g _max (X)

Recall thaDOM is the set of all the feasible configuration settings.
Intuitively, the next experiment to run should be pickednfroe-
gions where there is high uncertainty, which is expressed &9

in (9), or the predicted value can improve over the currerst be
setting, which is expressed a$X) in (9). In regions where the
current GRS from the observed samples is uncertain aboatits
timate, i.e., where(X) is high, exploration is preferred to reduce
the model uncertainty. At the same time, in regions wheiepbis-
sible to achieve better performance, i&X)®(u(X))+o(u(X))

is high, the current GRS is used to pick samples around therur
good settingX ™ for exploitation. There is a tradeoff between ex-
ploration (global search) and exploitation (local search)

Example 2. The dotted line at the bottom of Figure 3 shows
EIP(X) along thex; dimension. (AIEIP values have been scaled
by 40 to make the plot fit in this figure.) There are two peakién t
EIP plot. (I) EIP values are high around the current best sample
(X with 1=10.3), encouraging local search (exploitation) in this
region. (ll) EIP values are also high in the region betweer=4

andz1=6 because no samples have been collected near this region; 5.

the higher uncertainty motivates exploring this region. apiive
Sampling with conduct the next experiment at the high#3point,
namely,z1=10.9. Figure 4 shows the new set of samples as well
as the nevEIP(X) after the GRS is updated with the new sample.
As expected:IP aroundx;1=10.9 has reducedEIP(X) now has a
maximum value at;=4.7 because the uncertainty in this region is

still high. Adaptive Sampling will experiment here nexingmg
in a sample close to the global optimunuat4.4.

4.3 Overall Algorithm and Implementation

Figure 2 shows the overall structure of iTuned's AdaptivenSa
pling algorithm. So far we described how the initializatisrdone
and howEIP(X) is derived. We now discuss how iTuned imple-
ments the other steps in Figure 2.

Finding the Setting that Maximizes EIP: Line 3 in Figure 2 re-
quires us to find the settiny € DOM that has the maximur&lIP.
Since we have a closed form for EIP, it is efficient to evaluziie

at a given point. In our implementation, we pikk= 1000 settings
(using LHS sampling) from the space of feasible settings)mde
their EIP values, and pick one that has the maximum valuerto ru
the next experiment.

Initializing the GRS and Updating it with New Samples: It
follows from Definition 2 that initializing the GRS with a sef
(X@ 4@ samples, or updating the GRS with a newly collected
sample, involves deriving the best values of the constants;,
and~g, for 1 < k < d, based on the current samples. This step
can be implemented in different ways. Our current impleragoim
uses the well-known and efficient statistical techniquenakimum
likelihood estimatiori21].

When to Stop: When does Adaptive Sampling stop (Line 2 in Fig-
ure 2)? The easy case is when the user issues an explicit@top ¢
mand once they are satisfied with the tuned performance.eifun
incorporates a novel stopping condition that can handlégrder
cases, namely, when iTuned is invoked (i) in the auto-tunigle,
and (ii) by a nonexpert user.

Intuitively, Adaptive Sampling can stop when the maximum ex
pected improvement over all settind§ € DOM falls below a
threshold. However, there is a possible pitfall: if the emtrGRS
does not represent the underlying response surface rdagovell,
then the expected improvement values at some setfihgmy dif-
fer from the actual improvement thaf gives. iTuned safeguards
against this problem by leveraging the properties of a GREBtlam
statistical testing methodology ofoss validatior[21].

Let (X 41y 1 < j < n be the set of samples collected so
far. iTuned performs the following test:

1. Remove the sampleX (| () from the set.

2. Use the remaining — 1 samples to generate a GRS, and use
it to predict the performance at ). Recall from Lemma 1
that this prediction has a normal distribution with some mea
denotedy_;, and variance, denotedf ;. (The subscript—i
indicates that the sampleX ¥, y(¥) is not used.)

3. Based on the properties of standard normal distributi@pp-

0
ular test is done to check whether; -M lies within the

97%confidence interval(The testsucceeds#2 <z.;<2)
The above steps are repeated for each ofitBamples by remov-
ing them one at a time. If the_; value in each case lies within the
97% confidence interval, then, with high probability, the &fRRom
the currentn. samples is a good representation of underlying true
response surfackIf that is true, and the maximum expected im-
provement is below a threshold, then Adaptive Sampling tam s

ITUNED'S EXECUTOR: A PLATFORM
FOR RUNNING ONLINE EXPERIMENTS

We now consider where and when iTuned will run experiments.
There are some simple answers. If parameter tuning is ddoecbe

“While we collect a fixed number of samples during initialieat
the same test could be used to find the number of initial sanple



the database goes into production use, then the experiramtse
done on the production platform itself. If the databaserisaly in
production use and serving real users and applications,dkper-
iments could be done on an offline test platform. Previouswor
parameter tuning (e.g., [5, 17]) assume that experimesan-
ducted in one of these settings.
While the two settings above—preproduction database astd te
database—are practical solutions, there are not suffibiecause:
e The workload may change while the database is in production
use, necessitating retuning.
e A test database platform may not exist (e.g., in an SMB).
e It can be nontrivial or downright infeasible to replicate thro-
duction resources, data, and workload on the test platform.

iTuned’s executor provides a comprehensive solution ttidtesses
concerns like these. The guiding principle behind the smuis:
exploit underutilized resources in the production envinemt for
experiments, but never harm the production workload. The tw
salient features of the solution are:

e Designated resourcesiTuned provides an interface for users
to designatevhich resources can be used for running experi-
ments. Candidate resources include (i) the productiorbdat
(the default for running experiments), (ii) standby (faio)
databases backing up the production database, (iii) testbase(s)
used by DBAs and developers, and (iv) staging databased) us
for end-to-end testing of changes (e.g., bug fixes) befogg th
are applied to the production database. Resources desibnat
for experiments are collectively called thwrkbench

e Policies: A policy is specified with each resource that dictates

Production Environment

1

DBMS Erite Ahead Log shipping
Database

Standby Environment

(@)

\

Standby Machine

@ Garage ..‘}\Q%

Workbench for conducting
experiments

Apply WAL
continuously

Database

Figure 5: The executor in action for standby databases

tainers the home container for home use, and the garage container
for running experiments. iTuned’s current implementatafre-
source containers using tlz®nesfeature in the Solaris OS [14].
CPU, memory, and disk resources can be allocated dynamicall
a zone, and the OS provides isolation between resourcestalb
to different zones. Resource containers can also be impitde
using virtual machine technology which is becoming pop{l&#.

The home container on the standby machine is responsible for
applying the redo log records. When the standby machinetis no
running experiments, the home container runs on it using\ail-

whenthe resource can be used for experiments. The default pol- aple resources; the garage lies idle. The garage containeoied—

icy associated with each of the above resources is: “if the,CP
memory, and disk utilization of the resource for iteme use
is below 10% (threshold ) for the past 10 minutes (threshold

similar to a machine booting, but much faster—only when acyol
fires and allows experiments to be scheduled on the standby ma
chine. During an experiment, both the home and the garage con

t2), then the resource can be used for experiments.” Home usetainers will be active, with a partitioning of resources agsdmined

denotes the regular (i.e., nonexperimental) use of theureso

The two thresholds are customizable. Only the default pagic

implemented currently, but we are exploring other policies
iTuned’s implementation consists of a front-end that imtés with
users, and a back-end consisting of the planner which pbepere
iments using Adaptive Sampling, and the executor which &che
ules planned experiments on the workbench as per useffigpeci
(or default) policies. Monitoring data needed to enforckges is
obtained through database monitoring tools.

The design of the workbench is based on splitting the funetio
ality of each resource into two: (Jome usgwhere the resource is
used directly or indirectly to support the production wakdl, and
(ii) garage usewhere the resource is used to run experiments. We
will describe the home/garage design using the standbypdsteas
an example, and then generalize to other resources.

All database systems support one or more hot standby dasbas
whose home use is to keep up to date with the (primary) produc-
tion database by applying redo logs shipped from the primHry
the primary fails, a standby will quickly take over as the naniv

by the executor. Figure 5 provides an illustration. For eghanas
per the default policy stated earlier, home and garage wtli§%
and 90%, repectively, of the resources on the machine.

Both the home and the garage containers run a full and exactly
the same copy of the database software. However, on bodtieg,
garage is given anapshobf the current data (including physical
design) in the database. The garage’s snapshot is logaigrate
from the snapshot used by the home container, but it is palgic
the same except fmopy-on-writesemantics. Thus, both home and
garage have logically-separate copies of the data, butasiggle
physical copy of the data exists on the standby system when th
garage boots. When either container makes an update to the da
a separate copy of the changed part is made that is visibleeto t
updating container only (hence the term copy-on-write)e Tédos
applied by the home container do not affect the garage’ssérudp
iTuned’s implementation of snapshots and copy-on-writea#ics
leverages the Zettabyte File System [14], and is extrenfébient
(as we will show in the empirical evaluation).

The garage ivaltedimmediately under three conditions: when

mary. Hence, the standby databases run the same hardware angyperiments are completed or the primary fails or there islay

software as the production database. It has been obseragd th
standby databases usually have very low utilization sineg only
have to apply redo log records. In fact, [7] mentions tha¢gnises
that have 99.999% (five nines) availability typically hatanslby
databases that are idle 99.999% of the time.

Thus, the standby databases are a valuable and undeditkze
set that can be used for online experiments without impgatger-
facing queries. However, their home use should not be a&ffect
i.e., the recovery time on failure should not have any natie
increase. iTuned achieves this property using tesource con-

violation. All resources are then released to the home aoaita
which will continue functioning as a pure standby or takera®

the primary as needed. Setting up the garage (includingstioap
and resource allocation) takes less than a minute, ancdtean-
takes even less time. The whole process is so efficient tbaveey
time is not increased by more than a few seconds.

While the above description focused on the standby respurce

iTuned applies the same home/garage design to all othenneso

in the workbench (including the production database). Thig o
difference is that each resource has its own distinct typleoofie



(I1) The selected experiments should complement each otler

| Featu.r.e. - | Desc.r lption an.d ,Use | proving the GRS’s quality. iTuned determines the nixdxperi-
Sensitivity ana_IyS|s Identify apd eliminate low-effect parameters ments to run in parallel as follows:
Parallel experiments | Use multiple resources to run parallel expts 1. Sel h imedt @ th L h EIP
Early abort Identify and stop low-utility expts quickly - o€ (_:‘\Ctt € experime that maXImlzes the Current o
Workload compressior] Reduce per-experiment running time without 2. An important feature of GRS is that the uncertainty in fred

reducing overall tuning quality tion (Equation 6) depends only on thd¢ values of collected
Semantic knowledge | Exploit advisory parameters database system samples. Thus, aftex ) is selected, we update the uncertainty
Incremental tuning Cluster parameters to ensure independent effécts  estimate at each remaining candidate setting. (The pestlict

[

_ _ across clusters; tune one cluster at a time value, from Equation 5, at each candidate remains unchanged
Interactive tuning Get user feedback from intermediate results 3. We compute the new EIP values with the updated uncertainty
Table 2: Features that improve iTuned's efficiency term v(X), and pick the next sampl& “**) that maximizes
o . . EIP. The nice property is that “* will not be clustered with
use which is encapsulated cleanly into the correspondingeho X@: after X@ is picked, the uncertainty in the region around
container.Thus, iTuned works even in settings where there are no X will reduce, therefore EIP will decrease in that region.
standby or test databases. 4. The above steps are repeated untikperiments are selected.
6. IMPROVING ITUNED'’S EFFICIENCY 6.3 Early Abort of Low-Utility Experiments

While the exploration aspect of Adaptive Sampling has its ad
vantages, it can cause experiments to be run at poorly-perfg
settings. Such experiments take a long time to run, and iboiter
little towards finding good parameter settings. To addreissarob-
lem, we added a feature to iTuned where an experimeittatis
aborted after\ x ¢, time if the workload running time ak ¥
is greater tham\ X t,in. Here,tmin is the workload running time

Experiments take time to run. This section describes featur
that can reduce the time iTuned takes to return good resslts a
well as make iTuned scale to large numbers of parameter¢e Zab
gives a short summary. The first three features are fullygirated
into iTuned, workload compression is currently a simpledtdone
tool, and the last three features will be implemented inrutu

6.1 Eliminating Unimportant Parameters Us-  at the best setting found so far. Be defailit= 2.
ing Sensitivity Analysis 6.4 Workload Compression
Suppose we have generated a GRS usisgmpleg X (¥ (). Work on physical design tuning has shown that there is a lot

Recall that, given any settiny, the GRS can produce a prediction  of redundancy in real workloads which can be exploited tgrou
with meang(X) and variancev®(X). Using the GRS, we can  workload compression to give 1-2 orders of magnitude rednct

compute the expected valuepivhenz;=v as: in tuning time [3]. Reference [3] proposed an approach whieze
given workload is partitioned based on distinct query teatgs,
E(y|x1:v):/ / J(v,z2,...,xq)dx2 - - dxq and a representative subset is picked per partition viateling.
dom(z2) Jdom(zq) To demonstrate the utility of workload compression in iTdnee

(10)
Intuitively, Equation 10 averages out the effects of allgmaeters
other thanz1, and E(y|x1) is a function ofz; measuring its ef-
fect ony. If we considerl equally-spaced values € dom(z1),
1 < ¢ < I, then we can use Equation 10 to compute the ex-
pected value of; at each of thesé points. A plot of these val-
ues, e.g., as shown in Figure 3, gives a visual feel of the-over
all effect of parameter; ony. We term such ploteffect plots

In addition, we can consider the variance of these valuastdd 6.5 Using Database-specific Knowledge

Vi = Var(E(y|z1)). Intuitively, if V7 is low, theny does not vary . .
much asz; is changed; hence, the effectof on y is low. On the It is common tc_) have database parameterg V\_/hose settings affe
other hand, larg#; means thay is sensitive tar1's setting. the query execution plan chosen by the optimizer, but do fiot a
Therefore. we define theain effeciof =1 as—YL- which rep- fect anything else including resource allocation and degatron-
o L Tar(y) . P figuration. We term such parametedvisory parametersPost-
resents the fraction of the overall variancejithat is explained by \ . . . A
the variance seen iR (y|x1). The main effect of the other parame- greSQLseffectivecachesize paramete(recall Section 1) is an ex
tersxs, ..., x4 is defined in a similar fashion. Any parameter with z)rqﬁlee;) Mticr):iazg?’rsngjos? r?é%gplgs 'n;:l;d:ogfg?r:ifri:&g asinpu
low main effect can be set to its default value with little atge P ; ) o .g.(,") tofaseq .
. . - Consider two settingX ' and X'V’ that differ in the settings of
impact on performance, and need not be considered for tuning . . L
. i ] ) advisory parameters only. Despite this difference, supjtos op-
6.2 Running Multiple Experiments in Parallel timizer picks the same set of execution plansXdf) and X 7). If
If the executor can find enough resources on the workbeneh, th ~ iTuned “knows” about S?Y'SOW parameters, then it can avord
iTuned can rurk > 1 experiments in parallel. (Section 9 discusses N'Ng an experiment ak " if an experiment has already been done
how cloud computing is making resources cheaper to acjire at X"’ (since the same plans would run in the same environment).
batch of experiments from LHS during initialization can b in This optimization is important and frequently applicablecause
parallel. Running: experiments from Adaptive Sampling in paral- ~ typical databases have a number of advisory parameterd, afos
lel is nontrivial because of its sequential nature. A naippraach ~ Which are high-impact because they can change executios.pla
is to pick the topk settings that maximize EIP. However, the pitfall .
is that theset samples may be from the same region (around the 6.6 Other Technlques
current minimum or with high uncertainty), and hence recanid One approach for scalability is analyze interactions amitweg
We set two criteria for selectink parallel experiments: (1) Each  effects of different parameters. Recall that the main ¢ftépa-
experiment should improve the current best value (in exiigt); rameterz; is defined as(,a‘r/ﬁ. Similarly, aninteraction effecbe-

came up with a modified approach. We treat a workload as asserie
of execution of query mixes, where a query mix is a set of @seri
that run concurrently. An example could ¥8Q1,6Q1s) which
denotes three instances of TPC-H quéy running concurrently
with six instances of):s. We partition the given workload into
distinct query mixes, and pick the top-k mixes based on ttegail
time for which each mix ran in the workload.



Aler(E(y|z1,22))—Vi—Vo
b Var(y)

E(y|x1:v1,x2:vg):/ ~--/y(v1,v2,x3,...
dom(xz3)/ dom(xzq)

Intuitively, the interaction effect betweery andz- is high if the

effect ofz1 ony is very sensitive ta2's setting. That is, different
settings ofr. cause different effects from;. We can identify im-
portant interaction effects using the above equation, bad par-
tition the parameters in disjoint groups such that no cgrssyp

interactions exist. iTuned could then takdigide-and-conqueap-

proach to parameter tuning, i.e., tuning one group of patarset

a time, probably ranking the groups in some order.

7. EMPIRICAL EVALUATION

Our experimental setup involves a local cluster of machieash
with four 2GHz processors and 3GB memory, running PostgteSQ
8.2 on Solaris 10. One machine runs the production dataffdmse.
other machines are used as hot standbys, test platformsprér w
load generators. Recall from Section 5 that iTuned’s peliaged
executor can run experiments on the production databamed-st
bys, and test platforms. By default, we use a standby datdioas
experiments.

7.1 Methodology and Summary

We first summarize the different types of empirical evalomti
conducted and the results obtained.

e Section 7.2 breaks down the overhead of various operations i
the API provided by iTuned’s executor, and shows that the ex-
ecutor is noninvasive and efficient.

Section 7.3 shows real response surfaces that highlighisthe
sues motivating our work, e.g., (i) why database paramater t
ing is not easy for the average user; (ii) how parameter effec
are highly sensitive to workloads, data properties, andues
allocations; and (iii) why optimizer cost models are instiéfit

for effective parameter tuning, but it is important to keép t
optimizer in the tuning loop.

Section 7.4 presents tuning results for OLAP and OLTP work-
loads of increasing complexity that show iTuned’s ease ef us
and up to 10x improvements in performance compared to de-
fault parameter settings, rule-based tuning based on aopul
heuristics, and a state-of-the-art automated parameténgu
technique. We show how iTuned can leverage parallelisny ear
aborts, and workload compression to cut down tuning times
drastically with negligible degradation in tuning quality
iTuned’s performance is consistently good with both Pa&S$@iL
and MySQL databases, demonstrating iTuned’s portability.
Section 7.5 shows how iTuned can be useful in other ways apart
from recommending good parameter settings, namely, visual
ing parameter impact as well as approximate response sstfac
This information can guide further manual tuning.

The tuning tasks in our empirical evaluation consider up & 2
database configuration parameters. By default, we contiddol-
lowing 11 parameters for OLAP workloads in PostgreSQL: (P1)
sharedbuffers, (P2) effectivecachesize, (P3) workmem, (P4) main-

tweenx; andzs can be defined , where:

,xq)dxs - dzg

tenancework_mem, (P5) defaulstatisticstarget, (P6) randonpagecost,

(P7) cputuplecost, (P8) cpLindex tuplecost, (P9) cpLoperatorcost,
(P10) memory allocation, and (P11) CPU allocation. Table/8gy
the exhaustive list of all the parameters.

7.2 Performance of iTuned’s Executor

We first analyze the overhead of the executor for running expe
iments. Recall its implementation from Section 5. Table dvgh
the various operations in the interface provided by the e
and the overhead of each operation. The Create Container ope
ation is done once to set up the OS environment for a particula

Operation by Ex- | Time| Description

ecutor (sec)

Create Container | 610 | Create a new garage (one time process

Clone Container | 17 Clone a garage from already existing orle

Boot Container 19 Boot garage from halt state

Halt Container 2 Stop garage and release resources

Reboot Container | 2 Reboot the garage (required for adding
additional resources to a container)

Snapshot-R DB 7 Create read-only snapshot of database

Snapshot-RW DB | 29 Create read-write snapshot of database

Table 4: Overheads of operations in iTuned’s executor

tuning task; so its 10-minute cost is amortized over an erntin-

ing session. This overhead can be cut down to 17 seconds if the
required type of container has already been created for poeve

ous tuning task. Note that all the other operations take emtter

of a few seconds. For starting a new experiment, the coshmat

48 seconds to boot the container and to create a read-weipsbot

of the database (for workloads with updates). A container
halted within 2 seconds, which adds no noticeable overtfeady,

the standby has to take over on a failure of the primary datba

7.3 Why Parameter Tuning is Nontrivial

The OLAP (Business Intelligence) workloads used in ourweval
ation were derived from TPC-H running at scale fact@s)(of 1
and 10 on PostgreSQL [18]. The physical design of the dagsbas
are well tuned, with indexes approximately tripling and lliing
the database sizes for SF=1 and SF=10 respectively. Sntse
always up to date. The heavyweight TPC-H queries in oumggtti
include Q1, Q7, Q9, Q13, and Q18.

Figure 1 shows a 2D projection of a response surface that we
generated by running Q18 on a TPC-H SF=1 database for a num-
ber of different settings of the eleven parameters fromiSedt.1.

The database size with indexes is around 4GB. The physiaal-me
ory (RAM) given to the database is 1GB to create a realiste sc
nario where the database is 4x the amount of RAM. This complex
response surface is the net effect of a number of individffetts:

e Q18 (Large Volume Customer Query) is a complex query that
joins the Lineitem, Customer, and Order tables. It also has a
subquery over Lineitem (which gets rewritten as a join), 48Q
accesses Lineitem—the biggest table in TPC-H—twice.

e Different execution plans get picked for Q18 in different re
gions of the response surface because changes in paragteter s
tings lead to changes in estimated plan costs. These plfeis di
in operators used, join order, and whether the same or differ
access paths are used for the two accesses to the Lineitkmn tab

e Operator behavior can change as we move through the surface.

For example, hybrid hash joins in PostgreSQL change from one

pass to two passes if thheork memparameter is lower than the

memory required for the hash join’s build phase.

Resource interference can happen. For example, if a hybrid

hash join in PostgreSQL starts to create temporary files sl di

the accesses go through the OS file cache which competes for

RAM with sharedbuffers Thus, increasingharedbufferscan

degrade performance if hybrid hash joins are spilling tédis

It took us several days of effort, more than a hundred exparim
with PostgreSQL, as well as email conversations with PeSIQi.
developers to understand the unexpected nature of Figufé/é.
point the interested reader to a commentary at [6].) It iskeh}
that a non-expert who wants to use a database for some applica
say, Peter in Section 1—will have the knowledge (or patigtae
tune the database like we did. Surfaces like Figure 1 showdnibw
ical experiments are to understand which of many differéieces
dominate in a particular setting.



Table 3: Parameters considered

SNo Parameter Description
pl sharedbuffers Shared buffers defines a block of memory that PostgreSQLusél to hold requests that are
awaiting attention from the kernel buffer and CPU
p2 effective.cachesize Effective cache size allows PostgreSQL to make best pessgd of RAM available the serverr.
It tells PostgreSQL the size of OS data cache. So that P&fdrean draw different executiop
plan based on that data.
p3 work_mem Work mem sets maximum limit on memory that a database coimmecan use to perform sorts.
p4 defaultstatisticstarget | Sets the default statistics target for table columns
p5 randompagecost Sets the planner’s estimate of the cost of a nonsequentitiied disk page
p6 cputuple.cost Sets the planner’s estimate of the cost of processing eacudng a query
p7 cpuwindextuplecost Sets the planner’s estimate of the cost of processing edelx iow during an index scan
p8 cpuoperatorcost Sets the planner’s estimate of the cost of processing easfatop in a WHERE clause
P9 maintenancevork mem | Used for maintenance operations like CREATE INDEX, VACUURHAALTER TABLE ADD
FOREIGN KEY
pl0 checkpointsegments | Maximum distance between automatic WAL checkpoints, infilegsegments (each segment|is
normally 16 megabytes)
pli checkpointtimeout Maximum time between automatic WAL checkpoints, in seconds
pl2 wal_buffers Number of disk-page buffers allocated in shared memory fAt \Wata
pl3 | maxpreparedconnections| Sets the maximum number of transactions that can be in tepgped” state simultaneously
pl4 autovacuum If on, automates the execution of VACUUM and ANALYZE
p15 fsync If fsync is on, then PostgreSQL make sures that updates geégalily written to disk
pl6 ebs Number of emulated browsers for simulating TPC-W workload
pl7 workloadtype Workload type for TPC-W. It can be of three types: Browsingn@rdering mix and Shopping
mix
pl8 mysqldtablecache MySQL sharedbuffers per table
pl9 mysqld sortbuffer_size | MySQL work.mem
p20 mysqldkey_buffersize | MySQL sharedbuffers
p21 buy RUBIS parameter indicating the number of buyers in an anctio
p22 browse RUBIS parameter indicating the number of browsing conoesti
p23 sell RUBIS parameter indicating the number of sellers in an aucti
p24 aboutMe RUBIS parameter indicating the number of connections dingckboutMe information
p25 memory Amount of memory available
p26 CPU Amount of CPU available

The average running time of a query can change drastically de

TPC—-H Workload 6Q18

pending on whether it is running alone in the database orritris

ning in a concurrent mix of queries of the same or differepety.
For example, consider Q18 running alone or in a mix of six conc
rent instances of Q18 (each instance has distinct paravedtess).
At the default parameter setting of PostgreSQL for TPC-H BF=
we have observed the average running time of Q18 to change fro
46 seconds (when running alone) to 1443 seconds (when giimin
the mix). For TPC-H SF=10, there was a change from 158 seconds
(when running alone) to 578 seconds (when running in the.mix)
Two insights come out from the results presented so far. éMor
such results are in the technical report [6].) First, queptiroiz-
ers compute the cost of a plan independent of other plansnnn

Average running time (sec)

400

0O o

effective_cache_size(MB) shared_buffers(MB)

Figure 6: Impact of shared buffers Vs. effectivecachesize for
workload W4 (TPC-H SF=10)
oL J L (Q18in 6-way mix, TPC-H SF=10) is that increassttaredbuffers
ond, it is important to keep the optimizer in the loop whileing has an overall negative effect in the former case, while ter-o
parameter settings because the optimizer can change théqula 4| effect is positive in the latter. We attribute the markftéct of
a query when we change parameter settings. While keeping thegnharedhuffersin Figure 6 to the increased cache hits across concur-
optimizer in the loop is accepted practice for physical gesun- rent Q18 instances. Figures 7 and 8 show the response stoface
ing (e.g., [4]), to our knowledge, we are the first to bring @t workload wheresharedbuffershas limited impact. The highest im-
importance and enable its use in configuration parametérgun pact parameter iwork-mem This workload has three instances of
Figure 6 shows a 2D p.I’O.jeCtIOFI of the response surface for Q18 Q7 and 3 instances of Q13 running in a 6-way mix in PostgreSQL
when run in the 6-way mix in PostgreSQL for TPC-H SF=_10. The for TPC-H SF=10. All these results show why users can have a
key difference between Figures 1 (Q18 alone, TPC-H SF=1j5and (g time setting database parameters, and why experirtieatts

concurrently. Thus, optimizer cost models cannot captieetiue
performance of real workloads which consist of query mix&sc-
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Figure 7: Impact of shared.buffers Vs. work_mem for work-
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Figure 8: Impact of shared. buffers Vs. effectivecachesize for
workload W5 (TPC-H SF=10)

can bring out the underlying response surfaces are indeitab

7.4 Tuning Results

We now present an evaluation of iTuned’s effectiveness fherei
ent workloads and environments. iTuned should be judgell dot
its quality—how good are the recommended parameter settings?—
andefficiency—how soon can iTuned generate good recommenda-
tions? Our evaluation compares iTuned against:

e Default parameter settings that come with the database.

e Manual rule-basedtuning based on heuristics from database
administrators and performance tuning experts. We use an au
thoritative source for PostgreSQL tuning [12].

Smart Hill Climbing (SHC) is a state-of-art automated param-
eter tuning technique [22]. It belongs to the hill-climbifagn-

ily of optimization techniques for complex response swefac
Like iTuned, SHC plans experiments while balancing explo-
ration and exploitation (Section 4.2). But, SHC lacks keg-fe
tures of iTuned like GRS representation of response susface
executor, and efficiency-oriented features like parahtaliearly
aborts, sensitivity analysis, and workload compression.

e Approximation to the optimal setting: Since we do not know
the optimal performance in any tuning scenario, we run glarg
number of experiments offline for each tuning task. We have
done at least 100 (often, 1000+) experiments per tuning task
over the course of six months; the detailed numbers are in [6]
The best performance found is used as an approximation of the
optimal. This technique is label&tute Force

iTuned and SHC do 20 experiments each by default. iTuned uses
the first 10 experiments for initialization. Strictly forétpurposes

of evaluation, by default iTuned uses only early abort amtireg
efficiency-oriented techniques from Section 6.

Figure 9 compares the tuning quality of iTuned (I) with Ddfau
(D), manual rule-based (M), SHC (S), and Brute Force (B) on a
range of TPC-H workloads at SF=1 and SF=10. The performance
metric of interest is workload running time; lower is bettérhe

workload running time for D is always shown as 100%, and the
times for others are relative. (The absolute numbers ar@Jip [
To further judge tuning quality, these figures show the rafthe
performance value that each technique finds. Ranks aretegpor
with the prefix R, and are based on the range of performancesal
observed by Brute Force; lower rank is always better. Fig@e
also shows (above I's bar) the total time that iTuned tookesin
invocation to give the recommended setting. Detailed amslyf
tuning times is done later in this section.

11 distinct workloads are used in Figure 9, all of which are
nontrivial to tune. Workloads W1, W2, and W3 consist of indi-
vidual TPC-H queries Q1, Q9, and Q18 respectively running at
Multi-Programming Level (MPLf 1. MPL is the maximum num-
ber of concurrent queries. TPC-H queries have input panset
Throughout our evaluation, we generate each query instearce
domly using the TPC-H query generatpgen Different instances
of the same query are distinct with high probability.

Workloads W4, W5, and W6 go one step higher in tuning com-
plexity because they consist of mixes of concurrent querid/g
(MPL=6) consists of six concurrent (and distinct) instasceQ18.
W5 (MPL=6) consists of three concurrent instances of Q7 hrekt
concurrent instances of Q13. W6 (MPL=10) consists of five-con
current instances of Q5 and five concurrent instances of Q9.

Workloads W7 and higher in Figure 9 go the final step in tun-
ing complexity by bringing in many more complex query types,
much larger numbers of query instances, and different MRUE.
(MPL=9) contains 200 query instances comprising queriesl
Q18, in the ratio 1:2. W8 (MPL=24) contains 200 query instnc
comprising TPC-H queries Q2, Q3, Q4, and Q5, in the ratial311:
W9 (MPL=10), W10 (MPL=20), and W11 (MPL=5) contain 100
query instances each with 10, 10, and 15 distinct TPC-H query
types respectively in equal ratios. The results for W7-Nvahn
Figure 9 are from tuning 30 parameters.

Figure 9 shows that the parameter settings recommendedibgdl
consistently outperform the default settings, and is ugsdnif-
icantly better than the settings found by SHC and commomguni
rules. iTuned gives 2x-5x improvement in performance in ynan
cases. In fact, iTuned’s recommendation is usually closgein
formance to the approximate optimal setting found (exheeis)
by Brute Force. It is interesting to note that expert tuniotes
are more geared towards complex workloads (compare the M bar
between the top and bottom halves of of Figure 9).

As an example, consider the workload W7-SF10 in Figure 9. The
default settings give a workload running time of 1085 sesoi®kt-
tings based on tuning rules and SHC give running times of 386 a
421 seconds respectively. In comparison, iTuned’s beshgef-
ter initialization gave a performance of 318 seconds, whiak im-
proved to 246 seconds by Adaptive Sampling (77% improvement
over default). iTuned’s sensitivity analysis found thersldsbuffers
parameter to have the mostimpact on performance. The dsfztul
ting of 32 MB for sharedbuffers is poor. The rule-based setting of
200 MB is better, but iTuned found a setting close to 400 MBnehe
the performance is far better.

Figure 9 shows that iTuned takes on the order of tens of hours t
find good settings for complex workloads. Figure 10 givesahe
solute tuning values by executing a single instance of veaidlin
seconds. Reference [10] estimates that configuring largghdae
management systems takes on the order of one to two weekseso o
to two days of time spent parameter tuning is acceptablezcéeip/
considering that iTuned gives 2x-5x improvement in perfance
in many cases. More importantly, Figure 11 shows that iTiened
tuning time can be reduced by orders of magnitude using ttfe te
nigues we proposed in Section 6. Early Abort uges= 2 and



E DEFAULT(D) B RULE-BASED(M) W SHC(S) & BRUTE-FORCE(B) ITUNED(I)
o 120%
E RSS e B R82
T 100%
D ‘0
B R26R34 R1 Ri
i—: .
2 80%
[+}]
£
= 60%
(=11}
E
=
£ 40%
=3
[
=]
E 20%
-
5]
B 0% DMSBI
3 W1-SF1 W2-SF1 W3-5F1 W3-SF10 W4-5F1 W4-SF10 W6-SF1 W5-SF10
Workload Type
E DEFAULT(D) & RULE-BASED(M) WISHC(S) & BRUTE-FORCE(B) M ITUNED(I)

= 120%
=
o
o
@
a 100%
-
A=
z
o 80%
£
|—
wp 60%
=
=
=
n='f 40%
=
1]
o 20%
-
[
<]
= o%
B‘E DMS B DMS B DMS B DMS B I oDMSsS Bl DMS B

W7-5F1 W7-SF10 W7-N-SF10 W8-SF1 W9-SF10 W10-5F10 W11-5F10

Workload Type

Figure 9: Comparison of tuning quality. iTuned’s tuning tim es are shown in minutes (m) or hours (h). Ri denotes Rank i

workload compression picks the top mix in the workload.

For each of the complex workloads from Figure 9, we show
iTuned’s tuning time with and without different techniqués is
clear that these techniques can reduce iTuned’s tuning tonas
most a few hours. The drop in tuning quality across all thesear-
ios was never more than 1%. In general, we have found workload
compression to be even more effective in parameter tuniag th
in physical design tuning. Intuitively, parameter setsirgge less
sensitive to which queries get picked in the compressed loadk
compared to, say, index selection.

Because of space constraints, we have only given representa
tive results in this paper. A number of other empirical résut
including OLTP workloads, MySQL, and different performanc
metrics—are given in [6]. Table 5 gives a brief summary thatgs
iTuned’s consistent good performance. TPC-W is an e-Comener
benchmark that simulates the activities of a retail webgter ex-
periments with TPC-W are based on a 48000-transaction wadkl

Workload Perf. #Params| Quality | Tuning time
Metric (Rank) | (Hours)

TPC-W Response | 7 R1 3.2

(MySQL) time

TPC-W Throughput 7 R4 7.6

(MySQL)

TPC-W Response | 20 R23 25

(PostgreSQL) | time

TPC-W Throughpuf 20 R8 25

(PostgreSQL)

RUBIS Response | 6 R1 6.1

(MySQL) time

RUBIS Throughpuf 6 R2 6.6

(MySQL)

Table 5: Sample of iTuned’s results
dataset

on TPC-W and RUBIS

on a 6GB database. RUBIS [1] is Web service benchmark that im-
plements the core functionality of an auction site like eBay




WORKLOAD TYPE QUERY MIX DEFUALT RULE-BASED SHC OPTIMAL ITUNED
Wi-SF1 Q1 107 107 10 101 1m
W2-5F1 Q9 310 282 231 95 95
W3-5F1 Q18 315 267 250 183 184
W3-SF10 Q18 10 158 138 140 131 131
Wi-5F1 6018 1443 1505 39 3l 32
Wi-SF10 6018 10 578 167 148 128 133
W3-SF10 3Q7+3Q13_10 1167 1057 1237 1057 1173
Wi6-5F1 5014509 907 943 838 738 765

WORKLOAD TYPE QUERY MIX DEFUALT RULE-BASED SHC OPTIMAL ITUNED
W7-5F1 q1q18 338 158 9% 78 84
W7-5F10 q1q18 1083 386 21 246 248
W7-N-5F10 Q1018 1085 386 205 246 283
Wa-5F1 02030405 406 423 366 208 209
WO-5F10 Ch1 1451 1240 979 601 601
WI10-5F10 Ch1_1800 5010 5089 1674 1503 1583
W11-5F10 Chi2 1152 1020 1052 971 1014

Figure 10: Comparison of tuning quality for single instanceof workload. iTuned'’s tuning times shown in seconds
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Figure 11: Comparison of iTuned’s tuning times in the presere of various efficiency-oriented features

7.5 Sensitivity Analysis

This section evaluates two important features of iTuned- se
sitivity analysis of database parameters and effects potgisu-
alization; see Section 6.1. We use both real workloads and co
plex synthetic response surfaces in our evaluation. We aoenp
iTuned’s performance against SARD [5] which is describe8éc-
tion 3. Recall that, unlike iTuned, SARD is not an end-to-&nt
ing tool, and can be misled by nonmonotonic effects of patarse

Our concerns about SARD were validated by a simple evalua-
tion. We chose three popular and hard benchmark functiam fr
the optimization literature: Griewank, Rastrigin, and Buaisrock
[22]. All three functions have a global optimum of 0. We uskd t
functions to generate response surfaces with 20 paramedets

Ofthese 20 parameters, 5 are important—i.e., they impactihape
of the surface significantly—while the remaining 15 are updm
tant. On the Griewank and Rastrigin surfaces—which haveifsig
cant nonmonotonic behavio—SARD completely failed to iifgn
the unimportant parameters. As iTuned did experimentsrpsag
sively, it never classified any important parameter as uomamt.
By the time fifty experiments were done, iTuned was able tartje
separate the five important parameters from the unimpooiaes.

Tables 6 gives end-to-end tuning results for three techasg(i)
SARD+AS, where SARD is used to identify the important param-
eters, and then Adaptive Sampling is started with the sasrque
lected by SARD used for initialization; (ii) SHC (does notsimsi-
tivity analysis), and (iii) iTuned. Note that lower numbeare better
in all cases. iTuned clearly outperforms the alternatives.



[ Workload [ Optimal [ SARD+AS | SHC [ iTuned |

600 -

Griewank 0 28.6 28.7 2.0 ~_ I iizz'zj)
Rastrigin 0 200.8 209.1 26.1 550 AN —%— P3(0.00)
Rosenbrock 0 40.2 160.5 7.9 sool o g;’j{i)
W2-SF1 95 240 (R29) | 231 (R24)| 95 (R1) —— Feo0
W3-SF1 11 43(R20) | 67 (R24) | 12 (R4) aso| P7(0.00)

P8 (0.00)
P9 (0.00)

W6-SF1 390 | 450 (R63) | 417 (R20)| 403 (Rb)
W8-SF1 208 208 (R1) | 289 (R4) | 208 (R)

Table 6: Sensitivity analysis. For W2, W3, W6, W8, rank and
performance of best setting (secs) are shown. Lower is bette
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Figure 14: Effect plot for workload W5 (TPC-H SF=10)

A very useful feature of iTuned is that it can provide intuti
visualizations of its current results. Figure 14 shows dectfplot
(recall Section 6.1) generated by iTuned based on 10 expatsn
for the workload whose surface is shown in Figures 7 and 8- Fig
ure 12 and 13 shows the effect plot for workload W4 for SF=1 and
SF=10. The parameters P1-P9 correspond to the first nine Post
greSQL parameters listed in Section 7.1. Without knowirgyah-
tual response surface, a user can quickly grasp the maidstrien
parameter impact based on the effect plot. Note how the piet m
rors the trends in Figures 7 and 8. Effect plots of other waaikls
are in [6].

In summary, as few as twenty experiments chosen smartly by
iTuned can produce a wealth of information in a reasonabieusrn

as the number of parameters increase. Section 7 also cotnhpare
iTuned with a technique based on hill climbing (e.qg., [2BBtthas
been applied to parameter tuning. None of the above tecasiqu
have an equivalent of iTuned’s executor or the efficiendgraed
features from Section 6.
Techniques for tuning specific classes of parameters ircdob)/-
ing analytical models [19], using simulations of databasegq-
mance (e.g., in Oracle database), and control-theoretimaphes
for online tuning [16]. These techniques are all based odefmeed
models of how changes in parameter settings affect perfocma
Reference [15] proposed techniques to tune the CPU and myemor
allocations to databases running inside virtual machikiesvever,
of time to aid both naive users and expert DBAs in tuning dateb the focus was not on planning experlments to leam the u_yldgrl
configuration parameters. response surfages. All the abovg techplques can benefittirem
Adaptive Sampling and executor ideas in iTuned.
8. RELATED WORK Traditional database sampling deals with the problem of-sam
Databases have fairly mature tools for physical designnwni  pling from a large dataset, while our approach of AdaptivenSa
(e.g., index selection [4]). However, these tools do notresisl pling is about drawing samples from a response surface that i

configuration parameter tuning. Furthermore, these toefsedd never materialized fully. Adaptive Sampling shares gobig, not
on the cost models in the query optimizer so are limited irt tha techniques, with conventional database problems likaenerdggre-
these models do not capture the effects of many parameters. gation [8], acquisitional query processing [11], and sangpfor

Surprisingly, very little work has been done on tools forisit statistics estimation [2]. For example, [2] gives a two-gshadap-

tuning of the many configuration parameters in modern datba tive method in which the sample size required to reach a esir
systems. Most work in this area has either focused on specific accuracy is decided based on a first phase of sampling. Inasbnt
classes of parameters (e.g., [16]) or on restricted sulbgmubof the Adaptive Sampling can adapt after each sample is brought in.

overall parameter tuning problem (e.g., [5]). IBM DB2 prdes an Oracle 119 introduced the SQL Performance Analyzer (SPA)

advisor for setting default values for a large number of paters to help DBAs measure the impact of database changes like up-
[10]. DB2's advisor does not generate response surfacetead it grades, parameter changes, schema changes, and gathaiing o

relies on built-in models of how various parameters affemtqr- mizer statistics [23]. (Quoting from [23], “it is almost iropsi-

mance [5]. As we show this paper, predetermined models may no ble to predict the impact of such changes on SQL performaree b
be accurate in a given setting. SARD (discussed in Secti@m@) fore actually trying them.”) SPA conducts experiments veh®0QL
[17] are also related to iTuned. SARD focuses on rankingrpera statements in the workload are executed with and withoulyapp

ters in order of impact, and is not an end-to-end tuning tBeffer- ing a change. However, Oracle 11g does not provide an experi-
ence [17] proposed techniques to learn a probabilistic mneoslag ment planner that can automatically handle complex turasgst
samples generated from gridding, which was then appliedrie t like parameter tuning. Finally, experiments are used ttecbbata

four parameters in Berkeley DB. Gridding becomes very ingffit in many domains like chemical and mechanical engineering, s



cial science, and computer simulation. While iTuned shavesall
guiding principles with experiment planning in these damsathe
requirements and algorithms differ.

9. CONCLUSION

We described iTuned, a tool that automates the task of recom-
mending good settings for database configuration paraméiemed
has three novel features: (i) Adaptive Sampling to proatyitring
in appropriate data through planned experiments to find-higract
parameters and high-performance parameter settingsex@gu-
tor to supports online experiments in production database- e
ronments through a cycle-stealing paradigm that placeszera
overhead on the production workload; and (iii) portabilitgross
different database systems. We showed the effectivene$araéd
through an extensive evaluation based on different typegook-
loads, database systems, and usage scenarios.

Cloud computing can make resources available at extrerhelge
rates for experiments. In fact, for almost all the tuningcgagom
Section 7.4, all the required experiments can be done on Amaz
Web Services in a budget less than fifteen U.S. dollars! Tiés$ ¢
includes the cost of using Amazon EC2 instances for the CRIUU an
memory resources required by each experiment, and Amazm El
tic Block Storage for storing and accessing TPC-H data inst-Po
greSQL database.
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