Universal Serial Bus

Device Class Specification for

Device Firmware Upgrade

Version 1.1
Aug 5, 2004

USB Device Firmwar e Upgrade Specification, Revision 1.1

Intellectual Property Disclaimer

THISSPECIFICATION ISPROVIDED “AS IS WITH NO WARRANTIESWHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESSFOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE ISHEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TOANY OTHER INTELLECTUAL PROPERTY RIGHTSISGRANTED OR INTENDED HEREBY .

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
NFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT WARRANT OR
REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Contributors

Trenton Henry
David Rivenburg
Dan Stirling
Bob Nathan

Bill Belknap
Mats Webjoérn
Bill Dellar

Neil Winchester
Steve McGowan
Tom Green

Ivo Bettens
Mark McCoy
John Stafford
Keith Gudger

Greg Kroah-Hartman

USB Device Firmwar e Upgrade Specification, Revision 1.1

SMSC

SMSC

MCCI

NCR

NCR

MCCI
Systech
SMSC

Intel
Microsoft
Symbol Technologies
Anchor Chips
Systech
Atmel

PSC Inc.

USB Device Firmwar e Upgrade Specification, Revision 1.1

Contents
1. INTRODUGCTION ..ttt ettt et e et e et e et ettt e e et e e et e e et e e et e e e et aeeanaaenns 7
11 REBIEA DOCUMENES......coviereriresciresei ettt es bbb bbb bbbttt 7
12 TermsSand ADDrEVIBLIONS..........ocirieierr ettt et 7
FZZ @ AV o A | 8
G L LU S 5 T PP 10
4. ENUMERATION PHASE ... ittt e et e e e e e et e e et e e e e e e eeeens 11
4.1 RUN-TIMEDESCIIPLON SEL.....ccueeieectersicie sttt s e s st a et s st s e nnsaee 11
411 Run-Time Device and Configuration DESCIHPLONSccveecurireceeirresisessessessesesse e ssssssssessessnees 11
412 Run-Time DFU Interface DESCriptor.........cccevuveveeerereeeernnrennnns
413 Run-Time DFU Functional Descriptor
4.2 DFU MOUE DESCIIPLON SEL......ucuvriecerieeesreeesisese e sess s ses st 14
421 DFU MOOE DEVICE DESCITPIONvuieeriererteresrisessesess s sese st ss s ss st ssssesnsses 14
422 DFU Mode Configuration DESCIIPLON..........cwrereeerreeerieeerressesessesessesssesssssssssssessssesssesssssssssssssssssessssessesees 14
423 DFU MOE INtEIfACE DESCITPION.cvueeeeuceeesreressisese s sese st snsses 15
424 DFU FUNCLIONA DESCITDION ... ceirieeeieeestisessisessesess s sese st st sssessssesnsses 16
5. RECONFIGURATION PHASE.ottt ettt e e e e e e e e e e e e e e eeans 17
51 TheDFU _DETACH REQUES.......ccurieererereeireaeireeeeseieesisessteesstsesstssssssessssessssessssesssssssesssssssssssssssssssssssssssssssasens 17
B. TRANSFER PHASE.ttt e e et et e e e et eeeaaaeens 18
6.1 [0 11 o= 11T R
6.11 DFU_DNLOAD Request
6.1.2 DFU_GETSTATUS REUESL......coieeeieritirestireseisess st sese s sess s se st sssssssssssses 20
6.1.3 DFU_CLRSTATUS REQUESL.......coteeeieririerestiressisessiseas s isessssessesessessssess s st st esssssssssssssssessseses 23
6.14 DFU_ABORT REQUESL......c.eueereeeereereriereeereseisessessesesssessssssssenees
6.15 DFU_GETSTATE Request.
6.2 UPIOBAING ...ttt s bbbt 25
6.21 DFU_UPL OAD REUESL. ... ceereeeeererseressesessesessesess s ssesssssssssssssssssssssssssssssssssssssssesssessssessssssssssssssssssssssses 25
7. MANIFESTATION PHASE ..ottt et e e e e e s e e n e et e e et e e e eeeens 26
1 INTRODUGCTION ...ttt ettt e e e et e e e et e et e e e e e et e e e e e et s eaanaeeanaeeaeeeenneeeens 7
11 REBIEA DOCUMENES ..ottt isese ettt bbb bbb bbb bbbttt ettt 7
12 TermSand ADDIEVIBLIONS. ..ottt bbbt 7

USB Device Firmwar e Upgrade Specification, Revision 1.1

2. OVERVIEW ..o e e 8

3. REQUESTS o ettt ettt ettt et ettt ettt ettt ettt ettt ettt ettt e, 10

4, ENUMERATION PHASE ..o e 11

4.1 RUN-TIME DESCI IPLON SEL.....oveceieceiecitieeeieee et
411 Run-Time Device and Configuration Descriptors
412 Run-Time DFU Interface DESCriptor........oveeeeneeeenereenernesernenns
413 RUN-Time DFU FUNCLIONEl DESCIIPLO..........cueueireeerieerereiseseesessesessesssese s s ssss s ssssessesesneses

4.2 DFU MOGE DESCIIPLON SEL.....cucvevececretiesiciete st sas st as sttt s s s s s e a et s s nntne
421 DFU MOOE DEVICE DESCIIPLOLcucecvetiiacieereeeesessesesssstssssssessssssssesesssssssessssssessssssssstessssssssesssssssessssssses
422 DFU Mode Configuration Descriptor
423 DFU Mode Interface DESCIiPLOr........ccceveveereeireresereeressesensenens
424 DFU FUNCLIONGI DESCIIPLONcucuiuiiuiecietieisietsesssessssessstssssssesssssssesessssssssesssssssssssssssesessssssssesssssssesssnssnses

5. RECONFIGURATION PHASE ...t 17

51 TheDFU_DETACH REQUESL ..o ses s sssessesse s sessessessesses s sssessessessessessessessesssssssessees 17

6. TRANSFER PHASE ... 18

6.1 DOWNIOAAING. ... eeveeeereersiee ettt e b st
6.11 DFU_DNLOAD REQUESL........coeuerieeeiieetieestisessisees s sess s ssessssesssssssessssssssssssssssessssesssssssssssssssssessssssnsses
6.1.2 DFU_GETSTATUS Request
6.1.3 DFU_CLRSTATUS Request
6.14 DFU_ABORT REQUESL......c.ccereererierereereseresseseeseseee s esessenens
6.15 DFU_GETSTATE REUUESL.......covrieeiieritinestiressireee e sess st sssessssssnssnes

6.2 LU o] o [o TP 25
6.2.1 DFU_UPL OAD REQUESL......coeveeeietretsetstsetsstssssssessess sttt ssssssssssssssssssssssssssassessessessesssssesssssssassas 25

7. MANIFESTATION PHASE ... oo 26

A. INTERFACE STATE SUMMARY

Al Interface State TranSition DIAGrAMot 27
A2 Interface State TranSition SUMIMEIY ... sssssesssssssesssssesesssssssesesasesesesasasasass 29
A2l SALE O APPIDLE ... e 29
A22 SALE L APPDETACH. ...t 30
A.23 OO 2 AFUIDL ...ttt bbb bbbt bbbt 31
A24 Sate 3 AfUDNLOAD-SYNCccrieiiireeteiresteessestsesssessess st sss sttt st bbbt 32
A.25 SEALE 4 ATUDNBIUSY ...ttt eas ettt bbbttt 33
A.2.6 Sate 5 AfUDNL OAD-IDLE......c ittt bbbt 34

USB Device Firmwar e Upgrade Specification, Revision 1.1

A27 SAte 6 AFUMANIFEST-SYNCcririieieierrerrer st sssssssnsens 35
A28 SALE 7 AFUMANIFEST ...ttt e 36
A.29 State 8 AfUMANIFEST-WAIT-RESETooiririreieinetneineiseiseseee e ssssssssssnsens 37
A.210 State 9 AfUUPL OAD-IDLE.......ireeeieeeceseseesse s s ssss s sssssssssssssessesssssssssssssssnesssnees 38
A211 StAtE IO AfUERROR.....coiecctrieree it 39

B. DFU FILE SUFFIX

B.1 Portable Sour ce Code for CRC and DFU Suffix
B.12 SOUICE LISING ..vurucvetiiseeteeseete sttt ssss st ss bttt s et s s st ee s e s s s st et s s ans e s s e nnt s s 42

USB Device Firmwar e Upgrade Specification, Revision 1.1

1. Introduction

This document describes proposed requirements and specifications for Universal Serial Bus (USB)
devices that support the Device Firmware Upgrade (DFU) capability.

1.1 Related Documents
Thefollowing related documents are available from WWW.USB.ORG:

Universal Serial Bus Specification 1.0, January 19, 1996
Universal Serial Bus Common Class Specification 1.0, December 16, 1997

1.2 Terms and Abbreviations

The meanings of some words have been stretched to suit the purposes of this document. These
definitions are intended to clarify the discussions that follow.

DFU (n) Device Firmware Upgrade
Firmware (n) Executable software stored in awrite-able, nonvolatile memory on aUSB device.
Upgrade (v) To overwrite the firmware of adevice.

(n)(2) The act of overwriting the firmware of adevice.
(n)(2) New firmware intended to replace adevice' sexisting firmware.
Download (v) Totransmit information from host to device.

Upload (v) To transmit information from device to host.

USB Device Firmwar e Upgrade Specification, Revision 1.1

2. Overview

Users that have purchased USB devices require the ability to upgrade the firmware of those devices
with improved versions as they become available from manufacturers. Device Firmware Upgrade isthe
mechanism for accomplishing that task. Any class of USB device can exploit this capability by
supporting the requirements specified in this document.

This document focuses on installing product enhancements and patches to devices that are already
deployed inthefield. Other potential usesfor the firmware upgrade capability are beyond the scope of
this document.

Becauseit isimpractical for adevice to concurrently perform both DFU operations and its normal run-
time activities, those normal activities must cease for the duration of the DFU operations. Doing so
means that the device must change its operating mode; i.e., aprinter isnot a printer whileitis
undergoing afirmware upgrade; it isa PROM programmer. However, a device that supports DFU is not
capabl e of changing its mode of operation on its own volition. External (human or host operating
system) intervention is required.

There are four distinct phases required to accomplish afirmware upgrade:

1. Enumeration: The device informsthe host of its capabilities. A DFU class-interface descriptor and
associated functional descriptor embedded within the device’ snormal run-time descriptors serves
this purpose and provides atarget for class-specific requests over the control pipe.

2. Reconfiguration: The host and the device agree to initiate afirmware upgrade. The host issues a
USB reset to the device, and the device then exports a second set of descriptorsin preparation for
the Transfer phase. This deactivates the run-time device drivers associated with the device and
allowsthe DFU driver to reprogram the device' s firmware unhindered by any other communications
traffic targeting the device.

3. Transfer: The host transfers the firmware imageto the device. The parameters specified in the
functional descriptor are used to ensure correct block sizes and timing for programming the
nonvolatile memories. Status requests are employed to maintain synchronization between the host
and the device.

4. Manifestation: Once the device reportsto the host that it has completed the reprogramming
operations, the host issues a USB reset to the device. The device re-enumerates and executes the
upgraded firmware.

Thedevice' svendor |D, product 1D, and serial number can be used to form an identifier used by the
host operating system to uniquely identify the device. However, certain operating systems may use
only the vendor and product | Ds reported by a device to determine which driversto load, regardless of
the device class code reported by the device. (Host operating systemstypically do not expect adevice
to change classes.) Therefore, to ensure that only the DFU driver isloaded, it is considered necessary
to change the idProduct field of the device when it enumerates the DFU descriptor set. This ensures
that the DFU driver will be loaded in cases where the operating system simply matches the vendor ID
and product 1D to a specific driver.

Note Thisdocument does not attempt to specify how avendor might alter the device’s product ID
except to suggest that adding one, setting the high bit, or using FFFFh are all valid possibilities.
Vendors may use any scheme that they choose.

USB Device Firmwar e Upgrade Specification, Revision 1.1

Host Device

The pending bus reset
will stop all loaded
drivers, then new
firmware will be sent.

Prepare for an upgrade...

USB Reset That reset should cause
all of the run-time
drivers to be unloaded.

DFU mode activated

Enumerating a DFU-
descriptor set will
prevent additional

Download this firmware... drivers from loading.

All reprogramming
operations must be
Prepare to exit DFU mode < completed and
preparations made to
return to run-time.

USB Reset The run-time
descriptors of the new
firmware can now be

enumerated.

Figure 2.1 Stylized DFU session

USB Device Firmwar e Upgrade Specification, Revision 1.1

3. Requests

A number of DFU class-specific requests are employed to accomplish the upgrade operations. The
following table summarizes the DFU class-specific requests. Details concerning each of these requests
are explained in subsequent sections of this document.

Table 3.1 Summary of DFU Class-Specific Requests

bmRequestType bRequest wValue windex wLength Data
00100001b DFU_DETACH wTimeout Interface Zero None
00100001b DFU_DNLOAD wBlockNum Interface Length Firm-
ware
10100001b DFU_UPLOAD Zero Interface Length Firm-
ware
10100001b DFU_GETSTATUS Zero Interface 6 Status
00100001b DFU_CLRSTATUS Zero Interface Zero None
10100001b DFU_GETSTATE Zero Interface 1 State
00100001b DFU_ABORT Zero Interface Zero None

Table 3.2 DFU Class-Specific Request Values

bRequest Value Protocol
DFU_DETACH 0 1
DFU_DNLOAD 1 2
DFU_UPLOAD 2 2
DFU_GETSTATUS 3 1* 2
DFU_CLRSTATUS 4 2
DFU_GETSTATE 5 1* 2
DFU_ABORT 6 2
* optional

10

USB Device Firmwar e Upgrade Specification, Revision 1.1

4. Enumeration Phase

It isvery important to note that the device exposestwo distinct and independent descriptor sets, one
each at the appropriate time:

Run-time descriptor set

DFU mode descriptor set

4.1 Run-Time Descriptor Set

During normal run-time operation, the device exposesits normal set of descriptors. However, the
following additional descriptors areinserted within each run-time configuration that supports DFU:

A single DFU class interface descriptor

A single functional descriptor

4.1.1 Run-Time Device and Configuration Descriptors
The run-time descriptor set exposes the device' s normal run-time device and configuration descriptors.

The bNuminterfaces field of configuration descriptor of each configuration that supports DFU is
incremented by one to accommodate the addition of the run-time DFU interface.

4.1.2 Run-Time DFU Interface Descriptor

No endpoint descriptors are present because DFU uses only the control endpoint. This provides
sufficient information for the host to recognize that the device is capable of performing firmware
upgrade operations. It also provides the meansfor initiating such operations over the default control
pipe.

The DFU classinterfaceistypically thelast interface enumerated for each run-time configuration.
However, thereis no requirement for this interface to occupy any specific position.

Note Depending upon the device’ s run-time descriptors, this additiona ‘dangling’ interface may
cause some operating systemsto load a DFU driver even though it israrely used.

11

Table 4.1 Run-Time DFU Interface Descriptor

USB Device Firmwar e Upgrade Specification, Revision 1.1

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes.

1 bDescriptorType 1 04h INTERFACE descriptor type.

2 binterfaceNumber 1 Number Number of this interface.

3 bAlternateSetting 1 00h Alternate setting. Must be zero.

4 bNumEndpoints 1 00h Only the control pipe is used.

5 binterfaceClass 1 FEh Application Specific Class Code

6 binterfaceSubClass 1 01h Device Firmware Upgrade Code

7 binterfaceProtocol 1 01h Runtime protocol.

8 iinterface 1 Index Index of string descriptor for this
interface.

12

USB Device Firmwar e Upgrade Specification, Revision 1.1

4.1.3 Run-Time DFU Functional Descriptor
This descriptor isidentical for both the run-time and the DFU mode descriptor sets.

Table 4.2 DFU Functional Descriptor

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes.

1 bDescriptorType 1 21h DFU FUNCTIONAL descriptor type.
2 bmAttributes 1 Bit mask DFU attributes

Bit 7..4: reserved

Bit 3: device will perform a bus
detach-attach sequence when it
receives a DFU_DETACH request.
The host must not issue a USB
Reset. (bitWillDetach)

0=no

1=yes
Bit 2: device is able to communicate
via USB after Manifestation phase.
(bitManifestationTolerant)
0 = no, must see bus reset
1=yes
Bit 1: upload capable (bitCanUpload)
0=no

1=yes

Bit 0: download capable
(bitCanDnload)

0=no

1=yes

13

USB Device Firmwar e Upgrade Specification, Revision 1.1

3 wDetachTimeOut 2 Number Time, in milliseconds, that the device
will wait after receipt of the
DFU_DETACH request. If this time
elapses without a USB reset, then
the device will terminate the
Reconfiguration phase and revert
back to normal operation. This
represents the maximum time that
the device can wait (depending on its
timers, etc.). The host may specify a
shorter timeout in the DFU_DETACH
request.

5 wTransferSize 2 Number Maximum number of bytes that the
device can accept per control-write
transaction.

7 bcdDFUVersion 2 BCD Numeric expression identifying the
version of the DFU Specification
release.

4.2 DFU Mode Descriptor Set

After the host and device agree to perform DFU operations, the host re-enumerates the device. Itisat
thistime that the device exports the DFU descriptor set, which contains:

A DFU device descriptor

A single configuration descriptor

A singleinterface descriptor (including descriptors for alternate settings, if present)
A single functional descriptor

These are the only descriptors that the device may expose after reconfiguration. The reason isto
prevent any other device driversfrom being loaded by the host operating system.

4.2.1 DFU Mode Device Descriptor
This descriptor isonly present in the DFU mode descriptor set.

Table 4.3 DFU Device Descriptor

Offset Field Size Value Description

0 bLength 1 12h Size of this descriptor, in bytes.

1 bDescriptorType 1 01h DEVICE descriptor type.

2 bcdUSB 2 0100h USB specification release number in

binary coded decimal.

4 bDeviceClass 1 00h See interface.

5 bDeviceSubClass 1 00h See interface.

14

USB Device Firmwar e Upgrade Specification, Revision 1.1

6 bDeviceProtocol 1 00h See interface.

7 bMaxPacketSize0 1 8,16,32,64 | Maximum packet size for endpoint
zero.

8 idvVendor 2 ID Vendor ID. Assigned by the USB-IF.

10 idProduct 2 ID Product ID. Assigned by
manufacturer.

12 bcdDevice 2 BCD Device release number in binary

coded decimal.

14 iManufacturer 1 Index Index of string descriptor.
15 iProduct 1 Index Index of string descriptor.
16 iSerialNumber 1 Index Index of string descriptor.
17 bNumConfigurations 1 01h One configuration only for DFU.

4.2.2 DFU Mode Configuration Descriptor

This descriptor isidentical to the standard configuration descriptor described in the USB specification
version 1.0, with the exception that the bNuminterfaces field must contain the value 01h.

4.2.3 DFU Mode Interface Descriptor

Thisisthe descriptor for the only interface available when operating in DFU mode. Therefore, the value
of the binterfaceNumber field is always zero.

Table 4.4 DFU Mode Interface Descriptor

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes.
1 bDescriptorType 1 04h INTERFACE descriptor type.

2 binterfaceNumber 1 00h Number of this interface.

3 bAlternateSetting 1 Number Alternate setting. *

4 bNumEndpoints 1 00h Only the control pipe is used.

5 binterfaceClass 1 FEh Application Specific Class Code
6 binterfaceSubClass 1 01h Device Firmware Upgrade Code
7 binterfaceProtocol 1 02h DFU mode protocol.

15

USB Device Firmwar e Upgrade Specification, Revision 1.1

8 iInterface 1 Index

Index of string descriptor for this
interface.

* Alternate settings can be used by an application to access additional memory segments. In this case,
itis suggested that each alternate setting employ a string descriptor to indicate the target memory
segment; e.g., “EEPROM”. Details concerning other possible uses of alternate settings are beyond the
scope of this document. However, their use isintentionally not restricted because the authors
anticipate that implementers will devise additional creative usesfor alternate settings.

4.2.4 DFU Functional Descriptor

Thisdescriptor isidentical to the run-time DFU functional descriptor. See 4.1.3 for details.

16

USB Device Firmwar e Upgrade Specification, Revision 1.1

5. Reconfiguration Phase

An operator initiates afirmware upgrade operation by executing an application on the host. This
application requires the operator to specify the device that will be upgraded and the firmware image file
that will be transferred to that device. That is, the operator indicates to the application “Downloadthis

file intothat device.”

For more information about the file suffix that simplifiesthe task of ensuring that afileis compatible
with a specific device, see Appendix B.

Once the operator has identified the device and supplied the filename, the host and the device must
negotiate to perform the upgrade. The negotiation proceeds as follows:

The host issuesaDFU_DETACH request on the control endpoint EPO.
The host issues a USB reset to the device.

The device enumerates the DFU descriptor set, as described previously.

5.1 The DFU_DETACH Request

When bit 3 in bmAttributes (bitWillDetach) is set the device will generate a detach-attach sequence on
the buswhen it sees thisrequest. Otherwise, the device starts atimer counting the amount of time
specified, in milliseconds, in the wDetachTimeout field. If the device detects a USB reset while this
timer isrunning, then DFU operating mode is enabled by the device; i.e., when USB reset signaling is
detected, perform as normal unless thistimer isrunning, in which case switch into DFU mode and stop

thetimer.
bmRequestType bRequest wValue windex wLength Data
00100001b DFU_DETACH wTimeout* Interface Zero None

* The wTimeout field is specified in units of milliseconds and represents the amount of time that the

device should wait for the pending USB reset before giving up and terminating the operation.
wTimeout should not contain avalue larger than the value specified inwDetachTi meout.

T

DFU_DETACH

appIDLE

TimeOut, PowerOnReset

v

Figure 5.1 Example state transition during reconfiguration

T

17

USB Reset

DFU Mode...

USB Device Firmwar e Upgrade Specification, Revision 1.1

6. Transfer Phase

The Transfer phase begins after the device has processed the USB reset and exported the DFU
descriptor set. Both firmware downloads and uploads can take place during this phase.

6.1 Downloading

Firmware images for specific devices are, by definition, vendor specific. It istherefore required that
target addresses, record sizes, and all other information relative to supporting an upgrade are

encapsul ated within the firmwareimagefile. It isthe responsibility of the device manufacturer and the
firmware devel oper to ensure that their devices can consume these encapsulated data. With the
exception of the DFU file suffix, the content of the firmware imagefileisirrelevant to the host. The host
simply dlicesthe firmware imagefileinto N pieces and sends them to the device by means of control-
write operations on the default control endpoint.

N=((F-9 / 0 +1
where

Fisthe size of thefile, specified in bytes.
Sisthe size of the suffix, specified in bytes.
Oisthetransfer size, specified in bytes.

Note Theoptimum transfer size, O, isin the range between bMaxPacketSize0 and wTransfer Size,
inclusive. The actual value depends upon the host operating system.

The host continues the transfer by sending the payload packets on the control endpoint until the entire
file has been transferred or the device reports an error.

The device uses the standard NAK mechanism for flow control, if necessary, while the content of its
nonvolatile memoriesisupdated. If the device detects an error, it signalsthe host by issuinga STALL
handshake on the control endpoint. The host then sends a DFU class-specific request, called
DFU_GETSTATUS, on the control endpoint to determine the nature of the problem.

There are three general mechanisms by which a device receives afirmware image from a host:

1. Thefirst mechanismisto receive the entireimage into a buffer and perform the actual programming
during the Manifestation phase.

2. The second mechanism isto accumulate a block of firmware data, erase an equivalent size block of
memory, and write the block into the erased memory.

3. Thethird mechanism isavariation of the second. In thethird method, alarge portion of memory is
erased, and small firmware blocks are written, one at atime, into the empty memory space. Thisis
necessary when the erasure granularity of the memory islarger thanthe available buffer size.

All three of these techniques are accommodated by virtue of the dynamic values specified in the

bwPoll Timeout field and closed-loop, host-driven state transitions. For more information about

bwPoll Timeout, seethe DFU_GETSTATUS request. For more information about the DFU file suffix, see
Appendix B.

6.1.1 DFU_DNLOAD Request

The firmware image is downloaded via control-write transfersinitiated by the DFU_DNLOAD class-
specific request. The device specifies the maximum number of bytes per transfer viathe wTransferSize

18

USB Device Firmwar e Upgrade Specification, Revision 1.1

field of the functional descriptor. The host sends between bMaxPacketSizeO and wTransfer Sze bytes
to the devicein a control-write transfer. Following each downloaded block, the host solicits the device
status with the DFU_GETSTATUS request.

After thefinal block of firmware has been sent to the device and the status solicited, the host sends a
DFU_DNLOAD request with the wLength field cleared to 0 and then solicits the status again. If the
result indicates that the deviceis ready and there are no errors, then the Transfer phase is complete and
the Manifestation phase begins. However, some devices may buffer the entire firmware imagein
volatile memory, programming the nonvolatile memories whilein the dfuMANIFEST state. Itispossible
that some devices, during the Manifestation phase, can be rendered incapable of communicating over
the USB during the reprogramming operations. The bit bitManifestationTolerant of the bmAttributes
field is cleared to indicate this to the host and prevent it from sending packets to the device during the
Manifestation phase.

bmRequestType bRequest wValue Windex wLength Data
00100001b DFU_DNLOAD wBlock- Interface Specified by Firm-
Num* USB** ware

* ThewBlockNumfield is ablock sequence number. It increments each time ablock istransferred,
wrapping to zero from 65,535. It isused to provide useful context to the DFU loader in the device.

** The wLength field indicates the total number of bytesin thistransfer, according to USB version 1.0.
This value should not exceed the value specified in the wTransfer Szefield.

LT T T
~ NS
/_\ /” control write "\ /\
DFU_DNLOAD [operation (not \ Completion of status

| really a state | stage...

\\ but worthy of Y,
_ mention) / .
\\ e Idealized-

- Synchronizer-

STATE

Idealized-

IDLING-STATE

Figure 6.1 Example state transition using DFU_DNLOAD to initiate a transfer

19

USB Device Firmwar e Upgrade Specification, Revision 1.1

6.1.1.1 Zero Length DFU_DNLOAD Request

The host sends a DFU_DNLOAD request with the wLength field cleared to 0 to the device to indicate
that it has completed transferring the firmware image file. Thisisthe final payload packet of adownload
operation.

T

Zero Length
DFU_DNLOAD

Manifestatio

dfuDNLOAD-

IDLE

Figure 6.2 Using the zero length DFU_DNLOAD request to terminate a download

6.1.2 DFU_GETSTATUS Request
The host employsthe DFU_GETSTATUS request to facilitate synchronization with the device.

BmRequestType bRequest wValue windex wLength Data

10100001b DFU_GETSTATUS Zero Interface 6 Status

The device responds to the DFU_GETSTATUS request with a payload packet containing the following
data:

Offset Field Size Value Description

0 bStatus 1 Number An indication of the status resulting from the
execution of the most recent request.

1 bwPollTim | 3 Number Minimum time, in milliseconds, that the host
eout should wait before sending a subsequent
DFU_GETSTATUS request. *

4 bState 1 Number An indication of the state that the device is going to
enter immediately following transmission of this
response. (By the time the host receives this
information, this is the current state of the device.)

5 iString 1 Index Index of status description in string table. **

* The purpose of thisfield isto alow the device to dynamically adjust the amount of time that the
device expects the host to wait between the status phase of the next DFU_DNLOAD and the
subsequent solicitation of the device’' sstatusviaDFU_GETSTATUS. This permitsthe deviceto vary
the delay depending on its need to erase memory, program the memory, etc.

20

USB Device Firmwar e Upgrade Specification, Revision 1.1

** TheiString field is used to reference a string describing the corresponding status. The device can
make these strings available to the host by means of the GET_DESCRIPTOR (STRING) standard
request. However, the host may reference its own string table instead.

The device status is defined as follows:

Status Value Suggested String

OK 0x00 No error condition is present.

erfTARGET 0x01 File is not targeted for use by this device.

errFILE 0x02 File is for this device but fails some vendor-specific

verification test.

errWRITE 0x03 Device is unable to write memory.

errERASE 0x04 Memory erase function failed.

errCHECK_ERASED 0x05 Memory erase check failed.

errPROG 0x06 Program memory function failed.

errVERIFY 0x07 Programmed memory failed verification.

errADDRESS 0x08 Cannot program memory due to received address that is

out of range.

errNOTDONE 0x09 Received DFU_DNLOAD with wLength = 0, but device does
not think it has all of the data yet.

errFIRMWARE Ox0A Device’s firmware is corrupt. It cannot return to run-time
(non-DFU) operations.

errVENDOR 0x0B iString indicates a vendor-specific error.

errUSBR 0x0C Device detected unexpected USB reset signaling.

errPOR 0x0D Device detected unexpected power on reset.

errUNKNOWN Ox0E Something went wrong, but the device does not know what it
was.

errSTALLEDPKT OxOF Device stalled an unexpected request.

21

USB Device Firmwar e Upgrade Specification, Revision 1.1

The device state is defined as follows:

State

Value

Meaning

appIDLE

0

Device is running its normal application.

appDETACH

Device is running its normal application, has received the
DFU_DETACH request, and is waiting for a USB reset.

dfulDLE

Device is operating in the DFU mode and is waiting for
requests.

dfuDNLOAD-SYNC

Device has received a block and is waiting for the host to
solicit the status via DFU_GETSTATUS.

dfuDNBUSY

Device is programming a control-write block into its
nonvolatile memories.

dfuDNLOAD-IDLE

Device is processing a download operation. Expecting
DFU_DNLOAD requests.

dfuMANIFEST-SYNC

Device has received the final block of firmware from the host
and is waiting for receipt of DFU_GETSTATUS to begin the
Manifestation phase; or device has completed the
Manifestation phase and is waiting for receipt of
DFU_GETSTATUS. (Devices that can enter this state after
the Manifestation phase set bmAttributes bit
bitManifestationTolerantto 1.)

dfuMANIFEST

Device is in the Manifestation phase. (Not all devices will be
able to respond to DFU_GETSTATUS when in this state.)

dfuMANIFEST-WAIT-RESET

Device has programmed its memories and is waiting for a
USB reset or a power on reset. (Devices that must enter
this state clear bitManifestationTolerantto 0.)

dfuUPLOAD-IDLE

The device is processing an upload operation. Expecting
DFU_UPLOAD requests.

dfuERROR

10

An error has occurred. Awaiting the DFU_CLRSTATUS
request.

.

DFU_GETSTATUS

someNEW-
STATE (maybe

the same one)

Figure 6.3 Example state transition using DFU_GETSTATUS

22

USB Device Firmwar e Upgrade Specification, Revision 1.1

6.1.3 DFU_CLRSTATUS Request

Any time the device detects an error and reports an error indication status to the host in the response
toaDFU_GETSTATUSrequest, it entersthe df uUERROR state. The device cannot transition from the
dfuUERROR state, after reporting any error status, until after it has received aDFU_CLRSTATUS
request. Upon receipt of DFU_CLRSTATUS, the device sets a status of OK and transitions to the
dfulDLE state. Only thenisit ableto transition to other states.

bmRequestType bRequest wValue windex wLength Data

00100001b DFU_CLRSTATUS Zero Interface Zero None

RN

DFU_CLRSTATUS

dfuERROR

Figure 6.4 Example state transition using DFU_CLRSTATUS to acknowledge an error

6.1.4 DFU_ABORT Request

The DFU_ABORT request enables the host to exit from certain states and return to the DFU_IDLE
state. The device setsthe OK status on receipt of thisrequest. For moreinformation, seethe
corresponding state transition summary.

bmRequestType bRequest wValue windex wLength Data

00100001b DFU_ABORT Zero Interface Zero None

RN

DFU_ABORT

Figure 6.5 Example state transition using DFU_ABORT to terminate a transfer

6.1.5 DFU_GETSTATE Request

Thisrequest solicits areport about the state of the device. The state reported isthe current state of the

device with no change in state upon transmission of the response. The values specified in the bState
field are identical to those reported in DFU_GETSTATUS.

23

USB Device Firmwar e Upgrade Specification, Revision 1.1

BmRequestType

bRequest

wValue

windex

wLength

Data

10100001b

DFU_GETSTATE

Zero

Interface

1

State

The device respondsto the DFU_GETSTATE request with a payload packet containing the following

data:
Offset Field Size Value Description
0 bState 1 Number Indicates the current state of the device.

some-STATE

Figure 6.6 Example state transition using DFU_GETSTATE

24

USB Device Firmwar e Upgrade Specification, Revision 1.1

6.2 Uploading

The purpose of upload isto provide the capability to retrieve and archive adevice' sfirmware.
Uploading firmwareis, by definition, the inverse of a download, meaning that the uploaded image must
be usable in a subsequent download. The host sends DFU_UPL OAD requests to the device until it
responds with a short frame as an end of file (EOF) indicator. The deviceisresponsible for selecting the
address range to upload and formatting the firmware image appropriately. The host must append the
DFU file suffix to the uploaded image. If the host, for some reason, wants to terminate the transfer, it
can do so by sending aDFU_ABORT request.

6.2.1 DFU_UPLOAD Request
The DFU_UPLOAD request isemployed by the host to solicit firmware from the device.

bmRequestType bRequest wValue windex wLength Data

10100001b DFU_ UPLOAD BlockNum* Interface Length of Firm-
upload ware
data**

* The wValuefield contains a block sequence number. 1t increments each time ablock is transferred,
wrapping to zero from 65,535. It is used to provide useful context to the host.

** The wLength field indicates the maximum number of bytes of upload datato transfer. Thisvalue
should not exceed the value specified in the wTransfer Sze field.

T

DFU_UPLOAD

dfuUPLOAD

Figure 6.7 Example state transition using DFU_UPLOAD to initiate a transfer

25

USB Device Firmwar e Upgrade Specification, Revision 1.1

7. Manifestation Phase

After the zero length DFU_DNL OAD request terminates the Transfer phase, the device isready to
manifest the new firmware. Asdescribed previously, some devices may accumulate the firmware image
and perform the entire reprogramming operation at one time. Others may have only a small amount
remaining to be reprogrammed, and still others may have none. Regardless, the device entersthe
dfuMANIFEST-SY NC state and awaits the solicitation of the status report by the host. Upon receipt of
the anticipated DFU_GETSTATUS, the device enters the dfuMANIFEST state, where it completesits
reprogramming operations.

Following a successful reprogramming, the device enters one of two states: df uMANIFEST-SYNC or
dfuMANIFEST-WAIT-RESET, depending on whether or not it is still capable of communicating via
USB. Thehost is aware of which state the device will enter by virtue of the bmAttributes bit
bitManifestationTolerant. If the device enters df uM ANIFEST-SYNC (bitMainfestationTolerant = 1),
then the host issuesthe DFU_GETSTATUS request, and the device entersthe dfulDLE state. At that
point, the host can perform another download, solicit an upload, or issue a USB reset to return the
deviceto application run-time mode. If, however, the device entersthe dfuUMANIFEST-WAIT-RESET
state (bitManifestationTolerant = 0), then if bitWillDetach = 1 the device generates a detach-attach
sequence on the bus, otherwise (bitWillDetach = 0) the host must issue a USB reset to the device.
After the bus reset the device will evaluate the firmware status and enter the appropriate mode.

26

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.Interface State Summary

This appendix summarizes the state transitions involved with firmware upgrade operations. It does not
attempt to address the normal USB device states.

A.1 Interface State Transition Diagram

This diagram summarizes the DFU interface states and the transitions between them. The events that
trigger state transitions can be thought of as arriving on multiple “input tapes” asin the classic Turing
machine concept. These multiple conceptual input tapes, or streams, are as follows:

The control pipe — presents USB DFU class-specific request events to the state machine. USB
protocol events, such as completion of the status stage, are also presented on this stream.

The USB electrical signaling— presents USB reset events to the machine. (For purposes of this
document, other signals, such as suspend/resume, are not considered.)

The power supply to the device — presents power-on events to the device.

The device peripherals and firmware — timeout, physical hardware error, data content error,
completion of peripheral, and memory, operations are examples of the events presented on this
stream.

The DFU class-specific requests that the device is required to accept while in any given state are
illustrated in the following figure. If the device receives arequest, and thereis no transition defined for
that request (for whatever state the device happens to be in when the request arrives), then the device
stallsthe control pipe and enters the dfUERROR state. E.g., if the deviceisin the df uDNLOAD-SYNC
state and aDFU_CLRSTATUS request is received, then the device will stall the control pipe and enter
the dfuERROR state.

Note There aretwo exceptional states with respect to state transitions caused by errors. If an
unexpected reguest arrives while the deviceisin either the appl DLE or appDETA CH states, then the
transition to the df uERROR state does not occur.

27

USB Device Firmwar e Upgrade Specification, Revision 1.1

_
DFU_DETACH

1
appIDLE appDETACH
Detach Timeout
Application Program Mode
DFU Program Mode
USB Reset
10 - Ség)t/e
¢
dfuERROR Any status except OK (exceptOor 1)
N USB Reset,
- Power On Reset
cOn:B?«
.
DFU_ABORT Firmware s,
DFU_CLRSTATUS Teel _
_Re-enumeration |
DFU_UPLOAD

DFU_UPLOAD

DFU_GETSTATUS (blockin o
(bitCanUpload=1) -

progress)

° 4

dfuDNBUSY

dfuUPLOAD-
IDLE

DFU_DNLOAD
(wLength >0,
bitCanDnload=1)

DFU_UPLOAD (Short Frame) Status Poll Timeout

DFU_GETSTATUS
(block complete) DFU_DNLOAD

DFU_GETSTATUS (manifestation (wiength > 0)

complete, and
bitManifestationTolerant=1)

DFU_GETSTATUS

Status Poll Timeout, (manifestation in

State

bitManifestationTolerant=1 progress) 0,1,25,9,
10
8 7
dfuMANIFEST- -
dfuMANIFEST
WAIT-RESET Status Poll Timeout,
bitManifestationTolerant=0 DFU_GETSTATUS

DFU_GETSTATE

Figure A.1 Interface state transition diagram

28

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.2 Interface State Transition Summary

The following tables summarize the events that cause state transitions, the actions taken upon
detection of the event by the device, and the new state that is entered after the action is performed.

A21 State 0 appIDLE

Event Action Next State

Receipt of the The host sends this request to the device to initiate the DFU | appDETACH
DFU_DETACH request | process. If bitWillDetach is set the device generates a
detach-attach sequence on the bus. Otherwise, the device
starts the detach timer.

Receipt of the Support for this request while in the appIDLE state is appIDLE
DFU_GETSTATUS optional. Ifitis supported, then the device returns the status
request response, and bwPollTimeoutis ignored. Otherwise, the

request is treated like any other unsupported request.

Receipt of the Support for this request while in the appIDLE state is appIDLE
DFU_GETSTATE optional. If it is supported, then the device returns the status
request response, and bwPollTimeoutis ignored. Otherwise, the

request is treated like any other unsupported request.

Receipt of any other Device stalls the control pipe. appIDLE
DFU class-specific
request

29

USB Device Firmwar e Upgrade Specification, Revision 1.1

A2.2 State 1 appDETACH

Event Action Next State

Receipt of the Device returns the status response; bwPollTimeoutis appDETACH

DFU_GETSTATUS ignored.

request

Receipt of the Device returns the state response. appDETACH

DFU_GETSTATE

request

Receipt of any other Device stalls the control pipe. appIDLE

DFU class-specific

request

Timeout of the device’s | Device does nothing except return to the appIDLE state. A appIDLE

detach timer subsequent USB reset will not initiate DFU.

Power on reset Restart. The device loses all context concerning DFU and appIDLE
operates normally.

USB reset signaling If the device’s detach timer is still running (which it should dfulDLE

detected

be, or the device would not be in the appDETACH state),
then the device prepares to enumerate the DFU descriptor
set and enters DFU mode.

30

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.23 State 2 dfulDLE

Event Action Next State
Receipt of the This is the start of a download block. The device handles | dfuDNLOAD-
DFU_DNLOAD request; the control-write transaction. SYNC
wlLength > 0, and

bitCanDnload = 1

Receipt of the Device stalls the control pipe. (A zero-length download is | dfuERROR
DFU_DNLOAD request; not considered useful.)

wLength =0, or

bitCanDnload =0

Receipt of the This is the start of an upload block. The device handles dfuUPLOAD-
DFU_UPLOAD request, the control-read transaction. IDLE

and bitCanUpload =1

Receipt of the Device stalls the control pipe. dfuERROR
DFU_UPLOAD request,

and bitCanUpload =0

Receipt of the Do nothing. dfulDLE
DFU_ABORT request

Receipt of the Device returns the status response. dfulDLE
DFU_GETSTATUS

request

Receipt of the Device returns the state response. dfulDLE
DFU_GETSTATE request

Receipt of any other DFU | Device stalls the control pipe. dfuERROR
class-specific request

USB reset or power on Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is

valid

USB reset or power on Re-enumeration. Remain in DFU mode awaiting recovery | dfuERROR

reset and firmware is
corrupt

attempt by the host.

31

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.24 State 3 dfuDNLOAD-SYNC

Event Action Next State
Receipt of the Device returns the status response. dfuDNBUSY
DFU_GETSTATUS

request. (Block transfer

still in progress)

Receipt of the Device returns the status response. dfuDNLOAD-
DFU_GETSTATUS IDLE
request. (Block

complete)

Receipt of the Device returns the state response. dfuDNLOAD-
DFU_GETSTATE SYNC
request

Receipt of any other Device stalls the control pipe. dfuERROR
DFU class-specific

request

USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is

valid

USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR

reset and firmware is attempt by the host.
corrupt

32

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.25 State 4 dfuDNBUSY

Event Action Next State

Receipt of any DFU Device stalls the control pipe. dfuERROR
class-specific request

bwPollTimeoutelapsed | Host can now send DFU_GETSTATUS request. dfuDNLOAD-
SYNC

USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE

reset and firmware is

valid

USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR
reset and firmware is attempt by the host.
corrupt

33

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.2.6 State 5 dfuDNLOAD-IDLE

Event Action Next State
Receipt of the Beginning of a download block. The device handles the dfuDNLOAD-
DFU_DNLOAD request; | control-write transaction. SYNC

wLength >0

Receipt of the
DFU_DNLOAD request;
wLength = 0, device
agrees

Host is informing the device that there is no more data to
download.

dfuMANIFEST-
SYNC

Receipt of the Host and device are not synchronized with respect to the dfuERROR
DFU_DNLOAD request; | quantity of data to be downloaded. The host must initiate
wLength = 0, but device | recovery procedures. Device stalls the control pipe.
disagrees
Receipt of the Host is terminating the current download transfer. (Note that | dfulDLE
DFU_ABORT request if memories have been erased or partially written, the

firmware may be corrupt.)
Receipt of the Device returns the status response. dfuDNLOAD-
DFU_GETSTATUS IDLE
request
Receipt of the Device returns the state response. dfuDNLOAD-
DFU_GETSTATE IDLE
request
Receipt of any other Device stalls the control pipe. dfuERROR
DFU class-specific
request
USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is
valid
USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR

reset and firmware is
corrupt

attempt by the host.

34

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.27 State 6 dfuMANIFEST-SYNC

Event Action

Next State

Receipt of the Device returns the status response.
DFU_GETSTATUS
request. Manifestation
phase in progress.

dfuMANIFEST

Receipt of the Device returns the status response.
DFU_GETSTATUS
request. Manifestation
phase complete, and
bitManifestationToleran

dfulDLE

t=1

Receipt of the Device returns the state response. dfuMANIFEST-
DFU_GETSTATE SYNC
request

Receipt of any other Device stalls the control pipe. dfuERROR
DFU class-specific

request

USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is

valid

USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR

reset and firmware is attempt by the host.
corrupt

35

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.28 State 7 dfuMANIFEST

Event Action Next State

Receipt of any DFU Device stalls the control pipe. dfuERROR
class-specific request

Status poll timeout and | Device that can still communicate via the USB after the dfuMANIFEST-
bitManifestationToleran | Manifestation phase indicated this capability to the host by SYNC

t=1 setting bmAttributes bit bitManifestationTolerant.

Status poll timeout and | Device that cannot communicate via the USB after the dfuMANIFEST-
bitManifestationToleran | Manifestation phase indicated this limitation to the host by WAIT-RESET
t=0 clearing bmAttributes bit bitManifestationTolerant.

USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is

valid

USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR
reset, and firmware is attempt by the host.
corrupt

36

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.29 State 8 dfuMANIFEST-WAIT-RESET

Event Action Next State
Receipt of any DFU If the device could do anything reasonable on the USB, then | dfuMANIFEST-
class-specific request it would never have entered this state. Do nothing. In fact, WAIT-RESET
the device probably cannot detect the receipt of anything at
all. If it could, it would not enter this state.
USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is
valid
USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR

reset and firmware is attempt by the host.
corrupt

37

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.2.10 State 9 dfuUPLOAD-IDLE

Event Action Next State
Receipt of the This is the start of an upload block. The device handles the | dfuUPLOAD-
DFU_UPLOAD request; | control-read transaction. IDLE
wLength >0

The length of the data Device finished uploading and completes the control-read dfulDLE
transferred by the operation.

device in response to a

DFU_UPLOAD request

is less than wLength.

(Short frame)

Receipt of the Host is terminating the current upload transfer. dfulDLE
DFU_ABORT request

Receipt of the Device returns the status response. dfuUPLOAD-
DFU_GETSTATUS IDLE
request

Receipt of the Device returns the state response. dfuUPLOAD-
DFU_GETSTATE IDLE
request

Receipt of any other Device stalls the control pipe. dfuERROR
DFU class-specific

request

USB reset or power on | Re-enumeration. Revert to application firmware. appIDLE
reset and firmware is

valid

USB reset or power on | Re-enumeration. Remain in DFU mode awaiting recovery dfuERROR

reset and firmware is
corrupt

attempt by the host.

38

USB Device Firmwar e Upgrade Specification, Revision 1.1

A.211 State 10 dfuERROR

Event

Action

Next State

Receipt of the
DFU_GETSTATUS
request

Device returns the status response.

dfuERROR

Receipt of the
DFU_GETSTATE
request

Device returns the state response.

dfuERROR

Receipt of
DFU_CLRSTATUS
request

Clear status to OK.

dfulDLE

Receipt of any other
DFU class-specific
request

Device stalls the control pipe.

dfuERROR

USB reset or power on
reset and firmware is
valid

Re-enumeration. Revert to application firmware.

appIDLE

USB reset or power on
reset and firmware is
corrupt

Re-enumeration. Remain in DFU mode awaiting recovery
attempt by the host.

dfuERROR

39

USB Device Firmwar e Upgrade Specification, Revision 1.1

B.DFU File Suffix

Any fileto be downloaded must contain a DFU suffix. The purpose of the DFU suffix isto allow the
operating system in general, and the DFU operator interface application in particular, to have a-priori
knowledge of whether afirmware download islikely to complete correctly. In other words, these bytes
allow the host software to detect and prevent attempts to download incompatible firmware.

The DFU suffix contains the following data:

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

The dwCRC, bLength, ucDfuSignature, and bcdDFU fields will not move in subsequent revisions of
this specification. Furthermore, the contents of the ucDfuSignature field will remain constant and fixed,
and the calculation for the dwCRC field will remain fixed as defined in version 1.0 of this specification.
If any fields are added to this suffix, they will be added at greater negative offsets than specified in the
bcdDevice field. The dwCRC field isdefined as being the first four bytes of the suffix, which makesit
the last four bytes of afile to which the suffix has been added.

The offsets are negative. Thisisafile suffix, and the negative offsetsindicate that the last byte of the
fileis specified in the dwCRC field. Note that all multibyte fields are mirror images of their structure.
The host must perform an end-for-end swap of the entire suffix of bLength bytesto obtain the correct
byte ordering. In other words, when the DFU suffix is created, the fields are filled with positive offsets.
Then the entire suffix is end-for-end swapped before being appended to the download file. Thisisdone
so that the CRC, length byte, and DFU signature will be at afixed location in all cases, specifically EOF.
Thisalowsfor possible future revisions of the DFU suffix, or even vendor-specific additions, without
difficulty.

The dwCRC field contains the CRC as explained in the following paragraphs. The CRC is calculated for
al bytes contained in thefile, except the dwCRC itself.

40

USB Device Firmwar e Upgrade Specification, Revision 1.1

The bLength field isasingle-byte length field. Inthisrevision of the DFU specification, the length is 16
(decimal) and includes the four bytes occupied by the dwCRC field.

The ucDfuSignature field contains three unsigned characters: 44h, 46h, 55h, in that order. In thefile,
they appear in reverse order, i.e., offset (-5) is44h, offset (—6) is 46h, and offset (-7) is55h.

The bcdDFU fidd isatwo-byte specification revision number. The value as of this revision of the
specification is 0100h, representing version 1.0.

TheidVendor field may either contain avalid vendor ID, or it may contain FFFFh. If it contains FFFFh,
then the file may be sent to any device. The reason to include a DFU suffix with avendor ID of FFFFh
isto maintain astandard file format, or to include arelease number specified in the bcdDevice field for
informational purposes, without enforcing vendor 1D matching. If theidVendor field contains avalue
other than FFFFh, then the file contents may only be sent to a device with a matching vendor 1D
reported in the idVendor field of its device descriptor.

TheidProduct field isignored if theidVendor field contains FFFFh. Otherwise, idProduct may either
contain avalid product ID, or it may contain FFFFh. If it contains FFFFh, then the file may be sent to
any device with amatching vendor ID. If idProduct contains avalue other than FFFFh, then thefile
contents may only be sent to a device with matchingidVendor and idProduct fields reported in its
device descriptor.

Note BecausetheidProduct field of the DFU-based version of the product may differ from the run-
time version, idProduct of the suffix should contain the same val ue as the run-time version of the
product. At thetime when the host performs a comparison, the DFU descriptor set has not yet been
enumerated, and whatever idProduct is present in the DFU descriptor set is unavailable.

The bcdDevice field may contain FFFFh, or it may contain aBCD number. |f it contains FFFFh, itis
ignored. If it containsaBCD number, then that number should represent the version of firmware
contained inthefile. Thisfieldisfor informational purposes only and does not restrict whether the file
may or may not be sent to adevice. One possible use of thisfield isto notify the operator when a
download will result in sending alower firmware version number to the device than the version number
that is currently reported by the device. Therefore, it is suggested, but not required, that vendors use
thisfield to record afirmware version number that increases with each revision of firmware.

In no case isthe DFU suffix ever sent to the device. The host application verifies that the bytes
occupying the ucDfuSignature field contain the specified values, and that the CRC over thefile
matches the dwCRC field. If these two criteria are passed, thenthe host can presume that the firmware
upgradefileisintact. The host application then uses the DFU suffix datato perform appropriate
validation and screening. During the Transfer phase, the contents of the file are sent, excluding the
DFU suffix data.

41

USB Device Firmwar e Upgrade Specification, Revision 1.1

B. 1 Portable C Source for CRC and DFU Suffix

The following example source code was created by assimilating code from anumber of sources. It was
edited to illustrate the concepts described in this appendix.

B.1.2 Source Listing
/***

\
dfu.c

This is sanple software to denonstrate a sinple nethod of manipul ating
the DFU suffix as specified in the DFU specification version 1.0

The follow ng authors have contributed to this sanple code

Robert Nat han

Greg Kroah-Hartman
Trenton Henry

St ephen Sat chel
Chuck Foresburg
Gary S. Brown

The CRC al gorithm derives fromthe works of the last three authors |listed

The authors hereby grant devel opers the right to incorporate any portion
of this source into their own works, provided that proper credit is given
to Gary S. Brown, Stephen Satchell, and Chuck Forsberg. Reference the
followi ng source for the proper format.

Every attenpt has been nmade to ensure that this source is portable.

To that end, it uses only ANSI Clibraries. Any identifiers that are not
part of ANSI C have names starting with | eading underscores. The purpose
is to differentiate what has been "invented" and what was "pre-existing"

Thi s exanpl e cannot nodify an existing suffix. To modify a suffix,
del ete the current one and then append a new suffi x.

/

#i ncl ude <stdio. h>

#i ncl ude <io. h>

#i ncl ude <sys\stat.h>
#i ncl ude <stdarg. h>
#i nclude <string. h>
#include <stdlib. h>
#i ncl ude <errno. h>

/***

\
CRC pol ynom al Oxedb88320 — Contri buted unknowi ngly by Gary S. Brown.

"Copyright (C) 1986 Gary S. Brown. You nmy use this program or code or
tabl es extracted fromit, as desired without restriction."”

Par aphrased coments from the original
The 32 BIT ANSI X3.66 CRC checksum algorithmis used to conpute the 32-bit

frame check sequence in ADCCP. (ANSI X3.66, also known as FIPS PUB 71 and
FED- STD- 1003, the U.S. versions of CCITT's X. 25 |link-1level protocol.)

42

USB Device Firmwar e Upgrade Specification, Revision 1.1

The polynom al is
XNB2+XN26+XN23+ XN 22+ XNL6+XN L2+ XA L1+ XN 10+ XNB+XNT+XAE+ XN A+ XN 2+ XN 1+ XN 0

Put the highest-order termin the |owest-order bit. The X*32 termis
inmplied, the LSB is the X*31 term etc. The X*0 termusually shown as +1)
results in the MSB being 1. Put the highest-order termin the | owest-order
bit. The X*"32 termis inplied, the LSB is the X*31 term etc. The X*0
term (usually shown as +1) results in the MSB being 1

The feedback terns table consists of 256 32-bit entries. The feedback
terms

sinmply represent the results of eight shift/xor operations for al

combi nati ons of data and CRC register values. The values nust be right-
shifted by eight bits by the UPDCRC | ogic so the shift nmust be unsigned

/
unsigned long _crctbl[] = {
0x00000000, 0x77073096, OxeeOe6l12c, 0x990951ba, 0x076dc419, O0x706af 48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e9le, 0x97d2d988
0x09b64c2b, 0Ox7ebl7cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2
0xf3b97148, 0x84bedlde, Oxladad47d, Ox6dddedeb, Oxf4d4b551, 0x83d385c7
0x136c9856, 0x646ba8c0, Oxfd62f97a, Ox8a65c9ec, 0x14015c4f, 0x63066cd9
Oxf a0f 3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041ed4, 0xa2677172
0x3c03e4dl, 0x4b04d447, 0xd20d85fd, Oxa50ab56b, O0x35b5a8fa, 0x42b2986¢c
Oxdbbbc9d6, Oxacbcf 940, 0x32d86ce3, 0x45df5c75, 0Oxdcd60dcf, Oxabdl13d59
0x26d930ac, 0x51de003a, 0xc8d75180, Oxbfd06116, 0x21b4f4b5, 0x56b3c423
Oxcfba9599, 0xb8bda50f, 0x2802b89%e, O0x5f058808, 0xc60cd9b2, 0xbl0be924,
Ox2f 6f 7c87, 0x58684cl1ll, Oxcl6lldab, 0xb6662d3d, 0x76dc4190, 0x01db7106
0x98d220bc, Oxefd5102a, 0x71b18589, 0x06b6b51f, Ox9f bfed4a5, 0xe8b8d433
0x7807c9a2, 0xO0f00f934, 0x9609a88e, 0xel0e9818, O0x7f6a0dbb, 0x086d3d2d
0x91646c97, 0xe6635c01, Ox6b6b51f4, 0Ox1lc6c6162, 0x856530d8, Oxf262004e
0x6c0695ed, 0x1bOla57b, 0x8208f4cl, Oxf50fc457, 0x65b0d9c6, 0x12b7e950
0x8bbeb8ea, 0xfcb9887c, 0x62ddliddf, Ox15da2d49, 0x8cd37cf3, Oxfbd44c65
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, Ox4adfab541l, 0x3dd895d7
Oxa4dlc46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0
0x44042d73, 0x33031de5, OxaaOa4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f 85b3, 0xb966d409, Oxce6led9f,
Ox5edef 90e, 0x29d9c998, 0xb0d09822, 0Oxc7d7a8b4, 0x59b33d17, 0x2eb40d81
Oxb7bd5c3b, OxcOba6cad, Oxedbh88320, O0x9abfb3b6, 0x03b6e20c, 0x74bld29a
Oxead54739, 0x9dd277af, 0x04db2615, 0x73dcl1683, 0xe3630bl2, 0x94643b84,
0x0d6d6a3e, Ox7a6a5aa8, Oxe40ecfOb, 0x9309ff9d, 0x0a0Oae27, 0x7d079ebl
0xf 00f 9344, 0x8708a3d2, 0x1le01lf268, 0x6906c2fe, Oxf762575d, 0x806567ch
0x196¢c3671, 0x6e6b06e7, Oxfed41b76, 0x89d32be0, O0xl1l0da7a5a, 0x67dd4acc
Oxf 9b9df 6f, Ox8ebeeff9, 0x17b7bed43, 0x60b08ed5, Oxd6d6a3e8, 0xaldl937e
0x38d8c2c4, 0x4fdff252, Oxdlbb67f1, Oxa6bc5767, 0Ox3fb506dd, 0x48b2364b
0xd80d2bda, OxafOalb4c, 0x36034af6, 0x41047a60, Oxdf 60efc3, 0xa867df55
0x316e8eef, 0x4669be79, Oxcb61b38c, Oxbc66831la, 0x256fd2a0, 0x5268e236
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, Oxc5ba3bbe, 0xb2bd0b28
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, Oxb5dOcf31, 0x2cd99e8b, Ox5bdeaeld
0x9b64c2b0, Oxec63f226, O0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, O0x95bf4a82, Oxe2b87al4, O0x7bbl2bae, 0x0chb61b38
0x92d28e9b, 0Oxe5d5be0d, Ox7cdcefb?7, OxObdbdf21, 0x86d3d2d4, Oxfld4e242
0x68ddb3f 8, 0x1fda836e, 0x8lbel6cd, Oxf6b9265b, 0Ox6fb077el, 0x18b74777
0x88085ae6, OxffOf6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, Oxf862ae69
0x616bffd3, 0x166ccf45, Oxa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2
0xa7672661, 0xd06016f7, 0x4969474d, Ox3e6e77db, Oxaedl6ad4a, 0xd9d65adc
0x40df 0Ob66, 0x37d83bf 0, Oxa9bcae53, Oxdebb9ec5, 0x47b2cf7f, 0x30b5ffe9
Oxbdbdf 21c, Oxcabac28a, 0x53b39330, O0x24b4a3a6, 0xbad03605, 0xcdd70693
0x54de5729, 0x23d967bf, Oxb3667a2e, Oxc4614ab8, 0x5d681b02, 0x2a6f2b94,

43

USB Device Firmwar e Upgrade Specification, Revision 1.1

Oxb40bbe37, 0xc30c8eal, 0x5a05df1lb, 0x2d02ef8d};

/***

**/
unsigned char _suffix[] = {

0x00, /* bcdDevice o */

0x00, /* bcdDevice hi */

0x00, /* idProduct lo */

0x00, /* idProduct hi */

0x00, /* idVendor lo */

0x00, /* idVendor hi */

0x00, /* bcdDFU | o */

0x01, /* bcdDFU hi */

‘U, /* ucDfuSi gnature Isb */

"F, /* ucDfuSignature --- */

‘D, /* ucDfuSi gnature nsb */

16, /* bLength for this version */

0x00, /* dwCRC | sb */

0x00, /* dwCRC --- */

0x00, /* dwCRC --- */

0x00 /* dwCRC nsb */
3;r**
t***
/

void _fatal (char *)
void _fatal (char *_str)

{
perror(_str)
fcloseall ();
abort ();

}

/***

\
The updcrc macro (referred to here as _crc) is derived froman article
Copyright © 1986 by Stephen Satchell

“Programmers nmay incorporate any or all code into their progranms, giving
proper credit within the source. Publication of the source routines is
permtted so long as proper credit is given to Steven Satchell, Satchel
Eval uati ons, and Chuck Forsberg, Omen technol ogy."

/
#define _crc(accumdelta)
(accum) =_crctbl [((accum ~(del ta)) &xff]~((accum >>8)
#define _usage
"\ nusage: dfu fnanme [options]\n\n"
to check for a suffix use: dfu fname\n\n"
to remove a suffix use: dfu fname -del\n\n"
" to add a suffix use: dfu fname -did val -pid val -vid val\n\n"
e.g., dfu nyfile -did 0x0102 -pid 2345 -vid 017\ n"
sets idDevice 0x0102 i dProduct 0x0929 idVendor OxO00O0F\n\n"
#define _getarg(ident,index);
if (!strcmp(argv[_i], (ident)))
{
_write_suffix = 1;
if (argc-1 == _i) _fatal (_usage);
_tmpl = strtol (argv[_i+1], & charp, 0);
_suffix[(index)] = (unsigned char)(_tnmpl & Ox000000FF);
_tnpl /= 256;

— e e —

— - - - - - —

44

USB Device Firmwar e Upgrade Specification, Revision 1.1

_suffix[(index)+1] = (unsigned char)(_tnmpl & 0x000000FF); \

/*1***
\

/
void main(int argc, char **argv)
{

FI LE * fp;

FI LE * _t mpf p;

int _remove_suffix = 0;

int _wite_suffix = 0;

unsi gned | ong _filecrc;

unsi gned | ong _fullcrc;

| ong iy

| ong _tmpl;

char * _charp;

/* make sure there is at | east one argunent */
errno = EI NVAL,
if (argc < 2)

_fatal (_usage);

/* make sure the file is there */
_fp = fopen(argv[1], "r+b");
if ('_fp)

_fatal (argv[1]);

/* conpute the CRC up to the last 4 bytes */
fseek(_fp, -4L, SEEK_END);

o= ftell(_fp);

rewi nd(_fp);

_filecrc = Oxffffffff;
for (; _i; _i--)

_crc(_filecrc, (unsigned char) fgetc(_fp));
/* printf("file crc: Ox%08l X\n", _filecrc); */

/* conpute the CRC of everything including the |ast 4 bytes */
_fullcrc = _filecrc;
for (_i = 0; _i < 4; _i++4)
_crc(_fullcrc, (unsigned char) fgetc(_fp));
/* printf("full crc: Ox%8I X\n", _fullcrc); */

/* store the file crc away for conparison */

for (_i = 12; _i < 16; _i++) {
_suffix[_i] = (unsigned char) (_filecrc & 0x000000ff);
_filecrc /= 256;

}

/* pretend that a suffix exists and try to validate it */
fseek(_fp, -16L, SEEK END);

/* read in the existing suffix */
for (_i = 0; _i < 6; _i++)
_suffix[_i] = (unsigned char) fgetc(_fp);

/* print out whats in there already */
printf(" idDevice: Ox%2X%2X\n",

(unsigned char) _suffix[1], (unsigned char) _suffix[0]);
printf("idProduct: Ox%02X%2X\n",

(unsigned char) _suffix[3], (unsigned char) _suffix[2]);

45

USB Device Firmwar e Upgrade Specification, Revision 1.1

printf(" idVendor: Ox%02X%02X\n",
(unsigned char) _suffix[5], (unsigned char) _suffix[4]);

/* now parse the command argunments to overwite the suffix w/ new val ues

for (_i =1; _i < argc; _i++) {
errno = EI NVAL;
if (!strcrmp(argv[_i], "-del"))
_remove_suffix = 1;
_getarg("-did", 0);
_getarg("-pid", 2);
_getarg("-vid", 4);

}
/* conpare the ‘presuned file suffix to the suffix in nenory */
for (_i = 6; _i < sizeof(_suffix); _i++)
if ((unsigned char) fgetc(_fp) !'= _suffix[_i])
br eak;
if (_i <8)

printf("bad bcdDFU\n");
else if (_i < 11)
printf("bad ucDfuSignature\n");
else if (_i < 12)
printf("bad bLength\n");
else if (_i < 16)
printf("bad dwCRC\n");
if (_i <16) {
/* can't renmpve a suffix if there isn't one there */
if (_renove_suffix)
printf("invalid or m ssing suffix\n");
_renove_suffix = 0;
} else {
printf("valid dfu suffix found\n");
errno = EI NVAL;
if (_wite_suffix)
_fatal ("del ete suffix before making changes\n");

/* now it is known if a suffix exists, and the inportant
informati on has been printed out. so, either the user wants
to delete the suffix, or to add a new one */

/* renpve an existing suffix? */
if (_remove_suffix) {
_tnpfp = fopen("dfu.tnmp", "w+b");
if (!_tnpfp)
_fatal ("dfu.tmp");

/* this is not an exercise in how to do buffered file io ;-) */
fseek(_fp, -_suffix[11], SEEK_END);
_io=ftell(_fp);
if (_i >0) {
rewi nd(_fp);
for (; _i; _i--)
fputc(fgetc(_fp), _tnmpfp);
fclose(_tnmpfp);
fclose(_fp);
chnod(argv[1], S_IWRITE);
remove(argv[1]);
rename("dfu.tnmp", argv[1l]);

46

}

USB Device Firmwar e Upgrade Specification, Revision 1.1

/* warm fuzzies */

printf("dfu suffix removed from %\ n", argv[1]);

} else
printf("% too small to contain dfu suffix\n",
exit(0);

/* append a suffix to the file? */
if (_wite_suffix) {

/* append a DFU suffix */
fseek(_fp, OL, SEEK END);

/* write the suffix while iterating the CRC */

for (_i = 0; _i < sizeof(_suffix) - 4; _i++) {
_crc(_fullcerec, _suffix[_i]);
fputc(_suffix[_i], _fp);

}

/* and write the CRC, lo to hi */
[* printf("full crc: Ox%®8I X\n", _fullcrc); */
for (_i =0; _i < 4; _i++) {
fputc((unsigned char) (_fullcrc & 0x000000ff),
_fullcrc /= 256;

}

/* warm fuzzies */
printf("dfu suffix appended to %s\n", argv[1]);

}
/* finished */
fclose(_fp);

}

/* eof */

a7

argv[1]);

_fp);

	Device Firmware Upgrade
	Contents
	1. Introduction
	1.1 Related Documents
	1.2 Terms and Abbreviations
	2. Overview
	3. Requests
	4. Enumeration Phase
	4.1 Run-Time Descriptor Set
	4.1.1 Run-Time Device and Configuration Descriptors
	4.1.2 Run-Time DFU Interface Descriptor
	4.1.3 Run-Time DFU Functional Descriptor
	4.2 DFU Mode Descriptor Set
	4.2.1 DFU Mode Device Descriptor
	4.2.2 DFU Mode Configuration Descriptor
	4.2.3 DFU Mode Interface Descriptor
	4.2.4 DFU Functional Descriptor
	5. Reconfiguration Phase
	5.1 The DFU_DETACH Request
	6. Transfer Phase
	6.1 Downloading
	6.1.1 DFU_DNLOAD Request
	6.1.2 DFU_GETSTATUS Request
	6.1.3 DFU_CLRSTATUS Request
	6.1.4 DFU_ABORT Request
	6.1.5 DFU_GETSTATE Request
	6.2 Uploading
	6.2.1 DFU_UPLOAD Request
	7. Manifestation Phase
	A. Interface State Summary
	A.1 Interface State Transition Diagram
	A.2 Interface State Transition Summary
	A.2.1 State 0 appIDLE
	A.2.2 State 1 appDETACH
	A.2.3 State 2 dfuIDLE
	A.2.4 State 3 dfuDNLOAD-SYNC
	A.2.5 State 4 dfuDNBUSY
	A.2.6 State 5 dfuDNLOAD-IDLE
	A.2.7 State 6 dfuMANIFEST-SYNC
	A.2.8 State 7 dfuMANIFEST
	A.2.9 State 8 dfuMANIFEST-WAIT-RESET
	A.2.10 State 9 dfuUPLOAD-IDLE
	A.2.11 State 10 dfuERROR
	B. DFU File Suffix
	B. 1 Portable C Source for CRC and DFU Suffix
	B.1.2 Source Listing

