Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations
Abstract
The ocean's overturning circulation can be divided into contributions from: (1) shallow overturning in the subtropical gyres to the base of thermocline, (2) overturning into the intermediate depth layer (500 to 2000 meters) in the North Atlantic, North Pacific and area around Drake Passage, and (3) overturning into the deep layer in the North Atlantic (Nordic Seas overflows) and around Antarctica. The associated water mass structures are briefly reviewed including presentation of a global map of proxy mixed layer depth. Based on the estimated temperature difference between the warm source and colder newly-formed intermediate waters, and the formation rate for each water mass, the net heat transport associated with all intermediate water formation is estimated at 1.0-1.2 PetaWatts (1 PW = 1015 W), which is equivalent in size to that for deep water formation, 0.6-0.8 PW. The heat transport due to shallow overturn, calculated as the residual between published direct estimates of heat transport across subtropical latitudes and these heuristic estimates of the intermediate and deep overturning components, is about 0.5 PW northward for the North Pacific and North Atlantic subtropical gyres and 0.0 to 0.2 PW southward for each of the three southern hemisphere subtropical gyres, exclusive of the shallow overturn in the southern hemisphere gyres which is associated with Antarctic Intermediate Water and Southeast Indian Subantarctic Mode Water formation.
Direct estimates of meridional heat transport of 1.18 PW (North Atlantic) and 0.63 PW (North Pacific) at 24°N are calculated from Reid's [1994, 1997] geostrophic velocity analyses and are similar to previously published estimates using other methods. The new direct estimates are decomposed into portions associated with shallow, intermediate and deep overturn, confirming the heuristic estimate for the North Pacific, where the shallow gyre overturning heat transport accounts for about 75% of the total and intermediate water formation for the remainder. The direct estimate for the North Atlantic indicates the opposite - about 75% of the total heat transport is associated with intermediate and deep water formation, split approximately equally, with the remainder associated with the shallow gyre overturn. the difference from the heuristic estimate for the North Atlantic suggests that the source waters for the intermediate and deep water overturn originate within the Gulf Stream at an average temperature warmer than 14°C.- Publication:
-
Geophysical Monograph Series
- Pub Date:
- 1999
- DOI:
- Bibcode:
- 1999GMS...112....1T