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ABSTRACT

Binarized neural networks have attracted much
recent attention due to their promise of making
convolutional neural networks fast and compact.
However, these benefits have proven hard to re-
alize in practice. In this paper, we identify the
underlying barriers to high performance and pro-
pose solutions ranging from missing implementa-
tions for certain operations to carefully scheduled
library support for binarized linear algebra op-
erations. The combination of these innovations
allows us to report the first measured end-to-end
speedups for binarized networks. For instance, we
show a 6.3× speedup over a standard VGGNet
variant at state-of-the-art (64.2% for top-1 bina-
rized classification of ImageNet) accuracy. More
broadly, speedups range from 4-12× and the tech-
niques we propose are crucial to achieving them.

1 INTRODUCTION

Binarized neural networks (BNNs) represent their param-
eters and activations using very low bitwidths (e.g., 1 to 3
bits). During inference, the resulting networks use much
less memory than conventional (e.g., 32-bit) representations
and execute dramatically fewer operations by converting
operations on large floating point vectors into “bitserial”
versions that apply bitwise operations on packed bit vectors.
For instance (Rastegari et al., 2016) report convolution lay-
ers that use 58× fewer operations and 32 × less memory
than the standard floating point versions. This increased
efficiency typically comes at the cost of reduced inference
accuracy, and a slew of recent work (Courbariaux et al.,
2016; Zhou et al., 2016; Cai et al., 2017; Hubara et al.,
2016; Tang et al., 2017; Dong et al., 2017; Fromm et al.,
2018; Choi et al., 2019) has therefore focused on closing
the accuracy gap. Despite considerable progress in develop-
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ing more accurate models with low theoretical instruction
counts, we are aware of no work that has realized measured
performance gains on real-world processors. In this paper,
we present Riptide, an end-to-end system for producing bi-
narized versions of convolutional neural networks that yield
significant speedups.

Measurable performance gains on binarized models are hard
to achieve for three main reasons. First, for many recent
higher-accuracy training techniques, no efficient bitserial
implementation has been proposed. In some cases (e.g.,
where bits are scaled using non-linear scaling factors (Cai
et al., 2017)), it is unclear that such implementations even
exist. Second, current work has focused on schemes for bi-
narizing the “core” convolutional and fully-connected layers.
However, once the dramatic gains of binarization on these
layers has been realized, the “glue” layers (batch normal-
ization, scaling and (re-) quantization) become bottlenecks.
Bitserial implementations of these layers have traditionally
been ignored. Finally, existing floating-point implementa-
tions have been carefully scheduled for various processor
architectures over many decades via libraries such as BLAS,
MKL and CuDNN. No corresponding libraries exist for
low-bitwidth implementations. The “number-of-operations”
speedup above does not therefore translate to wallclock-time
speedups.

The Riptide system presented in this paper addresses these
issues. We carefully analyze the barriers to realizing
bitserial implementations of recently proposed accuracy-
enhancing techniques and suggest efficient options (Sec-
tion 4.1). We show how to produce fully bitserial versions
of glue layers, almost entirely eliminating their runtime
overhead (Section 4.2). Finally, we show how to sched-
ule binarized linear algebra routines by combining selected
standard scheduling techniques (e.g., loop tiling, loop fu-
sion and vectorization) with memory access optimization
specific to packed representations (Section 4.3). Taken to-
gether, we show in our evaluation (Section 5.1) that these
techniques yield binarized versions of standard networks
(SqueezeNet, AlexNet, VGGNet, and Resnet) that show
measured end-to-end speedups in the 4-12× range relative
to optimized floating point implementations, while main-
taining state-of-the-art accuracy. To our knowledge, these
are the first reported numbers of measured speedup due to
binarization.
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Algorithm 1 Typical CNN forward propagation. Lines
marked ? are glue layers that use floating point arithmetic.

1: Input: Image X , network with L convolutional layers.
2: c0 = Conv(X) {Input layer block.}
3: a0 = BatchNorm(c0)
4: for k = 1 to L do
5: HWC = shape(ak−1) and KKFC = shape(Lk)
6: ck = Conv(ak−1) {KKFHWC ops.}
7: pk = Pooling(ck) {HWF ops.}
8: bk = ?BatchNorm(pk) {4HWF ops.}
9: ak = Activate(bk) {HWF ops.}

10: end for
11: Y = Dense(aL)

12: Def. of Conv, input A with F filters W , size KKC.
13: for i = 0 to K, j = 0 to K do
14: for c = 0 to C do
15: chwf += A[h+ i][w + j][c] ∗Wf [i][j][c]
16: end for
17: end for

Algorithm 2 Convolution block that replaces line 6 in Algo-
rithm 1 for an N -bit binary network.

1: Input: Activation tensor x.
2: q = ?Quantize(x) {At least 5HWC ops.}
3: b = BitPack(q) {At least 3HWC ops.}
4: c = BitserialConv(b) {NKKFHWC

43 ops.}
5: f = ?Dequantize(c) {4HWF ops.}
6: y = ?WeightScale(f) {HWF ops.}

7: Definition of BitserialConv with F size K kernels on
input Q, a set of N int64 bit packed tensors with original
size HWC.

8: for n = 0 to N , i = 0 to K, j = 0 to K do
9: for c = 0 to C

64 do
10: xhwf = Qn[h+ i][w + j][c]⊗Wf [i][j][c]
11: yhwf += 2npopc(xhwf )
12: end for
13: end for
14: yhwf = 2yhwf −KKC

2 BACKGROUND AND RELATED WORK

2.1 Conventional Convolutional Networks

Algorithm 1 describes how a typical convolutional network
processes an input image X . An initial convolution (line
2) extracts features from the color channels of X , then a
stack of L convolutions (lines 4-10) is applied to progres-
sively parse the activations of the previous layer into an
embedding. An output dense layer (line 11) processes the
embeddings to generate probabilities of what class the input
image represents. Surrounding each convolution are inter-
mediate ”glue” layers (lines 7, 8, and 9) that apply some
preprocessing to prepare the activation tensor for the next
convolution. The number of operations in the network is
completely dominated by the convolution layers, which are
approximately KKC times (which is often two orders of
magnitude) more operations than any glue layer. Noting the
high concentration of operations in convolutions, many re-
searchers have explored methods that optimize convolution
to yield networks with superior inference times.

2.2 Binary Convolutional Networks

First introduced by Courbariaux et al. (2016), network bi-
narization attempts to optimize networks by replacing full
precision convolutions with the more efficient ”bitserial”
convolutions described in Algorithm 2. In a binary network,
both weights and activations of the network are quantized
to a single bit representing +1 or -1 (q = sign(x)). Not
only does this give an immediate benefit of reducing the
memory footprint of the model by 32×, it also allows a xnor-

popcount operation (lines 10-11) to replace floating point
multiply-accumulate. By packing bits into a larger datatype
such as Int64 using Equation 1 (line 3), the amount of op-
erations (and the theoretical runtime) in the inner loop of a
bitserial convolution reduces from 2C to 3C

64 , a reduction of
43×.

bi,n =

63,N−1∑
j=0,n=0

(Q64i+j ∧ n)� (j − n) (1)

The use of bitserial convolution requires additional glue
layers (lines 2, 5, and 6). Because BatchNorm (Ioffe &
Szegedy, 2015), which normalizes and centers activations,
is used ubiquitously in binary networks, the integer output
of a bitserial convolution must be converted to floating point
(line 5) then converted back to integer for the next layer
and rounded into 2N bins, where N is the number of quan-
tization bits used (line 2). Although the total number of
operations spent in glue layers (8HWC + 9HWF) is sizeable
relative to the bitserial convolution (KKFHWC

43 ) for typical
model dimensions, their impact on runtime has not been
well examined.

2.3 Binary Accuracy Improvement Techniques

Although 1-bit binary models promise significant perfor-
mance benefits, the accuracy they have been shown capable
of achieving on challenging datasets like ImageNet has been
underwhelming. For example, the AlexNet (Krizhevsky
et al., 2012) based BNN used by Courbariaux et al. (2016)
was only able to reach a top-1 accuracy of 27.9% when
trained on ImageNet compared to the full precision model’s



Riptide: Fast End-to-End Binarized Neural Networks

56%. The significant accuracy loss that comes with network
binarization has been the focus of research in the space, with
most papers introducing modifications to the core algorithm
or new training techniques.

Rastegari et al. (2016) introduced XNOR-Net, which im-
proved the accuracy of single bit binary models by adding
the WeightScale function on line 6 of Algorithm 2. The
term αk = mean(|Wk|) was multiplied into the binary con-
volution output, whereWk are the weights of one of the con-
volutional layer’s filters. Weight scaling proved extremely
useful for preserving both the magnitude and relative scale
of weights. The authors additionally noted that applying
batch normalization directly before quantization ensures
maximum retention of information due to the centering
around zero. These subtle but important changes allowed
an XNOR-Net version of AlexNet to reach 44.2% accuracy
on ImageNet.

Although XNOR-Net offered a substantial improvement
to accuracy, follow-up works noted that even so, the accu-
racy achievable with 1-bit activations is simply not com-
pelling and instead focus on using N ≥ 2 bits. Hubara
et al. (2016) and Zhou et al. (2016) introduce QNN and
DoReFA-Net respectively, both of which use 2-bit activa-
tions to achieve higher accuracy on ImageNet. Both works
used very similar techniques and had similar results, here
we’ll discuss DoReFa-Net’s multi-bit implementation as it
is more precisely defined. Like XNOR-Net, DoReFa-Net
quantizes weights using q = sign(x) and uses weight scale
term α. Activations, on the other hand, are quantized into
linearly spaced bins between zero and one (Equation 2).
DoReFa-Net uses clip(x, 0, 1) as activation function (line 9
in Algorithm 1), ensuring proper outputs from Equation 2.
DoReFa-Net was able to reach an AlexNet top-1 accuracy
of 50%, closing quite a bit of the gap between binary and
floating point models.

qbits = round((2N − 1) ∗ x)

qapprox =
1

2N − 1
qbits

(2)

Cai et al. (2017) introduced Half Wave Gaussian Quantiza-
tion (HWGQ), a new Quantize function that enables 2-bit
activation binary networks to achieve the highest reported
AlexNet accuracy (52.7%) to our knowledge. HWGQ uses
the same weight quantization function as XNOR-Nets and
DoReFa-Nets, quantizing to a single bit representing -1 or
1 and adding scale factor α. To quantize the networks acti-
vations, the authors note that the output of ReLU tends to
fit a half Gaussian distribution. The authors suggest that the
Quantize function should attempt to fit this distribution. To
this end, HWGQ uses k-means clustering to find k = 2N

quantization bins that best fit a half Gaussian distribution.

Although the original interest in binarization was due to
its potential to enable high speed and low memory models

without sacrificing too much accuracy, all follow up work
has been focused on reducing the accuracy gap rather than
the speedup itself. To our knowledge, no paper has reported
an actual end-to-end speedup or described in detail the tech-
niques required to yield one. In the following sections we
examine the barriers that make such a measurement difficult
and present Riptide, the first system to enable performant
end-to-end binary models.

3 CHALLENGES IN BINARIZATION

In this section we explore what it would take to create a
highly performant end-to-end bitserial implementation. In
doing so, we uncover multiple barriers that must be over-
come. These challenges can be broken into three categories:
choosing the proper binarization method from the many
options discussed in Section 2, inefficiencies in glue lay-
ers, and generating efficient machine code that can compete
against hand optimized floating point libraries.

3.1 Implementing core operations efficiently

The first step in building a binary network is choosing a
quantization method. Although it may seem adequate to
pick the method with the highest accuracy, it is often chal-
lenging to implement the most accurate models in a bitserial
fashion (i.e., using logical operations on packed bit-vectors
as described above). In particular, proposed algorithms
often achieve higher accuracy by varying bit consistency
and polarity so as to trade off accuracy for bitserial imple-
mentability.

Lines 10 and 11 of Algorithm 2 describe the inner loop
of bitserial convolution when values are linearly quantized,
as in Equation 2. For n > 2, the term 2n (which can be
implemented as a left shift) adds the scale of the current
bit to the output of popcount before it is accumulated, this
is possible because the spacing between incremental bits
is naturally linear. Using a non-linear scale would require
replacing the efficient shift operation with a floating point
multiply.

Additionally, it is imperative that the values of bits are con-
sistent, for example for N = 2, the value of the sum of
bit pairs 01 and 10 must equal the value of bit pair 11. If
this is not the case, values are effectively being assigned to
bits that are conditional on their bit pairs. However, the use
of popcount anonymizes bits by accumulating them before
they can be scaled. Using a representation that does not have
bit consistency would require multiplying each xhwf by a
scaling constant and prevent the use of popcount, removing
any reduction in computation benefits that quantization oth-
erwise offers. High accuracy binarization techniques that
attempt to better fit non-linear distributions by dropping bit
consistency such as HWGQ are thus difficult to implement
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efficiently.

Quantization polarity describes what the bits of a quantized
tensor represent. In unipolar quantization, bits with value
0 represent 0 and bits with value 1 represent 1. Conversely,
in bipolar quantization bits with value 0 represent -1 and
bits with value 1 represent 1. Early binarization models
such as XNOR-Nets and QNNs use bipolar quantization for
both weights and activations due to the ability of the xnor
operation to elegantly replace multiplication in the inner
loop of a binary convolution. Because bipolar quantization
must be centered around zero, it is not possible to actually
represent zero itself without breaking linearity. Not only
does zero have some intrinsic significance to activations,
but it also is ubiquitously used to pad convolutional layers.
In fact, this padding issue prevents QNNs and XNOR-Nets
from being implemented as proposed by their authors.

Methods that use unipolar quantization for activations such
as DoReFa-Net and PACT-SAWB (Choi et al., 2019) are
able to represent zeros but encounter other implementation
issues. Because weights are always bipolar due to their need
to be capable of representing inverse correlation (negative
numbers), the unset bits in a quantized weight tensor rep-
resent -1 while the unset bits in quantized activation tensor
represent 0. This polarity mismatch prevents a single bit-
wise operation and popcount from producing a correct result
since the bits effectively represent three values instead of
two. The current literature does not provide an answer to
this issue and it is not clear how to efficiently and correctly
implement mixed polarity models.

It is worth noting that there also exist Ternary Weight Net-
works (Li et al., 2016) that use bipolar quantization and a
mask tensor that specifies some bits as representing 0. Al-
though ternary quantization is able to represent both zero
and negative numbers, it is effectively using an extra bit to
do so. Instead of being able to represent 2N unique values,
ternary quantization can only represent 2N−1 + 1 values.
This loss of expressiveness leads to ternary networks not
having competitive accuracy with state-of-the-art unipolar
models.

Attempting to navigate these numerous complications and
implement an end-to-end system could easily lead to poor
performance or incorrect output values at inference time. In
section 4.1 we examine the impact of polarity on runtime
and describe the quantization scheme used in Riptide.

3.2 Binarizing glue layers

In a typical floating point model, the vast bulk of compute
goes into the core convolutional and dense layers. The
interlayer glue operations such as non-linear activations,
MaxPooling and BatchNormalization are so minimally com-
pute intensive compared to core layers that their impact on
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Figure 1. End-to-end speedup of SqueezeNet with fixed glue layer
costs and theoretical speedups of convolution layers.

runtime is ignored. However, in BNNs the number of opera-
tions in core layers is so greatly reduced that the time spent
in glue layers actually becomes a major bottleneck.

To demonstrate the effect of glue layers, we consider the to-
tal number of operations in a binarized SqueezeNet (Iandola
et al., 2016). We count the number of operations in all bit-
serial convolution layers at various assumed speedups and
compare those counts to the total number of glue operations.
These estimates are visualized in Figure 1. We see glue
layers make up a whopping 70% of the operations in a net-
work given the optimal reduction in number of operations
offered by binarization. Even assuming smaller speedups in
practice, glue layers contribute a substantial fraction of the
total estimated runtime at all scales where the speedups of
binarization can justify its impact on accuracy.

Figure 1 makes it readily apparent that a high speed end-
to-end implementation must minimize or all-together re-
move glue layers. However, all high accuracy binarization
techniques today rely on BatchNormalization and weight
scaling in the floating point domain. The centering and
normalization effects of BatchNormalization are essential
to generating consistent and accurate quantized activation
representations and weight scaling has been shown to dra-
matically increase model accuracy by allowing the magni-
tude of weight tensors to be efficiently captured. Because
these layers require floating point arithmetic, interlayer type
casting and requantization must also be inserted. To ad-
dress this bottleneck, we introduce a novel fusible operation
that completely removes the cost of glue layers and yields
a speedup of multiple factors without loss of accuracy in
Section 4.2 .

3.3 Generating fast machine-specific code

One major benefit of binarization is the substantial compres-
sion of the amount of memory required to store weights.
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Figure 2. Scheduling of N -bit binary layer demonstrating interme-
diate memory used. By fusing computation within tiles, such as
the region highlighted red, memory use can be reduced.

Ideally, this memory compression would also apply to the
activation tensors of a model at runtime. However, as visu-
alized in Figure 2 (ignore the dotted line for now), the in-
termediate memory is dominated by the output of popcount
(2NHWC bytes) rather than the more efficient bitpacked
tensor ( NHWC

8 bytes). This is because each layer in Figure
2 is executed sequentially from top to bottom in a typical
system. Not only does this increase the amount of memory
shuffling required at inference time, but it also could prove
to be a major challenge to running large models on resource
constrained systems.

Even with all the barriers above resolved, a binary model
is likely to be dramatically slower than its floating point
variant. Floating point convolutions and dense layers use
highly optimized kernels such as those found in OpenBLAS
(Xianyi et al., 2014). By leveraging scheduling primitives
such as tiling, vectorization, and parallelization, an opti-
mized kernel can run orders of magnitude faster than a naive
implementation. Unfortunately, no comparable hand opti-
mized libraries exist for bitserial operations and developing
one from scratch would be a challenging engineering effort
that is outside the scope of most research projects. Re-
cently, projects such as Halide (Ragan-Kelley et al., 2013)
and TVM (Chen et al., 2018a) have arisen that attempt to
simplify the process of creating optimized schedules by sep-
arating the definition of compute from the schedule itself,
and in some cases supporting automated hyperparameter
search to produce good schedules (Chen et al., 2018b). In
Section 4.3, we describe how we extend TVM to support
bitserial operations and produce machine code that allows
significant speedups even when compared against highly
optimized floating point libraries.

4 SYSTEM DESIGN

In this section we discuss the methods Riptide uses to over-
come the challenges raised in Section 3, allowing it to
generate fast end-to-end binary models. All the follow-
ing described innovations are implemented and supported

Algorithm 3 Riptide inference with N -bit activations.

1: Input: Input tensor X , binary layers L, weight scal-
ing bits wb, shiftnorm scaling bits sb, and combined
centering term cb.

2: c0 = NormalConv(X) {Full precision first block.}
3: b0 = BatchNorm(c0)
4: q0 = LinearQuantize(b0)
5: a0 = BitPack(q0)
6: for k = 1 to L do
7: ck = BinaryConv(ak−1) {NKKFHWC

42 ops.}
8: qk = (ck + cb)� (wb+ sb) {2HWF ops.}
9: lk = clip(qk, 0, 2N − 1) {HWF ops.}

10: pk = Pooling(lk) {HWF ops.}
11: ak = BitPack(pk) {At least 3HWF ops.}
12: end for
13: Y = BinaryDense(aL)

in both TensorFlow (Abadi et al., 2016) and TVM (Chen
et al., 2018a). We use TensorFlow for training binary net-
works and TVM for compiling efficient machine code. The
combination of these two halves makes Riptide an effective
one-stop solution to training and deploying binary networks.

4.1 Quantization Technique and Polarity

As discussed, quantization methods that are not bit-
consistent have fundamental issues being implemented in
a bitserial way. As bitserial computation is essential to
realizing speedups, we are forced to use one of the bit-
consistent techniques. It remains an open question whether
bit-inconsistent binarization can be implemented efficiently.
We choose to use linear quantization in the style of Equation
2 as it does not require any floating point multiplication in
its inner loop and has been shown to yield high accuracy
models. However, there remain major barriers to support-
ing both it’s bipolar and unipolar variants. To provide a
deeper understanding of the impact of polarity, and offer as
fine a granularity as possible in the trade-off between speed
and accuracy, Riptide supports both unipolar and bipolar
activation quantization.

Supporting unipolar activation quantization requires solving
the polarity mismatch described in Section 3.1. There are
a few possible solutions to this dilemma. Perhaps the most
direct solution would be to get rid of the polarity mismatch
by quantizing both activations and the weights unipolarly.
Although this would allow a fast implementation by replac-
ing bitwise-xnor with bitwise-and, it would also require that
weight values be strictly positive. Because weights repre-
sent correlation with specific patterns, removing negative
weights is similar to preventing a network from representing
inverse correlation, which is highly destructive to accuracy.

Instead, we can treat the weight values as if they’re unipolar.
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Then, the bitwise-and operation between activations and
weights is correct except when the activation bit is 1 and
weight bit is 0. In this case, the product should have been -1
but is instead 0. To handle these cases, we count them and
subtract it from the accumulation. This solution is given in
Equation 3

a · w =

N−1∑
n=0

2N (popc(an ∧ w)− popc(an∧!w)) (3)

Here, we use two popcounts and bitwise-and operations and
a bitwise invert (!) instead of the single popcount-xnor used
in bipolar quantization. While the unipolar representation
requires double the compute of the bipolar representation,
the number of memory operations is the same.

4.2 Fused Binary Glue

Figure 1 demonstrates that the significant speedups (up to
43×) offered by binary layers pushes the cost of convolu-
tion and dense layers so low that it causes glue layers (lines
marked with ? in Algorithms 1 and 2) to become a major
bottleneck at inference time. We seek to replace each such
glue layer with bitserial operations. To this end, we intro-
duce a novel operator that completely replaces all floating
point glue layers while requiring only efficient bitserial ad-
dition and shifting. This new Fused Glue operator allows
Riptide to simplify the forward pass of a binary model to the
definition in Algorithm 3, where line 8 is our fused glue op-
eration. Here we introduce the fused glue layer and explain
how it works.

The glue layers in a traditional binary network perform
three key functions: the WeightScale operation in line 6
of Algorithm 2 propagates the magnitude of weights into
the activation tensor while the BatchNorm layer in line 8
of Algorithm 1 normalizes and centers the activations. Be-
cause these operations require floating point arithmetic, the
remaining glue layers exist to cast and convert activations
from integer to float and back again. If we could simply
remove weight scaling, activation normalization, and ac-
tivation centering, the rest of the glue layers wouldn’t be
required. Unfortunately, all three functions are essential to
generating high quality quantizations. Instead, we seek to
replace these floating point operations with efficient inte-
ger versions. Indeed, the three constants wb, sb, and cb in
Algorithm 3 represent weight scaling, normalization, and
centering terms respectively.

Weight Scaling: Multiplying the output of a bitserial op-
eration by the scale term ak = mean(|Wk|) where k is the
number of filters or units in weight tensor W has been a
staple of BNNs since it was introduced in XNOR-Nets. This
simple modification allows the relative magnitude of weight
tensors to be preserved through quantization and gives a
dramatic boost to accuracy while adding few operations. To

maintain this functionality and preserve the integer domain,
we replace weight scaling with an approximate power of
two (AP2) bitwise shift. AP2 and its gradient gx is defined
in Equation 4.

AP2(x) = 2round(log2(|x|))

gx = gAP2(x)

(4)

This allows us to approximate the multiplying of tensor A
with weight scale α as A · αk ≈ A � −log2(AP2(αk))
where � is a bitwise right shift. Note that the term
−log2(AP2(αk) is constant at inference time, so this scal-
ing requires only a single shift operation, which is much
more efficient than a floating point multiply on most hard-
ware. However, right shifting is equivalent to a floor di-
vision when we’d really like a rounding division to pre-
serve optimal quantization bins. Fortunately, round(x) =
floor(x+0.5) so we need only add the integer domain equiv-
alent of 0.5 to ak before shifting. Thus, Riptide’s full weight
scaling operation is defined in Equation 5.

wb = −log2(AP2(αk))

q(a) = (a+ (1� (wb− 1)))� wb
(5)

Although the addition of the term (1� (wb− 1)) increases
the amount of compute used, we will soon show that it can
be fused with a centering constant without requiring any
extra operations.

Normalization: We can extend Equation 5 to support ac-
tivation normalization by approximating the variance of
the activation tensor using AP2. Then, instead of dividing
activation tensorA by its filter-wise variance σk, we can per-
form a right shift by sb bits, where sb is defined in Equation
6. Thus, we can perform a single right shift by wb+ sb bits
to both propagate the magnitude of weights, and normalize
activations. Equation 5 thus becomes Equation 6.

sb = log2(AP2(
√
σ2
k + ε))

q(a) = (a+ (1� (wb− 1)))� (wb+ sb)
(6)

We keep track of the running average of variance during
train time so that the term wb + sb is a constant during
inference.

Centering: Finally we extend Equation 6 to center the mean
of activations around zero. The simplest way of centering
a tensor is by subtracting it’s mean. Because this is a sub-
traction rather than a division or multiplication, we can not
simply add more shift bits. Instead, we must quantize the
mean of activation tensor A in an equivalent integer format
so that it can be subtracted from the quantized activations.
To this end, we use fixed point quantization (FPQ) as de-
fined in Algorithm 4. The number of relevant bits in the
output of an N-bit bitserial layer is N + wb, where the top
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N bits form the quantized input to the next layer and the
remaining wb bits are effectively fractional values. Thus we
set B = N + wb in Algorithm 4. Next we must determine
the proper range, or scale, term to use in the quantization.
This value should be equal to the floating point value that
setting all N + wb bits represents. By linear quantization’s
construction, setting the top N bits represents a value of
1 and the least significant of those N bits represents the
value 1

2N−1 . The value of setting all remaining wb bits

is the geometric sum
∑wb

i=1
1

2N−1 (
1
2 )

i which simplifies to
1

2N−1 (1−
1

2wb ). Thus, setting all N +wb bits is equivalent
to the floating point value S = 1 + 1

2N−1 (1−
1

2wb ).

Algorithm 4 Fixed point quantization (FPQ) function.

1: Input: a tensor X to quantize to B bits with scale S.
2: X̂ = clip(X,−S, S)
3: g = S

2B−1 {Compute granularity.}
4: Y = round( X̂g )

With S andB properly defined, we can compute a quantized
mean µ̂ from a floating point mean µ as µ̂ = FPQ(µ,B, S)
and directly subtract the result from binary activations. Con-
veniently, µ̂ can be subtracted from (1� (wb−1)) to create
a new centering constant. Equation 7 is thus the final form
of Equation 6 and allows weight scaling, normalization, and
centering in just two integer operations.

cb = (1� (wb− 1))− µ̂
q(a) = (a+ cb)� (wb+ sb)

(7)

As in the case of variance, we keep track of the running mean
of activations during train time so that during inference cb
is a constant.

We thus have fully derived the fused glue operation used
in Algorithm 3. The only other point worth noting is that
we use clip(qk, 0, 2N − 1) as the activation for our net-
work. This has a similar effect as a saturating ReLU that
bunches large activations into the highest quantization bin.
We demonstrate in Section 5 that Riptide’s fused glue layers
not only are dramatically faster than floating point glue, but
also do not negatively impact a binarized model’s accuracy.

4.3 Generating Efficient Code

To compile our described algorithms to efficient machine
code, we extend TVM (Chen et al., 2018a) to support bitse-
rial operations. This allows Riptide to directly convert its
TensorFlow training graph to a TVM based representation
that can leverage LLVM to compile to multiple backends.
Additionally, supporting bitserial operations in TVM allows
Riptide to apply TVM’s scheduling primitives to bitserial
operations. These scheduling primitives include:

• Tiling, which splits loops over a tensor into small re-
gions that can better fit into the cache, thereby reducing
memory traffic and increasing compute intensity.

• Vectorization, which enables the use of hardware
SIMD instructions to operate on multiple tensor el-
ements simultaneously.

• Parallelization, which allows loops to be executed on
multiple cores via threading.

Although these primitives require well chosen hyperparam-
eters to maximize performance, we leverage AutoTVM
(Chen et al., 2018b) to automatically search and find high
quality settings. In addition to TVM scheduling primitives,
we replace the default LLVM ARM popcount kernel with a
more efficient Fast Popcount following the recommenda-
tions of Cowan et al. (2018).

To address the memory bottleneck shown in Figure 2, we
introduce an optimization we call Bitpack Fusion, visu-
alized by the dotted red line. By folding our fused glue
operation and bitpacking into an outer loop of the preceding
bitserial convolution, we need only store a few instances
of the integer output before bitpacking back into a more
compact representation. By storing only a small number of
integer outputs at a time, we can reduce the total amount
of memory used to store activations by a factor of 16×.
This memory reduction is not only potentially essential to
running models on resource constrained platforms, but also
increases execution speed by reducing the time spent on
memory operations.

5 EVALUATION

In our evaluation of Riptide, we consider two primary ob-
jectives.

1. Demonstrate that Riptide’s optimizations do not cause
accuracy loss relative to state-of-the-art binarization
results.

2. Show that Riptide can produce high speed binary mod-
els and explore the impact of its various optimizations.

Most previous work in binarization has been evaluated on
AlexNet (Krizhevsky et al., 2012), VGGNet (He et al.,
2015), and Resnets (He et al., 2016). To directly com-
pare against these results, we train these three models with
multiple bitwidth and polarity configurations. In these com-
parisons, we consider HWGQ (Cai et al., 2017) the current
state-of-the-art for high accuracy binary AlexNets and VG-
GNets and PACT-SAWB (Choi et al., 2019) the state-of-
the-art for binarizing Resnets. For all models (including
SqueezeNet), we binarize all layers except the input layer



Riptide: Fast End-to-End Binarized Neural Networks

Table 1. Accuracy and speed of related binarization work and our results
Model Name 1-bit 2-bit 3-bit full precision

ImageNet top-1 accuracy / Runtime (ms)
1 AlexNet Xnor-Net (Rastegari et al., 2016) 44.2% / — — / — — / — 56.6% / —
2 AlexNet BNN (Courbariaux et al., 2015) 27.9% / — — / — — / — — / —
3 AlexNet DoReFaNet (Zhou et al., 2016) 43.6% / — 49.8% / — 48.4% / — 55.9% / —
4 AlexNet QNN (Hubara et al., 2016) 43.3% / — 51.0% / — — / — 56.6% / —
5 AlexNet HWGQ (Cai et al., 2017) — / — 52.7% / — — / — 58.5% / —
6 VGGNet HWGQ (Cai et al., 2017) — / — 64.1% / — — / — 69.8% / —
7 Resnet18 PACT-SAWB (Choi et al., 2019) — / — 62.8% / — — / — 70.4% / —
8 Resnet50 PACT-SAWB (Choi et al., 2019) — / — 67.4% / — — / — 76.9% / —
9 AlexNet Riptide-unipolar (ours) 44.5% / 150.4 52.5% / 196.8 53.6% / 282.8 56.5% / 1260.0
10 AlexNet Riptide-bipolar (ours) 42.8% / 122.7 50.4% / 154.6 52.4% / 207.0 56.5% / 1260.0
11 VGGNet Riptide-unipolar (ours) 56.8% / 243.8 64.2% / 387.2 67.1% / 610.0 72.7% / 2420.0
12 VGGNet Riptide-bipolar (ours) 54.4% / 184.1 61.5% / 271.4 65.2% / 423.5 72.7% / 2420.0
13 Resnet18 Riptide-unipolar (ours) 54.9% / 82.0 62.2% / 177.2 — / — 70.4% / 385.5
14 Resnet50 Riptide-unipolar (ours) 59.1% / 171.9 66.9% / 340.3 — / — 76.9% / 771.8

as is common practice in the literature. Notably, however,
we find that binarizing the output dense layer does not nega-
tively impact the accuracy of Riptide models.

Binarized models are most attractive in resource constrained
environments where full precision models are too slow and
memory hungry. To this end, all time measurements are
made on a Raspberry Pi 3B (RPi) (Pi, 2015). The RPi has
an ARM Cortex-A53 CPU with 4 cores clocked at 1.2 GHz.
This processor (and RPi’s other hardware) is similar to many
embedded systems, and results measured here are likely to
be representative of other platforms. Due to the precedent
of previous binarization, all Riptide accuracy measurements
are made using AlexNet, VGGNet, and Resnet. However
in practice, these architectures are bulky enough that they
would not be deployed to an RPi class device. In our detailed
runtime analysis, we instead examine quantized versions
of SqueezeNet (Iandola et al., 2016), a highly parameter
and runtime efficient model that is commonly used in em-
bedded applications. Although we do not provide extensive
accuracy validations of SqueezeNet, we have confirmed that
training SqueezeNet with Riptide’s optimizations achieves a
top-1 accuracy within 1% of SqueezeNet trained with other
state-of-the-art approaches.
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Figure 3. Visualization of end to end speedups of all explored
models and bitwidths compared to floating point baselines.

5.1 End-to-End Results

The results of our training experiments and the accuracy
reported by previous binarization works are reported in Ta-
ble 1. Models are binarized using all Riptide optimizations
and trained on the ImageNet dataset for 100 epochs using
SGD with an initial learning rate of 0.1 that is decreased
by 10× every 30 epochs. We train variants of AlexNet and
VGGNet with 1-bit, 2-bit, and 3-bit activations, in all cases
weights are quantized bipolarly with 1-bit except Resnets
which use 2 bits. For baselines we train full precision ver-
sions of Alexnet, VGGNet, and Resnet using the same set-
tings as above. We report the runtime of these baseline
models when optimized using TVM. The speedup results
for each model and bitwidth is visualized in Figure 3.

Although the author’s of PACT-SAWB reported impressive
accuracies of 67.0% and 72.2% for 2-bit Resnet18 and 2-bit
Resnet50, we were unable to replicate these results. In our
implementation, we instead reached the top-1 accuracies
reported in Table 1, which are only marginally higher than
those reported in DoReFaNet. Although it is possible that
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Figure 4. Layerwise speedup of SqueezeNet quantized with vary-
ing bitwidth versus the floating point baseline model.
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Figure 5. Ablation study of the effect of Riptide optimizations
versus the baseline floating point model.

the lower accuracy is due to an implementation mistake,
it is difficult to verify as there is no open source PACT-
SAWB implementation. However, it is worth noting that
the techniques used in PACT-SAWB are entirely compatible
with those used in Riptide, so it may be possible to improve
Resnet accuracies by combining the two works.

There are three key takeaways from these results:

• Riptide is able to generate the first ever reported end-to-
end speedups of a binary model and achieves accuracy
comparable to the state-of-the-art across all configura-
tions, confirming that Riptide’s optimizations do not
cause a drop in accuracy.

• We observe end-to-end speedups across all models and
bitwidths and have a wide range of points in terms
of the speed to accuracy trade-off; ranging from high
accuracy 3-bit unipolar models with 4× speedup to
high speed bipolar models with 12× speedup.

• Although unipolar models yield higher accuracy and
slower runtimes than bipolar models as expected, they
are only about 25% slower despite having twice the
number of operations. This suggests our mixed polarity
implementation (Equation 3) is quite efficient.

Taking these points together, we are confident that Riptide
provides a high quality implementation of bitserial networks.

5.2 Layerwise Analysis

We measure the per-layer runtime of SqueezeNet unipolarly
quantized at each bitwidth and visualize the results in Figure
4. The bars indicate the relative speedup versus a floating
point baseline and the dotted lines tracks the cumulative
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Figure 6. Effect of quantization polarity on the runtime of the first
fire layer in SqueezeNet. The horizontal yellow line indicates the
runtime of the layer if it were run with perfect efficiency.

runtime over the layers. There are a few interesting take-
aways from this measurement. We see that not all layers
benefit equally from quantization; those towards the end of
the model have speedup of up to 20× compared to early
layers’ 3×. Early layers tend to be spatially larger but have
fewer channels than later layers, suggesting that binariza-
tion scales better with the number of channel than it does
spatially. Leveraging this knowledge, it may be possible to
design architectures that are able to achieve higher speedups
when binarized even if they are less efficient in full precision.
We also note that the output dense layer achieves speedups
inline with convolutional layers, suggesting our techniques
apply well to both types of layer. Although we leave the
input layer in full precision, we see that it takes a relatively
small amount of the total runtime, suggesting that this is not
a significant bottleneck.

5.3 Optimization Ablation

We perform a one-off ablation study of each of Riptide’s
optimizations. The results of this study are shown in Fig-
ure 5. Although not all optimizations contribute equally,
its clear that they are all essential to our final highly per-
formant model, with the smallest reduction lowering the
end-to-end speedup from 10.6× to 8.4× and the largest re-
duction lowering speedups to only 2.9×. In the subsequent
sections we drill down further into these optimizations to
better understand their impact.

5.4 Polarity

To better examine the impact of polarity, we consider the
runtime of the first layer of SqueezeNet for a baseline FP32
model, a unipolar model, and a bipolar model with the latter
two being quantized unipolarly with 1-bit in Figure 6. Here,
we have added a yellow line to indicate the runtime if the
layer were entirely compute bound (calculated by dividing
the number of operations by the RPi’s frequency × core
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Figure 7. Layerwise runtime breakdown of SqueezeNet quantized
with 1-bit weights and activations.

count). We see that the baseline model is extremely close to
its hypothetical ceiling, suggesting it is in fact quite compute
bound. The binarized models on the other hand are far from
compute bound. Because Riptide’s unipolar quantization
requires no more memory operations than bipolar, it is only
marginally slower. Thus in general, unipolar quantization
tends to give better accuracy to speedup trade-offs. However,
in situations where speed is more important than accuracy,
bipolar models may be more attractive.

5.5 Scheduling

To demonstrate the impact of proper machine code genera-
tion, we take a SqueezeNet binarized unipolarly with 1-bit
and compile it with no optimizations then measure its end-
to-end runtime. From that unoptimized starting point, we
incrementally apply the optimizations discussed in Section
4.3 and measure the resulting runtimes. The speedups of
these measurements are shown in Figure 8. We note that
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Figure 8. End-to-end speedup of quantized SqueezeNet versus the
baseline floating point model when scheduling optimizations are
incrementally applied.
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Figure 9. Runtime of each operation in the first fire layer of
SqueezeNet quantized with 1-bit weights and activations.

an unoptimized binary model is actually about 7× slower
than the full precision baseline. We can see that each opti-
mization contributes significantly to generating performant
machine code. Notably, we find that bitpack fusion gives
a speed boost of about 30%, all of which comes from the
reduction to memory operations that it contributes.

5.6 Glue Layers

To understand the impact of our fused glue operation, we
examine the runtime of SqueezeNet when all optimizations
except fused glue are applied. We first measure the runtime
of each bitserial layer and its corresponding glue and visu-
alize the results in Figure 7. We find that glue layers make
up a considerable portion of each layer and cumulatively
contribute 44% of the total inference time. This confirms
that glue layers are a major bottleneck at all points in the
model. Next, we examine each individual operation in the
first quantized layer of SqueezeNet and visualize the run-
times in Figure 9. Here we find that although the Quantize
operation is the largest of the glue operations, all contribute
non-trivially. This leads us to conclude that optimizing only
a portion of the glue layers would be insufficient and give
us confidence that our fused glue operation is essential and
highly performant.

6 CONCLUSION

In this paper we introduce Riptide, an end-to-end system
for training and deploying high speed binarized networks.
In our development of Riptide, we encounter and address
numerous design flaws in existing binary networks. We
propose a solution to unipolar quantization implementabil-
ity, derive a novel ”Fused Glue” interlayer operation that
completely removes floating point arithmetic from binary
networks, and demonstrate how to generate efficient bitse-
rial machine code. We show that Riptide’s optimization
techniques lead to order of magnitude speedups and do not
sacrifice accuracy relative to state-of-the-art approaches.
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