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Abstract

Supersized pre-trained language models have
pushed the accuracy of various NLP tasks to
a new state-of-the-art (SOTA). Rather than
pursuing the reachless SOTA accuracy, most
works are pursuing improvement on other di-
mensions such as efficiency, leading to "Pareto
SOTA". Different from accuracy, the metric
for efficiency varies across different studies,
making them hard to be fairly compared. To
that end, this work presents ELUE (Efficient
Language Understanding Evaluation), a stan-
dard evaluation, and public leaderboard for
efficient NLP models. ELUE is dedicated
to depict the Pareto Front for various lan-
guage understanding tasks, such that it can
tell whether and how much a method achieves
Pareto improvement. Along with the bench-
mark, we also pre-train and release a strong
baseline, ElasticBERT, whose elasticity is
both static and dynamic. ElasticBERT is
static in that it allows reducing model lay-
ers on demand. ElasticBERT is dynamic in
that it selectively executes parts of model lay-
ers conditioned on the input. We demon-
strate the ElasticBERT, despite its simplic-
ity, outperforms or performs on par with
SOTA compressed and early exiting models.
The ELUE benchmark is publicly available at
http://eluebenchmark.fastnlp.top/1.

1 Introduction

Driven by the large-scale pre-training, today’s NLP
models have become much more powerful (Devlin
et al., 2019; Yang et al., 2019; Lan et al., 2020;
Raffel et al., 2020; Sun et al., 2020a; Brown et al.,
2020; Qiu et al., 2020). As a consequence of this
drastic increase in performance, these pre-trained
language models (PLMs) are notorious for becom-
ing more and more computationally expensive due
to the increasing number of parameters. Therefore,
rather than pre-training a larger model to achieve
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Figure 1: An illustration to show our motivation, that is,
building the Pareto front can help recognizing whether
and how much a method achieves Pareto improvement.

a new state-of-the-art (SOTA) accuracy, most stud-
ies are pursuing improvement on other dimensions
such as the number of parameters or FLOPs (Gor-
don et al., 2020; Sanh et al., 2019; Jiao et al., 2020;
Lan et al., 2020; Shen et al., 2020). For these works,
the goal has shifted from simple SOTA to "Pareto
SOTA". A Pareto SOTA model means that there
is no other model is currently better than it on all
the dimensions of interest. For example, a model
may claim to be Pareto SOTA as long as it achieves
the best accuracy under the same number of param-
eters or FLOPs. For these efficient models with
fewer parameters or FLOPs, it is unfair to get them
evaluated on the accuracy-centric benchmarks such
as GLUE (Wang et al., 2019b), and ranked among
many large-scale models.

The shifted goal has outpaced the existing bench-
marks, which cannot provide a comprehensive and
intuitive comparison for efficient methods. In the
absence of a proper benchmark, measures of effi-
ciency in different studies cannot be standardized,
and different methods cannot be fairly compared.
As a result, it is difficult to say whether and how
much a method achieves Pareto improvement. To
that end, we aim to build the Pareto front for var-
ious tasks with standard evaluation for both per-
formance and efficiency. Our motivation can be
briefly illustrated by Figure 1.

http://eluebenchmark.fastnlp.top/


Need for a standard evaluation As the goal has
shifted, a new benchmark is urgently needed to
comprehensively compare the NLP models in mul-
tiple dimensions. Currently, this multi-dimensional
comparison is done in the individual papers, result-
ing in the following issues: (a) Incomprehensive
comparison. The comparison is usually point-to-
point, e.g. comparing model performance under the
same FLOPs. The comparison in a broader range is
usually missed, especially for works in conditional
computation where the model performance varies
with FLOPs. (b) Unaccessible results. Even if
the comprehensive line-to-line comparison is con-
ducted, the results are usually presented in form of
figure, in which the data points are not accessible
for the following work. As a result, the following
work has to reproduce or estimate the results (e.g.
Xin et al. (2021) estimate values from the figures
of Zhou et al. (2020a)). (c) Non-standard mea-
surements. Different works may adopt different
metrics such as physical elapsed time, FLOPs, and
executed model layers, making them hard to di-
rectly compare. Even if the adopted metrics are
the same, there is no guarantee that they will be
calculated in the same way (e.g. the hardware in-
frastructure, or the software to calculate FLOPs
can be very different2). (d) Inconvenience. Re-
cent studies usually choose GLUE (Wang et al.,
2019b) as the main benchmark, which, however, is
not suitable for dynamic methods due to its submis-
sion limitation that is designed to avoid overfitting
on test sets.

Need for a strong baseline Currently, there are
roughly two branches of efficient methods in NLP:
static methods (e.g. distillation, pruning, quantiza-
tion, etc.) and dynamic methods (e.g. early exiting).
(a) Static models are obtained given an expected
number of parameters or inference latency. These
methods often use the first few layers (to keep the
same number of parameters or FLOPs) of some
pre-trained model followed by a classification head
as their baseline, which, however, is too weak to
serve as a baseline. (b) Dynamic models usually
add multiple internal classifiers to the pre-trained
LMs, and therefore allow flexible inference condi-
tioned on the input. Nevertheless, the injected inter-
nal classifiers introduce a gap between pre-training

2We find that the FLOPs of Transformers calculated by
different libraries (thop, ptflops, and torchstat) can
be different. And besides, all of them missed FLOPs in some
operations such as self-attention and layer normalization.

and fine-tuning. Training the internal classifiers
on downstream tasks often degenerates the perfor-
mance of the entire model (Xin et al., 2021). Thus,
static models need a strong baseline, and dynamic
models need a strong backbone.

Contributions In this work, we address the
above needs by contributing the following:

• ELUE (Efficient Language Understanding
Evaluation) – a standard benchmark for effi-
cient NLP models. (1) ELUE supports online
evaluation for model performance, FLOPs,
and number of parameters. (2) ELUE is also
an open-source platform that can facilitate fu-
ture research. We reproduce and evaluate mul-
tiple compressed and early exiting methods
on ELUE. All of the results are publicly ac-
cessible on ELUE. (3) ELUE provides an on-
line leaderboard that uses a specific metric
to measure how much a model oversteps the
current Pareto front. ELUE leaderboard also
maintains several separate tracks for models
with different sizes. (4) ELUE covers six NLP
datasets spanning sentiment analysis, natural
language inference, similarity and paraphrase
tasks.

• ElasticBERT – a strong baseline (backbone)
for static (dynamic) models. ElasticBERT is a
multi-exit Transformer (Vaswani et al., 2017)
pre-trained on ∼160GB corpus. The pre-
training objectives, MLM and SOP (Lan et al.,
2020), are applied to multiple Transformer
layers instead of only the last layer. Gradient
equilibrium (Li et al., 2019) is adopted to al-
leviate the conflict of the losses at different
layers. For static models, ElasticBERT is a
strong baseline that can reach or even outper-
form distilled models. For dynamic models,
ElasticBERT is a robust backbone that closes
the gap between pre-training and fine-tuning.

2 Related Work

NLP Benchmarks Evaluating the quality of lan-
guage representations on multiple downstream
tasks has become a common practice in the commu-
nity. These evaluations have measured and pushed
the progress of NLP in recent years. SentEval (Con-
neau and Kiela, 2018) introduces a standard evalu-
ation toolkit for universal sentence representations,
covering multiple NLP tasks including classifica-
tion, natural language inference and sentence sim-



ilarity. Further, GLUE (Wang et al., 2019b) and
SuperGLUE (Wang et al., 2019a) provide a set of
more difficult datasets for model-agnostic evalua-
tion. Another line of work is multi-dimensional
evaluations. EfficientQA (Min et al., 2020) is an
open-domain question answering challenge that
evaluates both accuracy and system size. The sys-
tem size is measured as the number of bytes re-
quired to store a Docker image that contains the
submitted system. Dynabench (Kiela et al., 2021),
an open-source benchmark for dynamic dataset
creation and model evaluation, also supports multi-
dimensional evaluation. In particular, Dynabench
measures model performance, throughput, mem-
ory use, fairness, and robustness. Both Efficien-
tQA and Dynabench require the user to upload
the model along with the required environment to
the server, which is costly for users to upload and
also for the server to evaluate. In contrast, ELUE
adopts a cheaper way to evaluate performance and
efficiency of the model. Recently, Long-Range
Arena (LRA) (Tay et al., 2021) is proposed to eval-
uate sequence models under the long-context sce-
nario. Different from ELUE, LRA mainly focuses
on Xformers (Lin et al., 2021). Besides, some long-
context tasks included in LRA are not NLP tasks, or
even not real-world tasks, while ELUE consists of
common language understanding tasks. In addition,
ELUE is also inspired by other well-known bench-
marks, such as SQuAD (Rajpurkar et al., 2016),
SNLI (Bowman et al., 2015), MultiNLI (Williams
et al., 2018), DecaNLP (McCann et al., 2018),
CLUE (Xu et al., 2020b), HotpotQA (Yang et al.,
2018), etc.

Efficient NLP Models Existing efficient NLP
models can be categorized as two branches: model
compression (static methods) and conditional com-
putation (dynamic methods). Compressing a cum-
bersome model to reduce the number or precision
of parameters is a straightforward and effective so-
lution. Currently, there are several approaches to
achieve model compression: (1) model pruning,
which removes parts of neural network that are less
important (Gordon et al., 2020), (2) knowledge dis-
tillation, which learns a compact student model that
learns from the prediction distributions from the
cumbersome teacher model (Sanh et al., 2019; Jiao
et al., 2020), (3) weight sharing across different
parts (e.g., layers) of the model (Lan et al., 2020),
(4) quantization, which uses low bit precision for
parameter storage and speed-up inference with low

bit hardware operations (Shen et al., 2020), and
(5) module replacing, which replaces the modules
of large-scale models with more compact substi-
tutes (Xu et al., 2020a). Instead of pursuing a
more compact static model, conditional computa-
tion is to selectively activate only parts of the model
conditioned on a given input (Bengio et al., 2013;
Davis and Arel, 2014). Graves (2016) developed
an end-to-end halting mechanism, Adaptive Com-
putation Time (ACT), to perform input-adaptive
computation, which is later used in Universal Trans-
former (Dehghani et al., 2019). Recently, as the
emergence of large-scale models for natural lan-
guage processing, early exiting is also used to speed
up inference of transformer-based models, such
as Depth-Adaptive Transformer (Elbayad et al.,
2020), DeeBERT (Xin et al., 2020), FastBERT (Liu
et al., 2020), RightTool (Schwartz et al., 2020),
PABEE (Zhou et al., 2020b), LeeBERT (Zhu,
2021), CascadeBERT (Li et al., 2021a), etc.

3 ELUE: A Standard Benchmark for
Efficient NLP Models

ELUE is aimed to offer a standard evaluation for
various efficient NLP models, such that the meth-
ods can be fairly and comprehensively compared.
In Section 3.1, we list the design considerations to
achieve this motivation. In Section 3.2, we describe
the tasks and datasets included in ELUE. In Sec-
tion 3.3, we illustrate how to make a submission
on ELUE, and how the submission is evaluated. In
Section 3.4, we discuss the design of our leader-
board.

3.1 Design Considerations

Now we enumerate main considerations in the de-
sign of ELUE to ensure that it meets the needs
mentioned early.

Multi-dimensional Evaluation The evaluation
of ELUE should be multi-dimensional for compre-
hensive comparison. Instead of point-to-point com-
parison, methods can be compared in a line-to-line
style in ELUE, where the "line" is a performance-
efficiency trade-off curve.

Public Accessible All data points in ELUE
should be publicly accessible such that the follow-
ing work does not need to reproduce or estimate
results from previous work. To facilitate future
research, some representative methods should be
reproduced and evaluated in ELUE.



Standard Evaluation The measurement of
model efficiency should be standardized in ELUE
such that this line of methods can be fairly com-
pared. Current studies usually use number of
parameters (Lan et al., 2020; Jiao et al., 2020),
FLOPs (Jiao et al., 2020; Liu et al., 2020; Li et al.,
2021b), actual inference time (Sanh et al., 2019;
Schwartz et al., 2020), or number of executed lay-
ers (Zhou et al., 2020a; Sun et al., 2021b) to mea-
sure model efficiency. Among these metrics, mea-
suring actual inference time is costly for both users
and the server, and highly depends on the com-
putation infrastructure and software implementa-
tion, while number of executed layers ignores the
shape of input and hidden layers, therefore is inac-
curate. Thus, ELUE adopts number of parameters
and FLOPs as the metrics for model efficiency.

Easy-to-Use ELUE should be friendly to users,
which means that the submission should be as sim-
ple as possible. Roughly speaking, there are cur-
rently two ways of submissions: (1) submitting the
trained model such as SQuAD (Rajpurkar et al.,
2016), Dynabench (Kiela et al., 2021), and (2) sub-
mitting the predicted test files such as GLUE (Wang
et al., 2019b), SuperGLUE (Wang et al., 2019a),
and CLUE (Xu et al., 2020b). The submission of
ELUE lies in the latter way. Nevertheless, to evalu-
ate number of parameters and FLOPs, the submit-
ted test files should conform to a specific format,
and besides, a Python file to define the used model
is also required. For more details about submission
and evaluation, see Section 3.3.

3.2 Task and Dataset Selection
Following GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and CLUE (Xu et al.,
2020b), we collect tasks that can be formatted
as single sentence classification or sentence pair
classification. Since ELUE mainly focuses on ef-
ficient models, the difficulty of dataset is not a
primary consideration. Instead, we collect tasks
and datasets that are commonly used and publicly
available in the community. The statistics of the
collected datasets are listed in Table 1.

Sentiment Analysis Sentiment analysis, which
is to classify the polarity of a given text, is a fun-
damental task in NLP. We select two well-known
movie review datasets, Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013) and IMDb (Maas
et al., 2011). For SST, we use the two-way class
split, i.e. SST-2. Different from GLUE, SST-2

Tasks Datasets |Train| |Dev| |Test|

Sentiment
Analysis

SST-2 8,544 1,101 2,208
IMDb 20,000 5,000 25,000

Natural Language
Inference

SNLI 549,367 9,842 9,824
SciTail 23,596 1,304 2,126

Similarity and
Paraphrase

MRPC 3,668 408 1,725
STS-B 5,749 1,500 1,379

Table 1: Statistics of datasets in ELUE.

samples in ELUE are complete sentences instead
of phrases. For IMDb, we randomly select 2.5k
positive samples and 2.5k negative samples from
training set to construct a development set.

Natural Language Inference Natural language
inference (NLI) is a task to predict whether the
premise entails the hypothesis, contradicts the hy-
pothesis, or neither. NLI is often formulated as a
sentence pair classification task (Devlin et al., 2019;
Sun et al., 2021a). We select two NLI datasets,
SNLI (Bowman et al., 2015) and SciTail (Khot
et al., 2018). SNLI is a crowd-sourced collec-
tion of sentence pairs with balanced labels: en-
tailment, contradiction, and neutral. We use the
spell-checked version of the test and development
sets3. The hard samples, which do not have golden
labels due to the disagreement of annotators, are
removed from the dataset and left for model di-
agnostic. SciTail is a two-way (entail or neutral)
entailment classification dataset, which is derived
from multiple-choice science exams and web sen-
tences.

Similarity and Paraphrase For similarity
and paraphrase tasks, we also select two
datasets, Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), and Semantic
Textual Similarity Benchmark (STS-B) (Cer et al.,
2017), both of which are also included in GLUE.
MRPC is a collection of automatically extracted
sentence pairs, each manually-labeled with a
judgment to indicate whether the pair constitutes a
paraphrase. STS-B is a corpus of sentence pairs,
each of which is labeled with a score from 0 to 5
to represent the degree to which two sentences are
semantically equivalent.

3.3 Submission and Evaluation

ELUE supports two kinds of submissions: submit-
ting test files, or submitting from a paper.

3https://nlp.stanford.edu/projects/snli/
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Submit test files Users are required to submit
two kinds of files: (1) predicted test files, and (2) a
model definition file in Python. The predicted test
files can be multiple, each indicates the prediction
under a certain efficiency. The submitted test files
should be in the following format:

index pred modules
0 1 (10),emb; (10,768),layer_1; (768),exit_1
1 0 (15),emb; (15,768),layer_1; (768),exit_1; (15,768),layer_2; (768),exit_2
2 1 (12),emb; (12,768),layer_1; (768),exit_1
... ... ...

Different from traditional predicted test files as in
GLUE, an additional column "modules" is required
to indicate the activated modules to predict each
sample. The numbers before each module represent
the input shape of that module, e.g. the "(10)"
before "emb" indicates that the input of "emb" is
a sequence of length 10. Note that this format
is also compatible with token-level early exiting
methods (Li et al., 2021b), where the sequence
length is progressively reduced as the processing
of layers.

Along with the test files, a Python file to define
the model is also required. The following is an
example Python file using PyTorch (Paszke et al.,
2019) and Transformers (Wolf et al., 2020).

# import packages
import torch.nn as nn
from transformers import BertConfig
...

# module definitions
class ElasticBERTEmbeddings(nn.Module):

def __init__():
...

def forward(x):
...

class ElasticBERTLayer(nn.Module):
def __init__():

...
def forward(x)

...

class ElasticBERT(nn.Module):
def __init__():

...
def forward(x)

...

# module dict
config = BertConfig(num_labels=2)
module_list = {

'emb': ElasticBertEmbeddings(config),
'layer_1': ElasticBertLayer(config),
'exit_1': nn.Linear(config.hidden_size, num_labels),
'layer_2': ElasticBertLayer(config),
'exit_2': nn.Linear(config.hidden_size, num_labels),
...

}
entire_model = ElasticBERT(config)

With the submitted Python file, ELUE is able to
evaluate the average FLOPs on a dataset, and the
number of parameters of the model.

In cases that the evaluation is not applicable, e.g.
the programming language, or dependencies of the
submitted Python file is not supported in ELUE, the

user is allowed to evaluate FLOPs and number of
parameters by themselves and upload their results
along with the predictions to the ELUE website.

Submit from a paper Inspired by Paper with
Code4, we also expect that ELUE can serve as an
open-source platform that can facilitate future re-
search. Therefore, there is a track for the authors of
published papers to share their experimental results
on ELUE datasets.

Performance Metrics Since the classes in
MRPC are imbalanced, we report the unweighted
average of accuracy and F1 score. For STS-B, we
evaluate and report the Pearson and Spearman cor-
relation coefficients. For other datasets, we simply
adopt accuracy as the metric.

3.4 Leaderboard

Following prior work (Yang et al., 2018; Wang
et al., 2019b; Xu et al., 2020b), we also integrate
a leaderboard in ELUE. For dynamic models that
have multiple performance-FLOPs coordinates on
each dataset, we need to sum up these coordinates
as a score. A critical problem is to measure how
good a coordinate is. In other words, to measure
a coordinate (p, f), where p is performance and
f is FLOPs, we need a baseline performance un-
der the same FLOPs. We choose ElasticBERT
as the baseline curve. We evaluate different lay-
ers of ElasticBERT, and obtained 12 coordinates
(pEB

i , fEB
i )12i=1, which are then used to interpo-

late to get a performance-FLOPs function pEB(f).
With the baseline curve at hand, we can score a
submission curve as

score =
1

n

n∑
i=1

[pi − pEB(fi)]. (1)

Note that the coordinates of ElasticBERT are sepa-
rately interpolated on different datasets. The final
ELUE score is an unweighted average of the scores
on all the 6 datasets. Figure 2 gives an illustration
of how ELUE score is computed. The ELUE score
reflects the extent to which the submission over-
steps the ElasticBERT, which can be seen as the
current Pareto front.

In addition, following EfficientQA (Min et al.,
2020), ELUE leaderboard also maintains four ad-
ditional separate tracks, corresponding to models
below 40M, 55M, 70M, 110M parameters. Models

4https://paperswithcode.com/
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Figure 2: An illustration to show how ELUE score is
computed.

in these tracks are ranked by the average perfor-
mance on all the datasets.

4 ElasticBERT: A Strong Baseline for
Efficient Inference

Despite the encouraging results achieved by exist-
ing efficient models, we argue that a strong baseline
(backbone) is needed for both static methods and
dynamic methods. Static methods often choose the
first few layers of some pre-trained model as their
baseline (e.g. Sun et al. (2019); Jiao et al. (2020)),
which can be weak. Dynamic methods that enable
early exiting by training multiple internal classi-
fiers usually introduce a gap between pre-training
and fine-tuning, and therefore hurt the performance
of the entire model (Xin et al., 2021). Thus, in this
section, we present the ElasticBERT that bridges
the gap between static and dynamic methods, and
therefore can serve as a strong baseline for static
methods and also a strong backbone for dynamic
methods.

ElasticBERT is a multi-exit pre-trained language
model with the following training objective:

L =
L∑
l=1

(LMLM
l + LSOP

l ), (2)

where L is the total number of layers, LMLM is
the n-gram masked language modeling loss, LSOP

is the sentence order prediction loss (Lan et al.,
2020). The two losses are applied to each layer of
the model, such that the number of layers can be
flexibly scaled on downstream tasks, and therefore
it is named "ElasticBERT".

Bridge the Gap Between Static and Dynamic
Methods As a baseline for static methods, the
depth of ElasticBERT can be flexibly reduced
on demand. Compared with the first l layer of

BERT (Devlin et al., 2019), the l-layered Elas-
ticBERT is a complete model (Turc et al., 2019; Li
et al., 2021a) and can achieve better performance. It
is worth noticing that ElasticBERT can be regarded
as a special instance of LayerDrop (Fan et al., 2020)
where the dropped layers are constrained to the top
consecutive layers. As a backbone for dynamic
methods, training classifiers injected in intermedi-
ate layers would be consistent with pre-training.
Therefore, ElasticBERT can not only be used as a
static complete model, but also be used as a back-
bone model of dynamic early exiting.

Gradient Equilibrium Pre-training with the
simply summed loss in Eq. (2) could lead to a gra-
dient imbalance issue (Li et al., 2019). In particular,
due to the overlap of subnetworks, the variance of
the gradient may grow overly large, leading to un-
stable training. To address this issue, we follow
Li et al. (2019) and adopt the gradient equilibrium
(GE) strategy5 in the pre-training of ElasticBERT.

Grouped Training In our preliminary experi-
ments, we found that summing up losses at all
layers could slow down pre-training and increase
memory footprints. To alleviate this, we divide L
exits into G groups. During training, we optimize
the losses of the exits within each group by cycling
alternately between different batches:

L =
∑
l∈Gi

(LMLM
l + LSOP

l ). (3)

In Section 5.3 we explore the performance of differ-
ent grouping methods. As a result, we group the 12
exits of ElasticBERTBASE into G1={1, 3, 5, 7, 9, 11,
12} and G2={2, 4, 6, 8, 10, 12}, and group the 24
exits of ElasticBERTLARGE into G1={1, 4, 7, ..., 22,
24}, G2={2, 5, 8, ..., 23, 24}, and G3={3, 6, 9, ...,
21, 24}. Our experiments demonstrate that grouped
training can significantly speedup the process of
pre-training without a loss in performance.

5 Experiments

5.1 Experimental Setups

Pre-training Setup Following BERT (Devlin
et al., 2019), we train ElasticBERT in two
different configurations: ElasticBERTBASE and
ElasticBERTLARGE, which have the same model

5The reader is referred to the original paper for more de-
tails. In brief, the gradients of Lj w.r.t. the parameters of the
i-th layer (i < j) would be properly rescaled.



Models #Params CoLA MNLI-(m/mm) MRPC QNLI QQP RTE SST-2 STS-B Average

BASE Models

BERTBASE 109M 56.5 84.6/84.9 87.6 91.2 89.6 69.0 92.9 89.4 82.9
ALBERTBASE 12M 56.8 84.9/85.6 90.5 91.4 89.2 78.3 92.8 90.7 84.5
RoBERTaBASE 125M 63.6 87.5/87.2 90.8 92.7 90.3 77.5 94.8 90.9 86.1
ElasticBERTBASE 109M 64.3 85.3/85.9 91.0 92.0 90.2 76.5 94.3 90.7 85.6

BERTBASE-6L 67M 44.6 81.4/81.4 84.9 87.4 88.7 65.7 90.9 88.1 79.2
ALBERTBASE-6L 12M 52.4 82.6/82.2 89.0 89.8 88.7 70.4 90.8 89.6 81.7
RoBERTaBASE-6L 82M 44.4 84.2/84.6 87.9 90.5 89.8 60.6 92.1 89.0 80.3
MobileBERT 25M 52.1 83.9/83.5 89.3 91.3 88.9 63.5 91.3 87.2 81.2
TinyBERT-6L 67M 46.3 83.6/83.8 88.7 90.6 89.1 73.6 92.0 89.4 81.9
ElasticBERTBASE-6L 67M 53.7 84.3/84.2 89.7 90.8 89.7 74.0 92.7 90.2 83.3

Test Set Results

TinyBERT-6L 67M 42.5 83.2/82.4 86.2 89.6 79.6 73.0 91.8 85.7 79.3
ElasticBERTBASE-6L 67M 49.1 83.7/83.4 87.3 90.4 79.7 68.7 92.9 86.9 80.3

LARGE Models

BERTLARGE 335M 61.6 86.2/86 90.1 92.2 90.1 72.9 93.5 90.4 84.8
ALBERTLARGE 18M 60.1 86/86.1 90.4 91.6 89.6 83.0 95.2 91.4 85.9
RoBERTaLARGE 355M 66.4 89/89.6 91.6 94.2 90.7 86.6 95.4 92.3 88.4
ElasticBERTLARGE 335M 66.3 88/88.5 92.0 93.6 90.9 83.1 95.3 91.7 87.7

BERTLARGE-12L 184M 42.6 81/81.1 81.6 87.2 89.3 65.7 89.3 88.7 78.5
ALBERTLARGE-12L 18M 59.0 85.3/85.8 90.1 91.4 89.6 76.7 93.3 91.3 84.7
RoBERTaLARGE-12L 204M 62.3 86.3/86.2 89.4 92.3 90.4 71.8 93.5 91.1 84.8
ElasticBERTLARGE-12L 184M 62.1 86.2/86.4 89.5 92.5 90.6 79.1 93.0 91.6 85.7

Test Set Results

RoBERTaLARGE-12L 204M 59.4 86.4/85.2 87.6 91.6 80.4 67.3 94.6 89.5 82.4
ElasticBERTLARGE-12L 184M 57.0 85.4/84.9 87.7 92.3 81.2 71.8 92.9 89.7 82.6

Table 2: ElasticBERT and static baseline performance on GLUE tasks. For MRPC, we report the mean of accuracy
and F1. For STS-B, we report Pearson and Spearman correlation. For CoLA, we report Matthews correlation. For
all other tasks we report accuracy.

sizes with BERTBASE and BERTLARGE, respec-
tively. The parameters of ElasticBERT are ini-
tialized with BERT, and therefore it has the
same vocabulary and tokenizer as BERT. Elas-
ticBERT is pre-trained on ∼160GB uncompressed
English text corpora, which is comprised of En-
glish Wikipedia (12GB), BookCorpus (4GB) (Zhu
et al., 2015), OpenWebText (38GB) (Gokaslan
and Cohen, 2019), and part of the C4 corpus
(110GB) (Raffel et al., 2020). We use Adam op-
timizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.999 to pre-train ElasticBERTBASE and
ElasticBERTLARGE for 125K steps with the batch
size of 4096 and learning rate of 2e-4. Our im-
plementation is based on Huggingface’s Trans-
formers (Wolf et al., 2020) and the Megatron-LM
toolkit (Shoeybi et al., 2019). ElasticBERT is
trained on 64 32G NVIDIA Tesla V100 GPUs.

Downstream Evaluation We evaluate Elas-
ticBERT on the ELUE benchmark, as a static
model and as a dynamic model. As a static

model, we evaluate different layers of Elas-
ticBERT, denoted as ElasticBERT-nL. As a dy-
namic model, we inject and train internal clas-
sifiers in ElasticBERTBASE and adopt two strate-
gies, entropy (Xin et al., 2020) and patience (Zhou
et al., 2020a), to enable early exiting, denoted
as ElasticBERTentropy and ElasticBERTpatience. To
compare with previous work, we also evaluate Elas-
ticBERT on the GLUE benchmark (Wang et al.,
2019b). For static usage, we fine-tune ElasticBERT
and our baselines for 10 epochs using AdamW opti-
mizer (Loshchilov and Hutter, 2019) with learning
rates of {1e-5, 2e-5, 3e-5} and batch size of 32.
For dynamic usage, we train for 5 epochs with the
same optimization setup as static scenario.

Baselines We compare ElasticBERT with three
types of baselines: (1) Directly fine-tuning pre-
trained models and their first n layers. We choose
BERT (Devlin et al., 2019), ALBERT (Lan et al.,
2020) and RoBERTa (Liu et al., 2019) as our base-
lines. For the use of the first n layers, we sim-



Models #Params #FLOPs SST-2 IMDb MRPC STS-B SNLI SciTail Average

BASE Models

BERTBASE 109M 13687M 85.1 93.0 83.1 84.2 90.4 93.2 88.2
ALBERTBASE 12M 14018M 86.6 92.9 87.8 88.3 90.1 93.4 89.9
RoBERTaBASE 125M 13188M 88.3 94.9 88.0 89.6 91.3 92.8 90.8
ElasticBERTBASE 109M 13687M 88.6 93.9 87.9 87.6 91.3 93.8 90.5

BERTBASE-6L 67M 6788M 83.3 91.0 82.6 82.5 88.9 90.7 86.5
ALBERTBASE-6L 12M 7063M 84.7 92.0 85.3 83.5 89.3 92.3 87.9
RoBERTaBASE-6L 82M 6638M 86.8 92.6 86.7 84.5 90.2 91.3 88.7
MobileBERT 25M 3622M 86.5 92.6 85.9 83.4 89.8 93.6 88.6
TinyBERT-6L 67M 6788M 85.3 89.0 84.7 85.0 89.3 90.0 87.2
ElasticBERTBASE-6L 67M 6788M 87.0 92.7 87.3 86.9 90.1 92.5 89.4

LARGE Models

BERTLARGE 335M 47214M 87.9 94.0 85.9 86.7 90.8 93.9 89.9
ALBERTLARGE 18M 49038M 87.7 93.8 88.1 89.3 90.2 93.6 90.5
RoBERTaLARGE 355M 46194M 90.5 95.7 89.9 90.5 91.6 95.8 92.3
ElasticBERTLARGE 335M 47214M 89.8 95.0 89.8 90.9 91.4 95.7 92.1

BERTLARGE-12L 184M 23686M 81.4 90.7 78.6 83.9 89.6 90.3 85.8
ALBERTLARGE-12L 18M 24611M 87.4 93.7 87.1 88.1 90.1 93.7 90.0
RoBERTaLARGE-12L 204M 23174M 89.0 94.3 87.6 89.5 91.3 93.7 90.9
ElasticBERTLARGE-12L 184M 23686M 88.6 94.2 87.7 89.7 91.2 93.8 90.9

Table 3: ElasticBERT and static baseline performance on ELUE task test sets. For MRPC, we report the mean of
accuracy and F1. For STS-B, we report Pearson and Spearman correlation. For all other tasks we report accuracy.
The reported FLOPs is the average over all the datasets.

ply add a linear classifier on top of the truncated
model. (2) Compressed models. Compression tech-
niques such as knowledge distillation are compet-
itive baselines. Here we choose TinyBERT (Jiao
et al., 2020)6 and MobileBERT (Sun et al., 2020b)
as our baselines. (3) Dynamic early exiting mod-
els. To verify the validity as a strong backbone
of dynamic early exiting methods, we also com-
pare ElasticBERTentropy and ElasticBERTpatience
with two representative early exiting models: Dee-
BERT (Xin et al., 2020) and PABEE (Zhou et al.,
2020a), which adopts entropy-based and patience-
based strategies, respectively, for early exiting.

5.2 Evaluating ElasticBERT on GLUE

To verify the effectiveness and the elasticity of
ElasticBERT, we first evaluate ElasticBERT and
our static baselines on the GLUE benchmark. We
evaluate the first 6/12 layers of the BASE models,
and the first 12/24 layers of the LARGE models.
MobileBERT and TinyBERT are also included for
comparison.

Experimental results of ElasticBERT and our
baseline models on GLUE are presented in Ta-
ble 2, from which we find that ElasticBERT outper-
forms BERT and ALBERT with the same number

6Data augmentation in the TinyBERT paper is not used for
fair comparison.

of layers, but is weaker than RoBERTa in the same
configuration. Compared with ElasticBERT that
is trained for 125K steps with batch size of 4K,
RoBERTa is trained for 500K steps with batch size
of 8K, which makes its training sample 8 times
larger than that of ElasticBERT. When using fewer
layers (6 layers of BASE models and 12 layers of
LARGE models), ElasticBERT achieves the best
performance among the static baselines, confirm-
ing its great elasticity.

5.3 Ablation Study

About the Training Strategy ElasticBERT
adopts the gradient equilibrium (GE) to alleviate
the conflict between the losses at different exits.
Here, we compare GE with two other existing train-
ing strategies, two-stage training (Xin et al., 2020)
and weighted training (Zhou et al., 2020a). Two-
stage training is that, first training the top classifier
along with the backbone model, and then freeze
the parameters of the backbone model and train
the injected internal classifiers. By this, two-stage
training maintains the performance of the top classi-
fier. Weighted training is to weight the loss of each
exit according to the corresponding layer, which is

L =

∑L
l=1 l · Ll∑L

l=1 l
. (4)
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Figure 3: Performance-FLOPs trade-offs on ELUE task test sets. For MRPC, we present the mean of accuracy and
F1. Because STS-B is a regression task, for which the entropy-based methods are not applicable, we only evaluate
patience-based methods, i.e., PABEE and ElasticBERTpatience.

(a) SST-2 (b) MRPC

Figure 4: Performance of the ElasticBERT exits at dif-
ferent layers with different training strategies.

Experimental results of ElasticBERT with the
three training strategies are shown in Figure 4. It
can be observed that training with GE strategy per-
forms the best on both SST-2 and MRPC.

About the Grouped Exits As shown in Eq. (3),
we divide the L exits into different groups to
speedup the pre-training. Therefore how to group
these exits needs to be explored. Here we evaluate
four different grouping methods, as described in
Table 4. To keep the overall performance of the
entire model, the exit classifier on the top of the
model is included in each group. According to
the experimental results in Table 4, we choose the
odd/even grouping method for ElasticBERTBASE.
Similarly, our experiments demonstrate that group-
ing 24 exits into G1={1, 4, 7, ..., 22, 24}, G2={2, 5,
8, ..., 23, 24}, and G3={3, 6, 9, ..., 21, 24} works
well for BERTLARGE.

Grouping Accuracy

w/o Grouping 76.7

G1={1, 3, 5, 7, 9, 11, 12}
G2={2, 4, 6, 8, 10, 12} 76.7

G1={1, 4, 7, 10, 12}
G2={2, 5, 8, 11, 12}
G3={3, 6, 9, 12}

75.7

G1={1, 2, 3, 4, 12}
G2={5, 6, 7, 8, 12}
G3={9, 10, 11, 12}

75.5

G1={1, 2, 3, 4, 5, 6, 12}
G2={7, 8, 9, 10, 11, 12} 75.9

Table 4: The average accuracy acorss all the BERT ex-
its on the MNLI dataset with different grouping.

5.4 Evaluating ElasticBERT on ELUE
ElasticBERT and our baselines are also evaluated
on ELUE tasks. For the BASE version of Elas-
ticBERT, BERT, ALBERT, and RoBERTa, we eval-
uate the first 3/4/6/12 layers. For the LARGE ver-
sion of the models, we evaluate the first 6/8/12/24
layers. For dynamic methods, we fine-tune Elas-
ticBERT along with the injected internal classifiers
using the gradient equilibrium (GE) strategy (Li
et al., 2019), and adopt two different early exiting
strategies: entropy-based strategy (Xin et al., 2020)
and patience-based strategy (Zhou et al., 2020a).

Results of Static Models The performance of
ElasticBERT and our baseline models on ELUE



SST-2 IMDb MRPC STS-B SNLI SciTail Average

ElasticBERTBASE 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Static Models

BERTBASE -4.6 -2.2 -5.9 -4.7 -1.5 -3.3 -3.7
ALBERT BASE -2.3 -1.1 -0.3 -2.6 -1.7 -1.5 -1.6
RoBERTa BASE -0.9 -0.1 -2.9 -5.1 -0.7 -3.3 -2.2
TinyBERT-6L -1.7 -3.7 -2.6 -1.6 -0.8 -2.5 -2.2

Dynamic Models

PABEE -1.5 -0.3 -3.2 -2.3 -0.9 -0.6 -1.5
DeeBERT (BERT) -12.3 -14.1 -5.2 - -8.4 -6.4 -
DeeBERT (RoBERTa) -2.3 -4.5 -3.1 - -23.5 -9.9 -
ElasticBERTpatience 0.2 0.1 -1.1 -0.3 0.0 0.2 -0.2
ElasticBERTentropy 0.8 0.9 -0.4 - -0.1 0.7 -

Table 5: ELUE scores calculated using Eq. (1) for static and dynamic baseline models. ’-’ denotes
that the dataset/metric is not applicable to the model. An online leaderboard is publicly available at
http://eluebenchmark.fastnlp.top/.

task test sets is shown in Table 3, where we find that
ElasticBERTBASE and ElasticBERTLARGE outper-
form BERT and ALBERT with the same number of
layers, but are slightly weaker than RoBERTaBASE
and RoBERTaLARGE. Besides, we find that the su-
periority of ElasticBERT over its baselines can be
significant with fewer layers (See Figure 5 for the
results of 3/4 (6/8) layers of the BASE (LARGE)
models).

Results of Dynamic Models We compare
ElasticBERTentropy and ElasticBERTpatience with
two dynamic models: DeeBERT (Xin et al.,
2020) and PABEE (Zhou et al., 2020a). The
performance-FLOPs trade-off of the dynamic mod-
els on ELUE task test sets are shown in Figure 3,
which demonstrates that ElasticBERT can achieve
better performance-FLOPs trade-off.

Evaluating ELUE Scores According to Eq. (1),
we also evaluate the ELUE scores of these base-
lines. As shown in Table 5, the ELUE score of
ElasticBERTBASE is natural to be zero on all the
tasks. Among the other baselines, we find that
ElasticBERTpatience achieves the best ELUE score,
while BERTBASE achieves the worst ELUE score.
In addition, we find that dynamic models perform
better than static models on average.

6 Conclusion and Future Work

In this work, we present ELUE, which is a pub-
lic benchmark and platform for efficient models,
and ElasticBERT, which is a strong baseline (back-
bone) for efficient static (dynamic) models. Both
of the two main contributions are aimed to build
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Figure 5: Comparison of the average performance on
ELUE task test sets of different layers of ElasticBERT
and baselines.

the Pareto front for NLU tasks, such that the po-
sition of existing work can be clearly recognized,
and future work can be easily and fairly measured.

Our future work is mainly in three aspects: (1)
Including more baselines in ELUE, (2) Supporting
FLOPs and parameters evaluation for more frame-
works such as TensorFlow (Abadi et al., 2016), (3)
Supporting diagnostics for submissions, (4) Dy-
namically updating the Pareto front and the corre-
sponding computation of ELUE score.
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A Appendix

A.1 Benchmark Website Details
The ELUE website is built using Vue and Spring
Boot. We use MySQL for data storage and our
private servers to run the scoring script for each
submission.


