
TUGboat, Volume 42 (2021), No. 3 247

Arabic text justification using LuaLATEX and
the DigitalKhatt OpenType variable font

Amine Anane

Abstract
Arabic script is a cursive script where the shape and
width of letters are not fixed, but vary depending
on the context and justification needs. A typesetter
must consider these dynamic properties of letters
to achieve high-quality text comparable to Arabic
calligraphy.

This article presents a proof-of-concept imple-
mentation of Arabic text justification, by varying
letter shapes and widths, as a first step towards such
high-quality Arabic typesetting. It uses LuaLATEX
and the DigitalKhatt OpenType variable font pro-
duced from a METAFONT-based dynamic font.

1 Introduction: Justification in Arabic
Due to the cursive nature of Arabic script, where
the letters are connected, a letter can have several
distinct forms and width depending on its position
in the word and the letters that surround it. For
example, Figure 1 shows fourteen possible forms of
the letter ب

(beh), among which are extensible forms.
Therefore, unlike the Latin script where justifica-

tion is mainly based on the distribution of whitespace,
Arabic calligraphy takes advantage of this dynamic
nature of letters to justify text using three main
techniques, as explained below: kashida extension,
wider form substitution, and ligature composition
and decomposition.

1.1 Kashida extension
The curvilinear stroke that connects letters is called
kashida or tatweel. The width of the kashida is

ب

isolated form
ب

‍

initial form
ب‍

‍

medial form

ب‍

terminal form
ب

‍ح

ب

‍ح‍ ligature

ب

ي

ب

ي‍ ligature

ب

س

ب

‍ followed by س‍

ب

ن

ب

‍ followed by ن‍

ب

ح

ي

ب

ي‍ح‍ ligature
ب‍

س

ب‍

‍ followed by س‍

ب‍

ي

ب‍

ي‍ ligature

ب‍

ر

ب‍

ر‍ ligature

ب

isolated extended form

ب‍

terminal extended form

Figure 1: letter ب

(beh) shapes

variable and can be stretched or compressed to justify
text. Table 1 shows kashida extension examples.

Table 1: Kashida extension

Min width Natural width Max width

ه‍ح ه‍ح

ح

ه‍

ص

ا

ص

ا

ص

ا

د‍ح د‍ح

ح

د‍

وس وس وس

ب

ا‍

ب

ا

ب

ا

1.2 Wider form substitution
Several Arabic letters have extended forms whose
width can vary continuously within an interval. To
stretch a line, a wider form is substituted. Table 2
shows some examples of wider forms.

Table 2: Wider form substitution

Original letter
Wider form

Min width Max width

ب

ب

ب

س س س

ن ن ن

ف ف ف

ك‍ ك‍ ك‍

1.3 Ligature composition/decomposition
Arabic script makes extensive use of ligatures [2].
To stretch a line, an optional ligature can be de-
composed to its constituent letters. Conversely, a
less common ligature can be composed to shrink a
text line. Table 3 shows some examples of ligature
decomposition.

doi.org/10.47397/tb/42-3/tb132anane-variable

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://doi.org/10.47397/tb/42-3/tb132anane-variable

248 TUGboat, Volume 42 (2021), No. 3

Table 3: Ligatures

Ligature
Constituent letters

Natural width Max width

ب

‍ح

ب

‍ح‍

ب

ح

‍حل

ل

‍ح‍

ل

ح

مه

ه

م‍

ه

م‍

To implement justification using the three tech-
niques above, a dynamic font having variable glyph
width and shape can be designed. By applying the
justification rules provided by the font, the justifica-
tion process will determine the width and shape of
the glyphs to stretch or shrink a line of text. A few
previous works [1, 2, 3, 12, 14] have been interested
in Arabic justification using dynamic fonts. Unfortu-
nately, these works still have significant challenges to
overcome and they do not appear to be any further
along in years.

On the other hand, most standard font for-
mats, such as Apple Advanced Typography (AAT),
Graphite and OpenType, provide mechanisms to
control justification of text lines. However, Arabic
justification has not benefited much from these so-
lutions. For instance, the idea of using a variable
font to stretch glyphs to do justification dates from
TrueType GX, currently specified in AAT by the
means of the just table. Unfortunately, this feature
cannot be used since it is not supported by the Apple
CoreText layout engine.

So, the approach adopted in this project is to
start from the widely used OpenType standard and
extend it to support Arabic justification using dy-
namic fonts, while drawing inspiration from existing
solutions.

This article presents a proof-of-concept imple-
mentation of Arabic text justification by applying
the three techniques above, using LuaLATEX and the
DigitalKhatt OpenType variable font. Section 2 in-
troduces METAFONT and the VisualMETAFONT ed-
itor, used to design the DigitalKhatt font. Section 3
presents the OpenType layout engine, the justifica-
tion algorithm and rules that have been developed.
Section 4 shows an overview of OpenType variable
fonts and explains how such a font is generated from

the METAFONT. Section 5 gives the results obtained
using LuaLATEX and compares them with a handwrit-
ten Quranic text. Section 6 concludes with future
work needed to further improve the results.

2 METAFONT

To design the glyph of an extensible letter, a function
must be defined. This function produces shapes
representing the extensible letter at different widths.
At runtime, the justification process will determine
the appropriate function arguments to justify text
lines by stretching or shrinking some glyphs.

To design such parametric glyphs, the META-
FONT [11] language1 is used, which was specifically
designed to deal with parametric fonts. Here are
some of the advantages of METAFONT.

• It supports macros to extend the language with
new syntax and operations.

• It supports deducing smooth cubic Bézier curves
from high-level constructs such as direction, ten-
sion, curl, without having to specify each control
point of the cubic curve.

• It supports a declarative style using linear equa-
tions.

For example, from the following METAFONT code
draw (0,0) .. (10,0) .. cycle

the following curve is generated: . METAFONT

deduces the control points in such a way to have a
smooth curve as close as possible to a circle. This
default behavior can be changed by giving the tension
or direction at some points. The following code

draw (0,0) .. tension 1.5 ..
(10,0) .. tension 1.5 .. cycle;

applies some tension to the end points to obtain an
ellipse-like shape: . This feature of automatically
calculating the control points can be useful to define
an extensible kashida. As an example to illustrate
this, the following code

draw (0,0){dir -56}
.. {dir 30} (50 + extension,0);

produces the following shapes by setting 0, 50 and
100 to the variable extension. METAFONT has au-
tomatically shifted the control points linearly with
respect to the variable extension, allowing it to
keep the same curve shape.

1 Specifically, the METAPOST program [7, 8, 9] was used,
an altered version of METAFONT which produces vector
graphic commands instead of raster images. The term ‘META-
FONT’ is kept since it is used for font and meta-font design
(i.e., functions generating functions).

Amine Anane

TUGboat, Volume 42 (2021), No. 3 249

In addition to the kashida having variable width,
it can have several shapes depending on the connect-
ing letters. To simplify the design of the font, a
step-by-step approach has been adopted. As a first
step, a generic stretchable kashida has been used to
join most of the connecting letters. So a functional
parametric font can be obtained as quickly as pos-
sible, from which justification experimentation can
be started. Subsequently a gradual refinement of
the kashidas will be undertaken, as mentioned in
section 6.

To design such a generic kashida a new op-
erator join is added. The following METAFONT

code uses this new operator to define the glyph
behshape.medi.

defchar(behshape.medi,-1,-1,-1,-1);
%%beginparams
z1 = (219.986,47.4628);
z3 = (134.906,31.769);
%%beginverbatim
leftExtRatio := 8;
rightExtRatio := 10;
righttatweel_const := (120,-y1);
z2 = z1 + (penwidth,0) rotated 70;
z4 = z3 + (penwidth,0) rotated 83;
%%beginpaths
fill (181.269,99.7718) {dir -116.055} .. z3

join z4 .. tension 0.932615 and 2.98102 ..
(182.631,170.321) .. tension 1.7264 and
1.23542 .. {right}(195.366,180.062) ..
tension 1.7264 and 1 .. z2 join z1 .. {curl
1} cycle;

%%endpaths
enddefchar;

The join operator can accept arguments to have
more control over the form of the kashida. For ex-
ample, the leftExtRatio and rightExtRatio vari-
ables above influence the curvature of the left and
right kashidas. The defchar command generates
the “glyph function”

〈glyph name〉_(leftExt,rightExt) (1)
which produces the glyph shape as a function of the
argument values provided. Here is the result of the
function behshape.medi_ called with different argu-
ments to stretch or shrink the kashidas:

. In addition, the join operator defines the
left and right anchors used to specify the OpenType
cursive attachment connections between glyphs.

Another advantage of METAFONT is the possibil-
ity of using elliptical and polygonal pens to describe
curves. However, this feature was not used, in or-
der to easily generate from the METAFONT font an
OpenType version which can be used elsewhere. So
all the glyph shapes are described using only cubic
curve outlines.

On the other hand, a major drawback of META-
FONT is that a font designer has to write code to
design a glyph. To validate that the glyph is correct,
it must be visualized by executing the code and
generating the glyph image with some labeling points
to help debug the code and fine-tune the result. This
process repeats until getting the desired result.

This fine-tuning process becomes more tedious if
there are several parameters, since it is important to
see how the glyph behaves by changing the parameter
values. Also, if the font design is based on tracing of
handwritten letters, as it is the case in this project,
the task becomes even slower.

So, a visual graphic editor was developed to
overcome this limitation, called VisualMETAFONT.
This editor is based on Qt, a C++ software develop-
ment framework. VisualMETAFONT uses the mplib
library [9], a project supported by the LuaTEX team
in order to turn the METAPOST interpreter into a
system library that can be used by other applications.
It is also based on HarfBuzz, a text-shaping engine
supporting OpenType, AAT, and Graphite used in
many applications and devices such as LuaLATEX,
Android, Chrome, Firefox, X ETEX and Qt.

Figure 2 shows the VisualMETAFONT window
for glyph design. It is composed of three panes. The
left pane is the METAFONT code of a single glyph.
Each glyph starts with a beginchar or defchar com-
mand which provides its name, Unicode code point
and glyph dimensions, if applicable. The code for
a glyph can have five sections. The first section is
a path to an image file that will be imported, to
be traced around. The second section defines the
parameters that will be controlled graphically. The
third section is free METAFONT code to add other
variables and define the relationships between them.
The fourth section defines the paths that will be
manipulated graphically. The fifth and last section
is free METAFONT code. Therefore, there is no limit
on what can be used in the METAFONT code. On the
other hand, there are limits to what can be managed
graphically, although features can be added to the
GUI as needed.

The outline resulting from the execution of the
METAFONT code is shown in the middle pane. The
points that can be manipulated graphically are shown
with different colors depending on their functions

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

250 TUGboat, Volume 42 (2021), No. 3

Figure 2: VisualMETAFONT glyph window

(i.e., inline point, left and right control points, pa-
rameter of type point). Each change in the position
of one of these points generates new METAFONT code
which is reflected immediately in the visual pane.2

The right pane displays the glyph parameters
which can also be controlled graphically using slider
and spin widgets, especially for numeric parameters
without a graphic representation in the middle pane.
For instance, by sliding the widgets for leftTatweel
and rightTatweel, the user can view how the glyph
width and shape behave for different values.

Once the dynamic glyphs are designed, a font de-
signer needs to define the OpenType and justification
rules that govern how a Unicode-encoded text will
be presented using these glyphs. The next section
presents these rules and the algorithms behind them.

3 Justification
This section starts by introducing the OpenType
layout engine and its mechanism of lookups and
rules. Next, the justification process is presented; it
inherits the same notions of lookups and rules.

The OpenType layout engine takes as input an
ordered list of lookups given a language and a set
of features. Each lookup contains an ordered list
of rules having the same type of action, which is

2 Due to the speed of METAFONT and contemporary ma-
chines, the visual design is very smooth and no slowness or
lagging is experienced.

either glyph substitution or glyph positioning. A
substitution action replaces one sequence of glyphs
by another. It is used for different purposes such as
composition, decomposition, ligature, and alternates.
A positioning action alters the advance width and
offset position of a glyph. It is used for kerning,
cursive attachment, mark to base position or mark
to mark positioning. An OpenType rule can be
considered as a simple form of pattern matching
with the following general form:

backtrack input lookahead→ action

If the input, backtrack and lookahead sequences
match the glyph string at the current glyph then
the layout engine applies the action of the rule to
the input sequence and advances the current glyph
to the glyph after the input sequence. The layout
engine does the substitution lookups first, then the
positioning lookups, as shown in Algorithm 1.

The same principle of lookups and rules is used
for justification. Indeed, by applying ligature compo-
sitions and decomposition, glyph alternates, kerning,
and cursive attachment it is possible to shrink or
extend a line until desired width is achieved. This
technique of justification has been used in the Orien-
tal TEX Project [6].

The current implementation uses the same idea.
Two sets of steps can be defined: one used to shrink
text lines and one used to stretch text lines. Each
step contains a set of lookups that will be applied in

Amine Anane

TUGboat, Volume 42 (2021), No. 3 251

Algorithm 1: OpenType layout algorithm
input : Unicode text
output : List of glyph id, advance widths,

offset positions
glyphRun ← map Unicode text to glyph id;
foreach stage of {substitution, positioning} do

foreach lookup of stage’s lookups do
foreach currentGlyph in glyphRun do

foreach rule of lookup do
if rule matches at currentGlyph then

apply rule’s action to input sequence;
currentGlyph ← glyph after input seq;
break;

end
end

end
end

end

the order given until reaching the desired line width.
Listing 1 shows an example justification table, which
will be discussed in section 5.

Listing 1: Justification table
table(just) {
stretch {
lookup expa.ligadecomp;
lookup expa.kafalternate;
lookup expa.alternates;
lookup expa.seensad;
lookup expa.taamar_haa_dal;
lookup expa.alef_tah_lam_kaf;
lookup expa.behshape_yeh_reh;
lookup expa.waw_ain_qaf_fa;
lookup expa.others_fina;

}
shrink {
lookup shr1.ligatures;
lookup expa.shrinkspace;
lookup shr1.kaf;
lookup expa.shrink;
lookup shr1.kern;
lookup shr1.dalcursive;

} };

To take into account the dynamic aspect of the
glyphs, a new lookup format is added. The idea is
to assign for each expandable glyph two attributes
defining its ability to stretch and to shrink, as with
TEX glue. (As future work, it would be interesting
to study the possibility of including these attributes
in breaking of paragraphs into lines by TEX’s line-
breaking algorithm.) Listing 2 shows an example of

Listing 2: Justification lookup
lookup expa.taamar_haa_dal {
feature sch1;
lookupflag IgnoreMarks;
lookup expa.haa.l1 {
sub behshape.init expfactors 0 5 0 0;
sub behshape.medi expfactors 0 5 0 0;
...
sub heh.fina expfactors 0 0 0 2;
sub dal.fina expfactors 0 0 0 2;

} expa.haa.l1;
...
sub @haslefttatweel'lookup expa.haa.l1

 [heh.fina dal.fina]'lookup expa.haa.l1;
} expa.taamar_haa_dal;

this new format of justification lookup. The class
@haslefttatweel in this example contains all the
glyphs having an extensible kashida. If one of these
glyphs is followed by a heh.fina or dal.fina then
the justification attributes defined by the lookup
expa.haa.l1 are used.

So, depending on the context, the lookup speci-
fies which glyph will be substituted by another, if any,
in addition to the maximum desired stretch or shrink
for the left and right kashidas. For example, Listing 2
specifies that behshape.init and behshape.medi
can stretch by an argument value of leftExt that
cannot exceed 5 and heh.fina and dal.fina can
stretch by an argument value of rightExt that can-
not exceed 2.

The justification proceeds in two phases. The
first phase constitutes the execution of the lookup,
as given by Algorithm 1. The result of this execution
is the set of glyphs to be substituted, including their
extension attributes. The second phase calculates
the stretch/shrink values and applies them to the
glyph string, after substituting the affected glyphs.

Even though there are different justification tech-
niques, as given in section 1, from the point of view
of the justification algorithm all these techniques
constitute substitutions. Indeed, the kashida tech-
nique is a special case of justification by alternates,
which is a substitution of one glyph by another —
only in this case it may or may not be the same
glyph. The same is true for ligature composition
and decomposition, which is a substitution of one
sequence of glyphs with another, and thus represents
a more general case than the two previous techniques.
The algorithm takes into account this general case.

Here is the problem stated more formally. As
the result of the first phase, we will have m sequences

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

252 TUGboat, Volume 42 (2021), No. 3

Sk to be substituted, where each sequence contains
one or more glyphs. Let ∆wi be the amount that
will be added to, or subtracted from, the width of
the line, if the glyph i is substituted, and let ei its
maximum stretchability or shrinkability. Let ∆Wk =∑

i∈Sk
∆wi. Let ∆d the amount by which we want

to stretch or shrink a text line. So the problem of
the second phase is to find the set of sequences R
and the extensibility ratio r such as∑

k∈R

(∆Wk +
∑
i∈Sk

ei ∗ r) ≤ ∆d

If we want to find the solution which maximizes
the above sum in order to minimize the gap ∆d of
the line, the problem becomes NP-hard. Indeed, if
we ignore the term

∑
i∈Sk

ei ∗ r from the inequality
above, the problem becomes an optimization problem
of the subset sum problem, which is NP-hard.

We can think of some heuristics to solve this
problem, or we can use an exact algorithm, when
there are only a few substitutions to apply. In addi-
tion to minimizing the gap ∆d, other criteria can be
considered. For example, we may prefer to distribute
the substitutions throughout the line rather than
being concentrated at the beginning or at the end of
the line. A deeper study of the rules of justification
will dictate the way forward.

Currently, the algorithm implemented iterates
over the sequences and chooses a sequence if its
gap ∆Wk is less than the remaining line gap ∆d,
otherwise it skips to the next sequence. We can
consider ordering the sequences such that the glyphs
to be justified are at the left or the right of the line
or distributed over the entire line. Algorithm 2 gives
the steps in more detail.

For Algorithm 2 to work, it is necessary that the
width difference ∆wi for each glyph i be linear in its
arguments leftExt and rightExt, in the intervals
between their current values and their maximum
values specified by the justification rule.

4 OpenType variable fonts
Variable fonts originated in Apple’s TrueType GX
and was adapted by OpenType in 2016. As variable
fonts are used more and more, it is interesting to show
that the justification technique already implemented
with METAFONT also works for variable fonts.

Initially, the goal of using variable fonts was to
allow continuous variations along design axis such as
weight, width, slant, italic and optical size. An axis
has a minimum, maximum and default values. For a
given axis value, the layout engine use interpolation
over regions of the variation space to calculate vari-
able quantities such as glyph outline points, anchor
position, and glyph advance width.

Algorithm 2: Justification lookup algorithm
input :m sequences Sk and ∆d
output : a set of sequences R and a ratio r
totExpansion← 0;
R←− ∅;
for k ← 1 to m do

if ∆Wk ≤ ∆d then
∆d = ∆d−∆Wk;
totExpansion← totExpansion +

∑
i∈Sk

ei;
R←− R+ {Sk};

end
end
if totExpansion > ∆d then
r ← ∆d/totExpansion;
∆d← 0;

else
r ← 1;
∆d← ∆d− totExpansion;

end

The same idea can be applied to glyph extension.
In our case, two extension axes are defined, lext and
rext corresponding to the leftExt and rightExt
parameters. Each axis has a default value 0. The
minimum and maximum values of the axes are chosen
arbitrarily, and each glyph can decide how the axes’
values are mapped to the argument values of the
corresponding parameters.

To simplify the explanation below, we will as-
sume that the minimum value of an axis is the mini-
mum possible argument value of its corresponding
parameter, and likewise for the maximum. A map-
ping that only requires two regions by glyph quantity
is to return the minimum value of a quantity when
the minimum value of the axes are given, and like-
wise for the maximum. However, this mapping can
make the width difference ∆wi of the previous sec-
tion non-linear in the interval containing 0 (i.e., the
functions are discontinuous at 0) and therefore the
justification rules should be adapted to this situation,
and probably also Algorithm 2.

So, to get linear mapping functions all along
the axis, the minimum values are returned when
the minimum argument value of the glyph is given,
and likewise for the maximum. For any axis value
less than the minimum argument value, its minimum
values are returned, and conversely for the maximum.
This second mapping which preserves linearity was
used to generate the OpenType variable font. So
each glyph is represented with a maximum of six
regions for each axis, three for the negative axis and
three for the positive axis.

Amine Anane

TUGboat, Volume 42 (2021), No. 3 253

lext

Width

−20 −10 0 10 20−4

500

1000

230

(a) Variation regions

lext

Width

−20 −10 0 10 20−4

500

1000

230

(b) Resulting width function

Figure 3: Variation example

As an example, suppose that the minimum value
for the lext axis is −20 and the maximum value is 20.
Further suppose we have a glyph with a natural width
of 450. Its maximum width is 1000, obtained when
the argument value is 10, and the minimum width
is 230, obtained when the argument value is −4.
Figure 3a shows the 6 regions that should be defined
for this glyph. Since the results of the regions in the
same segment add up, we get the resulting width
function in Figure 3b which becomes constant when
it reaches its maximum or minimum value.

At this point, the following question may arise:
What is the advantage of using METAFONT if vari-
able fonts can meet the need of a dynamic font to ap-
ply justification? As highlighted in section 2, META-
FONT remains an excellent tool to design such a
variable font, thanks to its power and flexibility. In
addition, if METAFONT could be used during the
layout process then its full power can be harnessed.
Nevertheless, designing a dynamic glyph using in-
terpolation can be easier than trying to adjust the
direction and tension of the curve points, especially
when there are multiple points to define. Fortunately,
METAFONT can design a glyph as an interpolation
function between two shapes. Also, it is often not
possible to find the glyph with the desired maximum
width. In this case, extrapolation can be used to
deduce the maximum shape.

5 Experimental results
A prototype implementation was presented at the
TUG 2019 meeting. The implementation is a patched
version of HarfBuzz and mplib and accepts as in-
put a METAFONT font. That implementation was
compiled to WebAssembly and a demonstration was
published at www.digitalkhatt.org.

This section presents the result of a prototype
implementation based on LuaLATEX which uses as
input the DigitalKhatt OpenType variable font pre-
sented in the previous section. All the examples
presented here are compiled with this patched ver-
sion of LuaLATEX.

LuaLATEX supports OpenType fonts through the
luaotfload package, which is an adaptation of Con-
TEXt modules. This package has three OpenType
processing modes: base, node and harf. The base
mode supports only OpenType features that can
be mapped to traditional TEX ligature and kerning
mechanisms, and the node mode uses the OpenType
layout engine implemented in ConTEXt.

The harf mode [10] uses the HarfBuzz library
linked in LuaHBTEX. Since HarfBuzz is already part
of LuaHBTEX, the integration of the justification
algorithm becomes much easier. Indeed, the justifi-
cation algorithm is patched in HarfBuzz and linked
with LuaTEX to generate a patched version of LuaHB-
TEX. The Lua interface to the HarfBuzz engine is
also modified to include the new functionality.

Unlike luaotfload’s node mode, harf mode
does not support OpenType variable fonts. So the
node modules supporting variable fonts are adapted
to harf mode. In the node mode, variable glyphs are
treated as LuaTEX virtual characters with special
commands. During PDF generation, these commands
are inserted each time the character is referenced,
potentially leading to large file sizes. To remedy this,
the virtual characters are converted to real characters
of Type 3 fonts, created dynamically during PDF
generation. This conversion also has the advantage
of treating glyphs like characters, thus enabling PDF
text functionality.

As a case study, the justification technique pro-
posed by Microsoft to extend CSS2 and implemented
in Internet Explorer (IE) is adapted here using only
justification rules and therefore shows that the justi-
fication algorithm is general enough to support mul-
tiple justification scenarios.3 Here is a description of
the technique, as specified in [13].

1. Find the priority of the connecting opportunities
in each word.

3 This technique has been abandoned and to date there is
no new CSS proposal for Arabic justification.

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://www.digitalkhatt.org

254 TUGboat, Volume 42 (2021), No. 3

2. Add expansion at the highest priority connection
opportunity.

3. If more than one connection opportunity has the
same highest value, use the opportunity closest
to the end of the word.

Table 4 defines the priority for connection opportuni-
ties and where expansion occurs. Since the algorithm
deals with automatic justification, priority 1 for man-
ual insertion of the kashida is ignored.

The IE implementation requires one kashida
per word. To simplify the justification rules, this
constraint is reduced to one kashida per module (i.e.,
cluster of connecting letters). IE also uses a CSS
attribute kashida-space which defines the amount
of justification given to kashidas in ratio to spaces.
In our case, the amount of stretch is specified by the
justification rules. When there is no more stretching
possible, spaces will be used.

The CSS specification deals only with kashidas
and does not mention the other justification tech-
niques such as glyph alternates and ligature decom-
position. In this case study, these techniques are
added according to the priorities specified in the
justification table of Listing 1. Optional ligature
decomposition has the highest priority, followed by
Kaf alternate, then by the other alternates.

Afterwards, kashida justification rules are de-
fined according to the priorities presented in Table 4.
These rules consider that the glyphs with a given
priority participate in the justification process only
after glyphs with higher priorities have exhausted
their maximum stretchability or shrinkability. The
following example compares the IE result (top) to
the LuaLATEX result (bottom), using the Times New
Roman font after applying kashida justification. The
line is stretched about 1.4 times its natural width.

إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

IE justifies text by inserting flat kashidas un-
like the curvilinear stretching of the current solu-
tion, which applies kashidas by substituting a wider
glyph. Figure 4 shows how the text line stretches
and shrinks, changing the line width by 5pt each
time. Line 6 is set to the natural width of the text
which gives a non-justified text. So the first five
lines correspond to the shrinking case. Lines 5 and
4 are shrunk by decreasing the space between words
due to the lookup expa.shrinkspace. Lines 3 and
2 shrink kashidas due to the lookup expa.shrink.
The result of the shrink is similar to that obtained
by using the pdf/LuaTEX font expansion feature. In
this case, however, the expansion factor is a continu-

1 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

2 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

3 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

4 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

5 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

6 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

7 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

8 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

9 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

10 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

11 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

12 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

13 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

14 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

15 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

16 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

17 إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

إِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ك

َ

ف

َ

ر

ُ

او

۟

س

َ

و

َ

آ

ء

ٌ

ع

َ

ل

َ

ي

ْ

ه

ِ

م

ْ

ء

َ

أَ

ن

ذ

َ

ر

ْ

ت

َ

ه

ُ

م

ْ

أَ

م

ْ

ل

َ

م

ْ

ت

ُ

ن

ذ

ِ

ر

ْ

ه

ُ

م

ْ

Figure 4: Continuous expansion

ous value whose limit can depend on the context and
the priority level. Line 1 uses in addition the lookup
shr1.dalcursive to decrease the space before ي

ن

َ in
the second word.

Line 7 shows two types of justifications. The
first is the decomposition of the ligature ه

ُ

م

ْ in the
last word, and the second is the kashida stretching of
the letter seen in س

َ

و

َ

آ

ء

ٌ , having priority 2 in Table 4.
Line 8 uses the alternate wider glyph َّن of the letter
noon ن

ّ

َ

of the first word. However, the previous letter
س

َ

‍ is no longer stretched. This is because, in line 7,
there is not enough space to accommodate the wider
ن

ّ

َ , while in line 8 there is enough space, and since
the alternates have priority over kashidas, the wider
ن

ّ

َ is chosen. In line 9, the wider alternate of letter
kafَك‍ is used. Since it has priority overَّن , the wider
noon َّن has shrunk a little. At line 10, the second
alternate ن‍

ّ

َ of the second word is substituted. From
line 10 to line 13, the widths of ن‍

ّ

َ and َّن increase
continuously until they reach their limits; at this
moment, the stretching of the letter س

َ

‍ comes into
play again. At line 14 starts the stretching of ن‍

ذ

َ

and
ن

ذ

َ

, of priority 3, until reaching their limits at line 18
where begins the stretching of kashidas of priority 7,
which continues to the last line 19.

Amine Anane

TUGboat, Volume 42 (2021), No. 3 255

Table 4: Priority for kashida opportunities in CSS/IE proposal

Pri Glyph Condition Kashida location
1 User-inserted Kashida The user entered a Kashida

in a position.
After the user inserted kashida

2 Seen, Sad Connecting to the next
character (initial or
medial form).

After the character.

3 Taa Marbutah, Haa, Dal Connecting to previous
character.

Before the final form of these
characters.

4 Alef, Tah, Lam, Kaf, Gaf Connecting to previous
character.

Before the final form of these
characters.

5 Ra, Ya, Alef Maqsurah Connected to medial Baa Before preceding medial Baa
6 Waw, Ain, Qaf, Fa Connecting to previous

character.
Before the final form of these
characters.

7 Other connecting characters Connecting to previous
character.

Before the final form of these
characters.

Figure 5 shows an example which compares the
justification result of the current solution with the
same handwritten text from which the font was de-
signed. In the second line the wider alternates are
not distributed evenly. For instance, the final noon
ن of the second word has not been substituted by
a wider noon ,ن unlike the other two letters noons.
Instead, there is some stretching before the final Reh

ر‍ of the third and fourth words which has not been
considered among the justification cases of Table 4.

ٱ

ل

ت

ّ

َ

ٰ

ٓ

ئِ

ب

ُ

نو

َ

ٱ

ل

ْ

ع

َ

ٰ

ب

ِ

د

ُ

و

ن

َ

ٱ

ل

ْ

ح

َ

ٰ

م

ِ

د

ُ

و

ن

َ

ٱ

ل

س

ّ

َ

ٰ

ٓ

ئِ

ح

ُ

نو

َ

ٱ

رل

ّ

َ

ٰ

ك

ِ

ع

ُ

نو

َ

ٱ

ل

س

ّ

َ

ٰ

ج

ِ

د

ُ

و

ن

َ

ٱ

ل

ْ

أ

ٓ

م

ِ

ر

ُ

و

ن

َ

ب

ِ

ٱ

ل

ْ

م

َ

ع

ْ

ر

ُ

فو

ِ

(a) justified text using interword space

ٱ

ل

ت

ّ

َ

ٰ

ٓ

ئِ

ب

ُ

نو

َ

ٱ

ل

ْ

ع

َ

ٰ

ب

ِ

د

ُ

نو

َ

ٱ

ل

ْ

ح

َ

ٰ

م

ِ

د

ُ

نو

َ

ٱ

ل

س

ّ

َ

ٰ

ٓ

ئِ

ح

ُ

نو

َ

ٱ

رل

ّ

َ

ٰ

ك

ِ

ع

ُ

نو

َ

ٱ

ل

س

ّ

َ

ٰ

ج

ِ

د

ُ

نو

َ

ٱ

ل

ْ

أ

ٓ

م

ِ

ر

ُ

نو

َ

ب

ِ

ٱ

ل

ْ

م

َ

ع

ْ

ر

ُ

فو

ِ

(b) justified text using letter stretching

(c) handwritten text

Figure 5: Comparison with handwritten text

Figure 6 shows another example illustrating the
difference between the handwritten text and Lua-
LATEX.

So far, all the examples presented are typeset
in TEX’s restricted horizontal mode using \hbox.
Figure 7a shows an example of justified text using
the current technique after TEX breaks paragraph
into lines. Figure 7b shows the same text not justi-
fied. Some kashidas remain to be improved; however,
this justification technique based on the continuous
extension of letters conforms to Arabic calligraphy
principles, allowing for better quality of Arabic text.

6 Future work
This article has presented a proof-of-concept imple-
mentation of Arabic justification based on letter ex-
tension techniques used in Arabic calligraphy, using
LuaLATEX and the DigitalKhatt variable font, which
has achieved very promising results. This section
presents some future work in the short and medium-
term to continue the journey towards a high quality
Arabic typesetter.

As a first step it is important to do more analy-
sis and experiments of the different calligraphic rules
used for Arabic justification to answer some impor-
tant questions, such as: Which justification approach
is preferable over another and in what context? If
there are many justification choices with same pref-
erence, how should the space be distributed among
them? Some works [2, 4, 6] have studied these rules
and it would be interesting to implement them and
compare them with the handwritten text.

Secondly, the DigitalKhatt font needs to be im-
proved, especially at the kashida level. For the mo-
ment, each connecting glyph starts and/or finishes at

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

256 TUGboat, Volume 42 (2021), No. 3

و۞

َ

ل

َ

و

ْ

ر

َ

ح

ِ

م

ْ

ن

َ

ٰ

ه

ُ

م

ْ

و

َ

ك

َ

ش

َ

ف

ْ

ن

َ

ا

م

َ

ا

ب

ِ

ه

ِ

مم

ّ

ِ

ضن

ُ

ر

ّ

ࣲ

ل

ّ

َ

ل

َ

ج

ّ

ُ

و

ا

۟

ف

ِ

طي

ُ

غ

ْ

ي

َ

ٰ

ن

ِ

ه

ِ

م

ْ

ي

َ

ع

ْ

م

َ

ه

ُ

نو

َ

و٧٥

َ

ل

َ

ق

َ

د

ْ

أَ

خ

َ

ذ

ْ

ن

َ

ٰ

ه

ُ

بم

ِ

ٱ

ل

ْ

ع

َ

ذ

َ

با

ِ

ف

َ

م

َ

ٱا

س

ْ

ت

َ

ك

َ

نا

ُ

و

ا

۟

ل

ِ

ر

َ

ب

ّ

ِ

ه

ِ

م

ْ

و

َ

م

َ

يا

َ

ت

َ

ض

َ

ر

ّ

َ

ع

ُ

نو

َ

ح٧٦

َ

ت

ّ

َ

ى

ٰ

ٓ

إِ

ذ

َ

ا

ف

َ

ت

َ

ح

ْ

ن

َ

ا

ع

َ

ل

َ

ي

ْ

ه

ِ

بم

َ

با

ࣰ

ذا

َ

عا

َ

ذ

َ

با

ࣲ

ش

َ

د

ِ

ي

د

ٍ

إِ

ذ

َ

ها

ُ

م

ْ

ف

ِ

ي

ه

ِ

م

ُ

ب

ْ

ل

ِ

س

ُ

نو

َ

و٧٧

َ

ه

ُ

و

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ٓ

أَ

ن

ش

َ

أَ

ل

َ

ك

ُ

م

ُ

ٱ

ل

س

ّ

َ

م

ْ

ع

َ

و

َ

ٱ

ل

ْ

أَ

ب

ْ

ص

َ

ٰ

ر

َ

و

َ

ٱ

ل

ْ

أَ

ف

ْ

ـِٔ

د

َ

ة

َ

ۚ

ق

َ

ل

ِ

ي

ل

ࣰ

ا

م

ّ

َ

ا

ت

َ

ش

ْ

ك

ُ

ر

ُ

و

ن

َ

و٧٨

َ

ه

ُ

و

َ

ٱ

ل

ّ

َ

ذ

ِ

ذي

َ

ر

َ

أَ

ك

ُ

م

ْ

ف

ِ

ي

ٱ

ل

ْ

أَ

ر

ْ

ض

ِ

و

َ

إِ

ل

َ

ي

ْ

ه

ِ

ت

ُ

ح

ْ

ش

َ

ر

ُ

نو

َ

و٧٩

َ

ه

ُ

و

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ي

ُ

ح

ْ

ي

ِ

وۦ

َ

ي

ُ

م

ِ

ي

ت

ُ

و

َ

ل

َ

ه

ُ

ٱ

خ

ْ

ت

ِ

ل

َ

ٰ

ف

ُ

ٱ

ل

ّ

َ

ي

ْ

ل

ِ

و

َ

ٱ

ل

ن

ّ

َ

ه

َ

را

ِ

ۚ

أَ

ف

َ

ل

َ

ا

ت

َ

ع

ْ

ق

ِ

ل

ُ

نو

َ

ب٨٠

َ

ل

ْ

ق

َ

لا

ُ

و

ا

۟

م

ِ

ث

ْ

ل

َ

م

َ

قا

َ

لا

َ

ٱ

ل

ْ

أَ

و

ّ

َ

ل

ُ

نو

َ

ق٨١

َ

لا

ُ

و

ٓ

ا

۟

أَ

ء

ِ

ذ

َ

ما

ِ

ت

ْ

ن

َ

وا

َ

ك

ُ

ن

ّ

َ

تا

ُ

ر

َ

ا

ب

ࣰ

وا

َ

ع

ِ

ظ

َ

ٰ

م

ً

ا

أَ

ء

ِ

ن

ّ

َ

ا

ل

َ

م

َ

ب

ْ

ع

ُ

ثو

ُ

نو

َ

ل٨٢

َ

ق

َ

د

ْ

و

ُ

ع

ِ

د

ْ

ن

َ

ا

ن

َ

ح

ْ

ن

ُ

و

َ

ء

َ

با

َ

آ

ؤُ

ن

َ

ها

َ

ٰ

ذ

َ

ا

م

ِ

قن

َ

ب

ْ

ل

ُ

إِ

ن

ْ

ه

َ

ٰ

ذ

َ

آ

إِ

ل

ّ

َ

آ

أَ

س

َ

ٰ

ط

ِ

ي

ر

ُ

ٱ

ل

ْ

أَ

و

ّ

َ

ل

ِ

ي

ن

َ

ق٨٣

ُ

لل

ّ

ِ

م

َ

ن

ِ

ٱ

ل

ْ

أَ

ر

ْ

ض

ُ

و

َ

م

َ

ن

ف

ِ

ي

ه

َ

آ

إِ

ن

ك

ُ

ن

ت

ُ

م

ْ

ت

َ

ع

ْ

ل

َ

م

ُ

نو

َ

٨٤

س

َ

ي

َ

ق

ُ

لو

ُ

نو

َ

ل

ِ

ل

ّ

َ

ه

ِ

ۚ

ق

ُ

ل

ْ

أَ

ف

َ

ل

َ

ا

ت

َ

ذ

َ

ك

ّ

َ

ر

ُ

و

ن

َ

ق٨٥

ُ

ل

ْ

م

َ

رن

ّ

َ

ب

ّ

ُ

ٱ

ل

س

ّ

َ

م

َ

ٰ

و

َ

تٰ

ِ

ٱ

ل

س

ّ

َ

ب

ْ

ع

ِ

و

َ

ر

َ

ب

ّ

ُ

ٱ

ل

ْ

ع

َ

ر

ْ

ش

ِ

ٱ

ل

ْ

ع

َ

ظ

ِ

ي

م

ِ

٨٦

س

َ

ي

َ

ق

ُ

لو

ُ

نو

َ

ل

ِ

ل

ّ

َ

ه

ِ

ۚ

ق

ُ

ل

ْ

أَ

ف

َ

ل

َ

ا

ت

َ

ت

ّ

َ

ق

ُ

نو

َ

ق٨٧

ُ

ل

ْ

م

َ

ن

ۢ

ب

ِ

ي

َ

د

ِ

ه

ِ

مۦ

َ

ل

َ

ك

ُ

تو

ُ

ك

ُ

ل

ّ

ِ

ش

َ

ي

ْ

ء

ࣲ

و

َ

ه

ُ

و

َ

ي

ُ

ج

ِ

ي

ر

ُ

و

َ

ل

َ

ا

ي

ُ

ج

َ

را

ُ

ع

َ

ل

َ

ي

ْ

ه

ِ

إِ

ن

ك

ُ

ن

ت

ُ

م

ْ

ت

َ

ع

ْ

ل

َ

م

ُ

نو

َ

٨٨

س

َ

ي

َ

ق

ُ

لو

ُ

نو

َ

ل

ِ

ل

ّ

َ

ه

ِ

ۚ

ق

ُ

ل

ْ

ف

َ

أَ

ن

ّ

َ

ى

ٰ

ت

ُ

س

ْ

ح

َ

ر

ُ

و

ن

َ

٨٩

(a) LuaLATEX (b) Page 347 of Madina Mushaf

Figure 6: Difference between LuaLATEX and handwritten text

the minimum of the kashida. It is up to the justifica-
tion rule to specify how much width the left curve of
the kashida has and how much width the right curve
has. A better approach would be to design connect-
ing letters as a single stroke containing the whole
kashida, and then the justification rule specifies the
width of the whole kashida. Using METAFONT, the
kashida will be split at specific points to produce
each glyph part.

Another important work to consider is to em-
bed code within the font in order to support custom
rules. For instance, the width of some marks de-
pends on the width of other glyphs, and custom
rules are needed to express this. In a recent pre-
sentation [5], the author of HarfBuzz has proposed
using WebAssembly to embed code within a font,
since current technology allows it, which would bring
great flexibility to the font developer. For instance,
if this happens, it will be possible to embed the jus-

tification algorithm based on METAFONT within the
font, thus allowing to take full advantage of META-
FONT and to use it in any platform supporting this
technology. So, as future work, WebAssembly will
be considered to implement custom lookups and ac-
tions instead of using a specific scripting language.
Also, to deal with complex Arabic calligraphic rules,
adding custom lookups supporting the full power of
regular expression and finite state machines could be
necessary.

When typesetting the Quran by respecting the
handwritten Mushaf, page by page and line by line,
the difficulty will be more in terms of line shrinking
than line stretching. Indeed, the calligrapher can vis-
ually optimize the space between letters and words so
that some letters can appear above others and some
marks can change their positions horizontally and
vertically to fill the space, while avoiding some marks
or letters being too close. Implementing this using

Amine Anane

TUGboat, Volume 42 (2021), No. 3 257

�

�

¼

1

.

è

�

0

§

�

u

v

£

�

.

Á

�

/

ìÂ

/

ìu

v

�

.

£

�

1

.

Í

�

.

Î

3

�

5

0

£

�

1

.

Í

�

.

Î

3

�

.

�Ä

.

Í

�

1

.

ÎÏ

�

.

Î

�

ü

�

2

Õ

�

0

é

2

¸

.

Í

�

.

Î�

�

/

Ã

�

/

ì£

�

.

Í

�

.

Î(

.

Ò

�

0

Í

�

.

Îþ

.

ç

�

.

�Ð

�

v

�

�

¸Í

�

1

.

Î�

0

ABCDEFGHIJKLMNOPQRb

�

�

¸Ä

1

.

�

¯

�

0

ê

0

§

�

Ñ

Ò

(

.

�

�

¸Ä

1

.

�

ç

0

Ò

�

0

Ú

�

Ñ

Ò

(

.

�

�

¸

2

Á

�

.

�

«

�

0

«

�

0

Ú

�

Ñ

Ò

(

.

�

�

¸

2

Ç

/

«

�

Õ

�

0

Õ

�

0

Ú

�

Ð

.

(

.

�

�

¸

2

Ç

/

·

2

«

�

.

ÿ

�

2

Õ

�

0

é

0

§

�

Ð

.

£

�

0

�

�

2

¡

4

.

±

2

Þ

.

��

0

ABCDEFGHIJKLMNOPQRc

x

�

.

Ó

0

Ô

.

�

�

��

1

.

�

/

�

4

.

Õ

�

1

.

Ö

/

Q

.

¡

3

�

5

0

×

.

�

Ö

.

�

5

0

1

.

¡Æ

/

ì

.

(

.

�

�

¸

2

Ç

.

Ç

.

�

3

«

4

0

�

.

ò

�

/

(

.

�

4

/

(

L

Â

/

ì

�

L

�

�

¸

2

ÿ

0

½

2

Ê

0

Ò

�

.

�

3

£

4

0

Ç

.

O

�£

�

0

�

�

¸

2

Õ

�

0

Ø

2

�

0

G

.

¡

3

�

5

0

Â

.

�

ò

.

�

5

0

1

.

¡Æ

/

ì

.

�

�

¸

2

ÿ

.

é

�

0

@

�

é

�

/

�

�

¸

2

Ý

.

�

0

«

�

Ê

/

ABCDEFGHIJKLMNOPQRd�

5

0

Ù

1

Ú

�

�

¼

è

1

0

§

�

Ù

Ú

ü

0

«

�

ç

.

�

�

��

1

.

�

0

�

�

2

¡

5

0

±

2

È

.

�

Ê

/

D

(

.

Ä

.

��

�

Ø

�

2

«

�

.

½

.

Û

.

�

�

¼

1

.

è

�

0

§

�

Ð

.

�

4

/

(Ã

�

/

ì

�

L

�

�

¸

2

�

0

É

�

.

�

Ü

�

Ý

�

5

0

1

.

¡

Ä

0

Ï

O

£

�

.

ÿ

2

ç

0

Ä

.

�

Þ

�

.

ß

3

�

.

í

/

Ê

/

�

�

¸

2

ÿ

0

½

2

Í

/

£

�

.

ÿ

�

2

«

�

.

O

�

£

�

.

¬

�

2

s

�

.

ð

/

Ê

2

D

(

.

Ä

.

Ï£

�

.

�

2

Õ

�

/

é

2

t

�

0

�

.

�Ã

�

.

�

à

�

0

�

�

��

1

.

�

0

Ò

�

.

�

5

0

á

1

â

�

�

��

1

.

�

.

²

.

ë

0

£

�

�

/

�

�

¸

2

Ý

0

·

.

�ã

�

0

ABCDEFGHIJKLMNOPQReÒ

�

.

�

5

0

á

2

Þ

.

ß

3

Ê

�

1

/

ì#

.

Ò

�

.

Õ

�

/

Á

2

�

4

.

±

2

½

.

Ç

2

à

�

/

(

.

Ø

�

2

ñ

0

ä

å

�

0

�

1

.

�

0

(

.

Ä

.

æ

0

�

�

£

�

1

.

«

�

.

ÿ

.

æ

0

D

(

.

Ò

�

/

Á¸

1

0

À

1

.

è

�

0

§

�

ç

å

�

4

/

(Ã

�

/

ì

�

L

�

�

¸

2

�

0

É

�

.

�

è

�

å

(

.

�

�

2

¡

4

/

Ä

1

0

s

�

1

0

S

Ï

.

�

.

�

4

.

±

2

½

.

Ç

2

«

�

/

Ê

2

G

Ò

�

.

�

5

0

é

2

�

4

.

±

2

½

.

Ë

/

ì

�

L

Ò

�

.

Õ

�

.

ç

0

�

�

í

2

«

�

.

ç

.

(�

L

C

(

1

.

�

5

0

éÃ

�

.

ì

.

Â

1

.

ì

2

�

L

Ò

�

.

�

5

0

£

�

1

.

Ç

.

�

þ

.

½

.

«

�

2

ê

ë

�

�

¸

2

«

�

.

È

.

�

�

�

/

D

(

.

�

�

��

1

.

�

/

£

�

.

ø

0

¯

�

ê

/

O

£

�

0

�

�

¸

2

ÿ

0

«

�

.

��

0

ABCDEFGHIJKLMNOPQRf�

5

0

ì

1

í

�

�

¼

1

.

è

�

0

§

�

ì

í

£

�

.

�

2

Õ

�

/

é

/

(ì

í

t

�

0

�

.

�Ã

�

.

�

î

�

0

�

�

��

1

.

�

0

(

.

£

�

.

Õ

�

2

«

�

/

È

/

ì&

.

�

�

¸«

�

1

.

¬

�

0

s

�

1

0

S

ï

í

£

�

0

ÿ

�

.

¯

�

2

ê

0

Ø

.

Ñ

1

Z

(

.

£

�

.

Õ

�

2

«

�

/

È

/

ìð

ñ

�

�

¼

1

.

è

�

0

§

�

ð

ñ

£

�

.

�

4

2

Ä

/

é

/

(ð

ñ

£

�

0

�

�

¸

2

Õ

�

0

·

2

�

0

Ä

0

ò

ñ

�

�

¸«

�

1

.

�ó

0

Ò

�

.

¬

�

.

µ

�

1

0

ë

2

í

/

Í

£

�

0

ÿ

.

ç

�

.

�¢

�

-

�

4

.

¸

0

«

�

Ê

-

ABCDEFGHIJKLMNOPQRg

�

4

/

(

L

Ì

.

�

3

«

4

0

�

.

�

�

¼

1

.

è

�

0

§

�

ô

õ

Ø

.

«

�

0

�

.

°

�

2

�

4

.

ü

2

Ë

.

�

Ç

/

ð

/

Ê

2

Ô

�

0

	

�

�

¼

è

1

/

£

�

2

«

�

.

�(

.

�

�

2

�

.

¡Ø

�

0

é

.

'

�

0

(

.

Ä

.

�Ì

.

ð

/

ÊÄ

1

0

ÏÃ

�

1

.

�

ù

0

ë

0

§

�

Ð

.

ABCDEFGHIJKLMNOPQRh

(a) justified text using letter stretching

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ي

َ

ق

ُ

لو

ُ

نو

َ

ر

َ

ب

ّ

َ

ن

َ

آ

إِ

ن

ّ

َ

ن

َ

آ

ء

َ

ما

َ

ن

ّ

َ

فا

َ

ٱ

غ

ْ

ف

ِ

ر

ْ

ل

َ

ن

َ

ذا

ُ

ن

ُ

بو

َ

ن

َ

وا

َ

ق

ِ

ن

َ

عا

َ

ذ

َ

با

َ

ٱ

نل

ّ

َ

را

ِ

١٦

ٱ

صل

ّ

َ

ٰ

ب

ِ

ر

ِ

ي

ن

َ

و

َ

ٱ

صل

ّ

َ

ٰ

د

ِ

ق

ِ

ي

ن

َ

و

َ

ٱ

ل

ْ

ق

َ

ٰ

ن

ِ

ت

ِ

ي

ن

َ

و

َ

ٱ

ل

ْ

م

ُ

ن

ف

ِ

ق

ِ

ي

ن

َ

و

َ

ٱ

ل

ْ

م

ُ

س

ْ

ت

َ

غ

ْ

ف

ِ

ر

ِ

ي

ن

َ

ب

ِ

ٱ

ل

ْ

أَ

س

ْ

ح

َ

را

ِ

١٧

ش

َ

ه

ِ

د

َ

ٱ

لل

ّ

َ

ه

ُ

أَ

ن

ّ

َ

ه

ُ

لۥ

َ

آ

إِ

ل

َ

ٰ

ه

َ

إِ

ل

ّ

َ

ها

ُ

و

َ

و

َ

ٱ

ل

ْ

م

َ

ل

َ

ٰ

ٓ

ئِ

ك

َ

ة

ُ

و

َ

أُ

و

۟

ل

ُ

و

ا

۟

ٱ

ل

ْ

ع

ِ

ل

ْ

م

ِ

ق

َ

آ

ئِ

م

َ

ۢ

با

ِ

ٱ

ل

ْ

ق

ِ

س

ْ

ط

ِ

ۚ

ل

َ

آ

إِ

ل

َ

ٰ

ه

َ

إِ

ل

ّ

َ

ها

ُ

و

َ

ٱ

ل

ْ

ع

َ

ز

ِ

ي

ز

ُ

ٱ

ل

ْ

ح

َ

ك

ِ

ي

م

ُ

إ١٨ِ

ن

ّ

َ

ٱ

ل

د

ّ

ِ

ي

ن

َ

ع

ِ

ن

د

َ

ٱ

لل

ّ

َ

ه

ِ

ٱ

ل

ْ

إِ

س

ْ

ل

َ

ٰ

م

ُ

ۗ

و

َ

م

َ

ٱا

خ

ْ

ت

َ

ل

َ

ف

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

أُ

تو

ُ

و

ا

۟

ٱ

ل

ْ

ك

ِ

ت

َ

ٰ

ب

َ

إِ

ل

ّ

َ

ا

م

ِ

ن

ۢ

ب

َ

ع

ْ

د

ِ

م

َ

جا

َ

آ

ء

َ

ه

ُ

م

ُ

ٱ

ل

ْ

ع

ِ

ل

ْ

م

ُ

ب

َ

غ

ْ

ي

َ

ۢ

ا

ب

َ

ي

ْ

ن

َ

ه

ُ

م

ْ

ۗ

و

َ

م

َ

ين

َ

ك

ْ

ف

ُ

ر

ْ

ب

ِ

ـَٔ

يا

َ

ٰ

ت

ِ

ٱ

لل

ّ

َ

ه

ِ

ف

َ

إِ

ن

ّ

َ

ٱ

لل

ّ

َ

ه

َ

س

َ

ر

ِ

ي

ع

ُ

ٱ

ل

ْ

ح

ِ

س

َ

با

ِ

ف١٩

َ

إِ

ن

ْ

ح

َ

آ

ج

ّ

ُ

كو

َ

ف

َ

ق

ُ

ل

ْ

أَ

س

ْ

ل

َ

م

ْ

ت

ُ

و

َ

ج

ْ

ه

ِ

ي

َ

ل

ِ

ل

ّ

َ

ه

ِ

و

َ

م

َ

ن

ِ

ٱ

ت

ّ

َ

ب

َ

ع

َ

ن

ِ

ۗ

و

َ

ق

ُ

لل

ّ

ِ

ل

ّ

َ

ذ

ِ

ي

ن

َ

أُ

تو

ُ

و

ا

۟

ٱ

ل

ْ

ك

ِ

ت

َ

ٰ

ب

َ

و

َ

ٱ

ل

ْ

أُ

م

ّ

ِ

ي

ّ

ِ

ـۧ

ن

َ

ء

َ

أَ

س

ْ

ل

َ

م

ْ

ت

ُ

م

ْ

ۚ

ف

َ

إِ

ن

ْ

أَ

س

ْ

ل

َ

م

ُ

و

ا

۟

ف

َ

ق

َ

د

ِ

ٱ

ه

ْ

ت

َ

د

َ

او

۟

ۖ

و

ّ

َ

إِ

تن

َ

و

َ

ل

ّ

َ

و

ْ

ا

۟

ف

َ

إِ

ن

ّ

َ

م

َ

ا

ع

َ

ل

َ

ي

ْ

ك

َ

ٱ

ل

ْ

ب

َ

ل

َ

ٰ

غ

ُ

ۗ

و

َ

ٱ

لل

ّ

َ

ه

ُ

ب

َ

ص

ِ

ي

ر

ُ

ۢ

ب

ِ

ٱ

ل

ْ

ع

ِ

ب

َ

دا

ِ

إ٢٠ِ

ن

ّ

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ي

َ

ك

ْ

ف

ُ

ر

ُ

و

ن

َ

ب

ِ

ـَٔ

يا

َ

ٰ

ت

ِ

ٱ

لل

ّ

َ

ه

ِ

و

َ

ي

َ

ق

ْ

ت

ُ

ل

ُ

نو

َ

ٱ

نل

ّ

َ

ب

ِ

ي

ّ

ِ

ـۧ

ن

َ

ب

ِ

غ

َ

ي

ْ

ر

ِ

ح

َ

ق

ّ

ࣲ

و

َ

ي

َ

ق

ْ

ت

ُ

ل

ُ

نو

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ي

َ

أْ

م

ُ

ر

ُ

و

ن

َ

ب

ِ

ٱ

ل

ْ

ق

ِ

س

ْ

ط

ِ

م

ِ

ن

َ

ٱ

نل

ّ

َ

سا

ِ

ف

َ

ب

َ

ش

ّ

ِ

ر

ْ

ه

ُ

م

ب

ِ

ع

َ

ذ

َ

با

ٍ

أَ

ل

ِ

ي

م

ٍ

٢١

أُ

و

۟

ل

َ

ٰ

ٓ

ئِ

ك

َ

ٱ

ل

ّ

َ

ذ

ِ

ي

ن

َ

ح

َ

ب

ِ

ط

َ

ت

ْ

أَ

ع

ْ

م

َ

ٰ

ل

ُ

ه

ُ

م

ْ

ف

ِ

ي

ٱ

ل

د

ّ

ُ

ن

ْ

ي

َ

وا

َ

ٱ

ل

ْ

أ

ٓ

خ

ِ

ر

َ

ة

ِ

و

َ

م

َ

لا

َ

ه

ُ

مم

ّ

ِ

نن

ّ

َ

ٰ

ص

ِ

ر

ِ

ي

ن

َ

٢٢

(b) justified text using interword space

Figure 7: Text justification after TEX’s line-breaking algorithm

rules will be very difficult due to the large number
of possible cases. An algorithm which analyzes the
available space to move marks and word modules
and prevent collisions would be very useful.

Finally, it is interesting to study how to ex-
tend TEX’s line-breaking algorithm in order to con-
sider glyph stretching and shrinking properties before
breaking paragraph to lines.

Acknowledgments
I would like to thank Barbara Beeton and Karl Berry
for improving this article with their English and
technical editing.

References
[1] A. Bayar, K. Sami. How a font can respect

basic rules of Arabic calligraphy. Intl. Arab. J.
e-Technol. 1(1):1–18, 2009. cs.uwaterloo.ca/
~dberry/HTML.documentation/KeshidePapers/
HowFontCanRespectArabicCalligraphy.pdf

[2] M.J.E. Benatia, M. Elyaakoubi, A. Lazrek. Arabic
text justification. TUGboat 27(2):137–146, 2006.
tug.org/TUGboat/tb27-2/tb87benatia.pdf

[3] D.M. Berry. Stretching letter and slanted-baseline
formatting for Arabic, Hebrew, and Persian
with ditroff/ffortid and dynamic PostScript
fonts. Softw. Pract. Exp. 29:1417–1457, 1999.
doi.org/10.1002/(SICI)1097-024X(19991225)
29:15%3C1417::AID-SPE282%3E3.0.CO;2-F

[4] M. Elyaakoubi, A. Lazrek. Justify just or just
justify. J. Elect. Pub. 13(1), Winter 2010.
doi.org/10.3998/3336451.0013.105

[5] B. Esfahbod. Better-engineered font formats.
www.youtube.com/watch?v=fG1QEcl3yks&ab_
channel=BehdadEsfahbod

[6] H. Hagen, I.S. Hamid. Oriental TEX: optimizing
paragraphs. MAPS 45:128–154, 2012.
www.ntg.nl/maps/45/12.pdf

[7] J.D. Hobby. A METAFONT-like system with
PostScript output. TUGboat 10(4):505–512, Dec.
1989. tug.org/TUGboat/tb10-4/tb26hobby.pdf

[8] J.D. Hobby. A User’s Manual for MetaPost, 1994.
www.tug.org/docs/metapost/mpman.pdf

[9] T. Hoekwater, L. Scarso. MPlib API
documentation, version 2.00, 2018. mirror.ctan.
org/systems/doc/metapost/mplibapi.pdf

[10] K. Hosny. Bringing world scripts to LuaTEX: The
HarfBuzz experiment. TUGboat 40(1):38–43, 2019.
tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.
pdf

[11] D.E. Knuth. The METAFONTbook. Addison-Wesley
Longman Publishing Co., Inc., USA, 1986.

[12] S. Mansour, H. Fahmy. Experiences with Arabic
font development. TUGboat 33(3):295–298, 2012.
tug.org/TUGboat/tb33-3/tb105mansour.pdf

[13] P. Nelson. Justifying text using cascading
style sheets (CSS) in Internet Explorer 5.5/6.0.
web.archive.org/web/20030813215144/http:
//www.microsoft.com/middleeast/Arabicdev/
IE6/KBase.asp

[14] A. Sherif, H. Fahmy. Meta-designing parameterized
Arabic fonts for AlQalam. TUGboat 29(3):435–443,
2008. tug.org/TUGboat/tb29-3/tb93sherif.pdf

� Amine Anane
ananeamine (at) gmail dot com
https://github.com/DigitalKhatt

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://cs.uwaterloo.ca/~dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://cs.uwaterloo.ca/~dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://cs.uwaterloo.ca/~dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://tug.org/TUGboat/tb27-2/tb87benatia.pdf
https://doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1417::AID-SPE282%3E3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1417::AID-SPE282%3E3.0.CO;2-F
https://doi.org/10.3998/3336451.0013.105
https://www.youtube.com/watch?v=fG1QEcl3yks&ab_channel=BehdadEsfahbod
https://www.youtube.com/watch?v=fG1QEcl3yks&ab_channel=BehdadEsfahbod
https://www.ntg.nl/maps/45/12.pdf
https://tug.org/TUGboat/tb10-4/tb26hobby.pdf
https://www.tug.org/docs/metapost/mpman.pdf
https://mirror.ctan.org/systems/doc/metapost/mplibapi.pdf
https://mirror.ctan.org/systems/doc/metapost/mplibapi.pdf
https://tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.pdf
https://tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.pdf
https://tug.org/TUGboat/tb33-3/tb105mansour.pdf
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://tug.org/TUGboat/tb29-3/tb93sherif.pdf

	Introduction: Justification in Arabic
	Kashida extension
	Wider form substitution
	Ligature composition/decomposition

	Metafont
	Justification
	OpenType variable fonts
	Experimental results
	Future work

