
TUGboat, Volume 42 (2021), No. 1 13

Lapses in TEX—a look backward

Barbara Beeton

TEX has now been used “in the wild” for over 40 years,
so it’s possible to look back and examine this tool
and its ecosystem to see what decisions might have
been made differently to avoid problems that still ex-
ist today. Some deficiencies are the result of limited
hardware or facilities (such as Unicode) that did not
exist at the time when TEX was created (1978–79).
However, others could reasonably have been imple-
mented differently within the existing limitations,
and these are what will be examined here.

By what authority?

Why can I claim authority to examine this topic?
I was sent to Stanford in the summer of 1979 to

learn TEX under the tutelage of the TEX Project. In
preparation for this assignment, I collected a number
of “good bad examples”, problems that had actually
occurred in publication production at the American
Mathematical Society (AMS). In the event, these
examples proved to be well chosen; a number of them
appear in Appendix D of The TEXbook [5], and the
command \firstmark was newly created to address
an unmet need, evidenced by the insertion of its
syntax handwritten by Don Knuth in my copy of the
ur-TEX manual.

For many years, I was Don’s bug collector (or
“TEX entomologist” as I preferred), distributing re-
ports to individuals whom Don recognized as suffi-
ciently knowledgeable to determine whether a prob-
lem was or was not a bug, communicating their
analysis to the submitter, organizing the reports for
communicating to Don on his predetermined sched-
ule, and in turn communicating Don’s response to
the submitter of the first report. The bug collecting
function was turned over to Karl Berry with the
completion of the 2014 review cycle.

Initial conditions and philosophy

The rationale behind the creation of TEX has been
thoroughly covered in Knuth’s 1978 Gibbs Lecture [4].
The first implementation in SAIL was eagerly adopted
by some local academics and visitors to Stanford who
had access to the requisite hardware. But it soon
became apparent that a portable implementation
would serve a much larger audience who needed this
tool, so a widely available subset of Pascal was chosen
for TEX82, and a new tool, WEB, was developed that
would make it possible to code the program and
publish it in an intelligible “public” form that could
be read and understood by a technically literate
audience (TEX: The Program [6]).

doi.org/10.47397/tb/42-1/tb130beeton-lapses

Lapses in TEX—a look backward



14 TUGboat, Volume 42 (2021), No. 1

We must recognize that the original target for
TEX’s output was print. TEX predates the World
Wide Web, Unicode, and the high-resolution screens
attached to very fast processors that have made it
possible for someone to read a document directly
from the electronic representation. In order to meet
these “new” requirements most effectively, the docu-
ment structure needs to be preserved in the final
electronic form. Several elements important to this
goal will be evident in what follows.

8-bit limitation

It’s a bit unfair to fault this limitation, since Unicode
didn’t exist until 1987, long after Knuth had returned
to his work on The Art of Computer Programming.
TEX78 was based on 7-bit fonts; the basic ASCII

arrangement was carried into TEX82, still with seven
bits “live”, although eight bits were built into the
code structure, and full eight-bit input support was
added in 1989.

A 256-character font encoding was devised in
1990 at a TEX meeting in Cork [2]. This arrange-
ment didn’t match any of the standard 8-bit Euro-
pean encodings; however, an attempt was made to
accommodate all the accented letters, variants and
digraphs required for Western European languages.
Input encodings were then developed to permit direct
input of these alphabetic characters from keyboards
that provided them.

It was possible within this limitation to imple-
ment Cyrillic for most Slavic languages, with input
based on the Mathematical Reviews transliteration, a
rather complex ligaturing mechanism, and requiring
only a few control sequences [1, p. 17]. Other alpha-
betic fonts created for this “unextended” version (as
reported in TUGboat) were Vietnamese, Hebrew,
modern Greek, Arabic, Croatian glagolitic, Ethiopic,
and the International Phonetic Alphabet (IPA).

With the introduction of X ETEX in 2005 and
LuaTEX at about the same time, input was opened up
to accept Unicode natively, and support was provided
for OpenType and TrueType fonts. For the basic TEX
engine (with LATEX preloaded) \inputenc{utf8}

was implemented, but input of accented letters is
converted to the \cs⟨letter⟩ form for processing, and
TEX fonts are still limited to 256 characters.

For languages where the input order of charac-
ters does not necessarily match the display order,
8-bit input is insufficient. Supporting this would
have required extensive (breaking) changes to the
program, exceeding Don’s requirements. An “early”
extension to TEX, Omega [3], was first presented
in 1994, but has since been abandoned. Nonlinear
composition requirements are now implemented by

font-shaping mechanisms, not by the main composi-
tion engine (cf. [8]).

Limitation of the character box

The “shape” of a TEX character is defined as a rect-
angle (or a parallelogram for sloped characters) with
the origin at the baseline on the left side (for left-to-
right scripts) and a width measured at the baseline.
TEX uses only the metrics. While this simplicity per-
mits efficient calculation of necessary values for line
and paragraph breaking, without adjustments the
spacing of adjacent characters may not be optimal,
regardless of the quality of their design.

This model is most appropriate for Western al-
phabetic languages, which typically have reliably
“restricted” shapes, even taking diacritics into con-
sideration. Font-shaping mechanisms developed to
handle more complex scripts have been mentioned
in the previous section.

Within the existing design, two adjustments are
provided, recorded in the .tfm files used by TEX82:
explicit kerning and the “italic correction”, a value
indicating the overhang of a tall sloped letter. There
is no corresponding adjustment for the left-hand side,
which results in the following suboptimal appearance,
depending on the letter beginning a new line:

Watch the left margin.
This is one example.
The normal flush left margin.
What about this?
One last line.

Hermann Zapf’s microtypography addressed this.
In the Computer Modern fonts no kerning is

specified between any lowercase letter and a follow-
ing uppercase. Since CamelCase was not in heavy
use when TEX was created, we ignore this omission
here. But kerning between an uppercase letter and a
following lowercase is also nearly nonexistent, leading
to the unfortunate spacing of the combination “Av”,
among others, which could have been avoided.

Let’s look at the situation where punctuation
follows uppercase. This too is unkerned, and can
yield particularly unsightly results in bibliographies,
which are often overrun with initials (and not easily
managed). Some examples, showing manual adjust-
ments that have been used in this issue:
P.O. Box P.O. Box

P.O. Box P.\thinspace O.~Box

W.J. Martin W.J. Martin

W.J. Martin
W\kern-.05em.\kern.07em J\kern.01em. Martin

In math, the situation is somewhat different.
While in text the spacing of adjacent letters is set
based only on their origins and width, in math the

Barbara Beeton



TUGboat, Volume 42 (2021), No. 1 15

italic correction is always applied, increasing inter-
character spacing. This is particularly noticeable in
sub- and superscripts:

AxB AfB PxQ PfQ

This can be adjusted manually by applying a negative
or positive thin space, and Knuth in The TEXbook
recommends manual attention. But this can get
tiring, and some instances can be missed in proof-
reading, leading to inconsistent appearance.

A recent post on tex.stackexchange.com1 con-
tained a repetitious example of bad spacing that was
easily addressed by an ad hoc definition.(

∂f0

∂ηt

) (
∂f0

∂ηt

)
This definition is applied in the obvious location.

\def\partialf{\partial\mkern-2mu f}

$$ \biggl(

{ \partial f^0 \over \partial \eta_t }

\biggr)

$$

Another tex.stackexchange post2 asks for “op-
tically balanced space” in expressions such as the
following.

ei · ej ̸= ei × ej ̸= ei ∧ ej ̸= ei ⊗ ej

Compare the more uniform spacing of this expression,
where subscripts don’t disturb the “line”.

a · b ̸= a× b ̸= a ∧ b ̸= a⊗ b

The requested spacing is not possible without know-
ing more details about the shapes of all characters
that can appear in math expressions. (Whether or
not such a request is reasonable or desirable has been
asked in a comment to the request. This question
will be ignored here.)

Limitations imposed by the line-breaking
algorithm

Baselines aren’t “frozen” until the end of a paragraph,
and it’s bad style to break a page between text and
a display, so in effect, the display is part of the
preceding paragraph. If a display is set in a font
size different from (usually smaller than) that of the
preceding paragraph, the wrong baselines are applied
to that text.

It’s possible to adjust this manually, but many
(most?) people are unaware of it, and scrunched
paragraphs can be seen in otherwise fine math papers.
Look at this paragraph; the display that follows is
set in \footnotesize.

a+ b = c

d+ e = f

1 https://tex.stackexchange.com/q/592191
2 https://tex.stackexchange.com/q/581045

Even if the text following the different-sized display
doesn’t start a new paragraph, the normal baselines
are restored. This code produced the example:

\begingroup \footnotesize

$$

\eqalign{

a + b &= c \cr d + e &= f \cr }

$$

\endgroup

Line breaking by paragraph places some limita-
tions on desirable formatting.

• If a paragraph is broken at the end of a page,
and a different page width is wanted on the next
page, that change can’t be applied automati-
cally.

• Sometimes, a by-line view is preferable to a by-
paragraph view, for example, to facilitate com-
munication of editorial suggestions. A change
in line width affects line numbers. (Line num-
bers are required, for example, for some legal
documents.)

• It’s not easy to reflow material for, e.g., screen
presentations.

Two-dimensional material vs. “the grid”

In addition to the baseline anomaly shown above,
the design of TEX makes it difficult to maintain uni-
form baselines throughout a document. Historically,
printers have tried to achieve layouts in which lines
of type match up on the front and back of a page;
this was particularly important on thin paper, where
what’s on the other side might “read through” if it
is set between the lines on the reading side. This
uniform spacing is known as “grid typesetting”.

Uniform baselines aren’t difficult to achieve with
straight text, but several forms of printed material
are by definition two dimensional—most notably
math, chemical structures and music. Forcing them
onto a grid can result in either squeezing or inserting
excess space, degrading comprehensibility.

A few TEX practitioners have devised means
to achieve grid layout, but in the presence of espe-
cially complex math structures, the problem may be
intractable.

A fraction anomaly

In math processing, the gap between a fraction line
and the numerator or denominator is defined to be
the same height as the thickness of the fraction line;
this is governed by the setting of font dimension 8 in
the math extension (family 3) .tfm file (rule 10 in
Appendix G of The TEXbook. with its application
to fractions explained in rule 15). If for some reason

Lapses in TEX—a look backward



16 TUGboat, Volume 42 (2021), No. 1

the fraction line is made thicker, the gap quickly
becomes too large.

The (primitive) command \abovewithdelims

demonstrates the problem. An alternative is implied
by the description of the command \above, which ac-
cepts just a ⟨dimen⟩. The example in The TEXbook
shows 1pt as the dimension, and this looks promis-
ing, but as it turns out, this is treated in the same
way as \abovewithdelims, so if a larger dimension
is specified, the gap expands accordingly.

af

fa

af

fa

af

fa

af

fa
Ideally, the gap should either increase more slowly, or
require an explicit setting. It’s likely that the need to
accommodate such a situation was never predicted;
it’s quite rare. But when it does occur, the result is
a distinct surprise, and a search for documentation
doesn’t find any.

This code produces the example shown above:

$$

{af \over fa} \qquad

{af \abovewithdelims.. 3pt fa} \qquad

{af \above1pt fa} \qquad {af \above4pt fa}

$$

Hyphenation discrimination

All permissible hyphenation points are weighted the
same, but in English (as in many languages), it is
often better to preferentially hyphenate a compound
word at the junction of its lexical elements. This is
especially important in chemical and similar terms.

For example, let’s adopt a convention that a hy-
phen shows the position of a normal hyphen, while an
equals sign shows the location of a lexical (preferable)
breakpoint, separating elements of a compound.
pho-to=syn-the-sis

pa-ra=di-chlo-ro=ben-zene

(Aside: All proper breakpoints in “photosynthesis”
are identified by TEX’s (U.S.) hyphenation algorithm,
but only the last in “paradichloroben-zene”.)

The dictionary used for developing the U.S. pat-
terns has hyphenation indicated at only one level,
so this limitation is not surprising. But the dictio-
nary underlying the British patterns records two
levels, based primarily on etymology, but also on
syllabification. (The U.S. patterns, based on pronun-
ciation, sometimes coincide with etymology, but it’s
not guaranteed. Technical terms are more likely to
be hyphenated according to etymology.)

A two-level mechanism is even more desirable
for agglutinative languages like German, and alterna-
tive mechanisms have been devised where necessary,

but this would have been simpler had a two-level
mechanism been included in the design.

Finally, if a text is to be properly reconstructed
from the printed output, it must be possible to dis-
tinguish between hyphens that are inherent in the
text and those introduced by the hyphenation rou-
tine. This information is lost after composition, and
failure to restore it properly may change the mean-
ing. In addition, inclusion of language markers in
the output would be a useful adjunct here.

Missing spaces

In the original design of TEX output, only characters
and their (relative) positions are present. The space
character is absent; what is seen on a page is the
illusion of a space, provided by the gap separating
not-quite-adjacent glyphs. This is not remedied by
PDF, and spaces can be lost when text is cut-and-
pasted, unless the gap exceeds a certain minimum
width.

But a different approach might have been taken,
namely the marking of word boundaries. Nelson
Beebe states that this “could have been trivially in-
cluded in the original SAIL version with no significant
memory increase.” The presence of such markers
could support checking for delimiter balancing, spell-
ing, grammar and syntax, all of which are best done
on the typeset form, not the input.

One way! Do not back up!

TEX input is processed in a one-way stream, with no
provision made for backtracking. This means that it
may be impossible to trap and save the last character
or token in a string without parsing the whole string
or otherwise predefining some particular feature that
can be used to isolate it. (It is possible to apply
special processing to the last line of a paragraph,
calling on \lastskip, \lastbox, etc.)

One situation requiring special treatment of a
single terminal character is the different shape of a
terminal sigma in Greek (ς vs. σ). In one approach,
the letter ‘c’ is input following a final sigma, and
the two letters are ligatured to produce the desired
shape. A different mechanism, ⟨boundarychar⟩, was
added with the 8-bit update, but its application is
not entirely trivial, and most users understandably
prefer a more explicit solution.

Where is the origin?

TEX itself completely avoids discussing page dimen-
sions. The imaging software assumes \hoffset=0pt,
\voffset=0pt, extending downward. This is oppo-
site from what is assumed for traditional printing,
where the origin is at the bottom left and extends

Barbara Beeton



TUGboat, Volume 42 (2021), No. 1 17

upward. The printing devices available when TEX
was developed were (and most devices today still
are) unable to print at the absolute edge of the out-
put medium; this was often blocked by the gripping
mechanism, and although it was only a small fraction
of an inch, it might not have been the same for all
devices, so the origin couldn’t be set at zero. Instead,
an easy to remember value for a position inside of
this limit was assigned: 1in,1in from the upper left
corner, a setting that is a source of consternation for
the myriad TEX users located in regions using the
metric system.

What is the origin of this one-inch origin?
In the U.S., paper was usually assumed to be

lettersize, 8.5 by 11 inches, and a common size for
the text block was \hsize=6.5in by \vsize=8.9in,
which results in one-inch side and top margins and a
1.1 inch bottom margin (into which a page number
is often dropped) when a full page is centered. This
value was selected for the fixed origin, in order to
provide a consistent value for the software. David
Fuchs, developer of the earliest output device driver,
was (to the best of my memory) the person who
established the value.

The inherent ability of laser printers to print on
different paper sizes is limited by driver support, and
nonstandard dimensions are blocked or lost. pdftex
introduced primitives for page dimensions and sev-
eral different page boxes required by PDF, but even
when laser printers became generally available, the
1-inch value was retained for the sake of backward
compatibility.

One last thing to think about

When TEX was created, the only way to read a TEX
document was on paper or from the source file. But
since then, considerable software has emerged for
PDF text analysis, optical recognition from scanned
text, etc. In order to reliably locate and recover
raw text from such “final” electronic documents,
it’s necessary to be able to disambiguate different
columns on a page, recognize page numbers, and
record similar identifying information. TEX contains
nothing to make such recognition easy, or even in
some cases possible. It was undoubtedly premature
to think of such details in 1980, but they should be
considered for the future.

Acknowledgments

Several people who were there at the beginning, or
at least have been involved with TEX for a very
long time, have contributed their knowledge to this
effort, both by providing missing information and by
otherwise keeping me honest.

Chief among these contributors is David Fuchs.
Nelson Beebe added points that were overlooked in
the limited environment of 1980, but which could
have been implemented within those limitations had
they been foreseen. Karl Berry, as ever, politely
called attention to my logical inconsistencies. Phil
Taylor commented from a British point of view, help-
ing to tidy up bits that might not be understood the
same way on opposite sides of the pond.

Finally, Don Knuth was asked to read and com-
ment. (If Don hadn’t created TEX, there would have
been no reason for this essay.) His comment was:
“All these things and more will be fixed in * as soon
as the implementation team is ready.” [7]

References

[1] B. Beeton. Mathematical symbols and Cyrillic
fonts ready for distribution (revised). TUGboat
6(3):124–126, 1985.
tug.org/TUGboat/tb06-3/tb13beetcyr.pdf

[2] Extended TEX font encoding scheme—Latin.
TUGboat 11(4):516, 1990.
tug.org/TUGboat/tb11-4/tb30ferguson.pdf

[3] Y. Haralambous, J. Plaice. First applications
of Ω: Greek, Arabic, Khmer, Poetica,
ISO 10646/UNICODE, etc. TUGboat
15(3):344–353, 1994. tug.org/TUGboat/

tb15-3/tb44haralambous-omega.pdf

[4] D.E. Knuth. Mathematical typography.
Bull. Amer. Math. Soc 1(2):337–372, March
1979. https://www.ams.org/journals/bull/
1979-01-02/S0273-0979-1979-14598-1/

S0273-0979-1979-14598-1.pdf

[5] D.E. Knuth. The TEXbook. Addison-Wesley,
Reading, Massachusetts, 1984. Volume A of
Computers & Typesetting.

[6] D.E. Knuth. TEX: The Program.
Addison-Wesley, Reading, Massachusetts,
1986. Volume B of Computers & Typesetting.

[7] D.E. Knuth. An earthshaking announcement.
TUGboat 31(2):121–124, 2010.
tug.org/TUGboat/tb31-2/tb98knut.pdf

[8] S. Matteson. The road to Noto. TUGboat
41(2):145–154, 2020. tug.org/TUGboat/

tb41-2/tb128matteson-noto.pdf

⋄ Barbara Beeton
https://tug.org/TUGboat

tugboat (at) tug dot org

* [A bell rings at this point.]

Lapses in TEX—a look backward


