196

A glance at CJK support with XqTEX
and LuaTgX

Antoine Bossard

Abstract

From a typesetting point of view, the Chinese and
Japanese writing systems are peculiar in that the
characters are concatenated without using spaces to
separate them or the meaning units (i.e., “words”
in our occidental linguistic terminology) they form.
And this is also true for sentences: although they are
usually separated with punctuation marks such as
periods, spaces remain unused. Conventional type-
setting approaches, TEX in our case, thus need to be
revised in order to support the languages of the CJK
group: Chinese, Japanese and, to a lesser extent, Ko-
rean. While more or less complete solutions to this
issue can be found, in this article we give and ped-
agogically discuss a minimalistic implementation of
CJK support with the Unicode-capable XHTEX and
LuaTgX typesetting systems.

1 Introduction

The Chinese, Japanese and Korean writing systems
are conventionally gathered under the CJK appel-
lation. The Chinese writing system consists of the
Chinese characters, which can be in simplified or tra-
ditional form, amongst other character variants [1].
The (modern) Japanese writing system is made of
the Chinese characters and the kana characters. The
Chinese and Japanese writing systems concatenate
characters without ever separating them with spaces.
The Korean writing system consists mainly of hangul
characters, in principle together with the Chinese
characters, but they are rarely used nowadays. Al-
though modern Korean does separate words with
spaces, traditionally, the Korean writing system does
not (as an illustration, see, e.g., Sejong the Great’s
15*" century manuscript Hunminjeongeum?).

Notwithstanding other critical issues such as
fonts (and to a lesser extent indexing [2]), by not
relying on spaces between characters or words, the
CJK scripts are a challenge to conventional type-
setting solutions such as TEX. In fact, the algo-
rithms for line-breaking, which conventionally oc-
curs at spaces, and for word-breaking (hyphenation),
become inapplicable.

On a side note, although we consider hereinafter
only the CJK writing systems, this discussion can
be extended to related scripts such as Tangut and
Vietnam’s Cht Ném.

! King Sejong (H7%) introduced hangul in the Hunmin-
jeongeum (AIERIEH) manuscript (1443-1446).

Antoine Bossard

TUGDboat, Volume 40 (2019), No. 2

In this paper, we provide a glance at CJK sup-
port with XHTEX and LuaTgX by giving a minimal-
istic implementation for these East Asian scripts.
This work is both a proof of concept and a peda-
gogical discussion on how to achieve CJK support
as simply as possible with the aforementioned type-
setting solutions. Both XHTEX and LuaTgX support
Unicode, which enables us to focus on typesetting is-
sues, leaving encoding and font considerations aside.

The rest of this paper is organised as follows.
Technical discussion of the proposed implementa-
tion is conducted in Section 2. The state of the art
and paper contribution are summarised in Section 3.
The paper is concluded in Section 4.

2 A minimalistic implementation

We describe here the proposed minimalistic imple-
mentation of CJK support with X#ITEX and LuaTEX
step by step in a pedagogical manner:

 paragraph management (Step 1) is addressed in
Section 2.1,
o Latin text mingling (Step 2) in Section 2.2,
o Latin text paragraphs (Step 3) in Section 2.3,
o Korean text paragraphs (Step 4) in Section 2.4,
« sophisticated line-breaking (Step 5)
in Section 2.5.

“Latin text” here designates text written with the
Latin alphabet, or similar; for instance English and
French text.

A handful of TEX commands appear hereinafter
without being detailed; see [5] for those that are not
self-explanatory. The document preamble specifies
nothing in particular. The fontspec package [12]
is loaded for ease of font manipulation, and, as de-
tailed in the rest of this section, since it is considered
without loss of generality that the document consists
of Chinese or Japanese paragraphs by default, the
main font of the document is set accordingly (e.g.,
\setmainfont{Noto Serif CJK JP} [4]).

2.1 Paragraph management

A conventional approach to break long character se-
quences (i.e., Chinese or Japanese characters in our
case) is to insert between each two glyphs a small
amount of horizontal space so that TEX can split the
sequence across multiple lines (see for instance [15]).
Without such extra space, line breaks can in general
still occur thanks to hyphenation, but this is not
applicable in the case of CJK. We rely on a “scan-
ner” macro to transform a paragraph by interleaving
space between its characters. In practice, according
to the TEX terminology, this extra space will be a
horizontal skip of Opt width and +1pt stretch.

TUGboat, Volume 40 (2019), No. 2

The scanner macro is a recursive process that
takes one token (e.g., a character) as single parame-
ter and outputs it with on its right extra horizontal
space. The recursion stops when the parameter to-
ken is the stop signal (more on this later), in which
case the macro outputs \par, thus triggering the end
of the paragraph. The scanner macro \cjk@scan is
defined as follows:

\def\cjk@scan#1{) #1: single token
\ifx#1\cjk@stop/ stop signal detected
\par/, so, complete the paragraph
\else
#1), display the current character
\hskip Opt plus 1pt minus 1pt\relaxj space
\expandafter\cjk@scany/, recursive call
\fi
}

This scanner is started by the \cjk@scanstart
macro, whose primary objective is to append the
stop signal \cjk@stop at the end of the paragraph
that is about to be transformed. This initial macro
takes one parameter: the paragraph to transform.
In a pattern matching fashion, a paragraph is taken
as a whole by setting \par as delimiter for the pa-
rameter of the \cjk@scanstart macro. This will
require inserting \par once the paragraph has been
transformed, since the \par command that ends the
paragraph is treated as a delimiter by the macro and
thus skipped. In addition, each paragraph needs to
be ended by a blank line (or, equivalently, \par) for
this pattern matching to work. The scanner starting
macro is this:

\def\cjk@scanstart#1\par{), #1: paragraph
\cjk@scan#1\cjk@stop/, append \cjk@stop
}

In this work, paragraphs are considered to be
written in Chinese or Japanese by default. Hence,
paragraph typesetting mode selection by means of
a command such as \CHJPtext is not suitable. We
rely on the \everypar token parameter to trigger
the transformation of each paragraph with the scan-
ner previously described. This is simply done with
the following assignment:

\everypar={\cjk@scanstart}
or, in a safer manner [3]:

\everypar=\expandafter{\the\everypar
\cjk@scanstart}

An illustration of the result of this paragraph
transformation is given in Figure 1 with two tradi-
tional Chinese paragraphs.

197

ARG B a1 T PR, FRBUT L2 8l
PANGHESEER R tad i 3e s (IEE A NmIBE € EUEAY)

AR G2 1 T PRI PR BT
R TS A, AR AR)k el G) s
P A, AEdnkBRIEERR,
AR . ARfE Rl gk
Al R, FHERZ.

UNGMESE e[g i es S RN SE S EIEAY
RSO K S 0 A SRR, DA T % o A A R
ARNIGEZ B, WA A+ PN R %
LRI . AN B N TR S R
5 T DU P 1 2 A 4R

(a) (b)
Figure 1: Before (a) and after (b) paragraph

transformation: line breaking now enabled (traditional
Chinese text example).

2.2 Latin text mingling

It is often the case that Latin text such as English
words, expressions or sentences is mingled within
Chinese or Japanese paragraphs. In the paragraph
transformation method described so far, spaces, if
any, are “gobbled” and never passed as parameters
to the scanner macro \cjk@scan. This is not a
problem for Chinese and Japanese text since, as
explained, they do not rely on spaces. But now
that we are considering Latin text mingling in such
paragraphs, spaces need to be retained since Latin
text, such as English, does rely on spaces to separate
words, sentences, etc.

Without going too far into the details, to force
TEX to also pass spaces as parameters to the scanner
macro, spaces need to be made active, in TEX termi-
nology. Hence, it suffices to call the \obeyspaces
macro, whose purpose is exactly to make the space
character active, at the beginning of the document.
In addition, the scanner macro is refined to avoid
adding extra space when the current character is a
space:

\def\cjk@scan#1{’
\ifx#1\cjk@stop
\par
\else
#17
\if#1\space/ no extra space if #1 is a space
\else
\hskip Opt plus 1pt minus 1pt\relax
\fi
\expandafter\cjk@scan
\fi
}

An illustration of the result of this refined para-
graph transformation is given in Figure 2.

We conclude this section with the following two
remarks. First, it should be noted that Latin text
mingled within Chinese or Japanese paragraphs is
treated just as Chinese or Japanese text: extra space
is inserted between glyphs. Therefore, line- and

A glance at CJK support with X#TEX and LuaTEX

198

HAERIE, EX g zERICBT
HREEZMBELTTHL, bhsebhdo
FHROFDIIZ, HEREOWHANC X 2R L
. bAEETEbEOTHHD B 7256 FEIR
EWER L. BUFOTHIC X0 THERSF OB
WA Z L DIRNR T BT e BREL
VS CREMASERICHFET 2 I 2EE L,
ZOBEERMET 5. ZHZbEBUE, FR
DHHRFFEC L2 DD THOT, ZDHER
BEERICHK L, ZolEhdEROREE
INEFEL, ZoEARERY e 2%
T3, CHBANBFEOFRMTHD, ZoM
Hik, »o5FHICEL D TH S, bhd
3. AT B YIO#ME, KA O
%Pk 3 %, We,theJapanesepeople...

(a)

HARERE, EHCEEShEHRICBY
ZREF ML TTHL, bhdbrbhsD
FHROLDI, FHERE DN &2 MR e
. bAEETIChEOTHHD 7 5T IR
ERER L. BIFOITAIC O THUEF OB
WA Z Z DRV HICT 2 I L RIREL
V CCREMAERIFET AL RES L,
ZOMERMET 5. ZHZHEBIE, FHR
DHFREFTC L 2 bDTH DT, ZDOHEM
BEEICHR L, Z O EROREE D
IREEL, 2 OWANKERD Zh e 52
FTh, CREINERFEOFRETH D, o
HiE, 222 FHICEL b OTH S, bhs
F SHERT Yok, KRR OHE
ZHbR3 %, We, the Japanese people...

(b)

TUGboat, Volume 40 (2019), No. 2

HAERE, EHISEFShLERICEBD
; iCTIEIL, bhsrbhso
. FEERE O £ 2R
. baERTICHOEOTHHOD 7253 -IR
ZHEAR L, BUTOITAIC LD THUIES OB
WS Z L DBRVRHITT BT L BREL
V CCREMAERIFET S I REHS L,
ZDEERET B

We, the Japanese people, acting throug
h our duly elected representatives in the N
ational Diet, determined that we shall secu
re for ourselves and our posterity the fruits
of peaceful cooperation with all nations an
d the blessings of liberty throughout this la
nd, and resolved that never again shall we
be visited with the horrors of war through
the action of government, do proclaim tha
t sovereign power resides with the people
and do firmly establish this Constitution.

HAERE, EHEEShZERICEY
ZREEZELTITHL, bhorbhdn
FROLDIZ, FEERY OMANC & 2R L
. bAEELICHEOTHHD b 726 3R
EHER L. BUFOTAIC X O THTEF OB
A S Z L DRV HITT 2 I L RIREL
L IR EMHERICHET S I EES L,
COEIERHET 5.

We, the Japanese people, acting
through our duly elected representatives
in the National Diet, determined that
we shall secure for ourselves and our
posterity the fruits of peaceful coopera-
tion with all nations and the blessings of
liberty throughout this land, and resolved
that never again shall we be visited with
the horrors of war through the action of
government, do proclaim that sovereign
power resides with the people and do

Figure 2: Before (a) and after (b) making spaces
active: Latin text mingling now retains spaces
(Japanese text example).

word-breaking for mingled Latin text can occur any-
where, and thus no word-breaking by hyphenation
will happen. Second, even though no extra space
is added after a space character, extra space is still
added before a space character. This issue will be
tackled in a subsequent section.

2.3 Latin text paragraphs

Because the \obeyspaces macro has been called
so as to typeset Chinese and Japanese paragraphs,
Latin text paragraphs would be typeset just as those,
that is, with extra space added between consecu-
tive glyphs (except after spaces). As a result, as
explained above, line- and word-breaking would not
be satisfactory.

Hence, we next enable the proper typesetting
of Latin text paragraphs, that is, paragraphs that
include spaces between words. To this end, we de-
fine the \iflatin conditional statement that will be
used to distinguish Latin text paragraphs from oth-
ers. The flag command \latinfalse is called at the
beginning of the document to reflect that Chinese
and Japanese paragraphs are the norm. Latin text
paragraphs are marked as such by calling the flag
command \latintrue at the beginning of the para-
graph. The scanner starting macro \cjk@scanstart
is adjusted so as to not start the scanner in case the
Latin flag is set.

Since the \obeyspaces macro has been previ-
ously called, spaces are active characters; this set-
ting needs to be reverted in the case of a Latin text
paragraph in order to have proper line- and word-
breaking. Hence, the scanner starting macro in ad-
dition reverts spaces from the active state back to
their default state in the case of a Latin text para-
graph. The refined code is given next:

\newif\iflatin 7 flag to detect whether to scan
\latinfalse 7 flag initially set to false

Antoine Bossard

firmly establish this Constitution.
(a) (b)

Figure 3: Before (a) and after (b) Latin mode
enabling: Latin text now properly typeset (Japanese
and English text example).

\def\cjk@scanstart#l\par{/

\iflatinj, if Latin text paragraph, don't scan
\catcode~\ =107 revert \obeyspaces
#1\par/, display the paragraph normally
\latinfalse/, back to default

\else
\cjk@scan#1\cjk@stop

\fi

}

An illustration of the result of this refined para-
graph transformation is given in Figure 3.

2.4 Korean text paragraphs

Let us now discuss the case of Korean text para-
graph typesetting. As mentioned in the introduc-
tion, modern Korean relies on spaces to separate
words. Hence, Korean text paragraphs are treated
as Latin text paragraphs, concretely marked with
the \latintrue flag. Yet, because Korean glyphs
(i.e., hangul or hanja) are wider than Latin ones,
the width of spaces is adjusted. In addition, a font
switch is also used to select a Korean font since it
is common that Korean glyphs are not included in
the default font used for Chinese and Japanese para-
graph typesetting.

Such settings need to be applied at the begin-
ning of the paragraph, so we need to embed the
paragraph into a group for font selection and the
adjusted space setting. Therefore, the paragraph
starts with a ‘{’ token, and thus it is required to
leave vertical mode for proper parsing of the para-
graph when it is used as the parameter of our macro
\cjk@scanstart which starts the scanner. Specifi-
cally, the problem with starting the paragraph with
a command like {\malgun (e.g., a font switch) is
that TEX is still in vertical mode when it is pro-

TUGboat, Volume 40 (2019), No. 2

HARERE,
DRBEDALD
ki

Db L b
Fiz

(a)

Figure 4: Before (a) and after (b) space width
adjustment for Korean text: no more overfull
horizontal boxes (Japanese and Korean text example).

cessed. Switching to horizontal mode starts a new
paragraph and thus triggers \everypar, but then
with an unmatched ‘}’ remaining (i.e., the one cor-
responding to, say, the font switch) at the end of
the paragraph, and thus the parsing error.

For convenience, these Korean text paragraph
settings are gathered in a \korean{} macro as de-
fined below.

\def\korean#1{/
\latintrue/, activate the Latin mode
\leavevmode/ leave the vertical mode
{/ Adjust the space size:
\spaceskip=\fontdimen2\font plus
3\fontdimen3\font minus
3\fontdimen4\font), x3 stretch and shrink
\malgun #1), Korean font switch
}
}

Note that this redefinition of \spaceskip for
the current paragraph would also be applied to Latin
text mingled within a Korean paragraph. Further-
more, this font selection process— without neces-
sarily activating the Latin mode and adjusting the
space width — could also be used in the case where
distinct fonts for Chinese and Japanese text are re-
quired.

An illustration of the result of this paragraph
typesetting is given in Figure 4. One should note
the overfull horizontal boxes which are shown by the
two black boxes in the left-hand example, when the
space width adjustment has not been applied yet.

2.5 Sophisticated line-breaking

Just as, say, in French, where line breaks are not
allowed before the punctuation marks “:’, ¢;’, ‘" and
so on—even though these need to be preceded by
a space and are thus typical usages of non-breaking
spaces — CJK typesetting forbids breaking lines be-
fore punctuation marks such as commas and peri-
ods.

We derive in this section a new scanner macro,
\cjk@scanbis, to address this remaining problem.
The approach is simple: refrain from adding extra
space after the current character when the next one

HARERE, EHcBEESh R B0
> REH &l TEIL. bhosrbhsbn
FHROZDIZ, #HERE O & 2R L
. bAEETIChEOTHHD 7 63 IR
EHEMRE L. BUFOITAIC XD THUEES OB
A Z Z DRV HICT 2 I RIREL
. CCRFEMPERICETS I EES L,
ZOFEREET Do

(a)

199

AAERE, EHOEFEShZERICEY
ZREEZELTITEIL, bhsrbhsoT
FRO7zoiz, FHER Y OFnc & 2R .
bHAEZTICOEOTHHD S -5 T HiR%E
TR L. BURF 0T 212 X2 THUEES OB
D L DHEVRIITTE I L RREL,
CCWREMPERICFET S 2ES L,
DIMIEEMET %o

(b)

Figure 5: Paragraph transformation by the original
(a) and the new (b) scanner macro: no more line break
before a comma (Japanese text example).

is a punctuation mark. At the same time, this new
scanner allows us to solve the aforementioned incon-
gruity of extra space being added before a space
character in Latin text paragraphs.

To implement this, the new scanner takes two
tokens as parameters instead of one: the first param-
eter is the currently processed token and the second
one is the next token in line. The recursive call is
also updated since it is now expecting two tokens as
parameters instead of one; here it is:

\def\cjk@scanbis#1#2{), two tokens passed
#17

\ifx#2\cjk@stop
\par

\else
\if#2. 7, no extra space before character . '
\else\if#2, J idem before character ~, '
\else\if#2\space/, idem before a space
\else\if#1\space/ idem after a space
\else\hskip Opt plus 1pt minus 1lpt\relax
\fi\fi\fi\fi
\expandafter\cjk@scanbis\expandafter#2,
\fi

}

Similar additional conditions for other CJK punctu-
ation marks can easily be appended if needed.

One other change is needed: in the scanner
macro \cjk@scanstart, the initial expression
\cjk@scan#1\cjk@stop
is modified to
\cjk@scanbis#1\cjk@stop.

An illustration of the effect of this new scanner
is shown in Figure 5.

3 State of the art and contribution

Early solutions for supporting the CJK writing sys-
tems within the TEX ecosystem include the CJK pack-
age [6] and the Japanese TEX system pTEX [8]. Al-
though the former provides some support for Uni-
code, the latter does not. Notably, pTEX supports
vertical typesetting [10], while the CJK package only
partially supports it. Based on the CJK package,

A glance at CJK support with X#TEX and LuaTEX

200

the BXcjkjatype package [16] provides some sup-
port for Japanese typesetting with pdfIATEX (UTF-8
files). Regarding Korean, the hlatex package [14]
enables the processing by KTEX of KS X 1001 en-
coded files, and of UTF-8 files via the obsolete TEX
extension Omega [11]. Omega also has some support
for multi-directional CJK typesetting.

More recent solutions include the xeCJK pack-
age [7], which is dedicated to XgTEX (i.e., no LuaTEX
support). This package is very large, consisting of
more than 14,000 lines of macro code. As of sum-
mer 2019, it is only documented in Chinese. An-
other extensive package, luatex-ja [13], is avail-
able, this time restricted to support for Japanese
with LuaTEX. Finally, up(I48)TEX [9], another sys-
tem dedicated to Japanese, can also be cited; it is
based on p(I4)TEX, but unlike its predecessor sup-
ports Unicode.

Even if the above are more or less complete solu-
tions to the CJK typesetting issue with TEX, we have
presented in this paper a very simple solution, which
requires neither a separate TEX system such as pTEX
nor advanced TEX capacities such as xtemplate,
IATEX3, etc., unlike, for instance, xeCJK. With only
a few lines of macro code, we have described how to
add basic yet arguably competent support for CJK
to both X{TEX and LuaTgX, without differentiation.
The XAIEX, LuaTgEX flexibility has been retained:
no extra layer has been piled on as, for instance,
with xeCJK (e.g., the \setCJKmainfont command).
Moreover, the complexity induced by packages such
as xeCJK is likely to be a threat to compatibility
with other packages, as well as with online compi-
lation systems such as those employed by scientific
publishers.

4 Conclusions

It is well known that the Chinese, Japanese and
Korean writing systems are challenging for typeset-
ting programs such as TEX that were originally de-
signed for Latin text. Various extensions and pack-
ages have been proposed to support CJK in TgX,
with uneven success. Such solutions are in most
cases, if not all, extensive—not to say invasive —
additions to the TEX ecosystem. In this paper, re-
lying on the Unicode-capable XHTEX and LuaTgX
systems, we have presented and pedagogically dis-
cussed a minimalistic solution to this CJK typeset-
ting issue. With only a few lines of macro code, we
have shown that satisfactory CJK support can be
achieved: paragraph management, Latin text min-
gling and sophisticated line-breaking are examples
of the typesetting issues addressed.

As for future work, given its still rather frequent

Antoine Bossard

TUGDboat, Volume 40 (2019), No. 2

usage, right-to-left horizontal typesetting would be
a useful addition to this discussion of CJK typeset-
ting. Furthermore, although it is a complex issue
for TEX, right-to-left vertical typesetting is another
meaningful objective as it is ubiquitous for the CJK
writing systems.

Acknowledgments

The author is grateful to Takeyuki Nagao (Chiba
University of Commerce, Japan) and Keiichi Kaneko
(Tokyo University of Agriculture and Technology,
Japan) for their insightful advice. This research
project is partly supported by The Telecommunica-
tions Advancement Foundation (Tokyo, Japan).

References

[1] A. Bossard. Chinese Characters, Deciphered.
Kanagawa University Press, Yokohama, Japan,
2018.

[2] A. Bossard and K. Kaneko. Experimenting
with makeindex and Unicode, and deriving
kameindex. In Proceedings of the GulT meeting
2018, ArsTgXnica 26, pp. 55-61, Rome, Italy,
October 2018. https://www.guitex.org/home/
images/ArsTeXnica/AT026/kameindex.pdf

[3

S. Checkoway. The everyhook package,
November 2014. Package documentation.
https://ctan.org/pkg/everyhook (last accessed
August 2019).

Google. Google Noto fonts, 2017. https:
//google.com/get/noto (last accessed August
2019).

[5] D. E. Knuth. The TgXbook. Addison-Wesley,
Boston, MA, USA, 1986.

[6] W. Lemberg. CJK, April 2015. Package
documentation. https://ctan.org/pkg/cjk (last
accessed August 2019).

L. Liu and Q. Lee. zeCJK 7%l (in Chinese),
April 2018. Package documentation. https:
//ctan.org/pkg/xecjk (last accessed August
2019).

[8] K. Nakano, Japanese TEX Development
Community, and TTK. About pIATEX 2¢,
September 2018. Package documentation.
https://ctan.org/pkg/platex (last accessed
August 2019).

[9] K. Nakano, Japanese TEX Development
Community, and TTK. About upIATEX 2¢,
April 2018. Package documentation. https:
//ctan.org/pkg/uplatex (last accessed August
2019).

[10] H. Okumura. pTEX and Japanese typesetting.
The Asian Journal of TEX 2(1):43-51, April 2008.
http://ajt.ktug.org/2008/0201okumura. pdf

[4

[7

TUGboat, Volume 40 (2019), No. 2

[11] J. Plaice and Y. Haralambous. The latest
developments in Q. TUGboat 17(2):181-183,
June 1996. https://tug.org/TUGboat/tb17-2/
tbblplaice.pdf

[12] W. Robertson. The fontspec package — Font
selection for XHIATEX and LualATEX, July 2018.
Package documentation.
https://ctan.org/pkg/fontspec (last accessed
August 2019).

[13] The LuaTgX-ja project team. The LuaTpX-ja
package, November 2018. Package documentation.
https://ctan.org/pkg/luatexja (last accessed
August 2019).

[14] K. Un. $t22te] Z43o] (in Korean), April 2005.
Package documentation. https://ctan.org/pkg/
hlatex (last accessed August 2019).

[15] B. Veytsman. Splitting Long Sequences
of Letters (DNA, RNA, Proteins, etc.),

August 2006. Package documentation.
https://ctan.org/pkg/seqsplit (last accessed
August 2019).

[16] T. Yato. BXcjkjatype package, August 2013.
Package documentation. https://ctan.org/pkg/
bxcjkjatype (last accessed August 2019).

Permissions

The placeholder text used in the various illustrations
of this article is in the public domain as detailed
below.

Figure 1: the placeholder text is the two first
paragraphs of Article 8 of the Chinese constitution
(1947), written in traditional Chinese.

Figure 2: the placeholder text is the first para-
graph of the Japanese constitution (1946), followed
by the first few words of the corresponding official
English translation.

Figure 3: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946), followed by the corresponding official
English translation.

Figure 4: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946), followed by the first paragraph of Ar-
ticle 76 of the South Korean constitution (1988).

Figure 5: the placeholder text is the first sen-
tence of the first paragraph of the Japanese consti-
tution (1946).

¢ Antoine Bossard
Graduate School of Science
Kanagawa University
2946 Tsuchiya, Hiratsuka
Kanagawa 259-1293
Japan
abossard (at) kanagawa-u dot ac dot jp

201

A glance at CJK support with X#TEX and LuaTEX

