
38 TUGboat, Volume 40 (2019), No. 1

Bringing world scripts to LuaTEX: The
HarfBuzz experiment

Khaled Hosny

1 HarfBuzz

Unicode includes thousands of characters and hun-
dreds of scripts,1 but inclusion in Unicode is just
the start. Proper support for many of them is a
much more involved process. (Figure 1 shows a few
examples.)

To aid Unicode, there is a need for smart fonts;
fonts that are not merely collections of glyphs. TEX’s
TFM fonts are a kind of smart fonts, as they contain
rules for making ligatures based on certain contexts;
but meeting the needs of the world scripts requires
more than ligatures. These needs lead to the devel-
opment of several font and layout technologies that
can fulfil them.

One of these technologies is OpenType,2 which
is widely supported on major operating systems and
applications, making it the de facto standard for
Unicode text layout. Others include Apple Advanced
Typography3 (AAT) and Graphite.4

The text layout process can be seen as several
successive steps. One particularly interesting and
rather complex step is called shaping, which basically
involves taking chunks of characters that have some
common properties (such as having the same font,
same direction, same script, and same language) and
converting them into positioned font glyphs. A piece
of software that does this is often called a shaper.

In OpenType the knowledge needed for proper
shaping of a given script is split between the shapers
and the fonts; a script-specific shaper has embedded
knowledge about a certain script (or group of related
scripts), and the fonts provide font-specific data that
complements the knowledge embedded in the shaper.

One of the widely used OpenType implementa-
tions is HarfBuzz,5 which identifies itself as a text
shaping library. Although HarfBuzz was initially
only an OpenType shaping engine, it now supports
AAT and Graphite as well. HarfBuzz is an open
source library under active development.

2 LuaTEX

LuaTEX is an extended TEX engine with Lua as an
embedded scripting language. LuaTEX also supports

1 Unicode 12.0 has a total of 137,929 characters and 150
scripts: unicode.org/versions/Unicode12.0.0

2 docs.microsoft.com/en-us/typography/opentype
3 developer.apple.com/fonts/

TrueType-Reference-Manual/RM06/Chap6AATIntro.html
4 graphite.sil.org
5 harfbuzz.github.io

Arabic ȼόرŉϑ �ņ� Bengali ক্র7��

Devanagari क्रɷ�ʌ Gujarati ક્રɴ�ʀ

Gurmukhi ਕ੍ਰਰ੍4� Kannada ಕ್ರÍ\

Malayalam �കര്കി Myanmar Ŵ�ာ်È�ီး

Oriya କ୍ରକý Sinhala J�

Tamil /�ோ Telugu క్రÈǖ

Figure 1: Sample texts from some of the world’s
scripts.

ȊűرلاطȧŲعƭŲلاǦŴدǙŵر:دȧŲعƭŲراعƘű

�
�

�����
�

��
�

��������:��
�

��
�

����
�

Figure 2: Aref Ruqaa font as rendered with HarfBuzz
integration (above) and luaotfload (below).

Unicode text, among other things. The LuaTEX
philosophy is that it provides solutions, not answers,
so it does not come with an extended text layout
engine, and instead provides hooks to its internals
so that its users (or macro packages) can extend it
as they see fit.

While this is a worthwhile goal, in practice writ-
ing a text layout engine for the Unicode age is a
complex and demanding task, and takes many person-
years to develop. On top of that, it is a moving target
as Unicode keeps adding more scripts (both living
and dead) and font technologies keep evolving as the
problems at hand become better understood,6 and
it takes quite some effort to remain on top of this.

This has led to having only one mature and
feature-full text layout engine for LuaTEX, written
purely in Lua by the ConTEXt team. This engine
is made available to LATEX users via the luaotfload
package as well. It is a fast and flexible engine, and
has many interesting features. But it falls short
of supporting all scripts in Unicode. Even for the
scripts it supports, some fonts might not work well
when they utilize rarely used parts of OpenType that
the ConTEXt team might not have had a chance to
test (figure 2).

HarfBuzz, on the other hand, is considerably
more widely used, tested, and exposed to all sorts of

6 For example, OpenType had an initial model for shaping
Indic scripts, which was later found to be inadequate and a
new model was developed (keeping the old model for backward
compatibility). Later, a new, more extensible model, called
Universal Shaping Engine, was developed to handle many
Indic and non-Indic scripts.

Khaled Hosny



TUGboat, Volume 40 (2019), No. 1 39

tricky and complex fonts.7 It also has a larger team
of dedicated developers that have spent many years
enhancing and fine-tuning it.8

3 Integrating HarfBuzz with LuaTEX

Integrating HarfBuzz with LuaTEX would bring the
benefits of HarfBuzz without giving up the capabili-
ties of LuaTEX. There have been several attempts
to do this, including the one that is going to be
discussed here in some detail.

The basic idea is rather simple: get the text
from LuaTEX, shape it with HarfBuzz, and then
feed the result back to LuaTEX.

LuaTEX provides hooks, called callbacks, that
allow modifying its internals and adding code to be
executed when LuaTEX is about to do certain tasks.

HarfBuzz provides a C API and there are several
ways to call such an API from LuaTEX; each has its
pros and cons:

FFI Originally part of LuaJIT, but available now
for regular LuaTEX as well, this allows binding
C APIs without the need for writing separate
bindings in C. However, it requires duplicating
the C headers of the library inside the Lua code.
Using FFI in LuaTEX requires using the less-safe
--shell-escape command-line option.

Loadable Lua C modules Written in C, this uses
the Lua C API for interacting with the Lua
interpreter; it can link to any library with a C
API (either dynamically or statically). It can
be dynamically loaded at runtime like any Lua
module (e.g. using require), but it is not as
well supported by LuaTEX on all platforms.

Built-in Lua C modules Instead of dynamically
loading Lua C modules at runtime, they can be
statically linked into the LuaTEX binary, making
them work on all platforms. This however, re-
quires either building a new independent engine
based on LuaTEX, or convincing the LuaTEX
team to include the new module.

Making a loadable Lua C module was chosen
for this experiment, utilizing the existing luaharf-
buzz project9 and extending it as needed to expose
additional HarfBuzz APIs.

In addition to the luaharfbuzz module, additional
Lua code is needed to extract input from LuaTEX,

7 HarfBuzz is used by Mozilla Firefox, Google Chrome,
ChromeOS, GNOME, LibreOffice, Android, some versions of
Adobe products and many open source libraries, not to men-
tion X ETEX; in all, it has billions of users.

8 HarfBuzz started its life around the year 2000 as the
OpenType layout code of the FreeType 1 library, long before
it was named HarfBuzz.

9 github.com/ufyTeX/luaharfbuzz by Deepak Jois

feed it to HarfBuzz and back to LuaTEX, and do any
conversion and processing necessary for both input
and output to be in the form that both ends can
utilize.

4 Loading fonts

LuaTEX’s define_font callback allows for overrid-
ing the internal handling of the \font primitive,
which can be used to extend the syntax as well as to
load additional font formats beyond what LuaTEX
natively supports. Although HarfBuzz is not specifi-
cally a font loading library, it provides APIs to get
enough information for LuaTEX to use the font.

HarfBuzz’s font loading functions support only
fonts using the SFNT container format,10 which ba-
sically means it supports OpenType fonts (and by
extension TrueType fonts, which are a subset of
OpenType). It is possible to support other formats
by using the FreeType library11 to load the fonts in-
stead of HarfBuzz’s own font loading functions, but
for the sake of simplicity and to avoid depending on
another library this was not attempted. In practice
(outside of the TEX world, that is) all new fonts are
essentially SFNT fonts of some sort.

Font data in SFNT containers are organized into
different tables. Each table serves a specific purpose
(or several purposes) and has a tag that identifies it.
For example, the name table contains various font
names, the cmap table maps Unicode characters to
font glyphs, and so on.

The LuaTEX manual describes the structure
that should be returned by this callback. Basically,
some information about the font is needed, plus some
information about the glyphs in the font.

4.1 Loading font-wide data

Loading most font-wide data (font names, format,
etc.) is straightforward since HarfBuzz has APIs that
expose such information.

There are two main OpenType font flavours
based on what kind of Bézier curves is used to de-
scribe glyph shapes in the font; cubic Bézier curves
(also called PostScript curves, as these are the kind
of curves used in PostScript fonts), and quadratic
curves (also called TrueType curves, as these are the
kind of curves used in TrueType fonts). The main
difference between the two is the glyph shapes table:
cubic curves use the CFF table, while quadratics use
the glyf and loca tables.

LuaTEX wants the format to be indicated in the
font structure returned by the callback (possibly to
decide which glyph shapes table to look for, though

10 en.wikipedia.org/wiki/SFNT
11 freetype.org

Bringing world scripts to LuaTEX: The HarfBuzz experiment



40 TUGboat, Volume 40 (2019), No. 1

Figure 3: Random Unicode emojis using Noto Color
Emoji font which embeds bitmap PNGs instead of
outline glyphs. (Grayscaled in the print version.)

that seems redundant as it can easily detect it itself).
It is easy to determine the format by checking which
tables are present in the font, so that is not an
issue. However, there is now a different OpenType
flavour that does not include any of these tables
and instead uses different tables that embed colored
glyph bitmaps (used mainly for colored emoji; a few
are shown in figure 3). LuaTEX does not support
embedding such fonts in PDF files. To work around
this, such fonts are identified during font loading,
and during shaping (see below) this is detected, and
the PNG bitmaps for font glyphs are extracted and
embedded as graphics in the document, avoiding the
need for including the font itself in the PDF.

4.2 Loading glyph data

Other than font-wide data, LuaTEX also wants to
know some information about the font glyphs. Ide-
ally, such information should be queried only when
the glyphs are actually being used, and OpenType ta-
bles are carefully structured to allow for fast loading
of any needed glyph information on demand without
having to parse the whole font (which can be time
consuming, especially for large CJK fonts contain-
ing tens of thousands of glyphs). However, the way
things are structured in LuaTEX requires loading all
basic glyph information up front. Thankfully, Harf-
Buzz’s font loading is fast enough that the slowness
implicit in loading all required glyph information is
not a critical problem.

Although it is theoretically possible not to load
any glyphs initially, but wait until after shaping
and update the font with information about glyphs
that were actually used, this would be very slow
as it would happen thousands of times, requiring
recreating the LuaTEX font each time a new glyph
is used. Also, in my experiments, sometimes glyphs
would fail to show in the final document if they
weren’t loaded when the font was initially created.

LuaTEX requires all glyphs in the font to have a
corresponding character (the font structure seems to
make no distinction between characters and glyphs),
but not all glyphs in the font are mapped to Unicode
characters (some glyphs are only used after glyph

substitutions, e.g. ligatures and small caps). To
work around this, pseudo-Unicode code points are
assigned to each glyph; LuaTEX characters are full 32-
bit numbers, but Unicode is limited to 21-bit values
(no code point larger than this will ever be used by
Unicode, for compatibility reasons), so the trick is
to use the glyph index in the font and then prefix it
by 0x110000 (the maximum possible Unicode code
point + 1), thus keeping LuaTEX happy by having a
character assigned to each glyph. This way any glyph
in the font can be accessed by LuaTEX, while not
clashing with any valid code point. The downside of
this is that any LuaTEX message that tries to print
font characters (like overfull box messages) will show
meaningless bytes instead. LuaTEX has callbacks
that could be used to potentially fix this.

Some font-wide data like ascent, descent and cap-
height do not have corresponding entries in LuaTEX
fonts and LuaTEX checks instead for the metrics of
hard-coded set of characters to derive this informa-
tion from. To work around this, and since we don’t
provide any entries for real characters, we can create
fake entries for these characters using the font-wide
data instead of the actual character metrics.

Math fonts seem to be tricky as some of the infor-
mation LuaTEX requires is not exposed by HarfBuzz
in a way that can easily be used at font loading time.
For example, HarfBuzz has an API to get the math
kerning between a pair of glyphs at given positions,
but LuaTEX wants the raw math kerning data from
the font to do the calculation itself. Handling this
properly would require changes to either HarfBuzz
or LuaTEX.

5 Shaping

For shaping there are basically two problems to solve:
converting LuaTEX’s text representation into some-
thing that can be fed to HarfBuzz, and converting
HarfBuzz output to a form that can be given back
to LuaTEX.

5.1 Converting LuaTEX nodes to
text strings

LuaTEX’s default text layout can be overridden with
the pre_linebreak_filter and hpack_filter call-
backs. They are called right before LuaTEX is ready
to break lines into a paragraph, which is just the
right moment to shape the text.

By the time the callbacks are called, LuaTEX
has converted its input into a list of nodes. Nodes
represent different items of the LuaTEX input. Some
represent characters/glyphs, some represent glue,
while others represent kerning, etc.; there are also

Khaled Hosny



TUGboat, Volume 40 (2019), No. 1 41

modes for non-textual material like graphics and
PDF literals.

HarfBuzz, on the other hand, takes as input
strings of Unicode characters, in the form of UTF-8,
UTF-16 or UTF-32 text strings, or an array of num-
bers representing Unicode code points.

Converting character nodes is straightforward;
the characters they represent are inserted into the
text string. Glue nodes are converted to Space
(U+0020), and discretionary hyphenation nodes are
converted to Soft Hyphen (U+00AD). Any other
node is converted to Object Replacement Char-
acter (U+FFFC), which serves as a placeholder
that does not usually interact with other characters
during shaping, but its presence helps with later
converting the HarfBuzz output to LuaTEX nodes.

Now the text is almost ready to be fed to Harf-
Buzz, but not quite: first it needs to be “itemized”.
HarfBuzz takes as input a contiguous run of char-
acters that use the same font and have the same
Unicode script, text direction, and language.

Font itemization is grouping together any con-
tiguous run of character nodes that use the same
font, along with any intervening non-character nodes
(so that glue nodes, for example, are shaped with the
text they belong to).

The same goes for Unicode script itemization,
except that this depends on the Unicode Character
Database,12 which collects many Unicode character
properties, including their scripts (HarfBuzz has an
API to access these properties). Some characters
don’t have an explicit script property, though. Some
characters have the script property Inherit and these,
as you might guess, inherit the script of the preceding
character (they are usually combining marks, like
accents). Others have the script property Common,
and they take the script of the surrounding text
(they are usually characters that do not belong to a
specific script, like common punctuation characters).
Unicode Standard Annex #24 describes a heuristic13

to handle common characters which suggests special
handling of paired characters (e.g. parentheses) so
that matching ones get assigned the same script.

Text direction itemization requires first applying
the Unicode Bidirectional Algorithm,14 but this was
out of scope for this experiment, so users are expected
to mark right-to-left segments of the text manually
using LuaTEX’s direction primitives, and the code
uses this to determine the direction of the text.

12 unicode.org/ucd
13 unicode.org/reports/tr24/#Common
14 unicode.org/reports/tr9

٠١٢٣١يًٌٍَُِّْٟٜٕٖٝٞٛٚ٘ٙٗٔٓىوهنملكق
ّلِلُدمَۡحلۡؾ؞ ّرلؾ؞٢َ߃߂ِمَلَ࣏࣎عۡلؾ؞أِّآَرِهَ ّرلؾ؞ڛِښَ࣏࣎محَۡ ّ࠳࠲Ž؟؞٤ِِّ݂ܷܸ݃دلؾ؞مِۡوَٷٵكِِلَ࣏࣎م٣مِےېحَِ َكاَ
ّ࠳࠲Žࢤ؞َوُدُڀٽۡعَٺٵ ٱَٰمَۡعۡٺٵԻ؛َؚِ݂ܷܸ݃ࡘࡗَّلؾ؞طََٰرِص٦َمےېِڍڌَڃٽسُۡمۡلؾ؞طََٰرِّصلؾ؞اَ࠶࠰ِدۡهؾ؞٥ُ߃߂ِعَڃٽسََ݄ۡ݉كاَ

٧َ߃߂ِّلاۤڥَّڤلؾ؞اَلَومِۡهَۡ࢘لَعأِآوڥُڤۡٯٮَمۡلؾ؞ِرۡݐݎَࠊࠉمِۡهَۡ࢘لَع
Figure 4: Text using Amiri Quran Colored font which
uses colored glyph layers to make a distinction between
the consonantal text and the later developments of
the Arabic script. Black for the base consonants (they
just use the text color), dark red for diacritical dots
and vowel marks, golden yellow for hamzah, and pale
green for non-textual elements like the “circled” āyah
numbers. (The print version is grayscaled.)

5.2 Shaping with HarfBuzz

After feeding the input text to HarfBuzz and getting
back output, some post-processing is needed.

Some OpenType flavours contain only bitmaps
for glyphs (in the CBDT table15), not outlines; LuaTEX
doesn’t know how to embed such fonts in PDF files.
These fonts are detected during font loading, and
after shaping, the PNG data of such glyphs is ex-
tracted using HarfBuzz, then saved to temporary
files and finally embedded as graphics in LuaTEX’s
node list (it would be better to skip the temporary
files step, but there wasn’t any obvious way to do
this in LuaTEX). This way the font can be used with
LuaTEX without having to actually embed it in the
PDF output.

There are also layered color fonts (see figure 4),
where the font contains, in addition to regular outline
glyphs, a table (COLR16) that maps some glyphs to
layers (composed of other glyphs) and color indices,
and another table (CPAL17) that specifies the colors
for each color index. Since LuaTEX doesn’t keep
these tables in the font when embedding it into the
PDF file (and even if it did, PDF viewers and other
PDF workflows are unlikely to handle them), instead
the glyphs are decomposed into layers using the
relevant HarfBuzz API and the corresponding colors
are added using the regular PDF mechanisms for
coloring text. (Color transparency is not handled,
though, as it requires support from macro packages
to manage PDF resources.)

15 docs.microsoft.com/en-us/typography/opentype/

spec/cbdt
16 docs.microsoft.com/en-us/typography/opentype/

spec/colr
17 docs.microsoft.com/en-us/typography/opentype/

spec/cpal

Bringing world scripts to LuaTEX: The HarfBuzz experiment



42 TUGboat, Volume 40 (2019), No. 1

5.3 Converting HarfBuzz glyphs to
LuaTEX nodes

HarfBuzz outputs positioned glyphs. Output glyph
information includes things such as the glyph index
in the font and the index of the character it cor-
responds to in the input string (called cluster by
HarfBuzz). Glyph positions tell how a given glyph
is positioned relative to the previous one, in both X
and Y directions (called offset by HarfBuzz), as well
as how much the line should advance after this glyph
in both directions (called advance by HarfBuzz, but
unlike offsets, only one direction is active at a time,
so for horizontal layout the Y advance will always
be zero, and for vertical layout the X advance will
be zero).

To feed HarfBuzz output back into LuaTEX,
a new node list based on the original needs to be
synthesized. Using the HarfBuzz cluster of each
output glyph to identify the node from the original
list that this glyph belongs to, we can re-use it in
the new list, thus preserving any LuaTEX attributes
and properties of the original node.

Character nodes The original node is turned into
a glyph node, using the glyph index + 0x110000
as its character (see font loading section above
for explanation). If more than one glyph belongs
to this node, each gets copied as needed and
inserted into the node list, so that all the glyphs
inherit the properties of the original node. If
the advance width of the glyph is different from
the font width of the glyph, a kern node is also
inserted (after the glyph for left-to-right text,
and before it for right-to-left text).

Glue nodes The advance width of the output glyph
is used to set the natural width of the glue. This
way fonts can have OpenType rules that change
the width of the space (e.g. some fonts use a
narrower space for Arabic text than for Latin,
some fonts kern the space when followed by
certain glyphs, and so on).

Discretionary hyphenation nodes The existing
pre-line breaking, post-line breaking and replace-
ment node lists18 of the original node need to
be shaped as well. Special handling is needed
when characters around a discretionary hyphen
form a ligature; when no line breaking happens
at that discretionary hyphen then the ligature
needs to be kept intact, but when line breaking
does happen the text should be shaped as if a
real hyphen had been there from the start.

LuaTEX handles this with a replacement

node list which contains the nodes that should
18 See LuaTEX manual for detailed explanation of these.

office coffee HAVANA
of-
fice
cof-
fee
HA-
VANA
Figure 5: Ligatures and kerning are formed correctly
around discretionary hyphens, when no line breaking
happens, and correctly broken at line breaks.

appear if no line breaking happens, and a pre

node list that contain what comes before a line
break, and post for what comes after it. Since
ligatures can’t just be cut into parts, the text
needs to be shaped two times: once with the
whole text without a hyphen, and once with the
text split into two parts and a hyphen inserted
at the end of the first part. It would be very
inefficient to reshape the whole paragraph in
this manner, and it would also be impractical to
store full paragraphs in replacement, pre, and
post node lists.

One solution is to reshape just the ligature,
but sometimes the shaping output can be dif-
ferent based on the surrounding characters, so
cutting the ligature out and shaping it all by
itself can produce the wrong result. Fortunately,
HarfBuzz has a flag attached to output glyphs
that says whether breaking the text before this
glyph and shaping each part separately would
give the same output or not. We use this flag
to find the smallest part of the text that is safe
to reshape separately from the rest of the para-
graph, starting from the discretionary hyphen,
and re-shape only that part. (See figure 5.)

Characters that are not supported by the font
are ignored by TEX (no output is shown in the type-
set document), and by default only a message is
printed in the log file. This is a bit unfortunate as it
can be easily missed. With HarfBuzz, unsupported
characters return glyph index zero (often named as
the .notdef glyph), which is usually a box glyph
and sometimes has an X inside it to mark unsup-
ported characters. The code will thus insert this
glyph into the node list, and since this will effectively
disable the missing character messages that LuaTEX
outputs, the code emulates LuaTEX behaviour and
outputs such messages itself. One side effect of using
glyph zero is that even though the character is not
shown, the text is preserved in the PDF file and can
be searched or copied.

Khaled Hosny



TUGboat, Volume 40 (2019), No. 1 43

5.4 Handling text extraction from PDF

To extract text from a PDF file (e.g. copying or
searching), the PDF viewer needs to know how to
reverse map glyphs back to Unicode characters. The
simplest way to do this is to set the mapping in the
font’s /ToUnicode dictionary, which can handle one-
to-one and one-to-many glyph to character mappings
(i.e. simple glyphs and ligatures).

Getting one-to-one glyph to character mappings
can be partially done at font loading time by revers-
ing the font’s cmap table. This, however, covers only
glyphs that are mapped directly from Unicode char-
acters. In OpenType, not all glyphs are mapped this
way, for example, small cap glyphs are not mapped
directly from Unicode characters as they are only acti-
vated when a certain font feature is on (the characters
are first mapped to regular lowercase glyphs, then a
small caps feature maps those to small cap glyphs),
and detecting what characters they came from can
happen only after shaping.19 Because of this, there
is still a need to modify the fonts after shaping each
part of the text, to update the ToUnicode values for
each glyph, and for large documents this is rather
slow.

Furthermore, /ToUnicode can’t handle all cases.
With HarfBuzz there can be glyph-to-character re-
lationships that are any of one-to-one, one-to-many,
many-to-one and many-to-many. With /ToUnicode

the first two can be handled, but the last two can’t.
Also, the /ToUnicode mapping is required to be
unique for each glyph; the same glyph can’t be used
for different Unicode characters, but that is a possi-
bility in OpenType and other modern font formats.

Fortunately there is another, more general, mech-
anism in PDF; the /ActualText spans, which can
enclose any number of glyphs and represent any num-
ber of characters (not all PDF viewers support them,
though, but we can’t help that).

After shaping, HarfBuzz clusters are used to
group glyphs that belong to one or more charac-
ters and that information is stored in the node list.
Then, after line breaking, /ActualText spans are
added for any group that can’t be represented in the
/ToUnicode dictionary. This is done after line break-
ing (in the post_linebreak_filter callback) since
there are many restrictions on the kind of nodes
that can appear in the node lists of discretionary
hyphenation nodes.

19 The alternative would be to decode the font features and
parse them, which requires a substantial effort and would still
not handle all cases since features can do different things for
different scripts and languages, and there might be more than
one way to arrive at the same glyph.

6 Conclusion

Integrating HarfBuzz with LuaTEX is possible and
can bring many benefits to LuaTEX and enable more
users to enjoy its capabilities. There are some tech-
nical issues to solve and rough edges to round, but
nothing that would substantially prevent such inte-
gration.

The code described here was made possible
thanks to generous support from the TUG devel-
opment fund (tug.org/tc/devfund). The code and
the required luaharfbuzz module are available at:

github.com/khaledhosny/harf

github.com/ufyTeX/luaharfbuzz

� Khaled Hosny
github.com/khaledhosny

Bringing world scripts to LuaTEX: The HarfBuzz experiment


