
122 TUGboat, Volume 39 (2018), No. 2

Arara — TEX automation made easy

Paulo Roberto Massa Cereda

Abstract

This article covers a bit of history behind arara, the
cool TEX automation tool, from the earlier stages of
development to the new 4.0 series. We also highlight
some noteworthy features of our tool.

1 Introduction

Writing software is easy. Writing good software is
extremely difficult. I was working on a Catholic
songbook with 1200+ songs and several indices and
cross-references. The compilation steps required to
achieve the final result were getting out of hand.

At some point, I realized I knew all the steps I
had to reproduce beforehand, I only had to find a way
to automate them! Inspired by the way compilers
work (i.e., read a source file, ignore all comments
and process the rest), I could exploit TEX comments
to include special indications on what to do on the
document. Since engines do ignore comments, no
side effects would arise, at least document-wise.

It was a cold afternoon. I sat in front of my
computer and decided to work on this new tool.
It was a matter of time to reach preliminary yet
promising results. I mentioned this effort in the chat
room of the TEX community at StackExchange and
some friends asked me to make a public release out
of it, as other users could benefit from this new tool.

However, a name was needed for the tool. In
the chat room, we used to have a lot of fun with
palindromes (especially palindromic reputations in
arbitrary bases), so I took that aspect as inspiration.
Then I thought of a very beautiful, colourful bird of
the Brazilian fauna: the macaw, or as we like to call
it, the arara. The name was immediately adopted!

Once the name was chosen, I needed a logo.
Since I am a Fedora Linux user, I was always a fan
of their default typeface, which is quite round! The
choice was made: the humble arara tool became
arara ! (But we’ll use the more subdued arara in
regular text.) My life was about to change.

2 A bit of history

A lot of things have happened since version 1.0, re-
leased in 2012, to the new version 4.0, released in
2018. This section presents a bit of history of arara,
including challenges in each version.

2.1 The first version

There is a famous quote along the lines of “If at
first you do not succeed, call it version 1.0.” The
first version of arara was also the first public release,

dated April 2012. Nothing much was there, besides
the core concepts that still exist today:

• Rules: a rule is a formal description of how arara
handles a certain task. It tells the tool how to
do something.

• Directives: A directive is a special comment
inserted in the source file in which you indicate
how arara should behave.

Back then, we could write directives in our doc-
ument and have the tool process them as expected,
like the following example:

% arara: pdftex

Hello world!

\bye

Amusingly, the first version offered only a log
output as an additional feature. There was no ver-
bose mode. The log file was a gathering of streams
(error and output) from the sequence of commands
specified through directives. And that was it.

2.2 The second version

The first version had a serious drawback: compilation
feedback was not in real time and, consequently, no
user input was allowed. For the second version, real
time feedback was introduced when the tool was
executed in verbose mode.

$ arara -v mydoc.tex

... [real time feedback] ...

Two other features were included in this version:
a flag to set an overall execution timeout, in millisec-
onds, as a means to prevent a potentially infinite
execution, and a special variable in the rule context
for handling cross-platform operations.

2.3 The third version

So far, arara was only a tiny project with a very
restricted user base. However, for version 3.0, a
qualitative goal was reached: the tool became inter-
national, with localised messages in English, Brazil-
ian Portuguese, German, Italian, Spanish, French,
Turkish and Russian. Further, new features such as
configuration file support and rule methods brought
arara to new heights. As a direct consequence, the
lines of code virtually doubled from previous releases.

$ arara --help -L es

...

-h,--help imprime el mensaje de ayuda

-l,--log genera el registro de la salida

...

When the counter stopped at version 3.0, Brent
Longborough, Marco Daniel and I decided it was
time for arara to graduate and finally be released in
TEX Live. Then things really changed in my life. The

Paulo Roberto Massa Cereda

TUGboat, Volume 39 (2018), No. 2 123

tool was a success! Given the worldwide coverage of
that TEX distribution, arara silently became part of
the daily typographic tool belt of many users. But
then, the inevitable happened: a lot of bugs emerged
from the dark depths of my humble code.

2.4 Critical and blocker bugs

Suddenly, several questions about arara were posted
in the TEX community at StackExchange and I was
not able to provide a consistent, definitive answer
for many of them! It was very tricky to track the
bugs to their sources, and some of them were really
nasty. For instance, a simple scenario of a file with
spaces in the name was more than enough to make
the poor tool cry for help for apparently no reason:

$ arara "My PhD thesis.tex"

Likewise, the issues page of the project repos-
itory hosted at GitHub had a plethora of reports,
and little could I do about them. I delved into the
code of third party libraries, but the root of all evil
seemed to lie in my own sources.

2.5 Nightingale

In all seriousness, I was about to give up. My code
was not awful, but there were a couple of critical
and blocking bugs. Something very drastic had to
be done in order to put arara back on track. Then,
proceeding on faith, I decided to rewrite the tool
entirely from scratch. In order to achieve this goal,
I created a sandbox and started working on the
new code. And this new project got a proper name:
nightingale.

It was the right thing to do. Nicola Talbot
helped me with the new version, writing code, fixing
bugs and suggesting new features. She was writing
a book about LATEX for administrative work at the
time and was extensively using arara in the code
examples. Her writing indirectly became my writing
as well, as I progressively improved the code and
added new features to match her suggestions.

2.6 The fourth version

At some point, nightingale had to say farewell and
gave most of its features to the bigger, older bird
in the nest. It is worth mentioning that nightingale
still lives in my repository at GitHub for those who
are bold enough to try it. From 1500+ lines of
code in version 3.0, arara 4.0 tripled that number: a
whopping 4500+ lines of code! And, most important:
all critical and blocking bugs were completely fixed.

However, although the code was ready for pro-
duction, the user manual was far from being finished.
In fact, the documentation had to be written entirely
from scratch. Then another saga started: find proper

time and effort to document a great yet complex tool
in all details, from user to developer perspectives.

It took me a lot of dedication to write the user
manual and try to cover as much detail as possible
for every feature, old and new, and the tool itself.
Some of the internals had to be changed, so more
explanations were needed. Documenting a tool is
almost as difficult as writing code for it!

3 New features

This section highlights some noteworthy features
found in the new version 4.0 of arara. For additional
information, please refer to our user manual.

3.1 REPL work flow

In version 4.0, arara employs a REPL (read-evaluate-
print loop) work flow for rules and directives. In
previous versions, directives were extracted, their
corresponding rules were analyzed, commands were
built and added to a queue before any proper exe-
cution or evaluation. I decided to change this work
flow, so now arara evaluates each rule on demand,
i.e., there is no a priori checking. A rule will al-
ways reflect the current state, including potential
side effects from previously executed rules.

3.2 Multiline directives

Sometimes, directives can span several source lines,
particularly those with several parameters. From
arara 4.0 on, we can split a directive into multiple
lines by using the arara: --> mark on each line
which should comprise the directive. We call it a
multiline directive. Let us see an example:

% arara: pdflatex: {

% arara: --> shell: yes,

% arara: --> synctex: yes

% arara: --> }

It is important to observe that there is no need
for them to be on contiguous lines in the source
file, i.e., provided that the syntax for parameterized
directives holds for the line composition, lines can
be distributed all over the code. The log file (when
enabled) will contain a list of all line numbers that
made up a directive.

3.3 Directive conditionals

arara 4.0 provides logical expressions, written in the
MVEL language, and special operators processed at
runtime in order to determine whether and how a
directive should be processed. This feature is named
directive conditional, or simply conditional for short.
The following list describes all conditional operators
available in the directive context.

Arara — TEX automation made easy

124 TUGboat, Volume 39 (2018), No. 2

• if: The associated MVEL expression is evalu-
ated beforehand, and the directive is interpreted
if, and only if, the result of such evaluation is
true. This directive, when the conditional holds
true, is executed at most once.

% arara: pdflatex if missing(’pdf’)

% arara: --> || changed(’tex’)

• unless: Same as if but the condition test is
inverted.

% arara: pdflatex unless unchanged(’tex’)

% arara: --> && exists(’pdf’)

• until: The directive is interpreted the first time,
then the associated MVEL expression evaluation
is done. As long as the result holds false, the
directive is reinterpreted. There is no guarantee
of halting.

% arara: pdflatex until !found(’log’,

% arara: --> ’undefined references’)

• while: Same as until but the condition test is
inverted.

% arara: pdflatex while missing(’pdf’)

% arara: --> || found(’log’, ’undefined

% arara: --> references’)

Although there is no conceptual guarantee for
proper halting of unbounded loops, we have provided
a practical solution to potentially infinite iterations:
arara has a predefined maximum number of loops.
The default value is 10, but it can be overridden
either in the configuration file or on the command
line.

3.4 Directive extraction only in the header

The --header command line option changes the
mechanics of how arara extracts the directives from
the code. The tool always reads the entire file and
extracts every single directive found throughout the
code. However, by activating this switch, arara will
extract all directives from the beginning of the file
until it reaches a line that is not empty and is not
a comment (hence the option name). Consider the
following example:

% arara: pdftex

Hello world.

\bye

% arara: pdftex

When running arara without the --header op-
tion, two directives will be extracted (on lines 1
and 4). However, if executed with this switch, the
tool will only extract one directive (from line 1), as it
will stop the extraction process as soon as it reaches
line 2.

3.5 Dry-run execution

The --dry-run command line option makes arara
go through all the motions of running tasks and
subtasks, but with no actual calls. This is useful for
testing the sequence of underlying system commands
to be performed on a file.

[DR] (PDFLaTeX) PDFLaTeX engine

--

Authors: Marco Daniel, Paulo Cereda

About to run: [pdflatex, hello.tex]

Note that by the rule, authors are displayed (so
they can be blamed in case anything goes wrong),
as well as the system command to be executed. It is
an interesting approach to see everything that will
happen to your document and in which order. It is
important to observe, though, that conditionals are
not evaluated in this mode.

3.6 Local configuration files

From version 4.0 on, arara provides support for local
configuration files. In this approach, a configuration
file can be located in the working directory associated
with the current execution. This directory can also
be interpreted as the one relative to the processed
file. This approach offers a project-based solution
for complex work flows, e.g., a thesis or a book.
However, arara must be executed within the working
directory, or the local configuration file lookup will
fail. Observe that this approach has the highest
lookup priority, which means that it will always
supersede a global configuration.

3.7 File hashing

arara 4.0 features four methods for file hashing in the
rule and directive scopes, presented as follows. The
file base name refers to the file name without the
associated extension.

• changed(extension): checks if the file base
name concatenated with the provided extension
has changed its checksum from last verification.

• changed(file): the very same idea as the previ-
ous method, but with a proper Java File object
instead.

• unchanged(extension): checks if the file base
name concatenated with the provided extension
is unchanged from last verification. It is the
opposite of the changed(...) method.

• unchanged(file): the very same idea as the
previous method, but with a proper Java File

object instead.

The value is stored in a database file named
arara.xml as a pair containing the full path of the
provided file and its corresponding CRC-32 hash (the

Paulo Roberto Massa Cereda

TUGboat, Volume 39 (2018), No. 2 125

database is created as needed). If the entry already
exists, the value is updated, or created otherwise.

3.8 Dialog boxes

A dialog box is a graphical control element, typically
a small window, that communicates information to
the user and prompts them for a response. arara 4.0
provides UI methods related to such interactions.
As good practice, make sure to provide descriptive
messages to be placed in dialog boxes in order to
ease and enhance the user experience.

3.9 Session

Rules are designed under the encapsulation notion,
such that direct access to the internal workings of
such structures is restricted. However, as a means
of supporting framework awareness, arara provides
a mechanism for data sharing across rule contexts,
implemented as a Session object. In practical terms,
this particular object is a global, persistent map
composed of keys and values available throughout
the entire execution.

3.10 Redesigned user interface

For arara 4.0, we redesigned the interface in order
to look more pleasant to the eye; after all, we work
with TEX and friends. Please note that the output
here is truncated to respect the column width.

__ _ _ __ __ _ _ __ __ _

/ _‘ | ’__/ _‘ | ’__/ _‘ |

| (_| | | | (_| | | | (_| |

__,_|_| __,_|_| __,_|

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

Total: 1.45 seconds

First of all, we have the nice application logo,
displayed using ASCII art. The entire layout is based
on monospaced font spacing, usually used in terminal
prompts. Hopefully you follow the conventional use
of a monospaced font in your terminal, otherwise
the visual effect will not be so pleasant. First and
foremost, arara displays details about the file being
processed, including size and modification status:

Processing ’doc.tex’ (size: 307 bytes, last

modified: 05/29/2018 08:57:30), please wait.

The list of tasks was also redesigned to be fully
justified, and each entry displays both task and sub-
task names (the former being displayed enclosed in
parentheses), besides the usual execution result:

(PDFLaTeX) PDFLaTeX engine SUCCESS

(PDFLaTeX) PDFLaTeX engine SUCCESS

If a task fails, arara will halt the entire execution
at once and immediately report back to the user.
This is an example of what a failed task looks like:

(PDFLaTeX) PDFLaTeX engine FAILURE

Also, observe that our tool displays the execu-
tion time before terminating, in seconds. The execu-
tion time has a very simple precision, as it is meant
to be easily readable, and should not be considered
for command profiling.

Total: 1.45 seconds

The tool has two execution modes: silent, which
is the default, and verbose, which prints as much
information about tasks as possible:

• When in silent mode, arara will simply display
the task and subtask names, as well as the ex-
ecution result. Nothing more is added to the
output.

• When executed in verbose mode, arara will dis-
play the underlying system command output
as well, when applied. In version 4.0 of our
tool, this mode was also entirely redesigned in
order to avoid unnecessary clutter, so it would
be easier to spot each task.

It is important to observe that, in verbose mode,
arara can offer proper interaction if the system com-
mand requires user intervention. However, in silent
mode the tool will simply discard this requirement
and the command will almost surely fail.

4 The future

Now that arara 4.0 is officially released and already
available in CTAN and TEX Live, it is time to plan
the future. Our repository already has suggestions
for new features and improvements. The work on
arara 5.0 has begun! If you have any feedback about
our tool, please drop us a note.

Also, if you believe your custom rule is com-
prehensive enough and deserves to be in the official
pack, please contact us. We will be more than happy
to discuss the inclusion of your rule in forthcoming
updates. Happy TEXing with arara!

� Paulo Roberto Massa Cereda
Analândia, São Paulo, Brazil
cereda dot paulo (at) gmail dot com

github.com/cereda/arara

Arara — TEX automation made easy

	Introduction
	A bit of history
	The first version
	The second version
	The third version
	Critical and blocker bugs
	Nightingale
	The fourth version

	New features
	REPL work flow
	Multiline directives
	Directive conditionals
	Directive extraction only in the header
	Dry-run execution
	Local configuration files
	File hashing
	Dialog boxes
	Session
	Redesigned user interface

	The future

