
TUGboat, Volume 38 (2017), No. 2 141

MFLua 0.8—Prologue

Luigi Scarso

Abstract

Reflections on the roles of TEX, LuaTEX, METAFONT

and MFLua, in the spirit of the theme of the TUG@
BachoTEX 2017 conference.

1 Introduction

The opening talk of the TUG@BachoTEX 2017 meet-
ing, given by Hans Hagen, was explicitly focused on
the theme of the conference:

Premises — the starting point, what we have, what
do we use, what has been achieved,

Predilections — how do we act now, how do we want
to act, what is important to us and what do we
miss,

Predictions — what is the future of TEX, what we’d
like to achieve and can we influence it.

Reading the draft of the proceedings, I started
to mentally note some thoughts, and later I decided
to try to organize them in a consistent way. The
original paper was supposed to be focused on the
technical details of MFLua 0.8, the new version of MF-
Lua shipped with TEX Live 2017, but I have decided
to postpone that to a future paper, preferring a more
narrative one here. I consider this a kind of prologue
that tries to explain the motivations behind LuaTEX
and MFLua — of course, from my personal point of
view.

2 Philosophy and history

Hans’ talk touched several themes, from artificial
intelligence to religion and chaos theory, viewed from
the point of view (quite popular nowadays) that
mixes “hard” science (as math, physics, information
theory, biology) with “soft” science (psychology, soci-
ology, anthropology). Curiously, philosophy is often
left out from these considerations — the thing doesn’t
disturb so much the philosophers because for them
“everything follows from philosophy” — but as a re-
sult the conclusions always look a bit too provisional.
Sometimes the mix returns a blurred image, some-
times a defined one that is already outdated by the
course of events, but seldom does a guiding principle
emerge from the past to the future; more often, the
becoming is sensed as movement that nullifies the
past and hides the future.

We can assume as indisputable at least two
“facts”: 1) the spread of global communication and
2) the mathematisation of the society. The first had
a big impulse about six hundred years ago, with
Gutenberg, but now the time required to exchange

a message is roughly several thousand times faster
than 100 years ago, and sender and recipient can be
almost anywhere — a novel situation for the human
race. The sensation that the quality of the global
communication is not high enough, the naturalness
of our act of communicating and the presumption
to know that the global communication is not so
global after all, hide from us the re-evolutionary step
forward we have made in the last 30 years: many
common people in the world can communicate easily
and cheaply. The distinction between synchronous
and asynchronous communication, as also between
human agent and artificial agent, is irrelevant: we ex-
change knowledge on a daily basis — and knowledge
is a subject of philosophy.

The other fact is rooted in the past, some five
hundred years ago, when Galileo asserted that Na-
ture has its own language, and that it is a mathe-
matical language. Being both a mathematician and
a philosopher, Galileo understood that math is a
common language also of mankind, and his observa-
tions of Jupiter showed the disruptive power of these
facts: suddenly we (as mankind, not only a “select
few”) can understand the universe — and perhaps
we can control it. From here the process of describ-
ing Nature with the language of mathematics — the
mathematisation of Nature — started (slowly) down
its own path.

It’s a successful process. Another important
milestone (from our perspective) was reached with
Hilbert in 1900, when his second problem began
reflections on formal systems and computations. Af-
ter only 100 years (i.e., four times faster than the
previous step from Galileo), supported by the funda-
mental results by several first-class mathematicians
and logicians such as Gödel, Turing and Church,
this mathematisation process manifested a twofold
consequence.

Firstly, the transition from the initial determin-
ism to the probabilistic description of Nature. It
could be considered as completion of Hume’s reflec-
tions on causality: if at the elementary level Heisen-
berg’s uncertainty principle rules, then the Universe
cannot be completely understood (and hence con-
trolled) — or, which is the same, the future is not
completely determined from the past: we still have
chances to learn from the past to make a better
future. Secondly, by means of information theory
and computer science, math has started to come
into human society (from western society and slowly
reaching the rest of the world) in a pervasive man-
ner: not only the mechanisation and automation of
the means of production (the hard part) but the
informatisation of the services (the soft part).

MFLua 0.8 — Prologue



142 TUGboat, Volume 38 (2017), No. 2

This, again, is possible because math is a com-
mon language of mankind, and, as such, it does not
prevent the course of the global communication: the
two facts in some way reinforce each other. The
mathematisation of Nature affirms the indetermin-
ism of reality; the mathematisation of the society
tends to the determinism of its components and re-
lations. Both these tendencies reconcile themselves
into the ontology — which masked itself behind the
more fascinating term of semantic web.

3 TEX and LuaTEX

The other important assertion from Galileo about
math and Nature is the need for an alphabet of the
math language. It’s a recurring theme: classical
Greek and Latin first and English now have been the
“lingua franca” that translates our subjective, private,
internal and a-symbolic language to a common and
shareable one with fixed symbols. It’s interesting to
observe how our languages, under the pressure of
the global communication, are evolving by accepting
new visual symbols (emoticons), showing how fast a
language can adapt itself to new demands. The need
for a unified math alphabet was always secondary
to correctness of reasoning — even logic has been
somewhat timid in this area — but in the second half
of the 20th century the pressure of mathematisation
and global communication was so high that now, in
retrospect, the birth of TEX appears as obvious and
unavoidable.

TEX is the answer to the eternal question in
math: “Can we do it better?”, where the problem in
this case is the exchange of math knowledge. Without
formulas (i.e. algebra) and graphics (i.e. geometry)
pure prose is “only” philosophy. As soon as we move
to logic, the need for an alphabet emerges as the way
to avoid the ambiguity of pure prose, and to produce
compact and “portable” proofs — and from here it
spreads into math.

Different alphabets play against this need, slow-
ing down the process of mathematisation, but, on
the other hand, the same process needs new symbols
when creating new descriptions of concepts (as with
category theory) or reality. It was only by means of
Knuth that this problem found an optimal solution.
Being (for that time) a unique combination of math-
ematician, computer scientist (winner of a Turing
Award) and typographer, the solution was a macro
programming language (TEX) to write math as a
mathematician would like to, a procedural language
(METAFONT), clearly rooted in algebra and geom-
etry, to create new fonts (hence alphabets), while
a similar language (METAPOST) was developed a

bit later for graphics. Finally a “device independent”
(DVI) final format of the document, easily portable to
other formats. Another procedural language, WEB

(Pascal-based), was used to write the tex family of
programs, and this raised another problem: a pro-
gram is a mathematical proof and as such it must be
written. Literate programming was Knuth’s answer,
of course using TEX.

The distinctiveness of theorems is that they are
forever (like diamonds and extinctions): after 2500
years, the Pythagorean theorem still doesn’t show
any wear patterns. Is it the same for TEX ? Of course
the line-breaking algorithm is still valid (and that a
page-breaking algorithm is still NP) and TEX has no
known bugs (only “features”) so, if the theorem is “Is
this language correct?” for which the tex program is
the proof, we can say again yes. But is the language
still suitable for the mathematisation of the society?
How does it behave with the exponential growth of
communication?

Quite surprisingly, for a 40-year-old program,
TEX stands up well. A set of macros, LATEX, is almost
a standard de facto; the concept of literate program-
ming, not as widespread as it should be, has made
it possible to extend the program, ultimately result-
ing, after some intermediate steps, in the pdfTEX
engine. A quick look at https://arxiv.org/help/
stats/2016_by_area/index shows about one hun-
dred thousand submissions for 2016, and the rate is
increasing: most of them are in (LA)TEX and arXiv,
as well as pdfLATEX, still accepts documents that
compile to DVI. Even without taking into account
other sources, it’s wrong to conclude that the role of
TEX was and is marginal in this process.

On the other side, METAFONT, after an initial
period, was never adopted in the mainstream as such
but always subsumed by other font formats: one of
the main purposes of pdfTEX was, besides natively
supporting the PDF format, using the Type 1 font
format by Adobe, even though it lacks full support
for the more widespread TrueType format developed
by Microsoft.

The next challenge, that of the OpenType for-
mat, was taken up by X ETEX and, later, by LuaTEX.
During the first decade of the 21st century the coex-
istence of three engines was easily resolved by spe-
cializing the LATEX format (and with LuaTEX, the
ConTEXt format), apparently showing that the new
engines, ultimately, are not as significant a change
compared to the original one. The GUST team, with
the active support of almost all TEX user groups, has
managed to produce Type 1, TrueType and Open-
Type Latin Modern versions of Computer Modern

Luigi Scarso

https://arxiv.org/help/stats/2016_by_area/index
https://arxiv.org/help/stats/2016_by_area/index


TUGboat, Volume 38 (2017), No. 2 143

using METAPOST and AFDKO (Adobe Font Devel-
opment Kit for OpenType), and later FontForge,
safeguarding the ability to create new alphabets.

As mentioned, apparently these were minor ad-
justments of Knuth’s solution but, under the surface,
they reveal a lack of being able to keep up with
the environment. Right from the start, the global
communication pushed TEX to interact with other
languages, going outside the realm of math symbols
and “standard” English (i.e. that used in scientific
publications). The hyphenation capability of TEX
was the answer but the Unicode standard and Open-
Type demand greater flexibility and, outside TEX,
WEB and METAFONT, are simply ignored. Ω and
NTS tried to create a new starting point, but perhaps
they used an abstract-to-concrete approach which
led to overwhelming complexity.

LuaTEX was something different. The pragmatic
approach of “implementation-over-specification”, the
incremental update cycle (always release a runnable
program, even if incomplete or with known bugs) and
the “extend (not replace!) the capabilities of TEX”
paradigms were the keys to avoiding death due to
complexity. First, the original source was completely
rewritten in CWEB, translating the original WEB

source, gaining the ability to feasibly use modern ex-
ternal libraries to deal with Unicode and OpenType.
Second, the introduction of Lua in addition to TEX
for typesetting documents. Initially Lua was a glue
language, a sort of “hub” to connect the TEX core
with the other libraries (the PDF backend, the Open-
Type loader, the Unicode module, the METAPOST

library) but gradually, starting as an extension of
\scantokens, this has changed. Lua interacts with
TEX as a companion language which lives, being pro-
cedural, in an space orthogonal to the traditional
macro language.

The potential of this orthogonal pair is still un-
folding: at the beginning, Lua was used as an input
adapter, then its dynamic loading feature was ex-
plored, with the SWIGLIB project, through work on
how to extend the features of LuaTEX at runtime.
Suddenly LuaTEX can become a graphics converter
program, or a tool for number theory, or a Post-
Script interpreter, or load at runtime a different text
shaper — and the latest release pushes the dynamic
loading feature forward, avoiding the compilation
of a separate wrapper module. Again, this was an
evolution (or “extension”) of the \write18 macro —
with the prominent difference that calling an external
program is many times slower than calling a func-
tion (of course it must be compared with the time
required to typeset the document). This opens a new

perspective: TEX not only to write about math but
to do math.

Lua interacts also with the TEX internals. With
the nodelib module the procedural nature of Lua
sheds new light on some complex TEX mechanisms
and, in interacting with the PDF backend or with
the font loader, opens new ways to do old things or
even make new ones possible. For example, ConTEXt
MKiV was the first format to produce PDF/A-2a —
thus revealing the need for a widespread and freely
available validator — and exporting a faithful copy
of the PDF in XML from a TEX source is now more
a CSS issue than anything else. The integration
of METAPOST into LuaTEX leads, on the path of
the virtual fonts, to artificial fonts: the font can
be created directly by TEX injecting a METAPOST

outline (as well as a bitmap, perhaps from META-
FONT). For the first time TEX gets back the control
of the alphabet, even if it’s outside the mainstream
of OpenType — but still inside PDF. And again, by
writing a new font loader in Lua, it is possible to
manage color fonts and even variable fonts, reaching,
probably after many years, a new breakthrough: TEX
goes beyond the known tools, being the only one (at
the present moment) able to produce a valid PDF

with this new font technology — which, it must be
said, looks very similar to METAFONT.

But there is also the other side of the coin: the
reference format is now PDF, not DVI.

4 MFLua

As seen in the previous section, METAFONT was
quickly considered outdated — again a consequence
of the global communication: the rising rate of docu-
ment exchange led to consuming more data on video
screens than on printed paper, and the antialiasing
technology of PDF viewers, given the already exist-
ing outline format, was not suitable for handling
bitmaps. But, as described in The METAFONTbook,
METAFONT internally uses outlines, and these are
clearly written to the log file with tracingall.

In the light of the above, the use of Lua to
manage these outlines looks like a natural step, but
there are fundamental differences. It should never
be forgotten that these are carefully designed math
programs and being in line with the time, talking
of math, is a double edged sword. The experience
of METAPOST, with the translation of the original
WEB source code to CWEB, shows that when the
math is tightly coupled with the implementation and
the semantics of the program is complex, bug-free
translations come at a price — on the other side, the
four different numeric modes of METAPOST (scaled,

MFLua 0.8 — Prologue



144 TUGboat, Volume 38 (2017), No. 2

double, decimal and binary) was another area that
deserved to be explored. METAFONT doesn’t need
to be modernized, scaled numerics are not “showing
their age”, nor is the concept of the pen outdated: in
short, there is no need to translate the METAFONT

WEB source code.
The role of Lua then is simply to collect enough

data from the METAFONT state (in practice, outlines
and bitmaps), store them into tables, and let the
user manage these tables. And this can be done by
merely adding a few procedures in the original source
code, by means of a traditional change file, and, as
with LuaTEX, the two interpreters can talk between
themselves by mean of scantokens. In this sense,
MFLua started as METAFONT plus a logging facility.

There is another key difference between LuaTEX
and MFLua: in the latter, Lua is not really orthogo-
nal to METAFONT. This was clear after the first use
case, the natural one: take a METAFONT font and
produce an OpenType version. ConcreteOT, an Open-
Type proof-of-concept font developed from Concrete
Roman, shows that the design of the font must con-
sider the outlines as output right from the beginning:
Lua is not of great help to elaborate the outlines af-
ter the bitmap is drawn; they are too closely tailored
to the image. It’s only while METAFONT is doing
its job — producing clean outlines — that Lua can
add value: the sourcecode-regular presentation at the
meeting shows that the natural role of Lua is the
backend, i.e. translating the now abstract METAFONT

code into a font instance.
It’s now possible to have an SVG font, or ttx, and

nothing prevents us from having FontForge output,
or OTF directly: it’s only a matter of having a clear

specification. So, suddenly MFLua puts METAFONT

back in the game of font design: it took only a
few days to modify the ttx backend and make from
sourcecode-regular a proof-of-concept variable font.

5 Today’s challenges

It may seem that “just adding a scripting language”
is the solution, and yes it is a solution, or better
a counter-measure, but only to the pressure of the
global communication. Today challenges require fast
answers, which are better managed by loading code
at runtime, avoiding hardcoded solutions.

On the other side, the ongoing mathematisation
of society demands a stronger and stronger grounding
in math. What TEX and METAFONT show is that,
in the long run, this is more important than the
choice of the language of implementation, and, to a
lesser extent, of the language implemented. We need
to be careful talking about the future of TEX: SQL

and COBOL are older than TEX and there are no
signs that they are dying — and they do not occupy
niche sectors either. At the latest meeting, there
was a talk by the GUST team about LuaTEX as a
font editor ; we have seen, perhaps for the first time,
that TEX can even go a little further in implementing
solutions and that Lua can give a fresh impulse for
the development of new strategies for page breaking.
Let’s take all these as good omens: the future is still
to be written.

� Luigi Scarso
luigi dot scarso (at) gmail dot com

Luigi Scarso


	Introduction
	Philosophy and history
	TeX and LuaTeX
	MFLua
	Today's challenges

