
218 TUGboat, Volume 38 (2017), No. 2

GMS, the ‘General Meta-Scenarios’:
A proper extension to the l3expan package
of the expl3 bundle and language, two years
later

Grzegorz Murzynowski

Abstract
This paper presents the current state of the GM-
Scenarios, an esoteric mini-language of one-char in-
structions covering and extending the functionalities
of the l3expan package of the expl3/LATEX3 bundle.

In an automata approach, the GMSs are de-
scribed as a DPDA, deterministic pushdown automa-
ton and a respective context-free language, and the
arguments (not quite formal) are given to back this
point of view.

A diagram of what I believe to be the automa-
ton actually implemented, and a formal grammar
that I believe to be a grammar of the GM-Scenarios
language, are included.

In the final remarks, I accept the friendly cri-
tiques received about the GMSs at TUG@BachoTEX
2017, and reply in an “I’m fixing that” manner.

Contents

1 Why again? 219
1.1 The name 219

2 A brief history of logistic growth of resources
or: What do we take for granted 219

3 The inspiratio: l3expan 222
3.1 The Pandora’s box of new letters . . 222
3.2 “Let’s make it shorter and don’t re-

peat…”, or: how the GMSs began . . 222
3.3 GMS as a nano-Copernican revolution

(against l3expan (?)) 224

4 GMS: the automaton 224
4.1 The automaton: diagram 225

5 GMS: the formal language, and program 226
5.1 The ⟨\⋮⋮ macro⟩ and ⟨specification⟩ 226
5.2 The destination, ⟨τ⟩ 229
5.3 The pre-ps. and pickers, ⟨(π*ϖ*)*⟩ . 229
5.4 The meta-operators, ⟨ϡ⟩ 231
5.5 The general permutations, or the ⟨FSM⟩

without grouping 231
5.6 Parsing the braces, or: ⟨BDSM⟩ . . . 232
5.7 The ⟨subs’n’refs⟩ 233

5.7.1 The replacements, ‘=:’ 233
5.7.2 “The arguments from beyond”,

‘⁁’ 233
5.7.3 Snapshots and references, ‘※’ 234

6 Rough budgeting, a.k.a. cost estimation 235

7 Friendly critiques at TUG@BachoTEX 2017 236

8 Final remarks 237
8.1 “Thank Heavens, it’s not the Premium

Class” 237
8.2 The end, or ἔσχατον 237

Motto:
Pani domu zaś, wydawszy przedtem dokładne wskazówki,
sama powinna siedzieć przy stole wesoła i uśmiechnięta,
i co najwyżej dawać służbie oczami znaki, gdy tego zaj-
dzie potrzeba.

Concerning the lady of the house, she should sit at the
table cheerfully and smiling and, having given the service
exact instructions before, now give them signs with her
eyes only if it is necessary.

Marja Ochorowicz-Monatowa,
“Uniwersalna książka kucharska”, 1910

Disclaimer 1. It’s not Computer Science.
I mean, I hope it to be so metaphorically, i.e.,

I hope the matter discussed in this paper is “crazy”.
But it should be mentioned, and at the very be-
ginning, that this paper is not a scientific article,
and not on automata theory in particular. It’s just
a presentation of a certain TEX program or set of
macros, and the Reader should not be misled by the
computer-scientific terms used.

The automaton and formal language presented
in this paper might be at the very best considered an
example or exercise, and the statements, especially
those concerning the automaton’s and language’s
classes, and computational complexity of the algo-
rithm/program, considered hypotheses to be proven
or disproved, or adjusted in their assumptions.

I’m not a computer scientist, i.e., I’m not edu-
cated in the theories of Computer Science, I’m just
an “aspiring TEXnician” who hasn’t even read the
entire TEXbook (you don’t use any quotation marks
around the name of a Sacred Book, do you?), and
just practices TEX in as Epicurean way as he [I] can.
The only argument that might accrue to my benefit
is that writing programs in TEX gets me my daily
bread, and I’m still alive, and, moreover not sued
for industrial sabotage or such.
Disclaimer 2. About (Non-)ASCII chars and the
tailored font Ubu Stereo.

The expl3 language is kept strictly ASCII. Any
characters outside of ASCII that occur in this paper,
especially those from the “distant far-aways” of the
Unicode, or even from the Private Use Area (PUA
henceforth), are a sin of “mine, and mine only”.

Their rôle, and the rôle of expl3 in making me
use them, is discussed in section 3.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 219

All of them, as coming from different scripts, in-
cluding the Chinese Traditional ‘記’ U+8A18 ‘write
down, record, remember’, and ‘用’ U+7528 ‘use, ap-
ply, make use of’, and Math Fette Fraktur, and some
even FontForge’d by myself, occur all together just
in one (and only one) font in the world, named Ubu
Stereo, based on Ubuntu Mono Regular, and en-
riched with glyphs only from fonts licensed freely.

1 Why again?
This paper follows my presentation at TUG@Bacho-
TEX 2017 and summarizes the present state of the
GMS mechanism that I conceived in the beginning of
the year 2015 as a “just a bit more friendly interface
to the l3expan macros”. While the general concept
of the machine (automaton) remains the same, and
so do most of its operators and constructs, there are
new concepts I have added since, and, which might
be more important, “now first it seems my thought
begins to span it.” 1

Which in turn gives the hope that I’ll present
the subject in a more understandable manner this
time.

Compared to the TUGboat 36:3 (2015) paper,
the new things are:
• the name of the machinery, GM-Scenarios in-

stead of GMOA;
• a meta-reflection discussed in sec. 3.3;
• shift in understanding from “DFA with Mysteri-

ous Something” to DPDA, Deterministic Push-
Down Automaton;

• deprecating the pre-processors and pickers “ho-
monymic” with the l3expan counterparts;

• a handful of new pre-ps. and pickers, ‘𝕯𝖉’,
‘ĿŀŁł⌦’, ‘Zz’;

• new aliases for those now deprecated: ‘Aa’, ‘Ää’,
‘Ee’, ‘Ēē’, ‘Ѵѵ’, ‘Ѷѷ’,

• the “subs’n’refs” mechanism in FSM s;
• the “arguments from beyond” in FSM s;
• pure-ASCII and HTML-like alternate forms of

operators.
What has to be mentioned, or: confessed, is

that the GMS machinery is still in a state of devel-
opment, and at the time of submitting this paper,
some of the new things are not quite operational yet.

Much of this intense development comes from
the fact I use the GMSs intensely, anywhere I can
use my own TEX packages, [the source] of this paper
being no exception.

1 Walt Whitman / Ralph Vaughan Williams, “A Sea Sym-
phony”: “O vast Rondure”.

1.1 The name
Why did I transition from GMOA, “General Ma-
nipulation Of Arguments”, to GMS, “General Meta-
Scenarios”? The obvious part is, why the two initial
(nomen-omen) letters remain the same.

False humility makes me say I should put my
name on my work so that Humankind knows who to
blame. But that aspect should not be overestimated,
Gustav Mahler has the same initials, and were this
paper and its dereference of no other use, may the
mention of him and his cosmic The Eighth advocate
me in die illa tremenda 😉 .

But, concerning the “G”, the mechanism is in
fact quite general. My everyday work is program-
ming in TEX, XƎLATEX to be precise, and I believe
the fact I’m still employed by the same Company,
and paid, is quite an argument for its usability and
usefulness, at least in my hands. Quite general, dare
I say, because the first thing it does is cover the func-
tionality of l3expan.

The “GMOA” name focused attention on the
ability of the machine to pre-process the arguments
for a single expl3-function (usually, a macro). But
the GMSs do more than that: they set and rearrange
parts of the code before it’s actually run.

Further, because the mechanism operates on
the “future” program code, it truly can be called
“meta-”. And, because it tells how that “future”
code should be executed, truly can it be called “sce-
nario”. And, a “scenario” rather than “didascalia”
or “markup”, as it is separated from the code it op-
erates on.

Now, with just a tiny little modal collapse, i.e.,
the reasoning step “If sth. might be, then let it
be”, we get— let the mechanism be called “Meta-
Scenarios”, quod erat demonstrandum.

2 A brief history of logistic growth
of resources
or: What do we take for granted

Have you ever read the LATEX2ε sources? Thank
Heavens, it’s richly commented, and the sub-struc-
tures, which in a more usual language would be
called “subroutines” and “functions”, or “classes”
and “methods”, are presented in pseudocode before
they’re actually expressed in TEX.

An excerpt of it is presented in Fig. 1.
Why is it so obscure, why do even the primi-

tives not bear shorter names, not for saving memory
(negligible), but for the sake of readability?

LATEX2ε has been written in the times when
memory was so precious and scarce, that William
Henry Gates III, even though he didn’t utter exactly
those famous words, actually was thinking, as “all”

GMS two years later. A complete madness. But—Turing-complete or not?

220 TUGboat, Volume 38 (2017), No. 2

\def\declare@robustcommand#1{%
\ifx#1\@undefined\else\ifx#1\relax\else

\@latex@info{Redefining \string#1}%
\fi\fi

\edef\reserved@a{\string#1}%
\def\reserved@b{#1}%
\edef\reserved@b{\expandafter\strip@prefix%

\meaning\reserved@b}%
%<autoload> \aut@global
\edef#1{%
\ifx\reserved@a\reserved@b
\noexpand\x@protect
\noexpand#1%

\fi
\noexpand\protect
\expandafter\noexpand\csname
\expandafter\@gobble\string#1 \endcsname

}%
...

}

Figure 1: A fragment of the LATEX 2ε source,
File d: ltdefns.dtx, 2004/09/18 v1.3g

of his contemporaries, that 640 kB of RAM would be
enough for “anything”, and “at least for 10 years”.

In those times “this new TEX format, LATEX”,
had to do some serious “garbage collection” in order
to run at all and finish the job.

That’s where \@onlypreamble comes from, and
that’s why not only was the code written with as few
new macros as possible, but also with reusing names,
those reuses sometimes irrelevant to their contents
and goal.

That’s where DocStrip comes from, whose pri-
mary task was to Strip the comments (Documenta-
tion) from the files, so as not to slow down their
reading in.

Also, it was pure TEX not ε-TEX, whose expand-
able primitive \strcmp is neatly wrapped in expl3’s
\str_if_eq[_x]:nn[TF], and \str_case:nn[TF], and also
with no \numexpr or \dimexpr that allow expandable
integer or dimen computations.

Let us think a moment, if we could write a TEX
program or document that (with all the fonts, libr-
aries, macro packages &c.!) works in no more than
500 kB of RAM. Yes, 500 kilo bytes, not megabytes.

So, in that time, and in those extreme condi-
tions, that was the “optimum and beyond”. Let’s
have this in mind and see what we take for granted
in these days’ plenty, and the programmatic indul-
gence it’s causing.

Now, consider the following fragment of File r:
lĤssdcl.dtx, dated: 2005/09/27, v3.0k, giving the def-
inition of \DeclareMathSymbol:

\edef\reserved@a{\noexpand\in@{%
\string\mathchar}{\meaning#1}}%

\reserved@a
\ifin@
...

It’s the shortest example I’ve found so far of
what could be named “repetitive programmatic con-
structs”.

A macro is \edefed just to put it in the input
stream immediately after it’s defined. As can eas-
ily be guessed, it’s done to give well-prepared argu-
ments to the macro \@in, that checks whether its #1
is a sub-string, or rather, a sub-tokenlist of #2, and
sets the Boolean switch \ifin@ accordingly.

What is at hand at the point we wish to use
\@in needs to be expanded in a certain way first.

Those “certain ways” of expanding first, and,
in my version, not only expanding, we call pre-
processing henceforth.

This particular schema above, with the macro
\@in “frozen” with \noexpand, first argument con-
sisting of \string and a c.s.(1), and the second of
\meaning and a (supposed) c.s.(2), repeats on pre-
vious and subsequent pages quite a few times, just
with different control sequences (1) and (2).

And that is just one schema, and the simplest/
shortest, of many found just from the beginning till
File r.

Then, maybe following The Sources’ example,
most (LATEX2ε-style) macro packages and document
classes repeat the same manner of repeating those
“repetitive programmatic patterns”. Not even with
short aliases for \expandafter and \noexpand (cf. re-
mark 3 on p. 236.)

“Repetitive programmatic patterns”. Do you
see the irony? Isn’t the very essence of computer
programming to make the machine do the repeti-
tions, if possible?

Let’s repeat: this “if possible” is the answer to
the question of why the LATEX2ε Authors repeat so
many things: in those times, not-repeating them was
not possible. But nowadays, it is. Let’s see what has
l3expan got to offer.2

For the sake of disambiguation, let’s assume
that ‘#1’ of the above code is the c.s. token ‘\life’.
And don’t forget to set the catcode of ‘@’ to 11 ‘let-
ter’, because with expl3, ‘@’ is ‘other’ by default.

2 As a topic not fully relevant to the GMS, we skip the dis-
cussion on naming ‘\@in’ “the expl3 way”, with ‘:nn’ signature,
and generating its ‘:oo’ variant.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 221

Let us recall that the expl3 catcode regime is
that ASCII underscore ‘_’ and colon ‘:’ are made let-
ters, blanks are ignored, including blank lines, and
tilde ‘~’ is made space10 instead.3

In addition, there is Hungarian notation in the
“function” names, i.e., the “function” ’s signature
added in its name after the colon, and other smart
naming conventions.

All this results in the first impression, at least
mine, “what the […] is this??”, but then, when you
get used to it, in growing and growing appreciation
of the readability and “spaciousness” of the code.
Also, you may see that errors are less likely to occur,
and when they do, they are easier to backtrace.

Now, back to the example.
[\char_set_catcode_letter:N \@]
\::o \::o \:::
\in@ {\string\mathchar}{\meaning\life}

The expl3-function \::o in the first step gets
the respective ⟨balanced text⟩, i.e., the argument,
next to “itself”, i.e., to the 2nd-step macro. That
next macro hits the ⟨text⟩ with \expandafter over
the opening brace, and then the 3rd macro, that
had been put next to \expandafter, puts the just-hit
argument in the “storage of processed arguments”,
and passes control further.

As the \::macros are essential for understand-
ing further in this paper, let me explain them in
more detail. The definitions are translated here to
“Traditional TEX”. In real l3expan they all use the
expl3 aliases and/or wrappers for the primitives.

\long\def \::o #1 \::: #2#3 {
\expandafter __exp_arg_next:nnn
\expandafter {#3} {#1} {#2} }

\long\def __exp_arg_next:nnn #1#2#3 {
#2 \::: { #3 {#1} } }

So, the one-level expansion of the first \::o in the
example above, results in:

#1 ->\::o % “the tail of pre-ps. sequence” in general.
#2 ->\@in
#3 ->\string\mathchar

\expandafter __exp_arg_next:nnn
\expandafter {\string\mathchar }

{\::o } {\@in }

and after the \expandafter’s fire, we get
(\string)
__exp_arg_next:nnn {\mathchar} {\::o } {\@in }

3 Not “ASCII tilde of catcode 10 ‘space’ ”, because it’s not
made “funny space” of the character code 0x7e via the \lccode
trick, just honestly via \catcode=, ifx you know the difference.

[\ to illustrate the fact that the backslash, and thus
the whole control sequence, is “dead”.]

Then __exp_arg_next:nnn restores the order.
Let’s see that in slow motion.

__exp_arg_next:nnn #1#2#3 -> {#2\::: {#3{#1}}}
#1 ->\mathchar, % no space after the former c.s. is

another sign it’s “dead”
#2 ->\::o ,
#3 ->\@in

and thus we get:
\::o \::: {\@in {\mathchar}}

plus what was already there,
{\meaning \life }

After performing two-level expansion of “this other
\::o”, i.e., replacing it with its definition, and firing
the \expandafter’s, we get

(\meaning)
__exp_arg_next:nnn {> \mathchar"2A.} % \life is

usually ‘> undefined’, but once you give it some
Deep Thought… 😉

{} {\@in {\mathchar}}
and after expansion of __exp_arg_next:nnn,

\::: {\@in {\mathchar}{> \mathchar"2A.}}
Now, the mysterious Triple Colon4 Macro \:::

that served as the delimiter of the tail of the pre-
processors in/for the \::’s (“Double-Colon-with-a-
Letter” Macros). After all the \::’s have expanded,
it comes out as the “identity” macro, \@firstofone
from LATEX2ε:

> \:::=\long macro:
#1->#1.

and the braces covering the main macro and all the
pre-processed arguments disappear, as if the End
of Time came “and all things previously hidden are
now revealed”:

\@in {\mathchar}{> \mathchar"2A.}
This way, we saw “in slow motion”, how the

“repetitive programmatic patterns” found in the
LATEX2ε sources and LATEX2ε-style macro packages
and document classes, might be vastly simplified and
made more readable using the macros defined in the
l3expan package.

And “here comes Mommie!” 5 —here come I,
and say: look at those repeating backslashes and
colons. What if we delegate repeating them to the
machine, and we ourselves type just what’s essential,
i.e., the final letters?

4 A Polish cartoon series “Kapitan Bomba” gives the term
“triple colon” quite another meaning while describing the
“Kurvinox” alien species’ anatomy.

5 Patrick Swayze in [spoiler alert] the opening scene of “To
Wong Foo, thanks for everything, Julie Newmar”.

GMS two years later. A complete madness. But—Turing-complete or not?

222 TUGboat, Volume 38 (2017), No. 2

3 The inspiratio: l3expan

3.1 The Pandora’s box of new letters
Let me make another apparent digression, which is
in fact an important explanation I owe the Readers
and, maybe even more, the LATEX3 Team.

Having the guts and nerve to abandon the Plain
and LATEX2ε convention of making ‘@’ catcode 11
‘letter’, and to make letters of ‘_’ and ‘:’ instead,
is a huge inspiration and broadens my mind hori-
zons, comparable with some kind of spiritual en-
lightenment, or with Dostoyevskian “Но есьли Бога
нет, тогда всё довольно…” [‘But, if there’s no God,
then anything is allowed…’].

I perceive this bold move as the main inspira-
tion for my own attempts to “think out of the box”.
In my implementation it comes out more like Pan-
dora’s box, as has been kindly and amiably pointed
out to me at this BachoTEX, as I’ll discuss later.

In order to observe the naming conventions of
expl3, especially the division of a c.s. into “scope”
and module parts, and seeing the need for a more
structured module part, I chose the letter ‘ˈ’ (Mod-
ifier Letter Vertical Line, U+02C8), with catcode 11
‘letter’ in XƎTEX (as it is in Unicode), as the “unof-
ficial” word separator.

__gmeˈint_…:…
denotes a module-local LATEX3-function of the mod-
ule ‘gme’, and its submodule ‘int’.

I use yet another letter, ‘ᔥ’, U+1525 Canadian
Syllabics SH, as the character separating the final
part of a c.s., intended to describe its particular role
in a multi-step construct, or in a family of macros,
e.g.:

_makeˈgay:nnn
_makeˈgayᔥtheˈYuletide:nn
_makeˈgayᔥGigiˈtoday:nn

On the other hand, choosing a character rare
enough so it could serve as an ideogram, like ‘⚸’
U+26B8 Black Moon Lilith, or the one discussed
next, let us structure the module part of names just
with it and abbreviated description, like

\⚸int_… \⚸tl_… \⚸dim_…
which I use to name my additions and “comple-
tions” 6 to the expl3 respective modules.

As you see, it becomes “…тогда всё доволно”
(‘…then anything is allowed’), indeed. But— for the

6 The fact that some of my views, such as expecting an
Esperanto-like symmetry from “the new LATEX programmers’
language”, e.g., the Boolean constants, i.e., ‘\bool_const:Nn’,
just like there’s any other ‘\⟨type⟩_const:Nn[…]’, diverge a bit
from what’s actually there in expl3, neither does make it “in-
complete”, nor diminishes the utter respect and gratitude I
have for its Authors. Hence the quotation marks.

good cause of brevity, as brevity means better read-
ability.

3.2 “Let’s make it shorter and don’t
repeat…”, or: how the GMSs began

Going still further in this direction, I make a letter
also of ‘⋮’, U+22EE, Vertical Ellipsis (there’s also the
Triple Colon character, U+2AF6, maybe it would be
preferable), to get a symbol similar and referring to
the Double and Triple Colons of l3expan, yet at the
same time saying “I differ from them, be careful, I
might be orthogonal!”

As already mentioned, one of my goals is to
make code short and as free from repetitions as pos-
sible. This attitude resembles that of Webern to-
wards music, toutes proportions gardées. And so
with the TEX code making use of the GMS.7

Returning to the main narrative, let’s replace
Double-Colon-with-a-Letter s with Just-a-Letter s,
i.e., let’s trim leading ‘\::’, and precede the whole
thing with a two-(newly-declared)-letter word \⋮⋮.
Since I’m “thinking in type not in sound”, I’ve no
idea how to pronounce this ideogram. What first,
or rather who comes to my mind, is Aja.

\::o \::o \:::
\@in {\string\mathchar }{\meaning\life }

\⋮⋮ I o o : …
And that’s what the core and chronologically earli-
est part of the GMS does. Translates a sequence of
letters into the sequence of l3expan \::’s.

One thing that needs explaining is the letter
‘I’, which doesn’t correspond to any of the l3expan
“Double-Colon-with-a-Letter”s of the line above.

I found it a bit confusing in the l3expan conven-
tion that the first token, i.e., the assumed “function”
for which the assumed arguments are pre-processed,
is not reflected in the DCwL s, or rather is, but at
the very end, in the Triple Colon. While thinking
of what’s going on here not as preparing arguments
for a “function”, but as a sequence of operators ap-
plied to a sequence of ⟨text⟩s (cf. sec. 3.3, p. 224), it
becomes clear that the Identity operator is missing
in the l3expan notation, and that’s the ‘I’ in mine.

Then the desire for Symmetry wakes up and
joins in, another monster conceived of LATEX3 in-
spiratio,8 namely, from looking at the “data types”

7 Typical reaction of a person listening to “normal” [West-
ern] music at first hearing of a piece by Webern is: “What??
It’s not music, it’s some separate and random sounds!” The
analogy with GMS holds.

8 The Latin verb “inspiro” means ‘to breathe into [some-
thing/someone]’, and is used in the Vulgate and hence in the
Christian narrative to describe G*d giving life to the first
human after making his body out of earthly dust or clay,

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 223

and their declarators, setters, and naming conven-
tions—a desire to make the pre-processing mech-
anism fully symmetric with respect to braced- and
unbracedness of the results, as the N- and n-type ar-
guments and l3expan pre-processors already do. Ap-
parently. And, not quite, as Frank Mittelbach ex-
plained himself at BachoTEX 2015, correcting my
(mis)understanding and thus unmasking the idea
of “braced/unbraced” result to be “mine and mine
only”.9

While the original expl3’s idea of N- and n-type
arguments refers to un- and bracedness of the argu-
ments, i.e., the input, my (mis)understanding, and
the idea stemming from it in GMS, refers to un-
and bracedness of the results, i.e., to whether the
pre-processed ⟨balanced text⟩ should be “returned”
in braces: when the letter is lowercase, or without
them: when the letter is uppercase.

Therefore, “I’ve made my decision”10 to depre-
cate the l3expan operators (letters), and maybe turn
off handling of them in the future.

So, the convention of GMS is that the lowercase
letters correspond to “returning” the pre-processed
{⟨text⟩} in braces, while the uppercase “return” the
⟨text⟩ unbraced, which might seem strange at first
glance, e.g., when the pre-processor hits a multi-
letter control sequence with \string, but is useful,
e.g., in defining a macro with parameters delimited
with detokenized (‘other’-ised) characters, e.g., pt or
macro -> .

The idea of a set of operations closed in some
aspects is usually a good idea, unless we are not
scarce of memory or time, and these days we are
not, oh, no, we aren’t.

Also, while opposing or at best “orthogonal” to
the concepts and conventions of expl3 at first glance,
this {⟨lower⟩}/⟨upper⟩ convention fits with the more
general paradigm of making the language fully reg-
ular, much as Esperanto is.

For those two reasons, i.e., not to mislead from
the original expl3 concepts, and to observe the {⟨low-
er⟩}/⟨upper⟩ result convention, I replaced the ASCII
lowercase ‘o’ with the Latin lowercase a, ‘a’, and thus
the example use of \⋮⋮ should be rewritten to:

\::o \::o \:::
\@in {\string\mathchar }{\meaning\life }

\⋮⋮ I a a : …
But “that’s [not] all, folks”, since the goal is to

make the code short. And \string is used so often
that it’s worth its own pre-processor. And here it is:
and also, conceiving the Child by the Most Venerable Virgin
“from G*d’s Spirit”.

9 cf. “Evita”, “Eva’s Final Broadcast”.
10 cf. “RuPaul Drag Race”.

‘s’/‘S’. Also, \meaning might be very useful in some
applications, and although I personally haven’t yet
had such a need, introducing a new pre-processor
for it is a matter of five minutes of adding the re-
spective macros, plus [indefinite time] to choose the
letter/symbol.

I chose ‘𝖉’ and ‘𝕯’, having in mind that ‘m’
stands in the ancient xparse, and also in gmcommand,
for ‘mandatory argument’, and perhaps the most fa-
mous question about meaning is Freia’s “Was deutet
die Name?” in the finale of “Das Rheingold”. Then,
math Fraktur because ASCII ‘D’ is already taken by
the expl3 “Don’t” pseudo-signature.

With these “particulations”, the example turns
into a five-token GM-Scenario with one mandatory
separator char between ‘\⋮⋮’ and the pre-processors
(remember it’s not a space10 in the expl3 or gme3u8
catcode regimes, it’s an ignored char [space]9, so it’s
not even officially read, yet it establishes the limit
of a multi-letter control sequence, without which it
would be ‘\⋮⋮Is’ (a bit like, say, alcoholic addiction
of a parent, which is not talked about, yet keeps the
children from inviting friends home), and just three
tokens of things processed. Let’s put it all together:

\edef\reserved@a{%
\noexpand\in@{\string\mathchar}{%

\meaning#1}}%
\reserved@a % The LATEX2ε sources

\::o \::o \:::
\@in {\string\mathchar}{\meaning\life }% expl3

\⋮⋮ Is𝖉 : \@in \mathchar \life % GMS

Note that the 2nd and 3rd ⟨text⟩s are written with-
out braces, since they are not necessary either for
syntax correctness or for clarity, the latter provided
by simplicity of this particular GMS.

By the way, all component macros and primi-
tives of l3expan’s “function” \::o, and thus also of
GMS’s \⋮⋮ …a… :, are expandable.

This is the case with all the l3expan and GMS
pre-processors, if only their very nature allows it,
i.e., if the pre-processing does not involve an assign-
ment (other than this one and only assignment of
\relax to a c.s. raised by ‘\›… \ ’).

As mentioned earlier, l3expan provides various
types of arguments’ pre-expansion.

The \::f preprocessor applies \romannumeral-̀ 0,
which expands argument tokens until the first un-
expandable token is seen. Because -`0 is a complete
⟨number⟩ in the sense of The TEXbook, even if the
argument expands to digit(s), \romannumeral is satis-
fied with the -`0 and, as this number is negative (mi-
nus the character code of character ‘0’, namely −48),

GMS two years later. A complete madness. But—Turing-complete or not?

224 TUGboat, Volume 38 (2017), No. 2

expands to ε (empty sequence of tokens). Thus we
get an “AFAP” (‘As Far As Possible’) expansion.
Not many things move me as deeply as this trick.

Some of the pre-processors rendering the value
of a LATEX3 variable also use \romannumeral-`0, de-
pending on the LATEX3 variable’s type. The current
implementation of the _tl type, for instance, as pa-
rameterless macros and not, e.g., as \toks registers,
allows for rendering their values with just an ‘\’
(\expandafter), or even using that LATEX3 variable
“as is”.

So far, the things described might be considered
just another user interface for l3expan, maybe more
user-friendly, if anything. Also, the operators that
l3expan “lacks” are just superpositions of one that
already exists, most often the [o]/a, with some of
TEX’s expandable primitives, like Ðð for ‘\::o◦\the’,
\::ð…(·) == \::o…(\the(·)).

So, what are the real enhancements I’ve made?

3.3 GMS as a nano-Copernican revolution
(against l3expan (?))

Besides “stripping off one backslash and two colons”
shown in the previous section, probably the most im-
portant enhancement made by me (if it may at all be
attributed to me with such a strong inspiration11),
and fundamental for any further development, is a
change of the point of view, quite Copernican in this
nano-scale:

Thinking of (l3expan and) the GM-Scenarios not
as pre-processors of (individual) arguments for an
expl3 function or macro, but—
as a sequence of operations applied, not necessar-
ily 1:1, to a sequence of ⟨text⟩s, where ⟨text⟩ is an
undelimited or delimited argument of a resp. macro.

“(?)” in the section’s title, because it’s not very
likely that expl3’s Authors do not realize the power of
l3expan, rather they deliberately abstain from using
it in its full glory (if they do in fact), and the “rev-
olution” declared above is more of a shift of my own
understanding of l3expan. Like Dr. Pierre Abelard
says in the preface to his famous “Sic et non”: “It’s
rather us lacking G*d’s grace [ability] to read [and
understand] than them [the Authors] lacking G*d’s
grace [ability] to write.”

Let’s go back to the excerpt from the LATEX2ε
sources and think of it this way: in the end, we wish
to give TEX a two-parameter (undelimited) macro

11 It’s infinitely easier to expand/develop something than
to invent it in the first place. l3expan does things I’ve never
thought of in the 11 years of my TEXnician’s life. Or, if I
ever did, it was: “Nah… it’s impossible; you just can’t hit the
2nd undelimited argument with \expandafter since you don’t
know how many tokens there are in the first one”.

\@in with both of the arguments hit with some ex-
pandable operators.

What would be (conceptually) done, is:
1. hit the 1st argument with \string,
2. hit the 2nd argument with \meaning,
3. prepare \@in to go first,
4. put the tokens resulting from 1 next to \@in to

go 2nd,
5. put the tokens resulting from 2 next to those

of 4.
What if we wish to prepare the arguments as

described above, but instead of knowing the “func-
tion” they are for already, give a placeholder for it
and be able to pass any relevant macro “later”, i.e.,
as an argument?

Or, if we wish to pass those arguments twice,
for two different “functions”? For instance, having
a c.s.(1) and an ⟨integer expression⟩(2), first declare
(1) as an ‘_int’ variable, and then initialize it with
(2)?

One of the “basic needs” l3expan does not sat-
isfy, is—changing the arguments’ order. Another is
replicating them, as LATEX2ε’s \@dblarg does, for in-
stance. And yet another, grouping ⟨text⟩s together
in one common pair of braces. The latter two ac-
tions are the reason why I mentioned it’s not always
a 1:1 correspondence.

Consider the following GMS:
\def \whatˈsˈtheˈQuestion #1 {

\⋮⋮ ♮ s 𝖉 : \mathchar \life #1 }

Knowing that the Musical Natural [Pitch] Sign ‘♮’
declares a “natural permutation”, I hope it’s clear,
what those “underlined digits” mean. How many
of them might there be, i.e., how many ⟨text⟩s can
an \⋮⋮ handle at a time? Currently, up to 25, re-
ferring the first 9 with …, and then with …, for
the “uppercase” pre-processing, or …, … for
“lowercase”.

But anyway, the last operator counts for the
un- or bracedness, so even though the ‘’, ‘’, and
‘’ are all “uppercase”, only the ⟨text⟩ referred to as
‘’ is rendered without braces, while the other with,
because of the lowercase ‘s’ and ‘𝖉’.

And this, and other features, are worth a sec-
tion of their own, so—

4 GMS: the automaton
The above example of changing the order of argu-
ments is rather simple. And, seeing what is referred
to as ‘’, ‘’, and ‘’, poses no problem.

But when there are more ⟨text⟩s to make a per-
mutation of, it seems more reasonable to label them
with some numbers. The following example uses

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 225

the characters ‘Opening Lenticular Bracket Ordi-
nal Number Omega’, ‘ω’, put at PUA+E9EA, and
‘Closing Lenticular BracketOrdinal NumberOmega’,
‘ω’, at PUA+E9EB. (Both of them designed by me,
together with the plain ‘Ordinal Number Omega’,
ω, PUA+E9E9).12

‘ω’ starts a part of a GMS being a permuta-
tion of ⟨text⟩s with possible repetitions and group-
ing, and additional pre-processing of them. Let’s
call it: Finite Sequence Manipulation, hence-
forth FSM.13

‘ω’ delimits the (explicitly labelled) sequence
of ⟨text⟩ that’ll become the elements of this FSM,
so that all may be absorbed by an internal macro
delimited with this char.

(By the way, those two chars are declared in my
Emacs as matching parentheses, so they are high-
lighted properly.)
[\gmeˈˈˈon] % set the gme3u8/expl3 catcodes

\pdef % \protected\def
\makeˈexhyphen #1 {
\⋮⋮ I ω ⟦ Ä≕2 ⟧ {} : % a \GMS
\lccode
1 `
2 \c_catcode_active_tl
3 \lowercase
4 {\protected\def }
5 {\penalty\exhyphenpenalty \hskip%

\c_zero_skip }
6 #1 % two tokens in definition, but replaced with a

single char in runtime.
ω
\⚸_catcode∷ `#1\⚸_active∷

}

[\gmeˈˈˈoff]
What we consider the automaton in this paper,

is a set of macros that pass control to each other
subsequently, just like states and transitions of a
deterministic push-down automaton, and initialized
by the macro \⋮⋮ (or another of the family, as will
be discussed later), and finished by a colon.

In the example above, the GM-Scenario is the
code commented as such, starting with ‘\⋮⋮’ and fin-

12 The Ordinal Number ω not the Cardinal ℵ0 because
in the context of permutations, the ordering is fundamental,
and the proper name for the Cardinal ℵ0 in its Ordinal aspect
is ω.
Then, ω not some arbitrary symbol, because “Sky is the

limit”, theoretically number of ⟨text⟩s handled in an FSM is
arbitrary (finite), and limited only by the capacities of the
hardware and Time of our Universe, as the computing com-
plexity of this part of GMS’s seems to be at least O(n2) Time,
and at least O(n) Space.

13 The religious allusion of this acronym is deliberate, may
He be always al dente.

ishing with ‘:’, if we take the syntactic approach, or
all the code starting with \⋮⋮, and finishing with
‘ω’, if we look semantically. (It is not always clear
where a GMS in the latter sense ends, since its in-
structions might be determined dynamically in the
“runtime”, thanks to the “interᴿuptions”.)

The letter ‘I’ refers to the first ⟨balanced text⟩
following the colon, i.e., \lccode, and says ‘just take
it and return as is, but without braces’. Then, the
‘ω’ sign declares a labelled FSM, which means,
that the automaton should now expect a permuta-
tion, possibly with repetitions, additional pre-pro-
cessing, and grouping, of a certain number of ⟨bal-
anced texts⟩, and that those ⟨texts⟩ have been al-
ready labelled, i.e., each of them preceded by proper
alpha-digit (not necessarily starting from 1 and keep-
ing the “increment by 1” rule), and that after all
those texts there’s the delimiter ‘ω’, so that absorb-
ing all the permutation elements is performed in a
one-level expansion of a macro with a ω-delimited
parameter.

Then, the fragments ‘’, ‘’, and ‘’ are trans-
lated into macros “get the element with the label
(·)”, and put those elements in given order. Only,
before the element with the label ‘2’ is taken, the
translation of the fragment ‘⟦ Ä≕2 ⟧’ hits that el-
ement with the “double \expandafter”, and replaces
the original with the result of that 2-level expansion.
We’ll discuss this in more detail in section 5.7.

Then, the part ‘’ translates into grouping
the elements 4, 2, and 5 in one pair of braces
together, and the element 5 within braces by itself.
We discuss the grouping (bracing) mechanism, and
its consequences in terms of the hierarchy class of
the automaton, in section 5.6.

4.1 The automaton: diagram
Presenting the GM-Scenarios automaton, we use the
following conventions:
• the symbol “_•” denotes ‘an arbitrary represen-

tative of the class •’, where “•” is the (usually
one-character) name of the class, which may be
homonymic with one of its members, or even
the only one. One can think of it like an abbre-
viated Ruby Manual convention of typing an in-
stance of a class, say, ‘Array’ as ‘an_Array’, just
with the preposition stripped off; or, as sort-of
conforming to the expl3 convention of indicat-
ing the type of a variable (a data carrier) with
underscore and type at the end of its name.

• “↓·” means ‘push (·) down the stack’, where
(·) is 1 for an opening brace, or i for an opening
‘⟦’ bracket, which is used to mark the start of
⟨subs’n’refs⟩, and matching with ‘⟧’.

GMS two years later. A complete madness. But—Turing-complete or not?

226 TUGboat, Volume 38 (2017), No. 2

• “↑: 1¦0¦i” ‘pop from the stack, and then there’s
1¦0¦i resp. on top of the stack’. Note that the
symbol i might be considered the initial symbol
for the ⟨subs’n’refs⟩ sub-stack.

• “[⟨action⟩]” ‘an action, usually assignment, per-
formed “sideways” with a default value, in case
of a transition that skips some intermediate sta-
te(s).

• “ _• ” ‘I’m not a usual label, in fact, I’m a sub-
automaton’. Both of those sub-automata are
depicted in the same figure.

5 GMS: the formal language, and program
There’s a theorem about a correspondence between
finite automata and formal languages, namely, cou-
pling a formal language with an automaton that
recognises it.

And since a formal language might be described
with a formal grammar, there’s also a natural corre-
spondence between automata and formal grammars,
namely, that A ∼ G iff ∃L such that L is the lan-
guage recognised by automaton A, and at the same
time is defined by formal grammar G.

In this sense, the automaton depicted in fig. 2,
and the grammar described in fig. 3, do correspond
with one another.

Therefore, henceforth, I’ll be describing the lan-
guage, freely switching between its formal grammar,
and the automaton recognising it.

And, since this is not Computer Science, just
a presentation of a program, I’ll be also explaining
how the program works, which from the point of
view of Automata Theory is all “side effects” at best.

5.1 The ⟨\⋮⋮ macro⟩ and ⟨specification⟩
The tokens of a ⟨specification⟩ are hit with \string
one-by-one so they get catcode 12 “other”, except
those expanded within an “interᴿuption”.

The {1 and }2 tokens may be used as they are,
and if the ⟨\⋮⋮-macro⟩ works straightforwardly (only
\⋮⋮ does, as for now), they don’t even have to be
balanced.14 Also, their “rôle” might be played by ⦃
and ⦄, as they’re recatcoded to letters in the gme3u8
catcode regime, and might be translated in macros
that work faster than the main GMS machinery.

Since the main iterating macro has one unde-
limited parameter, even in the usual catcode regime
the blank chars are skipped and may serve just to

14 To be precise, each token of the GMS-charclass ‘{’ has to
be balanced with a token of GMS-charclass ‘}’, but the cat-
codes are irrelevant now as all the tokens are hit with \string
one-by-one. Also, it’s possible, e.g., to generate missing }’s
in an “interᴿuption” using \Ucharcat.

improve readability. Of course, in the expl3 regime,
they are already ignored on the TEX reading level.

\⋮⋮ is a parameterless macro of the initial state,
called KN, ‘[I] Know Nothing’. It first \expandafters
\string and then launches the macro. ‘’ is a one-
letter c.s. equivalent to \csname, Tironian Et U+E970
‘’ another escape char, and ‘’ is \expandafter:

\⋮⋮ -> __⋮¹_s¨KN:N \string

Other ⟨\⋮⋮-macro⟩s do the same at some point,
only first they absorb an entire ⟨specification⟩ as
an argument delimited with ‘:’11, and either check
if such a specification has already been parsed and
recorded (predefined), and use the pre-defined if so,
or perform the predefinition instead of reorganising
subsequent ⟨text⟩s, or, \⋮⋮_用記ˈ…, are control se-
quences which the ⟨specification⟩ is part of.

We’ll discuss the basic version, ‘\⋮⋮’.
The subsequent characters of ⟨specification⟩ are

hit with \string and picked one-by-one, their “char-
class” is determined, and proper transitions are per-
formed accordingly, which TEXnically amounts to
inserting further and further “telescopic” \csname’s,
i.e., the sequences of tokens that could and should
be transformed into a control sequence at the very
moment the matching \endcsname is seen. Except,
the immediate predecessor of such an \endcsname is
\expandafter, and the token next to \endcsname is
another \csname:

\csname name-1 \expandafter\endcsname
\csname name-2 …
… \endcsname

I think of this trick as an (architecture) arc or a
bridge; and I think of \csname …\endcsname as the
stator(s) of an electric motor, which make(s) the
stuff between them spin. Hence the Ubu Stereo/
PUA signs based on Japanese quotation marks:

 name-1 name-2 …

So, as a “side-effect” of parsing of the GMS of sec-
tion 4, a translation is made:

__⋮⋮_prepareˈτ⧼ς⧽:w ::I
⋮⋮_prepareˈFSMˈω:w ¨F1 ¨I
__⋮⋮_subsrefsᔥstart ¨⦃0⦄
¨F2 ¨inˈF: ¨BÄ ¨I ¨subsrefsᔥ↓↓ ¨⦃0⦄
¨F¨2≔ ¨subsrefsᔥ↓↓

__⋮⋮_resumeˈFSM ¨⦃0⦄
¨F2 ¨I ¨F1 ¨I ¨F6 ¨I ¨F3 ¨I
¨Bε ¨B4 ¨B ¨Bͽ ¨B2 ¨B ¨Bͽ
¨B5 ¨B ¨Bͽ ¨ꟼi q__⋮⋮_FSMˈcrawᔥstart 6
__⋮⋮_τᔥyield:w ::: {}

where ‘’ symbolizes the ‘’ arch in the “⋮¹-run”
(parsing-translation), and then, after turning them

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 227

kN kD FS pR0

BS0 pR1

SR pRi

BSi pRi1

FA

_τ

_Ϡ [τ := ς]

_Λ [τ := ς]

_ :

_Ϡ

_Λ

_ .

_ :

_ρ

_ { ↓1

_ ;

_ .

_ :

_⟦ ↓i

_π

_ρ

_ ,

_{
↓
1

_ ;

_ .

_ :

_}
1↑

:0

_ { ↓1

_ } 1↑ : 1

_ρ

_⟧
i↑

: 1

_⟦
↓
i

_π

_ρ

_ } 1↑ : 0

_ { ↓1 _ } 1↑ : 1

_ρ

_ { ↓1

_π

_ρ

_⟧
i↑
: 0

_{
↓
1

_}
1↑

:i

_ { ↓1

_ } 1↑ : 1

_ρ

_π

_ρ

_ } 1↑ : i

_ { ↓1 _ } 1↑ : 1

_Ϡ : _ρ :

•

Pϡ

kD
_ϡ

_π

_ϖ

_π

_ϖ

•

P* RI

PwY

pR•

_*
_λ

_π

_^
_λ

_ρ

_Λ :

k• kL fC FS pR0

BS0

_Λ _# [mC := xpl.] _λ [№ := λ]

_ρ [mC := max.]

_ { ↓1 [mC := max.]

Figure 2: The GM-Scenarios deterministic push-down automaton.

GMS two years later. A complete madness. But—Turing-complete or not?

228 TUGboat, Volume 38 (2017), No. 2

The meta-conventions and symbols defined elsewhere:

• ⟨opt. ⟨punct.x⟩⟩ – 0 or 1 punctuation character x, x ∈ {‘.’, ‘;’, ‘.’}
• + ᴿ – “interᴿuption” – ᴿ⟨an ᴿ-code⟩¦×⟨args. for \prg_replicate:nn, with #2 a sub-⟨specification⟩⟩

¦ᴮ⟨expl3-⟨Boolean variable⟩⟩⟨T-arg.⟩⟨F-arg.⟩¦ᵇ⟨expl3-⟨Boolean expression⟩⟩⟨T-arg.⟩⟨F-arg⟩¦[an &ASCII;]
• + &ASCII; – right side of the rule should be doubled with the pure-ASCII, HTML-entity-like aliases of

the symbols just-listed, in the form of &⟨pure-ASCII alias⟩;, and also with ‘&U+⟨hex⟩;’ aliases, e.g.,
ð ≡ &{the}; ≡ &U+00F0;, Ð ≡ &the^; ≡ &U+00D0;,

• ⟨an ᴿ-code⟩ – a(ny) TEX code that ᴿ-expands to a part of a ⟨specification⟩, where ᴿ denotes the
\romannumeral -`0 trick.

The grammar:

⟨GMS⟩ ::= ⟨\⋮⋮-macro⟩⟨specification⟩:
⟨\⋮⋮-macro⟩ ::= \⋮⋮ | \⋮⋮_ˀ記用記 | \⋮⋮_記記 | \⋮⋮_用記 | \⋮⋮_用記ˈ + &ASCII; + ᴿ
⟨specification⟩ ::= ⟨1st dest.⟩⟨FSoO⟩⟨subseq. specification⟩
⟨1st dest.⟩ ::= ε | ⟨τ⟩
⟨τ⟩ “το τέλος”, ‘destiny/destination’ ::= ξ | ς | σ + &ASCII; + ᴿ
⟨subseq. specification⟩ ::= ε | ⟨dest.reset⟩⟨FSoO⟩⟨subseq. specification⟩
⟨dest.reset⟩ ::= . | ⟨opt. .⟩⟨τ⟩
⟨FSoO⟩ “Finite Sequence of Operators” ::= ε | ⟨SAlos⟩⟨opt. ;⟩⟨FSoO⟩ | ⟨FSM⟩⟨opt. ;⟩⟨FSoO⟩
⟨SAlos⟩ “Stand-Alone’s” ::= ⟨(π*ϖ*)*⟩ | ⟨SAlos⟩⟨ϡ⟩⟨π⟩⟨SAlos⟩
⟨(π*ϖ*)*⟩ ::= ⟨π*⟩⟨(π*ϖ*)*⟩ | ⟨ϖ*⟩⟨(π*ϖ*)*⟩
⟨π*⟩ “the pre-p’s” ::= ε | ⟨π⟩⟨π*⟩
⟨π⟩ “a pre-processor” ::= c | f | n | N | o | T | F | v | V | x % l3expan’s, deprecated

| A | a | Ä | ä | Ć | ć | Ð | ð |𝕯 | 𝖉 | E | e | Ē | ē | I | i | K | k | | | R | r | S | s | Ѵ | ѵ | Ѷ | ѷ | Z | z
+ &ASCII; + ᴿ| Ṅ | ṅ | Ḋ | ḋ | Ḟ | ḟ | Ġ | ġ

⟨ϖ*⟩ “the special pickers” ::= ε | ⟨ϖ⟩⟨ϖ*⟩
⟨ϖ?⟩ “optional picker” ::= ε | ⟨ϖ⟩ | i | I + ᴿ
⟨ϖ⟩ “a special picker” ::= p % l3expan’s, deprecated

| H | h | Ħ | ħ |Ƕ | Ɨ | ɨ | Ŀ⟨δ⟩ | ŀ⟨δ⟩ | Ł⟨δ⟩ | ł⟨δ⟩ |⌦⟨δ⟩ | Q | q | Ꝗ | ꝗ + &ASCII; + ᴿ
⟨ϡ⟩ “a star prefix” ::= ⁎ (Low Asterisk U+204E) | ⁑ (Double Asterisk U+2051) + &ASCII; + ᴿ
⟨FSM⟩ “Finite Sequence Manipulation” ::= ⟨labellity⟩⟨opt.cardinality⟩⟨FSM w. mCard.⟩
⟨labellity⟩ ::= ε | ⟨Λ⟩
⟨Λ⟩ ::= ♮ (musical Natural sign) |ω |ω + ᴿ
⟨opt.cardinality⟩ ::= ε | |⟨λ⟩|
⟨FSM w. mCard.⟩ “FSM with [known] metaCardinality” ::= ⟨FSM chunk⟩⟨opt. ,⟩ ⟨FSM w. mCard.⟩
⟨FSM chunk⟩ ::= ⟨(ρπ*)*⟩ | ⟨BDSM⟩ | ⟨subs’n’refs setting⟩
⟨(ρπ*)*⟩ “render-pointers w. pre-processors” ::= ε | ⟨ρ⟩⟨π*⟩⟨(ρπ*)*⟩ | ⟨ρ\r⟩⟨π⟩⟨π*⟩⟨(ρπ*)*⟩
⟨ρ⟩ “a render-pointer” ::= |

| + ᴿ
| ^⟨λ⟩ | _⟨λ⟩

⟨ρ\r⟩ “a no-render pointer”, or “bare pointer” ::= *⟨λ⟩ (ASCII asterisk and an FSM label) + ᴿ
⟨λ⟩ “an FSM label” ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P + ᴿ
⟨BDSM⟩ “Braces’n’Digits Sequence Manipulation” ::= {⟨FSM chunk⟩}⟨π*⟩
⟨subs’n’refs setting⟩ “substitutions and references setting” ::= ⟦ ⟨subs’n’refs⟩ ⟧ + ᴿ
⟨subs’n’refs⟩ ::= ⟨s.un.prefix⟩⟨λ⟩ | ⟨FSM chunk⟩⟨s.bin.infix⟩⟨λ⟩ | ⟨s.amb.prefix⟩⟨ϖ?⟩⟨λ⟩ | ⟨FSM chunk⟩

| ⟨subs’n’refs⟩⟨subs’n’refs⟩
⟨s.un.prefix⟩ “subs’n’refs prefix operator” ::= ※ + ᴿ
⟨s.bin.infix⟩ “subs’n’refs binary infix operator” ::= ≕ | + ᴿ
⟨s.amb.prefix⟩ “subs’n’refs ‘ambiguary’ prefix operator” ::= ⁁ + ᴿ

Figure 3: A formal grammar of GMS.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 229

all in control sequences “backwards” from right to
left, the escape chars of the resulting macros.

Not wishing to repeat everything that has al-
ready been said in the TUGboat 36:3 (2015) paper,
let’s just restate that:
• ‘\¨F2’ is a macro of the ⟨FSM⟩ part, performing

“Get the element 2 from the “shelf” and put
it on the “slab”.

• ‘\¨I’ is “Put the result of previous pre-process-
ing to the FSM’s result storage, without the
outer braces.

• ‘\¨Bε’ begins the ⟨BDSM⟩ part, and is an “empty
⟨text⟩” argument for further binary operation of
reverse concatenation, denoted with—

• ‘\¨Bͽ’, that takes the two most recently pro-
cessed ⟨partial result⟩s, and (conceptually) glues
them into one, in reverse order.

• ‘\¨B’ is a BDSM unary of “No wrap”/“Strip
off the braces”—“Pass it further in an open
envelope”, while

• ‘\¨B’ is (also unary) “Pass it further in a sealed
envelope”, i.e., “Wrap it in braces”.

• ‘\¨ꟼi’ finishes the ⟨BDSM⟩ part and puts its re-
sult into the enclosing ⟨FSM⟩’s result container.
The Epigraphic Reversed P, U+A7FC, ‘ꟼ’, in-
dicates “Reverse Polish Notation”, as this is
what’s going on in the ⟨BDSM⟩’s.
And the result of running this, is:

\⚸_lccode∷ `* % a \noexpand-ed active char acquired
by two-level expansion of \c_active_tl.

`#1
\⚸_lowercase∷ {\⚸_pdef∷ *}{

\⚸_penalty∷ \⚸_exhyphenpenalty∷
\⚸_hskip∷ \c_zero_skip }

The transitions are labeled not with particular
characters but with equivalence classes of: ⟨π⟩s, ⟨τ⟩
(destination tokens) &c.

It’s probably not a significant savings of mem-
ory or other costs of computation, but a great sim-
plifying of the code. And making it more change-
and development-robust as e.g., adding a new argu-
ment type, which is denoted with a char of equiva-
lence class ⟨π⟩, does not require any changes in the
automaton.

5.2 The destination, ⟨τ⟩
Parsing of a ⟨specification⟩ starts with determina-
tion of the “destination”, i.e., the way the result of
the next ⟨FSoO⟩ is yielded:

ε If no explicit destination token is given,15 the
usual “just once” is assumed, as l3expan’s \::/

15 I.e., the first char met is none of ς σ ξ.

__exp_arg_next:nnn do. This is equivalent to
the use of ς.

ς Greek letter small sigma final form, the open
variant, for “συναγωγή πολύ” /synagoge poly/,
‘gather (as) many’ (with intended associations
with the correlation between social diversity and
open-mindedness of people). Therefore let us
call this “just once and multi”.

σ stands for “συναγωγή μόνο” /synagoge mono/,
‘gather [as] one’, Greek letter small sigma mid-
dle form, the closed variant, to be associated
with enclosing of all the picked and pre-pro-
cessed arguments in one common resulting pair
of braces. (“Just once and as one”.) Useful if a
GMS (is expandable and) is to prepare a single
argument or {⟨balanced text⟩}.

ξ for Greek “ξανα”, ‘[use] again’: the result is put
back as input for further parts of the specifica-
tion, quite like the ruminants do.

5.3 The pre-ps. and pickers, ⟨(π*ϖ*)*⟩
Most of these letters directly correspond to an expl3
“argument type” and the respective \:: macro, or
extrapolate their ideas, even maybe towards a kind
of a completeness or full(er) symmetry.

With respect to their actions, they could be di-
vided in four groups:

𝟙 the identity operators, Ii (TEXnically, they pick
an undelimited argument, so they can be also
described as “pickers”);

⚗ the pre-processors (TEXnically also pickers, as
above);

✔ the special pickers, picking a delimited argu-
ment, but not applying anything to it;

✘ the discarders (or destroyers), picking an un- or
delimited argument and discarding it.

We have
⟨π⟩ = 𝟙 ∪⚗,
⟨ϖ⟩ = ✔ ∪✘,

and the main reason for distinguishing between (the
𝟙 s and) the ⚗ s (the ⟨π⟩ s), and the ✔ s and ✘ s (the
⟨ϖ⟩ s) is that the latter are not allowed in ⟨FSM⟩s,
and in fact don’t make much sense there.

So, let us see what they do. The ones hom-
onymic with l3expan “argument types” are enclosed
in [square brackets]. The group assignment of the
above four is indicated, and the symbols ‘’ and
‘ˀ’ denote non-expandability and uncertain ex-
pandability, resp. The symbol ‘ˀ✘’ means ✘ group

GMS two years later. A complete madness. But—Turing-complete or not?

230 TUGboat, Volume 38 (2017), No. 2

assignment uncertain. No symbol concerning ex-
pandability at an operator means it’s expandable.16

[o] A a ⚗ One-level expansion with \expandafter. (As
currently implemented in l3expan.)

Ä ä ⚗ Two-level expansion with \expandafter. Used
by me for pre-processing of macros that should
be expanded to their content and that content
hit once more, e.g.:

\def\number_of_page:{\the\c@page}

[c] Ć ć ⚗ The uppercase is just an alias for c, i.e., ap-
plying · before passing the argument on
without braces. The lowercase ć does the same
only passes the result on in braces. What could
be it useful for? First, for all the TEX primitives
that require a {⟨balanced text⟩}. Then, for the
constructs like

name 1 name 2 …
Ð ð ⚗(Latin letter Eth/eth) Hits the argument with

\the. In the current implementation of expl3,
it’s almost equivalent to V for some expl3 data
types, namely: _int, _dim and _skip.

ð is equivalent to V and Ð to VI. v is equivalent
⁎cð in stand-alone contexts or cð as ⟨π s⟩ of an
⟨FSM⟩ or ⟨BDSM⟩.
However, due to the “Don’t rely on imple-

mentation” rule, one should always use the v or
V specifier to render the value of an expl3 data
carrier.

𝕯𝖉 ⚗ Hits the argument with \meaning. (“Was
𝖉eutet die Name?”)

[x] E e ⚗ Submit the argument to \edef. The lower-
case e translates to the \::x macro of l3expan/
expl3 which in its current implementation “re-
turns” the “result” in braces. The uppercase
variant “returns” the “result” without braces
and is not present in expl3.

Ē ē ⚗ Submit the argument to, approximately,
\protected@edef in the sense of LATEX2ε. (We
can think of the horizontal bar over the \edef
“e”’s as a protective shield.)

[p] H h ✔ Pick a #{-delimited argument and return it
without braces (H, p) or wrapped in braces (h).

Ħ ħ ✘ Pick a #{-delimited argument and discard it.
Ƕ ✔ Pick everything until the digit (⟨FSM⟩-label

⟨λ⟩) 1 and “return” without braces, leaving the
⟨λ⟩ 1 at input. (Used to jump right to a la-
belled FSM.) (Latin Capital Letter HV, shape
modified in my Ubu Stereo font.)

16 Like, toutes proportions gardées, in Orthodox Jewish
districts or state(s), “If something isn’t terefah by its very
nature, in which case there’s a warning, then it’s kashrut.”

I i 𝟙 Identity operation, braced or unbraced with
respect to the lettercase.

Ɨ ɨ ✘ Pick and discard an undelimited argument.
K k ⚗\detokenize the argument.

Ŀ⟨δ⟩ ŀ⟨δ⟩ ✔ˀ Pick an argument delimited with the de-
limiter ⟨δ⟩; if ⟨δ⟩ is not yet declared, i.e., there’s
no internal macro with a parameter delimited
with it to do the job, define it dynamically (and
not expandably, in this case).

Ł⟨δ⟩ ł⟨δ⟩
⌦⟨δ⟩

✘ˀ Pick and discard an argument delimited
with ⟨δ⟩, possibly declaring ⟨δ⟩ dynamically, as
with ‘Ŀ’ and ‘ŀ’ above.

[N] [n] 𝟙 No pre-processing. Equivalent to i/I in the
current implementation of l3expan; listed sepa-
rately here in observance of the admonition in
“The LATEX3 Interfaces” by The LATEX3 Project
[Team?]17 (henceforth “L3Interfaces”): “the im-
plementation should not be relied upon”.

 ⚗ Hit the argument, which should be a single
character token, with (expandable) in- or decre-
ment by 1 respectively (expandable).

Q q ✔ Pick an argument delimited with \q_stop.
Ꝗ ꝗ ✘ (Latin Capital/Small Letter Q with Stroke

through Descender, U+A756/U+A757) Pick
and discard an argument delimited with \q_stop.

[f] R r ⚗ Apply \romannumeral -`0 to the argument.
This fully expands the leading token(s) of the
argument until an unexpandable token is seen.
So, it’s called f for “full” and not called so by
myself for “until first unexpandable”. I chose
the letters ‘R’/‘r’ to refer clearly to the primitive
\romannumeral, as this expansion is not “full” in
principle; and if might be described without it,
that would be “\expandafter quantum satis”.

S s ⚗ Hit the argument with \string. It’s worth
underlining that the uppercase version “returns”
the result without braces, which for a control
sequence means at least two “bare” tokens.

[V] Ѵ ѵ ⚗ (expl3: Latin Capital Letter V; me: Cyrillic
letter Izhitsa, U+0474/U+0475.) Render the
value of a data carrier (an expl3 “variable” or
“constant”), given as a control sequence. Re-
lated to ð and Ð, see above.

[v] Ѷ ѷ ⚗ (expl3: Latin letter lowercase v; me: Cyrillic
letter Izhitsa with Kendima, U+0476/U+0477.)
Render the value of a data carrier given as a
name (first submit the argument to ·).

Z z ✘ˀˀ Insert the resp. ⟨text⟩ in the stream of
this GMS translation (⋮⋮-run macros).

17 as of May 18, 2016.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 231

Since ‘Z’ is considered a symbol of things last
or ultimate, and with this operator/s you can
do literally anything, “from ‘A’ to ‘Z’ ”.18

Dangerous, experimental, liability excluded
to the maximum extent permitted by Law.

Don’t use it unless you read and understood
its current implementation.

Ṅ ṅ
Ḋ ḋ
Ġ ġ

⚗ Submit the argument to \the\numexpr, \the
\dimexpr, or \the\glueexpr respectively, i.e., in
one-level expansion evaluate the argument as
\int_eval:n, \dim_eval:n, and \skip_eval:n do
in the everyday expl3. (Added in July, 2017.)

Ḟ ḟ ⚗ Applies \fp_eval:n to the argument, that is,
“floating point” evaluation in the sense of expl3.
(Added in August, 2017.)

When used as ⟨SAlos⟩, the ⟨(π*ϖ*)*⟩ (pre-ps.
and pickers) refer to / are applied to subsequent
arguments from the input.

When following a ⟨ρ⟩, the ⟨π⟩ s refer to / are
applied to the resp. ⟨λ⟩th argument from the input,
counting as explained later.

When following a close brace in a ⟨BDSM⟩, in-
cluding the outermost, the ⟨π⟩ s refer to that ⟨BDSM⟩
as if it were a single argument taken from the input,
and a ⟨ϖ⟩ raises an error.

5.4 The meta-operators, ⟨ϡ⟩
The ⁎ and ⁑ meta-operators are allowed only in the
⟨SAlos⟩, and modify actions of (π*ϖ*)*. By return-
ing a pre-processed ⟨text⟩ to input, they allow mul-
tiple operations on the same ⟨text⟩ without launch-
ing the (more expensive) ⟨FSM⟩/gBDSM machine.
They don’t increase the expressive power of the lan-
guage, as they might be expressed as follows:
• ‘⁎⟨π⟩’ ≡ ‘ξ⟨π⟩.’
• ‘⁑⟨π⟩’ ≡ ‘ξ ♮. ⟨π⟩.’

The ᴿ meta-operator (or rather: interruptor)
suspends parsing of ⟨specification⟩, hits whatever is
next with \romannumeral -`0, i.e., “the f-type ex-
pansion” in the L3Interfaces, and then hopefully re-
sumes parsing. That allows you to branch the very
specification of a given GMS, not only its arguments.
Including nesting of GMS’s. Does it increase ex-
pressive power? Yes. It brings virtually the whole
“mouth” of TEX into the GM-Scenarios, and that’s
Turing-complete (cf. an expandable implementation
of lambda calculus at ctan.org/pkg/lambda-lists and
a more general discussion at tex.stackexchange.com/
questions/35039/why-isnt-everything-expandable .)

18 Also, Zelenka’s Missæ ultimæ might be recalled as a
mnemo.

And that (the “interᴿuptions”) let you write code in
a more “meta” way. And more obscure, yet shorter.

× is a shorthand for ᴿ\prg_replicate:nn, which
means it requires two pairs of braces to come next,
the first containing a ⟨number specification⟩ and the
second the things you wish to replicate. This way,
instead of

\⋮⋮ … ↓↓↓↓↓↓↓↓ …:
you can type

\⋮⋮ … ×8↓ … :

(As you may have noticed, at this point I do rely
on the current implementation of \prg_replicate:nn,
namely, on its expandability.19)

Let’s now deal with the “render-pointers” ⟨ρ⟩s,
that is, the general permutations.

5.5 The general permutations, or the ⟨FSM⟩
without grouping

The processing of a “general permutation” can be
described as two stages: (Stage One) preparation of
the “shelf” or “substrates’ storage”, or “craw”, and
then (Stage Two) picking labelled elements from
the “shelf” and putting on the “slab”20 (a permu-
tation consists of or is applied to elements (of some
set), not arguments, isn’t it?).

As labels, the “bare” digits and Latin capital
letters are used: ‘1’..‘9’, ‘A’..‘P’. This is safe since the
(GMS’s) arguments’ contents are “invisible” to TEX’s
macro argument scanner, thanks to the braces. Two
important arguments for this choice are:
• these chars are easy to type in (for the “explicit

labels” version), at least with Western input de-
vices;

• no one changes their catcodes (not even me).
The “shelf” is functionally a one-dimensional

array (a vector). For each label ⟨λ⟩, an accessor
or “Fetch!” macro ‘¨F⟨λ⟩’ exists that resp. render-
pointer translates to. It “gets a copy” of the ⟨text⟩
put next to ⟨λ⟩ on the “shelf” onto the “slab”, i.e.,
absorbs that ⟨text⟩, and puts one copy of it on the
“slab”, and another copy back on the “shelf”.

Then the ⟨π⟩ s are applied (if any), and the re-
sult is appended to what’s already in the “result
container”.

It seems expensive, O(ls
2), ls being the length

of ⟨specification⟩, and it would probably be more
effective to define index-named macros whose con-
tents would be the ⟨FSM⟩’s elements. Then access

19 But why does the L3Interfaces indicate expandability
of its “functions” if one should not rely on implementation?
(That makes me feel confused 😉 .)

20 “Let’s go to the lab ’n’see what’s on the slab”, “The
Rocky Horror Picture Show”.

GMS two years later. A complete madness. But—Turing-complete or not?

ctan.org/pkg/lambda-lists
tex.stackexchange.com/questions/35039/why-isnt-everything-expandable
tex.stackexchange.com/questions/35039/why-isnt-everything-expandable

232 TUGboat, Volume 38 (2017), No. 2

to any of them would cost just one … plus one
one-level expansion of it. But practically, for up to
25 ⟨text⟩s for an ⟨FSM⟩, it works just fine.

But when implemented the way it is now, it
stays expandable. Why is that so important? I’m
not quite sure. First of all, it’s more fun. But also,
many TEX and ε-TEX primitives expand macros in
search of {⟨balanced text⟩} to absorb. Then, if a
GMS is expandable, it is possible to write, e.g.,

\toks\<number>= \⋮⋮ ω {…} : 1 … ω

and get the scenario to return the {⟨text⟩} for the
\toks assignment.

In addition, the prefixes \global, \outer, and
\protected expand expandable tokens, so that’s pos-
sible to define, say, \⚸_def:Nn that computes and
sets the proper parameters string out of its #1’s sig-
nature, and at the same time accepts prefixing with
\global or \protected, and acts accordingly.21

So, it seems we are handling a dynamic-length
data structure within purely expandable sub-TEX.
Are we really? Not quite. It is dynamic in length
and expandable only up to the largest number for
which “shelf”-preparing and -referring macros were
previously defined. For now, this number is 25, as
I haven’t needed more so far, especially since more
than 10 already makes a GMS a tool of “Security
by Obscurity” rather than of shortening the code or
making it more bug-robust.

5.6 Parsing the braces, or: ⟨BDSM⟩
In the first go, as presented in the previous paper, I
perceived the GMS as a DFA (Deterministic Finite
Automaton) “with Mysterious Something” that al-
lowed it to handle the braces properly.

That “Mysterious Something” had been imple-
mented as the native TEX’s argument scanner with
additional tricks to roll back the effect of ‘\string{’,
in a sense, and instead put a special token ‘ꟼ’ next to
the outermost closing brace, translated to the ‘\¨ꟼ’
macro mentioned above.

Currently my understanding is that those tricks
are not necessary, and we can process the ⟨specifi-
cation⟩ char-by-char until a colon ‘:’, which allows
to use not only the braces {1 and }2 as the group
opening and group closing symbols, but also other
characters I’d give this charclass(es), e.g., ‘⦃’ and ‘⦄’.

The only thing we need to do is add another
argument to the relevant states and transitions, one
which bears the nesting level.

21 \⚸_def:Nn is actually defined this way in gme3u8, while
l3expan’s \cs_new:Nn contains a preliminary/auxiliary \def any
prefix is “earthed” at, or even raises an error.

And what is such an argument, i.e., an integer
(Natural) number, that’s initially 0, and is increased
by 1 with each opening brace, and decreased by 1
with each closing? It’s nothing (in a sense) other
than a pushdown stack (i.e., a stack with top-only
access), with the initial symbol 0 and just one sym-
bol pushed down or popped, 1. Then, we can think
of the number representing current nesting depth of
braces as the stack storing this many 1’s.

In this sense, the GMS automaton is a DPDA,
Deterministic Pushdown Automaton.

The (informal) argument that it’s a proper
DPDA (not a Turing Machine), is that it does only
what fig. 2 depicts. In particular, it rejects (raises
an error at) the ⟨BDSM⟩ braces and ⟨subs’n’refs⟩
double-stroke brackets interlacing

\⋮⋮ … ♮ {⟦}⟧ ; … :

while all three ‘♮ {}⟦⟧ ;’, ‘♮ {⟦⟧} ;’, and ‘♮ ⟦{}⟧ ;’
are accepted.

Then, the depth of the BDSM braces is limited
only by the capacity of TEX (and at the ⋮¹-run it’s
about memory not the maximum group level, since
there are no “groups” (that belong to the seman-
tics), just syntax, i.e., the symbols of the GMS lan-
guage’s alphabet). This means it’s stronger than a
Deterministic Finite Automaton, since it’s capable
of recognizing the Dyck language.

The “stack integer” is implemented as a single
character interpreted as a number via ‘`’ (TEX back-
quote), and expandably in- or decremented thanks
to \numexpr and \Ucharcat.

I consider it a data type and call it ‘Ń’, hence
the ‘’ and ‘’ pre-processors using the expandable
in- and decrement mentioned above.

With setting the number 0 to be represented
by the character ‘0’, the maximum character num-
ber available in XƎTEX is 1114063. So, far far more
than the maximum grouping level handled by TEX,
so it can parse (accept and translate into the rear-
rangement macros) far deeper nesting than TEX can
execute.

If we meet an opening brace when 0 is at the top
of the stack, we move to the BDSM sub-automaton,
and do basically the same things as we do in the FSM
states, but pushing or popping 1’s down or from the
stack.

Once 0 is seen again, i.e., once all the 1’s are
popped from the stack, we know that the outermost
opening brace (of this BDSM) has been matched, so
we possibly apply some ⟨π⟩s to it, and then yield,
and move back to the state of general FSM.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 233

The case of “subs’n’refs” is conceptually analo-
gous, although the current implementation is more
tricky than honestly “automaton-ic”.

5.7 The ⟨subs’n’refs⟩
Whenever the automaton, being already in some of
the ⟨FSM⟩ states, meets an opening ‘⟦’ bracket, it
conceptually pushes yet another symbol down the
stack, and moves us into the “subs’n’refs” sub-aut-
omaton(s).

This new symbol may be considered the initial
symbol of the ⟨subs’n’refs⟩ sub-stack. Then, again,
whenever an opening brace is met, 1 is pushed down,
and popped at meeting a closing brace. Seeing that
“yet another symbol” on top of the stack after a
closing brace was popped, says that that brace is
outermost with respect to this ⟨subs’n’refs⟩.

As you see, the matter discussed gets a bit com-
plex, and hence I chose i as that “yet another sym-
bol”. 😉

The ⟨subs’n’refs⟩ cannot be nested, and that’s
why only one i is allowed on the stack, and why
there’s no ‘⟦’- or ‘⟧’-labelled edge between two states
of the ⟨subs’n’refs⟩ sub-automaton.

The ⟨subs’n’refs⟩ sub-automaton might also be
considered two distinct sub-automata, one reached
from the general ⟨FSM⟩ states and returning to them,
and the other from the ⟨BDSM⟩, and going back to
that ⟨BDSM⟩.

The difference lies on the top of the stack (lit-
erally) before pushing down the symbol i, and af-
ter popping it: if the ⟨subs’n’refs⟩ sub-automaton
is reached from a general ⟨FSM⟩, 0 is on top of the
stack, and if the ⟨subs’n’refs⟩ has been reached from
within a ⟨BDSM⟩ state, then 1 is on top of the stack.

The diagram is complex already; so as not to
make it messy, those two sub-automata have been
merged, in a sense. Instead of drawing the two inde-
pendently, only the “foreign” edges are drawn as dis-
tinct, while the states and the “domestic” edges are
present once, and the two sub-automata are topo-
logically homeomorphic.22

5.7.1 The replacements, ‘=:’
Consider the part ‘⟦ Ä≕2 ⟧’ of the example in sec-
tion 4. As has already been mentioned, this part
of ⟨specification⟩, and more precisely, of its ⟨FSM⟩,
translates into macros that replace the original ele-
ment 2 with its “double ” expansion, prepared to
be returned without braces.

22 The macros for the two are separate, though, because
within ⟨BDSM⟩ the local “shelf” and “slab” are prepared
slightly differently, and so the parameter delimiters differ.

So far, there is no “symbol i” used in the imple-
mentation. The transition to the ⟨subs’n’refs⟩ part
of the automaton is implemented with “memoriz-
ing” current nesting level, which would be the cur-
rent length of the stack in the terms of this paper,
as a(nother) numchar, and confronting it with the
{}-nesting level at ⟧, i.e., at the end of ⟨subs’n’refs⟩.

This is done in a way similar to the “usual” pro-
cessing of the ⟨FSM⟩ elements, i.e., by taking a copy
of the element into the “operation table” or “slab”,
applying the ⟨π⟩s, and, here comes the difference,
putting the result not in the “result container”, but
back in the “craw” or “shelf”, effectively replacing
it at the given label.23

The idea of this sub-automaton stemmed ex-
actly from the craving for “as few repetitions as
possible”, namely, in situations where I’d apply the
same sequence of pre-processors ⟨π*⟩ to the same
element of an ⟨FSM⟩ more than once.

In the given example, it’s a bit of an overkill, as
the element 2 is used only in two copies. But, even
twice might be too many, if we think of the points
to remember to change something, say, a single ‘’
to “double-”.

In this example, the render-pointer ⟨ρ⟩ at the
left side of ‘≕’ corresponds with the label ⟨λ⟩.

But it’s not a sine qua non. The mechanism is
general enough (at no additional cost) to process any
correct ⟨FSM⟩ put on the left (including ⟨BDSM⟩),
and make the replacement of it at the label typed
on the right side of the ‘≕’ “assignment” symbol.

And, I used quotation marks for the word “as-
signment”, because the replacement operator ‘≕’
(binary infix) is expandable.

5.7.2 “The arguments from beyond”, ‘⁁’
Also expandable is the “ambiguary” prefix opera-
tion ⁁⟨ϖ?⟩⟨λ⟩, that gets the next argument from the
“input”, i.e., from beyond all the “slabs”, “shells”,
“fridges” and “containers” of the ⟨FSM⟩ and of the
entire ⟨specification⟩, and puts it as the element
⟨λ⟩, thus replacing whatever was there before.

It also works if there was nothing at that label
earlier, i.e., if ⟨λ⟩ was until now immediately followed
by another label, or by a delimiter of the “shelf”.
(Garbage warning as above.)

Again, it’s done with macros with a parameter
delimited by the respective label(s).

23 With the assumption that such replacements are “not
too many”, and in order to allow “empty labels”, the old
version of an element remains “at the back”, and is discarded
only at the very end. (Garbage warning.)

GMS two years later. A complete madness. But—Turing-complete or not?

234 TUGboat, Volume 38 (2017), No. 2

Since this feature was implemented only last
week, only an undelimited argument picker is han-
dled at the moment. But other pickers are in pec-
toris, as described in the Grammar, fig. 3.

Also, in this (early) version of this functional-
ity, presence of the label ⟨λ⟩ already in the slab is
assumed and required.

Again, this feature emerged from a need (or
will) to be able to write a GMS consisting mostly of
an FSM, and make an anonymous function of it,24

and yet declare the FSM with labels, as it’s more
readable this way.

The example which follows is based on a quasi-
iterator used in some really real TEX program. First
of all (conceptually), there is a list of control se-
quences that should be at some point defined (or
not, that’s why it’s not done on the “ground level”
of code). Then, if they are defined (and only if),
they should be initialized, as they’re defined as vari-
ables (of various types). Then, if they joined in the
action, it has to be known how to set them (s), and
also, how to reset (rs). That makes a 4-tuple of
things for each of those control sequences, with the
(s) function used also in (rs), only with the special
value (rsv), and that (rsv) is specified as the 4th
element of each tuple.

Each of those control sequences requires specific
“methods” of its own, and initialization is performed
once if at all, so instead of defining macros, I used
a GMS to allow the contents of the braces (*), i.e.,
that anonymous 1-argument function, to be put by
the loop, and given control sequence (*b) as the ar-
gument.

...
{⟨initializations of:⟩} \g___auxˈ_str
...
{ % (*)

\⋮⋮ ω ⟦⁁5⟧ : } % declare & init. box to
empty \hbox

{ \⋮⋮ ω ⟦⁁5⟧ : } % reset the box to void
{ % (**)

1 \box_new:N
2 {\⚸_global∷\⚸_setbox∷}
3 {=\hbox{}}
4 \c_⚸_void_box
5

ω
}
\c___auxˈ_box % (*b)
...

24 Although at the time of writing this feature I was not
aware it was to be an anonymous function. Not only am I
not a computer scientist, but also not a graduate of a formal
course of computer programming 😸 .

Thus, when the code (*) and (**) are put (with-
out braces), and followed by the c.s. (*b), the first
thing done, written down as ‘⟦⁁5⟧’, is absorbing (*b)
to the 5.

And then the initialization is performed, i.e.,
the result of the above GMS is:

\box_new:N \c___auxˈ_box
\⚸_global∷ \⚸_setbox∷ \c___auxˈ_box =

\hbox {}

The optional picker ⟨ϖ?⟩, if present, makes the
machine pick not the next ⟨text⟩ undelimited, but
delimited as specified with the ⟨ϖ?⟩ (for symmetry,
specifying ‘i’ or ‘I’ is also allowed).

Note, by the way, that any GMS might be con-
sidered an anonymous function (unless a “predef” of
it is made), and also an explicit sequence of l3expan
‘\::’ ’s, but not the ‘inline’ (1st) arguments of the
expl3 \⟨type⟩_map_inline:n[n|N] iterators, as the lat-
ter are internally assigned a (one-parameter) macro
in the usual way, only hidden.

5.7.3 Snapshots and references, ‘※’
Described last, as unexpandable by their nature, are
the ※⟨λ⟩ operations, ‘snapshot the element ⟨λ⟩ and
make a reference to it’.

The idea is very simple: allow referencing the
permutation elements within the reorganized code,
so as not to be forced to divide everything into the
“before the element/argument part” and “after ~~
part”.

So, putting ‘⟦ ›… ※7 ›… ⟧’ within an ⟨FSM⟩,
makes a “snapshot” of the element 7 as it is at the
point of ⋮⋮-run of the (translation of) this operator,
available as the contents of an expandable macro,
or, speaking in expl3, a _tl variable, that may be
rendered via ‘※7’ to get that contents wrapped in
\unexpanded, or via ‘⁜7’, for not protected.

Nesting one GMS within another is allowed, and
to avoid messing up the snapshots and references in
such a case, a record of its level (depth) is kept,
and updated expandably as long as purely expand-
able ⟨subs’n’refs⟩ are used, which is checked by the
automaton in the ⋮⋮-run.

For now, only ‘※’ and ‘’ ⟨subs’n’refs⟩ opera-
tors “destroy expandability”, the latter being a su-
perposition of expandable ‘≕’ and ‘※’, as follows.

The binary infix operator ‘’, used as
‘⟦›…⟨FSM⟩⟨λ⟩›…⟧’,

first replaces the element ⟨λ⟩ with the result of the
⟨FSM⟩ from the left side, and then also makes a
snapshot of it, referrable as described above, via
※⟨λ⟩ for “\unexpanded’ed”, or ※⟨λ⟩, for “bare”.

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 235

To be honest, I’ve used this mechanism only a
few times so far, as it denies expandability by its
very nature. Each of those few uses is large, of more
than 10 elements, therefore I’ll show just fragments
of the simplest one.

\⋮⋮ ω ⟦9 % (curr. contents of) 3 is put on 9,
and made ※9

Ć≕7⟧
 % the c.s. built above is now defined
... :

...
2 { c___ #1 transitionˈfrom⧼ #2 ⧽ᔥvia⧼ ⁜9

⧽ᔥresult_clist }
3 { #3 }
9
...
ω

Note how the “snap’n’ref” is used: the primary goal
of this feature is to allow putting placeholders in
the subject code, and have them replaced with the
respective element. Somewhere in the middle of the
text, and possibly, also nested.

So, there are the placeholders in the middle of
⟨text⟩ of an element. And, they are valid only within
their respective ⟨FSM⟩, thanks to the record of GMS
nesting mentioned above, and checking it.

And outside their own FSM, those placeholders/
references issue an error. So, to make any use of
them, one has to apply some kind of full expansion
to the elements that contain them.

And here it is: the element 2 is a long csname
built with ⁜9, and the ‘Ć’ operator, i.e., ·, per-
forms such expansion. The resulting c.s. is put in-
stead of the original {⟨text⟩}.

Note BTW, that the c.s. raised from 2 is not
put instead of it(self), but at 7. That’s because ‘#3’
being the contents of the dereference 9, is “alive”,
and “then” expands to something other than “now”.

6 Rough budgeting, a.k.a. cost estimation
If we take the “interᴿuptions” into account, the es-
timation is simple: anything is possible, including
arbitrary elongation of the resulting “interᴿuption”-
less ⟨specification⟩. That elongation might come
from, e.g., ‘×⟨N⟩{⁎i}, where N is a decimal or hex.
representation of a positive integer.

Then the resulting length of ⟨specification⟩ be-
comes O(BlN), where B is the base of the represen-
tation of N used, and lN its length in this represen-
tation.

So, in the full-featured version, potentially “ex-
ponentially explosive”, but no more so than any loop
accepting numerical limits in power-position nota-
tion.

What about GM-Scenarios with “interᴿuptions”
put aside, i.e., the proper DPDA of it?

What basic operations should we consider here?
If we think of each operator as a (constant) sequence
of macros, as the definition of the operators does not
change in the runtime, and getting the next ⟨text⟩
from input as just one step (unit cost), then the time
cost of a GMS that doesn’t involve ⟨FSM⟩ is, putting
ls as the length of ⟨specification⟩, O(ls).

Then, including ⟨FSM⟩ in our consideration, we
see that one character (plus a constant number of
its “context”), may result in apparently arbitrarily
large numbers of ⟨text⟩s to take from input.

\⋮⋮ … ♮|7|; … :

But it cannot happen, as the alphabet (not Uni-
code, not the charset handled by the TEX engine
used, but the theoretical alphabet of the language
considered) is finite,25 so there is an upper bound for
the numbers expressible with the ⟨λ⟩’s, so, as we’re
in the realm of Naturals, there exists the maximum
of those numbers. Let’s denote it by M . Then,
including ⟨FSM⟩’s in this “budgeting”, we get an es-
timation

O(ls) +O(M·ls) = O(ls),

still within linear time.
But, is the assumption of the unit cost of get-

ting new ⟨text⟩ reasonable, no matter how far we
have to jump over the tail of ⟨specification⟩, and
over the partial result, i.e., the storage of the ⟨text⟩s
already processed?

It seems not. As the ⟨specification⟩ is executed,
the partial result “pessimistically” grows at the same
rate as the ⟨specification⟩ shortens, and we have to
jump over both of them in order to get the next
⟨text⟩ for pre-processing. So, if we consider “jump
over one ⟨text⟩” a unit cost, the estimation becomes
O(ls)

2, it seems. Still, polynomial time, not so bad
(it seems).

The space cost appears even nicer, as no ⟨text⟩
at the input can be copied more than ls times, and
there can be one ⟨FSM⟩“shelf” at a time, so no more
than M additional ⟨text⟩s at a time. That allows
the following estimation of the space cost SC:

SC ≤ 2ls +M,

with given alphabet and fixed set of ⟨ρ⟩’s and ⟨λ⟩’s,
M is constant, and so we get O(2ls+M), and that’s
just O(ls). Just great, it seems.

25 …and the language is too weak to express a description
like “The largest number expressible with less than 70 char-
acters”!😉 ̇

GMS two years later. A complete madness. But—Turing-complete or not?

236 TUGboat, Volume 38 (2017), No. 2

However, consider
\⋮⋮ ξ♮{}. : a % (s1)
\⋮⋮ ξ♮{}. ξ♮{}. : a % (s2)
\⋮⋮ ξ♮{}. ξ♮{}. ξ♮{}. : a % (s3)
...

It looks we’ve found an “exponential explosion”,
as each next ‘ξ♮{}.’ replicates the result of the
previous one three times, and n times in general, n
being the number of ‘’’s within braces.

Even though the length of ⟨specification⟩ grows
by n+K, K = 4 being fixed, so it’s not exactly 3ls/n

but more like 3ls/(n+K) —still exponential. Both in
time and space, as it’s the partial result that grows
so fast.

But this is a weird and theoretical example.26

In practice, let me repeat, it works just fine, as users
intuitively avoid the ‘ξ’ “destination”, and don’t do
such silly things as mere replication of one ⟨text⟩;
the previous estimation, of O(ls

2) time and O(ls)
space, seems to hold in all reasonable cases.

7 Friendly critiques at TUG@BachoTEX
2017

The respective section in the GMOA paper was called
“Real-life uses of GMOA”. I’m not sure whether such
a machinery, which with its full features is rather an
esoteric language than a friendly tool for reasonable
users, might be much used in “real life”. I’m afraid
that, by mere using of it, the respective part of “life”
would be made “un-real”. At least, in the sense of
total obscurity for anyone else but me.

That’s the most important thing my colleagues,
or better say: friends, pointed out after the presen-
tation of GMS at TUG@BachoTEX 2017.

In more detail, it’s because:
1. using “distant” and PUA Unicodes does not help

at all, since most users are still in pure ASCII, at
least concerning the control layer, like control
sequences and special characters;

2. it’s too complex and obscure, and for most peo-
ple it’s simply easier and clearer to write the
same code twice, or more times, than to try
to decipher from the one-character instructions
how the pieces should be repeated, and how
modified;

3. “\expandafter does strange and complex things,
therefore it should have a long and strange name,
and not single-character!”, and similar argu-
ment about other primitives;

4. it doesn’t seem useful, “… and I understood, it
doesn’t have to be: because you don’t develop

26 Remember Murphy’s Law?

it to be useful, you develop it as your artistic
expression.”

@ rem. 1, I totally agree. Also, not even yet
shown, non-English control sequences, such as the
eschatological-appearing ‘__⋮⋮_αποκατασταθείˈFSM’
(‘apokatastathei FSM’, reminding one of the Neo-
Platonic or Gnostic visions of Apokatastasis at the
End of Time), changed to ‘__⋮⋮_SRᔥresumeˈFSM’
herein, along with all other Greek or Latin ones.

And, to ease typing of ⟨specification⟩s to those
few who may not be completely familiar with things
like Opening Lenticular Bracket Ordinal Number
Omega, PUA+E9EA ‘ω’, I provide a pure ASCII and
HTML-like “input method”: in the most general ver-
sion, one may type ‘&U+⟨hex⟩;’, and then \Ucharcat
·12 will be applied to ⟨hex⟩, i.e., the resp. char12
rendered, as if it were there in the first place.

Then, there are some “ASCII approximations”
of the symbols, like ‘&w[;’ and ‘&w];’ for ‘ω’ and ‘ω’,
or ‘&VY;’ for the Capital Izhitsa with Kendima, ‘Ѷ’,
or ‘&{the};’ for ‘ð’.

The ‘&…;’ “entities” are (more or less) “interᴿ-
uptions”, and can be used anywhere. They are trans-
lated internally to the respective original symbols,
so using a native Unicode engine remains obligatory.

For the pointer-renderers of ⟨FSM⟩ elements,
i.e., the ⟨ρ⟩ symbols of the formal grammar, the
HTML-like forms: ‘&_1;’…‘&_9;’, ‘&_A;’…‘&_P;’ for the
“lowercase” ‘’…‘’, and ‘&^1;’…‘&^9;’, ‘&^A;’…‘&^P;’
for “uppercase” ‘’…‘’, ‘’…‘’.

To avoid possible confusion of ‘&_1;’ and ‘’,
think of ASCII Underscore as the sign of “generic
sub-ness”, as in standard TEX for subscripts, so may
it be also for lowercase, and of the graphical ele-
ment ’ݢ‘ “double underline” as the proofreading sign
“make this uppercase”.

But in case of the ⟨ρ⟩ “render-pointers”, the
HTML-like notation is not necessary, i.e., the ‘&’ and
‘;’ might be omitted, and ‘_9’ is also fine, as shown
both in the automaton graph in fig. 2, and in the
formal grammar in fig. 3.

@ rem. 2, I admit: yes, GMS are complex, and
maybe even mad, and might easily become obscure.
But, and this is one of its goals, they allow reduc-
ing the number of repetitions of at least some parts
of code to 1, and that in turn makes things fix-
able at just one point. For instance, having defined
two macros that differ only with the printed text,
and put the same skips before it, if I wish later to
change the amounts, then, having used \⋮⋮ properly,
I change “both” of them only once, namely, at the
label ‘A’:

Grzegorz Murzynowski

TUGboat, Volume 38 (2017), No. 2 237

\GMS &w[; ^1^2 ^7 {^A^3^9}
^1^4 ^7^8 {^A^8 _5 ^9} :

1 \def
2 \macro 3 {indigo}
4 \macro 5 {indigenous}
7 {#1#2#3} 8 {#4} 9 {#2}
A {\hskip 17pt\relax } % later changeable
&w];

As with probably all things in this world, it’s
a matter of balance. Here, between only the primi-
tives at one extreme, and just one active character
expanding to the entire document, at the other. Oh,
not even one: an empty file, that expands to the en-
tire document thanks to \everyeof.

For me, that balance seems to be in the l3expan
iterators and in not too long, but on the other hand,
nontrivial, GM-Scenarios.

@ rem. 4, I also admit that the main reason I’m
doing this is fun, or, to put it in a less hedonistic
way, intense intellectual satisfaction.

But, again, that doesn’t exclude usefulness per
se, and striving to make GMS meet not only my
requirements, but also those of other people, might
be as much fun, and as much art.

@ rem. 3, let me just say:
′

as in: (f(x)·g(x))′ = f ′(x)g(x) + f(x)g′(x). 😸

8 Final remarks
8.1 “Thank Heavens, it’s not the Premium

Class”
At the end, let’s recap the question posed in the title.
We already know GMS’s are a complete madness.
But—are they Turing-complete?

The answer has already been given, and this
answer is: No.

Ignoring the “interᴿuptions”, the27 automaton
is deterministic pushdown, and the GMS language
appears to be context-free.

So, it’s not a Premium Class machine, i.e., Tur-
ing, and that’s a relief in a sense, as it shows I did
not “rewrite TEX in TEX” [yet].

On the other hand, the GM-Scenarios allow for
making parts of code noticeably shorter, clearer, and
less repetitive, and this way more readable and bug-
robust. Provided that they (GMS s) are kept at bay
on their own, i.e., not too long, and not too complex.

27 Actually, an automaton, since there exist many au-
tomata equivalent to the one just presented, in the sense of
recognizing exactly the same language.

8.2 The end, or ἔσχατον
When I think of all those symbols, the automaton,
its states and transitions, adding “the arguments
from beyond”, the correspondence between it and
the formal language of GMS, the most “finale-al” fi-
nale I know of, the eschatological and apokatasthatic
“Chorus Mysticus” in the cosmic Mahler Eighth Sym-
phony comes in handy. 😉

Alles Vergängliche All things under Transition
Ist nur ein Gleichnis; are just a Symbol;
Das Unzulängliche, What l3expan couldn't express,
Hier wird's Ereignis; here is performed;
Das Unbeschreibliche, What could not be described,
Hier ist es getan; here is just done;
Das Ewigweibliche les Femmes Puissantes,
Zieht uns hinan. protect and bring us beyond.

— Goethe, “Faustus” 28 &
Mahler, the Eighth Symphony

⋄ Grzegorz Murzynowski
PARCAT.eu
g.murzynowski (at) parcat dot eu
natror.croolik.sryc (at) gmail dot com

28 English translation mine, adapted and adjusted for the
needs of this paper.

GMS two years later. A complete madness. But—Turing-complete or not?

	Why again?
	The name

	A brief history of logistic growth of resources or: What do we take for granted
	The inspiratio: l3expan
	The Pandora's box of new letters
	``Let's make it shorter and don't repeat…'', or: how the GMSs began
	GMS as a nano-Copernican revolution (against l3expan (?))

	GMS: the automaton
	The automaton: diagram

	GMS: the formal language, and program
	The <\triple-dot triple-dot macro> and <specification>
	The destination, <tau>
	The pre-ps. and pickers, <(pi* varpi*)*>
	The meta-operators, <sampi>
	The general permutations, or the <FSM> without grouping
	Parsing the braces, or: <BDSM>
	The <subs'n'refs>
	The replacements, `=:'
	“The arguments from beyond”, `caret ins. point'
	Snapshots and references, <ref.mark>

	Rough budgeting, a.k.a. cost estimation
	Friendly critiques at TUG@BachoTeX 2017
	Final remarks
	“Thank Heavens, it's not the Premium Class”
	The end, or eschaton

