
306 TUGboat, Volume 37 (2016), No. 3

Cowfont (koeieletters) update

Taco Hoekwater, Hans Hagen

Abstract

After ten years, the ‘koeieletters’ font is ready for an
update. The new version uses OpenType technology
to combine the existing four PostScript Type 1 fonts
into a single TrueType font. It’s sort of a coincidence
that at the tenth ConTEXt meeting, the font also
celebrates its tenth birthday.

1 A bit of history1

1.1 The artful beginnings

At TUG 2003 in Hawaii, Hans Hagen met with Duane
Bibby. Hans was looking for some small images to
enliven the ConTEXt manuals and Wiki. A cutout
of a very early sketch can be seen in figure 1, but
it was soon agreed that consecutive drawings were
going to be an alphabet.

Nothing much happened after that initial meet-
ing until the beginning of 2006 when Hans picked up
the thread and got Duane started drawing. The al-
phabet quickly progressed. Starting in a rather natu-
ralistic style like Duane’s ‘normal’ TEX drawings, but
later progressing toward a much more cartoon-like
style, as can be seen from the drawings in figure 2.

For ease of use, it was clear that these draw-
ings should ideally become a computer font. Taco
Hoekwater agreed to take care of the digitization,
and luckily the drawings were already prepared for
that. As can be seen from the leftmost closeup in fig-
ure 3, the cows are drawn inside a grid. This ensures
that they are all the same size, which is a vital re-
quirement for a font design. But of course this is a
proportional font in the end; it even has kerning and
ligatures!

The center drawing in figure 3 is a still rather
roughly inked version of one of the in-between draw-
ings (there were many). In this particular one you
can see that the mouth of the cow was originally
more or less oval, but in the final form (on the right)
it became much more hexagonal.

1.2 Digitization

The original sheets were sent to Pragma ADE by
regular mail in the beginning of March 2006. Hans
scanned the original sheets at 1200 dpi and then
forwarded the images to Taco. There were four sheets
in all, containing an alphabet with some accents,

1 This section is an abbreviated version from our
article ‘The making of a (TEX) font’, MAPS 34 (2006),
pages 51–54. http://www.ntg.nl/maps/34/11.pdf

Figure 1: The first drawing

Figure 2: Rough design

Latin punctuation, and a number of TEX-related
logos and a few (mathematical) symbols.

The four sheets were digitally cut up into many
smaller pieces, each containing a single glyph for
the font. This being intended as a decorative font,
the character set does not even contain the com-
plete ASCII range. Nevertheless, almost a hundred
separate images were created.

These were then imported into FontForge. The
autotracer in FontForge, which is actually the stand-
alone autotrace program, does quite a good job
of tracing the outlines. But, interestingly enough,
only at a fairly low resolution. At higher resolutions
it gets confused and inserts more than a quadratic
amount of extra points as the resolution is increased.
Based on empirical tests, the images were scaled
to 40% of their original scanned size, resulting in
bitmaps that were precisely 1000 pixels high.

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3 307

Figure 3: Closeups of the progressive design stages of
the letter ‘A’.

Figure 4: Close-ups of autotracer output

As was to be expected, the autotracer brought
out many of the impurities in the original inked ver-
sion, as you can see in the left image of figure 4.
Luckily, the number of places where manual correc-
tions like this were needed was not so great to force
us to reconsider the digitization process.

A more severe problem can be seen in the right-
hand image of figure 4. The drawings contain hardly
any straight lines. For a font of this complexity, it
turned out to be absolutely necessary to simplify the
curves. Without simplification, the rendering speed
in PDF browsers became unbearably slow. All of the
near-horizontal stripes in the bellies were manually
removed and replaced by geometric straight lines.

The final stage in the font editor is to add
the PostScript hinting. A screenshot of a manually
hinted letter is visible in figure 5.

1.3 Finishing the font

The font was saved as two separate PostScript Type 1
fonts, one with the text glyphs and one containing the
logo glyphs. The text font is named ‘koeieletters’,
the logo font ‘koeielogos’. ‘Koeieletters’ literally
translates from Dutch to English as ‘cowcharacters’,
but the word ‘koeieletter’ is also used to indicate an
enormous character, as in a billboard, for instance.

Eventually it turned out that we needed a second
set of two fonts. Sometimes you want to have text
in the cowfont but on top of a colored background.
The background would then shine right through the
hide of the cow and that was of course unacceptable.
Hence, we also have the fonts ‘koeieletters-contour’
and ‘koeielogos-contour’.

Figure 5: Finished outline

Here is the final ‘A’, in the normal and the
contour version:

AA
2 Updated version

In ConTEXt MkIV, we prefer not to use Type 1 fonts,
and definitely not the tfm-based trickery that was
needed to get the ‘koeieletters’ font performing at
its best. Advances in font technology have made it
possible to combine all glyphs into a single OpenType
font, which goes by the name koeielettersot.

2.1 Mathematics

The original Type 1 font already had a math compan-
ion but the new font supports math via its ‘MATH’
table, allowing it to be used for math typesetting just
like the other OpenType math fonts that ConTEXt
uses, with only a few minor differences:

• There are far fewer glyphs, due to a lack of orig-
inal artwork. You can imagine that providing
the full repertoire of Unicode math would be a
bit of a challenge.

• ConTEXt has to do some extra tweaking for the
horizontal extensible rules, including those that
are appended to radicals.

Cowfont (koeieletters) update

308 TUGboat, Volume 37 (2016), No. 3

• There are no accented characters but much can
be achieved by enabling the compose feature.

2.2 Ligatures for logos

In this font, there is no ‘fi’ ligature. In fact there
are no ‘normal’ ligatures at all. However, there is
a dlig feature in the font which replaces words by
hand-drawn versions of those words, and the ss02

feature can be used to convert these further, into
nicer versions with a drop-shadow below.

2.3 Sheep

The numbers and plus and minus in the font can be
replaced by versions that resemble a sheep instead
of a cow, by enabling the ss01 feature.

2.4 Colorization

In mid-2016, the ConTEXt font loader started sup-
porting color fonts. Such fonts normally contain
emoji characters and for achieving the desired effect
two methods are available: overlays and SVG. The
first method is cleaner and naturally fits ‘koeielet-
ters’.

The trick is in splitting a glyph into overlaying
snippets that each can have a color from a palette.
Emoji fonts can provide multiple palettes so that
culturally-based colors can be supported. So even-
tually we could have black Frisian cows and brown
ones from the southern part or our country.

The implementation uses virtual fonts. This is
straightforward but the current way to inject the
needed color directives and information to cut-and-
paste the right character can interfere with the way
the backend flushes characters. As we managed it
with some hackery eventually the virtual font tech-
nology might be extended a bit for this purpose.

More challenging was to get math working. Not
so much math itself but where regular math fonts use
rules for extending radicals, over- and underbars and
fractions, we need to use something cowish. Possible
solutions are:

• Build the radicals from scratch using snippets:
this is cumbersome.

• Preroll with normal rules that get replaced in
the node list later: one has to know in what
ways TEX constructs glyphs because not every
rule is a radical one.

• Patch the math engine to support complex radi-
cals: after some experiments this was considered
too dangerous and messy.

• Make the math rules pluggable: adding more
callbacks makes no sense for this one exception.

• Make the math rules be (optional) user rules
that can be postprocessed: this was relatively
easy.

It should be clear that the last solution was
chosen. Of course it was not as trivial as we make it
sound. First, for radicals we need to register what
font we are dealing with so that we can get the right
snippets to construct a rule. For the other rules we
need to know the font as well and it happens that
no such information is available: rules don’t come
from fonts. The solution is in two new primitives:

% use math specific user nodes:

\mathrulesmode = 1

% the family to take rules from:

\mathrulesfam = \fam\textstyle

When set, special rules will be constructed that
carry the current size (text, script or scriptscript) and
family-related font. In the backend the serialization
of these rule nodes will trigger a callback (when set)
that can inject whatever is reasonable. Of course
these extensions are still somewhat experimental and
should be used with care.

2.5 Using the font

So how is this new font used? Although it is a special
kind of font that will seldom be used for a whole
document, you need to load it anyway. The easiest
way (in ConTEXt) is:

\loadtypescriptfile[koeielettersot]

\setupbodyfont[cows,12pt]

Please take a look at type-imp-koeielettersot to
see how these fonts get set up. The beginning of
ConTEXt’s usual example Zapf quote (“Coming back
to the use of typefaces . . . ”) comes out as follows:

CCoommiinngg bbaacckk ttoo tthhee uussee ooff

ttyyppeeffaacceess iinn eelleeccttrroonniicc

ppuubblliisshhiinngg:: mmaannyy ooff tthhee nneeww

ttyyppooggrraapphheerrss

If you want a colored variant a bit more work
is needed. By default the cows are black and white.
If you enable color you will see the difference when
you show them on a background:

CCoommiinngg bbaacckk ttoo tthhee uussee ooff

ttyyppeeffaacceess iinn eelleeccttrroonniicc

ppuubblliisshhiinngg:: mmaannyy ooff tthhee nneeww

ttyyppooggrraapphheerrss

When a font is loaded its color properties are
frozen because the backend needs to deal with it.

Taco Hoekwater, Hans Hagen

TUGboat, Volume 37 (2016), No. 3 309

(a + b −
1

200
) × [√[A]]√

a

b

(a + b −
1

200
) × [√[A]]√

a

b

Figure 6: A math formula rendered in ‘koeieletters’; cows above, sheep below.
The standard black rules in fractions and radicals are fixed in the next figure.

You can, however, influence the color with the colr

property before a font gets defined. This happens
just after loading the typescript file.

\definecolor[cowred] [r=.50]

\definecolor[cowgreen] [g=.50]

\definecolor[cowblue] [b=.50]

\definecolor[cowyellow][y=.25]

\definefontcolorpalette[cows]

[cowgreen,cowyellow,cowblue,cowred]

\adaptfontfeature[sheepcolored] [colr=cows]

In the example below we show the sheep with
colors because we already defined the cows as black
and white. You can mix colors by defining fonts
explicitly. Note that we only use the second and
fourth color in these glyphs.

\usetypescript[all][cowsotf]

\definefontcolorpalette[cows-1][cowgreen,

cowyellow,cowblue,cowred]

\definefontcolorpalette[cows-2][cowred,

cowyellow,cowblue,cowgreen]

\definefontcolorpalette[cows-3][cowgreen,

cowyellow,cowred,cowblue]

\definefontfeature[cows-1]

[cowscolored][colr=cows-1]

\definefontfeature[cows-2]

[cowscolored][colr=cows-2]

\definefontfeature[cows-3]

[cowscolored][colr=cows-3]

\definedfont[Cows*cows-1 at 30pt]red\quad

\definedfont[Cows*cows-2 at 30pt]green\quad

\definedfont[Cows*cows-3 at 30pt]blue

rreedd ggrreeeenn bblluuee

2.6 Math

As said, we can do math. Take this formula:

$\left(a + b - \frac1{200} \right) \times

\left[\sqrt{[A]}\right] \sqrt{\frac{a}{b}}$

This renders as shown in figure 6, cows above,
sheep below. The standard rules there don’t work
well, but figure 7 shows we can do better (imple-
mented with the \mathrulesmode mentioned above).

2.7 Logos

There’s a bunch of logos available. You can directly
request them but they can also be set automatically.

\definefont [CowsLogo]

[koeielettersot*cowslogos sa c]

\definefont [CowsLigs]

[koeielettersot*cowsligatures sa c]

\definefontsynonym[CowsOnly]

[koeielettersot]

These definitions can be used to get the logos
shown in 8. The last two columns in the table are
typeset using:

\getnamedglyphdirect{CowsOnly}{contextlogo}

\getnamedglyphdirect{CowsOnly}{c_o_n_t_e_x_t}

There are two more ligatures:

©boo©cow
and we leave it to you to figure out how to get them.

We end with the best of all: a colored logo.

\definefontsynonym

[CowsColored]

[koeielettersot*default,cowscolored]

\getnamedglyphdirect{CowsColored}{contextlogo}

Cowfont (koeieletters) update

310 TUGboat, Volume 37 (2016), No. 3

(a + b −
1àáááááâ
200
) × [√

√√√√√√√√
[A]]√

√√√√
aàáâ
b

(a + b −
1àáááááâ
200

) × [√
√√√√√√√√
[A]]√

√√√√
aàáâ
b

Figure 7: The same math formula as the previous figure, with matching rules created using \mathrulesmode.

input \CowsLogo \CowsLigs somelogo s_o_m_e_l_o_g_o

PragmaAde PragmaAde PragmaAde PragmaAde PragmaAde

pragmaade pragmaade pragmaade pragmaade pragmaade

context context context context context

MP MP MP MP MP

TeX TeX TeX TeX TeX

metafun metafun metafun metafun metafun

Example Example Example Example Example

FoXeT FoXeT FoXeT FoXet FoXet

TEX TEX TEX TEX TEX

Wiki Wiki Wiki Wiki Wiki

Cowtext Cowtext Cowtext Cowtext Cowtext

Figure 8: Logos in ‘koeieletters’.

ÈÉËÊ

To make a quick start with these fonts, you can use
one of:

\setupbodyfont[koeieletters]

\setupbodyfont[cows]

\setupbodyfont[coloredcows]

\setupbodyfont[sheep]

\setupbodyfont[coloredsheep]

where the koeieletters variant equals sheep. This
is possible because we aliased the typescriptfiles to
the predefined typeface setups in the typescript file.

� Taco Hoekwater, Hans Hagen
ConTEXt Group
http://contextgarden.org

Taco Hoekwater, Hans Hagen

