
204 TUGboat, Volume 37 (2016), No. 2

TEXcel? An unexpected use for TEX

Federico Garcia-De Castro

Abstract

I recently discovered the surprising fact that TEX
seems to be more appropriate for keeping financial
records, and especially preparing different kinds of
reports (to funders, to the board, by season, by
project, by calendar year), than the spreadsheets
that I was using, and which had become highly con-
voluted as years of information accumulated. Here
is a description of the task, the problems with the
spreadsheets, and the incipient but already useful
system I developed in TEX.

1 The problem

As the director of a contemporary chamber music
company (www.aliamusicapittsburgh.org), I am
in charge of designing and executing the budgets for
individual projects and for whole concert seasons.
And then reporting: to funders, board, government,
throughout projects and after their completion.

In retrospect I see that it is this — the wide range
of reports, each with its own format, budget lines and
subdivisions — that reveals the inadequacy of any
static-spreadsheet model for bookkeeping, and the
counterintuitive fact that TEX’s macro capabilities
come in handy for financial tracking and reporting.

1.1 Ways of reporting

Different funders, and therefore different budget re-
ports, focus on different things. Music foundations
usually have budget formats that include items that
are specific to concert production — things like perfor-
mance licenses, that in more general purpose budgets
go under something like “fees and dues” — while in
typical art grant reports a concert’s lighting design
(a relatively straightforward expense) must be split
into, for example, “equipment rental” and “other
program professionals”.

On the other hand, reports also vary by time
scale and scope. Season-wide reports, for example,
lump together all season ticket sales, while in project-
specific reports for a concert’s funder these need to
be reported by project. On the other hand, the fees
for online ticket sales, which are in principle project-
specific expenses, in year-long budgets may better
fall under “banking fees”.

And so on: the assignment of each transaction
to a particular budget line depends on the latter’s
purpose and format. In general, the only way of
implementing this is to record all transactions in a
report-independent database, from which each re-

port gathers transactions into the appropriate lines,
according to its own format and needs.

1.2 The spreadsheet model

I’ve long had such a database for Alia Musica, in the
form of a spreadsheet:

Season Prj1 Prj2 . . . Prj3

Donations
Ticket sales
...
Grants
Donations
...

Performers
Guests
...
Ads
Postcards
...

. . . and so on (although much more detailed). Col-
umns specify information relevant to each project
(or general season transactions in special season col-
umns), while the rows were arranged following our
most common report budget formats. Extra columns
were used to gather season totals, for season-wide re-
ports. In fact, since tax returns go by calendar year,
which is different from the season year, these ‘total
columns’ come in two flavors (one for each season,
one for each calendar year); this also meant needing
to have, for each season, two ‘general season transac-
tion’ columns — one for the part of the season year
that fell in one calendar year (September–December),
the other one for the other one (January–August). In
fact, this detail is just one of the many complications
in the spreadsheet model. All of which eventually
led me to look for an alternative.

Alia Musica’s spreadsheet had been built and in
use since around 2010, with ad hoc adjustments here
and there as new needs emerged. But in the mean-
time the organization has changed and has grown
significantly. In 2015–16, with two major produc-
tions (check out in particular the Pittsburgh Fes-
tival of New Music, www.pghnewmusic.com), the
spreadsheet had become clearly obsolete — now, for
example, overlaps happened not only among seasons
and calendar years, but among the productions them-
selves — some parts of one being part of another, and
so on.

Toward the end of the season and of all of those
productions — i.e., at reporting time — I decided to
update the system, and started re-designing an array
of spreadsheets, more in tune with current needs.

Federico Garcia-De Castro

TUGboat, Volume 37 (2016), No. 2 205

I did not get far: the deficiencies of the spreadsheet
model, as I found out, are structural, and not due
to a particular design or implementation.

1.3 Deficiencies of the spreadsheet model

Dimensions: A spreadsheet is basically a table in
two dimensions. At best, you can use a couple of
tricks and count them as two additional pseudo-
dimensions:

• The user can attach ‘notes’ to each cell. In
these notes, a total can be split into several
components. For instance, the total ticket
revenue of a concert can be input into the
cell, with a note saying how much was door
revenue and how much was online sales.

• What a cell shows on the spreadsheet is
the result of the formula contained in the
cell. You can make use of this to record
some extra information: “$420” can be
input, say, as “=0+320+(40+40)+20”. At
Alia Musica we used this trick to locate
transactions by month: the above would
mean “$0 in January; $320 in February;
two transactions for $40 each in March;
and $20 in April”.

Of course these tricks do not provide for real
extra dimensions: they afford extra information,
but the processing program has no access to it —
e.g., reports have no way eventually to take only
a subset of the components of the cell’s total.
The information can be recorded, but its actual
use requires user intervention.

User-time decisions: Transactions are input into
the spreadsheet at different times (as they hap-
pen, or, more systematically, at month-end).
That entails the ever-present risk of inconsis-
tencies: where did we put parking expenses —
sometimes as meeting expenses, sometimes as
travel expenses? What did we decide about the
guest’s payment, did we put all of it as “guest
performer”, or did we split it into “guest per-
former”, “lecture honoraries”, “per diem”, or
who knows what else?

Completeness and feedback: Assume, however,
that the inconveniences above can somehow be
worked around: that the information is all con-
sistently and clearly input into the big repository.
Now the reports “simply” have to gather the
relevant cells from here and there, according to
their design.

An inescapable deficiency of the spreadsheet
model shows up at this point: there is no mech-
anism to ensure that a) individual cells are not

counted wrongly in two or more report lines, for
which they might both be relevant; or b) that all
relevant transactions for a particular line are in-
cluded — maybe there was one obscure one (an
extra parking expense, an extra bank transfer
fee) that doesn’t come to mind when manually
gathering transactions into the report.

1.4 A necessary component: tags

Such reflection on the deficiencies of a spreadsheet
points to one necessary component of any satisfactory
system: assigning tags to transactions. A complete
description of a transaction should be enough for the
system to be able to pull it into whatever budget line
each report needs. This in effect implements an open
number of dimensions, and it even works toward
the problem of user-time decisions: nothing prevents
a report to gather tags for both “Fall 2015” and
“Fall 15”, relieving the user from having to remember
a rigid list of possible tags.

Tags are implemented in financial tracking pro-
grams. But there are still problems: using tags typi-
cally involves dialog boxes, saving buttons, scrolling
through lists. . . And in any case we still have the
main problem of a spreadsheet model: nothing checks
for completeness or duplications when at a later time
the transactions are gathered into reports.

2 TEXcel

After realizing that the problem with my spread-
sheet was not my particular spreadsheet, but the
spreadsheet model itself, I came to wonder, almost
as an afterthought, whether this was a task for TEX.
The intuition was strong that there would be many
problems, but that in principle something like this
would be workable:

\deposit: 45.50 (Ticket sales, Festival

subscription, Spring 2016)

\deposit: 8320 (Foundation Grant, T.W. Dunns

Char. Fund, Fall 15)

...

\expense: 400 (Performer, Spring 16, Festival)

\expense: 19.80 (Stamps, Office expense,

Mailing)

\expense: 1.59 (Facebook, Online advertising,

Fall 2015)

\expense: 950 (Booklet printing, Festival)

...

With such a database (in a database “document”),
reports could then be requested (in different docu-
ments) through something like this for a season-wide
report:

\begin{expenseline}{Marketing}

\include{Poster distribution}

TEXcel? An unexpected use for TEX

206 TUGboat, Volume 37 (2016), No. 2

\include{Poster printing}

\include{Flyer printing}

\include{Advertising}

\include{Online advertising}

\include{Booklet printing}

\include{Booklet shipping}

\include{Website}

\include{Project website}

\include{Postcards}

\end{expenseline}

...

Or for a project report:

\begin{expenseline}{Spring 2016}

\include{Spring 2016}

\include{Spring 16}

\include{Sp 2016}

\include{Sp 16}

\end{expenseline}

...

Indeed, this is the backbone of a system I have
developed for financial tracking in TEX.

2.1 The basic \deposit and \expense

So, \deposit and \expense are at the base of the
whole system. They do not really ‘mean’ anything
by default: what exactly TEX does when it finds
them depends on the task at hand, as explained in a
moment. This flexibility, and in general TEX’s ability
to define anything as anything, is a key reason why
TEX turns out to be an appropriate environment for
financial tracking.

Thus, \deposit (\expense is fully analogous)
is defined, at bottom, as follows:

\long\def\deposit: #1 (#2){%

\ifreporting

\ifnum\yearindex=\z@

\@deposit: #1 (#2)\relax

\fi

\else

\@addtoacct{\acct}{#1}%

\fi

}

It’s a simple fork: if we are compiling a report (gath-
ering transactions from the repository into the ap-
propriate budget lines of a report), we’ll do one thing
(\@deposit), and we’ll need the comma-separated
list of tags that comes as #2. Otherwise, in the
database document, the transaction is merely being
recorded, and we’ll just update the corresponding
account’s balance through \@addtoacc, for which
the tags are unimportant and we focus only on the
amount (#1).1

1 Now looking at the definition, I can’t see a reason for the
immediate handling of the arguments; \deposit could simply

\@addtoact has an extra argument, passed on
to it by \acct, as seen above. This is because the
transactions are entered within one of three LATEX
environments, one for each of Alia Musica’s accounts:
checking (in which case \acct is defined as “chk”);
money market (“mmk”); and PayPal (“ppl”).

In fact, the latter illustrates another use of the
flexibility of \deposit. In PayPal transactions, every
deposit has a fee. Accordingly, the paypal environ-
ment in TEXcel redefines \deposit to take care of
both the revenue amount and the associated fee. For
example, a ticket sale could be:

\deposit: 15-.62 (Ticket sales, Spring 16)

Within the paypal environment, TEXcel then knows
to add $15 and subtract 62 cents (and, furthermore,
it knows that the $15 is ‘ticket sales’ and the −.62
is ‘bank fees’).

2.2 Convenience bundling macros

Transactions like ticket sales are (hopefully) very
frequent, and there’s no point in requiring the corre-
sponding tag from the user. Ticket sales also come
in groups (more than one at a time). So, TEXcel
has a further macro, \tickets (a straightforward
front-end for \deposit), that takes care of it:

\tickets: 30-1.17, 60-2.04 (Fall 15)

There are similar ‘shorthand’ macros through-
out the system, including \donation and recurring
expenses like \stamps, \servicecharge, and so on,
all of which built on top of the basic \deposit and
\expense.

One such macro is \check. TEXcel provides for
an independent database of checks, where checks are
defined in full detail. The transaction database can
then call checks up through

\checks1131-1136,1138,1140,1141,1143-1150.

\checks3153,3177-3193,3195-3199.

\check3176

(notice the flexibility in syntax!) This saves a lot of
time when entering the transactions, and in addition
is extremely useful to keep track of checks that have
been issued but not cashed yet.

In the spreadsheet model in use until now, un-
cashed checks have been a source of nearly-intractable
discrepancies between projected budgets, reports,
and account balances. With TEXcel this is no longer
a problem: \check, \checks, etc., can themselves
be redefined for any purpose (just as \deposit and
\expense) — notably, to run through the checks and
make a list of pending liabilities.

let \@deposit and \@addtoact pick them up later. This (and
the \long, by the way) must be a residue from some initial
try or a different basic model. The wonders of organic growth.

Federico Garcia-De Castro

TUGboat, Volume 37 (2016), No. 2 207

2.3 Time-based reporting

A further utility worth noting: as mentioned above,
reports can go by season (September–August) or by
calendar year. This was a tough nut to crack, not
least because sometimes a season has revenue and
expenses that happen actually before the beginning
of the season (a grant that’s awarded in July, say),
or after its end (a check that we only get in Septem-
ber). This is the reason for \yearindex above in the
definition of \deposit. The internal mechanism will
be detailed below. At user entry time, any transac-
tion can be recorded as the argument of \late or
\early— TEXcel will know what to do with it.

This means that TEXcel keeps track of the time
transactions occur. In fact, the user actually enters
transactions within new LATEX environments for the
months — \begin{January} and so on. (So, each
month has three nested environments, for each of
the accounts.)

This brings a major benefit over the spreadsheet
model: the time dimension is preserved. Back in the
spreadsheet, with transactions assigned vertically by
project/season and horizontally by budget line, there
was no way to keep track of exact account balances by
date. When discrepancies occurred at reporting time,
locating them required going over all the statements
manually, one by one, until something popped up.
In contrast, with the month environments in TEXcel,
the system is able to report account balances at the
end of each month — catching a discrepancy is now
trivial.

2.4 Automatic consistency checking

Beyond all the above features and benefits, probably
the most important utility offered by the new system
is the automatic check for duplications and omissions.
When compiling a report, the user instructs TEXcel
to gather transactions by tag into different budget
lines. To repeat an example from above:

\begin{expenseline}{Marketing}

\include{Poster distribution}

\include{Poster printing}

\include{Flyer printing}

\include{Advertising}

\include{Online advertising}

\include{Booklet printing}

\include{Booklet shipping}

\include{Website}

\include{Project website}

\include{Postcards}

\end{expenseline}

Other expenseline environments include, for ex-
ample, performer honoraria (tags like ‘performer’,
‘performers’, ‘conductor’, ‘soloist’, etc.), operation

expenses (‘insurance’, ‘office supplies’, etc.), and so
on.

After the series of user-requested expense (or
revenue) lines, TEXcel automatically compiles a fur-
ther list, “Unassigned Transactions”, of those which
were not included (probably due to the user’s unin-
tentional omission) in any of the environments.

On the other hand, the system keeps track of
which transactions have already been assigned, and
if a later budget line matches an already used tag, it
will warn that the transaction number x on month y
was already counted in section z.

With these two features, the system provides
reliable consistency and completeness checks, a major
advantage over any static tracking system.

2.5 Programming tricks

It is still the case that TEX is not exactly the most ad-
equate programming environment for either database
or spreadsheet handling. There are some structural
limitations to what TEX can do — no easy alpha-
betization, for example, and a certain clumsiness in
holding information for later use, which all but dis-
courages trying to present the report in table form.
(TEXcel makes LATEX sections for each budget line,
an itemize environment for each tag included, fol-
lowed by a total of the transaction amounts for each
section.)

Even those features that are implemented re-
quired a bit of hacking. Here are some of the most
interesting tricks.

Arithmetic We’re dealing with dollars and cents,
but TEX’s arithmetic is limited to integers. . .
At first I used the trick of dealing with dollar
amounts in “dimen” registers — TEX is good
at arithmetic with lengths and dimensions. It
was a little funny that all amounts reported by
TEXcel would have “pt” after them, but one
could live with that.

I thought I was so clever. The problem, of
course, is TEX’s upper limit — a sum like 35000
is a longer dimension than TEX can handle. I
tried to salvage this by working in terms of
‘scaled points’ (the true internal unit that TEX
uses, much smaller physically and therefore with
a much much higher upper limit). But TEX
still presents dimensions translated into normal
pt units — so that the numbers reported would
be meaningless. (And if you simply try to re-
convert pt into sp right before typesetting, you
again exceed TEX’s numeric limit.)

There was no other way than to implement
decimals “manually”. I checked a couple of
existing packages, but in general they provide for

TEXcel? An unexpected use for TEX

208 TUGboat, Volume 37 (2016), No. 2

much more complicated functions (trigonometry,
floating point, etc.), not exactly what I needed.

So, in TEXcel all arithmetic is done through
two streams of integers: one for the dollars,
one for the cents. Then there is a function
that converts that into the usual decimal point
presentation.

In this context the decimal period has no
mathematical meaning. As a result, TEX would
read 12.4 as 4 cents, not 40. Very annoying,
and very annoying to fix! But it had to be done:
leaving the task to the user (possibly months
from now) would invite potentially untraceable
mistakes.

Feedback mechanism When a report is compiled
(selecting out transactions by tag), what hap-
pens roughly — very roughly, almost entirely
notionally — is that TEX goes through the list
of transactions, and creates new commands for
each tag. That way, when a tag is requested
by the user, it is an active command that ‘exe-
cutes’ the corresponding transaction . . . but this
command also redefines itself, so that when the
transaction is called for a second time, it now
does something else (warn of the duplication).

Months and years I was amazed at how quickly
this could get extremely confusing when I was
trying to implement it. The problem is that
TEX needs to know, according to what kind of
report we’re doing (by season or by calendar
year) which months to include. You would say
it’s a matter of adding an offset to the month
counter (so that September is 1 when going by
season, but 9 when going by calendar year), and
so did I. This basic offset is in fact somewhere
in the code.

But that’s not enough, because transactions
outside of the requested year are still relevant:
sometimes we have a grant for season n that was
actually awarded and cashed toward the end of
season n−1; sometimes liabilities and receivables
overflow to season n+1. On the one hand, these
outer transactions are still necessary for the full
picture of a season; and on the other, they should
be kept out of the reports for the seasons where
they actually took place. (Calendar-year reports

do not need this nuance, since they are basically
balance-sheet reconciliations for the IRS.)

So in the end the model uses a ‘year index:’
0 for the current (requested) season, −1 for
the previous one, 1 for the following one. The
counter is updated by the month environments:
\begin{September} (the first month in a sea-
son) steps \yearindex by 1. Then the program
knows what to do.

2.6 Future

The system is complete in the sense that any user
(say, an intern) can use it. It is also very flexible —
key functions like \deposit, \expense, and \check

are essentially black boxes that can be redefined for
any future needs that might arise.

But these future needs are not implemented.
That is to say, it is only Alia Musica’s needs that are
implemented right now. In that sense the program
is incomplete, and only a model for what could be
done for more general purposes.

Were this to be done for a public release, then
it would probably be a good idea to translate the
code into LuaTEX — Frank Mittelbach’s suggestion —
so that we get a true general-purpose programming
language. Desirable features would include reporting
by tables, alphabetization and other sorting capabil-
ities, and, less cosmetically, a more powerful engine
to handle the tags. Right now the program com-
pares tags, and when it finds a match it assigns a
transaction right away; future matches of the same
transaction are discarded (with a warning). It would
be great if the user could request more complicated
conditions: “include this tag but only if this other
one is not there”; or “only include transactions with
the indicated tags if in addition they have tag x”.

For now, it was a lot of fun, not that hard, and
in any case very surprising, to work on implement-
ing Alia Musica’s financial needs through TEX. The
resulting system is enormously, structurally, superior
to any spreadsheet.

� Federico Garcia-De Castro
Artistic Director,

Alia Musica Pittsburgh
federook (at) gmail dot com

http://www.garciadecastro.net

Federico Garcia-De Castro

