
TUGBOAT

Volume 36, Number 2 / 2015

TUG 2015 Conference Proceedings

TUG 2015 74 Conference sponsors, participants, program, and photos

80 Volker RW Schaa / Typographer’s Banquet

82 Stefan Kottwitz / TUG 2015 conference report

General Delivery 89 Barbara Beeton / In memoriam

90 Barbara Beeton / Pierre MacKay, 1933–2015

92 Donald Knuth / Dedication to Hermann Zapf, 1918–2015

93 Hàn Thế Thành / Farewell Hermann Zapf

93 Kris Holmes / Remembering Hermann Zapf

95 Peter Karow / Digital typography with Hermann Zapf

100 Jacques André and Alan Marshall / Richard Southall: 1937–2015

103 Erik Frambach, Jerzy Ludwichowski and Philip Taylor / Memories of Kees:

C.G. van der Laan, 1943–2015

Resources 105 Joseph Wright / Development of the UK TEX FAQ

Fonts 106 Will Robertson / Single- and multi-letter identifiers in Unicode mathematics

Multilingual

Document Processing

109 Boris Veytsman and Leyla Akhmadeeva / Trilingual templates for an educational

institute in Bashkortostan, Russia

114 Joseph Wright / Joseph’s Adventures in Unicodeland

LATEX 117 Joseph Wright / Through the \parshape, and what Joseph found there

119 Boris Veytsman / TEX and controlled access to information

Publishing 123 Joachim Schrod / DocCenter—TEXing 11 million documents a year

128 Tom Hejda / Preparing LATEX classes for journal articles and university theses

130 Petr Oľsák / The CTUstyle template for student theses

Bibliographies 133 Boris Veytsman and Michael Cohen / New multibibliography package nmbib

Electronic Documents 136 C.V. Radhakrishnan, Hàn Thế Thành, Ross Moore and Peter Selinger /

Generating PDF/X- and PDF/A-compliant PDFs with pdfTEX— pdfx.sty

Software & Tools 143 Herbert Schulz / TEXShop’s key bindings vs. macros vs. command completion

145 S.K. Venkatesan / TEX as a three-stage rocket: Cookie-cutter page breaking

Macros 149 Enrico Gregorio / Recollections of a spurious space catcher

162 Hans Hagen / When to stop . . .

Abstracts 171 TUG 2015 abstracts (Bazargan, Cretel, Drümmer, Gessler, Hagen, Jackowski)

172 Die TEXnische Komödie: Contents of issues 2–3/2015

173 Eutypon: Contents of issue 32–33 (October 2014)

TUG Business 174 TUG 2015 election

174 TUG institutional members

Advertisements 175 TEX consulting and production services

News 176 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2015 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate for 2015 is $110.

Institutional Membership

Institutional membership is primarily a means of
showing continuing interest in and support for both
TEX and the TEX Users Group. It also provides
a discounted membership rate, site-wide electronic
access, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: September 2015]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Kaveh Bazargan, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Pavneet Arora
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Klaus Höppner
Steve Peter
Cheryl Ponchin
Norbert Preining
Arthur Reutenauer
Boris Veytsman
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2015 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2015 Conference Proceedings

TEX Users Group

Thirty-sixth Annual Meeting

Darmstadt, Germany

July 20–22, 2015

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 36, NUMBER 2 • 2015

PORTLAND • OREGON • U.S.A.

74 TUGboat, Volume 36 (2015), No. 2

July 20–22, 2015 Welcome Hotel

Sponsors

TEX Users Group DANTE e.V. River Valley Technologies—UK
with special assistance from individual contributors. Thanks to all!

Conference committee

Karl Berry Klaus Höppner Robin Laakso Volker RW Schaa Joachim Schrod

Bursary committee

Taco Hoekwater, chair Jana Chlebikova Kaja Christiansen Bogusław Jackowski Alan Wetmore

Participants

Leyla Akhmadeyeva, Bashkir State Medical Univ.
Pavneet Arora, Bolton, ON

Kaveh Bazargan, River Valley Technologies, UK

Stefan Bedacht, TU Darmstadt
Barbara Beeton, AMS

Nelson Beebe, University of Utah
Denis Bitouzé, Université du Littoral Côte d’Opale
Johannes Braams, Zoetermeer, Netherlands
Gyöngyi Bujdosó, University of Debrecen
David Carlisle, LATEX3 Project
Jennifer Claudio, Synopsys Outreach Foundation
Julien Cretel, University College Cork
Rajagopal CV, River Valley Technologies, India
Christine Detig, Net & Publication Cons. GmbH
Michael Doob, University of Manitoba
Olaf Drümmer, callas software GmbH
Graeme Duffin, Huddersfield, UK

Dominik Fischer, TU Darmstadt
Ulrike Fischer, Mönchengladbach, Germany
Yukitoshi Fujimura, Ichikawa-shi, Japan
Deimantas Galčius, VTEX
Roland Geiger, Leipzig, Germany
Paul Gessler, Milwaukee, WI

Steve Grathwohl, Duke University Press
Gary Gray, State College, PA
Enrico Gregorio, Università de Verona
Hans Hagen, Pragma ADE

Tom Hejda, Czech Technical University in Prague
Klaus Höppner, TUG and DANTE e.V
Bogusław Jackowski, Gdańsk, Poland
Timm Knape, Wehrheim, Germany
Harald König, Balingen, Germany
Jonathan Komar, ITH icoserve
Stefan Kottwitz, Lufthansa Industry Solutions
Reinhard Kotucha, Hannover, Germany
Siep Kroonenberg, Groningen, Netherlands

Sebastian Krüger, Berlin, Germany
Yusuke Kuroki, Yokohama, Japan
Dag Langmyhr, University of Oslo
Bruno Le Floch, LATEX3 Project
Manfred Lotz, DANTE e.V.
Jerzy Ludwichowski, Toruń, Poland
Henri Menke, Leinfelden-Echterdingen, Germany
Lothar Meyer-Lerbs, Bremen, Germany
Frank Mittelbach, LATEX3 Project
Ross Moore, Macquarie University
Gerd Neugebauer, Groß-Gerau, Germany
Heiko Oberdiek, Sasbach, Germany

Petr Oľsaḱ, Czech Technical University in Prague
Steve Peter, TUG

Susanne Raab, ECAP, Uni Erlangen
Arthur Reutenauer, Royal Opera House, London
Will Robertson, University of Adelaide
Petra Rübe-Pugliese, CTAN

Volker RW Schaa, Darmstadt, Germany
Joachim Schrod, Net & Publication Cons. GmbH
Martin Schröder, Duisburg, Germany
Torsten Schuetze, Talheim, Germany
Herbert Schulz, Naperville, IL
Peter Selinger, Dalhousie University
Keiichiro Shikano, Tokyo, Japan
Martin Sievers, DANTE e.V.
Matthew Skala, Copenhagen, Denmark
Linas Stonys, VTEX
Piotr Strzelczyk, Gdańsk, Poland
S.K. Venkatesan, TNQ Software
Boris Veytsman, George Mason University
Ulrik Vieth, Stuttgart, Germany
Herbert Voß, DANTE e.V.
Alan Wetmore, US Army Research Laboratory
Joseph Wright, Northampton, UK

TUG2015—Darmstadt, Germany

TUG2015—program and information

Sunday, July 19, 3 pm: walking tour of Mathildenhoehe and Rosengarten, duration about 2 hr,
with our Klaus Höppner as guide.

Sunday, July 19, 7 pm: informal opening gathering, LaLucha, Schleiermacher Str. 10-12 (self-pay basis).

Monday, July 20: post-session TeXShop workshop, Herb Schulz.

Monday

July 20

8:00 am registration

8:50 am Steve Peter, TUG Opening

9:00 am Ross Moore Semantic enrichment of mathematics using ‘active comments’

9:35 am Olaf Drümmer PDF/UA—what it is, how users can benefit from it, and how
to get it right

10:10 am Ross Moore and Peter Selinger Using pdfx.sty for producing validating PDF documents

10:45 am break

11:00 am Joseph Wright X

E

TEX and LuaTEX: Getting Unicode data into the
right places

11:35 am Will Robertson Reconciling unicode-math with LATEX2ε mathematics

12:10 pm Bogus law Jackowski, Piotr Strzelczyk,
and Piotr Pianowski

All the characters we need

12:45 pm lunch

2:00 pm Bogus law Jackowski, Piotr Strzelczyk,
and Piotr Pianowski

Six GUST e-foundry math fonts and what next?

2:35 pm Frank Mittelbach Twenty one is only half the truth

3:10 pm Hans Hagen What if . . .

3:45 pm break

4:00 pm Joseph Wright State of the (UK-)TEX FAQ

4:35 pm CTAN team State of CTAN

4:45 pm Barbara Beeton, Volker RW Schaa,
Joachim Schrod

In memoriam: Pierre MacKay, Richard Southall,
Hermann Zapf, Thomas Koch

Tuesday

July 21

8:55 am announcements

9:00 pm Pavneet Arora Fluss: A flow leak monitoring system

9:35 am Tom Hejda Preparing LATEX classes/templates for journal articles and

university theses

10:10 am Boris Veytsman and Michael Cohen A new multibibliography package: nmbib

10:45 am break

11:00 am Boris Veytsman and Leyla Akhmadeeva Trilingual templates for an educational institute in

Bashkortostan, Russia

11:35 am Paul Gessler Pretty-printing Git commit history graphs with PGF/TikZ

12:10 am q&a, TUG meeting

≈ 12:30 pm lunch

2:30 pm Messel Pit excursion

Wednesday

July 22

8:55 am announcements

9:00 am Kaveh Bazargan and Jagath AR TEX—After 35 years, still the best solution

for modern publishing

9:35 am Joachim Schrod DocCenter: TEXing 11 million documents a year

10:10 am S.K. Venkatesan A proposal to construct pagination as a three-step

cookie-cutter process

10:45 am break

11:00 am Joseph Wright Through the \parshape, and what Joseph found there

11:35 am Julien Cretel Functional data structures in TEX

12:10 pm Hans Hagen When to stop . . .

12:45 pm lunch

1:45 pm group photo

2:00 pm Boris Veytsman TEX and controlled access to information

2:35 pm Enrico Gregorio Recollections of a spurious space catcher

3:10 pm q&a

7:00 pm banquet at Cafe Rodenstein, in the museum building.

76 TUGboat, Volume 36 (2015), No. 2

Torsten Schuetze, Siep Kroonenberg, Herb Schulz,
and Keiichiro Shikano

Jonathan Komar, Ross Moore, and Olaf Drümmer

Deimantas Galčius, Jagath AR, Enrico Gregorio,
and Linas Stonys

SK Venkatesan, Jagath AR, Herb Schulz,
and Keiichiro Shikano

TEX Lions: Jerzy Ludwichowski (GUST),
Hans Hagen (NTG), and Volker Schaa (DANTE)

Heiko Oberdiek, Nelson Beebe, and Graeme Duffin

Dominik Fischer, Paul Gessler, and Tom Hejda

TUGboat, Volume 36 (2015), No. 2 77

Excursion to Messel Pit

A well at Messel Pit with 108 year-old water; smells a
bit like sulfur but tastes good

Stefan Kottwitz, Deimantas Galčius, and Linas Stonys

City tour with Klaus Darmstadt at night

TUG Board: Pavneet Arora, Michael Doob, Barbara Beeton, Arthur Reutenauer, Klaus Höppner, Boris Veytsman,
and Steve Grathwohl

78 TUGboat, Volume 36 (2015), No. 2

CTAN maintainers: Manfred Lotz, Joachim Schrod, Gerd Neugebauer, and Petra Rübe-Pugliese

LATEX developers: Frank Mittelbach, Johannes Braams, David Carlisle, Will Robertson, Joseph Wright,
and Bruno Le Floch

Joachim Schrod presents drawings by Duane Bibby to
Klaus Höppner for the excellent conference organization and . . .

to Ulrike Fischer for her tremendous efforts
supporting TEX users

T
U
G
b
oat,

V
olu

m
e
36

(2015),
N
o.

2
79

At the banquet

Front row : Keiichiro Shikano, Volker Schaa, Yusuke Kuroki, Ulrike Fischer, Lothar Meyer-Lerbs, Alan Wetmore, Leila Akhmadeeva, Boris Veytsman,
Steve Peter, Jennifer Claudio, Gyöngyi Bujdosó, Tomasz Luczak, Enrico Gregorio, Will Robertson, Jagath AR, Reinhard Kotucha

2nd row : Pavneet Arora, Frank Mittelbach, Jonathan Komar, Dominik Fischer, Steve Grathwohl, Susanne Raab, Matthew Skala, Harald König,
Roland Geiger, Ulrik Vieth, Ross Moore, Barbara Beeton, Johannes Braams, Petr Oľsák, Gerd Neugebauer, Christine Detig, Manfred Lotz,
Joachim Schrod, Nelson Beebe, Michael Doob, Denis Bitouzé, Siep Kroonenberg, Kaveh Bazargan, Deimantas Galčius

3rd row : Jerzy Ludwichowski, Hans Hagen, Sebastian Krüger, Stefan Bedacht, Dag Langmyhr, Timm Knape, Bogus law Jackowski, Piotr Strzelczyk,
Gary Gray, Klaus Höppner, Herbert Schulz, Heiko Oberdiek, Tom Hejda, Joseph Wright, Paul Gessler, Henri Menke, Rajagopal CV,
SK Venkatesan, Herbert Voß, Stefan Kottwitz, Petra Rübe-Pugliese, Bruno Le Floch, Arthur Reutenauer, Torsten Schuetze, Graeme Duffin

4th row : David Carlisle, Martin Schröder, Yukitoshi Fujimura, Julien Cretel, Linas Stonys

P
h
otos

cou
rtesy

of
A
lan

W
etm

ore,
P
av

n
eet

A
rora

,
a
n
d
R
ein

h
a
rd

K
otu

ch
a

Menu

Essen, wie gedruckt!

Food, in Typographer’s Terms

3erlei Vorspeisenteller
3 kinds of appetizers

ZWIEBELFISCH
• Pulposalat mit Orange und roten Zwiebeln
• Salad of pulpo (octopus) with orange and red onions

EIERKUCHEN
• Muskatcrêpe mit Zitronenfrischkäsecreme,

Staudensellerie, Tomate
• Nutmeg crêpe with lemon cream cheese, celery, and tomato

SPECK &
SCHUSTERJUNGE

• Längliches Brötchen mit Pancetta und Gemüsesalat
• Sandwich with pancetta and vegetable salad

Hauptspeise nach TYPOGRAPHISCHEM MASS
Main dish according to TYPOGRAPHIC MEASURE

KONKORDANZ 5x5

• Lasagne mit Sugo vom Rind und Schwein mit gegrilltem Gemüse
oder

• Gemüselasagne mit Mozzarella und Tomaten (vegetarisch)

• Lasagne with beef and pork sugo and grilled vegetables
or

• Vegetable lasagne with mozzarella and tomatoes (vegetarian)

Nachspeisen
Desserts

MAGER, HALBFETT
• Käseplatte
• Cheese platter

EXTRAFETT
• Panna Cotta mit roten Beeren
• Panna cotta with red berries

Zwiebelősch • Zwiebelősche sind Buchstaben einer bestimmten
Schrift, die aus Unachtsamkeit in einem anderen
Schriftkasten abgelegt wurden.
Im Satz erscheinender Buchstabe anderen Schrift-
charakters.

Printer’s Pie • Letters sorted into the wrong box of a type case
(diferent typeface, size, etc.).
A letter set in a wild typeface on a typeset page.

Eierkuchen • Bezeichnung für einen auseinandergefallenen Satz:
ein kleines Missgeschick ś ein mit viel Mühe gesetzter
Schriftsatz, der in sich zusammenfällt und in seine
Bestandteile auŕöst. Der Eierkuchen ist fertig.

(fall into) Pie • A small mishap and a page typeset with a lot of efort
collapses into its constituents and dissolves.
The pie is ready.

TUG2015 — Darmstadt, Germany

Menu

Speck • Bezeichnung der Setzer für die leeren Räume in der
Satzform, so z. B. die leeren Rückseiten des Titelblat-
tes, des Widmungsblattes u. ä., die ofenen Seiten in
Kapitelanfängen usw. Diese Räume wurden dem
Setzer wie eine normale Satzarbeit bezahlt.

? • Typesetter’s term for the empty spaces on pages,
empty backside of title or dedication pages, the open
page in chapter beginnings, etc. These spaces have
been paid like a normal typeset page.

Schusterjunge • Ein Schusterjunge ist die erste Zeile eines Absatzes,
wenn sie allein am Ende einer Spalte oder einer
fertigen umbrochenen Buchseite steht.

Orphan • A paragraph-opening line that appears by itself at
the bottom of a page or column.

Fleisch • Fleisch nennt man den leeren Raum, der den Buch-
staben umgibt. Der das Buchstabenbild umgebende
Teil der Oberŕäche einer Drucktype, der tiefer liegt
als das Buchstabenbild (siehe 1 im linken Bild).

shoulder/neck • conŕicting deőnitions

Konkordanz • Typographisches Maß
48 Didot ⇒ 4 Cicero ⇒ 1 Konkordanz
5 Konkordanz ⇒∼90 mm

4-em quad • Typographic measure
48 Didot ⇒ 4 Cicero ⇒ 4 em quad
5 Konkordanz ⇒∼3.5 in

Mager
Halbfett
Extrafett

• Abbildung (Schnitt) des jeweiligen Schriftschnittes
einer bestimmten Schrift

Light
Semibold
Extra Bold

• Font weights

TUG2015 — Darmstadt, Germany

82 TUGboat, Volume 36 (2015), No. 2

TUG 2015 conference report

Stefan Kottwitz

TUG 2015—the day before

The TUG 2015 conference took place in Darmstadt,
Germany, from 20th to 22nd of July. This was the
36th annual meeting of the international TEX Users
Group. DANTE e.V. (http://www.dante.de) spon-
sored the conference fee for its members with 50 Euro
for each attendee. I’m sure this great sponsorship
helped many TEX friends to come.

By way of introduction, I work for Lufthansa In-
dustry Solutions (lufthansa-industry-solutions.
com), developing and implementing networks for
cruise ships. I planned to visit the conference pri-
vately. When I told my project team that I will
leave for three days, they asked me why. Confer-
ence? TEX? What is this? I explained what TEX is
and how I used it in my work. I use TEX as macro
language for creating thousands of lines of switch
configurations. And I create graphics visualizing the
physical and logical structure of networks using TEX
coding, specifically TikZ—what other people point
and click with Visio. That convinced my boss to con-
sider the TEX meeting as training, so the company
covered my travel costs. He expects that our work
in designing and documenting will benefit, and this
is true.

I arrived on Sunday right before the conference.
There was an informal gathering at 7 pm in a restau-
rant, so I walked there. The restaurant was pretty
full of TEX friends, seems like almost everybody was
already there. That was a great occasion to meet
people again, some I have not seen since 2011, when
I attended the TUG meeting in Kerala, India. One
such was Kaveh Bazargan, who has been elected to
be the next TUG president. His plans are very inter-
esting, as he is interested in boosting online presence,
attracting new users, and attracting publishers to
get things funded. Of course I met many DANTE

members, whom I saw last in Stralsund earlier this
year at the DANTE meeting. I also had interesting
discussions, such as about tex4ht, with two men
from VTEX (http://www.vtex.lt), a LATEX-based
publishing company based in Vilnius, Lithuania. I
met Reinhard Kotucha again, who is a regular at
TEX and DANTE meetings for a long time. When
you arrive in a restaurant and don’t know most of
the people yet, it’s good to see a familiar face. As
usual, Reinhard takes photos of the conference and
the surrounding world.

Editor’s note: Originally posted at latex-community.org

by the author; edited for TUGboat, with permission.

Finally, only a group of DANTE people remained.
About 11 pm it was time to return to the hotel.

TUG 2015—day 1

About 9 am, the current TUG president, Steve Peter,
opened the conference with some introductory words.

The topics for today:

• PDF: enriching it and making it accessible
• Unicode: getting it into TEX
• Past, present and future of TEX, LATEX and fonts
• News and announcements

Let’s take a look at the presentations.
Ross Moore gave the first talk. He spoke about

semantic enrichment of mathematics. At first, he
demonstrated the already available possibilities to
add PDF tooltips to text and math. Tooltips mean
text boxes popping up when you move over it with
the mouse or cursor. While they won’t be printed,
they add value to electronic documents. The reader
is able to access further information, which is oth-
erwise hidden to stay focused. Constructing math
expressions with embedded semantics requires a dif-
ficult syntax though.

Ross introduced a new package called mathsem.
It offers a way to provide the semantic meaning
separate from a math formula. Here’s an example:

\(

%$semantics

% x $ variable

% f $ function

% \Re $ real part of

%$endsemantics

y = f(x)

\)

The characters in the formula now get their own
tooltip. As you can see, you can define semantics
for macros. This is in fact recommended: define a
macro with a name explaining the meaning, rather
than how it’s typeset, and add semantic information
to the macro. The syntax is:
% token $ semantics end-of-line

It’s implemented by hacking the catcodes of
the comment symbol % and end-of line, and then
hooking in. This way has the benefit that even
without the package, everything just works, since the
additions are hidden in comments and look like code
annotations, thus still useful in themselves.

To ease the work, mathsem provides a command
\DeclareMathSemantics for repeated use, setting
up default tooltips for symbols and macros. The
tooltips can be also be used for a screen reader,
meaning for vocalization by assistive tools. Ross

Stefan Kottwitz

TUGboat, Volume 36 (2015), No. 2 83

showed several examples, and discussed the applica-
tion to have spoken words for math, in the context
of PDF/UA documents.

Following this, Olaf Drümmer explained what
PDF/UA means, in the following talk. UA stands for
universal accessibility, which basically means that
a document provides reasonable access to the PDF

content. So, a visually impaired person could use a
screen reader to get vocal information. It requires
that all content (including images) be available as
text. Other demands are reliable, defined order;
embedded semantics; a logical structure; metadata;
and not using encryption. PDF/UA is related to
tagged PDF: a well tagged PDF can conform to
PDF/UA. Olaf demonstrated screen reader software,
a PDF/UA checker, and a visualizer tool.

Another talk by Ross Moore together with Peter
Selinger gave us an update to new developments of
the pdfx package, which helps in producing docu-
ments conforming to PDF/A standards. There are
various PDF/A-x standards, and the new version of
pdfx supports most of them. Furthermore, the new
version adds support for LuaTEX.

Now we got a coffee break—a few minutes to
fetch a coffee and to drink it, talking a bit; I wish it
could be longer as I value such conversations during
conferences.

Joseph Wright gave the first talk after the break.
While the first session was about PDF, we now come
to the topic of Unicode. He spoke about getting Uni-
code input into TEX and the challenges involved. For
example, he explained the difficulties in uppercasing,
lowercasing, titlecasing and casefolding. Details can
give a developer headaches, I feel. There are a lot of
differences to consider in various languages.

Then it was Will Robertson’s turn. At the
stage, he changed roles, grabbing his camera and
said: ”Everybody wave!” and took a picture of the
audience. Then, he started with a retrospective
about his development of the unicode-math package.

unicode-math allows us to switch math fonts as
easily as switching text fonts. There are thousands of
math glyphs in various fonts, each one with a LATEX
name, but you can also simply use it as an input
symbol. This can be done by code-auto-completion
of the LATEX command to that symbol. This may
increase readability, but not in all cases, such as
when we have glyphs that are too similar. Thus,
unicode-math gives direct access to a huge collection
of symbols. A font with proper Unicode support is
required, of course. Luckily, there are some.

LATEX authors commonly use fonts to convey
a meaning. In Unicode mathematics, you keep the
same font but choose a symbol with the desired mean-

ing. There are a lot of spacing challenges because it
is done differently in math compared to text.

Next, the GUST team discussed how characters
for math fonts are chosen. That led into a talk about
whether we really need new fonts, or if there’s not
enough demand. We heard about the TEX Gyre math
fonts, described with their underlying scheme, and
with variants of bold, italic, sans-serif, double-stroke
and more. Requirements were discussed such as
scaling factors for subscripts and superscripts, math
kerning, glyph links, growing glyph chains. There
are over 4200 glyphs in DejaVu Math alone.

But few companies produce OpenType math
fonts. So, perhaps there’s no commercial pressure for
math fonts, or not enough demand. So, a future task
is possibly not making just another font, but font
variants, such as sans-serif variants for presentations,
or bold/heavy variants for headings.

Frank Mittelbach then talked about history and
current development of LATEX2ε. Now, it’s 21 years
old. The policy of compatibility will now change
to a policy of roll back–roll forward. Fixes and
enhancements will be applied directly to the kernel.
You can call the latexrelease package with a date
as option, and it will change to be compatible to the
version of that date. Also packages can adjust their
code to releases via an \IncludeInRelease macro.
There will be also patch releases which will not be
roll-back points, in contrast to major releases.

All the fixes of fixltx2e are now in the kernel.
ε-TEX support is now included out-of-the-box, along
with fundamental support for X ETEX and LuaTEX,
a regression suite for testing with all formats. ε-
TEX and X ETEX passed the tests, while still there
are many failures in running against LuaTEX, to be
examined. Some improvements as well:

• \emph can now produce small caps or others
• \textsubscript is defined
• \DeclareMathSizes only takes points
• fewer fragile commands

The final speaker for the third session was Hans
Hagen. His talk “What if . . . ” was more reflective.
He looked at Unicode, which is a nice way to get
rid of input encodings and font encodings, with easy
transition thanks to existing UTF-8 support. And
there are sophisticated casing, categories, and spac-
ing. What if we had had it earlier? A lot of time was
“wasted” struggling with encodings. However, Uni-
code may introduce challenges due to possibilities,
cultural issues of symbols, and persistent compati-
bility errors. And, there are exceptions due to user
demands.

He reflected on TEX’s design, which is nice but

TUG 2015 conference report

84 TUGboat, Volume 36 (2015), No. 2

may be boring sometimes. The look and feel may not
fit some purpose such as schoolbooks. Generally, nice
fonts help reading, but of course there are different
opinions on design.

Hans explained that we still have insufficient but
persistent standards. The market demands XML, in
and out, and support of tagged PDF and EPUB.
Then, he took a look at the development of speed
and memory and how we can benefit today, such
as saving time struggling with hardware constraints.
What if we had this 20 years ago? What would be
our position today? We compete with WYSIWYG

and real-time rendering, so we should explore to-
day’s hardware benefits with more effort—though
constraints can lead to better solutions.

He finished with a look at perspectives. Will
TEX become a niche or go mainstream? Will it be a
backend? Or more used by individuals? Requirement
for quality doesn’t grow; other apps can do well too.
Can we focus on control, and on cultural aspects?
The future is not clear.

A short break followed, with some ice cream in
the hotel cafe. Joseph Wright then gave an update
on the status of the UK TEX FAQ. The original
Cambridge server is not available any more. So,
the FAQ has moved to another server, maintained
by me. The original and established domain name
(tex.ac.uk) has been preserved. Now, while I like to
help in continuing, improving accessibility and web
design, the UK TUG team will continue maintaining
it. Joseph Wright asked for people to help improve
the FAQ content. This work load can be shared, so
anybody could focus on a specific part. The FAQ

sources are on github for further development.
Joachim Schrod then described to us the services

provided by CTAN. An essential part is providing
LATEX and other packages to chosen servers, which in
turn sync them to about 200 mirrors. That’s for us
TEX users, who can then update our packages. This
is a principal task of all the CTAN-related servers,
noticeable by the many terabytes moving. Other
services, such as manually browsing package directo-
ries, are less used, as this is done more by developers
than end users. Archiving and mirroring involves
challenges such as observing mirror server status and
checking if they are up to date.

The heart of CTAN is the TEX catalogue. Main-
tenance of packages’ metadata is a laborious but
fundamental part of the archive. Besides incom-
ing mirroring, there are services such as the web
server, including upload management, and mailing
lists. With a look at the load on the CTAN servers,
Joachim Schrod confirmed Hans Hagen’s words that
TEX may be a niche—but it’s a large one.

Finally, Barbara Beeton and Volker RW Schaa
gave words in memoriam of Pierre MacKay, Richard
Southall and Hermann Zapf, who have passed away.

In the evening, there was a dinner in the Drei-
klang restaurant. The complete LATEX3 team, Henri
Menke and I decided to go to the Ratskeller. We
talked about current LATEX3 development until late
into the night.

TUG 2015—day 2

Pavneet Arora started the first session with a talk
about FLUSS, a flow leak monitoring system. I was
curious, how this should be related to TEX. The
working title, FLUSS, is an acronym. It stands for
”Flow leaks unearthed ss” where ss means 2x sigma.
The latter refers to double sigma testing.

His talk had little to do with typesetting. But it
has to do with TEX. Pavneet considers TEX to be a
part of the core stack of embedded systems. He uses
TEX as a sophisticated documentation backend, and
for reporting, so in this case not for publishing. So
to say, he used the “TEX of Things” to detect water
leaks. Why is this important? As with fire, water
damage can be limited by catching the problem early
on; you don’t have fire detectors at home, but smoke
detectors, to get warned at an early stage. He focused
on the water supply instead of all possible breaks and
leaks along the whole supply way. His application
suite is monitoring the flow at the source side, e.g.,
near the water meter. It learns water consumption
patterns over time, and results in ConTEXt-generated
reports. They allow the triggering of alarms thanks
to pattern recognition. The hardware is an embedded
system based on a Raspberry Pi. There’s a bunch of
tools to install—TEX was the easiest part, a great
sign of its maturity and its reliable packaging. We
saw ConTEXt-generated diagrams and how to detect
a water leak there. This topic is highly important
to insurance companies, connected to much money.
Thus, Pavneet showed an interesting and unexpected
use of TEX in that industry.

In the next talk, Tom Hejda spoke about prepar-
ing LATEX document classes and templates for the
Czech Technical University in Prague (CTU). He
spoke about differences in creating classes for journal
articles compared to university theses. There, he
considered the user’s point of view, stated some ba-
sic facts and gave examples. He started with typical
usage. The procedures are different:

• Journal article: author typesets, it’s reviewed,
there’s a final author version, it’s copyedited
and typeset.

• Thesis: student typesets, supervisor comments,
the final version is submitted by the student.

Stefan Kottwitz

TUGboat, Volume 36 (2015), No. 2 85

A journal has its style, decides which packages
can be used, etc.; the journal has full control of
output. In contrast, with a thesis, the university has
style restrictions, but the students mostly decide how
to actually typeset the thesis. Journal articles and
theses also differ in sectioning depths, used packages,
and in the variety of topics, which is comparatively
narrow in most journals.

Tom compared these examples and discussed
differences in their approach:

• actapoly, a class for journal articles in the Acta
Polytechnica, written in a mixture of TEX and
LATEX2ε.

• ctuthesis, written using LATEX3 as much as
possible, with a rich key=value interface.

Boris Veytsman followed, presenting a new multi-
bibliography package. There’s actually a package
with this name. He reworked it, and his new package
is called nmbib.

Generally, a bibliography is not merely a tech-
nical list. It describes the state of the field. So,
not only an alphabetical listing, but also a chrono-
logical list shows the development and progress in
the field. With nmbib, you can have ordering by
name, by appearance, and chronological, all in the
same document. Each cite command produces en-
tries for all lists. With the old multibibliography

package, there were some limitations, such as sup-
port for just fixed BibTEX styles. Perl was required.
With the new nmbib, you still get a look and feel
similar to multibibliography: you get three lists
with hyperref links. But now nmbib has compati-
bility with (and in fact loads) the natbib package
and supports its commands. Any natbib style may
be used for alphabetical or sequential bibliography
lists. You don’t need Perl any more. Instead of us-
ing a Perl script, BibTEX is simply run three times
for three orderings. nmbib is much more flexible
compared to multibibliography, since all natbib
customizations can be used, and citation styles can
be customized. The new and more flexible nmbib

package has also been developed with ebook usage
in mind.

Leila Akhmadeeva joined Boris for a presenta-
tion about trilingual templates for an educational
institute in Bashkortostan, Russia. This is a special
challenge because Bashkir Cyrillic is different from
Russian Cyrillic. A formal document is already a
challenge for a style designer, and a consistent multi-
lingual style is even more so. TEX is a good tool for
such tasks. They chose Paratype for consistent fonts.

Paul Gessler followed with a talk about printing
Git commit history graphs. Git is a popular version

control system. Based on the gitinfo2 package,
Paul wrote an experimental package called gittree,
which generates such graphs for use in LATEX, on the
basis of TikZ, and provides a convenient interface.
He showed use and creative abuse, such as with a
github project MetroGit where each commit is a
metro station, and a branch is a metro line, a merge
is a connection between lines; together, it produces a
map of the metro stations of Paris. Paul’s code will
be on github by the end of summer, and he expects
to put it on CTAN in early 2016.

Steve Peter then did his final task as a president:
introducing the new president, Kaveh Bazargan.

Kaveh said that it’s an honor to hopefully con-
tribute in this new way to our great community. He
has worked with TEX since 1983, and his first TUG

meeting was 1986 in Strasbourg. He said that TEX
deserves to get far more visibility. So, he hopes we
keep old friends but get more youngsters to join
in. We can show there are many things TEX can do
which can still hardly be done using other technology,
although applications have essentially caught up in
many respects. He thanked everyone for voting in the
election, and announced that he will talk afterwards
with the people who voted differently . . . with a smile.
The new TUG board then gathered before the audi-
ence. (The following report on the annual meeting
includes contributions from Boris Veytsman.)

A first suggestion, quickly approved, was the
founding of an accessibility working group. Klaus
Höppner said we could join forces with institutes
working on tools for blind people. Many people are
working on things such as tagged PDF; teams should
be brought together.

It was said and agreed that we should demon-
strate more vigorously how TEX is used in academic
work and industry. But where to show it? At TUG

meetings, we are talking among ourselves. The TUG

web site is visited mostly by TEX users too, probably
not by not-yet-users. There is a TEX showcase there.

My silent thought was that I could adapt and ex-
pand the TEXample gallery, a tagged and categorized
gallery built by Kjell Magne Fauske. It’s currently
focused on TikZ, but could be extended to TEX in
general. There are sophisticated back-end scripts for
automated workflows including compiling, adding
to file shares and database, tagging, and generating
output in PNG and JPG via Ghostscript for gallery
view and thumbnail preview.

Frank Mittelbach said that we should support
the entry level at universities. Some opinions went
further: we should promote very early use of TEX,
such as in schools. The potential TEX entry point
today is often when people start writing their thesis.

TUG 2015 conference report

86 TUGboat, Volume 36 (2015), No. 2

But by that time, they have already used Word and
such for 10 years. TEX comes late here. Few people
feel the need to switch from Word after using it for
six or ten years.

Supporting this thesis, Rajagopal CV told about
his experience in teaching in India, at the B.Sc. and
M.Sc. levels at the University of Kerala. (We hope a
detailed article will be forthcoming.)

Regarding publishers and TEX: few publishers
use TEX—they were in the room, notably River
Valley Technologies and VTEX. Many publishers
deny TEX because there’s still an old bad reputation.
More and more other applications catch up. 95
percent of files coming from authors are in Word,
so the industry has developed clever things around
Word, expensive tools to work with Word, such as
taking out references for processing. The industry
standard is conversion from Word, period. TEX is in
the minority. Though, it’s a big industry to tackle,
if you know how.

We should promote the information that the
TEX distribution is actively maintained, and will
continue to be. That’s an important criterion. How
many people go to conferences in other fields, to tell
about TEX? Not so many. Of course, other user
groups are also mostly among themselves.

Boris Veytsman started a discussion in another
direction. Whatever we all think, where is TEX
going to be in the future? And how about TUG? In
past times, there was much meaning and reason for
being a user group. Without today’s Internet, we
promoted and helped users. But today? We may
have made ourselves unneeded, because we did a
good job. There’s CTAN, a user doesn’t need to be
a TUG member any more to get all the software,
online help in forums, and most of the membership
benefits. What reason is left to join? Thanking and
sponsoring, what else? Many members join because
of sympathy. We should find a justification for the
TEX Users Group to exist, as such, find a convincing
reason for people to join. This was an open discussion
with many people contributing. Why do we need
our group? How can we tell anybody that we are
relevant? Should and could we find a new identity?
Why is a user group necessary?

Brought up by Matthew Skala: TEX is not the
first choice even in the open source world. A user
buys a new computer with Ubuntu and just clicks on
“Create a new document” icon. Ten times out of ten
the system will open an OpenOffice or LibreOffice
clone of Word: is this inevitable?

Still, even though millions of users rely on TEX,
things can easily break. As wonderful as they are,
teams are small. The CTAN maintainers’ group

consists of four people, the LATEX team consists of five
people, and so on. If a key person gets ill, everything
stops. Rarely do new people pick up. It’s not only
about users or money—an important issue is getting
users to contribute and to turn into developers. We
are seriously low in developers: we need users to turn
into being developers. So, user groups are essential
to activate people who start contributing.

That was a serious discussion, and it’s good
to bring up such points; to raise questions to find
answers. Nevertheless, to be sure, people here are
positive and in a great mood.

Away from the TEX front, in the afternoon,
there was an excursion to the Messel Pit (https://
en.wikipedia.org/wiki/Messel_pit), a UNESCO

World Heritage site because of its abundance of fos-
sils. In the evening we met at the Herrengarten and
talked until late.

TUG 2015—day 3—first part

The third day was opened by Kaveh Bazargan and
Jagath AR. They talked about today’s requirements
of publishers who demand XML. Kaveh showed is-
sues with XML. He gave examples of proper XML

encoding but crazy meaning, such as embedding
each letter within XML text or writing a plus-minus
sign by a plus symbol with an underline tag. He
reviewed the classic publishing chain, from author
to publisher to peer reviewer to copy editor and fi-
nally to the typesetter with possible loops. Then he
showed the cloud approach, which is not so linear
but more star-like: when publishing in the cloud, the
XML file is in the middle while the involved parties
all work directly with that file. He showed an on-
line editor on the River Valley Technoogies platform
which allows editing, reviewing and correcting with
a rich online editor. There, the file is always saved
in XML and rendered into HTML or PDF on the fly.
Authors are editing XML, but TEX is used in the
background. Specifically, TEX is used for pagination
of XML documents and producing high-quality and
even enriched PDF output with different styles from
the same XML base code. Jagath AR showed some
examples of enriched PDF, such as PDFs with several
layers for screen color mode, black and white, and
CMYK coloring, all in the same PDF file.

Joachim Schrod then gave an experience report
about TEX in a commercial setting. The purpose
is producing all written communication for an on-
line bank. This means usually small documents,
but counted in the millions, with severe legal re-
quirements. Such document types are letters with
standardized or individual content, PIN/TAN letters,
account statements, credit card statements, share

Stefan Kottwitz

TUGboat, Volume 36 (2015), No. 2 87

notes, and so on. Some may contain forms, some
contain PDF attachments of third parties. The client
actually types LATEX, but within templates: only
simple LATEX is used by the client, no math, and
there are only three special characters: backslash
and braces. You can imagine that common TEX
symbols can have a very different meaning in this
context: think of $ and % in a bank. The client uses
a web application basing on a reduced tinyMCE edi-
tor. Usage has to be simple, with low latency, and it
needs to be restricted for production. There are just
a few special environments, tailored to the corporate
identity style to ease use. The output is generated
to different channels, such as to a PDF file (with
letterhead), printed letters (without letterhead, as
it’s already pre-printed on the paper), and it needs
to be archived.

Besides manually written letters, there are jobs
for automated mass production, such as producing ac-
count statements each month. The standard process-
ing steps are: generate, format, output, and archive.
The engine is plugin-based, using document parame-
ters and templates. Different representations need
to be produced, such as draft, online with letterhead,
on paper without, as mentioned above. Calibration
to in-house printers may be needed, and additionally
inserted empty pages when sending to a printshop.
Folding machine control has to be implemented, dif-
ferent archiving needs to be supported. Everything
has to be done after formatting, since there is a legal
requirement to be able to reproduce the archived file
in any style on any output channel even after many
years. So you need a storage strategy.

In this environment, they use the classic DVI for-
mat with \special commands. There are different
DVI drivers for each purpose. DVI is better suited
since the documents are much smaller documents
than PDF files, and storage costs money. The inter-
active preview has to be fast, small jobs have to be
processed quickly in high amounts. So they use a
TEX .fmt file with preprocessed macros. There is
not even a document class selection, it’s preloaded,
no standard packages are used as they are preloaded
with the format as well. The packages are very short,
with essentially no code, just selection. Compiling
a document goes down from 1.5 s to 0.06 s per doc-
ument, for example, which is a factor of about 25.
This is a big thing in mass production. A sample
requirement is to generate and format 400,000 docu-
ments in a determined time.

To make production even more efficient, tabular
material is typeset using \vbox and \hbox instead
of LATEX tabular environments. So, TEX is very fast
in this regard. Jobs can be parallelized. Codes are

actually piped into a TEX process. Instead of run-
ning TEX on each small file, large container files are
generated with, say, 50,000 documents for a single
TEX run. The DVI file then gets split in the postpro-
cessing. Every file, all graphics used, and all fonts
used get a timestamp for storing and reproducing.

The whole process has to be robust and reliable,
fast, and it should use low resources such as memory
and storage. The whole setting shows that traditional
TEX is still useful today, even outside of academia
and publishing.

The next talk by S.K. Venkatesan presented TEX
as a 3-stage rocket. The stages are:

• breaking paragraphs into lines;
• making a single long scroll page;
• cutting the scroll into pages with a cookie-cutter
algorithm.

With infinitely long pages, footnotes are placed after
the text paragraph.

He compared creating paragraphs with CSS in
HTML for browsers and as generated by TEX, and
spoke about coexistence of TEX and HTML.

After a break, Joseph Wright followed with a
talk about the \parshape primitive command, with
a live demo instead of slides. The LATEX3 team devel-
oped a new interface to \parshape based on three
different concepts: margins, measure, and cutouts.
He demonstrated setting margins to absolute values,
and to values relative to the previous paragraph. He
showed indenting lines differently within a paragraph,
shaping paragraphs and producing cutouts with the
new interface. An open challenge is that it’s still
line-based, but not based on heights of objects, or
lengths.

Julien Cretel gave the next talk. It was about
functional data structures in TEX. At first, he ex-
plained what Haskell is: a purely functional language.
He gave an example of quicksort, and said he wanted
to do algorithmic things within TEX. One could
delegate this to an external program, but we often
like to use TEX even if it may not be theoretically
the best choice. Many of us like to solve things in
TEX, instead of calling Matlab or such. At least it’s
a pleasant intellectual pursuit. Thus, Julien wants
to implement semantics like this in TEX:

data Tree a = Empty | Node (Tree a) a (Tree a)

He asked the audience for feedback. For exam-
ple, if TEX should be chosen for the implementation,
or it should be done with LATEX3. He plans to focus
on a subset, wants to write algorithms in Haskell and
then translate to TEX or LATEX code.

So it was more an open discussion than a presen-
tation. Maybe we can see an implementation next

TUG 2015 conference report

88 TUGboat, Volume 36 (2015), No. 2

year. Some comments from the audience.

• It’s easier to implement Haskell in TEX than to
implement TEX in Haskell.

• Why implement it in TEX, if you have Haskell
already? As above, for the challenge.

• Arthur Reutenauer suggested working with the
TEX tries used for implementing hyphenation.

• TEX is Turing complete . . . we know, but this
doesn’t help in the how.

• And LuaTEX? Lua is imperative, not functional.

TUG 2015—day 3—second part

Hans Hagen gave the next presentation. The main
points were

• How far can you go with TEX?
• Do you really want to go that far?

Hans showed fascinating examples, such as TEX-
rendered text fed into MetaPost for postprocessing
and then re-rendered by TEX for justification.

Another example was about “profiling” lines.
For instance, there are two columns, and everything
has to be on the grid. TEX has paragraphs, but not
a concept of a line. It’s pasting hboxes together,
with heights and depths. TEX doesn’t natively have
columns, but you can implement them. He showed an
example of boxed columns, all on the grid, including
such things as inline fractions. By checking the
actual content, lines could stay closer in the grid
when heights and depths of elements did not collide.
He implemented a profiling mechanism. In the end,
he did not use it . . . except for this talk.

A second item: many of us know the TEX com-
mand \ignorespaces. ConTEXt now has commands
\removeunwantedspaces, \removepunctuation and
others. Content can be marked as punctuation, or
tagged in any way. So, you can remove such marked
content, after typesetting.

Finally he demonstrated some peculiarities of an
ASCIIMATH implementation, in which, for example,
writing o twice becomes an infinity sign, with all
challenges.

Boris Veytsman continued with a talk about
controlling access to information with TEX. This
is not only about security, but also simply hiding
unneeded information. E.g., technical people may
not need to see financial information, and conversely.
So a document may contain both, but shows just the
relevant part to each kind of reader. Output-level
access control may be sufficient.

Meanwhile, regarding security, documents may
contain an open part and a part with classified in-
formation. In this case, input-level access control
is needed. Existing input control in LATEX is via

\includeonly combined with \include. There are
disadvantages or restrictions; for example, every such
part starts a new page. With a lot of parts or in-
volved reader classes it can quickly get complicated.
Separate files may be confusing. A classic approach
would be:

\newif\ifclassified

\ifclassified\input{classified.tex}\fi

Another solution is provided by the comment

package, which provides environments for informa-
tion with different audiences.

For output-level control, Boris has written the
multiaudience package. The beamer class offers a
similar concept—presentation and a handout mode,
so also visibility control. But multiaudience has
been developed for supporting any number of such
modes, a.k.a. visibility classes. This is not for se-
curity, but for hiding boring or non-relevant parts.
(He later learned about the tagging package, which
provides similar functionality.)

Regarding security, there must be source level
control. Boris showed the new tool srcredact, which
is a Perl script with an input syntax inspired by
docstrip. There are two modes, one to extract text
for a partial version and the other to incorporate
changes from a partial version. So there’s two-way
communication.

Finally, Enrico Gregorio showed examples of
good and bad TEX code. He talked about the spuri-
ous space syndrome, which has bitten all TEX pro-
grammers at some time. Or even worse, the “missing
required space” syndrome. Missing protection of
line endings is classic. TEX friends had fun visually
parsing code looking for spaces.

He talked about LATEX3 and showed various
expl3 examples. He strongly recommended expl3:
even if it adds a thousand lines to load, it’s worth
it— later it will be part of a format anyway. It does
have some disadvantages, e.g., code is much more
verbose, and still requires understanding expansion.
He thanked the LATEX3 team for their great work on
expl3. I only can join the thanks.

At the end, we had a question and answer ses-
sion. One of the most important questions: where
and when will be the next TUG meeting? It will be in
Toronto, from July 25–27, with optional excursions
before and after.

Again, thanks to TUG and the sponsors DANTE

e.V. and River Valley Technologies. And especially
to Klaus Höppner, who did a great job as organizer!

⋄ Stefan Kottwitz
stefan (at) texblog dot net
http://www.latex-community.org

Stefan Kottwitz

TUGboat, Volume 36 (2015), No. 2 89

In memoriam

Barbara Beeton

Over the past year, the TEX community has lost
several individuals without whose contributions our
landscape would be very different.

The first of these is one of TUG’s past presi-
dents, Pierre MacKay. An early adopter of TEX,
Pierre’s first goal was to create an environment for
creation of documents in the Arabic script. As presi-
dent, Pierre instituted regular reports to members
in TUGboat [1], a practice continued by succeeding
presidents to this day.

Two type designers whose work played a signifi-
cant part in making TEX the quality tool it is today
passed away this spring: Hermann Zapf and Richard
Southall.

Hermann Zapf, who has been called the fontifex

maximus of the world of typographic and calligraphic
letters, needs no introduction to anyone in the least
familiar with type design. His direct contribution
to TEX consisted in designing the Euler family of
fonts and, as a present for Don Knuth’s 70th birth-
day, “reshaping” those fonts to take advantage of
improvements in font technology. He is rightly listed
among the TUG “notables” as “Wizard of Fonts”.
Less directly, his hz system of paragraph justification
made its mark, through its TEX-based implementa-
tion by Hàn Thế Thành, whose Ph.D. dissertation
launched pdfTEX. Finally, owing to collaboration on
the font tuneup, he was named an honorary mem-
ber of DANTE, the TEX group for German speakers.
His kind cooperation with me in preparation of the
English version of his DANTE presentation on that
occasion [2] taught me much, about both the niceties
of typography and his generous spirit; sadly, I never
had the opportunity to meet him. He will be greatly
missed.

Richard Southall was less well known, but he
too made his mark on TEX. The sans serif fonts of
the Computer Modern family owe much to his touch.
Richard attended the 1984 TUG meeting, presenting
a session on “First principles of typographic design
for document production” [3], explaining the merits
of a more austere approach to typography than is
now (or was even then) the norm. Richard’s typo-
graphic specialty was fonts for use in directories and
other situations where recognition and absence of
ambiguity are paramount.

Another individual important to the TEX com-
munity passed away in the summer of 2014: Thomas
Koch, past president of DANTE, the users group for
German speakers, from 1999–2001. (A memoriam

for Thomas will be included in the next issue of
TUGboat.)

Brief comments were shared at the meeting in
memory of these four individuals, by Volker Schaa
(Hermann Zapf), Joachim Schrod (Thomas Koch),
and Barbara Beeton (Pierre MacKay and Richard
Southall).

While I was writing this introduction, I learned
of another passing: Kees van der Laan, one of the
founders and first chair of NTG (the Dutch TEX
group), succumbed to a long illness on August 24.
Kees contributed freely to TUGboat [4], and the
publications of other TEX groups on a wide range of
topics, and was a frequent and welcome participant
at BachoTEX gatherings.

Some remembrances in honor of these departed
colleagues follow this introduction.

References

[1] Pierre MacKay, “From the President”, a
series of reports in TUGboat, linked from
http://tug.org/TUGboat/Contents/

listauthor.html#MacKay,Pierre

[2] Hermann Zapf, “ My collaboration with
Don Knuth and my font design work”,
TUGboat 22:1-2, pages 26–30. http:
//tug.org/TUGboat/tb22-1-2/tb70zapf.pdf

[3] Richard Southall, “First principles of
typographic design for document production”,
TUGboat 5:2, pages 79-90. http://tug.org/
TUGboat/tb05-1/tb10south.pdf

Corrigenda: TUGboat 6:1, page 6. http:
//tug.org/TUGboat/tb06-1/tb11gendel.pdf

[4] Kees van der Laan, contributions to
TUGboat, linked from http://tug.org/

TUGboat/Contents/listauthor.html#Laan,

Keesvander

Photo courtesy of Diana Wright

90 TUGboat, Volume 36 (2015), No. 2

Pierre MacKay, 1933–2015

Barbara Beeton

Pierre was an early adopter of TEX, and a very
early member of TUG; his name first appears in a
membership list in June 1981. In November 1982,
he and Rick Furuta at the University of Washington
assumed the duties of Unix site coordinators, a task
that Pierre continued to perform until 1992.

An enthusiastic supporter of TUG, Pierre was
elected president and served in that capacity during
1983–1985. He remained on the board until 1991,
and was always a source of good advice and good
cheer.

Pierre’s primary interest was in the study of
classical Greek and Arabic literature. His early stud-
ies were largely based in Greek, but needing a second
classical language, he began his study of Arabic.
Later, he taught himself Ottoman Turkish. Some
of his first publications concerned medieval Arabic
literature. In 1966, he accepted a job at the Univer-
sity of Washington, because their classics program
included a Near East Studies program that allowed
him to pursue all his main research interests while
teaching the same subjects.

By the end of the 1960s, he became interested
in the potential use of computers and computer lan-
guages for non-Western scripts, and was an early
adopter of computerized text processing and typeset-
ting. Working with a colleague in Ottoman studies
who was an amateur Arabic-script calligrapher, he de-
veloped the first digital typesetting font in Arabic. In
1980, in addition to his positions in the departments
of Classics, Near Eastern Languages and Literature,
and Comparative Literature, he became an adjunct
member of the Department of Computer Science. (A
busy man!)

When TEX and Metafont arrived on the scene,
Pierre climbed onto the bandwagon, and immediately
started to work on adaptations for Arabic script. In
a brief 1983 TUGboat announcement [1], he noted
that “[for] this we must extend and modify the basic
program, but we are making every effort to ensure
that our Arabic Script version of TEX will be an
enhancement, and will leave all the basic features of
TEX82 intact.” Pierre made good on his intention.
In 1987, he and Don Knuth together wrote an ar-
ticle for TUGboat announcing “Mixing right-to-left
texts with left-to-right texts” [2]. Lacking actual
R-to-L fonts, the effect was simulated using mirrored
latin Computer Modern with examples inspired by
“Through the Looking Glass” (see the excerpt be-
low). The standard conventions for interleaving and
line-breaking were properly observed.

Also in 1987, the annual TUG conference was
held in Seattle at the University of Washington, with
Pierre as the local host. The topic that year was
TEX for the Humanities, a subject dear to him.

With Pierre’s urging, the university obtained
various TEX-capable output devices, including an
Alphatype CRS, the same machine used to produce
the final camera copy of Don Knuth’s Computers

& Typesetting series. Since one of these machines
was also in use at AMS, Pierre was a ready sounding
board when the hardware proved recalcitrant.

Another project that he assisted, although more
with moral support than active participation, was
the creation of the “Washington cyrillic” font, wncy,
through his “matchmaking” between a staff member
at the UW Humanities and Arts Computing Center
and the AMS, rebuilding and extending, for inclu-
sion in the amsfonts collection, a proto-cyrillic font
based on Computer Modern originally created at the
AMS [3].

After his retirement from the University of Wash-
ington in 1990, Pierre separated himself from the
“formal” TEX community in order to devote his en-
ergies to the scholarship he felt still needed doing.
He could still be detected from time to time on
texhax, sharing his copious knowledge with others
who needed help. On June 14, 2015, while working
on the New York Times crossword puzzle, Pierre
passed away so quietly that the pencil remained in
his hand.

TUGboat, Volume 36 (2015), No. 2 91

Excerpt from “Mixing right-to-left texts with left-to-right texts” [2], p.17.

I treasured Pierre’s friendship, and miss him
greatly.

Photos and information on Pierre’s non-TUG

life have been supplied by Diana Gilliland Wright,
who shared the last years of his life. We are greatly
indebted to her for her kindness, and thank her
warmly.

References

[1] Pierre MacKay, “TEX for Arabic Script”,
TUGboat 4:2, page 72.

[2] Donald E. Knuth and Pierre MacKay,
“Mixing right-to-left texts with left-to-right texts”,
TUGboat 8:1, pages 14–25.

[3] Barbara Beeton, “Mathematical symbols and
cyrillic fonts ready for distribution”,
TUGboat 6:3, pages 126–128.

Some links to web pages telling Pierre’s story:

A brief TUG interview:
http://tug.org/interviews/mackay-p.html

A memorial by Diana Wright:
http://surprisedbytime.blogspot.ca/2015/06/

pierre-antony-mackay.html

A remembrance by an archaeologist familiar
with Pierre’s interest in Venetian and Ottoman Greece:
https://mediterraneanworld.wordpress.com/

2015/06/15/pierre-mackay/

An account by Pierre concerning his identifi-
cation of a manuscript that proved to be the miss-
ing original of a renowned work by an 18th century
Ottoman author:
http://surprisedbytime.blogspot.com/2011/06/

evliyas-manuscript.html

92 TUGboat, Volume 36 (2015), No. 2

Dedication to Hermann Zapf, 1918–2015

Donald Knuth

The METAFONTbook is dedicated

To Hermann Zapf:
Whose strokes are the best

and this has an (intentional) double meaning: Not
only does it say that he drew the most beautiful
shapes. It secretly implies that he also gave the most
valuable feedback! Because, in English, we get a
“stroke” from another person when that person pays
us a compliment. Hermann had very strict standards,
and he never praised anything that he didn’t really
like. Therefore I could always count on hearing his
true opinions, good or bad; this was indispensable
during my years as an apprentice learning about
type. I couldn’t trust strokes from other colleagues,
but Hermann was the best teacher because he didn’t
hold back criticism.

He and I collaborated closely on three projects
during the 1980s: Computer Modern, Euler, and the
book 3 : 16 Bible Texts Illuminated.

Subsequently we corresponded rather often, and
visited each other’s homes several times. I could
count on receiving both a Christmas card and a
birthday card from him in most years! In his most
recent letter (January 2015) he did say that his health
was not so good.

The photos at right were taken when Hermann
and Gudrun visited my house on 10 September 2001.

References

[1] Hans Hagen, Taco Hoekwater, and Volker
R. W. Schaa. Reshaping Euler: A collaboration
with Hermann Zapf. TUGboat, 29(2):283–287,
2008. http://tug.org/TUGboat/tb29-2/

tb92hagen-euler.pdf.

[2] Donald E. Knuth. The METAFONTbook,
volume C of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[3] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[4] Donald E. Knuth. 3:16 Bible Texts Illuminated.
A-R Editions, Inc., 801 Deming Way, Madison,
WI 53717-1903, USA, 1991.

⋄ Donald Knuth

Stanford, California

Editor’s note: Requested by the editors of Eutypon

(eutypon.gr), and to appear in their next issue. Kindly
allowed to be “pre”-printed here by the editors and author.

Hermann Zapf, Donald Knuth, and Gudrun Zapf von Hesse.

HZ and DEK at work on Don’s computer.

Photos by Susie Taylor of the San Francisco Public Library.

TUGboat, Volume 36 (2015), No. 2 93

Farewell Hermann Zapf

Hàn Thé̂ Thành

I met Zapf for the first time at a TEX conference.

That time I was too shy to come close and make any

conversation. I was impressed how a kind and bright

gentleman he was, despite his fame and age. Before

that, I only knew the name Hermann Zapf from his

typefaces which I used and admired.

Then, through the work on HZ extensions for

pdfTEX I learned more about Hermann Zapf and

also had the opportunities to contact him. During

testing of the HZ extensions I sent the sample output

to him, asking for his opinion. Zapf answered with a

letter in his unique style, with beautiful typography,

very kind and contented words. I was encouraged

by his letter very much; before that I was having

doubts if my work makes any sense. Later the faculty

asked Zapf whether he would be willing to review

my thesis.1 Zapf accepted. I could only be thankful.

During another TEX conference in Darmstadt I

met Hermann Zapf again, and was lucky enough to

have a dinner with him, together with Hans Hagen

and Volker Schaa. I forgot that I was having dinner

with a legendary person. I was simply enjoying

the time being there, for Hermann Zapf was such a

pleasant person to be with. It was like being with a

wise and kind uncle.

When I read the news that Hermann Zapf passed

away, I had an empty feeling. I said to myself, it’s

an unavoidable ending of a great story. Then slowly

after that I realized what a loss it was, and how sad

I am.

Farewell Hermann Zapf, we will miss you until

we meet again.

1 Hàn Thé̂ Thành, “Micro-typographic extensions to the

TEX typesetting system”, dissertation, Faculty of Informatics,

Masaryk University Brno. TUGboat 21:4, 2000.

http://tug.org/TUGboat/tb21-4/tb69thanh.pdf

Remembering Hermann Zapf

Kris Holmes ∗

Hermann Zapf is admired as the greatest type de-
signer of his era. Vast reams have been written about
his work and many more will be written. Now he is
gone and I am sad.

I first met Hermann Zapf in 1979, when I stud-
ied calligraphy and type design with him in summer
courses at RIT. Our acquaintance continued and

∗ Reprinted by permission from

http://bigelowandholmes.typepad.com/bigelow-holmes/

2015/06/remembering-hermann-zapf.html.

became friendship over the next 36 years. In remem-
bering him now, I want to tell the one story that
means the most to me.

The German firm of Dr. Ing. Rudolf Hell, noted
for their ultra-high-quality digital scanning, color,
and image engraving systems, also invented the first
digital typesetting machine, the Digiset. Dr. Hell
made several generations of high-quality Digiset ma-
chines for the European market from the 1960s to
the 1990s.

In 1981 the firm wanted to introduce a new,
small Digiset typesetter into the US with original
typefaces to showcase its high resolution and quality.
My studio partner, Chuck Bigelow, had been retained
as their American consultant. Their European head
type adviser, Max Caflisch, who had worked with
and learned from Jan Tschichold, was impressed by
my brush-written Roman caps, which I had learned
from Ed Catich and Bob Palladino. I was asked
to submit proposals for new typeface designs to be
reviewed by Dr. Hell’s type review board for possible
development and inclusion in Dr. Hell’s type library.
The review board included Hermann Zapf, who had
already designed several original faces for the firm,
including Marconi, Edison, and Aurelia, among the
very first original typefaces for digital typography.

And so it was that in the fall of 1981 we flew
to Basel, Switzerland, for the selection of new type
designs. On the morning of the type review board, I
nervously entered the room where Hermann Zapf and
the other European designers sat. I handed out the
type specimens I had laboriously drawn, photocopied,
assembled, and prepared by hand. One of those pro-
posals was for a new connecting script design that
featured a unique inner hairline and flowing swashes
like sarabands in the capitals. I provisionally named
it ‘Isadora’ after the pathbreaking American modern
dancer, Isadora Duncan whose graceful vision I ad-
mired. Isadora the typeface was a new, original, and
daring design. I was afraid it might be too daring.

Each of the European designers scrutinized my
samples in silence. One of them, not Hermann, had
previously and privately expressed to me his doubts
that a “girl” could design an original typeface, and
indeed that morning I noticed a sour look on the
doubter’s face as he pondered my much labored-over
Isadora. Yet, before the doubter could say a word,
Hermann Zapf spoke instead, saying: “Yes, this is
highest quality, without question. We will take it.”
Hermann put down my sample and nodded to me
approvingly. The other designers looked at Hermann,
looked at me, then looked at Hermann again and
nodded their heads in obedient agreement. Isadora
was accepted unanimously.

94 TUGboat, Volume 36 (2015), No. 2

And so it was with the approving words of the
great and persuasive Hermann Zapf, followed by
those obedient nods from the others, including the
doubter, that my life as an original typeface designer
began in earnest. Dr. Hell eventually merged with
Linotype, and the typeface Isadora was acquired by
ITC. It is still a popular typeface today, more than
30 years later. Hermann was right.

A few weeks after that fateful meeting, a pack-
age arrived in the mail for me. It was a copy of
Feder Und Stichel (‘Pen and Graver’), Zapf’s superb
calligraphy engraved by August Rosenberger and
printed at the Stempel type foundry. Hermann Zapf
had inscribed it to me. That rare book is still my
most prized possession. It was his generous way of
honoring my beginning as an original designer. He
certainly knew from the beautiful type designs of
his wonderful, talented wife, Gudrun, that a girl
could design original typefaces. I have the fondest
memories of Hermann Zapf over all the years I knew
him. I sent him often happy but occasionally despair-
ing letters over the years, which he always, always
answered with kind guidance.

Everyone knows what a great designer Hermann
Zapf was. But he was also a generous mentor, a
brilliant mind, a stunning penman and a brave fighter
for original design.

I loved that guy.

⋄ Kris Holmes
lucidafonts.com

Hermann Zapf and his calligraphy and type design
classes at RIT, summer 1979. Zapf stands in bright
light, while the rest of us are in darkness. I am in
the blue dress, standing above the kneeling man in
sunglasses (Ned Bunnell). Behind and to my left is
Jerry Kelly, talented calligrapher, book designer, and
author of About More Alphabets, covering Zapf’s most
recent type designs. Behind and to my right is Chuck
Bigelow, my long-time studio partner and co-designer
of the Lucida fonts. On the far left, the kneeling
woman is the late Dorothy Dehn, accomplished
calligrapher and teacher.

I watch Zapf closely. So does Julian Waters at
lower left.

With Hermann as jurors at the Linotype Arabic Type
contest, 2005.

The same two of us, more light, more joking,
more motion blur.

TUGboat, Volume 36 (2015), No. 2 95

Digital typography with Hermann Zapf

Peter Karow

Hermann Zapf was involved in many of the demands
for digital typefaces which came into existence from
1972 through 1997. These issues included formats,
variations, interpolation, rasterizing, hinting, and
grayscaling.

Within modern text composition, digital text is
a special part that should proceed without manual
assistance and human layout. Up to now, the mile-
stones were these: kerning, optical scaling, paragraph
composition (H-program), and chapter composition
(chapter fit).

Digital typefaces

In 1972, creative typesetting professionals produced
variations manually using their photographic experi-
ence and a phototypesetting machine to make fonts
with contours and shadows. Naturally, shadowing
as well as contouring were my next features, which I
started on 26 February 1973. This date might be re-
garded as the birth of “digital typefaces”: new forms
were generated automatically (see Figure 1).

My programs crashed quite often and generated
substandard looking results. But anyhow, I got it fly-
ing further and further. That influenced my decision
to call the software Ikarus [6] in 1974.

The first time I met Hermann Zapf was in the
summer of 1975. I had just completed the basic parts
of the Ikarus program which could already generate
“digital typefaces” in the form of contoured, slanted
and shadowed versions based on hand-digitized out-
lines.

Zapf was amazed to see what I could present
to him (see Figures 1 and 2). He decided to include
me with a presentation of Ikarus in his general pre-
sentation which he had to give at the next ATypI
conference in the fall of 1975 in Warsaw.

It began a close relationship between us. This
had a very decisive influence on the future develop-
ment of our company URW Software & Type GmbH.

These days, everyone regards all fonts on com-
puters as digital fonts since they are stored in digital
formats such as OpenType. In the early seventies,
we had long discussions with famous designers. They
argued that pure mapping from analogue to digital
is not changing the basic quality of a typeface (old
properties), namely its type, appearance, effect, ex-
pression and congeniality. Therefore they asserted
that the typefaces only had digital images and were
therefore still analogue. “Digital” at that time was
regarded as a pseudo-property.

Figure 1: The first version of Ikarus-Format as
started in 1972 (left). Contouring used to make
Outline and Inline versions, shadowing and contouring
used to make Relief and Drop Shadow (right).

Figure 2: Typical desktop in 1972 with digitizer
tablet, “mouse”, keyboard (below), direct VDT,
alphanumeric terminal, electronic digitizer.

Never did I hear such arguments from Hermann
Zapf; he was already very familiar with computers
and always very eager and demanding to see the next
innovation.

Today, the property “digital” is not only ac-
cepted but also embraced. It serves as an additional
characteristic which doesn’t interfere with the old
properties and holds an extremely high significance
regarding a font. It allows and creates new and
important functions which did not exist before.

With the invention of the Digiset by Rudolf Hell
in 1965, typefaces were digitized for the first time.
No additional ideas were put into place other than
using them 1:1 for typesetting on the Digiset, scaled
linearly and displayed at resolutions between 1,000
and 2,400 dpi. Hermann Zapf was engaged by Hell to
consult on typesetting and to design new typefaces.

96 TUGboat, Volume 36 (2015), No. 2

Figure 3: Kerning can be regarded as a power that repulses characters the nearer
they come to each other, and that attracts characters the farther they get from each
other (left). Kerning can be used also to calculate character positions for overlapping
and touching of text.

In 1985 during the yearly ATypI conference (this
time sponsored by Hell in Kiel) Hermann Zapf dis-
cussed with me the problem that too many people
were talking about digital typefaces and unfortu-
nately not knowing what they are really all about.
So, I decided to write a book with the title “Digital
Formats for Typefaces” which he kindly corrected as
a co-editor. Finally, we could present it in 1986 dur-
ing the next ATypI conference in New York. Later I
changed the title: it became “Digital Typefaces” [3].

Digital text

Being pushed by Hermann Zapf, I started automatic
kerning [4, 7] in 1980 together with Margret Al-
brecht. We wanted to save money because the gen-
eration of kerning tables along with left and right
side bearings took a lot of time in our typeface pro-
duction. As in other cases of artificial intelligence,
we had to go through several approaches throughout
the years until 1987. Finally, we mixed programmed
ideas and heuristic parameters gained by process-
ing a lot of existing kerning tables manufactured
by different companies. We expanded kerning to
get overlapping and blending of characters in tightly
composed words [9] (see Figure 3).

In hot metal printing, optical scaling was
usual [2]. In any case one had to cut the point
sizes individually, so it was a matter of knowledge,
but not of money. This changed when phototype-
setting came up and the possibility of linear scaling
came into existence. Optical scaling didn’t play a
role at the beginning of DTP, however, a lot of people

wrote about it [1]. Hermann Zapf urged me to “do
something”.

In 1991 at URW, we adopted the following ap-
proach for text fonts. First, the smaller the type
size:

1) the wider the composition,

2) the thicker the strokes,

3) the broader the characters, especially
the lowercase.

And second, the larger the type size in titles:

1) the more compact the composition,

2) the thinner the strokes, especially the hairlines,

3) the narrower the characters, especially
the lowercase.

Simplified, one applies the rule that space and
stroke width of light fonts (text fonts) are reduced
or enlarged by 7% on the average if the point size is
enlarged or reduced by a factor of 2 [8] (see Figure 4).
For bold fonts the opposite is true.

To my knowledge, optical scaling was not em-
ployed for bold fonts in the past because they weren’t
(and still aren’t) used very often, and if so, they were
cut just for these special cases in certain point sizes
as a special effort.

Paragraph composition was our next project
in 1990 and it became the favorite of both of us.

We called the program H-engine. Developed
with and named after Hermann Zapf [5, 12] — it uses
a justification per paragraph system— as described
by Donald E. Knuth [10, 11], along with “kerning

TUGboat, Volume 36 (2015), No. 2 97

Figure 4: Different point sizes, which have been
generated at the same size for the purpose of
comparison.

on the fly” and expanding/condensing of characters
in order to obtain margin lines for a column that
are optically straight (optical margins), and achieve
typeset spaces among words within lines of text that
are fairly constant in order to avoid rivers and creeks.

Rivers run vertically through poorly spaced
words in consecutive lines of text when the spaces
between the words have the same space or a greater
space than the distance between the baselines of the
text. In contrast, a creek is a less severe form where
the spaces between words are accidentally too wide
within one line.

The basic feature of the H-engine, which was
programmed by Margret Albrecht, is to regard all
lines of a given paragraph at once — making the jus-

tification per paragraph. At first, all words or
syllables are distributed to the lines together in a
manner where each line gets a line length nearest to
its given individually parametrized width (as default
there is usually column width). The following opti-
mization is controlled by minimizing the typographi-

cal demerits, which are obtained from a function of
the actual line lengths, given line lengths, given line
widths and tolerances of the layout parameters.

If hyphenation is turned on, words are replaced
by syllables. The H-engine has to follow a lot of
exceptions and to provide solutions for them, e.g.
ligature substitution, consecutive hyphens and good
or bad locations for hyphenation within a word. This
level of text/typographic detail promotes a better
fit and contributes to the reader’s comfort (see Fig-
ure 5).

A comparison between the H-engine and today’s
typical composition tools demonstrates the superi-
ority of the H-engine (see Figure 6). In 1995, the
“H-engine” was implemented in InDesign by Adobe.
This has been a big step in digital text composition.

I believe that not too many people learned that
much about the “digital side” of Hermann Zapf as
Don Knuth and me. I learned a lot from him and
thank him.

References

[1] André, A., Vatton, I.: “Dynamic Optical Scal-
ing and Variable-Sized Characters”, Electronic
Publishing 7(4): 231–250, 1994

[2] Johnson, B., “Optical Scaling”, Master’s Thesis
for RIT, Rochester, New York, 1994

[3] Karow, P., “Digital Typefaces”, Springer Verlag,
Heidelberg, 1994

[4] Karow, P., “Font Technology”, Springer Verlag,
Heidelberg, 1994

[5] Karow, P., “H-program”, brochure, URW Verlag,
Hamburg, 1992

[6] Karow, P., “Ikarus”, German brochure, URW

Verlag, Hamburg, 1975

[7] Karow, P., “Kernus”, brochure, URW Verlag,
Hamburg, 1993

[8] Karow, P., “Optical Scaling”, brochure, URW

Verlag, Hamburg, 1991

[9] Karow, P., “Set theory for characters”, brochure,
URW Verlag, Hamburg, 1987

[10] Knuth, D. E., Plass, M. F., “Breaking para-
graphs into lines”, Software—Practice & Expe-
rience, 11/11), 1119–1184, Nov. 1982

[11] Knuth, D. E., “Mathematical Typography”,
Stanford University, Cal., February 1978

[12] Zapf, H., Alphabet Stories—A Chronicle of

Technical Developments, Mergenthaler Edition
Linotype GmbH, Bad Homburg, 2007

⋄ Peter Karow
Hamburg, Germany

98 TUGboat, Volume 36 (2015), No. 2

Figure 5: Comparison between H-engine and standard composition, without hyphenation.

TUGboat, Volume 36 (2015), No. 2 99

Figure 6: Comparison between H-engine and standard composition, narrow columns,
with and without hyphenation.

100 TUGboat, Volume 36 (2015), No. 2

Richard Southall: 1937–2015

Jacques André and Alan Marshall

Richard Southall, typographer, teacher, scholar and
well-known specialist in the field of digital typog-
raphy, passed away on May 26th, 2015, at the age
of 78.

In 2005, Richard published an important study
entitled Printer’s type in the twentieth century in
which he outlined his own biography [21, p. xiv]:

The author joined Crosfield Electronics Ltd in
north London in the summer of 1965, to work
on the specification of matrices for Lumitype-
Photon photo composing machines. At the
end of the 1960s he found himself in New
England, building a large high-resolution cam-
era for photo matrix manufacture at Photon
Inc. In the early 1970s he was responsible for
the typography of Crosfield’s novel scanned-
matrix photo composing machine, the Mag-
naset 226. At the University of Reading later
in the same decade he designed a series of di-
rectly generated subtitling fonts for broadcast
television. In the 1980s he worked in Califor-
nia, at Stanford University, Adobe Systems
Inc. and the Xerox Palo Alto Research Center.
Much of this work was at the disputed frontier
across which computer science and traditional
typography contemplated one another in an
uneasy truce. In the 1990s he was closely in-
volved with the Colorado type making project
described in Chapter 9.

Richard is typically modest in his preface, just
as he was in his professional activities which are im-
possible to sum up under one simple heading. The
various fields in which he was involved include photo-
and digital typesetting, film subtitling, and the the-
ory and history of typemaking [21, 22, 23].

After graduation from Cambridge with a degree
in natural sciences in 1960, Richard worked for a
while in technical publishing (for Wireless World).
His initial involvement with typemaking began when
he took over from Matthew Carter the job of liai-
son on typographical questions between the British
scanner and phototypesetter manufacturer Crosfield
Electronics and the French type foundry Deberny &
Peignot. His job was to oversee the production of
photo-matrix disks by D&P for Crosfield’s version of
René Higonnet and Louis Moyroud’s revolutionary
second generation Lumitype phototypesetter which
was produced under the name Photon 540. At first
sight that might seem a simple task. In fact it was ex-
tremely complex because the manufacturing process

not only had to work to extremely fine tolerances,
it also had to take into account myriad technical
details of type design, language and typographical
markets and conditions of production.

Typemaking in the 1960s and 1970s also had to
cope with accelerating technical change. Phototype-
setting quickly went through four distinct generations
from electromechanical to digital, before desktop pub-
lishing and PostScript swept (nearly) all before them
in the eighties. As printers and, increasingly, graphic
designers struggled to make their way through what
Lawrence Wallis once called “The phototypesetting
jungle”, Richard never contented himself by simply
applying the new technologies empirically to the job
in hand: rather, his aim was always to understand
the theoretical foundations which underpin the tech-
niques and purpose of typemaking.

Over a period of about 20 years, he was type
consultant to various different groups such as the
American Mathematical Society, Rank Xerox for
whom he worked on machine-user interfaces, British
Telecom (BT), the Civil Aviation Authority and Na-
tional Air Traffic Services (in the UK) on typography
for information systems used by air traffic controllers,
and, most recently, US West Direct (now US West
Dex, see below).

One aspect of Richard’s career of particular in-
terest to readers of TUGboat concerns his long-term
use and exploration of TEX and METAFONT.

As he was designing Computer Modern, Don
Knuth invited Richard to visit Stanford. At this
time he was teaching type design at the Department
of typography & graphic communication (University
of Reading, UK, 1974–1983) and had an intimate
knowledge of the punch cutter’s skills (such as the
proportions of stems and the impact of size variations
on letter forms and legibility). Knuth and Richard
spent the entire month of April 1982, working about
16 hours a day, revising Computer Modern from A
to z. While at Stanford he also took part in early
TUG conferences [4] and co-taught the new version of
METAFONT with Don Knuth and Chuck Bigelow. In
January 1985 he gave the first METAFONT tutorial
in Rennes [5, 7] and had the opportunity to work
one year at the Université Louis-Pasteur in Stras-
bourg (with Jacques Désarménien, who had been at
Stanford in 1983–84, and Dominique Foata) where
he designed a font using METAFONT [9].

Throughout this period he kept in touch with
researchers in the digital field of typography through
conferences such as Raster imaging and digital typog-

raphy, the Didot project, and Electronic publishing,
in which he was involved as speaker/author, as a
member of scientific committee, or as editor [15].

Jacques André and Alan Marshall

TUGboat, Volume 36 (2015), No. 2 101

It was a great pleasure to work with him, for he was
conscientious, competent and hard to please!

Richard was not primarily a type designer. His
unique knowledge and skills placed him at the meet-
ing point of type design and computer science. And
though he always said “No, I’m not a computer scien-
tist”, he understood and used computers constantly.
His main question was How to design a type; what is
the appearance of a character; how can it be trans-
ferred from the designer’s head to paper; how does
each character relate to the others in a given font;
and if it comes to that, what is a font? The kinds of
questions which bring us back to the famous What

is the a-ness of an a? Though most of his papers ad-
dressed such fundamental questions [8, 10, 11, 12, 14],
Richard never published “the” answer. However, he
was sure he was right in considering that the process
of type design remains to be redefined.

Richard had the opportunity of putting his ideas
into action when, in 1995, he was asked, not to de-
sign a typeface, but rather to design the process of
designing a typeface, when he was approached by
his long-time colleague Ladislas Mandel, an eminent
French type designer with whom he had worked when
the latter was type director at Deberny & Peignot.
Ladislas, who had subsequently gone on to design
many typefaces for telephone directories, asked Rich-
ard to work with him on the production of a family of
new designs for the North American telephone direc-
tory publisher US West Direct. Ladislas as the type
designer and Richard as the designer of the process
by which the fonts would be made, successfully pro-
duced the Colorado Directory System ([17, 18] and
[21, chapter 9, pp. 204–218]). METAFONT was the
key to the design process, as well as to the metrics.
As Richard concluded: The power and flexibility that

a fully-parametrized formatter affords to the typogra-

pher is well worth the effort involved in building it.

One final point: if you look at his book, Printer’s
type in the twentieth century [21] which was typeset
using plain TEX and Richard’s own font, the text is
neither justified nor ragged. Rather, it is “lightly
ragged”, thanks to the subtle use of hyphenation
to keep the white space at the end of the line as
uniformly short as possible. He was very proud of
this meticulous achievement, a characteristic of his
way of working.

References

[1] Richard Southall, ‘Electronics in typesetting’,
Wireless World, vol. 74, no. 1389, 1968.

[2] Richard Southall, ‘Character generator systems
for broadcast television’, Information Design

Journal, 2(1) 1981.

[3] Richard Southall, ‘The problems of forms artwork
production’, London: Management & Personnel
Office. HM Government. 1982.

[4] Richard Southall, ‘First principles of typographic
design for document production’, TUGboat, vol. 5,
no. 2, 1984, 79–90. http://tug.org/TUGboat/
tb05-2/tb10south.pdf

[5] Richard Southall, ‘METAFONT and the problem
of type design’, Typographie et informatique :

support du cours INRIA, Rennes, 21–25 janvier

1985 (J. André and P. Sallio, eds.), INRIA,
Rocquencourt, 1985. http://jacques-andre.fr/
japublis/RS-MS-Typedesign.pdf

[6] Richard Southall, ‘Designing new typefaces
with METAFONT’, Stanford Computer Science
Department report STAN-CS-85-1074, 1985.
http://i.stanford.edu/pub/cstr/reports/cs/

tr/85/1074/CS-TR-85-1074.pdf

[7] Richard Southall and Jacques André,
‘Experiments in teaching METAFONT’,
TEX for Scientific Documentation (D. Lucarella,
ed.), Addison-Wesley, 1985, 141–153. http:
//jacques-andre.fr/japublis/1985-TEDX.PDF

[8] Richard Southall, ‘Shape and appearance in
typeface design’, Protext III (J.J. Miller, ed.),
Dublin: Boole Press, 1986, 75–86.

[9] Richard Southall, ‘Designing a new typeface with
METAFONT’, TEX for scientific documentation

(J. Désarménien, ed.), Lectures Notes in
Computer Science 236, Springer Verlag, 1986,
161–179. https://books.google.fr/books?hl=
fr&id=GaGCGEsp7aEC

[10] Richard Southall, ‘Visual structure and the
transmission of meaning’, EP conference

(J.C. van Vliet, ed.), Cambridge University Press,
1988, 35–45. https://books.google.fr/books?
id=lfg8AAAAIAAJ

[11] Richard Southall, ‘Interfaces between the
designer and the document’, Structured
documents (J. André, R. Furuta, and V. Quint,
eds.), Cambridge University Press, 1989,
119–131. https://books.google.fr/books?id=
BrgbosTycOgC

[12] Debra Adams and Richard Southall, ‘Problems
of font quality assessment’, Raster Imaging and

Digital Typography (J. André and R.D. Hersch,
eds.), Cambridge University Press, 1989,
213–222. https://books.google.fr/books?id=
mj09AAAAIAAJ

[13] Richard Southall, ‘Character Description
Techniques in Type Manufacture’, Raster
Imaging and Digital Typography II (R.A. Morris
and J. André, eds.), Cambridge University
Press, 1991, 16–27; https://books.google.
fr/books?id=Q9KtGcpfNgUC. Republished in
Computers and typography (Rosemary Sassoon,
ed.), Intellect Books, 1993, 83–100; https:
//books.google.fr/books?id=Gm4QAbGKIBgC

Richard Southall: 1937–2015

102 TUGboat, Volume 36 (2015), No. 2

[14] Richard Southall, ‘Presentation rules and
rules of composition in the formatting of
complex text’, EP’92: Proceedings of Electronic

Publishing ’92, International conference on

electronic publishing, document manipulation and

typography, Lausanne, Switzerland (C. Vanoirbeek
and G. Coray, eds.), Cambridge University
Press, 1992, 275–290; https://books.google.
fr/books?id=YN1sLgZtHC8C. Republished in
Computers and typography (Rosemary Sassoon,
ed.), Intellect Books, 1993, 32–51; https:
//books.google.fr/books?id=wdYmvQD5C8IC

[15] Jacques André, Jakob Gonczarowski, and Richard
Southall, Proceedings of the Raster Imaging and

Digital Typography Conference, special issue of
EP-ODD, Electronic Publishing–Origination,

Dissemination and Design, 6(3), 1993.
Table of contents, editorial and colophon in
http://jacques-andre.fr/japublis/ridt94.pdf

[16] Richard Southall, ‘A survey of type design
techniques before 1978’, Typography papers vol. 2,
Reading, 1997, 31–59.

[17] Richard Southall, ‘METAFONT in the Rockies:
The Colorado Typemaking Project’. Electronic
Publishing, Artistic Imaging, and Digital

Typography—7th International Conference on

Electronic Publishing, EP’98; held jointly with

the 4th International Conference on Raster

Imaging and Digital Typography, RIDT’98, St.

Malo, France, March 30–April 3 (R.D. Hersch,
J. André, and H. Brown, eds.), Lecture Notes in
Computer Science Volume 1375, Springer-Verlag,
1998, 167–180; http://link.springer.com/
chapter/10.1007%2FBFb0053270. Republished
in Computers and typography 2 (Rosemary
Sassoon, ed.), Intellect Books, 2002; https:
//books.google.fr/books?id=wdYmvQD5C8IC

[18] Richard Southall, ‘Prototyping telephone
directory pages with TEX’, Cahiers GUTenberg,
No. 28–29, 1998, 283–294. http://cahiers.
gutenberg.eu.org/cg-bin/article/CG_1998___

28-29_283_0.pdf

[19] Richard Southall, Peter Enneson, Andrew Boag,
and Hrant Papazian, ‘Replies to Peter Burnhill’,
Typography papers, vol. 4, Reading, 2000.

[20] Richard Southall, Ancient BBC ‘subtitling’ font

revealed, 2005. http://screenfont.ca/fonts/
today/TKST/

[21] Richard Southall, Printer’s Type in the Twentieth

Century, New Castle and London: Oak Knoll
Press and The British Library, 2005, 256 pages.

[22] Judith Slinn, Sebastian Carter, and Richard
Southall, History of the Monotype Corporation

(A. Boag & C. Burke, eds.), London, Vanbrugh
Press, 2014 (esp. Ch. 2 and 3). http://
vanbrughpress.com/publications-2/

[23] Richard Southall, ‘The dematerialization of
type’, Proceedings of the Automatic Type Design

Conference (Thomas Huot-Marchand, ed.),
ANRT, Nancy, 2013. To appear.

Richard’s archives

Some years ago, Richard Southall gave a large part
of his professional archives to two institutions:

The OAC (Off line Archive of California) re-
ceived his papers concerning the period 1982 to 1985:
the CM project, teaching material on METAFONT

and digital typography and on his own TKMF and
NMT (METAFONT typeface design systems):
http://www.oac.cdlib.org/findaid/ark:/

13030/kt487036pm/

The Musée de l’imprimerie at Lyons: tech-
nical and promotional documents concerning the
Lumitype-Photon phototypesetter (from the time
when he worked for Crosfield Electronics), and a
subsequent batch of documents concerning the Col-
orado Project including numerous samples of work
in progress and printed telephone directories:
http://www.imprimerie.lyon.fr/imprimerie/

sections/fr/documentation/fonds/southall/

Richard Southall at ANRT conference,
Nancy (France), May 2014

[Photo Michel Sabbagh]

Jacques André and Alan Marshall

TUGboat, Volume 36 (2015), No. 2 103

Memories of Kees:

C.G. van der Laan, 1943–2015

Erik Frambach, Jerzy Ludwichowski and
Philip Taylor

Kees (really Cornelis Gerardus) van der Laan, 22-12-
1943 – 24-08-2015. TEX guru, Macintosh and Post-
Script aficionado, but most of all a warm and gen-
erous man who made friends wherever he went, and
who will be remembered with deep affection by all
who had the pleasure and privilege of knowing him.

In 1988, Kees was one of the founders of the
NTG (Nederlandstalige TEX Gebruikersgroep). He
gathered together many other TEX enthusiasts and
worked hard on building a network of people and
organisations using and experimenting with TEX.
Many activities were organised, such as meetings,
courses and workshops. Kees persuaded several peo-
ple to join him on his trips to BachoTEX and even
to Russia, where lots of TEX activity was develop-
ing. Bringing together kindred spirits in order to
generate even better ideas and develop them into
new projects and new products was always on Kees’s
mind. He was a true TEX evangelist, and was made
an Honorary Life Member of NTG in recognition of
the quality and quantity of his contributions to the
TEX world at large (his early work included TEX code
for typesetting crosswords, Bridge and the Towers of
Hanoi; the implementation of stacks and queues in
TEX; TEX algorithms for sorting and searching; and
many many other ideas as well).

In the Netherlands, he (and the NTG) actively
supported a project to develop the very first plug &
play CD-ROM with TEX software. This turned out
to be a giant leap forward by providing a consistent
TEX set-up for use both by beginners and experts
alike that worked right out of the box.

In Poland, Kees was guest of honour at one of
the very first GUST (“(Polska) Grupa Użytkowników
Systemu TEX ”) conferences, and was formally made
an Honorary Life Member of GUST at the AGM

which took place during that meeting. Until then,
national TEX user group meetings had tended to
be just that—national—but BachoTEX set out to
be a truly INTERnational user group meeting, and
succeeded beyond its wildest dreams.

At that time, Kees was working on some exten-
sions to manmac, and his talk at the 1994 BachoTEX
meeting was entitled “Manmac BLUes”. By 1995,
Kees’s work on extending manmac had grown into a
complete format, “BLUe’s format”, as Kees called it.

Editor’s note: This note will be published simultaneously in
MAPS (the NTG journal) and in the GUST Biuletyn.

Photo courtesy of Frans Goddijn

Based on manmac (amongst other sources), but pri-
marily consisting of Kees’s own unique work (Kees
described it as “build[ing] upon manmac, upon func-
tionalities provided in the TUGboat styles, and upon
experience gained by the AMS in TEX formatting”),
BLUe’s format (or “BLUeTEX”, as it later came to
be known, probably by analogy with Blue-tack !) was
publicly released at the 1995 BachoTEX meeting, and
Kees gave the first of many, many talks to GUST

on that subject during the conference. BLUe’s for-
mat, which takes its name from Knuth’s apocryphal
“B. L. User” (in Britain he would be called “the man
on the top deck of a Clapham Common omnibus”—
i.e., the average person, as opposed to a TEX wizard),
set out to make the full power of TEX accessible to the
average user by encapsulating in a single format all
of those elements that are essential for an advanced
use of TEX but which would almost certainly be too
difficult for the average TEX user to program for him/
herself. Of particular interest to Kees was his wish
that the user should adopt “minimal markup”, and
he would return to this theme time and time again.

As well as pure computer science and program-
ming— for instance, Kees helped establish a FOR-

TRAN interface for Algol 68, to facilitate use of exist-
ing FORTRAN libraries—Kees had a keen interest in
computer graphics (a theme that was to become ever
more important to him as time passed), and his 1996
papers were on “TEX and Graphics—a reappraisal
of METAFONT/METAPOST” and on “Turtle graph-
ics in TEX (a child can do it)!”. During the years
that followed, Kees presented papers on “TEX inside,
or insights in TEX?”, “A little bit of PostScript”,
“Tiling in PostScript and METAFONT”, “Syntactic
Sugar”, and many, many other topics. In recent
years, he combined his all-time passion for mathe-
matics and computer graphics by creating beautiful
illustrations of mathematical theorems, publishing
his results in various journals and BachoTEX confer-
ence materials. He demonstrated how PostScript can

104 TUGboat, Volume 36 (2015), No. 2

be used to elegantly compute and display fractals
of any kind. In fact, Kees showed that for any 2D,
2.5D and 3D problem that can be modelled as a
mathematical equation, PostScript is a great tool to
explore and solve that problem. But Kees was also
an art lover. Whenever he noticed symmetries or
mathematical inspiration in a piece of art, he would
try to model and emulate it in PostScript. In par-
ticular, the works of Gabo, Mondriaan and Escher
(minimalists all !) inspired him. And of course, this
work was presented not only at BachoTEX and NTG

meetings—Kees was a regular attendee at EuroTEX
meetings, TUG meetings, and anywhere else where he
could exchange ideas on mathematics, computer sci-
ence, computer graphics and computer programming
with other like-minded individuals.

Kees was always very generous in sharing what-
ever he had developed. He always published his work
for free, and wrote more than a hundred articles
in MAPS (NTG’s journal, http://ntg.nl/maps), ex-
plaining how it all works and how it could be adapted
to anyone’s own needs and preferences. He was a big
advocate of keeping things simple (“minimal markup”
was one of his hallmarks). The TEX or Postscript
code he wrote was typically very neat, concise and
elegant, much in line with the programming style
that Knuth (whom Kees admired greatly) used in
his manmac macros. Sometimes his code and articles
were hard to follow, but they were always worth the
time and energy. There was a lot to be learned from
his fresh and clever approach to solving problems.

But Kees’s interests were not restricted to the
technical domain—he was a great conversationalist,
as well as great company, and the authors of this
short tribute are just a few amongst many who have
spent countless happy hours with Kees in and around
his home in Garnwerd (in the early days, always
accompanied by Beer-the-dog), and it was Kees who
introduced many of us to the Netherlands custom
of eating fresh herring dipped in onion and washed
down with some good Netherlands lager. Also to
krupuk (think “giant prawn crackers”), and to many
other Netherlands delicacies as well.

Kees loved people, and made friends wherever he
went. He was particularly interested in Russia, and
made many very good Russian friends, some of whom
would visit him in Garnwerd and stay at his home,
and with one of whom, Sveta (Svetlana L Morozova)
he fell in love and subsequently married. Sveta was
Kees’s constant companion in the later years of his
life, and his greatest concern was how she would cope
when he was no longer here. Sadly that time has
now come, and this short series of recollections is
dedicated to Sveta, in Kees’s memory.

Farewell, Kees— it was an honour and a privi-
lege to know you and to spend time with you; TEX
conferences, and life in general, will never be the
same again.

References

[1] CTAN. Contributor Kees van der Laan.
ctan.org/author/id/laan.

[2] C. G. van der Laan and J. R. Luyten. Evaluation
of K-talk. TUGboat, 9(3):271–272, November
1988. tug.org/TUGboat/tb09-3/tb22laan.pdf.

[3] C. G. van der Laan. Dutch TEX Users Group.
TUGboat, 9(3):316–316, November 1988.
tug.org/TUGboat/tb09-3/tb22news.pdf.

[4] C. G. van der Laan. Typesetting bridge via
LATEX. TUGboat, 10(1):113–116, April 1989.
tug.org/TUGboat/tb10-1/tb23laan.pdf.

[5] C. G. van der Laan. Announcing two
reports: SGML-LATEX and Journal style
guidelines. TUGboat, 11(1):86–86, April 1990.
tug.org/TUGboat/tb11-1/tb27laan.pdf.

[6] Kees van der Laan. Typesetting bridge via
TEX. TUGboat, 11(2):265–276, June 1990.
tug.org/TUGboat/tb11-2/tb28laan.pdf.

[7] Kees van der Laan. NTG’s second year.
TUGboat, 11(3):446–447, September 1990.
tug.org/TUGboat/tb11-3/tb29reports.pdf.

[8] Kees van der Laan. SGML (, TEX and
. . .). TUGboat, 12(1):90–104, March 1991.
tug.org/TUGboat/tb12-1/tb31laan.pdf.

[9] Kees van der Laan. Math into BLUes.
TUGboat, 12(3/4):485–501, November 1991.
tug.org/TUGboat/tb12-3-4/tb33laan.pdf.

[10] Kees van der Laan. Tower of Hanoi, revisited.
TUGboat, 13(1):91–94, April 1992. tug.org/

TUGboat/tb13-1/tb34laan.pdf.
[11] Kees van der Laan. FIFO and LIFO sing the

BLUes. TUGboat, 14(1):54–60, April 1993.
tug.org/TUGboat/tb14-1/tb38laan.pdf.

[12] Kees van der Laan. Syntactic sugar. TUGboat,
14(3):310–318, October 1993. tug.org/TUGboat/

tb14-3/tb40laan-sugar.pdf.
[13] Kees van der Laan. Sorting within TEX.

TUGboat, 14(3):319–328, October 1993.
tug.org/TUGboat/tb14-3/tb40laan-sort.pdf.

[14] Kees van der Laan. BLUe’s format—the off-off
alternative. TUGboat, 17(2):215–221, June 1996.
tug.org/TUGboat/tb17-2/tb51blue.pdf.

[15] Kees van der Laan. Turtle graphics and TEX—a
child can do it. TUGboat, 17(2):222–228, June
1996. tug.org/TUGboat/tb17-2/tb51turt.pdf.

[16] Kees van der Laan. Graphics and TEX—A
reappraisal of METAFONT/MetaPost/PostScript.
TUGboat, 17(3):269–279, September 1996.
tug.org/TUGboat/tb17-3/tb52meta.pdf.

[17] Kees van der Laan. TEX education—a
neglected approach. TUGboat, 30(3):5–33, 2009.
tug.org/TUGboat/tb30-3/tb96laan.pdf.

TUGboat, Volume 36 (2015), No. 2 105

Development of the UK TEX FAQ

Joseph Wright

English-speaking users of TEX have benefited for
many years from the availability of a curated set
of frequently asked questions. The origins of the
current set go back to the early 1990s, when the
UK TEX Users’ Group (UK-TUG) published a set
of questions and answers in Baskerville, our (now
dormant) publication. The material gathered at that
time was a development of regular FAQ postings
to comp.text.tex which had been maintained by
Bobby Bodenheimer.

Following the initial publication by UK-TUG,
the committee took up updating the questions and
answers. Whilst this task was not originally intended
for a single author, for much of the past 20 years
this has been undertaken by Robin Fairbairns. In-
deed, the current content and structure of the FAQ

is essentially Robin’s work, with the contribution of
UK-TUG more generally being mainly in the initial
phase.

As well as providing a printable version of the
FAQ on CTAN (Fairbairns, 2014) (currently over 250
pages), Robin has for many years made the inform-
ation available as a searchable electronic resource:
http://www.tex.ac.uk/faq. This online version of
the FAQ is invaluable as it provides a set of stable,
linkable answers to the over 400 questions in the
collection.

The physical server hosting the FAQ was housed
at the University of Cambridge. However, changing
university practice (hosting non-official material is
increasingly difficult) coupled with a change of status
(Robin has retired) meant that a new home was
required for the material. UK-TUG have now made
arrangements to place the FAQ on a new (physical)
server, maintaining the tex.ac.uk domain so that
existing links remain valid. The committee are very
grateful to Stefan Kottwitz for providing a new home
for the FAQ.

At the same time as moving the current inform-
ation, the committee are aware of the need to ensure
that the FAQ will continue to be maintained and
improved. This is too large a job to expect any
one person to do it alone, and so we are seeking a
small group of volunteers to help with the work. We
have placed the source of the FAQ on GitHub (https:

//github.com/uktug/uk-tex-faq), to allow collab-
orative updating. Anyone wishing to contribute can
do so, either by requesting access to the master repos-
itory, by making pull requests (experienced GitHub

users will understand what this means), or by sending
contributions by email (faq@tex.ac.uk).

We also intend to work on the website itself, and
are hoping to provide a ‘responsive’ search facility
(search as you type) and other modern facilities in
the coming months.

As UK-TUG Secretary/Webmaster, I will be co-
ordinating these efforts on behalf not only of the UK-

TUG committee but also the wider TEX community.
Assistance with any aspect of running the FAQ will
be gratefully received.

References

Fairbairns, Robin. “A compilation of Frequently
Asked Questions with answers”.
http://ctan.org/pkg/uk-tex-faq, 2014.

⋄ Joseph Wright

Secretary UK TEX Users’ Group

secretary (at) uk.tug.org

Appendix

As an indication of the breadth and depth of the
current FAQ, here are the top-level headings:

1. The background

2. Documentation and help

3. Bits and pieces of (LA)TEX

4. Acquiring the software

5. TEX systems

6. DVI drivers and previewers

7. Support packages for TEX

8. Literate programming

9. Format conversions

10. Installing (LA)TEX files

11. Fonts

12. Hypertext and PDF

13. Graphics

14. Bibliographies and citations

15. Adjusting the typesetting

16. How do I do . . .

17. Symbols, etc.

18. Macro programming

19. Things are going wrong . . .

20. Why does it do that?

21. The joy of TEX errors

22. Current TEX-related projects

23. You’re still stuck?

Development of the UK TEX FAQ

106 TUGboat, Volume 36 (2015), No. 2

Single- and multi-letter identifiers in

Unicode mathematics

Will Robertson

Abstract

This paper argues that separate spacing and there-
fore separate font invocations is needed for single-
and multi-letter identifiers in mathematical contexts.
This is not explicitly provided for by Unicode math-
ematics nor by the OpenType mathematics fonts
that currently exist. The unicode-math package has
been extended to accommodate these needs, which
provides better compatibility with legacy LATEX and
amsmath documents.

1 Introduction

Unicode mathematics has been developing over the
last fifteen years, spearheaded by Barbara Beeton [1,
2, 3], and is now approaching mainstream use. Ulrik
Vieth has described OpenType mathematics and its
relationship to TEX [6, 7]. Although work began on
Unicode mathematics in X ETEX and LuaTEX several
years prior [4], the unicode-math package was first
formally released in 2010 [5].

Although much care was taken to incorporate as
many mathematical alphabetic symbols into Unicode
as possible, within the limitations imposed by the
Unicode Technical Committee at the time, there is
not a direct correspondence between the de facto
mathematics alphabets defined in LATEX and those
used in Unicode. The original version of the unicode-

math package did not take these differences into ac-
count, which has led to certain problems as Unicode-
aware TEX engines have become more popular. This
article will discuss the limitations of the original
unicode-math package and the new interfaces set up
to allow a smoother transition from legacy LATEX
documents to Unicode.

2 Brief overview

The unicode-math package builds on LATEX’s math
font selection system and implements the entire sym-
bol repertoire of Unicode mathematics (many thou-
sands of glyphs) for direct use within LATEX. As
unicode-math requires the X ETEX or LuaTEX engine,
glyphs can be inserted as Literal Unicode characters
if desired. Control sequences are also defined in order
to be able to access each symbol by name, based on
the work of Barbara Beeton. Mathematical alpha-
bet commands are also defined to emulate LATEX’s
and amsmath’s traditional \mathbf, \mathfrak, etc.,
commands. The difference with such alphabets in
Unicode mathematics is that all glyphs come from

� + � = � + Γ

\setmathfont{xits-math.otf}%
[math-style=TeX]

$\symbf{G}+\symbf{\Gamma} = G+\Gamma$

Example 1: An example of ‘TEX’-style mathematics.

� + � = � + �

\setmathfont{xits-math.otf}%
[math-style=ISO]

$\symbf{G}+\symbf{\Gamma} = G+\Gamma$

Example 2: An example of ‘ISO’-style mathematics.

within a single font, whereas in 8-bit TEX systems
accessing these glyphs involved switching fonts of
different styles.

A Unicode mathematics font is loaded with the
command such as:

\setmathfont{xits-math.otf}

Optional arguments to the package or to the font
loading command can be used to change the style
of the mathematics; for example, publishers differ
on whether Greek letters should be upright or italic
by default, or whether bold Latin letters should
be upright or italic. These cases are compared in
Examples 1 and 2. These examples also show the
use of the \symbf command to turn a single-letter
alphabetic symbol ‘bold’ according to the prevailing
style. This is a new command that replaces the use
of \mathbf in previous versions of the package, for
reasons that we will now discuss.

3 Single-letter vs. multi-letter symbols

Unicode mathematics defines a large number of math-
ematical alphabet symbol ranges, including alpha-
bets of upright, italic, sans serif, fraktur, and script
shapes in regular and bold weights, among others.
Many of these support both Latin and Greek let-
ters, plus a few assorted ‘Greek-like’ symbols such
as \nabla (∇) and \partial (∂).

In legacy LATEX and amsmath-based mathemat-
ics, the number of alphabets is more restricted, and
in many cases commands such as \mathbf are used
for both single-letter symbols and multi-letter identi-
fies. In contrast, the design of Unicode mathematics
fonts to date has including kerning around the alpha-
betic symbols suitable for single letter symbols only,
and these symbols are often not appropriate to use
in multi-letter contexts.

Will Robertson

TUGboat, Volume 36 (2015), No. 2 107

Examples are given following of mathematics
in which single-letter and multi-letter identifiers are
used in the different mathematical contexts for a
range of alphabet styles.

3.1 Upright regular text

Upright regular-weight roman text is occasionally
used in applied mathematics to represent constants
such as e, the exponential:

e−st = e−iωt .

In some cases upright roman is used for the complex
number (i =

√
−1). Since these symbols may be

used in contexts in which they appear adjacent to a
separate symbol they should have additional spacing
to separate them, such as in the (trivial) case of ‘ee =
e2’. As another common example, the derivative
operator d

dt
is often written d

dt .
In fluid dynamics in particular, dimensionless

values such as the Reynolds number Re are often
typeset using upright symbols:

Re = ρvl/µ .

Other dimensionless values include, for example, the
Froude number (Fr) and the Strouhal number (St).
Since these identifiers are essentially abbreviations
of words and names, they should be kerned as text
to bind the letters together visually.

3.2 Italic text

The aforementioned dimensionless numbers are also
frequently typeset as italic text, instead of upright
(roman) text:

Re = ρvl/µ .

In such cases it is plain that there needs to be a
clear distinction between adjacent symbols and the
dimensionless number. For ‘R’ and ‘e’ there is little
difference, but take the Froude number:

Fr 6= Fr

This is typeset with ‘\mathit{Fr} \neq Fr’. The
extra kerning on the right hand side distinguishes
the symbols as being separate.

Other examples from the literature include italic
being used for operator-like notation, such as in these
arbitrary cases taken from the literature:

SepI(Σ
[C]
1) ,

∂|det g|
∂gµν

.

3.3 Bold upright text

Bold upright alphabetic symbols are commonly used
in physics and engineering to denote vectors and
matrices:

x = [x, ẋ, θ, θ̇]T .

In mathematics, it is also common for bold upright
roman to be used for both single and multi-letter
abbreviations such as

DG = hom(G,R/Z) Grp → Ab → Grp

In the first case, the symbols should be kerned as
separate glyphs, whereas in the second the letters
should be spaced as in text.

Further examples could be given for sans serif
regular weight and bold, for example. In contrast,
alphabet ranges such as fraktur (ABC) and script
(ABC) are generally used for denoting single symbols
only—although it is possible to find examples of
notation such as

Hom (H ,E) .

The term ‘Hom’ is in a calligraphic style, whereas its
arguments are shown in a ‘curly’ script style; Unicode
mathematics, for now, only supports the latter, but
unicode-math can be configured to support both if
the font (such as STIX) contains glyphs for both.

The various examples listed above using single-
and multi-letter identifiers cannot be represented
using a single Unicode mathematics font, since each
alphabetic range has a fixed spacing; in general,
to date all Unicode mathematics fonts space the
alphabetic glyphs as individual letters. Furthermore,
when used in ‘word-like’ contexts, it is important to
recognise that multilingual varieties of strings such
as ‘sin’, ‘cos’, and ‘tan’ are possible, and that the
fonts used to typeset such identifiers should support
the entirety of Unicode, not just the restricted set of
alphabetic symbols defined as ‘mathematical’.

4 Additions to unicode-math

These factors lead to a definite tension between the
commands defined originally in unicode-math, which
mapped directly to Unicode mathematical alphabetic
symbols only, and the commands that users expected
from legacy LATEX documents.

Due to the clear requirements of supporting
single- and multi-letter identifiers, the approach now
taken in unicode-math is to define a new set of com-
mands, \symbf, \symup, \symsf, and so on, which
switch to the Unicode mathematics symbols that can
be used for single-letter identifiers. For multi-letter
operators, LATEX’s traditional \mathit, \mathbf,
etc., commands are retained as font switches, and do
not perform any ‘remapping’ on their inputs. Fraktur
and calligraphic alphabets, for example, are defined
using \symfrak and \symcal, but familiar LATEX
commands \mathfrak and \mathcal are provided
as synonyms for backwards compatibility.

Unless explicit fonts for \mathbf and so on are
selected (see next), they are automatically selected

Single- and multi-letter identifiers in Unicode mathematics

108 TUGboat, Volume 36 (2015), No. 2

ημ(�) = �/�

\setmainfont{Iwona-Regular.otf}
\setmathfont{texgyrepagella-math.otf}%

[Scale=0.85]

$ \mathup{ημ}(ω) = y/ρ $

Example 3: Greek text and symbols in mathematics.

�� = Ш� ∗ �

\setmathfont{texgyrepagella-math.otf}%
[Scale=0.85]

\setmathfontface\mathcyr{Charter Roman}

$ ρ_p = \mathcyr{Ш}_p \ast ρ $

Example 4: Cyrillic Sha being used in mathematics.

from the default text fonts. This allows, for example,
the case in Greek schoolbooks in which the sine rule
might be written as shown in Example 3. By the way,
\mathup is defined in unicode-math as a synonym for
\mathrm for exactly such situations; we’re not always
typesetting ‘RoMan’ text any more.

Restoring the idea of the ‘\mathXYZ’ commands
being ‘text fonts in mathematics mode’ also pro-
vided the opportunity to restore the functionality
of LATEX’s \DeclareMathAlphabet, and to define a
new unicode-math interface to it. It is now possible
to write, say,

\setmathfontface\mathittt

{texgyrecursor-italic.otf}

to define the math font command \mathittt{...},
which selects (in this case) an italic typewriter font.
This command can also be used to select fonts for
the built-in commands \mathbf, \mathsf, etc.

The \setmathfontface command also provides
the possibility of selecting particular fonts for type-
setting characters in other scripts. For example, the
Cyrillic glyph ‘Sha’ is often used to typeset the Dirac
Comb Function, and this can now be supported easily
as shown in Example 4.

5 Compatibility

After upgrading to version 0.8, many users will wish
to adapt their old documents written in unicode-

math to the new syntax from \mathbf to \symbf and
similar. Package options mathbf=sym will rename
\mathbf to have behaviour as in previous version,
with similar options for mathsf and so on. The legacy
commands for switching to a text font in math mode
are renamed to \mathtextbf, \mathtextsf, etc.

A common suggestion is to implement a ‘smart’
version of \mathbf that analyses the number of char-
acters in its arguments. Writing \mathbf{abc} could
switch to \mathtextbf, and \mathbf{A} to \symbf.
This interface would be convenient for Latin-based
examples, but further consideration is required before
deciding it’s actually a good idea.

In such a ‘smart’ version of the command, a
case such as \mathbf{\alpha\alpha} would result
in mathematics symbols inside a command that is
intended for typesetting text, which would not pro-
duce expected output. (Exactly as in the case now
in regular LATEX when the unsuspecting user writes
\mathbf{\alpha}.) In the ‘smart’ approach, hav-
ing \mathbf{\alpha} work ‘as expected’ but then
having \mathbf{\alpha\alpha} ‘fail’ does not seem
like a sensible approach.

6 Conclusion

The unicode-math package now contains a full suite
of commands to select alphabet styles suitable for
both single- and multi-letter identifiers. For ideal
typesetting purposes, developers of OpenType math-
ematics fonts should provide font features that allow
selection of kerning suitable for both mathematics
(single-letter) and ‘text’ (multi-letter) purposes.

References

[1] Barbara Beeton. Unicode and math, a combination
whose time has come—Finally! TUGboat,
21(3):176–185, September 2000.
http://tug.org/TUGboat/tb21-3/tb68beet.pdf.

[2] Barbara Beeton. The STIX project— from
Unicode to fonts. TUGboat, 28(3):299–304, 2007.
http://tug.org/TUGboat/tb28-3/tb90beet.pdf.

[3] Barbara Beeton, Asmus Freytag, and Murray
Sargent III. Unicode support for mathematics.
Technical report, Unicode, Inc., 2015.
http://www.unicode.org/reports/tr25.

[4] Jonathan Kew. X ETEX live. TUGboat,
29(1):146–150, 2007.
http://tug.org/TUGboat/tb29-1/tb91kew.pdf.

[5] Will Robertson. Unicode mathematics
in LATEX: Advantages and challenges. TUGboat,
31(2):211–220, 2010. http://tug.org/TUGboat/

tb31-2/tb98robertson.pdf.

[6] Ulrik Vieth. Do we need a ‘Cork’ math font
encoding? TUGboat, 29(3):426–434, 2008.
http://tug.org/TUGboat/tb29-3/tb93vieth.pdf.

[7] Ulrik Vieth. OpenType math illuminated. TUGboat,
30(1):22–31, 2009. http://tug.org/TUGboat/

tb30-1/tb94vieth.pdf.

⋄ Will Robertson
The University of Adelaide, SA, Australia
will dot robertson (at) latex-project dot org

Will Robertson

TUGboat, Volume 36 (2015), No. 2 109

Trilingual templates for an educational

institute in Bashkortostan, Russia

Boris Veytsman and Leyla Akhmadeeva

Abstract

Creation of document styles for an organization that
uses a non-Western script is always a challenge: the
organization needs to support both Western and
non-Western elements in its documents. The new
Institute of Continuous Professional Medical Devel-
opment in Ufa poses a special challenge, because we
want its templates to be trilingual, with English, Rus-
sian and Bashkir elements. The Bashkir language
uses a Cyrillic script, which is close to but different
from Russian Cyrillic.

1 Introduction

A medical professional must constantly update her
knowledge and skills, keeping current with the re-
cent advances in the field. In Russia, as in most
other countries, a continuing education is one of the
preconditions for medical license renewal.

The required education may be provided not
only by state-run medical universities, but also by
private institutes. The latter are rather new in the
Russian medical system.

The Institute of Continuous Professional Med-
ical Development in Ufa is a private educational
enterprise created in February 2015 by the Bashkor-
tostan National Health Chamber [1]. We were asked
to create document and presentation templates for it.

This is an interesting challenge because Bash-
kortostan has two official languages: Russian and
Bashkir. They both use a Cyrillic script, but Bashkir
has nine letters absent in Russian. For international
letters we want to add an English header. Thus we
needed to combine different scripts and blend them
into common documents.

2 An aside: Symbolism and logo

We asked a prominent Ufa artist and specialist in
heraldry, Airat Usmanov, to compose a logo for the
institute, asking that the logo reflect the symbolism
of the Bashkortostan republic as well as Russia and
Bashkortostan National Health Chamber.

The symbols of the Bashkortostan Republic are
shown in Figure 1. They use white, blue, green and
gold colors. The Russian flag is red, blue and white.
The artist skillfully combined these motifs in the logo
(Figure 2).

3 Documents and letters

A Russian national standard [2] establishes rather
strict rules about the elements of an official document

and their positioning. Of particular interest are
rules for multilingual documents. They require the
elements of the headers in two different languages to
be on the same level. Presumably this implies that
the fonts for the headers should be compatible and
have the same sizes.

We chose the ParaType fonts [3] as having a
full set of Latin and Cyrillic letters and being very
legible. The fact that we had experience working
with ParaType [4–6] also influenced our decision.

The official standard [2] describes documents
with the headers in two languages, but not three.
Therefore we decided to make two options: Russian-
Bashkir headers for domestic documents, and Russian-
English for international ones. The ParaType fonts
provided an excellent blending of the headers, as
seen in Figures 3 and 4.

One problem with Bashkir language support in
TEX is the lack of corresponding hyphenation pat-
terns. Therefore our package provides only a limited
support for the Bashkir language. Fortunately, doc-
ument headers are not hyphenated.

Since we wanted the package to work for any
input encoding, we used a well-known trick of letting
Cyrillic letters be macros, so the headers were written
in the following rather cumbersome way:

<<\CYRSHHA\CYRA\CYRU\CYRL\CYRERY\CYRKBEAK{}

\CYRSHHA\CYRA\CYRKBEAK\CYRL\CYRA\CYRU{}

\CYROTLD\CYRL\CYRK\CYRSCHWA\CYRSHHA\CYRE

\CYRN\CYRD\CYRSCHWA\CYRG\CYRE{}\\

\CYROTLD\CYRZDSC\CYRL\CYROTLD\CYRK\CYRSHHA

\CYROTLD\CYRZDSC{}

\CYRSHHA\CYROTLD\CYRN\CYRSCHWA\CYRR\CYRI{}

\CYRB\CYRE\CYRL\CYRE\CYRM{} \CYRB\CYRI

\CYRR\CYRE\CYRY{} \CYRI\CYRN\CYRS\CYRT\CYRI

\CYRT\CYRU\CYRT\CYRERY>>

4 Beamer theme

We based the presentation template on the Beamer
sidebar theme [7]. We used the colors of the Bash-
kir flag and the logo. To keep the integrity of the
Institute typographic image, we used the sans serif
version of the ParaType fonts. The examples are
shown in Figure 5.

5 Conclusions

We found that a formal document provides inter-
esting challenges to a style designer. Multilingual
typesetting makes the work even more challenging.
Fortunately, TEX is a good tool to solve these prob-
lems.

Trilingual templates for an educational institute in Bashkortostan, Russia

110 TUGboat, Volume 36 (2015), No. 2

Figure 1: Bashkortostan flag and coat of arms

References

[1] Institute of continuing professional education
for healthcare practitioners website. http:

//nmp-rb.ru/http-/nmp-rb.ru/http-/

nmp-rb.ru/institut, 2015.

[2] Gosstandard, Russia. GOST R 6-30-2003.

Unified systems of documentation. Unified

system of managerial documentation.

Requirements for presentation of documents,
2003.

[3] Pavel Farář. Support package for free fonts by

ParaType, February 2014.
http://ctan.org/pkg/paratype.

[4] Leyla Akhmadeeva, Ilnar Tukhvatullin,
and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment
with Cyrillic readers. Vision Research, 65:21–24,
2012.

[5] Boris Veytsman and Leyla Akhmadeeva.
Towards evidence-based typography: First
results. TUGboat, 33(2):156–157, 2012.
http://tug.org//TUGboat/tb33-2/

tb104veytsman-typo.pdf.

[6] Leyla Akhmadeeva and Boris Veytsman.
Typography and readability: An experiment
with post-stroke patients. TUGboat,
35(2):195–197, 2014. http://tug.org/

TUGboat/tb35-2/tb110akhmadeeva.pdf.

[7] Till Tantau, Joseph Wright, and Vedran
Miletić. The Beamer class, March 2015.
http://ctan.org/pkg/beamer.

Figure 2: Institute logo byAiratUsmanov

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center

MS 6A2

George Mason University

Fairfax, VA 22030 USA

borisv (at) lk.net

http://borisv.lk.net

⋄ Leyla Akhmadeeva

Bashkir State Medical University, 3

Lenina Str., Ufa, 450000, Russia

la (at) ufaneuro (dot) org

http://www.ufaneuro.org

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 36 (2015), No. 2 111

УТВЕРЖДАЮ
Директор

Иванов А.А
12.12.2014

ЧАСТНОЕ УЧРЕЖДЕНИЕ
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИНСТИТУТ НЕПРЕРЫВНОГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

В СФЕРЕ ЗДРАВООХРАНЕНИЯ»
Россия, Уфа, ул. Правды, 19

ОГРН 1130200005121, ИНН 0274992607

«ҺАУЛЫҠ ҺАҠЛАУ ӨЛКӘҺЕНДӘГЕ
ӨҘЛӨКҺӨҘ ҺӨНӘРИ БЕЛЕМ БИРЕҮ

ИНСТИТУТЫ»
ӨҪТӘЛМӘ ҺӨНӘРИ БЕЛЕМ БИРЕҮ ШӘХСИ

УЧРЕЖДЕНИЕҺЫ
Рәсәй, Өфө, Правда ур., 19

ОГРН 1130200005121, ИНН 0274992607

№

На№ От

ПРИКАЗ

О приведении в порядок отчетности

Приказываю привести в порядок отчетность.

Заместитель директора Петров-Водкин А. М.

Figure 3: A document with Russian and Bashkir headers

Trilingual templates for an educational institute in Bashkortostan, Russia

112 TUGboat, Volume 36 (2015), No. 2

ЧАСТНОЕ УЧРЕЖДЕНИЕ
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИНСТИТУТ НЕПРЕРЫВНОГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

В СФЕРЕ ЗДРАВООХРАНЕНИЯ»
Россия, Уфа, ул. Правды, 19

ОГРН 1130200005121, ИНН 0274992607

PRIVATE INSTITUTE
OF PROFESSIONAL EDUCATION
“INSTITUTE OF CONTINUING
PROFESSIONAL EDUCATION

FOR HEALTHCARE PRACTITIONERS”
Russia, Ufa, Pravda St., 19

OGRN 1130200005121, INN 0274992607

№

На№ От

TEX Users Group
PO Box 2311
Portland, OR 97208-2311
USA

Dear Friends,

Many thanks for your help with the travel to Darmstadt. It was a great conference!

Yours,

Leyla Akhmadeeva

Figure 4: A letter with Russian and English headers

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 36 (2015), No. 2 113

Trilingual
templates for
an educational
institute in

Bashkortostan,
Russia

Leyla
Akhmadeeva,
Boris Veytsman

Introduction

Logo

Document
forms

Beamer theme

Conclusions

Trilingual templates for an educational

institute in Bashkortostan, Russia

Leyla Akhmadeeva Boris Veytsman

Bashkir State Medical University, Russia and George Mason University, USA

TUG 2015

Trilingual
templates for
an educational
institute in

Bashkortostan,
Russia

Leyla
Akhmadeeva,
Boris Veytsman

Introduction

Logo

Document
forms

Beamer theme

Conclusions

Colors

Bashkir flag gives us four colors: white, blue, gold and green.

Russia flag adds red color. But red is too strong.

Solution:

1 Use green and gold for “outer elements”

2 Use blue for “inner elements”

3 Keep the logo with its red streak on the pages.

Figure 5: Beamer theme examples

Trilingual templates for an educational institute in Bashkortostan, Russia

114 TUGboat, Volume 36 (2015), No. 2

Joseph’s Adventures in Unicodeland

Joseph Wright

1 Unicodeland

The rich variety of human language has over time led
us to a plethora of ways of writing down our commu-
nications. Historically, computer systems handled
this poorly. The 26 letters of the English alpha-
bet have deined the landscape of computerized text
storage, irst through the ASCII standard and later
as the basis of many 8-bit systems. Over roughly
the past quarter-century, this situation has begun to
change with the development of the Unicode stand-
ard (The Unicode Consortium, 2015). Unicode takes
us beyond the limitations of the 7- or 8-bit world
into a much richer environment. In this ǵUnicode-
landǶ every character has its proper place, and every
character can and should be correctly handled by
compliant software.

The Unicode Consortium have deined not only
a rich (and expanding) set of characters (or more ac-
curately code points) to handle this variety of data,
but have also explored and deined how these should
be manipulated under a range of transformations.
As beits a standards organisation, the Unicode Con-
sortium have not tied this information to any partic-
ular implementation. Rather, they provide a set of
machine-readable iles and documentation guidelines
to allow compliant implementations to be built for
the range of tasks we use computers for.

In the TEX world, we have today two Unicode-
capable engines in general use: X ETEX and LuaTEX.
Following a careful TEX tradition, these engines do
not hard-code Unicode data or behaviours into the
engines. Rather, they allow us to handle Unicode
input and to control behaviours by reading in the
appropriate data.

Here, I will look at two areas where we need to
get Unicode data into the engine: setting up TEXǶs
codes correctly for the Unicode range, and imple-
menting case-changing. Whilst the focus here is on
how we are tackling these problems for LATEX, the
ideas should apply to all TEX users.

2 Setting up characters

As X ETEX and LuaTEX can accept input across the
full Unicode range they need to know how to treat
a much greater number of characters than classical
TEX engines. For example, with an 8-bit engine
we usually restrict ǵlettersǶ for creating control word
names to A–Za–z. With a Unicode engine thatǶs not
reasonable: anything that is a letter according to
the agreed standard can and should be set to cat-

egory code 11. However, what we donǶt want to do
is code all of that in by hand. Luckily, all of the
core Unicode data iles are provided in plain text
format (and indeed are written in ASCII) and are
machine-readable. ǵAllǶ we have to do is parse the
appropriate iles as part of the TEX run.

The details of course are a little more complex.
It turns out that we want to set up several things

• \catcode

• \lccode

• \uccode

• \Umathcode

• \XeTexintercharclass (X ETEX only)

for all appropriate characters. To do that, we need
to irst work out which Unicode data iles have the
relevant information in them and then to parse it
into a usable form.

As the Unicode Consortium deal with data for
many purposes, it is not surprising that things like
TEXǶs \catcode concept donǶt feature directly in the
data iles. Instead, we need to make some system-
atic decisions about relating Unicode properties to
TEX. Most of this work was done by Jonathan Kew
when he irst released X ETEX; at that time, he cre-
ated a Perl script (unicode-char-prep.pl) to do
the work (Kew, 2015). The LATEX team has now
created a very similar script, using pdfTEX rather
than Perl for the parsing but retaining most of the
logic.

Much of the conversion is relatively obvious.
Thus for example characters described by the Uni-
code Consortium as falling into one of the letter
types are mapped to \catcode 11. However, there
are other characters that need to be \catcode 11:
combining marks and East Asian ideographs. Pick-
ing these up requires a bit of thought: the details of
parsing the source iles are more technical than con-
ceptual. Reading all of the data with pdfTEX takes
a few seconds, but luckily this only has to happen
on the machine of one of the members of the team.
For users, the processed ile can be read very quickly:
indeed, as part of format-building, itǶs negligible.

What the team has added in this area is set-
ting up a single ile to be read by both X ETEX and
LuaTEX, with the necessary conditionals inside the
ile. That means that the common outcomes are
the same in all cases, with just the additive part
for X ETEX covering \XeTexintercharclass. Hav-
ing the ile provided by the team also means that
it will be updated as part of wider kernel changes,
which should provide some regularity as to when this
takes place.

Joseph Wright

TUGboat, Volume 36 (2015), No. 2 115

3 Case changing

3.1 The background

TEX provides us with two primitives for case chan-
ging, \lowercase and \uppercase. The logic be-
hind these is simple: they convert single characters
from one case to another based on the idea of one-
to-one relationships. ThatǶs ine when we have a
simple situation with two cases, one language and
everything mapping neatly. This is, of course, TEXǶs
background: for English, \lowercase and \upper-
case are entirely reasonable.

Life gets more complicated once we introduce
more variation. First, even apparently simple one-
to-one relationships can be language-dependent. Per-
haps the most obvious example is Turkish, where the
upper case equivalent of i is İ, not I. Second, thereǶs
no context-dependence available: mappings are not
always the same for the same characters. The Greek
ǵinal sigmaǶ rule is perhaps the best known of these
situations: the correct lower casing of Ὀ̤ΥΣΣ̥ΎΣ

for example is ὀ̓υ͒͒̈́ύ͑, using the two diferent
lower case sigma characters in Greek. There is then
the question of the one-to-one mappings themselves:
fußball in upper case is FUSSBALL with an extra
character. ItǶs clear from these issues (and other
subtleties) that a more nuanced approach is needed.

In practice, making everything work with Uni-
code input requires a Unicode engine, so the ideas
here work fully only with X ETEX and LuaTEX. With
pdfTEX, the best fall-back is to cover just the ASCII

range. Unlike the irst part of this article, here we
are also discussing code for LATEX3, thus at the expl3

programming level (The LATEX3 Project, 2015). The
commands therefore have ǵrealǶ names that might
seem unusual: to avoid obscuring the ideas, IǶll give
them ǵdesignǶ (CamelCase) names in the examples
here.

3.2 The approach

The irst thing to recognise is that when we want to
talk about case changing, we are talking about text.
There may be some embedded formatting to skip
(more on that in a bit), but we can work on the basis
that we are case-changing category code 11 and 12
tokens. Of course the TEX primitives have import-
ant uses in generating ǵfunnyǶ tokens (as they change
character codes but not category codes): thatǶs got
essentially nothing to do with the case of characters
at all!

With a bit of efort itǶs possible to set up an
expandable loop over a list of tokens that preserves
all of the spaces and brace groups. Using that ap-
proach, we can pull out tokens one by one for con-

version. Spaces are passed straight through, while
we need to use a recursive approach with groups.
So this leaves the question of dealing with ǵnormalǶ
tokens.

Converting each token is done by using a look-
up table made up of 100 control sequences, each cov-
ering part of the full Unicode range. This approach
ofers a balance between eiciency and performance.
Using a table of this form, we are not limited to
one-to-one look-ups: one-to-many is also available.
This core idea covers a large part of the situations
we need, but to get the context dependence needs
some specialised code. In the current approach, that
is done using look-ahead routines dedicated to each
special situation.

Covering language-dependent mappings needs a
version of the code that tracks the currently-active
language. The number of special cases we ind for
this is pretty small, so each one can then be handled
using some custom code.

3.3 Features

The key features of the case changer are those re-
lated to the Unicode standards: the one-to-one map-
pings and more complex relationships follow those
given by the consortium. The basics are built-in: de-
tection of context and providing a way to indicate
the language of the text as an additional argument
to case changing. Thus

\edef\test{%
\ExplLowerCase{RAGIP HULÛSİ}%

}
\show\test

yields

> \test=macro:
->ragip hulûsi̇.

whilst

\edef\test{%
\ExplLowerCase[tr]{RAGIP HULÛSİ}%

}
\show\test

yields

> \test=macro:
->ragıp hulûsi.

We can see that in the second case we get not only
full mapping of the Unicode characters but also the
diference in treatment of the dotted and dotless I.

From a programmerǶs point of view, itǶs con-
venient to be able to do case changing expandably.
As we can see in the examples above, thatǶs exactly
what the code ofers: the case changer can be used
inside an \edef. That means we can easily store

JosephǶs Adventures in Unicodeland

116 TUGboat, Volume 36 (2015), No. 2

the ǵrealǶ case changed text without having to jump
through any TEX primitive hoops.

At the user level, some things should be skipped
by case changing: math mode material and explicitly-
marked input. Following the pattern set up by the
textcase package (Carlisle, 2004), these are handled
by detecting $ (etc.) and using a dedicated ǵopt-outǶ
command, respectively. Thus we obtain

\edef\test{%
\ExplUpperCase
{Some maths $y = mx + c$}%

}
\show\text
...
> \test=macro:
->SOME MATHS $y = mx + c$.

and

\edef\test{%
\ExplUpperCase
\NoChangeCase{FeFe}-hydrogenase}%

}
\show\text
...
> \test=macro:
->\NoChangeCase {FeFe}-HYDROGENASE.

One of the subtle features of Unicode case chan-
ging is what they call titlecasing. This is the pro-
cess whereby the irst character of a piece of text
is made upper case, with the rest being lower case.
The subtle part is that a few characters need spe-
cial handling if they are irst: these tend to be situ-
ations where the single glyph looks a bit like two
letters. WeǶve called this ǳmixed caseǴ: titlecasing
in English at least implies some form of word-level
processing.

\edef\test{%
\ExplMixedCase{Ŧ}%

}
\show\text
...
> \test=macro:
->ť.

Perhaps the best example of this behaviour is with
the combination IJ in Dutch.

\edef\test{%
\ExplMixedCase{ijsselmeer}%

}
\show\text
...
> \test=macro:
->Ijsselmeer.
\edef\test{%

\ExplMixedCase[nl]{ijsselmeer}%
}
\show\text
...
> \test=macro:
->IJsselmeer.

The inal area to consider is case folding. This
looks very much like lower casing but itǶs not meant
for text: itǶs a process for programmers. Case fold-
ing is a strictly one to one mapping with no context
dependence. WeǶve provided this using a simpliied
approach (no special tests), and based on yet an-
other Unicode data ile.

4 Conclusions

Using Unicode data in TEX needs a bit of thought
to match up the ideas of the two systems. However,
we can do that and beneit from the tremendous
amount of work done by the Unicode Consortium.
In return, we enable users to get predictable out-
comes from their code and to match up with the
handling of other computational systems. This will
only become more important in the future.

Thanks to Jonathan Kew for creating the Perl
script used as a basis for our Unicode data parser.
Thanks also to Bruno Le Floch who developed the
looping approach used for case changing and the
method for compacting the data into an eicient
format.

References

Carlisle, David. ǳThe textcase packageǴ. Available
on CTAN: macros/latex/contrib/textcase,
2004.

Kew, Jonathan. ǳX ETEXǴ. http://xetex.
sourceforge.net/, 2015.

The LATEX3 Project. ǳThe expl3 packageǴ.
Available on CTAN: macros/latex/contrib/
l3kernel, 2015.

The Unicode Consortium. ǳThe Unicode
StandardǴ. http://www.unicode.org/
versions/latest/, 2015.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 0NH

United Kingdom

joseph.wright (at)
morningstar2.co.uk

Joseph Wright

TUGboat, Volume 36 (2015), No. 2 117

Through the \parshape, and what Joseph

found there

Joseph Wright

1 Paragraph shape

The shape of the paragraph defines how text looks
on the page. To talk about paragraph shape, we
first need to think about how it relates both to the
text itself and to the outer ‘container’ in which we
are placing the paragraph (see Figure 1). Text in
paragraphs is placed in vertical containers, ‘galleys’,
which are themselves then placed on the page. The
galley edges (thick black lines in the figure) may
be separated by a margin from the edges of the
paragraph (the light grey box in the figure). The
paragraph shape itself may be a simple rectangle,
as illustrated, or may be a more complex shape, as
we will see below. Within that shape, the text itself
is placed on a line-by-line basis. Not all of those
lines of text will necessarily use the full width of the
paragraph shape: the last line is often ended short
of the margin, while in many styles the first line of a
paragraph has a marker indent.

TEX provides us with a variety of primitives
which are in some way linked to the shape of a
paragraph. TEX by Topic (Eijkhout, 1992) lists seven
primitives in the ‘Paragraph Shape’ chapter:

• \parindent

• \hsize

• \leftskip

• \rightskip

• \hangindent

• \hangafter

• \parshape

The \parindent primitive can be thought of as
controlling appearance within the paragraph shape,
whilst \hsize controls what the shape has to fit

Figure 1: Paragraph shape

within. Both \leftskip and \rightskip are linked
more to justification than to paragraph shape. This
leaves \hangindent, \hangafter and \parshape to
set up the shape of the paragraph itself. And the
two \hang... primitives are in fact special cases
of \parshape, so if we want to think about para-
graph shape in TEX primitive terms we must focus
on \parshape.

2 Views of \parshape

Matching up the TEX view of paragraph shape with
the ways we can think about design requires us to
think carefully about manipulating \parshape. Dif-
ferent design elements interact; thus, creating com-
plex layouts by hand is time-consuming. Rather than
do this, an alternative approach is to conceptualise
these different design aspects and to provide inter-
faces (and data structures) for each of them. We can
then construct the necessary \parshape program-
matically, freeing us to describe design in a more
natural way (at the cost of the effort in creating the
underlying logic).

As part of the experimental LATEX3 galley mod-
ule (The LATEX3 Project, 2015), the team has been
exploring how we can achieve this separation. Some
of the concepts are easy to implement, whilst others
are more challenging, particularly given the nature
of the underlying TEX model. Here, I will survey
the design concepts we have identified and how we
have currently tackled each one. The focus is very
much on ideas rather than code: for the latter, read-
ers are encouraged to consult l3galley.pdf and
xgalley.pdf, both available on CTAN.

2.1 Margins

The paragraph shape will have left and right margins
separating it from the galley edges. (These margins
may of course be of zero length.) This is by far the
most straightforward part of the design description
of a paragraph. We can add margins to a paragraph
either by specifying the absolute distance from the
edge of the galley, or by describing a margin relative
to any existing margin. An interface for both of these
requires only three data items

• The left margin

• The right margin

• Whether to apply these on a relative or absolute
basis

A suitable \parshape can then be created to imple-
ment these requirements: existing margins can be
tracked separately or can be recovered from the ex-
isting \parshape using the ε-TEX \parshapeindent

and \parshapelength primitives.

Through the \parshape, and what Joseph found there

118 TUGboat, Volume 36 (2015), No. 2

2.2 Shapes

Within the margins, the next design concept we can
identify is the most obvious one of all: an actual
shape applying to the paragraph. Such shapes are
commonly seen in lists, which may use either a first-
indented or first-hanging design. To allow maximum
flexibility in this area it is useful to minimise the
number of fixed decisions, which leads to an interface
which requires

• A number of ‘normal’ (unmodified) lines

• A list of indents from the left margin

• A list of indents from the right margin

• A flag to indicate if the normal margins should
resume after the last modified line

2.3 Cutouts

In contrast to margins and fixed paragraph shapes,
which typically apply to a particular part of a docu-
ment (for example, all quotations, all headers, and so
on), the third view of paragraph shape is used on a
one-off basis. A ‘cutout’ is a section of the paragraph
which is (normally) indented to allow space for the
insertion of an independent element: almost always
a figure, with the text wrapping around it.

The current interface for this element is based on

• The side of the paragraph to cut

• The number of normal lines to leave

• A list of indents to apply to altered lines

In contrast to shaping a paragraph, there is no ques-
tion here that the normal line length will resume: a
cutout applies to a strictly fixed number of lines.

2.4 Combinations

On their own, each of the three different design views
for \parshape are clear. The challenge at a code
level is allowing fluid combinations of one or more
of them to occur without the user needing to know
that they are implemented using a single primitive.

By separating out the design elements and more
importantly by tracking them in appropriate data
structures, this is achievable. Notably, whilst the
expectation is that margins and shapes obey TEX
groupings (in LATEX terms, they are tied to environ-
ments), cutout parts need to act globally within the
galley they apply to.

3 Challenges

By far the most challenging concept in the design of
paragraph shape is handling cutouts in a ‘complete’
sense. These constructs are unused in many docu-
ment designs but where they are used, they throw
up a wide range of issues.

The \parshape primitive is a rare example of a
grid-like approach to typesetting in the TEX engine.
The primitive works in terms of lines of text, an
approach which only makes complete sense if the
baseline-to-baseline distance is known. For simple
designs this will be no issue, but once a rich mix
of display-like elements (maths, headings, etc.) is
included, creating cutout shapes which work reliably
becomes much more challenging. At the same time,
describing cutout elements is likely more naturally
done using distances than numbers of lines: ‘leave a
space for a figure which is 5 cm high’, for example.
Accommodating these more complex design descrip-
tions requires both more code and, more importantly,
a more thorough focus on user expectations.

The link between \parshape and number of
lines also shows in the fact that we can talk about
unaltered lines at the start of a paragraph but not at
the end. A short consideration of the implementation
shows why this is: to deal with a paragraph ‘bottom
up’ means breaking the lines to some fixed length,
then finding if any of the lengths need altering, then
re-breaking, etc. This contrasts with the ‘top down’
algorithm we have in TEX: for each line to break, we
know the length allowed as part of the first pass.

Cutout parts are usually used in cases where
they need to be applied as a single block: it is no
good leaving part of the space for a wrapped figure at
the bottom of one page and the remainder at the top
of the next! Handling this requires some information
from the page-breaking system, and a definition of a
cutout which includes a floating element.

However, the biggest single challenge in using
the new code is that xgalley requires full control of
the \par primitive, and in manipulating \parshape

we require that no other code modifies it. As such,
whilst at present the xgalley code works well in con-
trolled tests, it is likely to break badly with ‘real
life’ documents. This is an area we are currently
addressing.

References

Eijkhout, Victor. TEX by Topic. Addison-Wesley,

Wokingham, United Kingdom, 1992.

http://www.eijkhout.net/texbytopic.

The LATEX3 Project. “The xgalley package”. Available

on CTAN: macros/latex/l3experimental/

xgalley, 2015.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End, Earls Barton

Northampton NN6 0NH UK

joseph.wright (at)

morningstar2.co.uk

Joseph Wright

TUGboat, Volume 36 (2015), No. 2 119

TEX and controlled access to information

Boris Veytsman

Abstract

While we in the TEX community strive to make in-
formation open, there are cases when controlling
access to information is legitimate. We do not want
to publish our passwords, medical histories or other
sensitive details. Sometimes the information is not
confidential, but different audiences can have differ-
ent needs: consider students’ vs. teachers’ versions
of a textbook.

There are two aspects of this problem. Output-
level control means that we have a single source
which can produce different output files depending
on compilation options. Source-level control means
having different versions of “sources” obtained from
the same master file.

In this paper we discuss tools for both of these
approaches and their implementation in a TEX sys-
tem.

1 Introduction

One popular technology activist slogan is “Infor-
mation wants to be free”, attributed to Stewart
Brand [1]. It seems almost sacrilegious to use free
(as in speech) tools like TEX and friends to hide in-
formation. However, this slogan as stated should
refer to scientific, technical or cultural information
only: obviously there is plenty of private information
that we do not want to be “free”. For instance, GNU

cryptography tools of high quality do exist.
There are several cases when information hiding

may be desired. First, the information can be un-
interesting. Imagine you create a formal statement
of work for a software development project. This
statement includes financial information (how much
each part of the project costs), technical information
(which libraries and languages will be used), project
milestones, etc. One can imagine several audiences
with different needs. Some (e.g., executives) would
want to read the document in its entirety. The finan-
cial team may not want to be bothered by technical
details, while the development team may be bored
by the financial details. Therefore we need several
overlapping versions of the output intended for the
different audiences. We will call this output level

control.
A related, but different problem arises when we

have several authors, and want to hide parts of the
document from some of its authors. This possibility
may seem rather exotic, but consider a report having
classified and unclassified information. Among its

authors could be experts that lack the clearance to
see some parts of the document. Public and secret
parts could be interspersed: for example, we might
have classified footnotes to the unclassified body text.
We want the authors to be able to work on their parts
without endangering the overall secrecy level. We
will call this input level control.

In this paper we discuss both of these issues and
our solutions.

2 Existing LATEX solutions for output level

control

LATEX provides a number of options to control the
output of the document. The most direct one is the
\include command and the \includeonly mecha-
nism. We can separate text into parts intended for
different audiences, and for each audience use only
the relevant parts.

However, each included part starts a new page in
the document, which does not allow interspersed and
overlapping parts intended for different audiences.
Also, putting different parts in different files might
be confusing, especially when there are more than
two different audiences.

Some of these problems can be eliminated with
the \input command, which does not start a new
page. There is no \inputonly command in LATEX
analogous to \includeonly, but it is easy to emulate
it, for example,

\newif\iffinancial

...

\iffinancial\input{cost_table.tex}\fi

Still, the requirement to store content in different
files is onerous.

The comment package [2] eliminates many of
these problems. It allows the user to define comment-
like environments and selectively output them with
\includecomment and \excludecomment commands.

A similar approach is used by the beamer pack-
age [3], where one can include or exclude notes for
presentations.1

When the package described in the next section
was published on CTAN, Robin “ypid” Schneider
informed me that another package with the same
functionality, tagging by Brent Longborough, already
exists [4]. I regret to say I simply missed this package
in my search.

3 Output level control: a new package

multiaudience

The new package multiaudience [5] tries to provide

1 I am grateful to Joseph Wright and other participants

of TUG’15 for this remark.

TEX and controlled access to information

120 TUGboat, Volume 36 (2015), No. 2

a clean interface for output level control. Its main
concept is audience. A document can define several
audiences using the \SetNewAudience macro, for
example,

\SetNewAudience{admins}

\SetNewAudience{devs}

\SetNewAudience{execs}

This code defines three audiences, admins, devs, and
execs.

The document can have one and only one current
audience, which is stored in the \CurrentAudience
macro. The author may define it using the command
\DefCurentAudience

\DefCurrentAudience{admins}

or with just a TEX \def:

\def\CurrentAudience{admins}

The latter possibility allows the user to define the
current audience outside the document (from the
command line), for example

pdflatex -jobname devs \

’\def\CurrentAudience{devs}\input{master.tex}’

This approach has the advantage of keeping the tex
file (master.tex in this case) clean, and generating
different versions on the fly.

The heart of the package is \showto macro. It
has two arguments: the comma-separated list of
audiences and the text to show to these audiences,
for example,

\showto{admins}{This text

is visible to admins only.}

The command can be nested:

\showto{admins, devs}{This text is visible

to admins and devs. \showto{devs}{This

text is visible to devs only.} This text

is visible to admins and devs again.}

In the example above the text is visible to admins
and devs with the exception of the italicized text,
which is visible to devs only.

A variant of the \showto macro uses exclusion
rather than inclusion logic: if the first argument
starts with a minus sign, it defines the audiences
which will not see the information:

\showto{-, execs}{This text is visible to

everybody but execs.}

The package provides the environment shownto
with the similar syntax and semantics:

\begin{shownto}{admins,devs}

This text is visible to admins and devs

\begin{shownto}{-, admins}

This text is visible to devs only

\end{shownto}

This text is visible to admins and

devs again.

\end{shownto}

There are also special commands like \Footnote,
making selectively visible footnotes:

We have a special footnote

command.\Footnote{admins}{This

footnote is for admins only.}

and section-like environments:

\begin{Subsection}{admins}[Short title]{Long

title}

This subsection is visible only to admins

\end{Subsection}

Moreover, the user can define new commands and
section-like environments with a simple interface:

\DefMultiaudienceCommand{\Footnote}%

{\footnote}

\NewMultiaudienceSectionEnv{Subsection}%

{\subsection}

The current implementation is very simple: basi-
cally we evaluate a TEX boolean \if@MULTAU@shown

using the first argument of the \showto command,
and typeset or not the second argument with the
construction

\if@MULTAU@shown#2\fi

The actual implementation is slightly more involved
since we need to check whether the first argument is
“-”, and accordingly to select inclusion or exclusion
logic. See the source code [5] for the full details.

Petr Oľsák wrote a plain TEX implementation
even before my talk at TUG’15 was finished [6].

Of course this simplicity has its drawbacks: you
cannot use verbatim construction in the second ar-
gument of \showto command. There are a number
of workarounds here, see, e.g. [7].

4 Source level control

Source level control should solve two problems, one
being easy, and another being slightly more difficult:

1. Extracting the material intended for different
authors.

2. Accommodating the changes made by any au-
thor.

The second problem involves the following situation.
Suppose a non-cleared author makes a change to
the unclassified part of a document. We need to
be able to accommodate her changes in the master
document, which includes classified material.

Perl script srcredact [8] solves both these prob-
lems. Its interface is a simplified interface of the doc-
strip program [9]: we have special comment lines in

Boris Veytsman

TUGboat, Volume 36 (2015), No. 2 121

\documentclass{article}

\begin{document}

\title{A Letter to the Secretary

of the Treasury}

\author{Mark Twain}

\date{Riverdale-on-the-Hudson, October 15, 1902}

\maketitle

%</ALL>

%<*uppercase|nobonds>

THE HON. THE SECRETARY OF THE TREASURY,

WASHINGTON, D.~C.:

%<*ALL>

%</uppercase|nobonds>

\textsc{the hon. the secretary of the treasury,

washington, d.~c.:}

%<*ALL>

Sir,---Prices for the customary kinds of winter

fuel having reached an altitude which puts them

out of the reach of literary persons in

straitened circumstances, I desire to place

with you the following order:

%</nobonds>

Forty-five tons best old dry government bonds,

suitable for furnace, gold 7 per cents.,

1864, preferred.

%<*ALL>

Twelve tons early greenbacks, range size,

suitable for cooking.

Eight barrels seasoned 25 and 50 cent postal

currency, vintage of 1866, eligible for

kindlings.

Please deliver with all convenient despatch

at my house in Riverdale at lowest rates for

spot cash, and send bill to

Your obliged servant,

Mark Twain, Who will be very grateful,

and will vote right.

\end{document}

Figure 1: Example of a TEX file for srcredact tool

the TEX file (guards): either %<*name1|name2|...>
or %</name1|name2|...>. The first one switches on
the inclusion of text, while the second one switches
it off. The special name ALL stands for all names.
By default the text is considered to be enclosed in
an <*ALL>/</ALL> pair.

An example input file is shown in Figure 1. It de-
fines three versions of the same document, default,
uppercase and nobonds. We can extract these three

versions. If one version, say, nobonds, is changed, we
can incorporate the changes into the main file and
re-generate the three versions, as shown in Figure 2.

5 Conclusions

Information separation, hiding and control provide
an interesting problem for document creation tools.
TEX, being a programmable tool based on a text
interface, is quite useful for solving it.

Acknowledgements

This work was partially supported by Neadwerx, Inc.
and the US Consumer Financial Protection Bureau.

References

[1] R. Polk Wagner. Information wants to be free:
Intellectual property and the mythologies of
control. Columbia Law Rev., 103:995–1034,
2003.

[2] Victor Eijkhout. The comment package, October
1999. http://www.ctan.org/pkg/comment.

[3] Till Tantau, Joseph Wright, and Vedran
Miletić. The beamer class, March 2015.
http://www.ctan.org/pkg/beamer.

[4] Brent Longborough. tagging.sty. A package

for document configuration, August 2011.
http://www.ctan.org/pkg/tagging.

[5] Boris Veytsman. Generating multiple

versions of a document for different audiences

from the same source, August 2015. http:

//www.ctan.org/pkg/multiaudience.
[6] Petr Oľsák. Hidden text from unprivileged

readers. http://petr.olsak.net/

opmac-tricks-e.html#showif, July
2015.

[7] Timothy Van Zandt, Denis Girou, Sebastian
Rahtz, and Herbert Voß. The fancyvrb

package. Fancy Verbatims in LATEX, May 2010.
http://www.ctan.org/pkg/fancyvrb.

[8] Boris Veytsman. A tool for redacting the sources,
August 2015. http://www.ctan.org/pkg/

srcredact.
[9] Frank Mittelbach, Denys Duchier, Johannes

Braams, Marcin Woliński, and Mark Wooding.
The DocStrip program, November 2014.
http://www.ctan.org/pkg/docstrip.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030 USA

borisv (at) lk dot net

http://borisv.lk.net

TEX and controlled access to information

122 TUGboat, Volume 36 (2015), No. 2

twain1.tex

twain1-nobonds.textwain1-default.tex twain1-uppercase.tex

twain-edited.tex

twain2.tex

twain2-nobonds.textwain2-default.tex twain2-uppercase.tex

srcredact -e default srcredact -e nobonds srcredact -e uppercase

Manual editing

srcredact -u nobonds

srcredact -e default srcredact -e nobonds srcredact -e uppercase

Figure 2: Document workflow with optional redactions

Boris Veytsman

TUGboat, Volume 36 (2015), No. 2 123

DocCenter—TEXing 11 million documents

a year

Joachim Schrod

1 TEX goes banking

Our company’s product DocCenter is used to man-
age the standardized, corporate identity (CI) confor-
mant, written communication of a company. Our
reference customer is 1822direkt,1 a German online
bank, which uses it to handle almost all written com-
munication with its customers. Some communication
is done via email or displayed as HTML messages
in an online postbox, but most is created via LATEX
and then printed or provided as PDF.

This experience report presents input methods,
output formats, and delivery channels used by our
customer. It also reports on related challenges and
TEXnical solutions chosen.

But first things first: What is special about
customer related documents of an online bank?

• They are small, mostly one or two pages.

• They are simple documents that don’t need lots
of markup, just some item lists, some fontifying,
and some simple tables are sufficient.

• Few images are used, and those are not individ-
ually created for an individual document.

• All documents are obliged to use the company’s
corporate identity formatting rules; it should be
hard for an author to break them.

• There are no reports, no books, no highly struc-
tured documents, no math—any use case where
(LA)TEX is usually the first choice and what TEX
experience reports are usually about is missing
here.

So, small documents—but there are many of them;
last year DocCenter was used to create 11 million of
them! Quite a lot of the documents are letters:

• either with standardized content and a few fill-in
variable parts

• or completely individual content

• or built from pre-defined text fragments

Even though the content itself is simple, it has
to be enriched by corporate identity requirements,
demands for standardized greetings and closings, au-
tomated addition of signatures of writer and de-
partment heads, footnotes with ever-changing adver-
tisements for special opportunities, logos of current
ratings from financial journals, etc. This enrichment
is standardized and delivered by appropriate LATEX

1 1822direkt is the online sales company of Frankfurter

Sparkasse 1822.

Figure 1: Standard letter input form (cropped).

Figure 2: Individual letter input form (cropped).

document classes; the content authors don’t need to
worry about it.

In fact, the letter idiom is also used for account
statements, credit card statements, and share notes.
In fact, these are the majority of documents pro-
duced. These kinds of documents also often have
special requirements concerning delivery, users may
need to acknowledge the receipt, a printed version
may be needed to be sent by post if no such acknowl-
edgement arrives in due time.

Some other documents add additional require-
ments. A good example are PIN/TAN letters that
must be kept private: they are printed on special
paper only on certain in-house printers, they must
be archived without the “secret part”, etc.

2 DocCenter

As the introduction mentioned, we have two kinds
of documents that are created with DocCenter:
(1) letters that are created by staff members, and
(2) automatically created documents.

2.1 Document creation by humans

DocCenter provides a web-based intranet application
to create documents by staff members. Figures 1
and 2 show the basic interface.

DocCenter—TEXing 11 million documents a year

124 TUGboat, Volume 36 (2015), No. 2

Standardized letters are created by application
forms that request only the variable parts. No letter
content is shown during input of these document

parameters, and it’s not needed either: Staffers write
those letters by the dozens or even hundreds; they
know the letter’s content by heart. Input must be
quick and must be checked as closely as possible.

E.g., the author need not input a customer’s
name, or address, or account details— they are all
available to be inserted into the letter content after
the customer’s account number has been input in the
form. The actual letter content comes from so-called
templates. We postpone describing their content
creation to section 2.4, as the same templates are
used for automatic document creation as well.

A preview is available to check final output—
but most often it is not used. Users rely on proper
document creation; they need to get the letters out
in the most efficient way.

Individual letters may also be created, with boil-
erplate text parts available to ease that duty. For
that task an HTML editor, TinyMCE, is integrated.
That editor is configured to provide only formatting
capabilities that are CI-conformant. The editor’s
XHTML result is then converted to LATEX and out-
put over the chosen channel.

Users of this “frontend” to DocCenter work on a
few small documents at a time, and expect very fast
system reaction time, both for preview and output
creation. This speed aspect is called latency : Docu-
ment generation and formatting on the server must
happen fast, with results delivered very quickly.

2.2 Automatic document creation

DocCenter provides an HTTP interface to create jobs
with documents. Most prominently, that interface
is used for automated document mass production.
Those documents are still small, but tens of thou-
sands may be requested in one job.

Such a job’s document requests don’t include
the content to be output. They name a document
template which determines the content or how the
content is to be generated. Document parameters
in the request configure output or content creation.
Other request attributes establish the output channel
to be used, e.g., printer, online PDF delivery, transfer
to a print shop, or others.

Since this interface is not used by humans, quick
reaction time is not important. On the other hand,
it is important that jobs are finished in some pre-
determined given time. E.g., when account or credit
card statements are created for all customers once a
month, there are service level agreements to fulfill—

these statements must be delivered to the customer
by a specified date.

This is a different kind of performance demand
than the requirement of low latency for interactive
usage: Commonly called throughput, it is concerned
with overall processing time for a given set of doc-
uments, not about the processing time for a single
document.

2.3 Basic architecture

DocCenter uses basically a 4-step lifecycle of docu-
ment processing that provides a maximum of stability
and control:

generate ⇒ format ⇒ output ⇒ archive

Document variants are used to provide needed spe-
cialization for one or several of those phases. The
most important are variations of document genera-
tion. They are implemented as plugin classes that
may be added to the system as needed. Thus, new
demands for specific content generation or format-
ting can be satisfied easily by realizing and deploying
a new plugin, without changing the base system.

Some illustrations:

Account statements use a specific generation step
that fetches account data from the database; a
document’s LATEX markup is created completely
by the application.

Standardized letters generate a LATEX document
file that merely contains parameter declarations
and then inputs a LATEX template file that may
use the parameters. (Those parameters are ba-
sically macro declarations.)

Individual letters transform XHTML content to
LATEX markup and content during generation;
XSLT is used for that.

PIN letters don’t archive the actual PIN, just the
letter text. Thus bank personnel later can see
when a PIN letter was sent to which person, but
not the actual secret initial PIN data.

Other document variants provide further specializa-
tions that are even more company-specific. Realiza-
tion of such document variants is the primary method
for adapting DocCenter to different customers’ de-
mands.

2.4 LATEX templates

Standardized letters are by far the most typical doc-
ument that are created by DocCenter—not by doc-
ument numbers, account statements dwarf that—
but by variety that is handled smoothly with our
application.

Within a bank, new content for a letter may not
be easily created by a staff member on a personal

Joachim Schrod

TUGboat, Volume 36 (2015), No. 2 125

whim. Professional content (correct terms, factual
correctness) is provided by one organizational unit,
another checks that CI-style conformant phrases are
used, while wording is checked by a third one. Each
new letter and each change must go through the
required protocols and have approvals recorded, to
be available for inspection by auditors.

For that reason, actual document content is
created and managed by an editorial team that orga-
nizes the process and coordinates the different groups
that are involved. This editorial team actually cre-
ates LATEX and XML files with meta-information;
no interactive frontend is involved that hides that
technology.

An advantage that we did not hesitate to ex-
ploit is the simple document structure. TEX, and
subsequently LATEX, assigns special functionality to
many characters, be it $ to introduce math mode,
% to start a comment, or other characters used to
make markup of complex documents more readable.
Well, we don’t have complex documents, we’ve got
no math to typeset, and comments in documents are
an alien concept that’s hard to communicate to staff
members anyhow. On the other hand, not being able
to simply type $ or % in a letter from a bank to get
the respective characters in the output—that’s a
difficult restriction for this kind of user.

For these reasons, we reconfigured LATEX a bit
and added application-specific markup that supports
creating simple documents in a way that can easily
be learned by non-TEXies while still being LATEX:

• Very simple LATEX
• No math
• A minimum of special characters: just \ { }

• In particular, $ and % are normal characters,
lest they create havoc in our banking context

• Insert document parameters, with optional
formatting

• Optional text, controlled by parameters
• Some additional special environments; e.g.,
creating a pre-filled answer letter to the bank
that is appended to the actual letter.

From the usual TEX point of view, these would hinder
creating reports or longer documents. For our target
use case, creating letters, such a reasonable subset
of LATEX functionality enables users to create new
standard letter templates within hours, without a
steep learning curve. (The few hours are actually
spent by learning what metadata is needed and how
to express it, not by creating real content.)

3 Challenges

Document creation in the context described above
comes with some unusual challenges. Solutions are

readily available in the TEX world, if we look be-
yond common knowledge of how a contemporary
TEX system is used.

3.1 Output variations without reformatting

DocCenter has to be able to output formatted results
via different output channels:

• PDF, to be delivered online to the customer

• Printed in-house, on both PostScript and PCL

printers

• Print files for external print shop

Output is not the same for these output channels:

• Online PDF usually needs an embedded letter-
head, provided as an image.

• Print output uses letterhead paper; thus a let-
terhead image must not be embedded.

• Documents use different types of paper; e.g., first
page on letterhead paper, second page on white
paper, maybe third page again on letterhead
paper.

• Printer-specific tray control: Each printer may
have paper types in different trays; using the
right paper type as per requirement above must
thus be configured and realized per printer.

• Printer calibration: Precise output positioning
is important for letters, address fields must fit
exactly into window envelopes.

– Each laser printer feeds paper a bit differ-
ently, output doesn’t end up on the page
where it should be.

– Experience shows that different printers
may stray up to 5mm (0.2in) in all direc-
tions; while positioning errors for different
sheets in one printer is a magnitude lower.

– Therefore we need a per printer configu-

ration (again) that offsets output on the
page.

• Folding machine control: Output on some spe-
cial printers is fed immediately to a folding ma-
chine that controls the completion of all of a
letter’s pages, folds them, and places them into
an envelope. This is controlled by bar codes at
the paper’s left edge— these bar codes only have
to be inserted when printed on these printers,
not for any other output channel.

• Print shops need associated metadata (some
want them embedded invisibly into PDF files)
for paper type control.

• Some print shops always print duplex; extra
empty pages may have to be inserted for them.

DocCenter—TEXing 11 million documents a year

126 TUGboat, Volume 36 (2015), No. 2

• Preview output needs watermarks (grey “draft”
in the background), to make sure that the four-
eyes control workflow cannot be easily circum-
vented.

• Output of archived documents again needs a
watermark, to distinguish original documents
sent to the customer from internally produced
copies.

• Some letters are archived incompletely, e.g., se-
cret PIN numbers must not be stored. One
should still be able to have a partial view of the
archived document, without that secret part.

But the biggest issue of all is the requirement
that output of a document may have to be repeated
on a different output channel after months or even
years— taking the peculiar requirements above into
account—without reformatting the document. Re-
formatting a document after several years always
has the risk that the output may be different, owing
to changed LATEX packages or other internal macro
changes. That must not happen; precisely the same
document has to be reproduced.

Therefore, to separate format from output phase
in DocCenter’s document life cycle doesn’t just mean
that a formatted result, e.g., a PDF file, is sent
to some output device. Instead, the output phase
transforms the formatting result and implements the
output channel specific requirements.

The current standard in TEX world for output
format is PDF. Almost all current publications and
presentations at conferences take that for granted.
While we could realize all this output phase ma-
nipulation by transforming TEX-produced PDF files,
the overall TEX universe has an older technology
available that’s better suited for our purpose:

DVI files with \specials

TEX specials are used in the DVI format result
to declare the need for duplex/simplex, letterheads,
paper types, watermarks, etc. DVI drivers interpret
them and produce adequate printer-specific output.

As an example, printer-specific tray control is
as easy as setting up directories with include files
with standardized names; these include files contain
printer control commands to access trays for the
correct paper type. Inclusion of these files is triggered
by appropriate \specials in the document.

Printer-specific output placement is even easier
to realize: Every DVI driver has options for offset
control, a configuration file per printer has values for
that option.

Last, but not least, using DVI greatly lowers
cost for our document archive. A typical letter with
roughly 40KB in PDF format needs only 2KB in DVI

format. The disk space requirement is thus reduced
from 500GB per year to 25GB per year. This doesn’t
sound much in terms of today’s USB storage prices
where you get multiple TBs for cheap—but you can’t
use such inexpensive storage easily in a bank’s data
center. There it still matters if a 10-year storage
archive needs 10TB or 1TB.

3.2 Latency improvement

Before DocCenter was deployed, a predecessor system
was used that was also based on LATEX. With a rather
naive implementation, that needed 1.5 seconds to
process a document. Adding the communication
latency, delivering a preview from server to user
needed up to 3–4 seconds, clearly far too long.

Root cause analysis showed us the reasons for
that behavior: Most of the time was spent in boiler-
plate processing: reading and processing LATEX class
and package files, font configurations, etc. Creating a
letter with two paragraphs of text needed processing
more than a dozen macro files. Actual time for for-
matting the document’s content was minimal. (SSD
disk caches might have helped, but were not readily
available in the clustered server architecture that is
in use at the customer.) Additional time was spent
by processing each document twice, as is common
document production practice in the TEX world.

Well, that problem was easily tackled with stan-
dard TEX techniques from the early ages: We don’t
have document-specific packages, and our documents
are not one-off creations. Instead, all of our 11 mil-
lion documents use the same set of packages, maybe
with some small variation in feature usage. So we
created a TEX format file that has LATEX and all used
packages and font definitions preloaded. The format
also redefines \documentclass and other preamble
control sequences to do nothing—class and package
files are already loaded, after all.

A second measure was to stop processing doc-
uments twice. Analysis showed that we don’t need
any of LATEX’s features, like cross references, that
demand multiple formatting runs. Processing each
document once is sufficient.

Reading a format file is very fast in TEX, be-
ing the equivalent of a memory dump. Document
formatting time was reduced from 1.5 seconds per
documents to 0.06 seconds per document; a 25 x im-
provement by using our specific FMT file and doing
only one run.

3.3 Throughput improvement

Creating account statements was another challenge.
The predecessor system used a tabular layout, as
is common with such statements, implemented via

Joachim Schrod

TUGboat, Volume 36 (2015), No. 2 127

LATEX’s longtable package. Each of the hundreds of
thousands of statements that had to be produced
was created separately, with a new database con-
nection and queries, creation of a new LATEX file,
running LATEX twice (owing to usage of longtable),
and creation of output files for the customer.

To achieve a service level of maximum processing
time of 24 hours, the creation process was spread over
10 systems where it needed a total time of 22 hours.
At least half of that time could be attributed to
non-optimal usage of TEX technology.

Our first observation was that “looks like a table”
doesn’t mean that it is a longtable or even a tabu-

lar environment in LATEX markup parlance. Bank
statement layout is not at all flexible; column widths
are preset and don’t change with content. There are
some running heads at page breaks, but they don’t
demand the full power of complex table formatting
capabilities.

Instead, we turn towards the most basic format-
ting capability TEX has: \hbox and \vbox. Nothing
is faster in TEX formatting than using these prim-
itives. A booking entry in the statement is not a
table line with columns, it’s an \hbox that contains
\vboxes with fixed widths. Voilà, blindingly fast
processing by TEX is the result.

Our second observation was, again, the overhead
of boilerplate processing for all these document files,
as mentioned in the previous section. For this use
case, we optimized it even further, beyond using our
own FMT file. We generate markup and content
for ca. 50,000 documents in one run and feed them
directly to LATEX, without any intervening process.
LATEX then dutifully produces a DVI file with 200,000–
250,000 pages.

The choice of DVI files to represent our format-
ted result comes in quite handy now. In a DVI file,
pages are linked from the back to the start. The first
10 TEX counters are stored at such a page start. Our
macros store a document ID in one of these counters
and so we can detect the start of a new document
while jumping from one page to the next. Splitting
the single DVI file into 50,000 smaller ones is thus a
matter of less than a second, mostly dominated by
I/O times on the networked storage in use in such
clustered environments.

An interesting point from a TEX point of view
is a further optimization that made splitting much
easier. A hairy detail of DVI file splitting is the
declaration of fonts: they appear at first use and
at the end of the file. Rather complicated logic is
needed for an arbitrary split algorithm to handle that
properly. However, since we are in such a restricted
use case scenario, we can add a first page that does

nothing but load all fonts needed. Our DVI-splitting
algorithm collects all font definitions from that first
page, to be output to every produced DVI file at
the start, and then may append DVI pages from the
respective document without having to worry about
appearance of font definitions at all. This makes
the split code size really small, robust, and easy to
maintain—much easier than comparable code for
splitting a large PDF file.

Using this production approach has proved a full
success: We achieved a performance improvement of
a factor of 100. All statements can be created on
one system within 2 hours.

4 Conclusion

Using TEX as the centerpiece for document creation
in DocCenter was a full success. We have a robust
application that’s purring on without production
problems in that area. Traditional TEX toolbox so-
lutions like DVI files, specials, FMT files and the like
are still immensely useful for the diversified require-
ments of document generation, even in today’s com-
munication demands. It will still work in 10 years, of
great importance for a bank. What other typesetting
system can say the same?

Still, there were some minor hurdles that we had
to overcome:

• A standardized and stable API for TEX process-
ing is missing. While it’s accepted that TEX
is hard to handle by humans, it’s also hard to
control by an application.

• Most important, batch mode and error message
handling are not perfect for monitoring.

• On the organizational side, there is no staff easily
available with sufficient knowledge of (LA)TEX
technology—personnel for support tasks is even
harder to find than for development.

• Customer-specified special formatting for indi-
vidual documents and one-off-changes are diffi-
cult to achieve on-site by the customer’s editorial
group, without our involvement.

• Quality of DVI drivers is worse than 15 years
ago. (dvips is the exception.)

But these issues shouldn’t stop you from using TEX
for similar tasks. Other typesetting systems will
come with their own problems, and more of it—we
have the scars to prove it, but that’s another story.

⋄ Joachim Schrod
Net & Publication Consultance GmbH
jschrod (at) acm dot org

DocCenter—TEXing 11 million documents a year

128 TUGboat, Volume 36 (2015), No. 2

Preparing LATEX classes for journal articles

and university theses

Tom Hejda

Abstract

There is a substantial difference between the require-
ments on a LATEX class for a scientific journal and for
university theses. The main point is that a journal
class is by definition restrictive—the journal has to
be very keen on the precise look and structure of
the articles, whereas the thesis class is by definition
modular —different theses ask for a slightly differ-
ent layout and structure, some have appendices and
some do not, etc. We discuss the differences and
their implications on the class design.

1 Introduction

It is natural that different types of documents ask
for different LATEX classes. We will discuss the differ-
ences for journal articles and university theses. This
is partly a response to a recent boom in LATEX classes
for theses issued and enforced by universities, where
it is commonly seen that the classes do not meet
good standards, students have difficulties using them
and the result is in many cases far from satisfactory.
Even though this is the case, we refrain from giving
bad examples, and we rather focus on the core ideas
that should be behind the design of such a class.

This paper is organized very simply. In the next
two sections, we discuss the demands on classes with
different purposes. In Section 4, we describe the
solution to the demands that were used to design
and code the ctuthesis class that is being developed
at the Czech Technical University (CTU) in Prague.
We believe that our proposed solution serves as a
good example of how things can be done.

It should be noted that while graphical design
plays an important role in the publication process,
we will omit the discussion about graphics as this is
mostly irrelevant to our points. We merely note that
the class ctuthesis that will be used as an example
is based on a plain TEX class called ctustyle [3],
to which the next article in this TUGboat issue is
devoted.

2 Different documents are made differently

The typical workflow for publishing articles in scien-
tific journals involves several steps:

1. Primary submission by the authors—it
need not be in the journal’s style and need not
strictly follow the typographical policies of the
journal.

2. A referee process leading to an accepted

version (or rejection, but that is not interesting
for us)—at the end of this process, the authors
provide a version of the article that should com-
ply with all the in-house policies.

3. In-house typesetting and editorial copy

preparation—The staff of the publisher take
the sources (code, figures, etc.) and prepare the
article to their liking.

4. Proofreading—the authors point out any mis-
takes made during the typesetting and possibly
other things they do not like.

If we look into how theses are usually typeset,
we see that most often the last two steps are missing:
There is no one to typeset the thesis in a professional
way nor to control the way that the thesis is typeset.
This means that the thesis author is in some sense
much more responsible for his work than the author
of an article, at least from the typographical point
of view.

3 Variety of documents

A second big difference between the two class types
is in the variety of documents. In general, most
articles in a single journal follow a similar scheme
for sectioning, floating objects, references etc.; also,
they are usually from a rather narrow field.

On the other hand, a single university has many
faculties with many branches of study, and it is
clear that a programming thesis looks significantly
different from a theological text or an architectural
study. It is quite natural that the first one will
contain a lot of code samples and probably a reference
manual, the second one will be basically a long text
with a lot of direct quotes of paragraphs from other
sources, and the third will contain a long graphical
appendix. Also, the thesis is the student’s child and
he should be able to make it look as he likes, within
the requirements.

To allow a single LATEX class to accommodate
all these needs, the class has to be highly modular;
the presence of appendices has to be optional, for
instance, and in general, more or less everything
has to be configurable. The class should have only
minimal fixed design in order to comply with the
requirements of the university.

4 Our solution

The solution for article classes used by actapoly (the
journal of the CTU) [1] does not involve any special
tools—article authors set up the metadata of the
article and these are then used by \maketitle to
print the article title block. All the standard LATEX

Tom Hejda

TUGboat, Volume 36 (2015), No. 2 129

environments and commands such as sectioning com-
mands, lists, floats, tables etc. are then given a fixed
graphical design that forms the graphical identity
of the journal. This is what nearly every journal
publisher does in their class files.

By comparison, in designing our class—called
ctuthesis [2]— for university theses, we needed a
high level of modularity, as discussed. This is allowed
mostly by two important ingredients:

1. Good key-value interface. Most modifiers of
the class behaviour are implemented using this
interface. The interface itself is coded using the
very usable and highly versatile l3keys package.
In general, the whole class is written in expl3

as much as possible.

2. Two-phase class and package loading. The
idea can be seen in Figure 1—we load the class,
then set everything up using the key-value in-
terface, and then the command \ctuprocess

inputs another file of the class. This additional
file contains a lot of conditional package loading
and package setup.

There are several types of keys for the key-value
interface:

• appearance keys— languages, colours, a switch
for the inclusion of the list of figures, etc.;

• metadata keys— title, subtitle, author, supervi-
sor, name of the department, and a lot of other
information;

• package options—customizable loading of cer-
tain packages for which it makes sense, including
for instance: amsthm (since someone may prefer
ntheorem or another package and there is no
reason to forbid it), listings (we set up the
listings design in a particular way that someone
may not like), or hyperref (since it is sensitive
to the order in which the packages are loaded
and making it conditional can help in resolving
the issue).

Also, in the internal design, we borrow the idea
that is seen in beamer — namely what we call tem-

plates and fields. Examples are worth complicated
explanations, so as an example, the titlepage, or
the list of figures in the two-column frontmatter
make up typical templates, whereas fields are things
such as the title and the abstract (these are actually
language-dependent, so we have a field for the title
in all languages in which it is needed, and similarly
for the abstract, the university name, etc.), the name
of the author, the address of the supervisor, etc.

Also, there is an interface for themes —it could
happen that a faculty of the university had a spe-
cial requirement that “supervisor” should be called

\documentclass{ctuthesis}

\ctusetup{

key1 = value1,

key2 = value2,

...

}

\ctuprocess

% ... user stuff goes here ...

\begin{document}

\maketitle

...

Figure 1: Structure of the preamble of a document in

ctuthesis.

“project manager”, and this is possible using a theme
for this faculty that changes \supervisorname in
the english language. It is of course possible to
implement this without the themes interface, but it
would mean adding strange conditionals at strange
places in the class files for one-off issues like this one.
We do, however, store all templates and themes in
a single file with a clear structure.

5 Concluding remarks

To conclude, let us mention the most important
points of the paper:

1. Different document types need different class
designs.

2. Class authors should think of how the class will
be used and who the users will be.

3. The more the users will interact with the class,
the cleaner the class interface should be.

References

[1] Czech Technical University in Prague.
Acta Polytechnica—submissions. https:
//ojs.cvut.cz/ojs/index.php/ap/about/

submissions#authorGuidelines [2015-08-01].

[2] Tom Hejda. LATEX template for theses at CTU
in Prague. https://github.com/tohecz/
ctuthesis [2015-08-01].

[3] Petr Oľsák. CTUstyle—Plain TEX template
for theses at CTU in Prague. http://petr.
olsak.net/ctustyle-e.html [2015-08-01].

⋄ Tom Hejda

Dept. Math. FNSPE, Czech

Technical University in Prague

Trojanova 13

Prague 12000

Czechia

tohecz (at) gmail dot com

http://github.com/tohecz/

Preparing LATEX classes for journal articles and university theses

The CTUstyle template for student theses

Petr Oľsák

Tom Hejda introduced his work on a template for
student theses at the TUG 2015 conference. The
template is used at the Czech Technical University
in Prague (CTU). The present article is intended
as a companion to Tom’s article “Preparing LATEX
classes for journal articles and university theses”. In
his article, the LATEX point of view and comparison
with another project is highlighted. In this arti-
cle, on the other hand, the original development of
the template (which has nothing to do with LATEX)
and the grounds for some typographical decisions
are mentioned.

Beginnings

In October 2012, students of the Czech Technical
University in Prague started a discussion in an In-
ternet forum [1] about the need for a good template
for Bachelor, Master and Doctoral theses at our uni-
versity. They mentioned that other universities have
an interesting LATEX template but CTU uses noth-
ing centrally, while there are various LATEX solutions
with not-so-good typographical design in a few de-
partments.

I gave my little contribution to this discussion
forum too. I announced that I am able to suggest
typographical design and I can implement this tem-
plate by plain TEX macros only. I never offer a
LATEX solution because LATEX is a bad way of TEX
usage from my point of view and I don’t want to offer
something that I believe is bad. Then I waited many
months to see if somebody else would offer a LATEX
solution, but this did not happen. So, I started with
typographical design and the implementation of stu-
dent theses in January 2013. The implementation
was based on my plain TEX OPmac macros [2] and
the template was named CTUstyle [3].

Several students started to use my CTUstyle
template and many of them complimented me that
the template has a good design and it is simple to
use. I want to emphasize that many of these stu-
dents had no previous knowledge about TEX nor
LATEX, but they were able to simply use this tem-
plate. This is contrary to the opinion that LATEX is
simpler to apply than plain TEX at the user level.
This is not true when a good template is available.

Meanwhile, the template designer (like me) can
realize a typographical design much more straight-
forwardly in plain TEX, because only primitives are
used (like \hbox and \vbox) and the designer’s time
isn’t dissipated by useless complexity in LATEX.

130 TUGboat, Volume 36 (2015), No. 2

Principles of thesis templates

We can consider the thesis template from different
and independent points of view:

• The typographical design (independent of the
software used).

• The implementation of university rules (for ex-
ample what information must be in the first
pages and where).

• The user interface.

The typographical issues will be mentioned in
the next section of this article. The other two points
of view can be illustrated by the following minimal
example of CTUstyle usage:

\input ctustyle
\worktype [M/EN] % Master’s thesis, in English
\faculty {F3} % one of 8 faculties at CTU
\department {Department of special studies}
\title {Minimal Document}
\author {Ben A Uthor}
\date {January 2013}
\abstractEN

{This document is for testing purposes only.}
\abstractCZ

{Tento dokument je pouze pro test.}
\declaration

{I hereby declare I didn’t monkey around.}
\makefront

\chap Introduction

The introductory text.

\sec The Idea

My big idea for this Master thesis is...

\bye

The user environment is designed to be like “fill-
ing in a form”. There are several mandatory fields
which must be set. All of them are used in the mini-
mal example above: \worktype, \faculty, \author
etc. If a mandatory field is omitted then an ap-
propriate error message is printed. The mandatory
fields declare a minimum of information needed by
university rules.

Optional fields can be defined here as well; for
example, \subtitle, \supervisor, \authorinfo,
\thanks, etc. All fields are documented in the
CTUstyle documentation, which was created with
the CTUstyle template in order to show the usage
and the design of the template.

Then the \makefront command generates the
first automatically created pages: title page, the
declaration and thanks page, the abstract page (in
two languages), the table of contents, the list of fig-
ures or tables (if present). For example, the full

Petr Oľsák

Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Twitter’s local trends
spread analysis

Gustav Šourek

Program: Open Informatics
Field: Artificial Intelligence

April 2013
Supervisor: Ing. Ondřej Kuželka

Fig. 1. The CTUstyle title page.

This thesis by G. Šourek is fully available at [9].

name of the faculty is printed in the title page but
user needn’t specify it; e.g., F3 means Faculty of
Electrical Engineering.

The body of the work is structured using
OPmac macros like \chap for chapter, \sec for sec-
tion etc. These commands are described in OPmac
documentation in detail and roughly in CTUstyle
documentation.

The typographical design

There are two big universities in Prague: Charles
University (CU) [6] and Czech Technical University
(CTU) [7]. I did the CTUstyle [3] template first
for CTU and afterwards, I modified this template
to CUstyle [4] for CU.

The CTU is a technical university founded 300
years ago. I intended to create the template for CTU
with a modern look and feel which can be used by
students with enjoyment. I chose the technical font
Latin Modern for the template because CTU is a
technical university. I used the color decreed by the
corporate identity of this university: blue Pantone
300 C. The complementary color (orange) is used as
navigation color only for marking active hyperlinks
and only in online version (disabled during printing).

TUGboat, Volume 36 (2015), No. 2 131

U
n

iv
e
r
z
it

a
K

a
r
l
o

v
a

v
P

r
a

z
e

M
a
t
e
m

a
t
ic

k
o

-f
y
z
ik

á
l
n

í
f
a

k
u

l
t
a

Bakalářská práce

Kvadratické rovnice
na slovech

Miroslav Olšák

Katedra algebry
Vedoucí práce: doc. Mgr. Štěpán Holub, Ph.D.
Studijní program: Matematika
Studijní obor: obecná matematika
Praha 2013

Fig. 2. The CUstyle title page

This thesis by M. Oľsák is fully available at [10].

I decided to use the heavy blue rule seen in Fig. 1,
inspired by the typographical manual of CTU. The
first automatically generated pages (except the title
page) are designed as two column. The body of
the work is one-column and the pages are numbered
from one in the body. This is one of the university’s
rules.

The whole work is designed as a two-side book
with running heads that disappear into the middle
of the binding. I assume that the document will
be printed using a duplex printer with the capabil-
ity of printing color. A non-duplex variant of the
document can be set by \onesideprinting and a
grayscale variant by \blackwhite but it is not rec-
ommended.

The CUstyle for the Charles University copies
the main principles of the design from CTUstyle, but
the Pagella font was chosen because it looks more
ancient. CU was founded in the Middle Ages in 1348
by Charles IV, King of Bohemia and King of the
Romans. It was the first university in the Middle
Europe. So the design of the font and of the title
page reflects the history of CU. The red rule on the
title page means the ribbon with the seal used by
kings. On the other hand, the red color is specified
in the corporate identity of this university.

The CTUstyle template for student theses

Contents /

1 Introduction .1
1.1 Motivation .1
1.2 Related work .2
1.3 Our approach .3

1.3.1 Overview3
2 Social Networks .4
2.1 Introduction .4
2.2 Digital social networks.4
2.3 Twitter .5
2.4 Social Network Analysis6

2.4.1 Levels of analysis6
2.5 Trends spreading7

3 Data acquisition .9
3.1 Crawling strategy9
3.2 Twitter API . 10

3.2.1 Functionality 10
3.2.2 Rate limiting 11
3.2.3 Limits workaround. 11

3.3 Implementation 11
4 Data analysis . 13
4.1 Crawled data 13

4.1.1 Statistics overview 13
4.1.2 Network structure 13
4.1.3 Trending topics 17

4.2 Data transformation 18
4.3 Time structures 18

4.3.1 Sequential representa-
tion . 19

4.3.2 Sliding window 19
4.4 Graphs . 19

4.4.1 Relations 20
4.4.2 Representation: 20

5 Learning . 21
5.1 Target classes 21

5.1.1 Motivation 21
5.1.2 Basic class 21
5.1.3 Top-K% metric 22
5.1.4 Expands class 22
5.1.5 Enters top-K class 22

5.2 Approaches . 22
5.2.1 Simple learner 22
5.2.2 Baseline learner 23
5.2.3 Graph learner 23
5.2.4 User modeling. 24

5.3 Evaluation . 24
5.3.1 Classifiers 24

5.3.2 Cross-validation 25
5.3.3 Test set validation 25
5.3.4 Weka . 25

6 Features . 27
6.1 Base features 27

6.1.1 Frequency rankings 27
6.1.2 User features 28

6.2 Model features 28
6.3 Graph features 28

6.3.1 Relational features 29
6.3.2 Time features 30

6.4 Graph features creation 31
6.4.1 Isolated feature check 31
6.4.2 Feature set check 31

6.5 Isomorphism problem 31
6.5.1 Calculating invariants . . . 32
6.5.2 Isomorphic mapping 32

6.6 Feature matching 33
6.6.1 Heuristic ordering 33
6.6.2 Search method 33
6.6.3 Set intersection speedup . 35

7 Experiments . 37
7.1 Settings . 37

7.1.1 Sliding window prop-
erties . 37

7.1.2 Top-k threshold 40
7.1.3 Datasets 40

7.2 Feature options 42
7.2.1 Ranking 42
7.2.2 User features 44
7.2.3 User modeling. 44
7.2.4 Graph features 45

7.3 Results . 47
7.3.1 Shows or stays 48
7.3.2 Top-k% 49
7.3.3 Expands 50

8 Conclusion . 52
8.1 Future work . 52

References . 54
A Specification . 57
B Used Terms . 59
B.1 Acronyms. 59
B.2 Software . 59

C CD content . 60

v

Fig. 3. The CTUstyle TOC page

This thesis by G. Šourek is fully available at [9].

Figures 1 to 4 show selected pages from theses
using CTUstyle and CUstyle.

Next developments

I offer my help to students who are using my plain
TEX templates. I make occasional small improve-
ments to the template due to requests from the stu-
dents. There are no big demands. I am happy that
I have received many compliments and thanks from
the students.

For example, I’ve recently created a new tem-
plate for plain TEX slides with the same look as
CTUstyle called CTUslides [5]. Students can do their
presentations in the same style.

Sometimes, a suggestion is made at the discus-
sion forum [1] like: “I wish to use this template but
LATEX seems better for me”. I replied: “The ty-
pographical design is done and it is independent of
the software used. You can use it in MS Word, for
example, or in LATEX. I don’t recommend either
but people can prefer something different than I.
Anybody can do the implementation of my template
with other software.” But no such “anybody” ap-
peared after two years. So, I decided to contact Tom
Hejda, because I knew him as tohecz, a user from

132 TUGboat, Volume 36 (2015), No. 2

3. Data acquisition .

1

2
3

4

5

6

7

8

expanded

next user

first user

Figure 3.1. Illustration of one step in the crawling strategy approach.

3.2 Twitter API
Twitter’s application interface is the means by which we acquire desired network’s user
data. It provides developers or anyone a programmatic access to a number of Twitter’s
features. The API allows for easy integration of Twitter functionality into custom
applications and web solutions and is said to be the most influential factor in Twitter’s
ubiquity and overall popularity. Twitter API has come through significant changes
since it’s establishment in 2006, with the most crucial ones being applied at the time
of this project development in 2012, while changing from version 1.0 to 1.1 [15].

3.2.1 Functionality

The original concept of API divides resources into three categories by functionality
delivered:

.REST - allows access to Twitter’s core data, update timelines, status data, and user
information..Search - gives developers methods to interact with Twitter search engine and trends
data.Stream - provides near real-time high-volume access to Tweets in sampled and filtered
form.

With the new version of API 1.1, all the methods of these resource families are
presented to developers through a unified interface under the REST header. There is
a vast number of methods offered and we will pinpoint only few categories that relate
to the implementation of this project1):

.Timelines - a class of methods for retrieving users’ statuses and retweets.Tweets - provides methods for tracking specific tweets’ metadata information.Friends & Followers - allows for crawling by providing sets of related users.OAuth - set of tools for authentication of calls to the API

1) for a complete set visit Twitter API specification site at https://dev.twitter.com/docs/api/1

10

Fig. 4. The CTUstyle common page

This thesis by G. Šourek is fully available at [9].

tex.sx [8]. And he accepted the proposal (with fi-
nancial support by Prof. Hlaváč from CTU). This is
another story, described in the previous article . . .

References

1. http://forum.fel.cvut.cz/topic/3697/

2. http://petr.olsak.net/opmac-e.html

3. http://petr.olsak.net/ctustyle-e.html

4. http://petr.olsak.net/custyle-e.html

5. http://petr.olsak.net/ftp/olsak/
ctustyle/slides.pdf

6. http://www.cuni.cz/UKEN-1.html

7. http://www.cvut.cz/

8. http://tex.stackexchange.com/

9. http://cyberold.felk.cvut.cz/research/
theses/papers/339.pdf

10. http://www.olsak.net/mirek/bakalarka/

⋄ Petr Oľsák
Czech Technical University
in Prague
http://petr.olsak.net

Petr Oľsák

TUGboat, Volume 36 (2015), No. 2 133

New multibibliography package nmbib

Boris Veytsman and Michael Cohen

Abstract

Two years ago we presented a multibibliography

package that provides multiple lists of citations with
alternate orderings. The nmbib package is a complete
refactoring of that program. It offers a broader vari-
ety of citation commands, streamlines the creation of
bibliographies, ensures compatibility with the natbib
package, and provides other improvements.

1 Introduction

In scientific books and papers, the bibliography is
traditionally relegated to “back matter”. One might
think of it as less important than the main text,
being added almost as an afterthought. However,
this is not correct. Actually the bibliography tells
an important story about the field of study and the
place of the given work within it.

Correspondingly, different orderings of the bib-
liography list tell different stories. A sequential or-
dering shows the logic of the current work, while
an alphabetical ordering shows the contributions of
different people to the field. Another possibility,
a chronological ordering, is much less common. It
shows the history of the field, and thus can also be
important and interesting.

Which story should authors choose for their
work? We argue that they may have all of them, pro-
viding several differently ordered lists instead of just
one. Indeed, computers make creation and shuffling
of bibliographies very simple, and electronic publish-
ing eliminates the problem of dead trees needed to
print additional pages (Cohen, 2014).

Accordingly, some time ago we proposed a way
to produce several differently ordered bibliographies
(Cohen et al., 2013a), and released the package multi-

bibliography (Cohen et al., 2013b), implementing it
for LATEX and BibTEX. This package was a proof of
concept for the ideas of the work [2]. It allowed cre-
ation of three bibliography lists with different styles:
alphabetical by authors, chronological by date, and
ordered by the appearance in the text. Each \cite

command produced entries for all three lists. There
were clickable links among the lists and from articu-
lated citations to the lists.

This prototype implementation, while showing
the usefulness of the idea, had a number of limita-
tions. First, the only format of the citation allowed
was the following: “[Cohen et al., 2013a: 2]”. A user
wanting purely author-year or numeric style would
be frustrated. Second, the BibTEX styles for the

reference lists were fixed. If a journal or a book
required different punctuation or capitalization than
that provided, there was no way to adjust the for-
mat of the references. Third, the Perl script used to
manage the lists was a rather ad hoc solution and
needed some refactoring.

In this paper we describe the new package nmbib

(Veytsman and Cohen, 2015), including many new
features.

2 Features of the nmbib package

Like our previous package multibibliography [3], the
nmbib package can create three bibliography lists:
timeline, sequential, and alphabetical. However, un-
like multibibliography, it allows the user to easily
omit any of these lists.

The main feature of nmbib is full compatibility
with the famous natbib package by Daly (2010). (In
fact, nmbib.sty loads natbib.sty.) Compatibility
means two things. First, any citation command
of natbib, such as \citet, \citep, \citeauthor,
\citeyear, etc., works directly. Second, any natbib

bst style can be used for the respective bibliography.
This includes customized styles created with the
makebst package (Daly, 2003). Thus a user can
easily create a bibliography style according to any
specification.

The package is also compatible with hyperref

(Rahtz and Oberdiek, 2012). If the latter is loaded,
all citations have hyperlinks with evident properties:
clicking on authors’ names lands the user on the
alphabetical list, clicking on a date lands her on the
chronological list, and clicking on a number goes
to the sequential list. There are hyperlinks among
the labels of the bibliography items with the same
meaning. Moreover, if one uses the styles supplied
with the package, there are additional links among
the bodies of the bibitems: for example, clicking on
authors’ names in the chronological list will bring
the user to the relevant entry in the alphabetical list.

The package can be extended to new types of
sorting. For example, if the bibliography entries
have a field with the number of citations for the
given paper, we can imagine a list ordered according
to the influence of the publications.1

3 User interface

The full manual [4] for the package is available on
CTAN. Here we discuss just the main features of the
program.

To produce a standard BibTEX-based bibliogra-
phy, one uses three types of commands:

1 We are grateful for this suggestion to the audience of

TUG 2015.

New multibibliography package nmbib

134 TUGboat, Volume 36 (2015), No. 2

1. Citation command: \cite (and, for natbib,
a number of extensions such as \citeauthor,
\citenum, etc.).

2. Command for setting up the bibliography style:
\bibliographystyle.

3. Command for setting the bibliography databases
and printing the bibliography: \bibliography.

Our interface is designed following the same pat-
tern. First, it uses the same \cite commands. Our
package allows one to intermix author-year and nu-
merical citations, as in this paper. The command
\citefull may be used to get the full citation in the
multibibliography package style.

Next, our command \multibibliographystyle
is similar to the command \bibliographystyle,
with the following important difference: the user
must separately set styles for the three major kinds
of bibliography: timeline, sequence, and authors.
For example:

\multibibliographystyle{timeline}%

{chronoplainnm}

\multibibliographystyle{sequence}{unsrtnm}

\multibibliographystyle{authors}{plainnm}

The three BibTEX styles referenced here are supplied
with the package. As discussed above, one can use
any natbib-compatible style for alphabetical and
sequential lists.

Finally, the command \bibliography in stan-
dard BibTEX use has two functions: setting the
databases and also printing the bibliography. Our
package separates these functions: the command
\multibibliography only sets the databases, while
the list of references is printed with the command
\printbibliography. The latter has one argument,
which sets the type of the list, as in

\printbibliography{sequence}

\printbibliography{authors}

\printbibliography{timeline}

In the standard BibTEX-based workflow, after
a latex run, a file \jobname.aux is processed by
the bibtex program, creating the file \jobname.bbl.
In the nmbib workflow, three files are generated:
\jobname-timeline.aux, \jobname-sequence.aux,
and \jobname-author.aux. Each of them should be
processed with bibtex. The script nmbibtex, sup-
plied with the package nmbib, can automate this
processing, but is not required.

The package nmbib is highly customizable: it
is easy to change bibliography labels, names of the
individual lists, and other features. See the manual
for a full description.

4 Conclusions

We have developed and released a completely new im-
plementation of the multibibliography package. The
new program has a flexible and highly customizable
interface.

Sequential bibliography

[1: Cohen (2014)] Michael Cohen. From Killing Trees
to Executing Bits: A Survey of Computer-Enabled
Reading Enhancements for Evolving Literacy.
In VSMM: Proc. Int. Conf. on Virtual Systems
and Multimedia, Hong Kong, December 2014.
http://www.vsmm2014.org, ISBN 978-1-4799-7227-
2, https://www.researchgate.net/publication/

277006068_From_Killing_Trees_to_Executing_

Bits_A_Survey_of_Computer-Enabled_Reading_

Enhancements_for_Evolving_Literacy.

[2: Cohen et al. (2013a)] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The multibibliogra-
phy package. TUGboat, 34(3):340–343, 2013. http:

//tug.org/TUGboat/tb34-3/tb108cohen.pdf.

[3: Cohen et al. (2013b)] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The Multibibliogra-
phy package, March 2013. http://ctan.org/pkg/

multibibliography.

[4: Veytsman and Cohen (2015)] Boris Veytsman and
Michael Cohen. New Multibibliography Package nmbib,
July 2015. http://ctan.org/pkg/nmbib.

[5: Daly (2010)] Patrick W. Daly. Natural Sciences Ci-
tations and References (Author-Year and Numerical
Schemes), September 2010. http://ctan.org/pkg/

natbib.

[6: Daly (2003)] Patrick W. Daly. Customizing Bibli-
ographic Style Files, September 2003. http://ctan.

org/pkg/custom-bib.

[7: Rahtz and Oberdiek (2012)] Sebastian Rahtz and
Heiko Oberdiek. Hypertext Marks in LATEX: A Manual
for Hyperref, November 2012. http://ctan.org/pkg/
hyperref.

Alphabetic bibliography

[Cohen (2014); 1] Michael Cohen. From Killing Trees
to Executing Bits: A Survey of Computer-Enabled
Reading Enhancements for Evolving Literacy.
In VSMM: Proc. Int. Conf. on Virtual Systems
and Multimedia, Hong Kong, December 2014.
http://www.vsmm2014.org, ISBN 978-1-4799-7227-
2, https://www.researchgate.net/publication/

277006068_From_Killing_Trees_to_Executing_

Bits_A_Survey_of_Computer-Enabled_Reading_

Enhancements_for_Evolving_Literacy.

[Cohen et al. (2013b); 3] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The Multibibliogra-
phy package, March 2013. http://ctan.org/pkg/

multibibliography.

Boris Veytsman and Michael Cohen

TUGboat, Volume 36 (2015), No. 2 135

[Cohen et al. (2013a); 2] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The multibibliogra-
phy package. TUGboat, 34(3):340–343, 2013. http:

//tug.org/TUGboat/tb34-3/tb108cohen.pdf.

[Daly (2003); 6] Patrick W. Daly. Customizing Biblio-
graphic Style Files, September 2003. http://ctan.

org/pkg/custom-bib.

[Daly (2010); 5] Patrick W. Daly. Natural Sciences Ci-
tations and References (Author-Year and Numerical
Schemes), September 2010. http://ctan.org/pkg/

natbib.

[Rahtz and Oberdiek (2012); 7] Sebastian Rahtz and
Heiko Oberdiek. Hypertext Marks in LATEX: A Manual
for Hyperref, November 2012. http://ctan.org/pkg/
hyperref.

[Veytsman and Cohen (2015); 4] Boris Veytsman and
Michael Cohen. New Multibibliography Package nmbib,
July 2015. http://ctan.org/pkg/nmbib.

Chronological bibliography

[2003: Daly; 6] Patrick W. Daly. Customizing Biblio-
graphic Style Files, September 2003. http://ctan.

org/pkg/custom-bib.

[2010: Daly; 5] Patrick W. Daly. Natural Sciences Ci-
tations and References (Author-Year and Numerical
Schemes), September 2010. http://ctan.org/pkg/

natbib.

[2012: Rahtz and Oberdiek; 7] Sebastian Rahtz and
Heiko Oberdiek. Hypertext Marks in LATEX: A Manual
for Hyperref, November 2012. http://ctan.org/pkg/
hyperref.

[2013a: Cohen et al.; 2] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The multibibliogra-
phy package. TUGboat, 34(3):340–343, 2013. http:

//tug.org/TUGboat/tb34-3/tb108cohen.pdf.

[2013b: Cohen et al.; 3] Michael Cohen, Yannis Hara-
lambous, and Boris Veytsman. The Multibibliogra-
phy package, March 2013. http://ctan.org/pkg/

multibibliography.

[2014: Cohen; 1] Michael Cohen. From Killing Trees
to Executing Bits: A Survey of Computer-Enabled
Reading Enhancements for Evolving Literacy.
In VSMM: Proc. Int. Conf. on Virtual Systems
and Multimedia, Hong Kong, December 2014.
http://www.vsmm2014.org, ISBN 978-1-4799-7227-
2, https://www.researchgate.net/publication/

277006068_From_Killing_Trees_to_Executing_

Bits_A_Survey_of_Computer-Enabled_Reading_

Enhancements_for_Evolving_Literacy.

[2015: Veytsman and Cohen; 4] Boris Veytsman and
Michael Cohen. New Multibibliography Package nmbib,
July 2015. http://ctan.org/pkg/nmbib.

⋄ Boris Veytsman
Systems Biology School and

Computational Materials
Science Center

MS 6A2
George Mason University
Fairfax, VA 22030
USA
borisv (at) lk dot net

borisv.lk.net

⋄ Michael Cohen
Spatial Media Group
Computer Arts Lab.
University of Aizu
Aizu-Wakamatsu, Fukushima

965-8580
Japan
mcohen (at) u-aizu dot ac dot jp

www.u-aizu.ac.jp/~mcohen

New multibibliography package nmbib

136 TUGboat, Volume 36 (2015), No. 2

Generating PDF/X- and PDF/A-compliant

PDFs with pdfTEX— pdfx.sty

C.V. Radhakrishnan, Hàn Thé̂ Thành,
Ross Moore and Peter Selinger

1 Introduction

The pdfx package (pdfx.sty) currently supports
generation of PDF/X- and PDF/A-compliant doc-
uments using pdfTEX, in some variants of these
standards. Support for additional standards, such
as PDF/E and PDF/VT is also available; the com-
plete list is in Section 2.1 below. By ‘supports’, we
mean that the package provides correct and suffi-
cient means to declare that a document conforms
with a stated PDF variant (PDF/X, PDF/A, PDF/E,
PDF/VT, etc.) along with the version and/or level of
conformance. The package also allows appropriate
metadata and color profile to be specified, according
to the requirements of the PDF variant.

Metadata elements, most of which must ulti-
mately be written as XML using the UTF-8 encoding,
is provided via a file named \jobname.xmpdata, for
the running LATEX job. Without such a file, providing
some required information as well as a large range
of optional data, a fully validating PDF file cannot
be achieved. The PDF can be created, having the
correct visual appearance on all pages, but it will
not pass validation checks. Section 2.2 describes how
this file should be constructed.

What this package does not do is check for all
the details of document structure and type of con-
tent that may be required (or restricted) within a
PDF variant. For example, PDF/VT [11] requires
well-structured parts, using Form XObject sections
tagged as ‘/DPart’. Similarly PDF/A-1a (and 2a
and 3a) [3–5] require a fully ‘Tagged PDF’, includ-
ing a detailed structure tagging which envelops the
complete contents of the document. This is beyond
the current version of pdfTEX, as commonly shipped.
So while this package provides enough to meet the
declaration, metadata and font-handling aspects for
these PDF/A variants, it is not sufficient to produce
fully conforming PDFs. However, with extra pdfTEX-
based software that is capable of producing ‘Tagged
PDF’, this package can be used as part of the overall
workflow to produce fully conforming documents.

1.1 PDF standards

PDF/X and PDF/A are umbrella terms used to denote
several ISO standards [3–5, 12–14, 16, 17] that define
different subsets of the PDF standard [1, 6]. The
objective of PDF/X is to facilitate graphics exchange
between document creator and printer and therefore

has all requirements related to printing. For instance,
in PDF/X, all fonts need to be embedded and all
images need to be CMYK or spot colors. PDF/X-2
and PDF/X-3 accept calibrated RGB and CIELAB

colors along with all other specifications of PDF/X.
Since 2005 other variants of PDF/X have emerged,
as extra effects (such as layering and transparency)
have been supported within the PDF standard itself.
The full range of versions and conformance supported
in this package is discussed below in Section 2.1.

PDF/A defines a profile for archiving PDF docu-
ments, which ensures the documents can be repro-
duced in the exact same way in years to come. A
key element to achieving this is that PDF/A docu-
ments are 100% self-contained. All the information
needed to display the document in the same man-
ner every time is embedded in the file. A PDF/A

document is not permitted to be reliant on infor-
mation from external sources. Other restrictions
include avoidance of audio/video content, JavaScript
and encryption. Mandatory inclusion of fonts, color
profile and standards-based metadata are absolutely
essential for PDF/A. Later versions allow for use of
image compression and file attachments.

PDF/E is an ISO standard [8] intended for doc-
uments used in engineering workflows. PDF/VT [11]
allows for high-volume customised form printing,
such as utility bills. PDF/UA (‘Universal Accessibil-
ity’) is emerging as a standard [9, 10] supporting As-
sistive Technologies, incorporating web-accessibility
guidelines (WCAG) for electronic documents. In fu-
ture, PDF/H may emerge, for health records and
medical-related documents. Other applications can
be envisaged. Declarations and metadata are sup-
ported for the first two of these. The others are
the subject of further work; revised versions of this
package can be expected in later years.

2 Usage

The package can be loaded with the command:

\usepackage[〈options〉]{pdfx}

where the options are as follows.

2.1 Options

2.1.1 PDF/A options

PDF/A is an ISO standard [3–5] intended for long-
term archiving of electronic documents. It therefore
emphasizes self-containedness and reproducibility,
as well as machine-readable metadata. The PDF/A

standard has three conformance levels “a”, “b”, and
“u”. Level “a” is the strictest, and is not yet fully
implemented by the pdfx package. Conformance
level “u” has the same requirements as level “b”, but

C.V. Radhakrishnan, Hàn Thé̂ Thành, Ross Moore and Peter Selinger

TUGboat, Volume 36 (2015), No. 2 137

with the additional requirement that all text in the
document must have a Unicode mapping. The pdfx
package produces such Unicode mappings even in
level “b” files. The standard also has three different
versions 1, 2, and 3, which were standardized in
2005, 2011, and 2012, respectively. Earlier versions
contain a subset of the features of later versions, so
for maximum portability, it is preferable to use a
lower-numbered version. There is no conformance
level “u” in version 1 of the standard. For many
typical uses of PDF/A, it is sufficient to use PDF/

A-1b.

• a-1a: generate PDF/A-1a. Experimental, not
fully implemented.

• a-1b: generate PDF/A-1b.

• a-2a: generate PDF/A-2a. Experimental, not
fully implemented.

• a-2b: generate PDF/A-2b.

• a-2u: generate PDF/A-2u.

• a-3a: generate PDF/A-3a. Experimental, not
fully implemented.

• a-3b: generate PDF/A-3b.

• a-3u: generate PDF/A-3u.

By ‘Experimental, not fully implemented’ we mean
primarily that the document structure, as required
for ‘Tagged PDF’, is not handled by this package.
Using other pdfTEX-based software that is capa-
ble of producing such complete tagging, conforming
documents can indeed be produced.

2.1.2 PDF/E options

PDF/E is an ISO standard intended for documents
used in engineering workflows. There is only one
version of the PDF/E standard so far, and it is called
PDF/E-1.

• e-1: generate PDF/E-1.

2.1.3 PDF/VT options

PDF/VT is an ISO standard intended as an exchange
format for variable and transactional printing, and is
an extension of the PDF/X-4 standard. The standard
specifies three PDF/VT conformance levels. Level 1
is for single-file exchange, level 2 is for multi-file
exchange, and level 2s is for streamed delivery. Cur-
rently, none of the PDF/VT conformance levels are
fully implemented by the pdfx package.

• vt-1: generate PDF/VT-1. Experimental, not
fully implemented.

• vt-2: generate PDF/VT-2. Experimental, not
fully implemented.

• vt-2s: generate PDF/VT-2s. Experimental, not
fully implemented.

By ‘Experimental, not fully implemented’ here we
mean primarily that the structuring of a document
into ‘/DPart’ sections, as Form XObjects, is not
handled by this package. This is possible with cur-
rent pdfTEX software, but not yet in a way that
lends itself easily to full automation, due to require-
ments of knowing the internal object number of cer-
tain internal PDF constructs. All other aspects—
PDFInfo declaration, metadata and color profile—of
the PDF/VT variants are correctly handled.

2.1.4 PDF/X options

PDF/X is an ISO standard intended for graphics inter-
change. It emphasizes printing-related requirements,
such as embedded fonts and color profiles. The PDF/

X standard has a large number of variants and con-
formance levels. The basic variants are known as X-1,
X-1a, X-3, X-4, and X-5. (A revised version of the
X-2 standard was published in 2003, but withdrawn
as an ISO standard in 2011, basically due to lack of
interest in using it.) The PDF/X-1a standard exists
in revisions of 2001 and 2003, the PDF/X-3 standard
exists in revisions of 2002 and 2003, and the PDF/

X-4 and PDF/X-5 standards exist in revisions of 2008
and 2010. Moreover, some of these standards have
a ‘p’ version, which permits the use of an externally
supplied color profile (instead of an embedded one),
and/or a ‘g’ version, which permits the use of exter-
nal graphical content. Moreover, PDF/X-5 has an
‘n’ version, which extends PDF/X-4p by permitting
additional color spaces other than grayscale, RGB,
and CMYK. For many typical uses of PDF/X, it is
sufficient to use PDF/X-1a.

• x-1: generate PDF/X-1.

• x-1a: generate PDF/X-1a. Options x-1a1 and
x-1a3 are also available to specify PDF/X-1a:
2001 or PDF/X-1a:2003 explicitly.

• x-3: generate PDF/X-3. Options x-302 and
x-303 are also available to specify PDF/X-3:2002
or PDF/X-3:2003 explicitly.

• x-4: generate PDF/X-4. Options x-408 and
x-410 are also available to specify PDF/X-4:2008
or PDF/X-4:2010 explicitly.

• x-4p: generate PDF/X-4p. Options x-4p08 and
x-4p10 are also available to specify PDF/X-4p:
2008 or PDF/X-4p:2010 explicitly.

• x-5g: generate PDF/X-5g. Options x-5g08 and
x-5g10 are also available to specify PDF/X-5g:
2008 or PDF/X-5g:2010 explicitly.

• x-5n: generate PDF/X-5n. Options x-5n08 and
x-5n10 are also available to specify PDF/X-5n:
2008 or PDF/X-5n:2010 explicitly. Experimen-
tal, not fully implemented.

Generating PDF/X- and PDF/A-compliant PDFs with pdfTEX— pdfx.sty

138 TUGboat, Volume 36 (2015), No. 2

• x-5pg: generate PDF/X-5pg. Options x-5pg08
and x-5pg10 are also available to specify PDF/

X-5pg:2008 or PDF/X-5pg:2010 explicitly.

2.1.5 Other options

These options are experimental and should not nor-
mally be used.

• useBOM: generate an explicit UTF-8 byte-order
marker in the embedded XMP metadata, and
make the XMP packet writable. Neither of these
features are required by the PDF/A standard,
but there exist some PDF/A validators (report-
edly validatepdfa.com) that seem to require
them. Note: the implementation of this fea-
ture is experimental and may break with future
updates to the xmpincl package.

• noBOM: do not generate the optional byte-order
marker (default).

• pdf13: use PDF 1.3, overriding the version spec-
ified by the applicable standard. This may pro-
duce a non-standard-conforming PDF file.

• pdf14: use PDF 1.4, overriding the version spec-
ified by the applicable standard. This may pro-
duce a non-standard-conforming PDF file.

• pdf15: use PDF 1.5, overriding the version spec-
ified by the applicable standard. This may pro-
duce a non-standard-conforming PDF file.

• pdf16: use PDF 1.6, overriding the version spec-
ified by the applicable standard. This may pro-
duce a non-standard-conforming PDF file.

• pdf17: use PDF 1.7, overriding the version spec-
ified by the applicable standard. This may pro-
duce a non-standard-conforming PDF file.

2.2 Data file for metadata

As mentioned above, standards-compliant PDF doc-
uments require metadata to be included. The pdfx
package expects the metadata to be supplied in a
special data file called \jobname.xmpdata. Here,
\jobname is usually the basename of the document’s
main .tex file. For example, if your document source
is main.tex, then the metadata must be in a file
called main.xmpdata. None of the individual meta-
data fields are mandatory, but for most documents,
it makes sense to define at least the title and the
author. Here is an example of a short .xmpdata file:

\Title{Baking through the ages}

\Author{A. Baker\sep C. Kneader}

\Keywords{cookies\sep muffins\sep cakes}

\Publisher{Baking International}

Please note that multiple authors and keywords have
been separated by \sep. The \sep macro is only per-
mitted in the \Author, \Keywords, and \Publisher

fields.

After processing, the local directory contains
a file named such as pdfa.xmpi or pdfx.xmpi ac-
cording to the PDF variant required. This file is the
complete XMP metadata packet. It can be checked
for validity using an online validator, such as:
http://www.pdflib.com/knowledge-base/

xmp-metadata/free-xmp-validator

2.3 List of supported metadata fields

Here is a complete list of user-definable metadata
fields currently supported, and their meanings. More
may be added in the future. These commands can
only be used in the .xmpdata file.

2.3.1 General information:

• \Author: the document’s human author.
Separate multiple authors with \sep.

• \Title: the document’s title.

• \Keywords: list of keywords, separated
with \sep.

• \Subject: the abstract.

• \Publisher: the publisher.

2.3.2 Copyright information:

• \Copyright: a copyright statement.

• \CopyrightURL: location of a web page
describing the owner and/or rights statement
for this document.

• \Copyrighted: “True” if the document is
copyrighted, and “False” if it isn’t. This
is automatically set to “True” if either
\Copyright or \CopyrightURL is specified,
but can be overridden. For example, if the
copyright statement is “Public Domain”, this
should be set to “False”.

2.3.3 Publication information:

• \PublicationType: The type of publication.
If defined, must be one of book, catalog,
feed, journal, magazine, manual, newsletter,
pamphlet. This is automatically set to
“journal” if \Journaltitle is specified, but
can be overridden.

• \Journaltitle: The title of the journal
where the document was published.

• \Journalnumber: The ISSN for the
publication in which the document was
published.

• \Volume: Journal volume.

• \Issue: Journal issue/number.

• \Firstpage: First page number of the
published version of the document.

C.V. Radhakrishnan, Hàn Thé̂ Thành, Ross Moore and Peter Selinger

TUGboat, Volume 36 (2015), No. 2 139

• \Lastpage: Last page number of the
published version of the document.

• \Doi: Digital Object Identifier (DOI) for the
document, without the leading “doi:”.

• \CoverDisplayDate: Date on the cover of the
journal issue, as a human-readable text string.

• \CoverDate: Date on the cover of the journal
issue, in a format suitable for storing in a
database field with a “date” data type.

2.4 Symbols permitted in metadata

Within the metadata, all printable ASCII characters
except \, {, }, and % represent themselves. Also, all
printable Unicode characters from the basic multilin-
gual plane (i.e., up to code point U+FFFF) can be
used directly with the UTF-8 encoding. (Encodings
other than UTF-8 are not currently supported in the
metadata). Consecutive whitespace characters are
combined into a single space. Whitespace after a
macro such as \copyright, \backslash, or \sep is
ignored. Blank lines are not permitted. Moreover,
the following markup can be used:

• “\ ”: a literal space (for example after a macro)

• \%: a literal %

• \{: a literal {

• \}: a literal }

• \backslash: a literal backslash, \

• \copyright: the copyright symbol, c©

The macro \sep is only permitted within \Author,
\Keywords, and \Publisher. Its intention is to sep-
arate multiple authors, keywords, etc. However, for
validation purposes, multiple authors and keywords
must not be truly separated. The package takes care
of this, even when \sep is used.

It turns out that other TEX macros can be used,
provided the author is very careful and does not
ask for too-complicated TEX or LATEX expansions
into internal commands or non-character primitives;
basically just accents, macros for Latin-based special
characters, and simple textual replacements, perhaps
with a simple parameter. A special macro

\pdfxEnableCommands{...}

is provided to help resolve difficulties that may arise.
For example, \pdfxEnableCommands is needed

with the name of one of our authors, Hàn Thé̂ Thành,
due to the doubly-accented letter é̂. It is usual to
define a macro such as:

\def\thanh{H\‘an Th\’{\^e} Thanh}

In previous versions of the pdfx package, use
of such a macro within the .xmpdata file, in the
Copyright information say, could result in the accent
macros expanding into internal primitives, such as

H\unhbox \voidb@x \bgroup

\let \unhbox \voidb@x \setbox ...

going on for many lines. This clearly has no place
within the XMP metadata. To get around this, one
could try using simplified macro definitions

\pdfxEnableCommands{

\def\‘#1{#1^^cc^80}

\def\’#1{#1^^cc^81}

\def\^#1{#1^^cc^82}}

where the ^^cc^80, ^^cc^81, ^^cc^82 cause TEX
to generate the correct UTF-8 bytes for ‘combining
accent’ characters.

This works fine for metadata fields that appear
just in the XMP packet. However, it is not sufficient
for the PDF /Author key, which must exactly match
with the dc:creator metadata element. What is
needed instead is

\pdfxEnableCommands{

\def\thanh{H^^c3^^a0n Th\eee Thanh}

\def\eee{^^c3^^aa^^cc^^81 }}

or the above with ‘à’ typed directly as UTF-8 instead
of ^^c3^^a0 and ‘ê’ in UTF-8 for ^^c3^^aa. The rea-
son for this is due to the \pdfstringdef command,
which constructs the accented Latin letters as single
combined characters à and ê, without resorting to
combining accents, wherever possible. If the meta-
data does not have the same, irrespective of Unicode
normalisation, then validation fails.

With the latest version of the pdfx package,
such difficulties have been overcome, at least for
characters used in Western European, Latin-based
languages. The input encoding used when reading
the .xmpdata file now includes interpretations of
TEX’s usual accent commands to produce the re-
quired UTF-8 byte sequences. Work is ongoing to
extend this input encoding to additional languages
(e.g., extended Latin, Cyrillic, Greek, etc.). A signif-
icant portion of the Unicode Basic Plane characters
can be covered this way. Modules could even be
provided for CJK character sets and mathematical
symbols, etc. However, this can become memory in-
tensive, so significant testing will be required before
this becomes a standard part of the pdfx package.

2.5 Color profiles

Most standards-compliant PDF documents require
a color profile to be embedded within the file. In a
nutshell, such a profile determines precisely how the
colors used in the document will be rendered when
printed to a physical medium. This can be used to
ensure that the document will look exactly the same,
even when it is printed on different printers, with
different paper types, etc. The inclusion of a color

Generating PDF/X- and PDF/A-compliant PDFs with pdfTEX— pdfx.sty

140 TUGboat, Volume 36 (2015), No. 2

profile is necessary to make the document completely
self-contained.

Since most LATEX users are not graphics profes-
sionals and are not particularly picky about colors,
the pdfx package includes default profiles that will
be included when nothing else is specified. Therefore,
the average user doesn’t have to do anything special
about color.

Users who wish to use a specific color profile
can do so by including a \setRGBcolorprofile or
\setCMYKcolorprofile command in the .xmpdata

file. Note that PDF/A and PDF/E accept an RGB

color profile, while PDF/X and PDF/VT require a
CMYK color profile. Use the following commands to
specify an RGB or CMYK color profile, respectively:

\setRGBcolorprofile{〈filename〉}
{〈identifier〉}{〈info string〉}{〈registry URL〉}

\setCMYKcolorprofile{〈filename〉}
{〈output intent〉}{〈identifier〉}{〈registry URL〉}

Within the arguments of these macros, the characters
<, >, &, ^, _, #, $, and ~ can be used as themselves,
but % must be escaped as \%. The defaults are:

\setRGBcolorprofile

{sRGB_IEC61966-2-1_black_scaled.icc}

{sRGB_IEC61966-2-1_black_scaled}

{sRGB IEC61966 v2.1 with black scaling}

{http://www.color.org}

\setCMYKcolorprofile

{coated_FOGRA39L_argl.icc}

{Coated FOGRA39}

{FOGRA39 (ISO Coated v2 300\% (ECI))}

{http://www.argyllcms.com/}

Some color profile files may be obtained from
the International Color Consortium; please see http:
//www.color.org/iccprofile.xalter.

Alternatively, color profiles are shipped with
many Adobe software applications; these are then
available for use also with non-Adobe software. Now
the pdfx package includes coding to streamline inclu-
sion of these profiles in PDF documents, or to specify
them as ‘external’ profiles, with PDF/X-4p and PDF/

X-5pg variants. Two files AdobeColorProfiles.tex
and AdobeExternalProfiles.tex are distributed
with the pdfx package. The latter is for use with
PDF/X-4p and PDF/X-5pg, which do not require
color profiles to be embedded, while the former can
be used with other PDF/X variants. Both define
commands to use color profiles as shown in Table 1.

As of the time of writing, only the first six of
these result in PDFs which can validate with external
profiles (i.e., for PDF/X-4p and PDF/X-5pg) using
current versions of Adobe Acrobat Pro software. It

Table 1: Commands for various color profiles.

Command Name of Profile

\FOGRAXXXIX Coated FOGRA39

(ISO 12647-2:2004)
\SWOPCGATSI U.S. Web Coated (SWOP) v2
\JapanColorMMICoated Japan Color 2001 Coated
\JapanColorMMIUncoated Japan Color 2001 Uncoated
\JapanColorMMIINewspaper Japan Color 2002 Newspaper
\JapanWebCoatedAd Japan Web Coated (Ad)
\CoatedGRACoL Coated GRACoL 2006

(ISO 12647-2:2004)
\SNAPCGATSII CGATS TR 002
\SWOPCGATSIII CGATS TR 003
\SWOPCGATSV CGATS TR 005
\ISOWebCoated Web Coated FOGRA28

(ISO 12647-2:2004)
\ISOCoatedECI ISO Coated v2 (ECI)
\CoatedFOGRA Coated FOGRA27

(ISO 12647-2:2004)
\WebCoatedFOGRA Web Coated FOGRA28

(ISO 12647-2:2004)
\UncoatedFOGRA Uncoated FOGRA29

(ISO 12647-2:2004)
\IFRAXXVI ISOnewspaper26v4

ISO/DIS 12647-3:2004
\IFRAXXX ISOnewspaper30v4

ISO/DIS 12647-3:2004

is unclear whether the others (incl. \IFRAXXVI and
\IFRAXXX) fail due to incorrect data or problems
in the validation software. All but those last two
can be used for valid embedded profiles, providing
the corresponding files can be found. The following
macro is used to set the (absolute or relative) path,
on the local operating system, to the location of color
profile files.

\pdfxSetColorProfileDir

{〈path to Adobe color profiles〉}

2.6 Notes on internal representation

of metadata

Within the PDF file, metadata is deposited in two
places: some data goes into the native PDF /Info

dictionary, and some data goes into an XMP packet
stored separately within the file. XMP is Adobe’s
Extensible Metadata Platform, and is an XML-based
format. See the Adobe XMP Development Center
(http://www.adobe.com/devnet/xmp) for more ex-
haustive information about XMP. An XMP Toolkit
SDK which supports the GNU/Linux, Macintosh and
Windows operating systems is also provided under
the modified BSD license.

Some of the metadata, such as the author, title,
and keywords, are stored both in the XMP packet and
in the /Info dictionary. For the resulting file to be
standards-compliant, the two copies of the data must

C.V. Radhakrishnan, Hàn Thé̂ Thành, Ross Moore and Peter Selinger

TUGboat, Volume 36 (2015), No. 2 141

be identical. All of this is taken care of automatically
by the pdfx package.

In principle, users can resort to alternate ways
to create an XMP file for inclusion in PDF. In this
case, users should create a file pdfa.xmp or pdfx.xmp
(etc., depending on the PDF flavor) containing the
pre-defined data. However, this is an error-prone
process and is not recommended for most users. If
there is a particular field of metadata that you need
and that is not currently supported, please contact
the authors.

pdfx makes use of the xmpincl package to in-
clude xmp data into the PDF. The documentation
of the xmpincl package may help interested users to
understand the process of xmp data inclusion.

2.7 Tutorials and technical notes

A tutorial with step-by-step instructions for generat-
ing PDF/A files is at:
http://www.mathstat.dal.ca/~selinger/pdfa

Some technical notes about production prob-
lems that authors have encountered in generating
PDF/A-compliant documents are at:
http://support.river-valley.com/wiki/

index.php?title=Generating_PDF/A_compliant_

PDFs_from_pdftex

3 Installing

The pdfx package is available on CTAN as usual, via
http://ctan.org/pkg/pdfx. It is also included in
TEX distributions such as TEX Live and MiKTEX.

3.1 Limitations and dependencies

pdfx.sty works with pdfTEX and also LuaTEX. It
further depends on the following other packages:

1. xmpincl for insertion of metadata into PDF.

2. hyperref for hyperlinking, bookmarks, etc.

3. glyphtounicode.tex for mapping glyph names
to corresponding Unicode.

3.2 Files included

The following files are included in the package. Some
are created from pdfx.dtx, following the Makefile.

3.2.1 Package files

• pdfx.sty: main package file (from pdfx.dtx).

• pdfa.xmp: specimen xmp template for PDF/A.

• pdfe.xmp: specimen xmp template for PDF/E.

• pdfvt.xmp: specimen xmp template for PDF/VT.

• pdfx.xmp: specimen xmp template for PDF/X.

• 8bit.def: custom input encoding.

• l8uenc.def: input encoding macro
declarations.

• glyphtounicode-cmr.tex: maps glyph names
to corresponding Unicode for Computer
Modern and other TEX-specific fonts.

• coated_FOGRA39L_argl.icc: CMYK color
profile (freely distributable).

• sRGB_IEC61966-2-1_black_scaled.icc:
RGB color profile (freely distributable).

• ICC_LICENSE.txt: license for the color
profiles.

• AdobeColorProfiles.tex: macros for
inclusion of Adobe-supplied color profiles.

• AdobeExternalProfiles.tex: macros for use
of external color profiles.

3.2.2 Documentation

• README: usual top-level information.

• manifest.txt: file list.

• sample.tex, sample.xmpdata: a sample file
with sample metadata.

• small2e-pdfx.tex, small2e-pdfx.xmpdata:
another sample file with sample metadata.

3.2.3 Sources

• src/pdfx.dtx: literate source combining code
and documentation.

• src/pdfx.ins: installer batch file.

• src/rvdtx.sty: used by pdfx.dtx.

• src/Makefile: a Makefile for building the
documentation.

3.3 Licensing and contact

The package is released under the LATEX Project
Public License. Bug reports, suggestions, feature
requests, etc., may be sent to any of the authors at
the addresses below.

Bibliography

[1] Adobe Systems Inc.; PDF Reference 1.7, November 2006.
Also available as [6]. http://www.adobe.com/devnet/

pdf/pdf_reference.html.

[2] Dublin Core Metadata Element Set, Version 1.1, October
2010. http://dublincore.org/documents/dces/

[3] ISO 19005-1:2005; Document Management—Electronic
document file format for long term preservation—
Part 1: Use of PDF1.4 (PDF/A-1); Technical Com-
mittee ISO/TC171/SC2 (Sept. 2005). Revisions via
Corrigenda: ISO 19005-1:2005/Cor 1:2007 (March 2007);
ISO19005-1:2005/Cor 2:2011 (Dec. 2011). http://www.
iso.org/iso/catalogue_detail?csnumber=38920.

[4] ISO 19005-2:2011; Document Management—Electronic
document file format for long term preservation—Part 2:
Use of ISO32000-1 (PDF/A-2); Technical Committee
ISO/TC171/SC2 (June 2011). http://www.iso.org/

iso/catalogue_detail?csnumber=50655.

Generating PDF/X- and PDF/A-compliant PDFs with pdfTEX— pdfx.sty

142 TUGboat, Volume 36 (2015), No. 2

[5] ISO 19005-3:2012; Document Management—Electronic
document file format for long term preservation—Part 3:
Use of ISO32000-1 with support for embedded files
(PDF/A-3); Technical Committee ISO/TC171/SC2
(October 2012). http://www.iso.org/iso/catalogue_

detail?csnumber=57229.

[6] ISO32000-1:2008; Document management—Portable
document format (PDF1.7); Technical Commit-
tee ISO/TC171/SC2 (July 2008). Also available
as [1]. http://www.iso.org/iso/catalogue_detail?

csnumber=51502.

[7] ISO32000-2-20140220; Document management—
Portable document format—Part 2: PDF2.0; Technical
Committee ISO/TC171/SC 2, in draft form (Feb. 2014).

[8] ISO24517-1:2008; Document Management—Engineer-
ing document format using PDF—Part 1: Use
of PDF 1.6 (PDF/E-1); Technical Committee
ISO/TC171/SC2 (May 2008). http://www.iso.org/

iso/catalogue_detail?csnumber=42274.

[9] ISO 14289-1:2012; Document management applications—
Electronic document file format enhancement for
accessibility—Part 1: Use of ISO32000-1 (PDFUA-1);
Technical Committee ISO/TC171/SC2 (July 2012).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=54564.
Revised as ISO14289-1:2014 (December 2014):
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=64599.

[10] PDFUA Technical Implementation Guide: Understand-
ing ISO14289-1 (PDFUA-1). AIIM Global Community
of Information Professionals. http://www.aiim.org/

Research-and-Publications/standards/committees/

PDFUA/Technical-Implementation-Guide.

[11] ISO16612-2:2010; Graphic technology—Variable data
exchange—Part 2: Using PDF/X-4 and PDF/X-5
(PDFVT-1 and PDFVT-2). Technical Committee
ISO/TC130 (December 2005).
http://www.iso.org/iso/home/store/catalogue_tc/

catalogue_detail.htm?csnumber=38013.

[12] ISO 15930-1:2001; Graphic technology—Prepress digital
data exchange—Use of PDF—Part 1: Complete
exchange using CMYK data (PDF/X-1 and PDF/X-1a).
Technical Committee ISO/TC130 (December 2001).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=29061.

[13] ISO15930-3:2002; Graphic technology—Prepress
digital data exchange—Use of PDF—Part 3: Com-
plete exchange suitable for colour-managed workflows
(PDF/X-3). Technical Committee ISO/TC130 (Septem-
ber 2002).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=34941.

[14] ISO 15930-4:2003; Graphic technology—Prepress digital
data exchange—Use of PDF—Part 4: Complete
exchange of CMYK and spot colour printing data
using PDF 1.4 (PDF/X-1a). Technical Committee
ISO/TC130 (December 2003).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=39938.

[15] ISO 15930-6:2003; Graphic technology—Prepress digital
data exchange—Use of PDF—Part 6: Complete
exchange of printing data suitable for colour-managed
workflows using PDF 1.4 (PDF/X-3). Technical
Committee ISO/TC130 (December 2003).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=39940.

[16] ISO 15930-7:2010; Graphic technology—Prepress digital
data exchange—Use of PDF—Part 7: Complete
exchange of printing data (PDF/X-4) and partial
exchange of printing data with external profile reference
(PDF/X-4p) using PDF 1.6. Technical Committee
ISO/TC130 (July 2010).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=55843.

[17] ISO15930-8:2010; Graphic technology—Prepress
digital data exchange—Use of PDF—Part 8: Partial
exchange of printing data using PDF 1.6 (PDF/X-5).
Technical Committee ISO/TC130 (July 2010).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=55844.
Revision via Corrigendum: ISO 15930-8:2010/Cor 1:2011
(August 2011).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=60210.

[18] ISO16684-1:2012; Graphic technology—Extensible
metadata platform (XMP) specification—Part 1: Data
model, serialization and core properties. Technical
Committee ISO/TC130 (February 2012).
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=57421.

⋄ C.V. Radhakrishnan
River Valley Technologies
Trivandrum, India 695014
cvr (at) river-valley dot org

http://cvr.cc/

⋄ Hàn Thé̂ Thành
River Valley Technologies
Trivandrum, India 695014
thanh (at) river-valley dot org

⋄ Ross Moore
Mathematics Department
Macquarie University
Australia 2109
ross (at) mq dot edu dot au

http://maths.mq.edu.au/~ross/

⋄ Peter Selinger
Department of Mathematics and Statistics
Dalhousie University
Halifax, Nova Scotia B3H 4R2
Canada
selinger (at) mathstat dot dal dot ca

http://www.mathstat.dal.ca/~selinger/

C.V. Radhakrishnan, Hàn Thé̂ Thành, Ross Moore and Peter Selinger

TUGboat, Volume 36 (2015), No. 2 143

TEXShop’s key bindings vs. macros vs.

command completion

Herbert Schulz

Abstract

A workshop was held at TUG’15 about some fea-
tures of TEXShop that are sometimes confused. The
following article is based on the topics discussed,
but we’ll start with some general information about
TEXShop.

1 Introduction

TEXShop is a “front end” for TEX on MacOSX. As
such it allows the user to create and edit TEX source
files, interact with an installed TEX distribution (e.g.,
typeset the source file) and finally preview the final
PDF file. It also allows the user to go back and forth
between preview and source.

Over the years TEXShop has added many fea-
tures. Some of them are obvious and are meant to
help a novice get started. Others are a bit more
subtle in their use and the underlying power of these
features needs to be coaxed out.

2 Three features

There are three features of TEXShop which often get
mixed up: Key Bindings (at one time called Auto-
Completion), Macros, and Command Completion. Al-
though they share similar features it is possible to
discern a difference between them and decide when
each is most useful.

Key Bindings assign a sequence of keystrokes
to the press of a single key; e.g., typing ‘_’ produces
‘_{...|}’ (where ...| is any selected text followed
by the insertion point— the place where newly-typed
text is inserted) or typing ‘≤’ (Opt-, with the English
keyboard layout) produces ‘\leq’.

Macros can also insert simple text and be given
a keyboard shortcut (that always uses Cmd plus other
keys) but are most useful when attached to Apple-
Script programs so they can do special processing of
source text, etc.

Command Completion (NOT to be confused
with Auto-Completion) allows you to type a partial
command or short abbreviation and, when a trigger
key is pressed (Esc by default but it can be set to Tab),
have the text so far expanded into a full command
or even a full environment structure.

Details follow.

3 Key Bindings

Key Bindings are enabled in general by checking
TeXShop→Preferences→ Source→Key Bindings. Of
course they can be turned off by un-checking that

preference setting. They can be turned on/off for
a given editing session by using the Source→Key
Bindings→Toggle On/Off menu item (a check mark
means it’s on).

You can see view, edit, add to, and remove
from the list of Key Bindings by starting up the
Key Bindings Editor via the menu item Source→Key
Bindings→Edit Key Bindings File. . . .

3.1 Notes on Key Bindings

• Inserting a \ before typing the key negates the
expansion; e.g., pressing \ and then _ produces
_, as it should.

• Key Bindings cannot be created for characters
produced by multi-key sequences; e.g., Opt-e
followed by e produces é on the English key-
board layout which cannot be set to produce
\’e as a Key Binding. The initial Opt-e is usually
called a dead key since it doesn’t produce an on-
screen character by itself and must be followed
by another character.

• When creating a Key Binding using #SEL# or
#INS# in the replacement text will place any se-
lected text or the insertion point at that location
respectively.

• Let’s emphasize that Key Bindings always ex-
pand to the assigned text (unless escaped with
\). There may be times when you don’t wish an
expansion of that keystroke. You should create
a Macro to do that for you.

4 Macros

The Macros menu contains a fairly large number of
pre-defined macros. You can create another macro
with the Macro Editor, via Macros→Open Macro
Editor. Macros can be added either by copying text
into a newly created macro or by adding a macro
file (with extension plist) using Macros→Add macros
from file (only visible and available when the Macro
Editor is active).

The order of appearance of the macros in the
Macros menu can also be changed by simply moving
them around on the left panel of the Macro Editor.

4.1 Notes on Macros

• Text to which you wish to assign a Cmd-based
keyboard shortcut is best created using a Macro
rather than a Key Binding; e.g., there is already
a Macro that takes selected text and sets it in
boldface (using \textbf) and you can assign
the Cmd-B keyboard shortcut to that Macro in
the Macro Editor.

TEXShop’s key bindings vs. macros vs. command completion

144 TUGboat, Volume 36 (2015), No. 2

• When creating a text macro using #SEL# or
#INS# in the replacement text will place any se-
lected text or the insertion point at that location
respectively.

5 Command Completion

For Command Completion you enter a partial com-
mand name or a short abbreviation, press a trig-
ger key (Esc or Tab, mentioned above, if set in
TeXShop→Preferences→Source→Command Com-
pletion Triggered By:) and it gets expanded. E.g.,
enter

\sec

on a new line and press the trigger (Esc or . . .) and
you get

\section{•}

(where • is a selected bullet—called a Mark in Com-
mand Completion parlance—so simply typing will
replace that Mark with your text. There can be more
than one match for a given input; if you press the
trigger again (without entering text) you get

\section*{•}

and another press of the trigger gives

\section[•]{•}

for separate section titles in the toc and the docu-
ment. In the last case there is a second Mark (•) for
the second argument. After entering the toc section
title you jump to and select the next Mark by us-
ing Source→Command Completion→Marks→Next
Mark (Ctl-Cmd-F) so you can immediately start typ-
ing the section title for that document.

Better yet are abbreviations. E.g., type

\benu

(abbreviations for environments always start with a
‘b’) and press the trigger key to get

\begin{enumerate}

\item

•

\end{enumerate}•

. . . ready to enter the first item.

Then to get a new \item simply type

\it

on a new line and the trigger to get

\item

•

To get to the very end of the enumerate environment
use Ctl-Cmd-F to select the Mark at the end of the
environment where simply typing Return will remove
that mark and move to the next line.

5.1 Notes on Command Completion

• Command Completion replaces any selected text
by the expansion. This is unlike Key Bindings
and Macros, which can be written to include the
selected text in the final result of their actions.

• The easiest way to learn how to create your
own command completions or abbreviations is
to examine the Command Completion File us-
ing Source→Command Completion→Edit Com-
mand Completion File. . . .

• When creating a completion or abbreviation
for Command Completion you cannot use #SEL#
since any selection will be replaced by the com-
pletion. Using #INS# in the replacement text
will place the insertion point at that location re-
spectively. You can also use two copies of #INS#
and any text between them will be selected; e.g.,
this is useful for first arguments which should be
a selected Mark, •, created with #INS#•#INS#.
Use Cmd-8 to produce the Mark because Key
Bindings, if active, will replace a typed • with
\textbullet.

6 In closing

The current version of this document (labeled as
TeXShopFeatureConfusion), and many other TEX- and
TEXShop-related items, are available at the DropBox
url below. The TeXShopTips document there may
be of particular interest.

⋄ Herbert Schulz

herbs2 (at) mac dot com

https://dl.dropboxusercontent.

com/u/10932738/index.html

Herbert Schulz

TUGboat, Volume 36 (2015), No. 2 145

TEX as a three-stage rocket: Cookie-cutter

page breaking

S.K. Venkatesan

Abstract

We trace the progression of technological develop-
ments from the early days of computers and how
TEX has been able to maneuver through all these
changes. A major challenge now arises from the
ubiquitous browser and HTML5. We propose that
TEX reinvent itself as a three-stage engine: 1) para-
graph generation; 2) creation of very long scroll page;
3) page-breaking through a simple cookie-cutter pro-
cess. With these relatively small adjustments TEX
and its typographic nuances could be liberated into
the exciting wide open spaces of the World Wide
Web.

1 Introduction

Donald Knuth arrived in an age in the United States
when universities were making important changes
to the digital landscape, notably including Stanford
University. The arrival of big capital in software
development had already created grave doubts in
the mind of the creator of Emacs, Richard Stallman.
It is indeed a great achievement that an interactive
system with its own special markup, especially for
mathematics, introduced in 1979, has been used for
36 years, despite all the advancement of big capital
and its great innovations. Knuth’s use of the dollar
sign to create mathematics of priceless quality is
an amusing comment on poor quality commercial
typography. Knuth’s recent announcement of iTEX
[1] was also an apt mockery of the pompous ways of
big capital.

However, there have been great changes in the
computing landscape. First there were separate non-
interactive punch card devices which gave way to in-
teractive command-line interfaces. Second there were
automated printing devices and then non-interactive
graphics plotting devices. Finally out of all these
evolved the modern hybrids: desktops, laptops, tab-
lets, e-readers, mobile phones, etc. It is indeed a
great achievement that TEX has survived all these
incredible changes in devices and systems. TEX is
still probably the best text format to SMS maths in
mobiles!

2 SGML, HTML and the browser

Big capital then had its own innovation, the SGML

DTD. It could have used a backslash syntax similar
to TEX or a parenthetical syntax similar to Lisp;
in fact the SGML language was so general that it

could accommodate any syntax. Knuth, the mathe-
matician, would not have agreed to use the less-than
symbol for markup but that is how it is in the world
of business and there is similarly no way a business
man would agree to use the dollar sign for markup.
Knuth’s nice choice of the rarely used backslash for
starting macros was replaced with the commonly-
used ampersand symbol, which now has to be dis-
played by escaping it as an entity. However, SGML

had an additional feature that TEX didn’t have: an
agreed-on grammar (EBNF) for parsing, which made
it popular with its evangelists. By the late 1980s,
SGML+DTD became the industry standard for the
large publishers as it could now be validated! How-
ever, SGML and the DSSSL stylesheet language for
SGML was unwieldy, and it was not easy to process
SGML for typesetting. Many commercial companies
created SGML-friendly systems with some daring to
even implement the unwieldy DSSSL.

The arrival of the Internet produced HTML

through Tim Berners-Lee at CERN, a simple imple-
mentation of many futuristic concepts of Ted Nelson’s
Xanadu [2]. With the introduction of the Mosaic
browser, the hyperlinking between documents cre-
ated a new revolution, creating the web as we see it
now. It was no more the stale references at the end of
a document which one has to look-up in the library;
now you can click at links and travel to the linked
documents! This led to greater democratisation of
knowledge, especially with the arrival of Wikipedia
and other open access publishing models, that has
continued to expand the open World Wide Web.

Print was still used a lot in those days and it
never dawned on anyone at that time that the advent
of the browser would slowly bring the end to printing
on paper. Internet browsers had a scroll bar that
could be scrolled down to read the whole document.
Ancient cloth scrolls now had their new avatar. The
creation of codex pages that had become the vogue
from the 14th century in Europe with the Gutenberg
press in Germany is now in the process of being
undone.

Of course, the concept of pages is still popular
in HTML eBook renderers also. Adobe PostScript
and PDF are still popular page models that are used
for viewing pages, as the codex refuses to die in the
annals of history. The invention of electronic e-paper
or e-ink show how friendly glare-free paper is! As
the page numbers disappear in eBook Readers like
Kindle, they are replaced by the percentage of the
document travelled by the reader. Of course, a page
number could be generated automatically based on
the device width and height, but that would not be
a device-independent value any more as in PDF.

TEX as a three-stage rocket: Cookie-cutter page breaking

146 TUGboat, Volume 36 (2015), No. 2

3 TEX in a very long browser page

IBM Tech Explorer Hypermedia Browser was one of
the early attempts at creating a browser for LATEX
markup. It was implemented as plugins for both
Netscape and Internet Explorer browsers. Although
it only implemented limited features of TEX, it was
nevertheless quite useful for viewing scientific docu-
ments. Back in 1998, Springer-Verlag’s Linear Func-

tions and Matrix Theory by author Bill Jacob was
one of the first publications that had the privilege of
being distributed this way.

Illusions of Java being the platform of the fu-
ture have faded in recent years, especially after
abandonment of the NTS (New Typesetting Sys-
tem). Mainstream development has now shifted to
JavaScript with many new implementations of TEX in
JavaScript. The JsMath package has been extended
by the MathJax team that has now been actively im-
plementing math bits of TEX in the browser. KaTEX
is another excellent implementation of TEX math in
JavaScript by the Khan academy, which produces
popular lectures on all academic topics. The LaTeX-
Math.js package tried to implement a complete LATEX
document. There is also a complete JavaScript port
of pdfTEX (texlive.js) that is now production ready,
but it produces PDF on client-side, not web pages!

Boris Veytsman [3] tried to create very long PDF

pages using TEX. He used output routines to get the
desired long scroll page. However, the maximum
limit that TEX can produce is 5 meters! This is also
the limit in the PDF specification, a limit that is
not easy to relax in PDF, unless we use special units.
Thus it is clear that we have to think beyond PDF

and into the world of browsers.
The arbitrarily long fluid web pages have the

advantage that they can flow into different sized de-
vices, from small hand-held mobiles to wide Desktop
screens. The line-breaking algorithms of the browsers
have been investigated by the author and compared
with the quality of line-breaking that is generally
expected out of the TEX system. In the next section
we will consider this aspect in detail.

4 Line-breaking: TEX versus browsers

Modern typesetting applications and TEX differ in
many details of the line-breaking algorithms. The
author has been exposed to a wide variety of commer-
cial WYSIWYG typesetting applications, which make
some compromise to render pages faster. However,
it is quite possible to produce quality line-breaking
from these applications by controlling the default
settings of these typesetting systems.

In Figs. 1 and 2 we show some sample para-
graphs produced by X ELATEX and the Firefox browser

to show the differences.
As we can see from this output that by making

adjustments in CSS, it is possible to obtain output
quite close in quality to that produced by TEX or
even surpass it in some cases.

5 Footnotes

Users of eBook reader devices have always been un-
comfortable with footnotes becoming endnotes, so
that they have to scroll back and forth from its cita-
tion, making it inconvenient. The IBM Tech Explorer
rendered it as a pop-up notes in those days but there
have been other solutions such as sidenotes or a
pop-balloon.

The author’s own solution for this case1 has been
a bottom rule at the end of the paragraph where the
citation of footnote appears.

1 Footnote below a paragraph

6 Floats: figures and tables

In a bottomless scroll page, where do we place floats,
i.e., figures and tables? This again has various “mag-
ical” solutions, like pop-ups. The author’s simple
solution in these cases is again to place it after the
paragraph in which it is cited. Of course, it is ideal
if the writer of the document indicates the exact
location for these floats. Figures and tables can re-
main at whatever size they are intended, but we can
restrict the maximum size to the size of the device,
and/or we can add a scroll bar if it is too large, as
in the case of wide tables.

7 Pagination as part of a third stage in a

TEX browser

It is appropriate at this juncture to create a TEX
DVI browser that produces pages as long as there
is content without page breaks. The first stage in
this process is the module that produces H&J of each
paragraph of text. Paragraph creation should be
a separate module, as it is much more efficient for
an AJAX application to update changes in a para-
graph without having to repaint the entire document.
Next, we apply the vertical glues, footnotes, floats
as mentioned in earlier sections to get the long scroll
page.

In a simple streaming-down process it is now
possible to automatically decide the page breaks and
move the floats one-by-one as we paginate. The floats
have already been placed close to their citation in
the scroll page, so in a single sweep it is possible to
place them as we paginate. Widows and orphans can
be controlled by appropriately controlling potentially
valid line breaks. We call this simple methodology

S.K. Venkatesan

TUGboat, Volume 36 (2015), No. 2 147

In olden times when wishing still helped one, there lived a
king whose daughter were all beautiful; and the youngest was
so beautiful that the sun itself, which had seen so much, was
astonished whenever it shone in her face. Close by the king's
castle lay a great dark forest, and under an old lime-tree in the
forest was a well, and when the day was very warm, the king's
child went out to the forest and sat down by the fountain; and
when she was bored she took a golden ball, and threw it up on
high and caught it; and this ball was her favourite plaything.

It must be said that everything that doesn't move is not solid
and that everything that moves is not neccessarily liquid. Even
solids some times creeps and moves as in earth crust which
sits under a molten layer of lava, although at the surface, it
all seems like everything is solid and do not move. We have
seen continents move, north pole shift to the south and vice
versa.

The erudite liguistic scholar Otto Jespersen describes how
the English language has been chisseled and perfected over
many centuries from its raw form slowly and continuously,
although rather imperceptibly. However, there have been
also been major landslides and avalanches in English, no doubt
triggered by great political events. The Great Vowel Shift
in English between 1400-1600 was undoubtedly due to the
peasent revolt, the revolt from the last Prince of Wales, Owain
Glyndŵr and ramifications of these events and the eventual
over throw of monarchy in England by Oliver Cromwell. Over-
throw of feudaism in Europe a century later produced quite
similar Great Vowel Shift in other European languages also.

In olden times when wishing still helped one, there lived a

king whose daughter were all beautiful; and the youngest was

so beautiful that the sun itself, which had seen so much, was

astonished whenever it shone in her face. Close by the king's

castle lay a great dark forest, and under an old lime-tree in the

forest was a well, and when the day was very warm, the king's

child went out to the forest and sat down by the fountain; and

when she was bored she took a golden ball, and threw it up on

high and caught it; and this ball was her favourite plaything.

It must be said that everything that doesn't move is not solid

and that everything that moves is not neccessarily liquid.

Even solids some times creeps and moves as in earth crust

which sits under a molten layer of lava, although at the sur-

face, it all seems like everything is solid and do not move. We

have seen continents move, north pole shift to the south and

vice versa.

The erudite liguistic scholar Otto Jespersen describes how

the English language has been chisseled and perfected over

many centuries from its raw form slowly and continuously,

although rather imperceptibly. However, there have been also

been major landslides and avalanches in English, no doubt

triggered by great political events. The Great Vowel Shift in

English between 1400-1600 was undoubtedly due to the

peasent revolt, the revolt from the last Prince of Wales,

Owain Glyndŵr and ramifications of these events and the

eventual over throw of monarchy in England by Oliver

Cromwell. Overthrow of feudaism in Europe a century later

produced quite similar Great Vowel Shift in other European

languages also.

Figure 1: Rendering at 290pt text width; X ELATEX on left, Firefox on right

In olden times when wishing still helped one, there lived a
king whose daughter were all beautiful; and the youngest
was so beautiful that the sun itself, which had seen so much,
was astonished whenever it shone in her face. Close by the
king's castle lay a great dark forest, and under an old lime-
tree in the forest was a well, and when the day was very
warm, the king's child went out to the forest and sat down
by the fountain; and when she was bored she took a golden
ball, and threw it up on high and caught it; and this ball was
her favourite plaything.

It must be said that everything that doesn't move is not solid
and that everything that moves is not neccessarily liquid.
Even solids some times creeps and moves as in earth crust
which sits under a molten layer of lava, although at the sur-
face, it all seems like everything is solid and do not move.
We have seen continents move, north pole shift to the south
and vice versa.

The erudite liguistic scholar Otto Jespersen describes how
the English language has been chisseled and perfected over
many centuries from its raw form slowly and continuously,
although rather imperceptibly. However, there have been
also been major landslides and avalanches in English, no
doubt triggered by great political events. The Great Vowel
Shift in English between 1400-1600 was undoubtedly due
to the peasent revolt, the revolt from the last Prince of Wales,
Owain Glyndŵr and ramifications of these events and the
eventual over throw of monarchy in England by Oliver Cromwell.
Overthrow of feudaism in Europe a century later produced
quite similar Great Vowel Shift in other European languages
also.

In olden times when wishing still helped one, there lived a

king whose daughter were all beautiful; and the youngest

was so beautiful that the sun itself, which had seen so

much, was astonished whenever it shone in her face. Close

by the king's castle lay a great dark forest, and under an old

lime-tree in the forest was a well, and when the day was

very warm, the king's child went out to the forest and sat

down by the fountain; and when she was bored she took a

golden ball, and threw it up on high and caught it; and this

ball was her favourite plaything.

It must be said that everything that doesn't move is not solid

and that everything that moves is not neccessarily liquid.

Even solids some times creeps and moves as in earth crust

which sits under a molten layer of lava, although at the sur-

face, it all seems like everything is solid and do not move.

We have seen continents move, north pole shift to the south

and vice versa.

The erudite liguistic scholar Otto Jespersen describes how

the English language has been chisseled and perfected over

many centuries from its raw form slowly and continuously,

although rather imperceptibly. However, there have been

also been major landslides and avalanches in English, no

doubt triggered by great political events. The Great Vowel

Shift in English between 1400-1600 was undoubtedly due

to the peasent revolt, the revolt from the last Prince of

Wales, Owain Glyndŵr and ramifications of these events

and the eventual over throw of monarchy in England by

Oliver Cromwell. Overthrow of feudaism in Europe a cen-

tury later produced quite similar Great Vowel Shift in other

European languages also.

Figure 2: Rendering at 280pt text-width; X ELATEX on left, Firefox on right.

TEX as a three-stage rocket: Cookie-cutter page breaking

148 TUGboat, Volume 36 (2015), No. 2

the cookie-cutter algorithm and have applied for
a patent, which is pending approval at the Indian
patent office [4]. This algorithm has been tested for
hundreds of sample articles and has been found to be
quite successful at producing satisfactory paginated
results. It is true that the results produced are sub-
optimal but are sufficiently close to optimum to be
of acceptable quality.

After the fundamental work on automatic pagi-
nation by Plass [5], which showed that the optimal so-
lution to the float placement problem is NP-complete,
this problem has been reconsidered in a different light
by Bruggemann-Klein et al. [6]. Mittelbach [7] im-
plemented a new algorithm in LATEX2ε and Marriott
et al. [8] studied the problem for multicolumn layout.
However, all these methods are quite complex and
involve solving complex optimization problems using
a dynamic programming approach. Here, our cookie-
cutter method [4] is not trying to solve for a global
optimum but instead implements a simple one-pass
float placement algorithm that seems to produce
reasonable results for a large number of documents.

8 Conclusions

TEX is now facing interesting challenges from the
HTML5 browser world. TEX with its own inner
beauty and typographic elegance can make the trans-
formation from codex to the scroll page as clearly
demonstrated by Boris Veytsman [3]. It now requires
the creation of a modern TEX browser, probably with
a Unicode model as in X ETEX or LuaTEX, not alto-
gether different from the spirit of IBM Tech Explorer.
Doug McKenna [9] has shown that it is possible to
rewrite TEX in portable C using his JSBox library.
Once we have the box-model output quite like the
HTML DOM model, then it is possible to manipulate
such box-models with a comprehensive browser in
the spirit of HTML5. This will be another excit-
ing browser that will be part of the future world of
tablets and devices that can safely carry forward the
tradition of TEX into the next few decades.

⋄ S.K. Venkatesan

TNQ Books and Journals Pvt. Ltd.

Chennai 600033, India

skvenkat (at) tnq dot co dot in

References

[1] Donald Knuth (2010). An Earthshaking
Announcement, TUGboat 31:2, 121–124.
http://tug.org/TUGboat/tb31-2/tb98knut.

pdf

[2] Theodor Holm Nelson, Project Xanadu.
Xanalogical Structure, Needed Now More
than Ever: Parallel Documents, Deep Links to
Content, Deep Versioning and Deep Re-Use,
Keio University. http://www.xanadu.com.au/
ted/XUsurvey/xuDation.html

[3] Boris Veytsman and Michael Ware (2011).
Ebooks and paper sizes: Output routines made
easier, TUGboat 32:3, 261–265. http://tug.
org/TUGboat/tb32-3/tb102veytsman-ebooks.

pdf

[4] S.K. Venkatesan, M.V. Bhaskar, Srikanth
Vittal (2015). Transformation Of Marked-up
Content To A Reversible File Format For
Automated Browser Based Pagination,
Application number 3348/CHE/2015, Indian
Patent Office.

[5] Michael Plass (1981). Optimal pagination
techniques for automatic typesetting systems.
PhD thesis, Stanford University.

[6] A. Bruggemann-Klein, R. Klein, and
S. Wohlfeil (1995). Pagination reconsidered,
Electronic Publishing 8:2–3, 139–152.
http://cajun.cs.nott.ac.uk/compsci/epo/

papers/volume8/issue2/2point9.pdf

[7] Frank Mittelbach (2000). Formatting
documents with floats: A new algorithm
for LATEX2ε, TUGboat 21:3, 278–290. http:
//tug.org/TUGboat/tb21-3/tb68mittel.pdf

[8] Kim Marriott, Peter Moulder and Nathan
Hurst (2007). Automatic float placement
in multi-column documents, DocEng’07:
Proceedings of the 2007 ACM symposium on
Document engineering, 125–134.

[9] Doug McKenna (2014). On tracing the trip test
with JSBox, TUGboat 35:2, 157–167. http://
tug.org/TUGboat/tb35-2/tb110mckenna.pdf

S.K. Venkatesan

TUGboat, Volume 36 (2015), No. 2 149

Recollections of a spurious space catcher

Enrico Gregorio

Abstract

Several pitfalls are waiting for us when programming in (LA)TEX. This
paper will examine some and search for a solution. Shall we find the
promised land? Maybe so, with expl3.

1 Introduction

Programming in (LA)TEX is not easy to begin with, mainly because of idiosyncrasies of the
language, but also with some subtler points due to the simple fact that the language is oriented
to typeset text. Knuth has done his best to ease typing a document without caring too much
about white space: under normal circumstances, strings of spaces and tabulations are treated
as a single space; line endings are converted into a single space, unless followed by another
line ending with only white space intervening; white space at the beginning of lines is ignored;
spaces are stripped off at the end of a line and substituted by an internal end-of-line marker.

The precise rules are explained in detail in The TEXbook [2] and TEX by Topic [1], among
others, and this paper is not the place to go into the gory details. I’ll return to some of the
above points. Authors can insert unintentional spaces in text too, but reporting that is not the
purpose here.

Some of the readers may know me by my activity on TeX.StackExchange (as user egreg)
where, according to one of the most esteemed member of the community, I have gained the
greater part of my reputation by catching spurious spaces in TEX code.1 Nevertheless, catching
spurious spaces in code is sometimes a tough task: they can be hidden in rather obscure corners
and it may be necessary to resort to \tracingall or similar heavy machinery in order to
isolate them: TEX macros call other macros, often in very involved ways.

Anyone who has undertaken the job of writing macros, be they simple or tremendously
complicated, has been bitten by a spurious space left in the code. It happens! Reformatting
code is perhaps one of the most frequent reasons: a line is too long and we want to improve
code readability so we split it, forgetting the magical % at the end of the line.

Another relevant aspect of TEX’s language is that under certain conditions spaces are
ignored : they are there and TEX behaves as if they aren’t, but with a very peculiar feature
that will be described later.

We have to distinguish carefully between typed spaces and space tokens. Only typed spaces
are subject to the above ‘contraction rule’, whereas space tokens are not. As a simple example,
\space\space will produce two spaces: when TEX expands \space, it is converted to a space
token.

The paper will describe the most common errors, with examples taken from questions in
TeX.StackExchange or from package code. I’ll give no precise references, because the purpose
of the paper is not to shame anybody.2 It will end with some considerations about methods for
avoiding these quirks.

2 First examples

A very famous spaghetti western movie is “Il buono, il brutto e il cattivo” by Sergio Leone,
featuring Clint Eastwood, Lee Van Cleef and Eli Wallach. The English title is “The Good, the
Bad and the Ugly”. I like to present examples in this form and I’ll do it now.

2.1 The ugly

\providecommand{\sVert}[1][0]{

\ensuremath{\mathinner{

\ifthenelse{\equal{#1}{0}}{ % if

1 We like to joke quite much in the site’s chatroom. I’m not completely sure that that remark is a joke.
2 Maybe I’ll make a couple of exceptions.

Recollections of a spurious space catcher

150 TUGboat, Volume 36 (2015), No. 2

\rvert}{}

\ifthenelse{\equal{#1}{1}}{ % if

\bigr\rvert}{}

\ifthenelse{\equal{#1}{2}}{ % if

\Bigr\rvert}{}

\ifthenelse{\equal{#1}{3}}{ % if

\biggr\rvert}{}

\ifthenelse{\equal{#1}{4}}{ % if

\Biggr\rvert}{}

}} % \ensuremath{\mathinner{

}

This code is part of a package in which no blank line separates the various macro definitions
and is ugly in several respects: there is no indentation that can make clearer the various parts and
the nesting of the conditionals; the code is clumsy and misses several end-of-line %-protections.

Remember that an end-of-line is converted to a space token; in this particular case they
aren’t really relevant, because most of the code is processed in math mode where space tokens
are ignored. However, a user could type \sVert in text mode because of \ensuremath, ending
with excess spacing around the bar: in this case the first end-of-line and the space between }}

and % at the end are not ignored.
Using \providecommand is obviously wrong: users loading the package will expect the

command \sVert do the advertised thing, not something else. A better definition would be

\newcommand*{\sVert}[1][0]{%

\ifcase#1\relax

\rvert % 0

\or

\bigr\rvert % 1

\or

\Bigr\rvert % 2

\or

\biggr\rvert % 3

\or

\Biggr\rvert % 4

\fi

}

I also consider it bad programming style to place the % next to a control word, but it’s
just an opinion. Those % characters after \rvert are not necessary if no comment is used.

2.2 The bad

\def\@wrqbar#1{%

\ifnum\value{page}<10\def\X{\string\X}\else%

\ifnum\value{page}<100\def\X{\string\Y}\else%

\def\X{\string\Z}\fi\fi%

\def\F{\string\F}\def\E{\string\E}%

\stepcounter{arts}%

\iffootnote%

\edef\@tempa{\write\@barfile{\string%

\quellentry{#1\X{}{\thepage}}{\F{}{\thefootnote}}}}%

\else%

\edef\@tempa{\write\@barfile{\string%

\quellentry{#1\X{}{\thepage}}{\E{}{\thearts}}}}%

\fi%

\expandafter\endgroup\@tempa%

\if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 151

Here we surely can’t find spurious spaces. There are even too many % characters! The
main problem here is that it’s almost impossible to read the code.

2.3 The good

\def\deleterightmost#1{\edef#1{\expandafter\xyzzy#1\xyzzy}}

\long\def\xyzzy\\#1#2{\ifx#2\xyzzy\yzzyx

\else\noexpand\\{#1}\fi\xyzzy#2}

\long\def\yzzyx#1\xyzzy\xyzzy{\fi}

This code by the Grand Wizard can be taken as a model of neatness. However, it’s not
really clear what it does: reading Appendix D of The TEXbook is necessary to understand it.

2.4 A surprise

{\tt A’C B}

\def\adef#1{\catcode‘#1=13 \begingroup

\lccode‘\~=‘#1\lowercase{\endgroup\def~}}

\let\oldtt\tt\def\tt{\adef’{\char"0D}\oldtt}

{\tt A’C B}

{\tt A’c B}

\bye

Run this code with plain TEX and you’ll have quite a surprise. The purpose is to substitute
the curly apostrophe with the straight one that the cmtt10 font has in position "0D. The
surprise is that we just get AB with no space in between, no quote and no C, but a mysterious
warning in the log file:

Missing character: There is no ^^dc in font cmtt10!

This example has no spurious space; instead, it has a missing one! (Read on for details.)

2.5 Great programmers are not immune

This is an excerpt from cleveref.sty, a great piece of software nonetheless:

\cref@addlanguagedefs{spanish}{%

\PackageInfo{cleveref}{loaded ‘spanish’ language definitions}

\renewcommand{\crefrangeconjunction}{ a\nobreakspace}%

\renewcommand{\crefrangepreconjunction}{}%

\renewcommand{\crefrangepostconjunction}{}%

\renewcommand{\crefpairconjunction}{ y\nobreakspace}%

[...]

Perhaps the author tested the language support only in some cases: the spurious space in the
second line showed up when a user tried something like

The Spanish word for Spain is \foreignlanguage{spanish}{Espa\~na}

and realized that there were two spaces between ‘is’ and ‘España’. Isolating the problem was
far from easy, because cleveref wasn’t seemingly involved. The macro \cref@addlanguagedefs

adds to \extrasspanish, which is executed every time the language shifts to Spanish: so at
this language change a space was produced.

See Figure 1 for another example.

3 What happens?

The rule is simple: an end-of-line is converted into a ‘typed space’ that can become a space
token, but won’t if it follows a control word. So, in the line

\iffootnote%

Recollections of a spurious space catcher

152 TUGboat, Volume 36 (2015), No. 2

Figure 1: Another example of expert TEXnicians not being immune

the comment character is not necessary because the typed space resulting from the end-of-line
will be ignored, being after a control word. To the contrary, the end-of-line in

\PackageInfo{cleveref}{loaded ‘spanish’ language definitions}

becomes a regular space token in the replacement text of the macro being defined and will
disappear only if TEX is in a good mood when the macro is used.

Being in a good mood about space tokens means that the current mode is vertical (between
paragraphs, basically) or math: in these cases, space tokens do nothing. If TEX is typesetting
a regular paragraph (or a horizontal box), space tokens are generally not ignored and this is
the cause for the mysterious effect presented in section 2.5.

Here are some examples of code written by people probably accustomed to other program-
ming languages where spaces are used much more freely to separate tokens and are mostly
irrelevant (unless in a string, of course).

\newcommand{\smallx}[1]{

\begin{center}

\begin{Verbatim}[commandchars=\\\{\}]

\code{#1}

\end{Verbatim}

\end{center}

}

===========================

\include{fp}

\newcommand\entryOne[1]{

\ifnum #1 = 100 #1 \fi

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 153

SENATVSPOPVLVSQVEROMANVS

IMPCAESARIDIVINERVAEFNERVAE

TRAIANOAVGGERMDACICOPONTIF

MAXIMOTRIBPOTXVIIIMPVICOSVIPP

ADDECLARANDVMQVANTAEALTITVDINIS

MONSETLOCVSTANTISOPERIBVSSITEGESTVS

Figure 2: The inscription at the base of the Columna Traiana in Rome

}

\newcommand\entryTwo[1]{

\FPeval{\result}{#1}

\ifnum \result = 100 \result \fi

}

===========================

\newcommand{\trellis}[4]{

\def \STATES {#1}

\def \PSK {#2}

\def \XDISTANCE {#3}

\def \YDISTANCE {#4}

\FPupn\NGROUPS{\STATES{} \PSK{} div 0 trunc}

\multido{\ryA=0+-\YDISTANCE,\nA=1+1}{\STATES}{%

\dotnode(0,\ryA){dotA\nA}

\dotnode(\XDISTANCE,\ryA){dotB\nA}

}

\multido{\nG=1+1,\nOffset=1+\PSK}{\NGROUPS}{%

\multido{\nStart=\nG+\NGROUPS}{\PSK}{%

\multido{\nArrows=\nOffset+1}{\PSK}{%

\ncline{dotA\nStart}{dotB\nArrows}

}

}

}

}

The authors of the first two examples have no notion of spurious space and write TEX
code as if it was, say, C. The third example mixes end-of-line protection with ‘free form code’.
Counting the number of spurious spaces so produced is a funny exercise.

Unfortunately, TEX is not free form! Spaces are important in typesetting, unless we
want to write texts like the ancient Romans did: in Figure 2 we can see an emulation of the
inscription at the base of the Columna Traiana in Rome.3 (The font is Trajan by Peter Wilson,
http://ctan.org/pkg/trajan.)

The ancients did not use spaces for several reasons. The suffixes helped in dividing a
word from the next one, but perhaps the most important reason was saving space: marble and
parchment were very expensive. Only the introduction of print and of less expensive paper
allowed for using spaces between words for better clarity and ease of reading.

Well, one says, why don’t we add % at the end of each line in macro code and forget about
the whole thing, even if the code is a bit harder to read?

Sorry, no. Here’s another example that shows this is not possible: there are two diseases
that I call the ‘spurious space syndrome’ and the ‘missing space syndrome’. The latter is the
more serious one.

\documentclass{article}

\newcount\monthlycount

3 When writing the paper, I was victim of a spurious space sneaking in the text of the inscription, but
fortunately I noticed it before submission.

Recollections of a spurious space catcher

154 TUGboat, Volume 36 (2015), No. 2

\newcommand{\monthlytodo}[1]{\par%

\fbox{%

\parbox{10cm}{%

\monthlycount=1%

\loop\ifnum\monthlycount<13%

#1--\number\monthlycount\hrulefill\par%

\advance\monthlycount by 1%

\repeat%

}%

}%

}

\begin{document}

\monthlytodo{2013}

\end{document}

This code should print a boxed numbered lists, with items consisting of a rule preceded by
year and month number. Running it will make TEX stop, after several seconds with no sign of
activity, showing

! TeX capacity exceeded, sorry [main memory size=5000000].

<to be read again>

-

l.15 \monthlytodo{2013}

Quite surprising, isn’t it? Well, the author of the code had in the past been a victim of the
spurious space syndrome, so he started to add % at the end of each line, even in the document
part, not only in macro code.

Let’s see what happens: the replacement text of the macro would be shown by TEX as

... \loop \ifnum \monthlycount <13#1--\number \monthlycount ...

and, when \monthlytodo{2013} is called, the test will be

... \loop \ifnum \monthlycount <132013--\number \monthlycount ...

No wonder now that it takes so long to end the loop and that TEX runs out of memory, because
it’s trying to build an \fbox!

A clear case of ‘missing space syndrome’. The solution is not having % after 13. Since the
constant is part of a numeric test, we are in the special case where TEX ignores a space token
after it.

The code in section 2.4 suffers from the same syndrome; when {\tt A’C B} is processed,
the apostrophe becomes active and expanded like a macro, leading to the token list

A\char"0DC B

and this is where things go wrong: \char looks for a number in hexadecimal format because
of " and finds the digits DC; since no character lives in that slot, the error message about a
missing character ^^dc is issued. The correct code should have either a space or \relax

\let\oldtt\tt\def\tt{\adef’{\char"0D }\oldtt}

\let\oldtt\tt\def\tt{\adef’{\char"0D\relax}\oldtt}

Which one is a stylistic decision: both the space and \relax stop the search for further digits;
\relax would do nothing, but the space would be ignored. There is another possibility, that is,

\let\oldtt\tt\def\tt{\adef’{\active}\oldtt}

but this exploits the incidental fact that "0D = 13 and that \active is defined with \chardef

to point at character 13, so it’s not good programming.
Here is a worse example discovered by Frank Mittelbach some days after the TUG meeting.4

2337 \advance\@tempcnta-2%

2338 \ifnum \thevpagerefnum =\@tempcnta%

4 http://tex.stackexchange.com/questions/257100/varioref-and-previous-page

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 155

Remember the spurious spaces in cleveref.sty discussed in section 2.5? After I reported the
bug, the author went on and added % at the end of lines. In this case it is a very bad case of
‘missing space syndrome’: when TEX is looking for a numerical constant, it looks for a space
token after it or a token that can’t be interpreted as a digit. In doing this it expands tokens, so
it evaluates the conditional before having set the value of \@tempcnta because it still doesn’t
know whether the number is ended. The result is that the reference will not be correct. This
code is part of a redefinition of a command in varioref.sty and, of course, the original code
(pretty much identical otherwise) has no % after -2.

The precise rule is that when a syntactical construct allows for 〈one optional space〉, TEX
will look for it with expansion. Quoting The TEXbook [2, p. 208]

For best results, always put a blank space after a numeric constant; this blank space tells TEX
that the constant is complete, and such a space will never “get through” to the output. In
fact, when you don’t have a blank space after a constant, TEX actually has to do more work,
because each constant continues until a non-digit has been read; if this non-digit is not a space,
TEX takes the token you did have and backs it up, ready to be read again.

One could maintain that a macro writer using \loop should know the details of TEX
programming, as this macro is not officially supported by LATEX, so the memory exhaustion
problem would not show up. However, a gross estimate of the number of packages using \loop

is 378. I didn’t even try checking how many use \ifnum: both are essential devices in the
(LA)TEX programmer’s toolbox.

Surely a wannabe macro writer should be aware of these issues, but they are very subtle
and, as we saw, even very experienced programmers can be victim of the bad syndrome. I
could give plenty of similar examples.

4 Solutions

A possible way out of the space related syndromes might be fencing macro code with statements
equivalent to doing

\catcode‘ =9 \endlinechar=-1 \makeatletter

(the last command for LATEX management of internal macros) with an appropriate restore
action at the end. Something like

\edef\restorecodes{%

\catcode32=\the\catcode32

\endlinechar=\the\endlinechar

\noexpand\makeatother

}

\catcode32=9 \endlinechar=-1 \makeatletter

... macro code ...

\restorecodes

but this wouldn’t cure the missing space syndrome, but rather aggravate it because we can
no longer add the optional space after constants! Moreover, sometimes we need space tokens
in macro code. Well, we could add \space where we want a space, but this is cumbersome.
Another bright idea comes to mind: use ~ as space. Let’s try it.

\edef\restorecodes{%

\catcode32=\the\catcode32

\catcode126=\the\catcode126

\endlinechar=\the\endlinechar

\noexpand\makeatother

}

\catcode32=9 \catcode126=10 \endlinechar=-1\makeatletter

\newcount\monthlycount

Recollections of a spurious space catcher

156 TUGboat, Volume 36 (2015), No. 2

\newcommand{\monthlytodo}[1]{\par

\fbox{

\parbox{10cm}{

\monthlycount=1~

\loop\ifnum\monthlycount<13~

#1--\number\monthlycount\hrulefill\par

\advance\monthlycount by 1~

\repeat

}

}

}

\restorecodes

This is indeed more like free form. Recall that category code 9 means ‘ignored’ and category
code 10 means ‘space’. But wait a moment! The rule says that spaces are stripped at end
of lines and substituted with the internal end-of-line marker, in this case nothing because
the parameter \endlinechar is set to −1. And maybe we wouldn’t have ‘real spaces’ in the
replacement text of our macros. Again a couple of quotations from The TEXbook solve the
issue. First about the stripping of spaces [2, p. 46]

TEX deletes any 〈space〉 characters (number 32) that occur at the right end of an input line.
Then it inserts a 〈return〉 character (number 13) at the right end of the line [. . .]

and this is supplemented by the fact that \endlinechar usually has the value 13. So the
category code 10 tilde will not be stripped, because its character code is not 32.5

About the second issue, look at [2, p. 47]

If TEX sees a character of category 10 (space), the action depends on the current state. If
TEX is in state N or S, the character is simply passed by, and TEX remains in the same state.
Otherwise TEX is in state M ; the character is converted to a token of category 10 whose
character code is 32, and TEX enters state S. The character code in a space token is always 32.

Thus we can count on ~ being converted to a real space token when the replacement text of the
macro is stored in memory. Of course we lose the character to denote a tie, but when writing
macros this is rarely needed and we can always resort to \nobreakspace in those cases.

Why not use \relax instead? It can be used, of course, but we lose full expandability
that, in several cases, is what we need. Note that integer registers or constants defined with
\chardef or \mathchardef are already ‘full’ numbers on their own and no space is looked for
after them.

5 LATEX3 and expl3, a new way around these problems and much more

Whoever is so kind to follow my answers at TeX.StackExchange will have probably understood
where I’m going: the LATEX3 project started more than twenty years ago, but has been stalling
for a long time until a few years ago, when it became really possible to use the new programming
paradigms it introduced. At the time the LATEX team started studying it, computing resources
were too scant: for instance, running LATEX2ε on emTEX left very little space for labels and
personal macros. Nowadays, we can make presentations, plots, complex drawings with very
short computing time. I remember without any nostalgia the times when drawing a mildly
complicated diagram using PICTEX could take minutes! Making a 37 frame presentation from
this paper just took seconds, and it involved compiling twice with a run of PythonTEX in
between.

Thus the overhead of loading several thousand lines of code is not much of a problem as it
could have been years ago. When these lines of code are included in the format, the loading
time will be reduced to a few milliseconds.

5 It must be mentioned that the current TEX implementations of TEX Live and MiKTEX also strip off tabs
(character code 9).

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 157

The expl3 programming environment provides ‘code block fences’ similar to the ones I
described earlier, but it also adds _ and : as characters that can be used in control sequence
names. Think of _ as the traditional @ (that’s not allowed in control sequence names); the use
of the colon is rather interesting, and I’ll return to it after having given some examples.

I’m aware that changing one’s programming paradigm can be difficult at first, because
habits are hard to die. But a couple of toy problems may be able to get your attention.

First problem: we want to obtain the ratio between two lengths in an expandable way to
use, for instance, as a factor in front of another length parameter and we want this with as
high accuracy as possible.

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn % start the programming environment

\DeclareExpandableDocumentCommand{\dimratio}{ O{5} m m }

{

\fp_eval:n

{

round (\dim_to_fp:n { #2 } / \dim_to_fp:n { #3 } , #1)

}

}

\ExplSyntaxOff % end the programming environment

Apart from line breaks added for readability, this is essentially one line of code! And it can be
‘free form’ ! I use the \fp_eval:n function that produces the result of a computation, together
with data type conversion functions. If we try \dimratio{\textwidth}{\textheight} or
\dimratio[2]{\textwidth}{\textheight} we obtain, respectively, 0.62727 and 0.63 and
we could even say

\setlength{\mylength}{\dimratio{\textwidth}{\textheight}\mylength}

in order to scale the value of the parameter \mylength by this ratio.
Second toy problem. We want to parse a semicolon-separated list, applying to each item

some formatting macro \dosomething. First some nice code by Petr Oľsák:

\def\ls#1{\lsA#1;;}

\def\lsA#1;{\ifx;#1;\else \dosomething{#1}\expandafter\lsA\fi}

\def\dosomething#1{\message{I am doing something with #1}}

\ls{(a,b);(c,d);(e,f)}

This is a well-known technique which does its job nicely, but has some shortcomings that I’ll
illustrate after showing the corresponding expl3 code:

\ExplSyntaxOn

\NewDocumentCommand{\dosomething}{m}

{

I ~ am ~ doing ~ something ~ with ~ #1

}

\seq_new:N \l_manual_ls_items_seq

\NewDocumentCommand{\ls}{m}

{

\seq_set_split:Nnn \l_manual_ls_items_seq { ; } { #1 }

\seq_map_function:NN \l_manual_ls_items_seq \dosomething

}

\ExplSyntaxOff

\ls{(a,b); (c,d) ;(e,f)}

Recollections of a spurious space catcher

158 TUGboat, Volume 36 (2015), No. 2

One of the new data types introduced in expl3 is the sequence type: an ordered list of items,
which can be accessed as a whole or by item number. The first function does the splitting and
loads the declared variable with the items; then \seq_map_function:NN passes each item as
the argument to the function \dosomething, which is just the same as Petr Oľsák’s macros.

Oh, wait! If you look carefully, in my example there are spaces surrounding the middle
item, which would sneak into Petr’s code, while they don’t with the expl3 code, because the
splitting function automatically trims off leading and trailing spaces around an item. So users
can even type the input as

\ls{

(a,b);

(c,d);

(e,f)

}

if they deem it convenient.
Let’s go back to the Grand Wizard’s code shown in section 2.3:

\def\deleterightmost#1{\edef#1{\expandafter\xyzzy#1\xyzzy}}

\long\def\xyzzy\\#1#2{\ifx#2\xyzzy\yzzyx

\else\noexpand\\{#1}\fi\xyzzy#2}

\long\def\yzzyx#1\xyzzy\xyzzy{\fi}

It’s supposed to remove the last item from a sequence. In Appendix D [2, p. 378], se-
quences, called list macros, are implemented as macros with a replacement text such as
\\{(a,b)}\\{(c,d)}\\{(e,f)}, so one could do

\def\myitems{\\{(a,b)}\\{(c,d)}\\{(e,f)}}

and the \deleterightmost macro is supposed to be called like

\deleterightmost\myitems

in order to remove the last item, so leaving the same as if the definition had been

\def\myitems{\\{(a,b)}\\{(c,d)}}

Compare the code above with the expl3 code

\seq_pop_right:NN \l_manual_ls_items_seq \l_tmpa_tl

which has also the significant advantage that the last item is still available in the token list
scratch variable \l_tmpa_tl (or any token list variable we choose to use). Knuth’s macro
simply discards it.

Here’s a new version for the \monthlytodo macro:

\documentclass{article}

\usepackage{xparse}

\ExplSyntaxOn

\NewDocumentCommand{\monthlytodo}{ O{10cm} m }

{

\par \noindent \fbox { \manual_monthlytodo:nn { #1 } { #2 } }

}

\cs_new_protected:Nn \manual_monthlytodo:nn

{

\parbox { \dim_eval:n { #1 - 2\fboxsep - 2\fboxrule } }

{

\int_step_inline:nnnn { 1 } { 1 } { 12 }

{

#2--\int_to_arabic:n { ##1 }\hrulefill\par

}

}

}

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 159

\ExplSyntaxOff

\begin{document}

\monthlytodo{2013}

\monthlytodo[\textwidth]{2015}

\end{document}

Note that there’s no \loop any more, but the much more convenient \int_step_inline:nnnn
function that accepts as its first three arguments, respectively, the starting point, the step
and the ending point; the fourth argument contains code that should use the current value,
available as #1 which in this case must become ##1 because we’re doing a definition. I also
added an optional argument to set the width of the box and show \dim_eval:n.

No need to be obsessed by adding spaces after constants, because objects are clearly
separated from each other. If a function needs a numeric argument, it will be given in braces
and the function’s signature tells us how many arguments are expected (of course, one has to
know what type of argument should be given).

Just to show the power of expl3, let me make a bimonthly calendar:

\cs_new_protected:Nn \manual_bimonthlytodo:nn

{

\parbox { \dim_eval:n { #1 - 2\fboxsep - 2\fboxrule } }

{

\int_step_inline:nnnn { 1 } { 2 } { 12 }

{

#2 --

(\int_to_arabic:n { ##1 } -- \int_to_arabic:n { ##1 + 1 })

\hrulefill\par

}

}

}

where the step is two; only six steps will be performed, because at the next the value would be
above the stated upper bound: let TEX do the computations.

In expl3 a careful distinction is made between functions and variables. They are of
course all realized as macros or registers; the distinction is in what they are for: functions do
something, whereas variables store tokens.

The naming scheme makes it easy to distinguish between them: a function has a signature
made of zero or more characters, separated from the name by a colon. The introductory
manual [7] explains what characters are valid and what they mean. The name of a variable
should start with l_, g_ or c_, meaning local, global or constant ; expl3 provides distinct
functions to act on local and global variables; constants should just be allocated and given
a value. A common source of head scratching is memory exhaustion due to filling up the
save stack; always adding in the correct way to variables should avoid the problem. The
interface manual [6] describes all available kernel functions; there are also other manuals for
the still-experimental packages such as the one for regular expressions [8], and not to forget the
higher level command defining package xparse [9].

6 Advantages and disadvantages

Powerful tools always have pros and cons. Let me make a short list of the good parts I’ve
found in expl3.

1. Consistent interface: the team is striving for a set of basic functions in such a way that
the name suggests the action.

2. Several new data types: TEX basically has only macros, but expl3 builds higher level
structures that help in keeping different things apart.

3. Tons of predefined functions: the most common tasks when operating on data structures
are provided and the team is usually responsive when uncovered use cases are shown.

Recollections of a spurious space catcher

160 TUGboat, Volume 36 (2015), No. 2

4. Ongoing development: the state of expl3 is quite stable; the good thing is that it hides
the implementation details of data types and basic functions, so changes at the lower level
will have no effect on higher level constructs (apart from speed and efficiency).

Here’s a list of the new data types:

token lists are generic containers for tokens (think of \chaptername);

sequences are ordered sets of token lists;

comma separated lists are the same, more user interface oriented;

property lists are unordered sets of token lists, addressed by key;

floating point numbers adhere to the IEEE standard;

regular expressions are as near to the POSIX standard as possible;

coffins are ordinary TEX boxes but with many more handles.

The available data types of course include booleans, integers, boxes, lengths, skips (rubber
lengths), input and output streams as in standard TEX.

Several papers in TUGboat have touched on the problem of case switching macros; here’s
a simple example of how this is done in expl3:

\str_case:nnTF { <string> }

{

{a}{Case~a}

{b}{Case~b}

{z}{Case~z}

}

{Additional code if there is a match}

{Code if there is no match}

The 〈string〉 mentioned in the first argument is usually the argument to a function/macro.
This also shows the purpose of function signatures: the function expects four braced arguments,
the last two denote code to execute if the test returns true (in this case that the first argument
is found in the list specified in the second argument) or false, respectively. Also \str_case:nn,
\str_case:nnT and \str_case:nnF are provided, for cases when the 〈false code〉 or 〈true code〉
are not needed, respectively: an example of what I mean by ‘consistent interface’.

Another example of consistent interface is the following. Suppose we have to do something
with two token lists, one of which is explicitly given and the other one is sometimes only
available as the contents of a token list variable.

\cs_new_protected:Nn \manual_foo:nn

{

Do~something~with~#1~and~#2

}

\cs_generate_variant:Nn \manual_foo:nn { nV , Vn , VV }

\manual_foo:nn { Bar } { Foo }

\manual_foo:nV { Bar } \l_manual_whatever_tl

\manual_foo:Vn \l_manual_whatever_tl { Foo }

\manual_foo:VV \l_manual_whatever_a_tl \l_manual_whatever_b_tl

The variant is defined in a consistent way, giving us four similarly named functions that perform
the same action, only on differently specified arguments. Doing the same in standard LATEX
requires juggling arguments and well placed \expandafter tokens: a nice game to play, but
usually leading to undesired code duplication. The V type argument means that the argument
is expected to be a variable, whose value is obtained and placed in a braced argument for
processing with the base function.

Now let’s turn to the cons. The code is much more verbose, rather like C code is much
more verbose than assembler; a price to pay when the pool of available base function is larger.
One has never (well, almost) to use \expandafter, the preferred toy of all TEX programmers;

Enrico Gregorio

TUGboat, Volume 36 (2015), No. 2 161

in particular, no \expandafter\@firstofone. (Er, just joking.) Coding in expl3 still requires
understanding how macro expansion works and error messages can be quite cryptic, as they
often refer to TEX’s lowest level; however, also programming in plain TEX can lead to inscrutable
errors, so this is already a problem.

7 The real advantages

The .../tex/latex subtree in TEX Live contains more than 2000 directories. If we look at
those packages, we can easily see that several of them reinvent the wheel many times. It’s
not rare to even see LATEX kernel provided functions/macros reimplemented! The \ls macro
described above, with its auxiliary macro \lsA is an example: the code is good, but it can be
found umpteen times in small variations, for every parsing task. The same can be said for
dozens of typical constructs, so having a wide base of functions for common tasks is going to
make code much more readable and understandable. Studying the \xyzzy example is certainly
fun and instructive for grasping concepts related to recursive macros, particularly tail recursion.
But why redo the work the LATEX team has already done for us?

Frank Mittelbach’s papers (with Rainer Schöpf and Chris Rowley) [3, 4, 5] about LATEX3
are very interesting reading for understanding the aim of the project.

So it’s not just about ‘avoiding spurious spaces’ or not ‘forgetting required spaces’: we
have available, and in a quite mature state, an almost complete (and extendable) programming
environment that frees us from thinking about the low-level stuff, while concentrating on the
real programming task.6

Since the meeting has taken place in Darmstadt, Germany, I’d like to finish in the German
language, with apologies to David Hilbert:

Aus dem Paradies,
das das LATEX3 Team uns geschaffen,
soll uns niemand vertreiben können.

(From the paradise that the LATEX team created for us, no one can expel us.)

References

[1] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference. Addison-Wesley, Reading,
MA, USA, 1992. http://eijkhout.net/texbytopic/.

[2] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[3] Frank Mittelbach and Chris Rowley. LATEX 2.09 →֒ LATEX3. TUGboat, 13(1):96–101,
April 1992. http://tug.org/TUGboat/tb13-1/tb34mittl3.pdf.

[4] Frank Mittelbach and Chris Rowley. The LATEX3 Project. TUGboat, 18(3):195–198,
September 1997. http://tug.org/TUGboat/tb18-3/l3project.pdf.

[5] Frank Mittelbach and Rainer Schöpf. Towards LATEX 3.0. TUGboat, 12(1):74–79,
March 1991. http://tug.org/TUGboat/tb12-1/tb31mitt.pdf.

[6] The LATEX Project. The LATEX3 interfaces, 2015. http://mirror.ctan.org/macros/
latex/contrib/l3kernel/interface3.pdf.

[7] The LATEX Project. The expl3 package and LATEX3 programming, 2015.
http://ctan.org/pkg/l3kernel.

[8] The LATEX Project. The l3regex package: Regular expressions in TEX, 2015.
http://ctan.org/pkg/l3regex.

[9] The LATEX Project. The xparse package: Document command parser, 2015.
http://ctan.org/pkg/xparse.

⋄ Enrico Gregorio
Università di Verona, Dipartimento di Informatica
Strada le Grazie 15, Verona, Italy
enrico dot gregorio (at) gmail dot com

6 In a conversation at the TUG meeting, Stefan Kottwitz asked me to remark on the best advancements
with expl3; I answered ‘floating point computations’ and ‘regular expressions’. These are of course implemented
with TEX primitives, but my opinion is that they wouldn’t be so powerful if expl3 had not been developed.

Recollections of a spurious space catcher

162 TUGboat, Volume 36 (2015), No. 2

When to stop . . .

Hans Hagen

Abstract

A flexible system like TEX permits all kinds of so-
lutions for (weird) problems, so as soon as you run
into a special case it is tempting to come up with a
solution. When many such solutions are built into a
macro package at some point they start to compete.
How far should one go in being nice for users and cus-
tomers, especially when demands are mostly based on
tradition, expectations, and of course subjective, non-
rational and disputable artistic considerations? This
article looks at three examples: removing already-
typeset material, support for the ASCIIMATH for-
mat, and profiling. Do we really need these, and if
so, where and when do they need to be available?

1 Removing material already typeset

The primitive \unskip often comes in handy when
you want to remove a space (or more precisely: a
glue item) but sometimes you want to remove more.
Consider for instance the case where a sentence is
built up stepwise from data. At some point you
need to insert some punctuation but as you cannot
look ahead it needs to be delayed. Keeping track
of accumulated content is no fun, and a quick and
dirty solution is to just inject it and remove it when
needed. One way to achieve this is to wrap this
optional content in a box with special dimensions.
Just before the next snippet is injected we can look
back for that box (that can then be recognized by
those special dimensions) and either remove it or
unbox it back into the stream.

To be honest, one seldom needs this feature. In
fact I never needed it until Alan Braslau and I were
messing around with (indeed messy) bibliographic
rendering and we thought it would be handy to have
a helper that could remove punctuation. Think of
situations like this:

John Foo, Mary Bar and others.

John Foo, Mary Bar, and others.

One can imagine this list to be constructed pro-
grammatically, in which case the comma before the
and can be superfluous. So, the and others can be
done like this:

\def\InjectOthers

{\removeunwantedspaces

\removepunctuation

\space and others}

John Foo, Mary Bar, \InjectOthers.

Notice that we first remove spaces. This will give:

John Foo, Mary Bar and others.

where the commas after the names are coming from
some not-too-clever automation or are the side ef-
fect of lazy programming. In the sections below I
will describe a bit more generic mechanism and also
present a solution for non-ConTEXt users.

1.1 Marked content

The example above can be rewritten in a more gen-
eral way. We define a couple macros (using ConTEXt
functionality):

\def\InjectComma

{\markcontent

[punctuation]

{\removeunwantedspaces,\space}}

\def\InjectOthers

{\removemarkedcontent[punctuation]%

\space and others}

These can be used as:

John Foo\InjectComma

Mary Bar\InjectComma

\InjectOthers.

Which gives us:

John Foo, Mary Bar and others.

Normally one doesn’t need this kind of magic
for lists because the length of the list is known and
injection can be done using the index in the list. Here
is a more practical example:

\def\SomeTitle {Just a title}

\def\SomeAuthor{Just an author}

\def\SomeYear {2015}

We paste the three snippets together:

\SomeTitle,\space \SomeAuthor\space (\SomeYear).

But to get even more abstract, we can do this:

\def\PlaceTitle

{\SomeTitle

\markcontent[punctuation]{.}}

\def\PlaceAuthor

{\removemarkedcontent[punctuation]%

\markcontent[punctuation]{,\space}%

\SomeAuthor

\markcontent[punctuation]{,\space}}

\def\PlaceYear

{\removemarkedcontent[punctuation]%

\space(\SomeYear)%

\markcontent[punctuation]{.}}

Used as:

\PlaceTitle\PlaceAuthor\PlaceYear

we get the output:

Just a title, Just an author (2015).

but when we have no author:

\def\SomeAuthor{}

\PlaceTitle\PlaceAuthor\PlaceYear

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 163

now we get:

Just a title (2015).

Even more clever:

\def\SomeAuthor{}

\def\SomeYear{}

\def\SomePeriod

{\removemarkedcontent[punctuation].}

\PlaceTitle\PlaceAuthor\PlaceYear\SomePeriod

The output is:

Just a title.

Of course we can just test for a variable like
\SomeAuthor being empty before we place punctu-
ation, but there are cases where a period becomes
a comma or a comma becomes a semicolon. Espe-
cially with bibliographies your worst typographical
nightmares come true, so it is handy to have such a
mechanism available when it’s needed.

1.2 A plain solution

For users of LuaTEX who don’t want to use ConTEXt
I will now present an alternative implementation.
Of course more clever variants are possible but the
principle remains. The trick is simple enough to show
here as an example of Lua coding as it doesn’t need
much help from the infrastructure that the macro
package provides. The only pitfall is the used signal
(attribute number) but you can set another one if
needed. We use the gadgets namespace to isolate
the code.

\directlua {

gadgets = gadgets or { }

local marking = { }

gadgets.marking = marking

local marksignal = 5001

local lastmarked = 0

local marked = { }

local local_par = 6

local whatsit_node = 8

function marking.setsignal(n)

marksignal = tonumber(n) or marksignal

end

function marking.mark(str)

local currentmarked = marked[str]

if not currentmarked then

lastmarked = lastmarked + 1

currentmarked = lastmarked

marked[str] = currentmarked

end

tex.setattribute(marksignal,currentmarked)

end

function marking.remove(str)

local attr = marked[str]

if not attr then

return

end

local list = tex.nest[tex.nest.ptr]

if list then

local head = list.head

local tail = list.tail

local last = tail

if last[marksignal] == attr then

local first = last

while true do

local prev = first.prev

if not prev

or prev[marksignal] ~= attr

or (prev.id == whatsit_node and

prev.subtype == local_par) then

break

else

first = prev

end

end

if first == head then

list.head = nil

list.tail = nil

else

local prev = first.prev

list.tail = prev

prev.next = nil

end

node.flush_list(first)

end

end

end

}

These functions are called from macros. We use
symbolic names for the marked snippets. We could
have used numbers but meaningful tags can be sup-
ported with negligible overhead. The remover starts
at the end of the current list and goes backwards till
no matching attribute value is seen. When a valid
range is found it gets removed.

\def\setmarksignal#1%

{\directlua{gadgets.marking.

setsignal(\number#1)}}

\def\marksomething#1#2%

{{\directlua{gadgets.marking.mark("#1")}{#2}}}

\def\unsomething#1%

{\directlua{gadgets.marking.remove("#1")}}

The working of these macros can best be shown
from a few examples:

before\marksomething{gone}{\em HERE}%

\unsomething{gone}after

before\marksomething{kept}{\em HERE}%

When to stop . . .

164 TUGboat, Volume 36 (2015), No. 2

\unsomething{gone}after

\marksomething{gone}{\em HERE}%

\unsomething{gone}last

\marksomething{kept}{\em HERE}%

\unsomething{gone}last

This renders as:

beforeafter
beforeHEREafter
last
HERElast

The remover needs to look at the beginning of
a paragraph marked by a local par whatsit. If we
removed that, LuaTEX would crash because the list
head (currently) cannot be set to nil. This is no big
deal because this macro is not meant to clean up
across paragraphs.

A close look at the definition of \marksomething
will reveal an extra grouping in the definition. This
is needed to make content that uses \aftergroup

trickery work correctly. Here is another example:

\def\SnippetOne

{first\marksomething{punctuation}{, }}

\def\SnippetTwo

{second\marksomething{punctuation}{, }}

\def\SnippetThree

{\unsomething{punctuation} and third.}

We can paste these snippets together and make
the last one use and instead of a comma.

\SnippetOne \SnippetTwo \SnippetThree\par

\SnippetOne \SnippetThree\par

We get:

first, second and third.
first and third.

Of course in practice one probably knows how
many snippets there are and using a counter to keep
track of the state is more efficient than first typeset-
ting something and removing it afterwards. But still
it looks like a cool feature and it can come in handy
at some point, as with the title-author-year example
given before.

The plain code shown here is in the distribution
in the file luatex-gadgets and gets preloaded in
the luatex-plain format.

2 Supporting ASCIIMATH

In ConTEXt we have supported MathML for a long
time alongside TEX input and we use it in projects
mostly related to educational typesetting. In these
days of multiple output from one source that sounds
handy but unfortunately support in browsers is less
than optimal, especially if you consider the long time
MathML has been around. For that reason, in a
recent project, the web folks involved in the project

� ⊗ � = ��

���� = ��

∞× = ��

��× = ��

Figure 1: Surprising output.

�� + sin � + �
√

� + sin
√

� + sin
√

�
Figure 2: Tolerance for space-less input.

forced a move to something called ASCIIMATH. As
with most ASCII-based encodings such a format
starts out simple but due to demands it eventually
becomes as complex as anything else.1 In being tol-
erant to user input interesting side effects occur. You
can imagine that when dealing with tens of thou-
sands of files coming from dozens of authors keeping
consistency is an issue. In spite of providing fea-
tures for quality control (not hard in a TEX-driven
backend) one runs into interesting situations.

The ASCIIMATH module is loaded with:

\usemodule[asciimath]

Here is an example of code:

\asciimath{o ox x = xo}

\asciimath{a ax x = xa}

\asciimath{ooxx=xo}

\asciimath{aaxx=xa}

This code produces the output in figure 1. Of
course the expansion of some character sequences
is officially defined but no one will memorize all of
them.

Here is another input sequence:

\asciimath{ac+sinx+xsqrtx+sinsqrtx+sinsqrt(x)}

In figure 2 we see the result. The problem with
this kind of input is that once spaces are that optional
one loses a path to upward compatibility, and math
is not a frozen language, so . . .

A parser of ASCIIMATH is supposed to deal
with numbers properly and as such, on the one hand
assumes some syntactic consistent input, but at the
same time needs to be tolerant to whatever input
the author comes up with.

\asciimath{sqrt(1234)}

\asciimath{sqrt(1.234)}

\asciimath{sqrt(1,234)}

\asciimath{sqrt 1234}

\asciimath{sqrt 1.234}

\asciimath{sqrt 1,234}

The result of this input is shown in figure 3.
As you can see here, only periods can be part of

1 Long ago we started supporting something called calcu-

lator math because that was handy when discussing the use

of calculators in school books.

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 165

√
1234

√
1.234

√
1, 234√

1234
√

1.234
√

1, 234
Figure 3: Numbers as a unit of input.

√
1234567.1234567√
1234567, 1234567√
1234567.1234567√
1234567, 1234567

Figure 4: Sloppy input resulting in errors.

a number, a comma terminates one. But in some
European countries commas are used instead; sadly,
such cultural properties are seldom supported in
these international times. When parentheses are used
this gets unnoticed. One can argue that the spacing
after a comma can be a signal to use parentheses
(as argument delimiters). But, in an automated flow
where the end users don’t know much about how
something math should be typeset you should not be
too optimistic about that detailed of quality control.2

Of course some errors will get noticed, as in
the following example, typeset in figure 4: a space
is added after a comma (which is a punctuation
character while a period is an ordinary character)
and because a comma is not part of a number the
root symbol is too low.

\asciimath{sqrt(1234567.1234567)}

\asciimath{sqrt(1234567,1234567)}

\asciimath{sqrt 1234567.1234567}

\asciimath{sqrt 1234567,1234567}

The use of () around the number will only ob-
scure the error in coding the number. At some point
the designers of the abovementioned (educational)
math books decided that numbers should be split in
triplets. Like this:

\setupasciimath

[splitmethod=3,

symbol={{,}}]

\asciimath{sqrt(1234567.1234567)}

\asciimath{sqrt(1234567,1234567)}

\asciimath{sqrt 1234567,1234567}

\asciimath{sqrt 1234567.1234567}

In figure 5 you see the result. This will only
work well when periods are used in the input because
a comma will end the number. In that case the
spaces come out different too. So in order for that to
work one really needs to input using periods. Those
periods will be replaced by commas when typesetting.

Of course using commas in the input is a bad
idea anyway as they can also separate coordinates

2 The Dutch language market is relatively small, so there

are limits to how much time and money publishers will spend.

√
1 234 567,123 456 7√
1 234 567, 1 234 567√
1 234 567, 1 234 567√
1 234 567,123 456 7

Figure 5: Numbers grouped in triplets.

and in ASCIIMATH they are also used as separa-
tors between matrix entries. In the end, only very
consistent and redundant coding will come close to
guaranteeing a decent result. Unfortunately most in-
put was not using periods, and that’s kind of painful
when it gets noticed at the last minute, especially
when the demand for spaced numbers happens at
the last minute too.

When you code in TEX directly there is normally
more control over matters as there is a more direct
relationship between authoring and rendering. For
instance if you tag numbers like this, periods and
commas are treated alike:

$\mn{1.2} = \mn{1,2}$

Here the \mn command reflects the MathML tag
for numbers. To get this automatically you can say:

\setupmathematics

[autopunctuation=yes]

In which case a comma is punctuation only if
it’s followed by a blank space.

The project where this ASCIIMATH is needed
started over a decade ago3 with TEX input but be-
cause the web was a target too we switched to content
MathML. That not being supported, after a short
excursion to OpenMath, we ended up with presenta-
tional MathML, and finally ASCIIMATH. The ques-
tion here is not so much where to stop, but when can
I stop adding more and more input methods. Quality
is not well-served with ever-increasing variety and
input tolerance. Unfortunately the choices are often
determined by external factors. Interesting is that
ConTEXt can produce MathML as a by-product so
using TEX input works out fine.

One can of course ask in general when to stop
with adding features. As we used some roots in the
examples, here is another one (output in figure 6):

\setupmathradical

[sqrt]

[alternative=mp]

\sqrt{k\over m}

\sqrt{\displaystyle{k\over m}}

We mentioned the comma as cultural aspect of
rendering numbers. I consider the small hook at the
(right-hand) end of the root symbol another such—

3 It concerns a free math methodology.

When to stop . . .

166 TUGboat, Volume 36 (2015), No. 2

�
�

�

�

Figure 6: Another view of roots.

at least that’s what got drawn on the blackboard
when I attended math classes. We can provide this
kind of rendering out of the box using MetaPost and
it has neither a performance hit nor burdens the user.
Unfortunately no one ever asked for this, while it is
the kind of extension that I’m more than happy to
provide. In my opinion it fits well with Don Knuth’s
“fine points of math typesetting” too. So I won’t stop
implementing such features.

3 Profiling lines

Although TEX is pretty good at typesetting simple
texts like novels, in practice it’s often used for getting
more complex stuff on paper (or screen). Math is
of course the first thing that comes to mind. If for
instance you look at the books typeset by Don Knuth
you will see a rendering that is rather consistent in
spacing. This is no surprise as the author pays a lot
of attention to detail and uses inline versus display
math properly. No publisher will complain about
the result.

In the documents that I have to write styles for,
the content is rather mixed, and in particular inline
math can have display math properties. In a one-
column layout this is not a real problem especially
because lots of short sentences and white space is
used: we’re talking of secondary-school educational
math where arguments for formatting something this
or that way is not always rational and consistent but
more based on “this is what the student expects”,
“the competitor also does it that way” or just “we
like this more”. For instance in a recent project, the
books with answers to questions had to be typeset in
a multicolumn layout and because math was involved,
we end up with lines with more height and depth
than normal. That can not only result in more pages
but also can make the result look a bit messy.

Proiling lines 1

1 Proiling lines

1.1 Introduction
Although TEX is pretty good in typesetting simple texts like novels, in prac-
tice it’s often used for getting more complex stuff on paper (or screen).
Math is of course the irst thing that comes to mind. If for instance you look
at the books typeset by Don Knuth you will see a rendering that is rather
consistent in spacing. This is no surprise as the author pays a lot of atten-
tion to detail and uses inline versus display math properly. No publisher
will complain about the result.

In the documents that I have to write styles for, the content is rather mixed
and especially inline math can have display math properties. In an one
column layout this is not a real problem especially because lots of short
sentences and white space is used: we’re talking of education highschool
math where arguments for formatting something this or that way is not
always rational and consistent but more based on thisމ is what the student
expectsފ, theމ competitor also does it that wayފ or just weމ like this moreފ.
For instance in a recent project, the books with answers to questions had
to be typeset in a multicolumn layout and because math was involved, we
end up with lines with more height and depth than normal. That can not
only result in more pages but also can make the result looks a bit messy.

This paragraph demonstrates how lines are handled: when a paragraph isH__

broken into lines each line becomes a horizontal box with a height and depthH__

determined by the size of the characters that make up the line. There is aH__

minimal distance between baselines (baselineskip) and when lines touchH__

there can optionally be a \lineskip. In the end we get a vertical list ofH__

boxes and glue (either of not lexible) mixed with penalties that determineH__

optimal paragraph breaks. This paragraph shows that there is normallyH__

enough space available to do the job.H__

We already have some ways to control this. For instance the dimensions of
math can be limited a bit and lines can be made to snap on a grid (which is
what publishers often want anyway). However, another alternative is to look
at the line and igure out if successive lines can be moved closer, of course
within the constraints of the height and and depth of the lines. There is no
real way to see if some ugly clash can happen simply because when we run
into boxed material there can be anything inside and the dimensions can
be set on purpose. This means that we have to honour all dimensions and

We already have some ways to control this. For
instance the dimensions of math can be limited a
bit and lines can be made to snap on a grid (which
is what publishers often want anyway). However,
another alternative is to look at the line and decide
if successive lines can be moved closer, of course

wider

unprofiled

shorter

unprofiled

wider

unprofiled

shorter

unprofiled

wider

unprofiled

shorter

unprofiled

hsize 12cm

unprofiled

Regelmatig kom je procenten tegen. Proޅ centumކ is Latijn en be-
tekent per honderd, dus één van elke honderd, dus 1

100
deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus 45% van een geheel is het 45

100
deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0, 45.

hsize 10cm

unprofiled

Regelmatig kom je procenten tegen. Proޅ centumކ is
Latijn en betekent per honderd, dus één van elke hon-
derd, dus 1

100
deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus

45% van een geheel is het 45

100
deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0, 45.

example 1

hsize 12cm

unprofiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-
beeld: ǉ� ∗ ǉ� = ǉ(�+�). Neem je hierin ǔ =� log(ǃ) en Ǖ =� log Ǆ,
dan vind je: ǉ

� log(�)+�log(�) = ǉ
� log � × ǉ

� log � = ǃ × Ǆ. Hierbij
gebruik je de deinitieformules.

hsize 10cm

unprofiled

Je gaat uit van de bekende eigenschappen van mach-
ten. Bijvoorbeeld: ǉ� ∗ ǉ� = ǉ(�+�). Neem je hierin ǔ =�

log(ǃ) en Ǖ =� log Ǆ, dan vind je: ǉ
� log(�)+�log(�) =

ǉ
� log � × ǉ

� log � = ǃ × Ǆ. Hierbij gebruik je de deinitie-
formules.

example 2

hsize 12cm

unprofiled

Omdat volgens de eigenschappen van machten en exponenten
geldt 1

�4
= �−4 is ook hier sprake van een machtsfunctie, namelijk

ǈ(�) =
6

�4
= 6 ×

1

�4
= 6�−4.

hsize 10cm

unprofiled

Omdat volgens de eigenschappen van machten en ex-
ponenten geldt 1

�4
= �−4 is ook hier sprake van een

machtsfunctie, namelijk ǈ(�) =
6

�4
= 6 ×

1

�4
= 6�−4.

example 3

Figure 7: Unprofiled examples.

within the constraints of the height and and depth
of the lines. There is no real way to see if some
ugly clash can happen simply because when we run
into boxed material there can be anything inside and
the dimensions can be set on purpose. This means
that we have to honour all dimensions and only can
mess around with dimensions when we’re reasonably
confident. In ConTEXt this messing is called profiling
and that is what we will discuss next.

3.1 Line heights and depths

In this section we will use some (Dutch) examples
from documents that we’ve processed. We show
unprofiled versions, with two different paragraph
widths, in figure 7. All three examples shown demon-
strate that as soon as we use something more complex
than a number or variable in a subscript we exceed
the normal line height, and thus the line spacing
becomes somewhat irregular.

The profiled rendering of the same examples are
shown in figure 8. Here we use the minimal heights
and depths plus a minimum distance of 1pt. This
default method is called strict.

In the first and last example there are some
lines where the depth of one line combined with
the height of the following exceeds the standard
line height. This forces TEX to insert \lineskip

(mentioned in the demonstration paragraph above),

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 167

wider

profiled

shorter

profiled

wider

profiled

shorter

profiled

wider

profiled

shorter

profiled

hsize 12cm

profiled

Regelmatig kom je procenten tegen. Proޅ centumކ is Latijn en be-
tekent per honderd, dus één van elke honderd, dus 1

100
deel. Met

procenten rekenen is daarom rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus 45% van een geheel is het 45

100
deel ervan en dat

kun je berekenen door te vermenigvuldigen met 0, 45.

hsize 10cm

profiled

Regelmatig kom je procenten tegen. Proޅ centumކ is
Latijn en betekent per honderd, dus één van elke hon-
derd, dus 1

100
deel. Met procenten rekenen is daarom

rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus

45% van een geheel is het 45

100
deel ervan en dat kun je

berekenen door te vermenigvuldigen met 0, 45.

example 1

hsize 12cm

profiled

Je gaat uit van de bekende eigenschappen van machten. Bijvoor-
beeld: ǉ� ∗ ǉ� = ǉ(�+�). Neem je hierin ǔ =� log(ǃ) en Ǖ =� log Ǆ,
dan vind je: ǉ

� log(�)+�log(�) = ǉ
� log � × ǉ

� log � = ǃ × Ǆ. Hierbij
gebruik je de deinitieformules.

hsize 10cm

profiled

Je gaat uit van de bekende eigenschappen van mach-
ten. Bijvoorbeeld: ǉ� ∗ ǉ� = ǉ(�+�). Neem je hierin ǔ =�

log(ǃ) en Ǖ =� log Ǆ, dan vind je: ǉ
� log(�)+�log(�) =

ǉ
� log � × ǉ

� log � = ǃ × Ǆ. Hierbij gebruik je de deinitie-
formules.

example 2

hsize 12cm

profiled

Omdat volgens de eigenschappen van machten en exponenten
geldt 1

�4
= �−4 is ook hier sprake van een machtsfunctie, namelijk

ǈ(�) =
6

�4
= 6 ×

1

�4
= 6�−4.

hsize 10cm

profiled

Omdat volgens de eigenschappen van machten en ex-
ponenten geldt 1

�4
= �−4 is ook hier sprake van een

machtsfunctie, namelijk ǈ(�) =
6

�4
= 6 ×

1

�4
= 6�−4.

example 3

Figure 8: Profiled examples.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-
phers receive their knowledge and information about the rules of typography from books,
from computer magazines or the instruction manuals which they get with the purchase
of a PC or software. There is not so much basic instruction, as of now, as there was in
the old days, showing the differences between good and bad typographic design. Many
people are just fascinated by their PCކs tricks, and think that a widely--praised program,
called up on the screen, will make everything automatic from now on.

Figure 9: Normal lines profiled (quote from
Hermann Zapf)

a dimension that is normally set to a fraction of
the line spacing (for instance 1pt for a 10pt body
font and 12pt line spacing). When we are profiling,
\lineskip is ignored and we use a settable distance
instead. The second example (with superscripts)
normally comes out fine as the math stays within
limits and we make sure that smaller fractions and
scripts stay within the natural limits of the line, but
nested scripts can be an issue.

In figure 9 we have profiled regular text, without
math. Typical text stays well within the limits of
height and depth. If this doesn’t happen for prose
then you need to adapt the height/depth ratio to the
ascender/descender ratio of the bodyfont. Thus, for
regular text it makes no sense to use the profiler, it
only slows down typesetting.

3.2 When lines exceed boundaries

Let’s now take a more detailed look at what happens
when lines get too high or low. First we’ll zoom in
on a simple example: in figure 10, we compare a

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

line 1H__

line 2H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

no excessive height and depth

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

line 1 x
xxxH__

H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (overlapping)

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

x
xxxH__

line 1H__

line 2 x
xxxH__

H__

line 3H____V

none strict/0pt strict/1pt fixed/0pt fixed/1pt

some excessive height and depth (out of touch)

Figure 10: Variants of profiling, using a constructed
two-line text.

sample text rendered using the variants of profiling
currently implemented. (This is still experimental
code so there might be more in the future). Seeing
profiles helps to get a picture of the complications
we have to deal with. In addition to the normal
vbox variant (used in the previous examples), we
show none which only analyzes, strict that uses
the natural dimensions of lines and fixed that is
supposed to cooperate with grid snapping.

Figure 10 shows what happens when we add
some more excessive height and depth to lines. The
samples are:

line 1 x\lower2ex\hbox{xxx}\par

line 2 x\raise2ex\hbox{xxx}\par

line 3 \par

and:

x\lower2ex\hbox{xxx} line 1 \par

line 2 x\raise2ex\hbox{xxx}\par

line 3 \par

Here the strict variant has some effect while
fixed only has some influence on the height and
depth of lines. Later we will see that fixed operates
in steps and the default step is large so here we never
meet the criteria for closing up.4

A profiled box is typeset with \profiledbox.
There is some control possible but the options are
not yet set in stone so we won’t use them all here.
Profiling can be turned on for the whole document
with \setprofile but I’m sure that will seldom
happen, and these examples show why: one cannot
beforehand say if the result looks good. Let’s now
apply profiling to a real text. If you play with this
yourself you can show profiles in gray with a tracker:

\enabletrackers[profiling.show]

We show the effects of setting distances in fig-
ure 11. We start with a zero distance:

4 In ConTEXt we normally use \high and \low and both

ensure that we don’t exceed the natural height and depth.

When to stop . . .

168 TUGboat, Volume 36 (2015), No. 2

Regelmatig kom je procenten tegen. Proޅ centumކ is Latijn en betekent per
honderd, dus één van elke honderd, dus 1

100
deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus 45% van een

geheel is het 45

100
deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
zero distance, resulting height 83.5265pt

Regelmatig kom je procenten tegen. Proޅ centumކ is Latijn en betekent per
honderd, dus één van elke honderd, dus 1

100
deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus 45% van een

geheel is het 45

100
deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
distance, resulting height 85.5265pt

Regelmatig kom je procenten tegen. Proޅ centumކ is Latijn en betekent per

honderd, dus één van elke honderd, dus 1

100
deel. Met procenten rekenen

is daarom rekenen met honderdsten: 45% =
45

100
= 0, 45. Dus 45% van een

geheel is het 45

100
deel ervan en dat kun je berekenen door te vermenigvul-

digen met 0, 45.
distance, double height and depth, resulting height 151.302pt

Figure 11: Example with different dimensions.

\profiledbox

[strict]

[distance=0pt]

{\nl\getbuffer[example-1]}

Because we don’t want lines to touch we then set
the minimum distance to a reasonable value (1pt).

\profiledbox

[strict]

[distance=1pt]

{\nl\getbuffer[example-1]}

Finally we also double the height and depth of
lines, something that normally will not be done. The
defaults are the standard height and depth (the ones
you get when you inject a so-called \strut).

\profiledbox

[strict]

[height=2\strutht,

depth=2\strutdp,

distance=1pt]

{\nl\getbuffer[example-1]}

The problem with this kind of analysis is that
deciding when and how to use this information to
improve spacing is non-trivial. One of the characteris-
tics of user demand is that it nearly always concerns
rather specific situations and that suggested solu-
tions could work only in those cases. But as soon
as we have one exceptional situation, intervention
is needed which in turn means that a mechanism
has to be under complete user control. That itself
assumes that the user still has control, which is not
the case in automated workflows. In fact, as soon
as one is in control over the source and rendering,
there are often easier ways to deal with the few cases

that need treatment. Possible interference can come
from, for instance:

• whitespace between paragraphs
• section titles (using different fonts and spacing)
• descriptions and other intermezzos
• images that interrupt the flow, or end up next
to text

• ornaments like margin words (we catch some)
• text backgrounds making spacing assumptions

After a few decades of using TEX and writing
solutions, it has become pretty clear that fully au-
tomated typesetting is a dream, if only because the
input can be pretty weird and inconsistent and de-
mands (from those who are accustomed to tweaking
manually in a desktop publishing application) can be
pretty weird and inconsistent too. So, the only real
solution is to use some kind of artificial intelligence
that one can feed with demands and constraints and
that hopefully is clever enough to deal with the in-
consistencies. As this kind of computing is unlikely
to happen in my lifetime, poor man explicit solutions
have to do the job for now. One can add all kinds of
heuristics to the profiler but this can backfire when
control is needed. Alternatively one can end up with
many options like we have in grid snapping.

3.3 Where to use profiling

In ConTEXt there are four places (maybe a few more
eventually) where this kind of control over spacing
makes sense:

• the main text flow in single column mode
• multi-column mode, especially mixed columns
• framed texts, used for all kinds of content
• explicitly (balanced) split boxes

Because framed texts are used all over, for instance
in tables, it means that if we provide control over
spacing using profiles, many ConTEXt mechanisms
can use it. However, enabling this for all packaging
has a significant overhead so it has to be used with
care so that there is no performance hit when it is
not used. Here is an easy example using \framed:

\framed

[align=normal,

profile=fixed,

frame=off]

{some text ...}

For the following examples we define this helper:

\starttexdefinition demo-profile-1 #1

\framed

[align=normal,profile=#1]

{xxx$\frac{1}{\frac{1}{\frac{1}{2}}}$

\par

$\frac{\frac{1}{\frac{1}{2}}}{2}$xxx}

\stoptexdefinition

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 169

xxx
1

1

1

2

1

1

2

2
xxx

xxx
1

1

1

2

1

1

2

2
xxx

xxx
1

1

1

21

1

2

2
xxx

xxx
1

1

1

2
1

1

2

2
xxx

xxx
1

1

1

2
1

1

2

2
xxx

vbox fixed halffixed quarterfixed eightsfixed

Latin Modern

xxx
1

1

1

2

1

1

2

2
xxx

xxx
1

1

1

2

1

1

2

2
xxx

xxx
1

1

1

21

1

2

2
xxx

xxx
1

1

1

2
1

1

2

2
xxx

xxx
1

1

1

2

1

1

2

2
xxx

vbox fixed halffixed quarterfixed eightsfixed

Pagella

xxx 1
1

1
2

1

1
2

2
xxx

xxx 1
1

1
2

1

1
2

2
xxx

xxx 1
1

1
21

1
2

2
xxx

xxx 1
1

1
2

1

1
2

2
xxx

xxx 1
1

1
2

1

1
2

2
xxx

vbox fixed halffixed quarterfixed eightsfixed

Dejavu

Figure 12: A few fonts compared.

Regelmatig kom je procenten tegen.
Proޅ centumކ is Latijn en betekent
per honderd, dus één van elke hon-

derd, dus 1

100
deel. Met procenten

rekenen is daarom rekenen met hon-

derdsten: 45% =
45

100
= 0, 45. Dus

45% van een geheel is het 45

100
deel

ervan en dat kun je berekenen door
te vermenigvuldigen met 0, 45.

none on grid

Regelmatig kom je procenten tegen.
Proޅ centumކ is Latijn en betekent
per honderd, dus één van elke hon-
derd, dus 1

100
deel. Met procenten

rekenen is daarom rekenen met hon-

derdsten: 45% =
45

100
= 0, 45. Dus

45% van een geheel is het 45

100
deel

ervan en dat kun je berekenen door
te vermenigvuldigen met 0, 45.

strict on grid

Regelmatig kom je procenten tegen.
Proޅ centumކ is Latijn en betekent
per honderd, dus één van elke hon-
derd, dus 1

100
deel. Met procenten

rekenen is daarom rekenen met hon-

derdsten: 45% =
45

100
= 0, 45. Dus

45% van een geheel is het 45

100
deel

ervan en dat kun je berekenen door
te vermenigvuldigen met 0, 45.

ixed on grid

Figure 13: Boxed columns without and with profiling.

We apply this to predefined profiles. The macro
is called like this:

\texdefinition{demo-profile-1}{fixed}

The outcome can depend on the font used: in
figure 12 we show Latin Modern, TEX Gyre Pagella
and Dejavu. Because in ConTEXt the line height
depends on the bodyfont; each case is different.

As mentioned, we need this kind of profiling
in multi-column typesetting, so let us have a look
at that now. Columns are processed in grid mode
but this is taken into account. We can simulate
this by using boxed columns; see figure 13. One of

the biggest problems is what to do with the bottom
and top of a page or column. This will probably
take a bit more to get right, and likely we will end
up with different strategies. We can also think of
special handlers but that will come with a high speed
penalty. In the strict variant we don’t mess with
the dimension of a line too much, but the fixed

alternative will get some more control.
Although using this feature looks promising it

is also dangerous. For instance a side effect can be
that interline spacing becomes inconsistent and even
ugly. It really depends on the content. Also, as soon
as some grid snapping is used, the gain becomes less,
simply because the solution space is smaller. Then
of course there is the matter of overall look and feel:
most documents that need this kind of magic look
bad anyway, so why bother. In this respect it is
comparable to applying protrusion and expansion.
There are hardly any combinations of design and
content where micro-typography makes sense to use:
in prose perhaps, but not in mixed content. On the
other hand, profiling makes more sense in mixed
content than in prose.

Not everything that is possible should be used.
In figure 14 we show some fake paragraphs with
profiles applied, the first series (random range 2)
has a few excessive snippets, the last one (random
range 5) has many. In figure 15 we show them in a
different arrangement. Although there are differences
it is hard to say if the results look better. We scaled
down the results and used gray fake blurs instead of
real text in order to get a better impression of the
so-called (overall) grayness of a text.

3.4 Conclusion

Although profiling seems interesting, in practice it
does not have much value in an automated flow.
Ultimately, in the project for which I investigated
this trickery, only in the final stage was some last
minute optimization of the rendering done. We did
that by injecting directives. Think of page breaks
that make the result look more balanced. Optimizing
image placement happens in an earlier stage because
the text can refer to images like “in the picture on
the left, we see . . . ”. Controlling profiles is much
harder. In fact, the more clever we are, the harder it
gets to beat it when we want an exception. All these
mechanisms: spacing, snapping, profiling, breaking
pages, image placement, to mention a few, have to
work together. For projects that depend on such
placement, it might be better to write dedicated
mechanisms than to try to fight with clever built-in
features.

When to stop . . .

170 TUGboat, Volume 36 (2015), No. 2

none / 2 strict / 2 fixed / 2 halffixed / 2

none / 3 strict / 3 fixed / 3 halffixed / 3

none / 4 strict / 4 fixed / 4 halffixed / 4

none / 5 strict / 5 fixed / 5 halffixed / 5

Figure 14: Gray examples; each row has progressively
more excessive snippets.

none / 2 none / 3 none / 4 none / 5

strict / 2 strict / 3 strict / 4 strict / 5

fixed / 2 fixed / 3 fixed / 4 fixed / 5

halffixed / 2 halffixed / 3 halffixed / 4 halffixed / 5

Figure 15: The same examples, rearranged such that
each row has a different profiling variant.

vbox 1 strict 1 fixed 1

vbox 2 strict 2 fixed 2

vbox 3 strict 3 fixed 3

Figure 16: Three similar random cases.

In practice, probably only the fixed alterna-
tive makes sense and as that one has a boundary
condition similar to (or equal, depending on other
settings) snapping on gridsteps, the end result might
not be that different from doing nothing. In figure 16
you see that the vbox variant is not that bad. And
extremely difficult content is unlikely to ever look
perfect unless some manual intervention happens.
Therefore, from the perspective of “fine points of
text typesetting” some local (manual) control might
be more interesting and relevant.

In the end, I didn’t need this profiling feature
at all: because there are expectations with respect
to how many pages a book should have, typesetting
in columns was not needed. It didn’t save that many
pages, and the result would never look that much
better, simply because of the type of content. Large
images were also spoiling the game. Nevertheless we
will keep profiles in the core and it might even get
extended. One question remains: at what point do
we stop adding such features? The answer would be
easier if TEX wasn’t so flexible.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

TUGboat, Volume 36 (2015), No. 2 171

TUG 2015 abstracts

Editor’s note: Slides and other related information
for many of the talks are posted at http://tug.org/
tug2015/program.html.

−− ∗ − −

Kaveh Bazargan and Jagath AR

TEX—After 35 years, still the best solution
for modern publishing

TEX is around 35 years old. The engine has remained
almost unchanged. Since about 1990, the desktop
publishing revolution gradually took the focus away
from tags or mark-up in text, but the ubiquitous
requirement for XML by publishers has focused at-
tention on mark-up yet again, and TEX has returned
as the king of automated pagination. We will discuss
and demonstrate the advantages of TEX for pagina-
tion of XML over other pagination systems, including:
fully automated pagination of XML files; highest ty-
pographic quality; production of “enhanced” PDFs,
not possible by other means; obtaining different PDF

styles from a single source.

Julien Cretel

Functional data structures in TEX

Because TEX lacks rich data structures, implement-
ing even simple yet useful algorithms in it can be
laborious. However, TEX is, in many ways, remark-
ably similar to functional programming languages,
which are often praised for their expressive power.

Building on Alan Jeffrey’s approach to embed-
ding elements of the lambda calculus in TEX (see
Alan’s lazylist package), I plan to demonstrate
how to implement and use richer data structures
(such as binary search trees) in TEX & friends.

Olaf Drümmer

PDF/UA—what it is, how users can benefit from it,
and how to get it right

PDF/UA is the latest addition to the group of in-
ternational PDF standards. Published in 2012, it
defines what a tagged PDF —as defined in PDF 1.7
(per ISO 32000-1) — must look like to be considered
‘universally accessible’, and how PDF/UA conforming
tools should take advantage of its features. “Accessi-
ble” is often thought of as content accessibility from
the point of view of people with some disability,
but is not nominally limited to that. Content in a
PDF/UA conforming file can also be more easily and
more meaningfully accessed by software, allowing for
intelligent content extraction or flexible repurposing
(think formatted text reflow on mobile devices).

This talk gives a very compact overview of the

rules defined in the PDF/UA standard, and how a
PDF/UA file typically differs from an ordinary PDF

file. Several sample usage scenarios will be demon-
strated so attendees can get a feeling for how PDF/UA

matters to users who have to rely on PDF/UA con-
forming documents and on suitable tools. Finally,
several challenges will be discussed that document
authors tend to run into.

Paul Gessler

Pretty-printing Git commit history graphs
with PGF/TikZ

Increasing popularity of the distributed version con-
trol system Git has created a desire to integrate
its versioning metadata into documents dynamically.
An existing package, gitinfo2, by Brent Longbor-
ough, provides hooks and tools to access this infor-
mation within LATEX documents. My experimen-
tal package gittree adds a convenient interface for
producing commit history graphs within LATEX doc-
uments using the PGF/TikZ graphics language. I
will present several examples of gittree’s use and
discuss continuing development efforts.

Hans Hagen

What if . . .

What TEX does and what TEX doesn’t do, the way
a macro package is set up, how users use a TEX-
like system, and what they expect (or demand) to a
large extent depends on the circumstances in which
the system was developed. In that respect a macro
package is a snapshot of how at a certain moment
texts ended up on the media popular at that time.
How would TEX stand in a future museum? What
if the developments around computer technology,
the ideas about communication, the expectations
of users and commerce had been slightly different?
What if . . .

Bogusław Jackowski, Piotr Strzelczyk,

and Piotr Pianowski

All the characters we need

We will discuss the choice of characters for math
fonts.

Bogusław Jackowski, Piotr Strzelczyk,

and Piotr Pianowski

Six GUST e-foundry math fonts and what next?

Since the publication of the math extension of the
OpenType font format in 2007, barely a dozen Open-
Type math fonts have been released. This probably
means that new math fonts are not (urgently) needed,
which does not mean that existing fonts need not be
improved, nor that creating special varieties of math
fonts, such as heavy or sans serif variants, is useless.

172 TUGboat, Volume 36 (2015), No. 2

Die TEXnische Komödie 2–3/2015

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). (Non-technical items are omitted.)

Die TEXnische Komödie 2/2015

Luigi Scarso, The SWIGLIB project; pp. 36–49
[Printed in TUGboat 36:1.]

Uwe Ziegenhagen, Animierte PDFs erstellen mit
dem Paket animate [Creating animated PDFs with
the animate package]; pp. 50–56

For a lecture on Cascading Style Sheets (CSS)
I created a TikZ graphic that shows a cubic Bezier
curve. To visualize the impact of parameter changes
I have created an animation with the help of the
animate package that runs in the PDF viewer.

Rolf Niepraschk, Die serifenlose Schrift
»Roboto« [The sans serif font “Roboto”];
pp. 57–58

Recently a simple way has been developed to use
the Roboto font in a LATEX document. This highly
readable font was developed by the font designer
Christian Robertson for Google under a free license.

Herbert Voß, Sonderzeichen der Schrift
Libertine [Special characters of the Libertine font];
pp. 46–54

OpenType fonts typically have far more glyphs
than Type1 fonts, which are limited to a maximum of
256 accessible characters. But often the new glyphs
are not used since the user does not know that they
are available.

Die TEXnische Komödie 3/2015

Elke Schubert, Experimentelles KOMA-Script-
Repositorium [The Experimental KOMA-Script
Repository]; pp. 7–8

Using the experimental repository for KOMA-
Script, new features can be tested and used before
they are officially published on CTAN.

Elke Schubert, Von scrpage2 zu
scrlayer-scrpage [From scrpage2 to
scrlayer-scrpage]; pp. 9–14

For many years scrpage2 was the header/footer
package for KOMA-Script. As of version 3.12 it was
replaced by scrlayer-scrpage which itself is based
on the new and powerful scrlayer package. New
documents should definitely be created using this
package, while old documents can be converted easily.

Markus Kohm, Firmenlogo mit scrlayer
[Company logos with scrlayer]; pp. 14–19

Following some examples shown at the autumn
2014 DANTE meeting, this article shows how one
can place a company logo on paper with the help
of scrlayer, which is part of KOMA-Script since
version 3.12.

Markus Kohm, Dokumentversion mit scrlayer
[Adding document version information with
scrlayer]; pp. 20–24

This article shows how one can add version infor-
mation to the document with the help of scrlayer.

Markus Kohm, Farbige, kleine Kapitelmarken
am Rand mit scrlayer [Adding coloured
chaptermarks with scrlayer]; pp. 24–30

This article shows how one can add coloured
chaptermarks with the scrlayer package.

Elke Schubert, Ändern des Kapitelformats
[Changing the chapter format]; pp. 30–33

The current KOMA-Script cannot be used with
titlesec, one of the popular packages to change the
layout of section headings (and more). This article
shows how this can be accomplished with KOMA-
Script’s built-in functions.

Markus Kohm, Kapitelübersicht mit
Kurzbeschreibung [Adding chapter overviews with
short description]; pp. 33–37

In this article I show how \addchaptertocentry

can be used to create an additional table of chap-
ters containing short summaries of the chapters.
\addchaptertocentry is part of KOMA-Script since
version 3.08.

Markus Kohm, Kombination von Kapitelmarken
mit einer Kapitelübersicht [Combining chapter
marks with chapter overviews]; pp. 38–47

This article builds on the two preceding articles:
it brings together the chaptermarks and the chapter
overviews.

Markus Kohm, Anhangsverzeichnis [Table of
appendices]; pp. 47–54

Students, especially, often like to have a table of
appendices which lists all the parts from the appendix
which are then not to be listed in the main table of
contents.

Markus Kohm, Beschränkung von
chapteratlists=entry auf Kapitel mit
Verzeichniseinträgen 1 [Restrictions of
chapteratlists=entry on chapters having
TOC entries]; pp. 54–59

In this article we describe the challenges with
having chapter entries also in the lists of figures

TUGboat, Volume 36 (2015), No. 2 173

or tables when the inclusion is restricted to those
chapters that actually have a float environment.

Rainer-M. Fritsch, Mehr Flexibilität mit
den Variablen der Briefklasse scrlttr2 [More
flexibility with the variables of scrlttr2];
pp. 60–64

Extended discussion on scrlttr2 variables.

Rolf Niepraschk, Briefkopien mit scrlttr2
leicht gemacht [Creating letter copies with
scrlttr2]; pp. 65–67

Often one wants to have a copy of a letter set
with LATEX. The simplest approach is to reprint the
document, while it takes more effort to add a ”copy”
remark. This article shows how such “copy” versions
can be created automatically.

[Received from Herbert Voß.]

Eutypon 32–33, October 2014

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Yiannis Mamäıs, 50 years of the Greek
publishing house ‘Gutenberg’; pp. 1–5

The Athenian publishing house “Gutenberg” cel-
ebrated its 50th anniversary in 2014. On that occa-
sion, the author—once typographer and now book
editor—gave a talk about issues of Greek book æs-
thetics at the bookstore Ianos in Athens, on 20 Jan-
uary 2014. The present article is that talk. (Article
in Greek with English abstract.)

Apostolos Syropoulos, Pandoc: A Swiss Army
knife for file conversion; pp. 7–12

The ability to convert markup files from one
format to another is very important. Pandoc is
an application written in the functional program-
ming language Haskell which makes the conversion
of markup files easy. Moreover, it allows for the
management of bibliographic data. (Article in Greek

with English abstract.)

Apostolos Syropoulos, Spot colors with
(X E)LATEX; pp. 13–18

The term spot color refers to colors that are
printed with their own ink. Typically, printshops
use spot colors in the production of books or other
printed material. The xespotcolor package allows
the use of spot colors in documents prepared with
X ELATEX or LATEX provided that the dvipdfmx driver
is used. This article is a presentation of the capabil-

ities of that package. It is worth noting that until
recently, the capability to use spot colors was avail-
able only to those who prepare their documents with
pdfLATEX. (Article in Greek with English abstract.)

Ioannis A. Vamvakas, Greek crossword puzzles
with LATEX; pp. 19–24

This article presents a variation of the cwpuzzle

package for the creation of Greek crossword puzzles.
(Article in Greek with English abstract.)

Ioannis Dimakos and Dimitrios Filippou,
Twenty-five years of Greek TEXing; pp. 25–34

The authors present an updated view of all avail-
able tools (fonts, systems and more) for typesetting
Greek texts with (LA)TEX. Unlike the early days of
Greek (LA)TEX, when the available tools were limited,
users now have an abundance of tools. In addition,
the emergence of Unicode-aware systems such as
X ETEX and LuaTEX has allowed for a major break-
through in the world of TEX: the use of OpenType
and system fonts (i.e., fonts used by the operating
system of the computer) for typesetting Greek texts.
(Article in English.)

Dimitrios Filippou, TEXniques: Games with
fonts; pp. 35–38

This regular column shows when and how to use
Linux Libertine numerals in X ELATEX math mode,
and how to get true Greek small caps from the same
font family. (Article in Greek.)

Dimitrios Filippou, Book presentations;
pp. 39–42

The following books—all in Greek—are pre-
sented:
(a) Martin Davies, Aldus Manutius: Printer and Pub-

lisher of Renaissance Venice, Greek translation by
Toula Sioti, Libro Editions, Athens 2004;
(b) Ioannis K. Mazarakis-Ainian, The Greek Print-

shops during the Greek Independence War of 1821–

1827, National Historical Museum, Athens 2007;
(c) Yannis Kokkonas (editor), Typographers and Ty-

pography, Proceedings of a Memorial Symposium for
the Typographer Christos G. Manousaridis, National
Hellenic Research Foundation, Athens 2013; and
(d) Panayiotis Haratzopoulos, Ten Plus One Font

Designers, Ten Plus One Historic Fonts, Gramma
Editions, Athens 2013.
(Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

Die TEXnische Komödie 2–3/2015

174 TUGboat, Volume 36 (2015), No. 2

TUG 2015 election report

Kaja Christiansen
for the Elections Committee

As has been previously announced electronically, the
election results have been tallied. Kaveh Bazargan
has been elected TUG president for the term that
ends with the 2017 annual meeting. The following
votes were counted:

Kaveh Bazargan, 307
Jim Hefferon, 110

Both candidates made a good showing, although the
total number of voters was only about a third of
those eligible.

As of the ballot closing date (May 11), 145 valid
paper votes and 291 valid electronic ballots were
received. Of the 291 electronic votes, 18 were repeats
of the same vote. One member voted (differently) by
paper after voting electronically, so, per our election
procedures, the electronic vote was excluded.

A script was written to assist in processing
the electronic votes. Mailing the paper votes and
matching these up with electronic votes was time-
consuming and expensive. We suggest that the elec-
tronic voting may be strongly encouraged in the
future, while paper ballots could be sent by request.
We will make specific recommendations for changes
to the election procedures in due course.

As previously announced, the number of can-
didates for open board positions was fewer than
positions, so no ballot was required. Those results,
and all candidates’ statements, were printed in the
TUGboat 36:1.

The Committee gratefully acknowledges the dili-
gent work of the TUG executive director, Robin
Laakso, in administering all aspects of the election,
from inviting nominations to the final tally.

This was the first contested election since 2005.
Thanks to everyone for their participation.

⋄ Kaja Christiansen

for the Elections Committee

http://tug.org/election

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

River Valley Technologies, Trivandrum, India

River Valley Technologies, London, United Kingdom

RSGP Consulting Pvt. Ltd., Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Cambridge, Centre for Mathematical

Sciences, Cambridge, United Kingdom

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

University of Wisconsin, Biostatistics &

Medical Informatics, Madison, Wisconsin

VTEX UAB, Vilnius, Lithuania

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do
not promise it is correct. Also, this is not an official
endorsement of the people listed here. We provide this list
to enable you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants at

http://tug.org/consultants.html. If you’d like to be
listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page

layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-

ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483

Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to

typeset mathematics well.
Not that picky? We also handle most of your typical

TEX and LATEX typesetting needs.
We have been typesetting in the commercial and

academic worlds since 1979.
Our team includes Masters-level computer scientists,

journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a

TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in: the typesetting of books,

manuscripts, articles, Word document conversions as well as
creating the customized packages to meet your needs.

Call or email to discuss your project or visit my website
for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic, and

technical typesetting using most flavors of TEX, I have
typeset books for Pragmatic Programmers, Oxford

University Press, Routledge, and Kluwer, among others,

and have helped numerous authors turn rough manuscripts,

TUGboat, Volume 36 (2015), No. 2 175

some with dozens of languages, into beautiful camera-ready
copy. In addition, I’ve helped publishers write, maintain,
and streamline TEX-based publishing systems. I have an

MA in Linguistics from Harvard University and live in the
New York metro area.

Sievers, Martin

Im Alten Garten 5
54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and consulting
for the whole academic sector (individuals, universities,
publishers) and everybody looking for a high-quality
output of his documents. From setting up entire book
projects to last-minute help, from creating individual
templates, packages and citation styles (BIBTEX, biblatex)

to typesetting your math, tables or graphics— just contact
me with information on your project.

Sofka, Michael

8 Providence St.

Albany, NY 12203

+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming, macro

writing, and typesetting books, articles, newsletters, and
theses in TEX and LATEX: Automated document conversion;
Programming in Perl, C, C++ and other languages; Writing
and customizing macro packages in TEX or LATEX;
Generating custom output in PDF, HTML and XML; Data
format conversion; Databases.

If you have a specialized TEX or LATEX need, or if you

are looking for the solution to your typographic problems,
contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.

Sterling, VA 20164
+1 703 915-2406

Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and much
more. I have about eighteen years of experience in TEX and
three decades of experience in teaching & training. I have
authored several packages on CTAN, published papers in
TEX related journals, and conducted several workshops on

TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience: edited
hundreds of ESL journal articles, economics and physics
textbooks, scholarly monographs, LATEX manuscripts for the
Physical Review; career as professional, published physicist.

2015

Sep 28 TUGboat 36:3, submission deadline.

Oct 14 – 17 Association Typographique Internationale
(ATypI) annual conference,
Theme: “Challenges”,
São Paulo, Brazil. www.atypi.org

Oct 17 GuIT Meeting 2015, XII Annual
Conference, Trento, Italy.
www.guitex.org/home/en/meeting

Oct 19 – 20 The Thirteenth International Conference
on Books, Publishing, and Libraries,
“The Event of the Book”, University of
British Columbia, Vancouver,
Canada. booksandpublishing

.com/the-conference-2015

Oct 31 UK-TUG Annual Meeting, Oxford, UK.
uk.tug.org

Nov 6 – 10 ASIS&T 2015 Annual Meeting,
“Information Science with Impact:
Research in and for the Community”,
American Society for Information Science
and Technology, St. Louis, Missouri.
www.asis.org/events/annual-meeting

2016

Feb 25 – 27 Typography Day 2016,
“Typography and Education”,
Srishti School of Art, Design & Technology,
Bangalore, India. www.typoday.in

Jul 5 – 9 The 6th International Conference on
Typography and Visual Communication
(ICTVC), “Against lethe . . . ”,
Thessaloniki. Greece www.ictvc.org

176 TUGboat, Volume 36 (2015), No. 2

Calendar

Jul 12 – 16 Digital Humanities 2016, Alliance of
Digital Humanities Organizations,
“Digital Identities: the Past and the
Future”,
Kraków, Poland. dh2016.org

TUG2016

Toronto, Canada.

Jul 23, 24 Optional pre-conference tours.

Jul 24 Evening reception and registration.

Jul 25 – 27 The 37th annual meeting of the
TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2016

Jul 28 Optional typographic excursions and
banquet.

Jul 29 Optional post-conference tour [potential].

Jul 24 – 28 SIGGRAPH 2015, “Render the Possibilities”,
Anaheim, California.
s2016.siggraph.org

Sep 13 – 16 ACM Symposium on Document
Engineering, Vienna, Austria.
www.doceng2016.org

Oct 14 – 18 ASIS&T 2016 Annual Meeting, American
Society for Information Science
and Technology, Copenhagen, Denmark.
www.asis.org/events/annual-meeting

Status as of 15 September 2015

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted to lists.tug.org/tex-meetings.
Interested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

Throughout 2015, a TUG membership drive is continuing.
Invite friends, win prizes— info at tug.org/membership.

TUGBOAT Volume 36 (2015), No. 2

Introductory

105 Joseph Wright / Development of the UK TEX FAQ
• status and future of the TEX FAQ

Intermediate

128 Tom Hejda / Preparing LATEX classes for journal articles and university theses
• comparison of class design for different document types

130 Petr Oľsák / The CTUstyle template for student theses
• typographical and interface designs for a thesis template

106 Will Robertson / Single- and multi-letter identifiers in Unicode mathematics
• extended support in unicode-math.sty

119 Boris Veytsman / TEX and controlled access to information
• output and source level controls for document variants

109 Boris Veytsman and Leyla Akhmadeeva / Trilingual templates for an educational institute
in Bashkortostan, Russia

• document styles and design for Russian, English, and Bashkir

117 Joseph Wright / Through the \parshape, and what Joseph found there
• ideas and approaches for a generalized paragraph shape interface

Intermediate Plus

123 Joachim Schrod / DocCenter—TEXing 11 million documents a year
• high-volume typesetting and DVI, specials, .fmt files

143 Herbert Schulz / TEXShop’s key bindings vs. macros vs. command completion
• three similar features in TEXShop, a MacOSX front-end

145 S.K. Venkatesan / TEX as a three-stage rocket: Cookie-cutter page breaking
• page breaking in TEX for HTML5

133 Boris Veytsman and Michael Cohen / New multibibliography package nmbib
• creating multiple lists of citations, including natbib compatibility

114 Joseph Wright / Joseph’s Adventures in Unicodeland
• category codes, case changing, and Unicode

Advanced

149 Enrico Gregorio / Recollections of a spurious space catcher
• programming pitfalls with (LA)TEX, and expl3 benefits

162 Hans Hagen / When to stop . . .

• removing material already typeset; ASCIIMATH support; line profiles

136 C.V. Radhakrishnan, Hàn Thế Thành, Ross Moore and Peter Selinger / Generating PDF/X-
and PDF/A-compliant PDFs with pdfTEX— pdfx.sty

• archivable and accessible PDF generation, including color profiles and metadata

Contents of other TEX journals

172 Die TEXnische Komödie 2–3/2015; Eutypon 32–33 (October 2014)

Reports and notices

74 TUG 2015 conference information

75 TUG 2015 conference program

76 TUG 2015 photos

82 Stefan Kottwitz / TUG 2015 conference report

100 Jacques André and Alan Marshall / Richard Southall: 1937–2015

89 Barbara Beeton / In memoriam

90 Barbara Beeton / Pierre MacKay, 1933–2015

103 Erik Frambach, Jerzy Ludwichowski and Philip Taylor / Memories of Kees: C.G. van der Laan, 1943–2015

93 Hàn Thế Thành / Farewell Hermann Zapf

93 Kris Holmes / Remembering Hermann Zapf

95 Peter Karow / Digital typography with Hermann Zapf

92 Donald Knuth / Dedication to Hermann Zapf, 1918–2015

80 Volker RW Schaa / Typographer’s Banquet

171 TUG 2015 abstracts (Bazargan, Cretel, Drümmer, Gessler, Hagen, Jackowski)

174 TUG Election committee / TUG 2015 election

174 Institutional members

175 TEX consulting and production services

176 Calendar

