
TUGBOAT

Volume 36, Number 1 / 2015

General Delivery 2 Ab epistulis / Steve Peter

3 Editorial comments / Barbara Beeton

Status of CTAN at Cambridge; RIP Brian Housley;

Oh, zero!—Lucida news; First Annual Updike Prize;

Talk by Tobias Frere-Jones; Monotype Recorder online;

Doves Press type recovered; Textures resurfaces;

LATEX vs. Word in academic publications; Miscellanea;

A final admonishment

7 Hyphenation exception log / Barbara Beeton

Fonts 8 What does a typical brief for a new typeface look like? / Thomas Phinney

10 Inconsolata unified / Michael Sharpe

Typography 11 A TUG Postcard or, The Trials of a Letterpress Printer / Peter Wilson

15 Typographers’ Inn / Peter Flynn

LATEX 17 LATEX news, issue 21, May 2014 / LATEX Project Team

19 Beamer overlays beyond the \visible / Joseph Wright

20 Glisterings: Here or there; Parallel texts; Abort the compilation /

Peter Wilson

Electronic Documents 25 Online LATEX editors and other resources / Paweł Łupkowski

28 Exporting XML and ePub from ConTEXt / Hans Hagen

Macros 32 The box-glue-penalty algebra of TEX and its use of \prevdepth /

Frank Mittelbach

Software & Tools 37 The bird and the lion: arara / Paulo Cereda

41 The SWIGLIB project / Luigi Scarso

48 Still tokens: LuaTEX scanners / Hans Hagen

Hints & Tricks 55 The treasure chest / Karl Berry

Book Reviews 57 Book review: Algorithmic Barriers Falling: P=NP?,

by Donald E. Knuth and Edgar Daylight / David Walden

58 Book review: History of the Linotype Company, by Frank Romano /

Boris Veytsman

Abstracts 60 GUST: EuroBachoTEX 2014 proceedings

63 Die TEXnische Komödie: Contents of issues 4/2014–1/2015

TUG Business 2 TUGboat editorial information

64 TUG 2015 election

68 TUG financial statements for 2014 / Karl Berry

69 TUG institutional members

Advertisements 69 TEX consulting and production services

News 71 TUG 2015 announcement

72 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2015 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate for 2015 is $110.

Institutional Membership

Institutional membership is primarily a means of
showing continuing interest in and support for both
TEX and the TEX Users Group. It also provides
a discounted membership rate, site-wide electronic
access, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: April 2015]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Arthur Reutenauer
Philip Taylor
Boris Veytsman
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2015 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

You have patience for detail and iterative processes.

Kerning is a great time for meditation, really.

Tobias Frere-Jones

http://www.frerejones.com/about/jobs/

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 36, NUMBER 1 • 2015

PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 36, No. 1) is the first issue of the
2015 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat

web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully accepted. Please submit contributions by electronic
mail to TUGboat@tug.org.

The second 2015 issue will be the proceedings of
TUG’15 (http://tug.org/tug2015); the deadline for re-
ceipt of final papers is July 31. The third issue deadline
is September 25.

The TUGboat style files, for use with plain TEX

2 TUGboat, Volume 36 (2015), No. 1

and LATEX, are available from CTAN and the TUGboat

web site. We also accept submissions using ConTEXt.
Deadlines, tips for authors, and other information:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

Ab Epistulis

Steve Peter

2105 is an election year, with seats for the Board and for
President open. For the Board of Directors, the following
individuals were nominated: Pavneet Arora, Barbara Bee-
ton, Karl Berry, Susan DeMeritt, Michael Doob, Cheryl
Ponchin, Norbert Preining, and Boris Veytsman. As
there were not more Board nominations than open posi-
tions, all these nominees are duly elected to a four-year
term. Thanks to all for their willingness to serve.

I’m pleased that two dedicated individuals have
stepped forward to run for TUG President. Kaveh Bazar-
gan is a long-time TEX enthusiast who has served as
cinematographer at many a TUG meeting, ensuring that
people who could not attend in person have access to the
information presented there. Jim Hefferon is the current
TUG Vice President and has served the community in
a variety of capacities, most notably as one of the hosts
and organizers for CTAN. Since there is but a single office
of President, an election ballot is required, in accordance
with the TUG election procedures. Details are online
at http://tug.org/election; perhaps the main point
is that this year, it is possible to vote electronically in
the TUG members area, https://www.tug.org/members,
until May 11.

Terms for President and members of the Board of
Directors will begin with the Annual Meeting. Congrat-
ulations to all.

Taco Hoekwater, Ross Moore, and Philip Taylor
have decided to step down at the end of this term. I wish
to thank them for their service, and for their continued
participation until the Annual Meeting. I will also step
down at the end of my term, but I do intend to open the

Annual Meeting as President one last time.
The 2015 TUG Annual Meeting will be held in Darm-

stadt, Germany, July 20–22. If you’d like to make a
presentation at the conference, please see http://tug.

org/tug2015/cfp.html. Early submissions are greatly
appreciated. Please write us at tug2015@tug.org for any
questions, expressions of interest, etc.

Book your hotel and flight, and I hope to see you
there! See http://tug.org/tug2015 for information.

Since the election technically makes me a lame duck
(don’t worry, I’ve been called worse!), I’ve been thinking
about my tenure and the challenges that lie ahead. I am
pleased that TUG as an organization is running quite
smoothly now, which is due in no small part to the
outstanding team I had to work with: my executive
committee, Jim Hefferon, Sue DeMeritt, and Karl Berry,
and especially the day to day work of our Executive
Director, Robin Laakso.

The main challenge that I am disappointed I was
not able to tackle is the shrinking membership numbers
for TUG. I’m not worried about TEX in a global context,
since DANTE and NTG are strong, and enthusiastic devel-
opment continues on LATEX3 and ConTEXt, but I would
love to see a groundswell in TEX usage and TUG support
in the US. Thanks to Boris Veytsman, we do have a spe-
cial TUG membership campaign this year: members in-
vite members. Please see http://tug.org/membership.
If you have additional concrete ideas to help us grow
TUG, please let us know.

It has been an honor serving you. Happy TEXing!

⋄ Steve Peter
Princeton University Press
http://tug.org/TUGboat/Pres

TUGboat, Volume 36 (2015), No. 1 3

Editorial comments

Barbara Beeton

Status of CTAN at Cambridge

As of mid-February, the Cambridge CTAN node de-
veloped problems, and has been downgraded; at least
for the time being, it should not be used.

This is a good opportunity to remind anyone
who is accessing CTAN to enter the network via
the established mirroring system. To search for a
package, go to http://www.ctan.org/search and
on selecting an item, a suitable mirror will be chosen
to deliver it. Also, the top-level host name http:

//mirror.ctan.org will automatically redirect to
such a suitable mirror.

Before his retirement from the Cambridge Com-
puter Lab last fall, Robin Fairbairns was the on-site
gatekeeper (for decades) for the Cambridge CTAN

node. With his departure, management of the node
is less certain, hence the reduction in its status.

But let us take this opportunity to thank Robin
for his long years of devoted service to CTAN and
to the UK TEX FAQ, and wish him a long, healthy
and fulfilling retirement. Robin intends to continue
with the FAQ, for which he has reported a sizeable
backlog. It’s in excellent hands.

RIP Brian Housley

Brian Housley’s widow, Zora, has informed the TUG

office that Brian passed away on 26 January 2015,
and she requested that the news be communicated
to the TEX community.

Brian was a resident of Switzerland, an emeritus
professor from the Universität Bern. He had been
a member of TUG since 1988, and attended several
annual TUG conferences, accompanied by his wife.

Brian was the author of the hletter package,
on CTAN and in TEX Live. He also wrote an article
about hletter in TUGboat 32:3, 302–308 (http:
//tug.org/TUGboat/tb32-3/tb102housley.pdf),
based on his presentation at TUG 2011 in India.

We extend our condolences to Brian’s widow.

Oh, zero! —Lucida news

Chuck Bigelow’s article “Oh, oh, zero!” (TUGboat

34:2 (2013), 168–181) elicited a reaction from Don
Knuth (TUGboat 35:3 (2014), 232–234), which has
in turn elicited a further reaction from Chuck, in
the form of reshaped capital ‘O’ and ‘Q’. The re-
shaping takes a super-elliptical form, reminiscent
of Piet Hein’s superegg. Chuck has installed these
as variant letters in Lucida Grande Mono, which is
equivalent in design and proportions to Lucida Sans

Typewriter. Don’s actual request was to place the
squarish shapes in Lucida Console; this was more
involved, as it also required shortening the capitals
to the Console height, but has now also been accom-
plished. This special “DEK edition” will also have a
zero-slash as an alternate, the better for clarity in
reading code in a typewriter font.

The Lucida Grande Mono and Lucida Console
fonts with the new glyphs will eventually be made
available only from TUG. (The non-enhanced ver-
sions will continue to be offered, only in TrueType for-
mat, from the Lucida Store, http://lucidafonts.
com.) Stay tuned.

In a related development, Chuck and his partner,
Kris Holmes, have posted on their blog (http://
bigelowandholmes.typepad.com) a detailed essay,
“How and Why We Designed Lucida”, celebrating the
30th anniversary of these types, “the first family of
original, digital typefaces for laser printing and screen
displays”. The salient characteristics of this family
are presented in detail, along with a clear explanation
of how these choices make Lucida different from other
types, especially those meant originally for printing
directly on paper. Many choices were guided by the
results of research into the human visual system, and
the rich background in calligraphy that Chuck and
Kris share is also a strong influence.

Their blog in general is a veritable history lesson
in all aspects of typography and vision research, and
if it were less readily available, we would have co-
opted several items from there for publication in these
pages. Expected soon is an article about “Women’s
Literation” (yes, that’s “t”, not “b”); be prepared for
a surprise conclusion.

Another occasional feature of the lucidafonts

site is the “Flash Sale”, which appears irregularly
for specific font families, and may similarly disap-
pear without warning. The sales are announced
on Twitter (https://twitter.com/LucidaFonts),
and anyone who downloads a free font from the site
gets an option to be put on a list for email announce-
ments. A recent offering was Lucida Handwriting:
15 weights, $15. There’s no telling what might be
featured next.

And if that is not enough, lucidafonts.com

contains many more features that are not yet easily
accessible (probably, Chuck says, because the site
navigation is not yet fully developed). For instance,
on the fonts/ page is a matrix of the letter “a” for
every font in the store, showing weight and style
variations. And on the pages/facts and pages/faq

pages of the site are more interesting bits of technical
and historical information. Explore!

4 TUGboat, Volume 36 (2015), No. 1

First Annual Updike Prize

Last spring, the Daniel Berkeley Updike Collection
at the Providence Public Library (PPL) was host
to the inauguration of a new prize for student type
designers (TUGboat 35:1, page 3), with a talk by
Matthew Carter. The first of the annual prizes were
awarded this year on February 19; the ceremony also
featured a talk by Tobias Frere-Jones.

From the Updike Prize web page (http://www.
provlib.org/updike-prize-finalists):

The annual Updike Prize rewards undergraduate
and graduate type designers whose work has been
influenced by materials in the Updike Collection
at the Providence Public Library. Whether stu-
dents choose to revive a historic typeface or to
create a new typeface inspired by an earlier de-
sign, applications are judged on the quality of the
specimen, the quality of the typeface submitted
and how creatively and thoughtfully it interprets
a historical model.

The finalists and their typefaces/type families:

• Sandra Carrera, Pícara (ECAL) First Prize
• Chae Hun Kim, Hodoo

• Prin Limphongpand, Rizvele (Runner-Up)
• Yeon Hak Ryoo, Tranche

Carrera’s family, Picara, was influenced by a
type specimen published in the 1770s by Antonio
Espinosa. The entire book can be viewed on the PPL

web site, at https://pplspc.org/espinosa.
The name of Prin’s typeface, Rizvele, is an ana-

gram of the source used, a book from the venerable
Elzevir publishing house.

The first prize trophy, a fully functional compos-
ing stick, is pictured on the PPL’s “Notes for Biblio-
philes” blog, https://pplspcoll.wordpress.com,
as part of the offering for February 26, 2015. First
Prize also includes $250 and admission to the Type-
Con 2015 conference (compliments of the Society of
Typographic Aficionados).

Information about next year’s Updike Prize com-
petition will appear on the PPL blog in due time,
but the rules are not likely to change significantly.
It’s not too early to get started.

Talk by Tobias Frere-Jones

The talk, on the occasion of the awarding of the
Updike Prize, was titled “How I Got Here”. It was
also an occasion for Frere-Jones to revisit the scene of
his formal typographic education, the Rhode Island
School of Design (RISD).

Frere-Jones came by his interest in print nat-
urally. His great-grandfather, Edgar Wallace, was
a writer of books, including mysteries. (The slides
included images of their jackets, from the time when

books routinely wore jackets.) His father was a copy-
writer for an advertising agency.

At an early age, Frere-Jones became interested
in art. He named two principal influences—Kaz-
imir Malevich, a creator of geometric abstract art,
and Kurt Schwitters, who made collages from found
scraps of printed material. Another influence was
mathematics, in particular algebra and geometry.
Analyzing shapes—squares, circles and triangles—
was the only way he could make sense of Roman
inscriptional letters. He also found inspiration (and
examples for practice) in a book on drawing let-
terforms by David Gates. After entering RISD, he
augmented what was being covered in classes with
Updike’s classic Printing Types.

One early experiment, intended as a Christmas
present (to be used in ads for his brother’s band),
involved drawing his preliminary sketches on napkins
while at a local pub. The first draft included only
letters, and when he realized that he also needed dig-
its, he had to go back to the bar to get more napkins
to establish the proper conditions for matching the
shapes.

After graduation from RISD, he joined the Font
Bureau, where he benefited from the experience of
David Berlow, whose good lessons included how to
say when a project is finished, and assignments where
he could be effective.

Among the many typefaces created by Frere-
Jones are Interstate and Retina (both well known,
even ubiquitous). He also adapted for digital use a
lesser-known face named Epitaph, originally created
at the close of the nineteenth century and based
on letterforms found on contemporary gravestones;
it was this typeface, he said, that caused him to
realize that lettershapes (in metal) were different
in different sizes. He described his adaptations as
taking parts of letters from different sizes, swapping
features from one letter to another, for example,
adding serifs on “T”, transplanting a curve from “N”
to “K”. In the process, he produced two variants of
almost every letter, based on features already present
in the different sizes of the original. Although his
slides showing the details aren’t available, a good
example is posted at http://www.fontbureau.com/
fonts/Epitaph. Look for the subtle variations in
the lettershapes of the two alternate alphabets. In
this context, Frere-Jones also noted that a client may
take him in a direction that he’d never have gone on
his own.

The talk was followed by a few questions from
the audience. Asked what is his favorite letter, he
answered “R”: it exhibits features from all the shapes
he identified earlier— square, circle, and triangle.
What annoys him most? The degree of impatience

TUGboat, Volume 36 (2015), No. 1 5

shown by current students; things are too easy now,
compared to cutting letters in metal— that takes
time, and inspires reflection. He noted that Matthew
Carter said that he never regretted putting something
in a drawer and ignoring it for a year. And is he still
having fun? Yes! Especially when he is able to just
sit and draw.

Much more can be discovered on Frere-Jones’
blog at http://www.frerejones.com.

Monotype Recorder online

For about 70 years, from 1902, the Monotype Cor-
poration published a trade magazine, The Monotype

Recorder. It covered topics of great variety concern-
ing font specimens, “best practices” and typographic
conventions for various purposes and in various lo-
cales, reviews of well known printing establishments
(who were Monotype customers), a wealth of material
about a skilled trade.

A large (and growing) collection of issues of the
Recorder have now been scanned and posted as PDF

files, available for download, on the Metal Type web
site in the UK, at http://www.metaltype.co.uk/

monotype_recorder.shtml.
One particular issue (Vol. 40, No. 4, Winter

1956) is devoted to the topic “Setting Mathematics”,
by Arthur Phillips, the acknowledged expert on the
subject. This was apparently unknown to Knuth
when he designed TEX, as it does not appear in
any of his early bibliographies. But it sets forth
the principles by which math compositors produced
much of the material that Knuth examined in his
design exploration.

Truly a trove worth treasuring!

Doves Press type recovered

This news has been reported in several places now,
but it’s no less amazing on a repeat reading: “A
century after being cast into the River Thames, a cele-
brated typeface reemerges” (http://hyperallergic.
com/181625).

Thomas Cobden-Sanderson and Emery Walker
together produced stunning works of the printer’s
art at their Doves Press, using a type created for
its exclusive use. After a falling out between the
partners, the press closed in 1909, but its effects
remained jointly owned. But before his death in
1917, Cobden-Sanderson, who could not bear the
thought that his precious type might be used for
anything less worthy than the work for which it had
been created, spirited the entire collection to the
edge of the Thames, and threw it in.

In 2010, type designer Robert Green decided
to undertake a digital revival of the Doves Press
type. Working from original examples and archival

material, he produced a version that was released in
2013. The original type was still missing, but there
were enough clues to locate its watery resting place
under the Hammersmith Bridge. Searching on the
bank at low tide, Green found several pieces of type
in the mud, and from there, with the assistance of
a salvage team from the Port of London Authority,
150 pieces of type were recovered.

That small sample of type is not enough to
print a book, but it was enough to provide a few new
details about the design, and validate the accuracy
of the digital revival. An updated version of the
facsimile was released in December 2014, and a very
readable story, with copious illustrations, appears on
the cited Hyperallergic web page.

Another account of the adventure can be found
online at http://trov.es/1zwdjHM, “The Gorgeous
Typeface That Drove Men Mad and Sparked a 100-
Year Mystery”.

Textures resurfaces

With Barry Smith’s death in 2012 (TUGboat 34:2,
pages 111, 112), BlueSky Research folded its tents
and work on upgrading Textures to run natively
under Mac OSX came to a halt. Now, a group of
dedicated academic users has banded together to
support the completion of a Cocoa-based implemen-
tation of Textures, left unfinished at Barry’s death,
and to this end has made the existing Carbon-based
implementation available for evaluation at no cost.

Preliminary details of this project have been
posted at http://blueskytex.com, with a further
announcement planned for July.

LATEX vs. Word in academic publications

A question on the TeX.stackexchange forum, “Does
LaTeX really perform worse than Word?” (http:
//tex.stackexchange.com/q/219576/), led me to
a study published in a recent issue of PLoS One

that concludes “that even novice MS Word users
perform better than expert LaTeX users in document
creation.”

The article, written by Markus Knauff and Jelica
Nejasmic, entitled “An Efficiency Comparison of Doc-
ument Preparation Systems Used in Academic Re-
search and Development” (http://journals.plos.
org/plosone/article?id=10.1371/journal.pone.

011506), not surprisingly, raised a number of ques-
tions, not to mention a furore, in a number of web
discussions. These are only a few:

• comments on the PLoS site (click on the “Reader
comments” button on the article page);

• the TeX.sx chat: http://chat.stackexchange.
com/rooms/19762;

6 TUGboat, Volume 36 (2015), No. 1

• Nature: “Word-processing war flares up on social
media” (http://www.nature.com/news/
word-processing-war-flares-up-on-

social-media-1.16669).

Admittedly, readers of TUGboat may be predisposed
in favor of LATEX. Nonetheless, my main gripe with
the article is the “conclusion”. While admitting that
the use of LATEX may be justified when documents
contain a large amount of math, the final statement
is this:

In all other cases, we think that scholarly jour-
nals should request authors to submit their docu-
ments in Word or PDF format. [. . .] preventing
researchers from producing documents in LaTeX
would save time and money to maximize the ben-
efit of research and development for both the
research team and the public.

“Preventing” —so much for academic freedom.
(This may have been peer reviewed, but my opinion
of the quality of that review isn’t favorable.)

Miscellanea

Here are a few more things I found interesting.
Most of the presentations at last year’s Bacho-

TEX have slides linked from the program: http://

www.gust.org.pl/bachotex/2014/program. This
one definitely lives up to its title, “Absolutely non-
computer and completely not programmable new
book forms”, by Andrzej Tomaszewski (http://www.
gust.org.pl/bachotex/2014-pl/presentations/

formy-ksiazki.pdf). Fascinating illustrations!
Slides and recordings of the UK TUG 2013 and

2014 meetings are linked from their home page, http:
//uk.tug.org. A number of interesting topics are
covered.

A look at the persistence of “archaic” typo-
graphic practices was featured in the Boston Globe:
“Modern typefaces vs. the Massachusetts court sys-
tem: Why does one of the nation’s most progressive
states do its legal business in old-fashioned Courier?”
(http://tinyurl.com/p232hva). The image of an
ancient typewriter heads the article. (This type-
writer is very like the one I learned to type on in
summer school. Even then it was an anachronism,
from long before Courier was created, in 1955. Other
anachronisms in the article are so prevalent that it
should have been held for publication until April 1!)
When this was mentioned to Chuck Bigelow, he re-
sponded with a reference to an article he wrote with
Gordon Legge published in the Journal of Vision

(http://www.journalofvision.org/content/11/
5/8.long); monospace fonts are still used in Holly-
wood scripts:

. . . fixed-width Courier, which provides a conve-
nient, predictable metric. Each standard script
page corresponds to roughly 1 min of movie time,
so the number of pages gives producers an es-
timate of the length and production cost of a
movie.

“Overheard” on the TeX.stackexchange chat:
“Archimedes principle: the upward force by the text
on a float is equal to the weight of the text the float
displaces. :)” (The perpetrator will not be identified
here, to protect the guilty.)

Google Code, an open-source project hosting
service started in 2005, has been home to some TEX-
related projects. Effective 12 March 2015, the service
has disabled new project creation, and 25 January
2016 has been announced as the closing date. The
full announcement can be found at http://google-
opensource.blogspot.co.uk/2015/03/farewell-

to-google-code.html. At least one affected code
developer has migrated his code to GitHub (https:
//github.com), but other sites are possible. If your
code has been hosted at Google Code, you probably
already know about this change; if you are looking
for something that has been hosted there, and are
unsure of its new location, it’s probably best to check
with the developer.

A final admonishment

There is much going on in the TEX world. I am tuned
into a number of the (LA)TEX forums and mailing lists,
and the level of activity is high. Along with the usual
plethora of beginners’ questions, interesting topics
of general interest abound, many worthy of more in-
depth and polished coverage. If you are responsible
for such material: please consider writing it up and
submitting it for publication here.

If you are only an observer of interesting mate-
rial, rather than the originator, and would like to see
it addressed in print, send a note to the editors citing
the source (preferably with reliable links), and we
will endeavor to persuade the perpetrators to write
it up for publication.

Another occasional feature that we’ve missed
in TUGboat is cartoons and other illustrations on
typographic subjects. If you see a drawing or photo
that fits our “profile”, let us know, and we’ll try to
persuade the creator to become a contributor.

TUGboat is your journal. Enjoy reading it,
surely—but please also think about becoming an
active participant.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

Hyphenation exception log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly. The full list last
appeared in TUGboat 16:1, starting on page 12,
with updates in TUGboat 22:1/2, pp. 31–32; 23:3/4,
pp. 247–248; 26:1, pp. 5–6; 29:2, p. 239; 31:3, p. 160;
33:1, pp. 5–6; and 34:2, pp.113-114.

In the list below, the first column gives results
from plain TEX’s \showhyphens{...}. The entries
in the second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document. The full list of exceptions, as a
TEX-readable file, appears at http://mirror.ctan
.org/info/digests/tugboat/ushyphex.tex. (It’s
created by Werner Lemberg’s scripts, available in
the subdirectory hyphenex.)

Like the full list, this update is in two parts:
English words, and one non-English name that oc-
curs in English (mathematical) texts.

Thanks to all who have submitted entries to
the list. Here is a short reminder of the relevant
idiosyncrasies of TEX’s hyphenation. Hyphens will
not be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by TEX
except for “missing” hyphens at the beginning or
end, it has not been included here.

Some other permissible hyphens have been omit-
ted for reasons of style or clarity. While this is at
least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated in
the same way regardless of usage.

TUGboat, Volume 36 (2015), No. 1 7

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

Hyphenation for languages

other than U.S. English

Patterns now exist for many languages other than
U.S. English, including languages using accented and
non-Latin alphabets. CTAN holds an extensive col-
lection of patterns: see language/hyphenation and
its subdirectories.

A group of volunteers led by Mojca Miklavec
and Manuel Pégourié-Gonnard have created a com-
prehensive package of hyphenation patterns, called
hyph-utf8; see http://tug.org/tex-hyphen.

The list—English words

as-trologer as-trol-o-ger
as-tronomer as-tron-o-mer
catas-tro-phe ca-tas-tro-phe
catas-trophism ca-tas-tro-phism
chemokine chemo-kine
con-structed con-struc-ted
cy-tokine cy-to-kine
gigan-odes giga-nodes
hip-popota-mus hip-po-po-ta-mus
icono-g-ra-pher ico-nog-ra-pher
icono-graphic icon-o-graph-ic
iconog-ra-phy ico-nog-ra-phy
im-mu-niza-tion im-mu-ni-za-tion
im-munomod-u-la-tory im-mu-no-mod-u-la-to-ry
kilo-n-odes kilo-nodes
leukotriene leu-ko-triene
megan-odes mega-nodes
molec-u-lar mo-lec-u-lar
penalty(ies) pen-al-ty(ies)
pre-dictable pre-dict-able
prefers pre-fers
prostaglandin pros-ta-glan-din
salient sa-lient
ter-a-n-odes tera-nodes
triplex(es) tri-plex(-es)
unin-stan-ti-ated un-in-stan-ti-at-ed

Names and non-English words

used in English text

Caratheodory Cara-theo-dory

⋄ Barbara Beeton
http://tug.org/TUGboat

TUGboat (at) tug dot org

8 TUGboat, Volume 36 (2015), No. 1

What does a typical brief for a new typeface

look like?

Thomas Phinney

I keep on seeing this question unanswered, and hop-
ing somebody else would answer it, as the answer is
. . . long. :)

I’m not sure there is a single “typical brief.” One
of the things that makes typeface design interesting
is the diversity within a seemingly narrow specialty.

As one of my colleagues points out, many of
the same questions one considers in designing a new
typeface, also apply simply to selecting a typeface,
or customizing an existing typeface.

I am a bit unclear on what you mean by “what
does it look like”? I am kind of assuming this is a
question of content rather than format. If you are
looking for formatting advice, please say so. :)

For that matter, the design brief is sometimes
never actually written down, nor clearly developed.
I do encourage both aspiring type designers, and
clients of custom type design, to go through this
process and write it all down. I expect that it will
be helpful almost all the time, and often immensely
helpful, to articulate questions and goals clearly. It
sets everyone’s expectations and creates reasonable
limits.

Many clients won’t even know what questions to
ask, so the design brief is something that usually gets
developed in collaboration between the type designer
and the client. Or, if there is no specific client, it
can be a matter of asking the questions of oneself,
to better focus the design. Being more specific and
more seemingly restrictive is likely to result in a more
successful work—even if the final fonts are used in
ways beyond what the designer originally expected.

A design brief can potentially be a living doc-
ument, revised over time during the early stages of
the project as it is defined. There may be a first
round of design brief written in the early exploratory
stages, and it may be developed further in one or
more additional iterations.

In any case, when taking on a new typeface
design, the questions I would be asking the client (or
myself) to create the design brief would be these:

1. Who is the client, or target customer?

2. Is it replacing a current typeface? If so, what
does the client like and dislike about the current
typeface? What is motivating the change?

Editor’s note: Originally published at http://www.quora.

com/What-does-a-typical-brief-for-a-new-typeface-

look-like. Reprinted with permission.

Figure 1: Fontlab logo.

3. If they considered off-the-shelf options, what did
they consider and what did they like about each
of them? What did they dislike about each of
them? Why did they not go with any of them?
I found this part incredibly helpful in the

process of creating a new logotype recently for
my company, Extensis (see fig. 1). We looked at
a bunch of specific typefaces and rejected them
for a variety of reasons. In the end I took an
existing typeface and modified it quite heavily.
But I used the knowledge of the strengths and
weaknesses of these other typefaces, in terms
of what I and my (internal) customers wanted,
and that guided what I did to the pre-existing
typeface.

4. What is the typeface a vehicle for? What is to
be communicated with it? In what way should
it flavor the message? Is it intended for a par-
ticular project or product?

In the same case I mention above, we wanted
it to feel modern and somewhat techno, yet
warm and approachable. Moreover, we had a
very playful graphic for the logo— it was almost
wacky in how playful it was. We needed to have
the type treatment for the logotype be playful
enough to not just clash with the graphic, but
still a bit more serious, to ground it a bit. It
was a careful balancing act.

5. Is there a specific target usage, such as “advertis-
ing headlines” or “body text in all publications
and online.” Even if not. . .What sizes will it be
used at? In what media? How will the type
be reproduced (imaged, rasterized)? On screen?
For web pages? In print?

Again by way of example, the logo needed to
function at pretty small sizes, as logos often do.
Some of the typefaces we had entertained were
eliminated in part because their weight got too
spindly at small sizes on screen; it just wasn’t
holding up well enough.

6. What else is known about the desired design
category?

In my logo example, we had decided we wanted
something in the line of a slab serif typeface,
something in a realm defined by typefaces such
as Archer, Donnerstag, Vista Slab, and Adelle.

Thomas Phinney

TUGboat, Volume 36 (2015), No. 1 9

Figure 2: Some of the Hypatia Sans variants.

My first typeface, Hypatia Sans (see fig. 2),
started out with me as a designer coming in
thinking I wanted to do a geometric sans serif—
but still needing to figure out how to focus it
beyond that.

7. How many styles (individual fonts) are desired?
Regular, italic, bold and bold italic are four fonts
right there (and no, you can’t get reasonable
quality results by just using algorithmic slanting
and bolding). More weights, more widths, or
variants intended for different sizes can all add
to this total. Families of 8–20 fonts are not
unusual today. The largest family I know of is
Kepler, comprising 168 (!) fonts.

8. What kind of language coverage is required?
Any other particular character set needs (e.g.
particular symbols, math capability, whatever).
There are a variety of semi-standard character
sets and language groupings, but the whole mat-
ter is a bit fuzzy around the edges.

9. What kind of typographic extras are required,
or might be desirable? For example, these days I
consider support for arbitrary fractions and both
lining and oldstyle figures (in both tabular and
proportional widths) pretty much “basic.” Plus
at least the five f-ligatures. But other people
might think of these as extras. I think of small
caps as extra, however, especially with the large
language coverage I tend to go for. How about
superscript and subscript numbers? A full set
of letters for ordinals? Many other possibilities
here.

Many of these things essentially multiply to-
gether. For example, if you need real small caps, you
should probably have them for all the supported lan-
guages, and in all the fonts in the family— I would
hope it would be (reasonably) assumed, but best to
be explicit about it.

⋄ Thomas Phinney

http://www.thomasphinney.com

Editor’s note: Thomas Phinney is one of the regular

teachers of the Crafting Type workshop, an intensive

three-day class in type design. It is aimed at anyone with

an interest in type and typography, not only professional

type designers. It has been given in many cities around

the world, and new workshops are actively scheduled.

TUG is happy to be able to provide some administrative

support for Crafting Type, and we heartily recommend

looking into it.

The web site is http://craftingtype.com.

What does a typical brief for a new typeface look like?

10 TUGboat, Volume 36 (2015), No. 1

Inconsolata unified

Michael Sharpe

Inconsolata is a very fine monospaced font family
developed several years ago by Raph Levien, with
partial support from TUG, using software of his own
design that allowed curve segments to be drawn
using spiros (a.k.a. Euler spirals or spirals of Cornu)
whose defining feature is that curvatures vary linearly
with length along the curve. (Such curves have a
prominent history in engineering practice, where they
were, and are, used for highway and railway curves,
and provided the shapes for French curve templates
which were widely used in engineering drawing before
the days of computer-aided design.)

Initial LATEX support for the font, which was
originally provided on CTAN only in Type 1 format,
was provided by Karl Berry’s inconsolata package,
where the font had Berry name fi4. In 2012, after a
bold version became available, I made an enhanced
version with Berry name zi4 that provided a number
of new glyphs and lookup tables to allow them to
be accessed as alternate forms, along with equiva-
lent LATEX options for the Type 1 versions. This
meant that the CTAN versions of Inconsolata were
not the same as those provided by other sources.
Recently, there has been cross-platform interest in a
reunification.

Though the process is not yet complete, it ap-
pears likely that in the near future there will be one
master source for Inconsolata, making available the
regular and bold weights in two em sizes: 2048 for
the TrueType versions and 1000 for the Opentype
(cff) and Type 1 (pfb+afm) versions. In particu-
lar, the versions on CTAN will be drawn from this
master repository, and future changes in the fonts
may require the package maintainer to regenerate
the tfm files using a script that calls afm2tfm with
a multitude of encoding files. Of course, changes to
glyph names would require making the corresponding
changes to the encoding files.

As things stand, the version offered on CTAN

and through TEX Live will be updated to the most
current version with all features intact. Detailed be-
havior is in the documentation for the inconsolata
package, but, to summarize usage in LATEX:

• regular and bold weights are available;
• options are available to specify:

– slashed or unslashed zero;
– upright quotes or original slanted quotes

in verbatim text;
– original lowercase L (el) or a curvier vari-

ant.

The last three options are also available in fontspec

by means of choices of the StylisticSet.

Sample LATEX file fragment:

<load text package>

\usepackage[varqu]{inconsolata}

\usepackage{upquote}

...

\begin{document}

\begin{verbatim}

"double-quoted text"

`backticked item`

'single-quoted'

Zero: 0 # note slashed zero as default

option var0 would use unslashed

...

\end{document}

will render as:

"double-quoted text"

`backticked item`

'single-quoted'

Zero: 0 # note slashed zero as default

option var0 would use unslashed

Sample X ELATEX/LuaLATEX file fragment:

\usepackage{fontspec}

\usepackage{libertine}

\setmonofont[StylisticSet=3]{Inconsolata}

% straight quotes

...

\begin{document}

\begin{verbatim}

"double-quoted text"

`backticked item`

'single-quoted'

Zero: 0 # note slashed zero as default

...

\end{document}

will render as:

İdouble-quoted textİ

ıbackticked itemı

įsingle-quotedį

Zero: 0 # note slashed zero as default

The material above rendered in Inconsolata is
somewhat larger than the accompanying text, and,
in practice, should be scaled down to a more appro-
priate size in the document preamble.

⋄ Michael Sharpe

Math Dept, UCSD

La Jolla, CA 92093-0112 USA

msharpe (at) ucsd (dot) edu

http://math.ucsd.edu/~msharpe/

Michael Sharpe

TUGboat, Volume 36 (2015), No. 1 11

A TUG Postcard or, The Trials of a

Letterpress Printer

Peter Wilson

To become a rich printer you must start as a very
rich printer.

Traditional

This is the tale of how and why I came to letterpress
print a postcard for TUG.

Background

I have been a LATEX user since 1985, using it at work
to typeset and print a range of technical documents,
from reports through code documentation and cul-
minating in several thousand of pages of an ISO

International Standard. It is only since I retired that
I became involved in traditional letterpress print-
ing. This involves manually selecting pieces of lead
type to make up words, sentences, pages and books,
putting ink on the type so carefully arranged and
pressing a sheet of paper onto the inked type to get
a final printed page. You produce quite a few sheets
like this, proudly show them to your wife who, after
a mere glance, announces that she can see several
typos! Back to cleaning up the type, making the
necessary replacements and/or additions, and then
starting the ink-print-review cycle again.

I got into letterpress work after going on a book-
binding course where one of the participants said
that her husband was looking for volunteers to help
with traditional printing at the local Highline Com-
munity College in a Seattle suburb. He took me on,
though I knew nothing about it, gave me perhaps
three hours of show and tell and let me get on with
it. Most of the shop was devoted to teaching com-
mercial printing; the biggest press that they had was
a 4-colour Heidelberg offset press some 30 feet in
length, with all text and pictures being set up on a
Mac beforehand. The students also had to take a
two-day letterpress session in my small corner of the
shop. Most were desperate to get back to their Macs
but one or two liked the constraints forced by having
to use fixed sizes of lead type. There we printed on
two Chandler & Price platen presses dating back to
the early 20th century. In a platen press the type
is put in vertically and if not locked up tightly will
scatter itself all over the floor; the students really
did not like this as they had to pick it all up, put it
back in the correct places in the typecases and start
all over again, but you only do it once.

To my surprise I managed to win some awards
for my printing, the most prestigious being a Gold
Award at the 2009 IAHPC International Gallery of

Figure 1: Operating a Chandler & Price
Old Style Press

Excellence where there were participants from some
15 different countries. It was for a production called
‘Twelve Chinese Great Scholars’ done with giclée
illustrations and letterpress printing with an accom-
panying booklet via LATEX all enclosed in an Oriental
style box.

In 2010, after 27 years in the USA, I moved
back to the UK and managed eventually to set up a
printing and bookbinding workshop in my garage (in
the UK it is very rare that a car is kept in a garage).

A partial view of the shop is shown in Figure 2.
In the foreground is a nipping press for bookbind-
ing and there are two large type cabinets in the
background with each holding twenty typecases and
in turn each typecase holds one fount of lead type.
There is also a much smaller cabinet holding various
founts of brass type for gold tooling the titles on
books.

I was fortunate to be able to get a Vandercook
SP15 proofing press at a very reasonable price, al-
though it cost nearly as much to have it professionally
moved from where it was 200 miles away from my
home. This is a horizontal press as opposed to the
vertical platen presses which has, for me, the great

A TUG Postcard or, The Trials of a Letterpress Printer

12 TUGboat, Volume 36 (2015), No. 1

Figure 2: Type cabinets and bookbinding equipment

advantage that once you have the type on the press it
will not fall onto the floor. The essential part of this
is shown on the next page in Figure 6. It is possible
to print sheets as large as 15 by 18 inches (381 by
457 mm), while printing on anything smaller than A5
paper (5.8 by 8.25 inches) tends to be problematic.

The postcard

Karl Berry is very persuasive and in a moment of
weakness I agreed to print a few postcards for TUG

to be given away as a thank-you for members who
persuaded others to become members.1 I imagined
25 or so but was hooked into producing a hundred.
It was left to me to create a design which then Karl,
Barbara Beeton and some unnamed reviewers2 would
critique.

The first of my draft layouts, done with LATEX of
course, and shown in Figure 3, consisted of a Knuth-
ian quote flanked by two cuts of a nineteenth century
type compositor and of a printing press — these were
reproduced using carbon paper, then scanned, and
inserted into the LATEX source as jpg’s.3 The grid
pattern was to help me with the final arrangement
of the type.

I decided to use Caslon for the printing for two
reasons; firstly I am rather fond of it and secondly,

1
Editor’s note: Our membership campaign is detailed at

http://tug.org/membership; it runs throughout 2015, please

take a look!
2
Editor’s note: The other unnamed reviewers were the

folks who have volunteered to be on the current incarna-

tion of the TUG membership committee: Kaja Christiansen,

Jim Hefferon, Klaus Höppner, Robin Laakso, Steve Peter,

Boris Veytsman, and Dave Walden. Peter was remarkably

patient and gracious in the face of our ignorant ideas!
3 ‘Cut’ is a somewhat generic term for an engraved illus-

tration of some kind mounted on a wooden block to bring

it up to typeheight so that it can be printed along with the

regular type.

Figure 3: First draft design (in LATEX)

and more importantly, I happened to have it in a
range of sizes and also in Roman, italic and small
caps to match Knuth’s original setting. I used 14pt
for the Knuth introductory line and 18pt, leaded 6pt,
for the quotation itself. I selected 10pt Gill Sans
for the imprint at the bottom of the card and the
printers flowers were 18pt. I have some 60 founts
but none of them span the entire range of sizes and
possible styles. Among these are Baskerville, Bembo,
Bernhard Cursive, Blado, Caslon, Casteller Titling,
Fournier, Gill Sans, Old English, and Times.

But compare this motley selection with Knuth’s
Computer Modern with the Roman in sizes 5, 6,
7, 8, 9, 10, 12, and 17pt, the bold in 5 to 12pt,
small caps in 8, 9, 10, 12 and 17pt, the italic in
8, 9, 10, 12 and 17 pt, which would take up 25
typecases, not to mention the slanted roman, Greek,
the typewriter font and others. And then maths
fonts are a completely different ballgame! In essence,
there is an unlimited supply of characters in digital
typesetting. In letterpress, you have to make do with
what you have physically got. In my early letterpress
printing days I almost completed setting the type
for a two page document but ran out of ‘h’ sorts
on the penultimate line of the first page.4 The text
was composed of many sentences like ‘Whither art
thou going, when, and with whom?’ and I had to
redesign the whole work to accommodate my limited
‘h’ supply.

The reviewers asked me to liven up my proposal
by adding some sort of decoration to highlight Knuth.
There wasn’t room for that so I added a top and
bottom line of printers flowers. I was also asked to
change the lowercase ‘e’ in ‘TeX’ to a dropped ‘E’ as
in TEX.

Well, kerning in LATEX is easy as you just make
judicious use of the \kern and \raisebox command
to add or subtract horizontal or vertical space. In

4 ‘Sort’ is the generic term for a single piece of lead type.

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 13

Figure 4: Second draft printed design

letterpress printing when you are dealing with fixed
sizes of lead type it is not so simple. For a posi-
tive horizontal kern you can add some extra spacing
between the adjacent sorts, ranging from a slip of
cigarette paper through copper and brass shims to
lead spacers. Any other kerning requires trimming
pieces of lead, either above or below or before a sort;
not easy. However, I did my best to meet their re-
quests with the result as in Figure 4 (the card got
a bit askew when I scanned it originally and I have
since disposed of the original).

I was not happy with my attempts to kern the
‘E’ and fortunately the reviewers were of the same
opinion so I reverted back to the regular ‘e’. I then
spent some time making minor adjustments to the
positions of all the elements on the card — a process
of adding and subtracting bits of lead until it all
looked right. The final positioning of the type, cuts,
and spacers in the forme is shown in Figure 5. The
forme consists of a rectangular cast-iron frame, called
a chase, enclosing the type to be printed, which must
be firmly locked up in the chase so that the whole
lot can be picked up and moved around without
anything falling out.

A US postcard is about the same size as an A6
sheet, and as I mentioned, printing for me on any-
thing smaller than A5 is not so easy. As it happened
I couldn’t find any suitable A6 paper so I used A5
instead. As I had only one copy of each of the cuts I
could only print one postcard at a time, so I printed
on one half of the A5, waited two or more days for
the ink to dry and then printed on the other half of
the sheets, one of which is shown in Figure 7.

I was limited in the amount of drying space that
I had, about enough for twenty-five sheets, so the
whole process became somewhat protracted.

For one reason or another I managed a high
failure rate of about 10%, which just lengthened the

Figure 5: The final type locked up in the forme

Figure 6: The forme on the press

Figure 7: Final printing

A TUG Postcard or, The Trials of a Letterpress Printer

14 TUGboat, Volume 36 (2015), No. 1

Figure 8: Ink on the back

Figure 9: Missing ink

time. Apart from the usual occasional smudging of
ink when taking a sheet out of the press and the
odd misfeed of the paper I had two major problems.
The first is illustrated in Figure 8 where somehow I
managed to get ink on both the front and the back
of the cards. A good cleaning of everything solved
that one.

The more troublesome difficulty is shown in
Figure 9 where there is not enough ink on the top row
of printers flowers. I spent a long time putting slips

Figure 10: A postcard in its deliverable state

of paper under the sorts that were not fully printing
to raise them up so that the ink rollers would be sure
to touch them. This didn’t work. Eventually I found
that I was moving the ink rollers too fast across the
type and they were partially bouncing over the top
row of type. I reduced my printing rate from about
four to three per minute and all seemed well after
that.

The end

Perhaps the surprising thing after all this is that I did
manage to produce the hundred postcards that Karl
requested. A deliverable card is shown in Figure 10.
And then, almost to add insult to injury, Karl asked
me to write something up about the whole process
for TUGboat, hence this rather long-winded piece —
just don’t blame me.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 15

Typographers’ Inn

Peter Flynn

1 Portable typesetting

I recently had to reinstall TEX Live for a novice user
after she decided to replace a stolen Macbook with a
generic unbranded laptop PC. The abruptness of this
change of platform is not something TEX users would
normally worry about because TEX works perfectly
happily pretty much everywhere, but this user’s main
concern was that she lost her iPhone as well, and
was making a parallel switch to Android. . . and had
heard that this would enable her to have LATEX on
the phone as well.

I had encountered VerbTEX, which is an Android
editor that submits a document to a web service
which does the typesetting. It’s a great system, as it
does away with the need to have all of TEX installed,
but if you are stranded without a connection, it’s
impossible to carry on working on a document that
you want to be able to preview.

Enter Jiří Marek’s LATEX Editor. Despite the
name, this is a fully-fledged locally-executing LATEX
system (although of course you do need a connection
to install it and download any additional packages).
My first thought was to try the quickstart.tex

document I use in the LATEX course I teach—the
same one as in Formatting Information.1 It worked
first time, and as I have Kingsoft Office (which in-
cludes PDF preview) and the PrinterShare app, I
could even print it. Full marks.

Next up was the draft of this article, which
I was somewhat sceptical about, as ltugboat.cls is
pretty complex, and has to deal with a lot of un-
usual formatting. LATEX Editor handled it entirely
correctly, downloading all the packages needed on-
the-fly. There was a moment when I thought it had
hung, but in fact it was just downloading packages:
the lack of a progress meter does make this a little
unnerving the first few times until you get to trust it.

I don’t have an iPhone or an iPad, so I can’t
compare this with whatever facilities are available
in that ecosystem, and I am admittedly using a
Galaxy Note 4, which is a phone masquerading as
a tablet, with an external Bluetooth keyboard—I
haven’t tried this setup on anything like the really
tiny Android phones.

However, it’s clear that developing packages and
classes, and experimenting with typographic solu-
tions can continue unabated on a pocket device, with
no serious technological barrier. I haven’t yet found

1 http://latex.silmaril.ie/formattinginformation/

quickstart.html#quickstart

My first document

This is a short example of a LATEX document I wrote on March 12, 2009. It
shows a few simple features of automated typesetting, including:

• setting the default font size to 12pt and specifying ‘article’ type for
formatting;

• using the Palatino typeface and some special formatting for URIs;

• preventing sections being numbered;

• turning off justification for an informal document;

• formatting a section heading;

• using the LATEX logo;

• generating today’s date;

• formatting this list of items;

• formatting a subsection heading;

• using opening and closing quotes;

• formatting a URI;

• arbitrary centering and italicisation;

• autonumbering the pages.

More information

This example was taken from ‘Formatting Information’, which you can
read at http://latex.silmaril.ie/formattinginformation
and use as a teach-yourself guide.

Have a nice day!

1

TUGboat, Volume 0 (9999), No. 0 1001

Typographers’ Inn

Peter Flynn

1 Portable typesetting

I recently had to reinstall TEX Live for a novice
user after she decided to replace a stolen Macbook
with a generic unbranded laptop PC. The abrupt-
ness of this change of platform is not something
TEX users would normally worry about because TEX
works perfectly happily pretty much everywhere, but
this user’s main concern was that she lost her iPhone
as well, and was making a parallel switch to An-
droid. . . and had heard that this would enable her
to have LATEX on the phone as well.

I had encountered VerbTEX, which is an An-
droid editor that submits a document to a web ser-
vice which does the typesetting. It’s a great system,
as it does away with the need to have all of TEX
installed, but if you are stranded without a connec-
tion, it’s impossible to carry on working on a docu-
ment that you want to be able to preview.

Enter Jiří Marek’s LATEX Editor. Despite the
name, this is a fully-fledged locally-executing LATEX
system (although of course you do need a connection
to install it and download any additional packages).
My first thought was to try the quickstart.tex

document I use in the LATEX course I teach — the
same one as in Formatting Information.1 It worked
first time, and as I have Kingsoft Office (which in-
cludes PDF preview) and the PrinterShare app, I
could even print it. Full marks.

Next up was the draft of this article, which
I was somewhat sceptical about, as ltugboat.cls is
pretty complex, and has to deal with a lot of un-
usual formatting. LATEX Editor handled it entirely
correctly, downloading all the packages needed on-
the-fly. There was a moment when I thought it had
hung, but in fact it was just downloading packages:
the lack of a progress meter does make this a little
unnerving the first few times until you get to trust
it.

I don’t have an iPhone or an iPad, so I can’t
compare this with whatever facilities are available in
that ecosystem, and I am admittedly using a Galaxy
Note 4, which is a phone masquerading as a tablet,
with an external Bluetooth keyboard — I haven’t
tried this setup on anything like the really tiny An-
droid phones.

However, it’s clear that developing packages and
classes, and experimenting with typographic solu-
tions can continue unabated on a pocket device, with

1 http://latex.silmaril.ie/formattinginformation/

quickstart.html#quickstart

My first document

This is a short example of a LATEX document I wrote on March 12, 2009. It
shows a few simple features of automated typesetting, including:

• setting the default font size to 12pt and specifying ‘article’ type for
formatting;

• using the Palatino typeface and some special formatting for URIs;

• preventing sections being numbered;

• turning off justification for an informal document;

• formatting a section heading;

• using the LATEX logo;

• generating today’s date;

• formatting this list of items;

• formatting a subsection heading;

• using opening and closing quotes;

• formatting a URI;

• arbitrary centering and italicisation;

• autonumbering the pages.

More information

This example was taken from ‘Formatting Information’, which you can
read at http://latex.silmaril.ie/formattinginformation
and use as a teach-yourself guide.

Have a nice day!

1

Figure 1: The quick-start document typeset on an

Android phone with LATEX Editor

no serious technological barrier. I haven’t yet found
out how to import my personal PS fonts with their
associated maps and font definitions, so explicitly
typographical development is restricted to what is
available as packages from CTAN (which is substan-
tial). The current version of LATEX Editor is running
pdflatex from TEX Live 2012, not X ELATEX, so there
is no way to use whatever fonts are installed on an
Android device. The author makes it clear that this
is a beta version, so I am looking forward to the 1.0
release.

2 Typographic logos

The term is a bit of a misnomer: ‘logo’ is an abbre-
viation of ‘logotype’, which is a whole word cast as a
single piece of metal, like ‘The’ in ATF Garamond,
as opposed to a ligature, which is a convenient com-
bination of characters cast as one, such as ffi, but
not a word. As the origin of the word ‘brand’ im-
plies, brands and symbols have been used for iden-
tity since humans started keeping livestock, but the
modern corporate logo is largely a production of the
Victorian age of rapid development in labelling and
the emergence of marketing and competition. At

Typographers’ Inn

Figure 1: The quick-start document (top) and this
article (bottom) typeset on an Android phone with
LATEX Editor

out how to import my personal PS fonts with their
associated maps and font definitions, so explicitly
typographical development is restricted to what is
available as packages from CTAN (which is substan-
tial). The current version of LATEX Editor is running
pdflatex from TEX Live 2012, not X ELATEX, so there

Typographers’ Inn

16 TUGboat, Volume 36 (2015), No. 1

is no way to use whatever fonts are installed on
an Android device. The author says this is a beta
version, so I am looking forward to the 1.0 release.

2 Typographic logos

The term is a bit of a misnomer: ‘logo’ is an abbre-
viation of ‘logotype’, which is a whole word cast as
a single piece of metal, like ‘The’ in ATF Garamond,
as opposed to a ligature, which is a combination of
characters cast as one, such as ffi, but not a word.

Brands and symbols have been used for identity
since humans started keeping livestock (branding!),
but the modern corporate logo is largely a production
of the Victorian age of rapid development in printed
labelling combined with the emergence of marketing
and competition. At the time, however, logos were
more a convenient way of flagging your products,
rather like the exhortations to look on the jar; ‘none
genuine without my signature!’

The development of colour lithography meant
logos could be hand-drawn as part of a larger image,
and still reproduced in bulk, whereas in letterpress,
anything other than combinations of type would
mean making a block. Type-only logos are still with
us, from IBM to TEX, and can be surprisingly difficult
to construct even (like IBM or METAFONT) when
they are simply letters in a given font.

Using them in the text is frowned upon, typo-
graphically speaking (TEX must surely be the worst
offender here). Charles Fyffe, in his book on copy-
fitting [1] (now dated but still a mine of useful infor-
mation) says:

Don’t use the client’s name-style in the copy
and expect it to be read, unless his name-style
is in a type and you are using it for the body
copy [Phew! that lets TEX out — PF]. This is
especially true of a name-block (plate) with
white letters out of black.

The client, on the other hand, tries to
use his name-style everywhere— I have even
known one who insisted that minute name-
blocks be inserted in the copy. . .

What he’s referring to is the practice, still occa-
sionally seen, of using your logo for every mention of

your product or company name in the text, especially of
an advertisement, such as this one slated in the blog
of one Desmond Tan [5] and reproduced without
permission in Figure 2. The practice is also con-
demned on the Typophile blog [3], where ‘DO NOT’
and ‘NEVER’ feature strongly.

The Honeywell company has an explicit rule in
their instructions to designers [2]: ‘In body copy or
text, do not use the Honeywell logo. Portray the word

Figure 2: Coke advert showing abuse of the logo in
the text

Figure 3: Honeywell’s example of how not to do it

Honeywell in the same font as your body copy/text.’
They even provide an example (Figure 3). See also
The TEXbook [4, ch. 1, para. 4] on the distinction
between Honeywell’s TEX and TEX.

Afterthought

Perhaps the most extreme form of embedding
is that done by a recent instance of actual
OpenType font code, for which I make no
apology for posting the naked URI: http:

//pixelambacht.nl/2015/sans-bullshit-sans/

References

[1] Charles Fyffe. Basic Copyfitting. Studio Vista,
London, 1969.

[2] Honeywell Security. Using the Honeywell Logo.
Honeywell International Inc, Morristown, NJ, 2015.
http://www.security.honeywell.com/resources/

branding/logo/.

[3] joshuaone9. font as logo vs used in body copy.
Typophile, Feb 2008. http://typophile.com/node/

42144.

[4] Donald E. Knuth. The TEXbook. Addison-Wesley,
Reading, MA, Jun 1986.

[5] Desmond Tan. Something Interesting.
https://desmondtan91.wordpress.com/.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 36 (2015), No. 1 17

LATEX News
Issue 21, May 2014

Contents

Scheduled LATEX bug-fix release 1
Release notes 1

fixltx2e updates 1
New fltrace package 1
inputenc package updates 1
The tools directory 2
multicol updates 2
tabularx updates 2
showkeys updates 2
color updates 2
graphicx updates 2
keyval updates 2

Standard LATEX (LATEX 2ε) and expl3 2

Scheduled LATEX bug-fix release

This issue of LATEX News marks the second bug-fix
release of LATEX 2ε (standard LATEX) since shifting to a
new build system in 2009. Provided sufficient changes
are made, we expect to make such releases yearly or
every two years, in sync with TEX Live.

Release notes

This release makes no changes to the core code in the
LATEX 2ε format but there are a small number of
documentation fixes (not listed here). In addition
several packages in the base and required areas have
been updated as detailed below.

This has been done in accordance with the
philosophy of minimising problems in both forwards
and backwards compatibility, so most of these changes
should not be noticed by the regular LATEX user.

References in the text below of the form
“graphics/3873” are to bug reports listed at:
http://latex-project.org/cgi-bin/ltxbugs2html

fixltx2e updates

There are a number of bugs and faulty design decisions
in LATEX 2ε that should have been corrected long ago in
the kernel code. However, such corrections cannot be
done as this would break backwards compatibility in
the following sense. A large number of documents exist
by now that have worked around the bug or have even

made use of a particular misfeature. Thus changing the
kernel code would break too many existing documents.

The corrections for these types of bug have therefore
been collected together in a package that can be loaded
only when needed; its name is fixltx2e. For this release
we made the following changes to this package:

• Misspelled float placement specifiers such as
\begin{figure}[tv] instead of tb are silently
ignored by the kernel code. Now we test for such
letters and issue an error message.

• LATEX’s float handling algorithm can get out of
sync if you mix single and double-column floats (as
they are placed independently of each other). This
was corrected in fixltx2e a few years ago but the fix
was not perfect as one situation using
\enlargethispage generated a low-level TEX error.
This behaviour of the package is now improved.

New fltrace package

For years the file ltoutput.dtx contained some hidden
code to trace the detailed behaviour of the float
placement algorithm of LATEX. Prompted by questions
on StackExchange we now extract this code into a new
fltrace package. To see the float algorithm in action (or
to understand why it decides to place all your floats at
the very end of the document) use

\usepackage{fltrace} \tracefloats

To stop tracing somewhere in the document use
\tracefloatsoff and to see the current value of
various float parameters use \tracefloatvals. As the
package is identical to the kernel code with tracing
added, it may or may not work if you load any other
package that manipulates that part of the kernel code.
In such a case your best bet is to load fltrace first.

inputenc package updates

The inputenc package allows different input encodings
for LATEX documents to be specified including the
important utf8 option used to specify the Unicode
UTF-8 encoding. A common mistake in documents has
been to also include this option when using the
Unicode-based TEX engines LuaTEX and X ETEX
producing strange errors as these engines natively deal
with UTF-8 characters.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2014, all rights reserved.

18 TUGboat, Volume 36 (2015), No. 1

If a document stored in an 8bit encoding is processed
by pdfTEX, it needs the inputenc package to work
correctly. However, if such a document is processed
unchanged by LuaTEX or X ETEX, then accented
characters may silently get dropped from the output.

The package has been modified so that if used with
LuaTEX or X ETEX, then it just issues a warning if utf8

or ascii is specified, and stops with an error for any
other encoding requested.

One further improvement has been made to the
encoding definition files (.def) used by inputenc: the
catcode of @ is now saved and restored when reading
them instead of always using \makeatother inside the
files (latex/4192).

The tools directory

In the past each of the sub-directories in the “required”
section of the LATEX distribution contained a single
.ins file to generate the code files from the source files.
We have now started to provide individual .ins files for
each of those packages that are likely to require updates
outside a major LATEX release.

multicol updates

Version 1.8 of multicol implements some
improvements/fixes and one extension. In the past the
balancing algorithm enlarged the column height until it
found a solution that satisfied all constraints. If there
were insufficient break points then the final column
height could have been much larger than expected and
if that happened near the end of the page it resulted in
the text overflowing into the bottom margin. This
situation is now detected and in that case a normal
page is cut and balancing is resumed on the next page.
Some overflow is still allowed and controlled via the
parameter \maxbalancingoverflow.

The use of \enlargethispage is now properly
supported within the environment. Finally a new
command \docolaction was added to allow the
execution of code depending on the column in which the
command is executed. See the documentation for
details.

Bug fixes: the new version fixes both a color leak that
could happen in certain situations and the problem that
multicols could mess up the positioning of
\marginpars that followed the environment.

tabularx updates

The restrictions on embedding \tabularx

\endtabularx into the definition of a new environment
have been relaxed slightly. See the package
documentation for details.

showkeys updates

The showkeys package has been updated to fix problems
if used at the start of list items, and to work if brace
groups ({ and }) are used in the optional argument of
\cite. (tools/4162, tools/4173)

color updates

The \nopagecolor command suggested by Heiko
Oberdiek, available for some years in the pdftex option,
has been added to the core package as suggested in
graphics/3873. Currently this is supported in the driver
files for dvips and pdftex. Patches to support other
drivers are welcome.

graphicx updates

The graphicx version of \rotatebox now allows \par

(and blank lines) in values, to match the change made
to the graphics version some years ago. See
graphics/4296.

keyval updates

All parsing used in the keyval package has been changed
to allow \par (and blank lines) in values. (A second
change, to parsing of brace groups in a construct such
as key={{{value}}}, was reverted in v1.15.) See
graphics/3446.

Standard LATEX (LATEX 2ε) and expl3

The substantial collection of innovative code in expl3

implements a new programming language that has for a
while now been used by some writers of LATEX 2ε

packages. This code has recently also been made
available for use on top of plain TEX or ConTEXt,
largely to support generic packages that are supposed
to work with different flavours of TEX. These uses in no
way affect authors of LATEX documents and such
LATEX 2ε packages will continue to work as advertised
by their authors with standard LATEX.

This code base will also become an important
foundation for the kernel of LATEX3 and so the new
programming language can be described as ‘The LATEX3
Programming Language’. However, if you see or hear
that a package ‘uses LATEX3’ then it remains very
unlikely (as yet) to mean that the package is part of
some ‘new version of LATEX’.

News about the development and use of expl3 and
about other developments in the LATEX3 code base is
reported regularly in the LATEX3 News series
(http://latex-project.org/l3news/), the most
recent issue of which was published in March 2014.

TUGboat, Volume 36 (2015), No. 1 19

Beamer overlays beyond the \visible

Joseph Wright

Last year, I looked at the beamer overlay concept with
relative slide specifications to produce dynamic slide
structures (Wright, 2014). Prompted by a question
on TEX Stack Exchange (‘Tarass’, 2014), here I’m
going to look at a related area: action keywords.

The ‘standard’ beamer overlay system does the
same thing as the \visible command: makes things
appear and disappear, but always keeps space for
them on the slide. However, beamer also provides
\only, which completely omits items not visible on a
slide. So the question was how to combine this idea
with the general overlay concept.

It turns out that this is quite straightforward
if you know what to look for. The standard beamer

overlay syntax, for example

\item<+->

supports the inclusion of an action type to specify
what the overlay should do. That action is given as
a keyword and an @ before the overlay number(s).
So, for example

\begin{itemize}

\item First item

\item<only@1> Second item

\item<only@2> Replacement second item

...

will show Second item on the first slide and then
replace it entirely with Replacement second item

on the second slide. That approach can be combined
with the idea of relative slide specifications, as I
talked about before, to give something like

\documentclass{beamer}

\begin{document}

\begin{frame}

\begin{itemize}[<+->]

\item item 1

\item item 2

\item<only@+-.(2)> item 3

\item item 4

\item item 5

\end{itemize}

\end{frame}

\end{document}

to have the ‘normal’ items appear one at a time but
with item 3 only on slides 3 and 4.

This doesn’t just apply to only: other keywords
that work here include visible and alert. The
latter tends to be seen with another syntax element;

namely, | to separate out appearance from a second
action. A classic example of that is

\documentclass{beamer}

\begin{document}

\begin{frame}

\begin{itemize}[<+->]

\item item 1

\item item 2

\item<+-|alert@+(1)> item 3

\item item 4

\item item 5

\end{itemize}

\end{frame}

\end{document}

where item 3 appears on the third slide and is high-
lighted on the fourth one. (Note that both + substi-
tutions in this line use the same value for the pause
counter, hence needing the (1) offset.) That’s useful
even without the ‘one at a time’ effect, for example

\documentclass{beamer}

\begin{document}

\begin{frame}

\begin{itemize}

\item item 1

\item item 2

\item<alert@+(1)> item 3

\item item 4

\item item 5

\end{itemize}

\end{frame}

\end{document}

highlighting the item on the second slide.
A bit of imagination with this syntax can cover

almost any appearance/disappearance/highlight re-
quirement. As I said before: the key thing is not to
overdo it!

References

‘Tarass’. “Beamer: including items only some slides
using a relative syntax”. tex.stackexchange.

com/q/205625, 2014.

Wright, Joseph. “The beamer class: Controlling
overlays”. TUGboat 35, 31–33, 2014.
tug.org/TUGboat/35-1/tb109wright.pdf.

⋄ Joseph Wright

Morning Star

2, Dowthorpe End

Earls Barton

Northampton NN6 0NH

United Kingdom

joseph.wright (at)

morningstar2.co.uk

Beamer overlays beyond the \visible

20 TUGboat, Volume 36 (2015), No. 1

Glisterings: Here or there; Parallel texts;
Abort the compilation

Peter Wilson

A stately rocke beset with Diamonds faire,
And pouldred round about with Rubles red,
Where Emeralds greene doo glister in the air,
With Mantill blew of Saphyres ouer spred.

The Ship of safegarde, Barnabe Googe

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

In a civil war, a general must know — and
I’m afraid it’s a thing rather of instinct
than of practice — he must know exactly
when to move over to the other side.

Not a Drum was Heard: The War

Memoirs of General Gland, (unpublished
radio play, 1959) Henry Reed

1 Here or there

Paul Kaletta asked on ctt [slightly edited]:
I am writing a twoside document which means

that even and odd pages have different margins. Un-
fortunately all images I include are aligned with the
left side of the text on every page. Some of them
are broader than the line width and protrude into the
right margin, which is nice for odd pages, but looks
weird for even ones.

I would love to align the images to the inner
margin, so that they always protrude to the outer
one. Is this possible?

Heiko Oberdiek gave a solution so that an image
would not exceed the width of the text plus the
marginpar area [3].

This has been a problem that has cropped up
from time to time on ctt. More generally the prob-
lem is how to decide into which margin something
should be put, and then put it there. The code
below for the first problem is based on code that I
wrote for my memoir class. This version requires the
changepage package [8] for correctly deciding whether
an odd or even page is being typeset.1

The \pikmargin workhorse macro, used for spec-
ifying a margin, takes one argument which must be
one of: left, right, outer, or inner. The result is
\pkmarg which is in the range 0–3 for the allowed

1 Because of the asynchronous nature of TEX’s page break-

ing algorithm simply checking the page number does not

always lead to the correct result. The changepage macros are

an integral part of memoir.

arguments, otherwise it is −1. The code is rather
tedious.

\usepackage{changepage}

\newcommand*{\pikmargin}[1]{\bgroup

\def\targ{#1}\def\parg{left}%

\ifx\targ\parg

\gdef\pkmarg{0}%

\else

\def\parg{right}%

\ifx\targ\parg

\gdef\pkmarg{1}%

\else

\def\parg{outer}%

\ifx\targ\parg

\gdef\pkmarg{2}%

\else

\def\parg{inner}%

\ifx\targ\parg

\gdef\pkmarg{3}%

\else

\gdef\pkmarg{-1}%

\fi

\fi

\fi

\fi

\egroup}

The \settheside workhorse macro takes one
argument, the value of \pkmarg from \pikmargin,
and sets \ifputatright true or false according
to whether material should be put into the right or
left margin. The basic algorithm is:

1. A negative argument is converted to 2 (outer).

2. For two columns always the nearest margin.

3. For one sided documents:

0 (left) false

not 0 (all else) true

4. For two sided documents:

0 (left) false

1 (right) true

2 (outer) true on an odd page and false on
an even page

3 (inner) false on an odd page and true on
an even page

The code is tedious, even more so than for the previ-
ous macro.

\newif\ifputatright

\makeatletter

\newcommand*{\settheside}[1]{%

\def\m@rgcode{#1}%

\ifnum #1<0\relax

%% error! write message and set to ‘outer’

\typeout{Error! arg is ‘#1’. Set to ‘outer’}

\def\m@rgcode{2}%

\fi

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 21

\if@twocolumn

\if@firstcolumn

\putatrightfalse

\else

\putatrighttrue

\fi

\else

\checkoddpage% from the changepage package

\if@twoside

\ifcase\m@rgcode\relax

\putatrightfalse

\or% 1 = left

\putatrighttrue

\or% 2 = outer

\ifoddpage

\putatrighttrue

\else

\putatrightfalse

\fi

\or% 3 = inner

\ifoddpage

\putatrightfalse

\else

\putatrighttrue

\fi

\fi

\else% 1-sided

\ifnum\m@rgcode=0\relax

\putatrightfalse

\else

\putatrighttrue

\fi

\fi

\fi}

\makeatother

You can use the \pikmargin and \settheside

macros directly but in case there might be more than
one kind of material to be put into the margins it is
better to be conservative and use them indirectly.

With the two workhorse macros in hand, here is
code for letting overwide images extend a particular
distance, \ximwidth, into the margin.

\pikimagemargin is for selecting the margin for
a wide image. The margin code is stored as \pkimg.

% \usepackage{graphicx} need this package

\newcommand*{\pikimagemargin}[1]{%

\pikmargin{#1}%

\ifnum \pkmarg<0\relax

%% error! write message and set to ‘outer’

%% or perhaps to something more appropriate

\typeout{Error! arg is ‘#1’. Set to ‘outer’}

\def\pkimg{2}%

\else

\let\pkimg\pkmarg

\fi}

The next bit of code sets the maximum width
for an image.

\newdimen\ximwidth% extra width

\newdimen\maximwidth% max total width

\makeatletter

\newcommand*{\maxiw}{% MAX Image Width

\ifdim\Gin@nat@width>\maximwidth

\maximwidth

\else

\Gin@nat@width

\fi}

\makeatother

An external image is included by calling \MaxImage

which is a wrapper around the regular graphicx pack-
age \includegraphics macro and takes the same
arguments, except for the optional width argument
which is supplied internally.

\newcommand*{\MaxImage}[2][]{%

\par\noindent

\settheside{\pkimg}%

\ifputatright

\else

\hspace{0pt minus \ximwidth}% move left

\fi

\includegraphics[{#1,width=\maxiw}]{#2}%

\ifputatright

\hspace{0pt minus \ximwidth}%

\fi

\par}

The general user scheme is:

%% set the dimensions

\setlength{\maximwidth}{\textwidth}

\setlength{\ximwidth}{\marginparwidth}

\addtolength{\maximwidth}{\ximwidth}

%% specify the margin (say the outer)

\pikimagemargin{outer}

...

%% image may be in a figure, but need not be

\begin{figure}

\centering

\MaxImage[height=\textheight,

keepaspectratio]{myimage}

\caption{...}

\end{figure}

To do just the opposite is also a form of
imitation.

Aphorismen, Georg

Christoph Lichtenberg

2 Parallel texts

2.1 Opposites

On occasion somebody wants to set two documents
in parallel on facing pages. This is typically in the
form of an original in one language on even numbered
pages and a translation in another language on the
facing odd numbered pages. The ledpar package [10]

Glisterings: Here or there; Parallel texts; Abort the compilation

22 TUGboat, Volume 36 (2015), No. 1

is designed for this purpose, enabling individual line
numbering and multiple footnotes on the parallel
pages. But sometimes this may be overkill. Stephen
Hicks [2] presented a method in response to a query
on texhax, where it didn’t matter if one of the texts
was much longer than the other (if necessary the
shorter text being ‘completed’ with blank pages). He
explained his basic algorithm as:

1. Load both documents into separate boxes (i.e.,
galleys)
\setbox\left@box\vbox\bgroup

\input left\egroup

\setbox\right@box\vbox\bgroup

\input right\egroup

This might lead to difficulties if anything in the
documents have, say, \eject or anything else
weird re: page handling, or it might just work if
the whatsits behave well inside boxes.

2. Alternately \vsplit off \textheight from each
box and \unvbox it into the current page, fol-
lowed by a \clearpage.

Stephen’s code for implementing this was as
follows, except that I have made a minor change de-
scribed later, and exercised some editorial privilege.

\documentclass{report}% or other class

...

\makeatletter

\newbox\left@box \newbox\right@box

\newenvironment{leftpage}{%

\global\setbox\left@box\vbox\bgroup}%

{\egroup}

\newenvironment{rightpage}{%

\global\setbox\right@box\vbox\bgroup}%

{\egroup}

\def\alternate{%\cleardoublepage

\cleartostart

\let\@next\@alternate

\ifdim\ht\left@box=\z@\ifdim\ht\right@box=\z@

\let\@next\relax\fi\fi

\@next}

\def\@unvsplit#1{\ifdim\ht#1=\z@\vbox{}\else

\setbox\z@\vsplit#1 to\textheight\unvbox\z@

\fi}

\def\@alternate{\@unvsplit\left@box\eject

\@unvsplit\right@box\eject\alternate}

\makeatother

...

\begin{document} ...

\begin{leftpage}

\input{lefttext}

\end{leftpage}

\begin{rightpage}

\input{righttext}

\end{rightpage}

\alternate

... \end{document}

As Stephen said, there are limits to what can
be successfully included in the parallel texts. For
example, footnotes may throw things out of kilter
and page headings can get out of synch if they are
changed inside either of the texts by, say, including
some \sections.

The technical change I made was replacing the
macro \cleardoublepage with the new one named
\cleartostart. This is called just before the left–
right printing starts. With \cleardoublepage the
left text starts on an odd page and continues on
odd pages while the right text then starts on the
following even page. It seems more logical to me
that the left text should start on an even numbered
page, this being the left of a two page spread. The
standard \clearpage moves to the next page, which
may be odd or even, while the \cleardoublepage

moves to the next odd page. The \cleartostart

macro, which is based on \cleartoevenpage from
the memoir class [9], moves to the next even page.

\newcommand*{\cleartostart}{\clearpage

\ifodd\c@page\hbox{}\newpage\fi}

2.2 Equals

Thomas Thurman, who described himself as a poet
and programmer, posted to ctt saying [6]:

I have a particular typesetting task, described
below. Can you tell me whether it’s possible in TeX
without major upheaval? (Pointers as to how it’s
possible are welcomed, but at the moment I want to
check that it’s possible at all.)

I have two source documents P and Q. P con-
sists (as you might expect) of a series of words sep-
arated by spaces and punctuation. Q consists of
exactly the same number of entirely different words,
but separated by the same punctuation. The words
may not necessarily be the same length, but there will
be the same number of them.

So P might run “I am (of course) shocked! and
appalled!" and Q might run “We drink (in summer)
lemonade! and Pimms!"

What I want to do is to turn P and Q into a
TeX document that either:

- consists of two columns per page, the left from
P and the right from Q, but on each line the number
of words in each column is the same. (So if there are
five words from the P column on the first line, there
are five words from the Q column on the first line.)

or
- consists of pages alternately from P and Q,

but for each line the number of words on that line is
equal to the number of words on the same line on the
facing page.

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 23

Either is a good solution. (Both would be won-
derful.)

Of course if P has a run of long words then
the matching Q line will contain a lot of whitespace.
This is quite all right.

This resulted in a conversation between Bruno
Le Floch and Jean-François Burnol ending with es-
sentially the following code from Jean-François [1]
(I have edited it slightly to better fit the two-column
format). I can’t explain how it works any better
than what you see.

\makeatletter

% ======== Some helper macros

\let\xpf\expandafter

\def\addtobuff#1#2{\xpf\def\xpf#1%

\xpf{#1 #2}}

\long\def\ifneitherempty#1#2{%

\xpf\ifx\xpf a\detokenize{#1}a%

\xpf\@gobble

\else

\xpf\ifx\xpf a\detokenize{#2}a%

\xpf\xpf\xpf\@gobble

\else

\xpf\xpf\xpf\@firstofone

\fi

\fi}

% ======== Splitting into paragraphs

\long\def\longsbs #1#2{%

\longsbs@aux #1\par\Q #2\par\Q}

\long\def%

\longsbs@aux #1\par#2\Q #3\par#4\Q{%

\sidebyside{#1}{#3}% do one paragraph

\bigskip % space between paragraphs

% If either is empty, we’re done

% else do "\sidebyside"

\ifneitherempty{#2}{#4}%

{\longsbs@aux #2\Q #4\Q

}}

% ======== Splitting at each space

\def\sbs@parse #1 #2 \Q #3 #4 \Q{%

\sbs@step{#1}{#3}%

% if either text is empty,

% we are (almost) done

% else continue

\ifneitherempty{#2}{#4}%

{\sbs@parse #2 \Q #4 \Q}}

% ======= Checking the size of each line

% ======= and printing it when it’s ready

\newif\ifsbs@break

\def\sbs@step#1#2{%

\setbox1=\hbox{\sbs@buffi{} #1}%

\setbox2=\hbox{\sbs@buffii{} #2}%

\ifdim\wd1>.4\hsize\sbs@breaktrue\else

\ifdim\wd2>.4\hsize\sbs@breaktrue\else

\sbs@breakfalse\fi\fi

\ifsbs@break\sbs@writeline%

\def\sbs@buffi{#1}%

\def\sbs@buffii{#2}%

\else

\addtobuff\sbs@buffi{#1}%

\addtobuff\sbs@buffii{#2}%

\fi}

\def\sbs@writeline{%

\hbox to \hsize{\hss%

\hbox to .4\hsize{\pr@buffi}%

\hskip.1\hsize%

\hbox to .4\hsize{\pr@buffii}%

\hss}}

% ========= Master function

\def\sidebyside#1#2{%

\def\sbs@buffi{\noindent}%

\def\sbs@buffii{\noindent}%

\sbs@parse #1 \Q #2 \Q

\sbs@writeline% flush the last line

}

I have added the following code so that the user can
specify if the left and right texts are to be set flush
left ([l]), centered (the default) or flush right ([r]).

\newcommand*{\setsbsleft}[1][c]{%

\def\pr@buffi{\hfill\sbs@buffi\hfill}%

\def\@tempa{#1}\def\@tempb{l}

\ifx\@tempb\@tempa

\def\pr@buffi{\sbs@buffi\hfill}%

\else

\def\@tempb{r}%

\ifx\@tempb\@tempa

\def\pr@buffi{\hfill\sbs@buffi}%

\fi

\fi}

\newcommand*{\setsbsright}[1][c]{%

\def\pr@buffii{\hfill\sbs@buffii\hfill}%

\def\@tempa{#1}\def\@tempb{l}

\ifx\@tempb\@tempa

\def\pr@buffii{\sbs@buffii\hfill}%

\else

\def\@tempb{r}%

\ifx\@tempb\@tempa

\def\pr@buffii{\hfill\sbs@buffii}%

\fi

\fi}

%% center the texts

\setsbsleft

\setsbsright

\makeatother

Glisterings: Here or there; Parallel texts; Abort the compilation

24 TUGboat, Volume 36 (2015), No. 1

The following is a short example of using the
\longsbs macro which, unfortunately, may have dif-
ficulties if either of its arguments includes any macros.
In this case the texts are set flush right and flush
left.

\setsbsleft[r]

\setsbsright[l]

\longsbs {%

I am (of course) ...

Can you tell ...

}{%

We drink (in summer) ...

P consists ...

}

I am (of We drink (in
course) shocked! summer) lemonade!
and appalled! I and Pimms! I

have a particular have two source
typesetting task, documents P
described herein. and Q.

Can you tell me P consists (as you
whether it’s possible might expect) of

in TeX . . . at a series . . . same
all. punctuation.

Eternity’s a terrible thought. I mean,
where’s it all going to end?

Rosencrantz and Guildenstern

are Dead, Tom Stoppard

3 Abort the compilation

Rasmus Villemoes wrote to ctt [7]:
I have a document which is only meant to be

typeset using pdflatex. It is rather large, and the
first pdf-only stuff doesn’t occur until quite late. So
if one accidentally compiles with latex it takes a
couple of minutes before the error is discovered. I
would therefore like to insert some code shortly after
\documentclass which aborts the compilation with
an error message unless running under pdflatex.

Both Lars Madsen and Heiko Oberdiek replied
and the following code is a merge and extension of
their responses. The definition of \abort is from
Heiko and following a comment by Lars I included
using the ifxetex package [5] in addition to the origi-
nally suggested ifpdf package [4] as both pdflatex

and xelatex generate pdf output.

\documentclass[...]{...}

\usepackage{ifpdf}

\usepackage{ifxetex}

\newcommand*{\abort}{}

\ifpdf\else

\ifxetex\else

\typeout{You must be in PDF mode.

Use pdflatex (or xelatex) instead.}

\def\abort{\csname @@end\endcsname}

% or \def\abort{\stop}

\fi

\fi

\abort

...

\begin{document}

...

If desired, it would be simple to recast this as a
package (a .sty file), which is what Lars exemplified
in his response.

References

[1] Jean-François Burnol. Re: Arranging parallel texts.
Post to comp.text.tex newsgroup, 24 February
2011.

[2] Stephen Hicks. Re: [texhax] multiple documents
within a document. Post to texhax mailing list,
30 March 2010.

[3] Heiko Oberdiek. Re: How to make all images
protrude into the outer border. Post to
comp.text.tex newsgroup, 3 January 2010.

[4] Heiko Oberdiek. The ifpdf package, April 2012.
http://mirror.ctan.org/macros/latex/

contrib/oberdiek.

[5] Will Robertson. The ifxetex package, 2009.
http://mirror.ctan.org/macros/generic/

ifxetex.

[6] Thomas Thurman. Arranging parallel texts.
Post to comp.text.tex newsgroup, 22 February
2011.

[7] Rasmus Villemoes. Aborting unless running
pdflatex. Post to comp.text.tex newsgroup,
2 August 2010.

[8] Peter Wilson. The changepage package, 2009.
http://mirror.ctan.org/macros/latex/

contrib/changepage/.

[9] Peter Wilson. The memoir class for configurable
typesetting, 2013. http://mirror.ctan.org/

macros/latex/contrib/memoir.

[10] Peter Wilson. Parallel typesetting for
critical editions: The ledpar package, 2014.
http://mirror.ctan.org/macros/latex/

contrib/ledmac.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Peter Wilson

TUGboat, Volume 36 (2015), No. 1 25

Online LATEX editors and other resources

Pawe l Lupkowski

Abstract

In this paper I will review several LATEX editors and
other resources available online. I will focus on the
range of packages offered and compilation options
available. The main question I aim to answer in this
paper is how online LATEX tools change the way we
can work with LATEX.

Introduction

The main question I would like to ask in this paper
is how online LATEX tools change the way we may
work with LATEX. To answer this question I will
review several LATEX editors and resources available
online. I will focus mainly on writeLATEX [8] and
ShareLaTeX [5], which, in my opinion, are the most
interesting online editors available.

Using LATEX in online environment can have
different motivations. First, it is very convenient for
people working mainly with LATEX. Online solutions
offer this environment on virtually any machine with
Internet access. Not only editing and compilation is
possible, but also file storage in the cloud is available
for these services. Also, online LATEX editor makes
collaboration easier (file sharing, version control, the
same package set available for the collaborators).

Online LATEX solutions can also be a great help
in teaching LATEX. They can be a fast and easy way
to start editing and compiling documents without
installation of the LATEX environment and an editor —
convenient for both teachers and students.

1 writeLATEX and ShareLaTeX

WriteLATEX and ShareLaTeX are mature but still
rapidly developing projects. They are not only LATEX
editors but also offer a wide range of services in order
to make working in an online environment easy and
effective. Both environments offer:

• an editor (with syntax highlighting, line num-
bering and live preview),

• an online LATEX compiler,
• file storage,
• document templates,
• sharing and collaboration options.

First let us take a look at the Privacy and terms
of service, since we are offered an option of keeping
our files in the cloud. For writeLATEX, we read that:

By using our Services you provide us with in-
formation, files, and folders that you submit to

First published in BachoTEX 2014 proceedings, pp. 109–112.

Reprinted with permission.

Figure 1: writeLATEX interface

writeLATEX (together, ‘your stuff’). You retain
full ownership to your stuff. We don’t claim any
ownership to any of it. [8]

ShareLaTeX providers also assure us that:

You retain all ownership, copyright and intellec-
tual property rights to any content uploaded to
ShareLaTeX. Your content will only be shared
with other users of your choosing and we will
never share your content with third parties with-
out your consent. [5]

In what follows I will focus only on the function-
ality offered for writeLATEX and ShareLaTeX’s free
accounts (they both offer various paid plans suited
for different users’ needs — more information can be
found on the projects’ websites).

The WriteLATEX interface is presented in Figure
1. It has two panels — on the left is an editor and
on the right a live preview. The compilation is done
automatically; after each source change the preview
is refreshed. You can hide either of the panels. More
importantly, you can also turn off the live preview.
One of the nice features of the writeLATEX editor
is that you can turn on emacs or vim mode to use
the corresponding key-bindings. Unfortunately, spell
checking is not available in the free account.

Recently a new feature has been added to the
editor called Rich Text. This mode allows you to
write your document in a semi-WYSIWYG fashion.
A comparison of default mode and rich text mode
is presented in Figure 2. This new mode is well
designed and preserves a clear structure of a LATEX
code. In my opinion it might be useful for beginners,
especially when editing complicated texts.

Another point I find interesting in this editor is
that you do not have to register to use it. You can
just start writing right away after visiting the web
page. This opens a wide range of interesting appli-
cations. One such is to publish your document in
writeLATEX in such a way that it might be opened and
edited by other users. This mechanism is used e.g.
by the LATEX template page described in Section 3.

As for ShareLaTeX, its interface is very similar
to that of writeLATEX (see Figure 3). At the start, it
displays three panels — the leftmost one displays files
used in a given project; the middle one is an editor

Online LATEX editors and other resources

26 TUGboat, Volume 36 (2015), No. 1

Figure 2: writeLATEX interface — regular vs rich text
mode example

Figure 3: ShareLaTeX interface

and the rightmost is a preview. By default compila-
tion is manual; you click “Recompile” to see changes
in the preview. As in writeLATEX you can turn on
emacs or vim editor mode. It is worth stressing that
registration is necessary to use ShareLaTeX.

Very usefully, ShareLaTeX offers different com-
pilers to use for your documents (via the Settings

section). Currently ShareLaTeX supports LATEX,
pdfLATEX, X ELATEX and LuaLATEX. At present, write-
LATEX only supports pdfLATEX, but adding X ELATEX
is planned (see [8, Help]).

Both writeLATEX and ShareLaTeX are intuitive
and easy to use and explore. Tutorials and help
are also offered. A comparison of these editors in a
variety of categories is presented in Table 1.

To conclude this section, it is worth mentioning
another interesting project: LATEXlab [2]. This editor
is developed within Google Docs. One of its inter-
esting features is that it allows using a local LATEX
installation as an compiler.

Table 1: writeLATEX vs. ShareLaTeX (free accounts)

writeLATEX ShareLaTeX

storage quota 100MB no data

tag projects yes yes

Dropbox no no

compilers pdfLATEX pdfLATEX,
LATEX,
X ELATEX,
LuaLATEX

templates yes yes

*.zip upload yes yes

file history yes no

limited number
of projects

no no

mobile support yes poor

edit without
registration

yes no

collaboration unlimited with 1 user only

Figure 4: VerbTEX on the Android device

2 Go mobile

The editors presented in the previous section can
be used on a mobile device (with a reasonably big
screen). But there is a tool that is designed especially
for mobile devices, namely VerbTEX [7]. VerbTEX is
available for all popular mobile platforms, notably
Android, iOS, and Windows 8.

VerbTEX works in two modes: local (storing
your files on the mobile device) and cloud mode
(keeping your files in the verbosus.com cloud). Files
in local mode can be synchronised with a Dropbox
account. Files are stored as projects. In the free
version of this application you can have at most two
documents in one project. VerbTEX allows you to
create, store and edit your documents on the mobile

Pawe l Lupkowski

TUGboat, Volume 36 (2015), No. 1 27

Figure 5: Detexify

device. Previously existing files can be uploaded
and to help in writing new documents, a custom
new.tex document template is available. The editor
offers syntax highlighting and line numbering, as
can be noticed in Figure 4. Most important, to
compile your document you will need an Internet
connection. This keeps the application quite small —
the Android version is only 1.7MB. The default
compilation output is PDF.

3 Other online resources

Let’s turn to other online resources useful for work-
ing with LATEX. The tool I use the most is certainly
Detexify [1]. The idea behind this tool is to make it
easy to find a command for a given symbol listed in
[4]. All you have to do is draw your desired symbol
and then wait. You will obtain a list of recognised
symbols with commands. Furthermore, each com-
mand is supplemented with some information about
the package needed to use it. Detexify is presented
in Figure 5.

Detexify enables a fast, efficient and very intu-
itive symbol search. The tool is also available for
mobile devices running Android or iOS.

Another online resource worth mentioning here
is the LATEX templates website [3]. The page hosts a
large (and still growing) number of LATEX document
templates grouped in useful categories, such as aca-
demic journals, articles, books, calendars, conference
posters, etc. Each template is described in detail
and supplemented with an example. A very nice
feature is that the templates can be edited online
using writeLATEX by just a single click on the “Open
with writeLaTeX” button, making the templates
even more useful and easy to use.

Our list of useful LATEX resources is closed by
an online table editor. I often find it hard to easily
design a large table. [6] can help in such a situation.
This online tool helps you to design a table in a
WYSIWYG fashion and then export it to LATEX code

Figure 6: Online table editor

(and other formats, such as HTML, plain text and
Mathematica code). The tool allows you to decide
on the table borders, merge cells, add caption and
edit text align in cells. The interface is shown in
Figure 6.

Of course the short list given here is far from
being complete, but it represents resources that I
find most useful in my everyday work.

Summary

The way we work today is heavily influenced by
the Internet and more and more by mobile devices.
Tools and resources described in this paper enable
us to work with LATEX according to these new trends.
Document typesetting might be device-independent:
we may easily create, edit and share document using a
web browser or even a mobile phone. This opens new
possibilities for LATEX users, possibilities available
already for users of WYSIWYG editors, like Office
Online or Google Docs.

References

[1] Detexify. detexify.kirelabs.org.

[2] LATEXlab. docs.latexlab.org.

[3] LATEX templates website. latextemplates.com.

[4] Scott Pakin. The comprehensive LATEX symbol list.
ctan.org/pkg/comprehensive, 2009.

[5] ShareLaTeX. www.sharelatex.com.

[6] Table editing online. truben.no/latex/table.

[7] VerbTEX. verbosus.com.

[8] writeLATEX. www.writelatex.com.

⋄ Pawe l Lupkowski
Institute of Psychology
Dept. of Logic and Cognitive Science
Adam Mickiewicz University
Poznań, Poland
pawel dot lupkowski (at) gmail dot com

http://amu.edu.pl/~p_lup/

Online LATEX editors and other resources

28 TUGboat, Volume 36 (2015), No. 1

Exporting XML and ePub from ConTEXt

Hans Hagen

1 Introduction

There is a pretty long tradition of typesetting math
with TEX and it looks like this program will dominate
for many more years. Even if we move to the web,
the simple fact that support for MathML in some
browsers is suboptimal will drive those who want a
quality document to use PDF instead.

I’m writing this in 2014, at a time when XML

is widespread. The idea of XML is that you code
your data in a very structured way, so that it can
be manipulated and (if needed) validated. Text has
always been a target for XML which is a follow-up
to SGML that was in use by publishers. Because
HTML is less structured (and also quite tolerant
with respect to end tags) we prefer to use XHTML

but unfortunately support for that is less widespread.
Interestingly, documents are probably among

the more complex targets of the XML format. The
reason is that unless the author restricts him/herself
or gets restricted by the publisher, tag abuse can
happen. At Pragma we mostly deal with education-
related XML and it’s not always easy to come up
with something that suits the specific needs of the
educational concept behind a school method. Even if
we start out nice and clean, eventually we end up with
a polluted source, often with additional structure
needed to satisfy the tools used for conversion.

We have been supporting XML from the day it
showed up and most of our projects involve XML in
one way or the other. That doesn’t mean that we
don’t use TEX for coding documents. This manual is
for instance a regular TEX document. In many ways
a structured TEX document is much more convenient
to edit, especially if one wants to add a personal touch
and do some local page make-up. On the other hand,
diverting from standard structure commands makes
the document less suitable for output other than
PDF. There is simply no final solution for coding a
document, it’s mostly a matter of taste.

So we have a dilemma: if we want to have mul-
tiple output, frozen PDF as well as less-controlled
HTML output, we can best code in XML, but when
we want to code comfortably we’d like to use TEX.
There are other ways, like Markdown, that can be
converted to intermediate formats like TEX, but that
is only suitable for simple documents: the more ad-
vanced documents get, the more one has to escape
from the boundaries of (any) document encoding,
and then often TEX is not a bad choice. There is a
good reason why TEX survived for so long.

It is for this reason that in ConTEXt MkIV we
can export the content in a reasonable structured
way to XML. Of course we assume a structured
document. It started out as an experiment because
it was relatively easy to implement, and it is now an
integral component.

2 The output

The regular output is an XML file but as we have
some more related data it gets organized in a tree.
We also export a few variants. An example is given
below:

./test-export

./test-export/images

./test-export/images/...

./test-export/styles

./test-export/styles/test-defaults.css

./test-export/styles/test-images.css

./test-export/styles/test-styles.css

./test-export/styles/test-templates.css

./test-export/test-raw.xml

./test-export/test-raw.lua

./test-export/test-tag.xhtml

./test-export/test-div.xhtml

Say that we have this input:

\setupbackend

[export=yes]

\starttext

\startsection[title=First]

\startitemize

\startitem one \stopitem

\startitem two \stopitem

\stopitemize

\stopsection

\stoptext

The main export ends up in the test-raw.xml
export file and looks like the following (we leave out
the preamble and style references, and some line
breaks are for TUGboat):

<document> <!-- with some attributes -->

<section detail="section" chain="section"

level="3">

<sectionnumber>1</sectionnumber>

<sectiontitle>First</sectiontitle>

<sectioncontent>

<itemgroup detail="itemize" chain="itemize"

symbol="1" level="1">

<item>

<itemtag><m:math ..><m:mo>‘</m:mo>

</m:math></itemtag>

<itemcontent>one</itemcontent>

</item>

<item>

<itemtag><m:math ..><m:mo>‘</m:mo>

</m:math></itemtag>

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 29

<itemcontent>two</itemcontent>

</item>

</itemgroup>

</sectioncontent>

</section>

</document>

This file refers to the stylesheets and therefore
renders quite well in a browser like Firefox that can
handle XHTML with arbitrary tags.

The detail attribute tells us what instance of
the element is used. Normally the chain attribute is
the same but it can have more values. For instance,
if we have:

\definefloat[graphic][graphics][figure]

...

\startplacefigure[title=First]

\externalfigure[cow.pdf]

\stopplacefigure

...

\startplacegraphic[title=Second]

\externalfigure[cow.pdf]

\stopplacegraphic

we get this:

<float detail="figure" chain="figure">

<floatcontent>...</floatcontent>

<floatcaption>...</floatcaption>

</float>

<float detail="graphic" chain="figure graphic">

<floatcontent>...</floatcontent>

<floatcaption>...</floatcaption>

</float>

This makes it possible to style specific categories
of floats by using a (combination of) detail and/or
chain as filters.

The body of the test-tag.xhtml file looks sim-
ilar but it is slightly more tuned for viewing. For
instance, hyperlinks are converted to a way that CSS

and browsers like more. Keep in mind that the raw
file can be the base for conversion to other formats,
so that one stays closest to the original structure.

The test-div.xhtml file is even more tuned for
viewing in browsers as it completely does away with
specific tags. We explicitly don’t map onto native
HTML elements because that would make everything
look messy and horrible, if only because there seldom
is a relation between those elements and the original.
One can always transform one of the export formats
to pure HTML tags if needed.

<body>

<div class="document">

<div class="section" id="aut-1">

<div class="sectionnumber">1</div>

<div class="sectiontitle">First</div>

<div class="sectioncontent">

<div class="itemgroup itemize symbol-1">

<div class="item">

<div class="itemtag"><m:math ...>

<m:mo>‘</m:mo></m:math></div>

<div class="itemcontent">one</div>

</div>

<div class="item">

<div class="itemtag"><m:math ...>

<m:mo>‘</m:mo></m:math></div>

<div class="itemcontent">two</div>

</div>

</div>

<div class="float figure">

<div class="floatcontent">...</div>

</div>

<div class="floatcaption">...></div>

</div>

<div class="float figure graphic">

<div class="floatcontent">...</div>

</div>

<div class="floatcaption">...></div>

</div>

</div>

</div>

</body>

The default CSS file can deal with tags as well as
classes. The file of additional styles contains defini-
tions of so-called highlights. In the ConTEXt source
one is better off using explicit named highlights in-
stead of local font and color switches because these
properties are then exported to the CSS. The images
style defines all images used. The templates file lists
all the elements used and can be used as a starting
point for additional CSS styling.

Keep in mind that the export is not meant as
a one-to-one visual representation. It represents
structure so that it can be converted to whatever
you like.

In order to get an export you must start your
document with:

\setupbackend

[export=yes]

So, we trigger a specific (extra) backend. In
addition you can set up the export:

\setupexport

[svgstyle=test-basic-style.tex,

cssfile=test-extras.css,

hyphen=yes,

width=60em]

The hyphen option will also export hyphenation
information so that the text can be nicely justified.
The svgstyle option can be used to specify a file
where math is set up; normally this would only con-
tain a bodyfont setup, and this option is only needed
if you want to create an ePub file afterwards which
has math represented as SVG.

Exporting XML and ePub from ConTEXt

30 TUGboat, Volume 36 (2015), No. 1

The value of cssfile ends up as a style refer-
ence in the exported files. You can also pass a comma-
separated list of names (between curly braces). These
entries come after those of the automatically gen-
erated CSS files so you need to be aware of default
properties.

3 Images

Inclusion of images is done in an indirect way. Each
image gets an entry in a special image related style-
sheet and then gets referred to by id. Some extra
information is written to a status file so that the
script that creates ePub files can deal with the right
conversion, for instance from PDF to SVG. Because
we can refer to specific pages in a PDF file, this sub-
system deals with that too. Images are expected to
be in an images subdirectory and because in CSS

the references are relative to the path where the
stylesheet resides, we use ../images instead. If you
do some postprocessing on the files or relocate them
you need to keep in mind that you might have to
change these paths in the image-related CSS file.

4 ePub files

At the end of a run with exporting enabled you will
get a message to the console that tells you how to
generate an ePub file. For instance:

mtxrun --script epub --make --purge test

This will create a tree with the following orga-
nization:

./test-epub

./test-epub/META-INF

./test-epub/META-INF/container.xml

./test-epub/OEBPS

./test-epub/OEBPS/content.opf

./test-epub/OEBPS/toc.ncx

./test-epub/OEBPS/nav.xhtml

./test-epub/OEBPS/cover.xhtml

./test-epub/OEBPS/test-div.xhtml

./test-epub/OEBPS/images

./test-epub/OEBPS/images/...

./test-epub/styles

./test-epub/styles/test-defaults.css

./test-epub/styles/test-images.css

./test-epub/styles/test-styles.css

./test-epub/mimetype

Images will be moved to this tree as well and if
needed they will be converted, for instance into SVG.
Converted PDF files can have a page-〈number〉 in
their name when a specific page has been used.

You can pass the option --svgmath in which
case math will be converted to SVG. The main
reason for this feature is that we found out that
MathML support in browsers is not currently as
widespread as might be expected. The best bet is

Firefox which natively supports it. The Chrome
browser had it for a while but it got dropped and
math is now delegated to JavaScript and friends. In
Internet Explorer MathML should work (but I need
to test that again).

This conversion mechanism is kind of interesting:
one enters TEX math, then gets MathML in the
export, and that gets rendered by TEX again, but
now as a standalone snippet that then gets converted
to SVG and embedded in the result.

5 Styles

One can argue that we should use native HTML

elements but since we don’t have a good guaranteed-
consistent mapping onto that, it makes no sense
to do so. Instead, we rely on either explicit tags
with details and chains or divisions with classes that
combine the tag, detail and chain. The tagged variant
has some more attributes and those that use a fixed
set of values become classes in the division variant.
Also, once we start going the (for instance) H1, H2,
etc. route we’re lost when we have more levels than
that or use a different structure. If an H3 can reflect
several levels it makes no sense to use it. The same
is true for other tags: if a list is not really a list than
tagging it with LI is counterproductive. We’re often
dealing with very complex documents so basic HTML

tagging becomes rather meaningless.
If you look at the division variant (this is used

for ePub too) you will notice that there are no empty
elements but div blocks with a comment as content.
This is needed because otherwise they get ignored,
which for instance makes table cells invisible.

The relation between detail and chain (re-
flected in class) can best be seen from the next
example.

\definefloat[myfloata]

\definefloat[myfloatb][myfloatbs][figure]

\definefloat[myfloatc][myfloatcs][myfloatb]

This creates two new float instances. The first
inherits from the main float settings, but can have its
own properties. The second example inherits from
the figure so in fact it is part of a chain. The third
one has a longer chain.

<float detail="myfloata">...</float>

<float detail="myfloatb" chain="figure">

...</float>

<float detail="myfloatc" chain="figure myfloatb">

...</float>

In a CSS style you can now configure tags, de-
tails, and chains as well as classes (we show only a
few possibilities). Here, the CSS element on the first
line of each pair is invoked by the CSS selector on
the second line.

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 31

div.float.myfloata { }

float[detail=’myfloata’] { }

div.float.myfloatb { }

float[detail=’myfloatb’] { }

div.float.figure { }

float[detail=’figure’] { }

div.float.figure.myfloatb { }

float[chain~=’figure’][detail=’myfloata’] { }

div.myfloata { }

*[detail=’myfloata’] { }

div.myfloatb { }

*[detail=’myfloatb’] { }

div.figure { }

*[chain~=’figure’] { }

div.figure.myfloatb { }

*[chain~=’figure’][detail=’myfloatb’] { }

The default styles cover some basics but if you’re
serious about the export or want to use ePub then
it makes sense to overload some of it and/or provide
additional styling. You can find plenty about CSS

and its options on the Internet.

6 Coding

The default output reflects the structure present in
the document. If that is not enough you can add
your own structure, as in:

\startelement[question]

Is this right?

\stopelement

You can also pass attributes:

\startelement[question][level=difficult]

Is this right?

\stopelement

But these will be exported only when you also say:

\setupexport

[properties=yes]

You can create a namespace. The following will
generate attributes like my-level.

\setupexport

[properties=my-]

In most cases it makes more sense to use highlights:

\definehighlight

[important]

[style=bold]

This has the advantage that the style and color are
exported to a special CSS file.

Headers, footers, and other content that is part
of the page builder are not exported. If your docu-
ment has cover pages you might want to hide them
too. The same is true when you create special chap-
ter title rendering with a side effect that content
ends up in the page stream. If something shows up
that you don’t want, you can wrap it in an ignore

element:

\startelement[ignore]

Don’t export this.

\stopelement

⋄ Hans Hagen

Pragma ADE

http://pragma-ade.com

http://luatex.org

Exporting XML and ePub from ConTEXt

32 TUGboat, Volume 36 (2015), No. 1

The box-glue-penalty algebra of TEX

and its use of \prevdepth

Frank Mittelbach

Contents

1 The box-glue-penalty algebra 32

2 Splitting lists 32

3 Assembling a vertical box or galley 33

4 Calculation of vertical glue 34

5 Standard output routines 34

6 Special output routines 35

7 An unsolvable problem? 35

8 Some answers 36

Abstract

This article discusses certain aspects of TEX’s ap-
proach to line breaking and its consequences for au-
tomatically calculating the right amount of vertical
space between lines in more complex layouts.

It starts with giving a short introduction to the
box-glue-penalty algebra used by TEX to model ma-
terial to typeset. We then look at how the program
calculates the vertical glue between lines in which
the parameter \prevdepth plays a crucial role. Next
we examine different types of output routines and
evaluate how and to what extent the TEX algorithms
can accommodate their goals.

The final conclusion is that this is an area where
we can pose problems that cannot be resolved us-
ing current TEX, ε-TEX, pdfTEX, or X ETEX, unless
you restrict the allowable input, as there is no way
to obtain some of the information used by TEX’s
algorithms for later manipulation of the result.

Like the answer to many questions these days,
the situation is (probably) different with LuaTEX—
probably, because I haven’t actually tried it, but
given the additional possibilities offered by LuaTEX
a solution should be feasible.

1 The box-glue-penalty algebra

TEX’s typesetting is built around a model that is
known as the box-glue-penalty algebra [1]. At the
lowest level we have (character) boxes that have (as
far as TEX is concerned) no inner structure. These
(character) boxes intermixed with glue (representing
spaces) and penalties (representing possible break
points) are what TEX combines to form higher level
objects and eventually build up pages.

The first level of construction is called a hori-
zontal list and such a list can either form a new box
of its own (a horizontal box also known as an \hbox)

or it can be passed to the paragraph builder that
then (using a large number of parameters) will break
the list apart into sub-lists (possibly dropping some
content at the break points) to form the individual
lines (again \hboxes) of a paragraph.

It is also possible to build vertically oriented
lists, again consisting of boxes, glue and penalties.
Here the glue represents vertical spaces and any
penalties guide splitting the list later on. Such a
list can become a box of its own (a vertical box or
\vbox) or it can simply form a “galley” from which,
by some method, TEX once in a while chops off a
certain amount to form the content for a page to be
produced.

Boxes in vertical lists are different though: while
all lists can contain explicitly or implicitly construc-
ted boxes, only horizontal lists can contain character
boxes. If, while constructing a vertical list, TEX
encounters a character box it puts the current con-
struction on hold and starts building a horizontal
list. If it then encounters a \par command (or an
empty line) it will pass the constructed horizontal list
to the paragraph builder. That in turn chops it up
into individual lines and returns those as horizontal
boxes (paragraph lines) intermixed with glue and
penalties. These are then added into the vertical list
and construction of the vertical list continues.

2 Splitting lists

Splitting of horizontal lists can only be done by
passing the list to the paragraph builder. The result
in that case is a vertical list (or rather something that
will become part of a vertical list) and it contains a
varying number of horizontal boxes forming the lines
of the paragraph. In other words it is not possible
directly to take a horizontal list (or box) and split it
into two horizontal lists.

In the case of vertical lists the situation is slightly
different: on the so-called “main vertical list” on
which the material for pages is gathered, TEX mon-
itors the amount of material being gathered and
at certain points, either directed by some explicit
penalty or simply because it decided that there is now
enough material, it will chop off the right amount
of material for a single page and then fire up a sub-
routine called the output routine to process that
material and build a final page from it.

In addition to that, TEX offers the possibility
to split off a chunk of a specified size from a given
vertical box and place it into a new box. Technically
speaking this is more or less what the output routine
process on the main vertical list does when it gets
fired up. The only difference is that on boxes this is
an explicit command that needs to be invoked in the

Frank Mittelbach

TUGboat, Volume 36 (2015), No. 1 33

programming code and it operates only on explicit
boxes formed earlier.

It would be interesting to have the same func-
tionality on the program level for horizontal boxes
but for some reason that never made it into the
program.

In other respects horizontal and vertical splitting
is a very similar operation (on the box-glue-penalty
algebra level). Splits can only happen at explicit
penalties or at the left of glue provided it is imme-
diately preceded by a box.1 So in case of two globs
of glue directly next to each other, a split can only
happen before the first glue. Consecutive penalties
behave like a single penalty unless they both force a
break and we are in a horizontal list.2

Once a break point is chosen TEX drops all glue
and penalties following it until it comes to the next
box. The rationale behind this is that something like
white space between words should vanish if you have
a line break, and so should white space between lines
if you have a page break.

This rather simple model allows to define surpris-
ingly complex behavior, simply by specifying cleverly
constructed sequences of glue, penalties and (empty)
boxes. Appendix D in The TEXbook [2] shows a
number of examples.

In summary, the box-glue-penalty model proved
to be an ingenious way to model typesetting require-
ments and although it is not fully orthogonal and
perhaps misses one or the other feature that would
be useful, it gets the job done in a concise manner,
and it is fair to say that even after more than three
decades nobody has come up with anything better.

3 Assembling a vertical box or galley

A box in TEX terms is described by three dimensions:
its height, depth, and width. The rationale is that
characters that form words are lined up horizontally,
each having a certain height but some of them stick
out below the imaginary line (known as the baseline)
and thus have a depth. Consequently, the boxes have
a reference point at its left side with the material
above the reference point forming the height of the
box, and the material below, the depth.

1 In real life the situation is, of course, more complex.
TEX, for example, understands how to hyphenate words and
so during the paragraph breaking it might introduce addi-
tional break points (and possibly even additional characters
or variations into a list of character boxes), but abstractly one
can think of this as just another version of boxes, glue and
penalties that have been present from the beginning.

2 The value of a penalty describes the desirability to break
at a certain point (the smaller the better). The anomaly that
two forcing penalties in horizontal mode behave differently and
produce two breaks is due to some implementation decisions.

If a horizontal list is used to form a new box
then the inner boxes are lined up on their reference
points, glue between the boxes appears as spaces,
and the height and depth of the resulting box will be
the maximum height and depth of the inner ones.3

The width of the new box is simply the sum of all
widths including the amounts taken up by the glue
items. The reference point of the newly created box
is then again on its left side at the baseline.

The situation with vertical lists is similar: they
too align the boxes inside on their reference points
(only this time vertically) and glue between boxes
becomes spaces in the vertical direction. The width
of the newly formed box is then the maximum width
of its inner boxes. The calculation of height and
depth, however, is slightly more complicated. By
default, the depth will be the depth of the last box
inside but only if this box is not followed by glue (a
penalty would be allowed)— in the latter case the
depth would be zero. The height is then calculated
as the sum of all the heights and depths of all boxes
plus the spaces and minus the box depth that was
calculated earlier. In short you will end up with a
box that has a very large height and a (normally)
small depth.

In fact the depth of the new box is further re-
stricted by a parameter called \boxmaxdepth: if the
calculated depth exceeds this value then the refer-
ence point of the constructed box is lowered until the
depth is no longer in violation. By default the value
of this parameter is the largest possible dimension
so that the restriction doesn’t apply for manually
created boxes unless this is changed.

On the main vertical list \maxdepth is used for
the same purpose. If TEX decides that material
needs to be packaged into a box to be passed to the
output routine it uses that parameter to determine
the maximum depth and thus the height of that
box. In contrast to \boxmaxdepth this parameter
typically has a setting that allows only for small
depths to ensure that material is not “falling off the
page” if it has an unusually large depth.

As an alternative to the construction explained
above TEX also supports building a vertical box
whose reference point aligns with the first box inside
(\vtop), i.e., its height will be the height of this first
box and the depth will hold everything else. If the
list starts out with glue then the height of such a
box will be zero.

3 As there are some operations to lower or raise boxes with
respect to their reference point, this is not quite accurate, but
one could consider such a manipulation simply as an operation
that forms a new box with new dimensions.

The box-glue-penalty algebra of TEX and its use of \prevdepth

34 TUGboat, Volume 36 (2015), No. 1

4 Calculation of vertical glue

In the previous sections we explained how lists in
the box-glue-penalty algebra are turned into new
boxes. We also mentioned that the paragraph builder
splits a horizontal list into a sequence of box-glue-
penalty items but so far we haven’t explained how
this precisely happens and what kind of glue items
are constructed during this process.

The main goal in paragraph building is to form
lines of text that are (normally) vertically positioned
in a way that the distance from baseline to baseline
is constant. TEX manages this in the following way:
whenever it builds a vertical list it keeps track of
the depth of the last box appended to the list in a
parameter called \prevdepth. At the beginning of
a list it has a sentinel value of -1000pt to indicate
that no box has been added so far.

When the paragraph builder builds a line box
this box will have a certain height and depth. TEX
then calculates the glue to be placed before the box
by using the parameter that holds the standard base-
line to baseline distance (\baselineskip) and sub-
tracts from it the height of this box and the cur-
rent value of \prevdepth. The resulting value is
then appended as a glue item unless it is smaller
than \lineskiplimit (i.e., the box height or the
previous depth was very large). In that case TEX
simply appends a glue item with a fixed value de-
fined by another parameter called \lineskip.4 The
\prevdepth is then updated to hold the depth of the
box just appended so that the calculation for the
next line will be correct.

When a box is manually added to a vertical list,
e.g., via \box\mybox, no baseline calculation happens
and no glue gets prepended to the box. However,
\prevdepth gets updated to hold the depth value
of the newly appended box and thus any following
box added by the paragraph builder would correctly
calculate glue for baseline separation.

It is possible to inspect and even change the cur-
rent value of \prevdepth within macro code while
TEX is in vertical mode, i.e., while it is building a ver-
tical list. Thus this only works between paragraphs
and not within a paragraph as the paragraph builder
acts on a horizontal list after all macro code has been
expanded. In other words, you can determine the
depth of the last line in a paragraph and by changing
\prevdepth, pretend that it has a different value and

4 Again this is a bit of an oversimplification. There are
some more parameters involved and in certain circumstances
nothing is appended. Also, if we are at the beginning of the
list, or more precisely when \prevdepth has this special value,
no glue is appended. For precise details see [2], especially
chapters 12 and 14.

thereby influence the baseline calculation for the first
line of a following paragraph. However, you can’t do
the same for lines within the paragraph.

It is also very important to understand that this
parameter is special in that it is local to the current
vertical list being built and that it doesn’t obey the
normal scoping rules. So if you change it within a
group it will keep its value when the group ends.
Instead it only (and always!) reverts to a previous
value if the construction of a vertical list has come to
an end and TEX resumes building an outer vertical
list, e.g., if boxes are nested within each other or if
we return to the main vertical list after building a
box or return from an output routine.

5 Standard output routines

TEX’s paragraph builder is a sophisticated piece of
software that uses dynamic programming to optimize
the line breaking over the paragraph as a whole
(with the sometimes surprising result that a change
near the end modifies line breaking decisions much
earlier on).

In contrast, TEX’s page breaking concepts are
much simpler. In essence, TEX assembles material
on the main vertical list until it is clear that there
is more material than can possibly fit on the page.
At that moment TEX stops assembling material for
the main vertical list and instead looks through all
material gathered and decides on a final break point
for the page using a number of parameters to guide
this process. The material prior to this break point
(which is a vertical list) is then packaged into a box
(\box255) and a special piece of code, “the current
output routine”, is fired up.

The normal purpose of this output routine is to
repackage and possibly embellish the material stored
in \box255, e.g., by adding a running header or a
page number, and then shipping it out to the output
file. When everything has been done, control is given
back to the process that fills the main vertical list
and processing continues there.

As the lines of a paragraph are always added in
one go to the main vertical list, TEX has typically
accumulated more than it actually can use in the
output routine. So when it returns from processing
the page material, the main vertical list is not empty
but contains a few boxes (and glue) that TEX had
seen but decided not to use.

Furthermore, the output routine code is allowed
to put some material from \box255 back (typically
after splitting it into several pieces) and in fact it
can even generate new material to be put back into
the main vertical list. To allow for this, TEX starts a
new vertical list when the output routine starts and

Frank Mittelbach

TUGboat, Volume 36 (2015), No. 1 35

the output routine can then place box-glue-penalty
items into this list while working. Once the output
routine has ended, this vertical list (if it contains
anything) is placed at the head of the main vertical
list, followed by any material already on it but not
chosen for the current page.

Now what happens with \prevdepth during
that time? When the output routine starts, it holds
the depth of the last box contributed to the main
vertical list, which may or may not be the last box
that shows up in \box255. As the output routine
starts a new vertical list, this value is shelved away
and this new list gets its own instance starting out
with -1000pt as usual. So if the output routine does
something fairly complicated that includes build-
ing paragraphs, these paragraph lines are vertically
spaced out using the rules explained above. Once
the output routine ends, the value for \prevdepth
from the main vertical list is restored.

This is normally the correct decision: if some
material was not being used for the current page,
then this will form the end of the main vertical
list after the output routine has ended and thus
\prevdepth will correctly reflect the depth of the
last box appended there.

If on the other hand all material got used for the
last page, then the value of \prevdepth no longer
reflects the real situation as it still contains the depth
from the last box. However, as long as the main
vertical list is effectively empty at this point, this
doesn’t matter as TEX throws away any glue item
after a page break until it sees the first box. It then
inserts new glue, based on the height of this box and
the current value of a parameter, namely \topskip.
So all that happens is that the paragraph builder
may have calculated a glue to go in front of the first
paragraph line based on wrong assumptions but as
this glue is thrown away later it doesn’t matter.

6 Special output routines

But there is one further case: everything from the
main vertical list got used but the output routine
itself put something back. In that case the last
box on the main vertical list will be whatever the
output routine has deposited there, but the value of
\prevdepth still reflects the last box that was there
before the output routine was called.

The standard output routines in LATEX and plain
TEX do not have this issue as they do not put any-
thing back. However, the situation is quite differ-
ent if you look at special output routines. These
output routines typically get explicitly invoked by
setting some explicit penalty and thus there will be

no leftovers on the vertical list that correspond to
the \prevdepth value.

For example, the multicol package, on reaching
the end of a multicols environment, invokes an out-
put routine that takes the gathered material, splits it
up into balanced columns and then pushes the result
back as a single block for reprocessing.

In that case the value of \prevdepth on the
main vertical list will be the depth of the last box
in the last column, but after balancing the overall
depth of the result may very well be quite different
(as the last column may be the shortest one, so its
depth isn’t even taken into account). As a result the
baseline calculation of a following paragraph line will
be based on wrong assumptions.

In fact multicol tried to account for this and
added a negative space and then set \prevdepth to
zero. However this happened inside the output rou-
tine so that the negative space survived but the value
of \prevdepth got reverted after the output rou-
tine returned! (And it doesn’t help to use \global

from within the output routine as \prevdepth sim-
ply doesn’t care.) As the difference is typically less
than 2pt and multicol additionally adds a space of
\multicolsep this bug remained undetected for a
long time.

The solution to this problem then is, of course,
to carefully keep track of what the output routine
intends to put back, measure the final depth within
the output routine and store it away in a global
variable. Then, once the output routine has ended,
explicitly set \prevdepth to the saved value to make
it reflect the true situation.

7 An unsolvable problem?

The previous section explained how special output
routines can be written to correctly reflect the situ-
ation with \prevdepth. But this requires that the
output routine is always explicitly triggered—a sit-
uation in which we know that there is no remainder
material that could throw us off track. But what
happens if the output routine puts material back
but is invoked asynchronously by the standard TEX
mechanism?

For starters we then have a problem in regaining
control after the output routine has ended though
that can be resolved with a few tricks involving
\aftergroup and a nested set of output routines.

But even if we do this we don’t really know to
what value we should set \prevdepth. It would need
to be the depth of the material we put back in case
there was nothing left on the main vertical list, but
it needs to be left alone if this is not the case. And
we can’t arrange for the material returned to have

The box-glue-penalty algebra of TEX and its use of \prevdepth

36 TUGboat, Volume 36 (2015), No. 1

the same \prevdepth that was current before the
output routine since we don’t have access to this
value within the output routine, and as the output
routine is triggered asynchronously we can’t (easily?)
obtain it beforehand or as part of the process.

So this is something to ponder.

8 Some answers

Donald Knuth already gave a partial answer to this
problem in The TEXbook [2, p. 262ff] where he dis-
cussed an output routine that adds index headings
in random places in the text. The restriction in his
algorithm is that the \prevdepth is assumed to be
sufficiently small (that is, smaller than \maxdepth in
fact). In that case we can use the depth of \box255 in
the output routine as a measure for the \prevdepth
calculations that will have taken place if there is any
remainder in recent contributions, and use this to
adjust the nominal depth of the material added to
match that. And if there isn’t any remainder then
this doesn’t really matter either.

However, this approach can’t be used unmodi-
fied if this restriction isn’t guaranteed to hold, i.e., if
the material typeset may have arbitrary depth that
is then masked by the page \maxdepth adjustment.
Artificially enlarging \maxdepth is not an option ei-
ther, as that would incorrectly alter the allowed page
break positions.

A possible extension of the algorithm is to re-box
the material inside the output routine to determine
its natural depth, but unfortunately that turned out
to be not enough to cover all cases.

So after a couple of false positives (i.e., pseudo-
solutions that failed in one or another boundary case)
my conclusion is that this problem cannot be solved
within TEX or ε-TEX as long as the typesetting and
line breaking is done by the engine. The main reason
for this is the following:

• If TEX is doing the line breaking and automati-
cally appends new material to the vertical lists
it calculates the necessary glue based on the
height of the newly appended box and the cur-
rent \prevdepth value to achieve a baseline to
baseline distance that corresponds to the value
of \baselineskip.

• However, if that brings two boxes too close to-
gether it adds some extra glue (\lineskip).

• So if a “baseline skip” glue was added we can
adjust its value based on the size of newly in-
serted material as we know the target size (i.e.,
\baselineskip) and the \prevdepth used (ap-
plying a variation of Knuth’s algorithm outlined
above).

• If, however, a \lineskip glue was added, our
calculations are off base and there is no way
within TEX to determine that we are in this
branch of the typesetting algorithm short of
disabling it and doing all box maneuvers manu-
ally.5

With LuaTEX the situation is different: With some
moderate Lua programming effort it should be pos-
sible to traverse a node list, say the one stored in
\splitdiscards, and determine if \lineskip was
used. Depending on the scenario one could then
either keep that node or delete it or replace it with
an appropriate new value.

References

[1] Donald E. Knuth and Michael F. Plass. Break-
ing paragraphs into lines. In Digital Typography.
CSLI Publications, Stanford, CA, USA, 1999.

[2] Donald E. Knuth. The TEXbook. Addison-Wesley,
Reading, MA, 1986.

⋄ Frank Mittelbach

Mainz, Germany

http://www.latex-project.org

5 I would be very much interested to be proven wrong here:
If somebody finds a solution that covers the general case using
just TEX or ε-TEX, please offer it as a TUGboat article.

Frank Mittelbach

TUGboat, Volume 36 (2015), No. 1 37

The bird and the lion: arara

Paulo Roberto Massa Cereda

1 Prologue

There I was, back in 2011, with a huge project in
my hands: a songbook. But it was far from any
ordinary book due to the involved complexity: each
song had several tags and at least 25 indexes, with
different styles! Of course, TEX and friends were
able to tackle this beast on their own, but I was not
prepared. The lion was definitely hungry and I was
the typographic meat provider.

My compilation workflow was striking: at least
30 to 40 steps in order to achieve the final result.
As a first experiment, I wrote a nice Makefile and
the problem had appeared to be solved once and for
all. Suddenly, however, I found myself in need of a
portable solution: I had to share my projects with
at least three different operating systems (Windows,
GNU/Linux and Mac OS X) and I should ensure that
all the needed tools were in place for my workflow
to work. Worse: I had to rely on system-dependent
commands and other nuisances.

My first idea was to stand on the shoulders of
giants and rely on the brilliant latexmk by John
Collins; sadly, the workflow was too complicated for
me to grasp at once, and my .latexmkrc shortly
became a beast on its own. The second idea was
to use rubber but, as my worst nightmares became
true, at some point, I was writing ugly hacks and
injecting Python code into the tool itself. Alas, no
success, the songbook remained intractable.

When all else had failed, I decided to come up
with a solution on my own. I sat in front of my
computer with an open terminal and started to code
while listening to Pink Floyd. In a couple of hours,
a new tool was tackling my songbook.

I mentioned this journey in the chat room of
the TEX community at StackExchange and Enrico
Gregorio encouraged me to release this tool into the
wild. Later on, Marco Daniel, Brent Longborough,
Nicola Talbot and many, many others jumped in and
a new project — arara — was born. The name was
chosen as an homage to a Brazilian bird of the same
name, which is a macaw. The word arara comes
from the Tupian word a’rara, which means big bird

(much to my chagrin, Sesame Street’s iconic char-
acter Big Bird is not a macaw; according to some
sources, he claims to be a golden condor). As I men-

tion in the user manual, araras are colorful, noisy,
naughty and very funny. Everybody loves araras.
The name seemed catchy for a tool and, in the blink
of an eye, arara was quickly spread to the whole TEX
world. It is an interesting story of a bird and a lion
living together.

2 The basics

I think the best way to explain how arara works is to
provide a quick comparison with similar tools, like
the ones I’ve mentioned in the prologue. Let us use
the following file hello.tex as an example:

\documentclass{article}

\begin{document}

Hello world!

\end{document}

How would one successfully compile hello.tex
with latexmk and rubber, for instance? It’s quite
straightforward: it is just a matter of providing the
file to the tool and letting it do the hard work; a sim-
ple latexmk hello or rubber –pdf hello would
do the trick. Now, if one tries arara hello, I’m
afraid nothing will be generated; the truth is, arara

doesn’t know what to do with your file (and the tool
will raise an error message complaining about this
issue). You need to tell arara what to do.

That is the major difference of arara when com-
pared to other tools: it is not an automatic process
and the tool does not employ any guesswork on its
own. You are in control of your documents; arara

won’t do anything unless you teach it how to do a
task and explicitly tell it to execute the task.

How does one teach arara how to do a task?
The answer is quite simple: we have to define rules.
A rule is a formal description of how arara should
handle a certain task. For example, if we want to
use pdflatex with arara, we need a rule for that.
Once a rule is defined, arara automatically provides
an access layer to the user. The package provides
dozens of predefined rules, so you already have sev-
eral options out of the box to set up your workflow.

Once we know how to execute a task, we need
to explicitly tell arara when to do it. This is done
through a directive. A directive is a special comment
inserted in the source file in which you indicate how
arara should behave. You can insert as many direc-
tives as you want, and in any position of the file;
arara will read the whole file and extract the direc-
tives. A directive should be placed in a line of its
own, in the form

% arara: 〈directive〉

It is important to observe that a directive is not
the command to be executed, but the name of the

The bird and the lion: arara

38 TUGboat, Volume 36 (2015), No. 1

rule associated with that directive (once arara finds
a directive, it will look for the associated rule). That
is basically how arara works: we teach the tool to do
a task by providing a rule, and tell it to execute it
via directives in the source code.

Sometimes, we need to provide additional in-
formation to the rule from the source code. That’s
why arara offers two types of directives:

empty directive An empty directive, as the name
indicates, has only the rule identifier. The syn-
tax for an empty directive is

% arara: 〈directive〉

parameterized directive A parameterized direc-
tive has the rule identifier followed by its argu-
ments. It’s very important to mention that the
arguments are mapped by their identifiers and
not by their positions. The syntax for such a
directive is

% arara: 〈directive〉: { 〈arglist〉 }

An individual argument has the form

〈key〉: 〈value〉

and an 〈arglist〉 has keys with their respective
values separated by commas. The arguments
are defined according to the rule mapped by
the directive (you cannot give an argument foo
to a directive bar if it does not offer support for
this named parameter).

If you want to disable a directive, there’s no need to
remove it from the source file. Simply replace

% arara:

by, for example,

% !arara:

or insert some other symbol before arara: and this
directive will be ignored. The tool always looks for
a line that, after removing the leading and trailing
spaces, starts with a comment and contains ‘arara:’
as a word of its own. The user manual shows how
to override this search pattern, but the arara: key-
word is always required.

Now that we know how to tell arara what to
do with hello.tex, we need to modify it a little by
including the proper pdflatex directive:

% arara: pdflatex

\documentclass{article}

\begin{document}

Hello world!

\end{document}

And that’s it. Now, calling arara hello (or
arara hello.tex— both will work), the document
will be successfully compiled. Then, let’s say we

would like to enable shell escape for this particu-
lar compilation; we can achieve that by providing a
parameterized directive, like this:

% arara: pdflatex: { shell: yes }

\documentclass{article}

\begin{document}

Hello world!

\end{document}

Of course, shell is defined in the rule scope,
otherwise arara would raise an error about an invalid
key. The user manual has a list of all available keys
for each predefined rule.

As we’ve noted, arara relies on the provided
source file as the main document. The pdflatex

rule above thus passes the provided filename to the
pdflatex command. Let us see how to override such
information in order to run programs on other files.

There’s a reserved argument key named files,
whose value is a list. If you want to override the
default value of the main document for a specific
rule, use this key in the directive, in the form

% arara: 〈directive〉: { files: [〈list〉] }

For example, if you need to run makeindex on
files a and b instead of the default hello, you can
use

% arara: makeindex: { files: [a, b] }

That is the trick I used when working with
25 indexes in my songbook: it was just a matter
of providing their names and which styles to the
makeindex directive.

There is much more to arara than what I’ve de-
scribed in this section. For more complete coverage
of available tools, please refer to the user manual.
arara is already available in TEX Live and also as a
standalone tool. Source code is available at

https://github.com/cereda/arara

It is also important to observe that a new ver-
sion is in the works and this hopefully will fix a cou-
ple of nuisances found with the current official ver-
sion (namely, version 3.0 of the tool). The new ver-
sion also includes several improvements which will
be unveiled as soon as the tool reaches its official
release (as a bonus, a new article will be provided
for readers).

3 Examples

Now that we know how arara works, let us see some
examples. The first document, ex1.tex, requires
two runs in order to set the labels correctly, so we
write two directives.

% arara: pdflatex

% arara: pdflatex

Paulo Roberto Massa Cereda

TUGboat, Volume 36 (2015), No. 1 39

\documentclass{article}

\begin{document}

\section{Introduction}

\label{sec:intro}

As seen in Section~\ref{sec:intro}\ldots

\end{document}

The second document, ex2.tex, has a citation
(courtesy of xampl.bib, available in the TEX Live
tree), so we need to specify a call to bibtex as well:

% arara: pdflatex

% arara: bibtex

% arara: pdflatex

% arara: pdflatex

\documentclass{article}

\begin{document}

As seen in \cite{book-full}\ldots

\bibliographystyle{plain}

\bibliography{xampl}

\end{document}

The third document, ex3.tex, has the same
LATEX source as the previous example, but we want
to use biber instead of bibtex; it’s just a matter of
replacing the directive:

% arara: pdflatex

% arara: biber

% arara: pdflatex

% arara: pdflatex

\documentclass{article}

\usepackage{biblatex}

\addbibresource{xampl.bib}

\begin{document}

As seen in \cite{book-full}\ldots

\printbibliography

\end{document}

The fourth document, ex4.tex, shows an ex-
ample of a simple index, so we include a makeindex

directive:

% arara: pdflatex

% arara: makeindex

% arara: pdflatex

\documentclass{article}

\usepackage{makeidx}

\makeindex

\begin{document}

Some text.\index{Apple}

\printindex

\end{document}

The fifth document, ex5.tex, shows a glossary,
courtesy of the great glossaries package. We need
to add a makeglossaries directive for this:

% arara: pdflatex

% arara: makeglossaries

% arara: pdflatex

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{equation}{name=equation,

description={an equation usually involves

at least one variable, and has two sides;

typically we will try to solve an

equation for one of the unknown

variables}}

\makeglossaries

\begin{document}

\glsaddall

\printglossary

\end{document}

The sixth document, ex6.tex, shows a good old
plain TEX source, compiled with the tex directive.
As expected, we will get ex6.dvi as output.

% arara: tex

Hello world.

\bye

The seventh document, ex7.tex, enhances the
previous example by adding a conversion chain in
order to obtain a PDF file; this is done by convert-
ing ex7.dvi to ex7.ps and then to ex7.pdf (the
directive names are self-explanatory).

% arara: tex

% arara: dvips

% arara: ps2pdf

Hello world.

\bye

The eighth document, ex8.tex, uses a package
(namely minted) which requires shell escapes to be
enabled. We give the (parameterized) directive for
that in order to achieve a proper compilation:

% arara: pdflatex: { shell: yes }

\documentclass{article}

\usepackage{minted}

\begin{document}

\begin{minted}{c}

int main() {

printf("hello, world");

return 0;

}

\end{minted}

\end{document}

The ninth document, ex9.tex, uses multibib

in order to provide two separate bibliographies; we
must run bibtex on the second auxiliary file A.aux

as well, so we give the special files key to bibtex:

% arara: pdflatex

% arara: bibtex

% arara: bibtex: { files: [A] }

The bird and the lion: arara

40 TUGboat, Volume 36 (2015), No. 1

% arara: pdflatex

% arara: pdflatex

\documentclass{article}

\usepackage{multibib}

\newcites{A}{References 2}

\begin{document}

\cite{book-full}

\citeA{inproceedings-full}

\bibliographystyle{plain}

\begingroup

\bibliography{xampl}

\endgroup

\bibliographystyleA{plain}

\begingroup

\bibliographyA{xampl}

\endgroup

\end{document}

Observe the \begingroup and \endgroup around
the \bibliography commands: this is because the
sample bibliography file xampl.bib has a preamble
field in which a couple of commands are defined
which would otherwise cause some ugly definition
errors (as both .bbl files contain \newcommand).

Alternatively, we could have used one bibtex

directive with two files:

% arara: bibtex: { files: [ex9, A] }

instead of writing two bibtex directives. However, I
would choose to write a separate line for each bibtex

run, both to better organize my workflow, and to
provide only the second auxiliary filename; other-
wise, the main document filename would also have
to be explicitly specified.

The tenth and last document, ex10.tex, has a
clean directive to remove ex10.log after correctly
generating the PDF file:

% arara: pdftex

% arara: clean: { files: [ex10.log] }

Hello world.

\bye

And that is it: arara is quite straightforward to
use, provided that you know the available rules and
keys, and also the compilation workflow needed.

4 Final remarks

As shown in this article, arara can be used in com-
plex workflows, such as theses and books. You can
tell the tool to compile a document, generate indexes
and apply styles, remove temporary files, compile
other documents, run METAFONT or METAPOST,
create glossaries, call pdfcrop, gnuplot, move files,
and much more. Furthermore, arara is platform-
independent. It’s all up to you.

That said, I believe that the warning featured
in the user manual still applies: Hic Sunt Dra-

cones. Hopefully the new version will exterminate
a couple of nuisances and bugs found in the cur-
rent official release; however, as with any non-trivial
software, the tool is far from being bug-free. And
you will learn that arara gives you plenty of rope. In
other words, you will be responsible for how the tool
behaves and all the consequences from your actions.
Sorry to sound scary, but I really needed to tell you
this. After all, one of arara’s greatest features is the
freedom it offers. But as you know, freedom always
comes at a cost.

Feedback is surely welcome for me to improve
this humble tool — just write an e-mail to me or any
other member of the team and we will reply as soon
as possible. The source code is fully available at

https://github.com/cereda/arara

Feel free to contribute to the project by forking
it, submitting bugs, sending pull requests or even
translating it to your language. If you want to sup-
port the LATEX development with a donation, the
best way to do this is by donating to the TEX Users
Group.

Happy TEXing with arara!

⋄ Paulo Roberto Massa Cereda

Analândia, São Paulo, Brazil

cereda (at) users dot sf dot net

Paulo Roberto Massa Cereda

TUGboat, Volume 36 (2015), No. 1 41

The SWIGLIB project∗

Luigi Scarso

Abstract

The SWIGLIB project aims to show a way to build
and distribute shared libraries for LuaTEX by means
of SWIG. This paper depicts the infrastructure that
has been created and the rationale behind it. Simple
examples are shown.

1 Introduction

The Lua language is well-known for its simplicity and
compactness, and also for its easy integration into
an existing project. This integration refers both to
compilation—TEX Live currently provides binaries
for 21 platforms and all of them have a luatex exe-
cutable—and in a more general sense the relatively
small amount of time required to get acquainted with
its constructs and data structures.

Analogous to the \usepackage macro of LATEX,
it is easy to extend the built-in features of Lua by
means of external Lua modules, usually loaded with
load("〈module name〉"). What perhaps is less well
known is that the same is also available for binary
modules; for example, a C library compiled in the na-
tive format of the platform. This is due to the double
nature of Lua, as both an interpreted language and a
library that can be linked with an application (see [4,
p. 249]):1 the interaction of the Lua library and the
application must follow the application programming
interface (API) of Lua.

While for LuaTEX there is currently no official
C API—it’s a program, not a library— the Lua API

is completely described in the Lua manual (http:
//www.lua.org/manual) and it counts 245 items,
including constants, macros, functions and standard
libraries. They consistently use a stack to exchange
data (and hence several functions are dedicated to
the stack manipulation) and use an opaque data
structure to store the current state, but the stack
is accessible only by the state and sometimes it is
confused with it. By design (related to the choice of
ANSI C for the implementation language) the Lua
state is not thread-safe, but the library is carefully
designed to avoid destructive interference in global
variables and in some cases multithreading with a
single shared state appears to be possible [13]. In

∗ In fulfillment of the TEX Development Fund grant no. 23,
Dynamic library support in LuaTEX, 2013. Grants from (in
alphabetical order) CSTUG, DANTE e.V., GUST, NTG and
TUG.

1 By design the standard Lua library is written in ANSI C

and it is precisely for this reason that integration into disparate
platforms is easy.

-- a Lua function that adds two numbers

function add (x, y)

return x + y

/* The C code that calls the Lua function; */

/* we suppose that the state L */

/* is already initialised. */

/* Lua headers */

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>

int lua_add (int x, int y){

int sum;

lua_getglobal(L, "add"); /* function name */

lua_pushnumber(L, x); /* first argument */

lua_pushnumber(L, y); /* second argument */

lua_call(L, 2, 1); /* call the function

with 2 arguments, return 1 result */

sum = (int)lua_tointeger(L, -1);/* get result*/

lua_pop(L, 1); /* clear the stack */

return sum; /* return the sum */

}

Figure 1: Calling a Lua function from C.

any case, the best solution is to avoid sharing the
state between multiple threads—the library can in
fact safely manage different states, at the price of
more complex code.

Every “well done” C library exposes its services
by means of an API which is, of course, completely
unrelated to the Lua API. Communication between
the two can happen in either direction: when the
application library wants to execute a Lua function
it has to follow the Lua API as shown for example
in fig. 1, and similarly when a C function is called
by the Lua interpreter (see fig. 2)—and this latter
case is the subject of this paper. It’s clear that
if an application library has tens or hundreds of
functions, writing the corresponding code can take a
considerable amount of time.

Before discussing the tools and the infrastruc-
ture used, it’s worth mentioning at least these three
scenarios where an application library can be useful:

• pre/post processing of data, typically pre-pro-
cessing images (i.e. conversion) and post-pro-
cessing PDFs;

• extending LuaTEX, for example to connect to a
database at runtime;

• extending the application with LuaTEX as a
scripting language—probably a less common,
but still important, use.

The SWIGLIB project

42 TUGboat, Volume 36 (2015), No. 1

/* Example C function to be called from Lua. */

/* Lua headers */

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>

int c_add (int x, int y) {

return x+y;

}

int _wrap_c_add (lua_State *L) {

int x,y, sum;

x = (int)lua_tointeger(L, -1); /* first arg */

y = (int)lua_tointeger(L, -2); /* second arg */

sum = c_add(x,y); /* call c_add */

lua_pushnumber(L, sum); /* push result */

return 1; /* return sum */

}

static const luaL_Reg myapplication [] = {

{"add", _wrap_c_add}, /* register c_add */

{NULL,NULL} /* sentinel */

};

int luaopen_myapplication(lua_State *L) {

luaL_newlib(L,myapplication);

return 1;

}

-- Calling c_add from Lua

local myapplication = require("myapplication")

print (myapplication.add(2,3))

Figure 2: Calling a C function from Lua.

2 The SWIG tool

As described above, to connect an application library
with the Lua interpreter a third layer which acts as
interface is needed. This layer, called wrapper code,
must know the application API and, of course, the
Lua API. In fig. 2, c_add is the application func-
tion, and the wrapper code items are _wrap_c_add,
myapplication and luaopen myapplication; the
local Lua variable myapplication is the binding.
Under Linux the compilation is straightforward:

$ gcc -I/usr/include/lua5.2 -fPIC \

-o myapplication.o \

-c myapplication.c

$ gcc -I/usr/include/lua5.2 -shared \

-o myapplication.so myapplication.o \

-llua5.2

where -fPIC tells the compiler to generate position
independent code, given that myapplication.so is
a shared library. From this elementary example we
can identify the following issues:

• how to generate a wrapper for a rich and com-
plex application API?

• how to compile the wrapper to obtain a suitable
binary module?

• how to distribute the module?

The next subsections will try to address these
questions.

2.1 Generate a wrapper

After a initial period of experimentation the following
assumptions have emerged as suitable for a project
that aims to serve the TEX community:

1. the wrapper code should be generated in an
automatic fashion preserving as much as possible
the meaning and the names of the functions and
data structures of the application API;

2. the application and Lua API should be freely
accessible.

The tool chosen is SWIG, the Simplified Wrapper
and Interface Generator program available for dif-
ferent platforms, including Linux, Windows and
MacOSX. Its web site is http://www.swig.org;
for a quick overview, see also http://www.ibm.com/

developerworks/aix/library/au-swig. SWIG has
a powerful C/C++ preprocessor and can analyse2 a
header file and produce the wrapper code. For ex-
ample, given the C API

/* myapplication.h */

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>

extern int c_add (int, int);

the SWIG interface file to create the wrapper is:

%module core

%{

/* code included in the wrapper */

#include "myapplication.h"

%}

/* header to analyse */

%include "myapplication.h"

The wrapper itself (by default core_wrap.c) is gen-
erated with

$ swig -lua core.i

and, supposing that the application header and the
shared library myapplication.so live in the current

2
SWIG works particularly well with C libraries, while

with C++ libraries usually the developer has to manually
write some customisation, e.g. to manage function overloading
or multiple inheritance. For C++, in fact, “at the lowest level,
SWIG generates a collection of procedural ANSI C-style wrap-
pers”; see http://www.swig.org/Doc3.0/SWIGDocumentation.
html#SWIGPlus_nn2 .

Luigi Scarso

TUGboat, Volume 36 (2015), No. 1 43

directory ./ , the binary module core.so is compiled
as below (again for the Linux platform):

$ gcc -I/usr/include/lua5.2 -I./ -fPIC \

-o core_wrap.o \

-c core_wrap.c

$ gcc -L./ -Wl,-rpath,’$ORIGIN/.’ -shared \

-o core.so core_wrap.o \

-lmyapplication -llua5.2

and loaded in Lua with

local myapplication = require("core")

print (myapplication.c_add(2, 3))

This example shows all the basic components
used in the SWIGLIB project. A practical interface
file is in fact only a bit more complex: here is one
for the cURL library, a free and easy-to-use client-
side URL transfer library (http://curl.haxx.se/
libcurl): 3

%module core

#ifdef SWIGLIB_WINDOWS

%include <windows.i>

#endif

/* Section for utilities, such as */

/* built-in wrappers for C arrays, */

/* C pointers, function pointers. */

...

*/

/* API */

%{

#include "curl/curl.h"

%}

/* Headers to generate the wrapper */

%include "curl/curlver.h"

%include "curl/curlbuild.h"

%include "curl/curlrules.h"

%include "curl/curl.h"

%include "curl/easy.h"

%include "curl/multi.h"

/* Customisation */

%include "native.i"

%include "inline.i"

%include "luacode.i"

Each binary module of the SWIGLIB project is named
core, so each needs to be saved into a specific direc-
tory, as will be shown later. Next, there is a section
to eventually include the wrappers that SWIG sup-
plies by default for the basic C types such as char,
int, long, etc. (useful, for example, when a param-
eter of a function is an array or a pointer to a basic
type). After that is the section that includes the

3 The real file has a few more directives, but this example
shows the important pieces.

application API into the wrapper and generates the
wrapper; the order of the %include directives is not
random, but reflects the dependencies between the
headers.4 Finally, the native.i file is used when the
developer wants to replace the standard SWIG wrap-
per of a function with a custom implementation; the
inline.i file is useful to add new members to the
application API; and the luacode.i file to add Lua
code when the module is initialised at loading time.

Normally, these .i files are empty but it turns
out that our example of the cURL API has several
functions that take a variably-typed argument—ei-
ther a pointer to a long or a pointer to a char, etc.;
in any case, a finite set of types as described in the
documentation of the API. Here the inline.i file
defines, for each variation of such functions, several
C helper functions with the third argument fixed; i.e.
one function with a pointer to a long, a second with
a pointer to a char, etc. The luacode.i file has the
single Lua function that calls the helper functions
with the right third argument: of course this means
that a lot of code is hand-written, given that a single
function can have 3 or 4 helper functions— it sounds
complicated but it’s not especially difficult.5

In most cases this simple organisation of the
interface file is enough, but it can be extended in two
ways: first, to build a helper module that consists
solely of SWIG directives as in

%module core

#ifdef SWIGLIB_WINDOWS

%include <windows.i>

#endif

%include "carrays.i"

%include "cpointer.i"

%include "constraints.i"

%include "cmalloc.i"

%include "lua_fnptr.i"

%{ /* array functions */ %}

%array_functions(char, char_array);

%array_functions(unsigned char, u_char_array);

%array_functions(char*, char_p_array);

%array_functions(unsigned char*, u_char_p_array);

/* Several other SWIG directives ...*/

Second, by adding C functions and data struc-
tures to the inline interface a user can build a cus-
tom usermodule, eventually using other application li-
braries. In other words, SWIG also supports interface
files usercore.i, usernative.i, userinline.i and

4 gcc -H can be used with a header file to print out its
dependencies.

5 Although the chapter “Variable Length Arguments”
at http://www.swig.org/Doc3.0/SWIGDocumentation.html#
Varargs does start with a.k.a. “The horror. The horror.”

The SWIGLIB project

44 TUGboat, Volume 36 (2015), No. 1

userluacode.i and hence a usercore binary mod-
ule that stays in the same directory as the core

application.

2.2 Compilation of a wrapper

Compilation of binary modules is not as difficult as it
seems at first sight: given an application header and
the corresponding shared library, SWIG generates
ANSI C wrapper code, which is usually both portable
and easily compilable. Of course much depends on
the application library, but currently all the modules
provided are compiled for 64-bit Linux (Ubuntu 14.04
LTS) with the GCC toolchain and cross-compiled
for Microsoft Windows 32-bit and 64-bit using the
Mingw-w64 toolchain; it’s also possible under Linux
to use the native compiler suite for Windows from
http://tdm-gcc.tdragon.net

In this way the application headers and library
match among different platforms (only two in this
phase) which in turn means that at the LuaTEX
level the interface to the application library is the
same. While the compilation of an application mod-
ule almost always uses the configure script gener-
ated from the GNU Autotools, SWIGLIB uses for the
wrapper simple bash scripts; for example, for curl
under Linux:

trap ’echo "Error on building library";

exit $?’ ERR

echo "building for : linux 64bit"

SWIG

swig -I$(pwd)/resources/include64 -lua \

-o core_wrap.c ../core.i

Compile wrapper

rm -f core_wrap.o

gcc -O3 -fpic -pthread -I$LUAINC \

-I./resources/include64/ \

-c core_wrap.c \

-o core_wrap.o

Build library

rm -f core.so

CFLAGS="-g -O3 -Wall -shared \

-I./resources/include64 \

-L./resources/lib64"

LIBS="-lcurl -lssh2"

gcc $CFLAGS -Wl,-rpath,’$ORIGIN/.’ \

core_wrap.o \

$LIBS \

-o core.so

End

mv core.so resources/lib64

rm core_wrap.o

rm core_wrap.c

and for Windows 64-bit it’s almost the same:

trap ’echo "Error on building library";

exit $?’ ERR

SWIG

swig -DSWIGLIB_WINDOWS \

-I$(pwd)/resources/include64 \

-lua -o core_wrap.c ../core.i

Compile the wrapper

rm -f core_wrap.o

$GCCMINGW64 -O3 -I$LUAINC \

-I./resources/include64/ \

-c core_wrap.c \

-o core_wrap.o

Build the library

rm -f core.dll

CFLAGS="-O3 -Wall -shared "

LIBS="$LUALIB/$LUADLL64

resources/lib64/libssh2-1.dll

resources/lib64/zlib1.dll

resources/lib64/libcurl-4.dll

resources/lib64/ssleay32.dll

resources/lib64/libeay32.dll "

$GCCMINGW64 $CFLAGS \

-Wl,-rpath,’$ORIGIN/.’ \

core_wrap.o \

$LIBS \

-o core.dll

End

mv core.dll resources/lib64

rm core_wrap.o

rm core_wrap.c

A simple bash script should be easily ported
to different platforms: the GNU Autotools are well
suited for Unix-like systems, but Windows has its
own toolchain and such a a shell script can be trans-
lated in a batch script without much effort, giving a
good starting point (see [1, p. 3]).

A binary module can easily depend on other
binary modules. Under Windows, these modules are
searched first in the same directory of the wrapper,
but in Linux (and hopefully on other Unix-like sys-
tems too) that “local” search is enforced with the
linker option -Wl,-rpath,’$ORIGIN/.’ . We do this
to keep the wrapper module and its dependencies as
much as possible self-contained in a TDS tree.

In spite of the efforts to mask the differences
between the systems, at some point they emerge and
it’s not always possible to find a nice way to manage
them. One of these differences is symbol resolution
and collision: when an application module has a
reference to an external symbol (i.e. a function or a
data item), under Linux this reference is resolved at
run-time while in Windows it must be resolved at
build-time, when the module is compiled.

Given that an application module always needs
to resolve the Lua API symbols, the first consequence
is that the luatexWindows binary must be compiled
with a dynamic link to an external Lua library (a Lua
DLL) and the same DLL must be used at build-time
for the application module. Under Linux the Lua

Luigi Scarso

TUGboat, Volume 36 (2015), No. 1 45

API symbols are unequivocally resolved inside the
luatex binary, but if the application module needs
a symbol from another API (for example, a function
from libpng, which is part of luatex) it must re-
solve that symbol to an external auxiliary library
and not inside the luatex binary: with Windows
this happens automatically because, by default, the
symbols are not visible if not explicitly marked as
such, but in Linux the situation is just the opposite.
The luatex binary must be compiled with the gcc

flag -fvisibility=hidden—this will be the default
starting with TEX Live 2015:6 hence, all the Linux
binaries before this date are not safe.

Another fundamental difference is that Linux
64-bit and Windows 64-bit don’t use the same data
model. Linux uses the so-called LP64, where the
type long and a pointer are both 64 bits, while
Windows uses LLP64, where a long is 32 bits and
a pointer 64 bits. As a consequence, if a program
under 64-bit Linux uses a long to store an address,
it cannot be automatically ported to 64-bit Windows.
Although the 64-bit Windows version could use the
type long long, this is a a C99 extension and it’s not
supported by the Microsoft Visual C compiler. The
situation is no better in C++: the following example
that uses GMP 6.0.0 fails to compile with Mingw-w64
but works with GCC under Linux7 —and in both
cases sizeof a returns 8.

#include <gmpxx.h>

#include <iostream>

using namespace std;

int main(void) {

size_t a = 5;

mpz_class b(a);

cout << b.get_ui() << endl;

cout<< sizeof a <<endl;

return 0;

}

3 Deployment

The SWIGLIB project is hosted8 at http://swiglib.
foundry.supelec.fr with a public readonly Subver-
sion source repository accessible at http://foundry.
supelec.fr/projects/swiglib. The root has cur-
rently the following application modules:

trunk

attic

basement

curl

6 Peter Breitenlohner has done incalculable work in imple-
menting the symbol visibility and the build of shared versions
of the TEX-specific libraries.

7 And the fork MPIR 2.7.9 compiles correctly under Mingw-
w64 and gives the same result as Linux!

8 Thanks to Fabrice Popineau for his invaluable support.

experimental

ghostscript

graphicsmagick

helpers

leptonica

libffi

lua

luarepl

mysql

parigp

physicsfs

postgresql

qpdf

R

sqlite

swig

usermod

zeromq

COPYRIGHT

build.sh

Each application module has the following layout
(here shown for curl):

curl

7.40.0

docs

linux

resources

include32

include64

curl

lib32

lib64

test

build-linux-x86_64.sh

osx

resources

include32

include64

lib32

lib64

windows

resources

include32

curl

include64

curl

lib32

lib64

test

build-mingw32.sh

build-mingw64.sh

build-msys32.sh

build-msys64.sh

core.i

inline.i

The SWIGLIB project

46 TUGboat, Volume 36 (2015), No. 1

luacode.i

native.i

where lib64 (lib32) hosts the application API and
lib64 (lib32) the binary module. The osx directory
is a placeholder—currently it’s empty. The lua

directory contains the Lua API and the binaries for
Linux 64-bit, Windows 32-bit and 64-bit:

luatex-beta-0.79.3.1

include

lauxlib.h

luaconf.h

lua.h

lua.hpp

lualib.h

patch-01-utf-8

patch-02-FreeBSD

patch-03-export

linux

luatex

w32

libkpathsea-6.dll

luatex.exe

texlua52.dll

w64

libkpathsea-6.dll

luatex.exe

texlua52.dll

3.1 Application module location

in the TDS

The natural location of a binary module inside a TDS

directory is under bin/. The current layout looks
like the following (for Linux 64-bit):

tex

texmf-linux-64

bin

lib

luatex

lua

swiglib

curl

7.40.0

core.so

libcurl.so

SWIGLIB doesn’t require a particular method
to load a wrapper module, because this is a task of
the format. The tests in the Subversion repository
use the low-level Lua function load, but they need
to know the system and the full path of the module;
on the other hand, ConTEXt has a global swiglib
function (see util-lib.lua and [3]) that is indepen-
dent from the system and the path—but it doesn’t
use the kpse library.

4 Conclusions

Without a doubt, building a wrapper module requires
a working knowledge at least of the C language, for
which [5] is still a pleasure to read; useful informa-
tion on shared libraries is also in [2] and [7] while
for Linux [6] is still one of the best references, as
[10] and [9] are for Windows. Moreover, having a
working wrapper is only half of the story: the rest is
a working Lua/TEX layer that suits with the format
in use—and this cannot be part of the underlying
SWIGLIB. The example with GMP 6.0.0 shows that
an application module that compiles well and passes
all the tests can still fail to compile an apparently
innocuous program. The C code itself is not always
easy to understand, as for example with the following
program

/* test.c */

#include <stdlib.h>

void foo(int *x){

int y = *x;

if (x == NULL)

return;

return;

}

int main(){

int *x;

x = NULL;

foo(x);

return 0;

}

which gives a segmentation fault if compiled with
gcc without optimisation (gcc -o test test.c),
but it’s ok with optimisation (gcc -O3 -o test

test.c).9 Portable multithreading also looks prob-
lematic, due to the lack of support in ANSI C and
hence in Lua. Of course the Linux and Windows
platforms are not the only ones to consider and the
absence of MacOSX is the most notable; FreeBSD
as well, which seems to be rather easier to add.

Despite these issues, SWIG is an exceptionally
flexible program, and it can adapted to manage al-
most any situations. If an interface file is complicated,
it can often be simplified with an auxiliary C module;
if a user needs to customise an application module,
this can be done by adding a set of Lua functions and/
or C functions—and all this while always formally
writing an interface file. A possible objection is that
LuaTEX does not have a read-eval-print loop (“repl”)
program as standard Lua does, but SWIGLIB has a
pure Lua module luarepl that mimics the original
one quite well. This means that it’s possible to use

9 y = *x results in undefined behaviour when x is NULL,
but the optimisation -O3 is able to detect that y is never used
and it deletes it.

Luigi Scarso

TUGboat, Volume 36 (2015), No. 1 47

LuaTEX as a general-purpose scripting language, i.e.
to manage the installation of TEX packages.

Regarding LuaJITTEX [12]: even when it’s pos-
sible to use the same interface file, the API and the
luajitex libraries are not the same. Furthermore,
LuaJIT users seem to prefer the use of the LuaJIT
ffi module, which is roughly similar to SWIG. It
should still be doable to implement in SWIG via a
new backend LuaJIT-ffi that emits ffi chunks in-
stead of the LuaJIT C API, effectively eliminating the
need for a C compiler. Clearly work for the future.

Some practical examples of applications are
shown in [3] and [11]. These will also be the subject
of a future paper.

References

[1] John Calcote. Autotools: A Practitioner’s
Guide to GNU Autoconf, Automake, and
Libtool. No Starch Press, San Francisco, CA,
USA, 1st edition, 2010.

[2] Ulrich Drepper. How to write shared
libraries. http://www.akkadia.org/drepper/
dsohowto.pdf, December 10 2011. Accessed:
2015-03-5.

[3] Hans Hagen. Swiglib basics. http:

//minimals.contextgarden.net/current/

doc/context/pragma/general/manuals/

swiglib-mkiv.pdf.

[4] Roberto Ierusalimschy. Programming in Lua,
Third Edition. Lua.Org, 3rd edition, 2013.

[5] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language. Prentice Hall
Professional Technical Reference, 2nd edition,
1988.

[6] Michael Kerrisk. The Linux Programming
Interface: A Linux and UNIX System
Programming Handbook. No Starch Press,
San Francisco, CA, USA, 1st edition, 2010.

[7] John R. Levine. Linkers and Loaders. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 1999.

[8] T. Przechlewski, editor. What Can Typography
Gain from Electronic Media? Polska Grupa
Użytkowników Systemu TEX—GUST, 2014.
ISBN 9788393901609. http://books.google.
it/books?id=abDNoAEACAAJ.

[9] Mark E. Russinovich, David A. Solomon, and
Alex Ionescu. Windows Internals, Part 1:
Covering Windows Server 2008 R2 and
Windows 7. Microsoft Press, 6th edition, 2012.

[10] Mark E. Russinovich, David A. Solomon, and
Alex Ionescu. Windows Internals, Part 2:
Covering Windows Server 2008 R2 and
Windows 7 (Windows Internals). Microsoft
Press, 2012.

[11] Luigi Scarso. Extending ConTEXt MkIV
with PARI/GP. ArsTEXnica, 11:65–74, April
2011. http://www.guitex.org/home/images/
ArsTeXnica/AT011/AT11-scarso.pdf.

[12] Luigi Scarso. LuaJITTEX. TUGboat,
34(1):64–71, 2013. http://tug.org/TUGboat/
34-1/tb106scarso.pdf.

[13] Luigi Scarso. Some experiments with OpenMP
and LuaTEX. In Przechlewski [8]. http:

//www.gust.org.pl/bachotex/2014-pl/

presentations/openmp-slides.pdf.

⋄ Luigi Scarso
luigi dot scarso (at) gmail dot com

http://swiglib.foundry.supelec.fr

The SWIGLIB project

48 TUGboat, Volume 36 (2015), No. 1

Still tokens: LuaTEX scanners

Hans Hagen

1 Introduction

Tokens are the building blocks of the input for TEX
and they drive the process of expansion which in turn
results in typesetting. If you want to manipulate the
input, intercepting tokens is one approach. Other
solutions are preprocessing or writing macros that do
something with their picked-up arguments. In Con-
TEXt MkIV we often forget about manipulating the
input but manipulate the intermediate typesetting
results instead. The advantage is that only at that
moment do you know what you’re truly dealing with,
but a disadvantage is that parsing the so-called node
lists is not always efficient and it can even be rather
complex, for instance in math. It remains a fact that
until LuaTEX version 0.80 ConTEXt hardly used the
token interface.

In version 0.80 a new scanner interface was in-
troduced, demonstrated by Taco Hoekwater at the
ConTEXt conference 2014. Luigi Scarso and I inte-
grated that code and I added a few more functions.
Eventually the team will kick out the old token li-
brary and overhaul the input-related code in LuaTEX,
because no callback is needed any more (and also
because the current code still has traces of multiple
Lua instances). This will happen stepwise to give
users who use the old mechanism an opportunity to
adapt.

Here I will show a bit of the new token scanners
and explain how they can be used in ConTEXt. Some
of the additional scanners written on top of the built-
in ones will probably end up in the generic LuaTEX
code that ships with ConTEXt.

2 The TEX scanner

The new token scanner library of LuaTEX provides a
way to hook Lua into TEX in a rather natural way. I
have to admit that I never had any real demand for
such a feature but now that we have it, it is worth
exploring.

The TEX scanner roughly provides the following
sub-scanners that are used to implement primitives:
keyword, token, token list, dimension, glue and in-
teger. Deep down there are specific variants for
scanning, for instance, font dimensions and special
numbers.

A token is a unit of input, and one or more
characters are turned into a token. How a character
is interpreted is determined by its current catcode.
For instance a backslash is normally tagged as ‘es-
cape character’ which means that it starts a control

sequence: a macro name or primitive. This means
that once it is scanned a macro name travels as one
token through the system. Take this:

\def\foo#1{\scratchcounter=123#1\relax}

Here TEX scans \def and turns it into a token.
This particular token triggers a specific branch in
the scanner. First a name is scanned with option-
ally an argument specification. Then the body is
scanned and the macro is stored in memory. Because
‘\scratchcounter’, ‘\relax’, and ‘#1’ are turned
into tokens, this body has 7 tokens.

When the macro \foo is referenced the body
gets expanded which here means that the scanner
will scan for an argument first and uses that in the
replacement. So, the scanner switches between differ-
ent states. Sometimes tokens are just collected and
stored, in other cases they get expanded immediately
into some action.

3 Scanning from Lua

The basic building blocks of the scanner are available
at the Lua end, for instance:

\directlua{print(token.scan_int())} 123

This will print 123 to the console. Or, you can
store the number and use it later:

\directlua{SavedNumber = token.scan_int())} 123

We saved: \directlua{tex.print(SavedNumber)}

The number of scanner functions is (on purpose)
limited but you can use them to write additional
ones as you can just grab tokens, interpret them and
act accordingly.

The scan_int function picks up a number. This
can also be a counter, a named (math) character or
a numeric expression. In TEX, numbers are inte-
gers; floating-point is not supported naturally. With
scan_dimen a dimension is grabbed, where a dimen
is either a number (float) followed by a unit, a dimen
register or a dimen expression (internally, all become
integers). Of course internal quantities are also okay.
There are two optional arguments, the first indicat-
ing that we accept a filler as unit, while the second
indicates that math units are expected. When an
integer or dimension is scanned, tokens are expanded
till the input is a valid number or dimension. The
scan_glue function takes one optional argument: a
boolean indicating if the units are math.

The scan_toks function picks up a (normally)
brace-delimited sequence of tokens and (LuaTEX
0.80) returns them as a table of tokens. The function
get_token returns one (unexpanded) token while
scan_token returns an expanded one.

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 49

Because strings are natural to Lua we also have
scan_string. This one converts a following brace-
delimited sequence of tokens into a proper string.

The function scan_keyword looks for the given
keyword and when found skips over it and returns
true. Here is an example of usage:1

function ScanPair()

local one = 0

local two = ""

while true do

if token.scan_keyword("one") then

one = token.scan_int()

elseif token.scan_keyword("two") then

two = token.scan_string()

else

break

end

end

tex.print("one: ",one,"\\par")

tex.print("two: ",two,"\\par")

end

This can be used as:

\directlua{ScanPair()}

You can scan for an explicit character (class)
with scan_code. This function takes a positive num-
ber as argument and returns a character or nil.

1 0 escape

2 1 begingroup

4 2 endgroup

8 3 mathshift

16 4 alignment

32 5 endofline

64 6 parameter

128 7 superscript

256 8 subscript

512 9 ignore

1024 10 space

2048 11 letter

4096 12 other

8192 13 active

16384 14 comment

32768 15 invalid

So, if you want to grab the character you can say:

local c = token.scan_code(2^10 + 2^11 + 2^12)

In ConTEXt you can say:

local c = tokens.scanners.code(

tokens.bits.space +

tokens.bits.letter +

tokens.bits.other

)

When no argument is given, the next character
with catcode letter or other is returned (if found).

1 In LuaTEX 0.80 you should use newtoken instead of
token.

In ConTEXt we use the tokens namespace which
has additional scanners available. That way we can
remain compatible. I can add more scanners when
needed, although it is not expected that users will
use this mechanism directly.

(new)token tokens. arguments

scanners.boolean

scan_code scanners.code (bits)

scan_dimen scanners.dimension (fill,math)

scan_glue scanners.glue (math)

scan_int scanners.integer

scan_keyword scanners.keyword

scanners.number

scan_token scanners.token

scan_tokens scanners.tokens

scan_string scanners.string

scanners.word

get_token getters.token

set_macro setters.macro (catcodes,cs,

str,global)

All except get_token (or its alias getters.token)
expand tokens in order to satisfy the demands.

Here are some examples of how we can use the
scanners. When we would call Foo with regular
arguments we do this:

\def\foo#1{%

\directlua {

Foo("whatever","#1",{n = 1})

}

}

but when Foo uses the scanners it becomes:

\def\foo#1{%

\directlua{Foo()} {whatever} {#1} n {1}\relax

}

In the first case we have a function Foo like this:

function Foo(what,str,n)

-- do something with these three parameters

end

and in the second variant we have (using the tokens
namespace):

function Foo()

local what = tokens.scanners.string()

local str = tokens.scanners.string()

local n = tokens.scanners.keyword("n") and

tokens.scanners.integer() or 0

-- do something with these three parameters

end

The string scanned is a bit special as the re-
sult depends on what is seen. Given the following
definition:

\def\bar {bar}

\unexpanded\def\ubar {ubar}

% that’s \protected in e-tex etc.

\def\foo {foo-\bar-\ubar}

Still tokens: LuaTEX scanners

50 TUGboat, Volume 36 (2015), No. 1

\def\wrap {{foo-\bar}}

\def\uwrap{{foo-\ubar}}

We get:

foo foo
foo-\bar foo-bar
foo-\ubar foo-\ubar
foo-\bar foo-bar
foo-\ubar foo-ubar
foobar foobar
\foo foo-bar-ubar
\wrap foo-bar
\uwrap foo-\ubar

Because scanners look ahead the following hap-
pens: when an open brace is seen (or any character
marked as left brace) the scanner picks up tokens and
expands them unless they are protected; so, effec-
tively, it scans as if the body of an \edef is scanned.
However, when the next token is a control sequence
it will be expanded first to see if there is a left brace,
so there we get the full expansion. In practice this
is convenient behaviour because the braced variant
permits us to pick up meanings honouring protection.
Of course this is all a side effect of how TEX scans.2

With the braced variant one can of course use
primitives like \detokenize and \unexpanded (in
ConTEXt: \normalunexpanded, as we already had
this mechanism before it was added to the engine).

4 Considerations

Performance-wise there is not much difference be-
tween these methods. With some effort you can
make the second approach faster than the first but
in practice you will not notice much gain. So, the
main motivation for using the scanner is that it pro-
vides a more TEX-ified interface. When playing with
the initial version of the scanners I did some tests
with performance-sensitive ConTEXt calls and the
difference was measurable (positive) but deciding
if and when to use the scanner approach was not
easy. Sometimes embedded Lua code looks better,
and sometimes TEX code. Eventually we will end up
with a mix. Here are some considerations:

• In both cases there is the overhead of a Lua call.

2 This lookahead expansion can sometimes give unexpected
side effects because often TEX pushes back a token when a
condition is not met. For instance when it scans a number,
scanning stops when no digits are seen but the scanner has
to look at the next (expanded) token in order to come to
that conclusion. In the process it will, for instance, expand
conditionals. This means that intermediate catcode changes
will not be effective (or applied) to already-seen tokens that
were pushed back into the input. This also happens with, for
instance, \futurelet.

• In the pure Lua case the whole argument is
tokenized by TEX and then converted to a string
that gets compiled by Lua and executed.

• When the scan happens in Lua there are extra
calls to functions but scanning still happens in
TEX; some token to string conversion is avoided
and compilation can be more efficient.

• When data comes from external files, parsing
with Lua is in most cases more efficient than
parsing by TEX.

• A macro package like ConTEXt wraps function-
ality in macros and is controlled by key/value
specifications. There is often no benefit in terms
of performance when delegating to the men-
tioned scanners.

Another consideration is that when using macros,
parameters are often passed between {}:

\def\foo#1#2#3%

{...}

\foo {a}{123}{b}

and suddenly changing that to

\def\foo{\directlua{Foo()}}

and using that as:

\foo {a} {b} n 123

means that 123 will fail. So, eventually you will end
up with something:

\def\myfakeprimitive{\directlua{Foo()}}

\def\foo#1#2#3{\myfakeprimitive {#1} {#2} n #3 }

and:

\foo {a} {b} {123}

So in the end you don’t gain much here apart
from the fact that the fake primitive can be made
more clever and accept optional arguments. But
such new features are often hidden for the user who
uses higher-level wrappers.

When you code in pure TEX and want to grab a
number directly you need to test for the braced case;
when you use the Lua scanner method you still need
to test for braces. The scanners are consistent with
the way TEX works. Of course you can write helpers
that do some checking for braces in Lua, so there are
no real limitations, but it adds some overhead (and
maybe also confusion).

One way to speed up the call is to use the
\luafunction primitive in combinations with pre-
defined functions and although both mechanisms can
benefit from this, the scanner approach gets more out
of that as this method cannot be used with regular
function calls that get arguments. In (rather low
level) Lua it looks like this:

luafunctions[1] = function()

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 51

local a token.scan_string()

local n token.scan_int()

local b token.scan_string()

-- whatever --

end

And in TEX:

\luafunction1 {a} 123 {b}

This can of course be wrapped as:

\def\myprimitive{\luafunction1 }

5 Applications

The question now pops up: where can this be used?
Can you really make new primitives? The answer
is yes. You can write code that exclusively stays on
the Lua side but you can also do some magic and
then print back something to TEX. Here we use the
basic token interface, not ConTEXt:

\directlua {

local token = newtoken or token

function ColoredRule()

local w, h, d, c, t

while true do

if token.scan_keyword("width") then

w = token.scan_dimen()

elseif token.scan_keyword("height") then

h = token.scan_dimen()

elseif token.scan_keyword("depth") then

d = token.scan_dimen()

elseif token.scan_keyword("color") then

c = token.scan_string()

elseif token.scan_keyword("type") then

t = token.scan_string()

else

break

end

end

if c then

tex.sprint("\\color[",c,"]{"); end

if t == "vertical" then

tex.sprint("\\vrule")

else

tex.sprint("\\hrule")

end

if w then

tex.sprint("width ",w,"sp"); end

if h then

tex.sprint("height ",h,"sp"); end

if d then

tex.sprint("depth ",d,"sp"); end

if c then

tex.sprint("\\relax}"); end

end

}

This can be given a TEX interface like:

\def\myhrule{\directlua{ColoredRule()}

type {horizontal} }

\def\myvrule{\directlua{ColoredRule()}

type {vertical} }

And then used as:

\myhrule width \hsize height 1cm color {darkred}

giving (grayscaled for TUGboat on paper, sorry):

Of course ConTEXt users can use the following
commands to color an otherwise-black rule (likewise):

\blackrule[width=\hsize,height=1cm,

color=darkgreen]

The official ConTEXt way to define such a new
command is the following. The conversion back to
verbose dimensions is needed because we pass back
to TEX.

\startluacode

local myrule = tokens.compile {

{

{ "width", "dimension", "todimen" },

{ "height", "dimension", "todimen" },

{ "depth", "dimension", "todimen" },

{ "color", "string" },

{ "type", "string" },

}

}

interfaces.scanners.ColoredRule = function()

local t = myrule()

context.blackrule {

color = t.color,

width = t.width,

height = t.height,

depth = t.depth,

}

end

\stopluacode

With:

\unprotect \let\myrule\scan_ColoredRule \protect

and

\myrule width \textwidth height 1cm

color {darkblue} \relax

we get:

There are many ways to use the scanners and
each has its charm. We will look at some alternatives
from the perspective of performance. The timings
are more meant as relative measures than absolute

Still tokens: LuaTEX scanners

52 TUGboat, Volume 36 (2015), No. 1

ones. After all it depends on the hardware. We
assume the following shortcuts:

local scannumber = tokens.scanners.number

local scankeyword = tokens.scanners.keyword

local scanword = tokens.scanners.word

We will scan for four different keys and values.
The number is scanned using a helper scannumber
that scans for a number that is acceptable for Lua.
Thus, 1.23 is valid, as are 0x1234 and 12.12E4.

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

if scankeyword("sx") then

sx = scannumber()

elseif scankeyword("sy") then

sy = scannumber()

elseif scankeyword("rx") then

rx = scannumber()

elseif scankeyword("ry") then

ry = scannumber()

else

break

end

end

-- action --

end

Scanning the following specification 100000 times
takes 1.00 seconds:

sx 1.23 sy 4.5 rx 1.23 ry 4.5

The “tight” case (no spaces) takes 0.94 seconds:

sx1.23 sy4.5 rx1.23 ry4.5

We can compare this to scanning without key-
words. In that case there have to be exactly four
arguments. These have to be given in the right or-
der which is no big deal as often such helpers are
encapsulated in a user-friendly macro.

function getmatrix()

local sx, sy = scannumber(), scannumber()

local rx, ry = scannumber(), scannumber()

-- action --

end

As expected, this is more efficient than the pre-
vious examples. It takes 0.80 seconds to scan this
100000 times:

1.23 4.5 1.23 4.5

A third alternative is the following:

function getmatrix()

local sx, sy = 1, 1

local rx, ry = 0, 0

while true do

local kw = scanword()

if kw == "sx" then

sx = scannumber()

elseif kw == "sy" then

sy = scannumber()

elseif kw == "rx" then

rx = scannumber()

elseif kw == "ry" then

ry = scannumber()

else

break

end

end

-- action --

end

Here we scan for a keyword and assign a number
to the right variable. This one call happens to be
less efficient than calling scan_keyword 10 times
(4 + 3 + 2 + 1) for the explicit scan. This run takes
1.11 seconds for the next line. The spaces are really
needed as words can be anything that has no space.3

sx 1.23 sy 4.5 rx 1.23 ry 4.5

Of course these numbers need to be compared
to a baseline of no scanning (i.e. the overhead of a
Lua call which here amounts to 0.10 seconds. This
brings us to the following table.

keyword checks 0.9 sec
no keywords 0.7 sec
word checks 1.0 sec

The differences are not that impressive given the
number of calls. Even in a complex document the
overhead of scanning can be negligible compared to
the actions involved in typesetting the document. In
fact, there will always be some kind of scanning for
such macros so we’re talking about even less impact.
So you can just use the method you like most. In
practice, the extra overhead of using keywords in
combination with explicit checks (the first case) is
rather convenient.

If you don’t want to have many tests you can
do something like this:

local keys = {

sx = scannumber,

sy = scannumber,

rx = scannumber,

ry = scannumber,

}

function getmatrix()

local values = { }

while true do

for key, scan in next, keys do

if scankeyword(key) then

values[key] = scan()

3 Hard-coding the word scan in a C code helper makes
little sense, as different macro packages can have different
assumptions about what a word is. And we don’t extend
LuaTEX for specific macro packages.

Hans Hagen

TUGboat, Volume 36 (2015), No. 1 53

else

break

end

end

end

-- action --

end

This is still quite fast although one now has to
access the values in a table. Working with specifi-
cations like this is clean anyway so in ConTEXt we
have a way to abstract the previous definition.

local specification = tokens.compile {

{

{ "sx", "number" },

{ "sy", "number" },

{ "rx", "number" },

{ "ry", "number" },

},

}

function getmatrix()

local values = specification()

-- action using values.sx etc --

end

Although one can make complex definitions this
way, the question remains if it is a better approach
than passing Lua tables. The standard ConTEXt way
for controlling features is:

\getmatrix[sx=1.2,sy=3.4]

So it doesn’t matter much if deep down we see:

\def\getmatrix[#1]{%

\getparameters[@@matrix][sx=1,sy=1,

rx=1,ry=1,#1]%

\domatrix

\@@matrixsx

\@@matrixsy

\@@matrixrx

\@@matrixry

\relax}

or:

\def\getmatrix[#1]{%

\getparameters[@@matrix][sx=1,sy=1,

rx=1,ry=1,#1]%

\domatrix

sx \@@matrixsx

sy \@@matrixsy

rx \@@matrixrx

ry \@@matrixry

\relax}

In the second variant (with keywords) can be a
scanner like we defined before:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix()}}

but also:

\def\domatrix#1#2#3#4%

{\directlua{getmatrix(#1,#2,#3,#4)}}

given:

function getmatrix(sx,sy,rx,ry)

-- action using sx etc --

end

or maybe nicer:

\def\domatrix#1#2#3#4%

{\directlua{domatrix{

sx = #1, sy = #2,

rx = #3, ry = #4

}}}

assuming:

function getmatrix(values)

-- action using values.sx etc --

end

If you go for speed the scanner variant without
keywords is the most efficient one. For readability the
scanner variant with keywords or the last shown ex-
ample where a table is passed is better. For flexibility
the table variant is best as it makes no assumptions
about the scanner—the token scanner can quit on
unknown keys, unless that is intercepted of course.
But as mentioned before, even the advantage of the
fast one should not be overestimated. When you
trace usage it can be that the (in this case matrix)
macro is called only a few thousand times and that
doesn’t really add up. Of course many different sped-
up calls can make a difference but then one really
needs to optimize consistently the whole code base
and that can conflict with readability. The token
library presents us with a nice chicken–egg problem
but nevertheless is fun to play with.

6 Assigning meanings

The token library also provides a way to create to-
kens and access properties but that interface can
change with upcoming versions when the old library
is replaced by the new one and the input handling
is cleaned up. One experimental function is worth
mentioning:

token.set_macro("foo","the meaning of bar")

This will turn the given string into tokens that
get assigned to \foo. Here are some alternative calls:

set_macro("foo")

≡ \def \foo {}

set_macro("foo", "meaning")

≡ \def \foo {meaning}

set_macro("foo", "meaning", "global")

≡ \gdef \foo {meaning}

The conversion to tokens happens under the
current catcode regime. You can enforce a different
regime by passing a number of an allocated catcode

Still tokens: LuaTEX scanners

54 TUGboat, Volume 36 (2015), No. 1

table as the first argument, as with tex.print. As
we mentioned performance before, setting at the Lua
end like this:

token.set_macro("foo","meaning")

is about two times as fast as:

tex.sprint("\\def\\foo{meaning}")

or (with slightly more overhead) in ConTEXt terms:

context("\\def\\foo{meaning}")

The next variant is actually slower (even when
we alias setvalue):

context.setvalue("foo","meaning")

but although 0.4 versus 0.8 seconds looks like a lot
on a TEX run I need a million calls to see such a
difference, and a million macro definitions during a
run is a lot. The different assignments involved in,
for instance, 3000 entries in a bibliography (with an
average of 5 assignments per entry) can hardly be
measured as we’re talking about milliseconds. So
again, it’s mostly a matter of convenience when using
this function, not a necessity.

7 Conclusion

For sure we will see usage of the new scanner code
in ConTEXt, but to what extent remains to be seen.
The performance gain is not impressive enough to
justify many changes to the code but as the low-level

interfacing can sometimes become a bit cleaner it will
be used in specific places, even if we sacrifice some
speed (which then probably will be compensated for
by a little gain elsewhere).

The scanners will probably never be used by
users directly simply because there are no such low
level interfaces in ConTEXt and because manipulat-
ing input is easier in Lua. Even deep down in the
internals of ConTEXt we will use wrappers and ad-
ditional helpers around the scanner code. Of course
there is the fun-factor and playing with these scan-
ners is fun indeed. The macro setters have as their
main benefit that using them can be nicer in the Lua
source, and of course setting a macro this way is also
conceptually cleaner (just like we can set registers).

Of course there are some challenges left, like
determining if we are scanning input of already con-
verted tokens (for instance in a macro body or token
list expansion). Once we can properly feed back
tokens we can also look ahead like \futurelet does.
But for that to happen we will first clean up the
LuaTEX input scanner code and error handler.

⋄ Hans Hagen

Pragma ADE

http://pragma-ade.com

http://luatex.org

ConTEXt 2015

Nasbinals, France

September 14–18, 2015

meeting.contextgarden.net/2015

TUGboat, Volume 36 (2015), No. 1 55

TheTreasure Chest

Special note for this installment: please see Barbara
Beeton’s editorial column for some CTAN news and
action recommendations.

The following is a list of selected new pack-
ages posted to CTAN (http://ctan.org) from Oc-
tober 2014 through March 2015, with descriptions
based on the announcements and edited for extreme
brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry

biblio

bibfilex in biblio

GUI bibliography manager written in Free Pascal.

fonts

fontmfizz in fonts

Access MFizz font icons in LATEX.
* newtxsf in fonts

Sans serif math fonts based on newtxmath and STIX.

graphics

ticollege in graphics/pgf/contrib

Draw scientific calculator keys in TikZ.
tikz-dimline in graphics/pgf/contrib

Draw technical dimension lines in TikZ.
tikz-palattice in graphics/pgf/contrib

Draw particle accelerator lattices in TikZ.
tipfr in graphics/pgf/contrib

Output menu items, screenshots, and calculator keys
in TikZ.

info

latexcheat-de in info/latexcheat

German adaptation of the English LATEX cheat sheet.

macros

musixtnt in macros

MusiXTEX extension library enabling transformations
of the effect of notes commands.

macros/generic

apnum in macros/generic

Arbitrary-precision numbers in pure TEX.

macros/latex

** latex/base

latex/doc

latex/required/cyrillic

latex/required/graphics

latex/required/tools in macros/latex

Amajor update to LATEX2ε, by default incorporating
changes previously included only by explicitly loading
the fixltx2e package. A new latexrelease package
and other mechanisms allow for controlling this. The
included LATEX News #22 has details, and additional
articles are expected for the next TUGboat. This
LATEX release will be included in TEX Live 2015
and its pretests, and not distributed (in TEX Live)
before that.

The psnfss and babel packages, though also
required parts of LATEX, are maintained separately
from base LATEX, and thus are not changed in this
update (and they still work, too).

The announcement for CTAN: lists.dante.de/
pipermail/ctan-ann/2015-March/008366.html.

macros/latex/contrib

avremu in macros/latex/contrib

Microprocessor simulation in pure LATEX.
bankstatement in macros/latex/contrib

Generate bank statements from CSV data.
basicarith in macros/latex/contrib

Typeset textbook-style basic arithmetic.
begingreek in macros/latex/contrib

Typeset Greek in pdflatex.
bondgraphs in macros/latex/contrib

Draw bond graphs using TikZ.
bookcover in macros/latex/contrib

Typeset book covers and dust jackets.
boxedminipage2e in macros/latex/contrib

Framed minipages of a specified total width.
calculation in macros/latex/contrib

Typeset reasoned calculations (calculational proofs).
cryptocode in macros/latex/contrib

Typeset pseudocode, protocols, game-based proofs
and black-box reductions in cryptography.

cyber in macros/latex/contrib

Annotate compliance with cybersecurity requirements.
cybercic in macros/latex/contrib

“Controls in Contents” for the cyber package.
datetime2 in macros/latex/contrib

Formatting dates, times, etc.
datetime2-* in macros/latex/contrib

Language modules for datetime2.
doclicense in macros/latex/contrib

Putting documents under Creative Commons licenses.

macros/latex/contrib/doclicense

56 TUGboat, Volume 36 (2015), No. 1

ebproof in macros/latex/contrib

Typeset formal proofs in the style of sequent calculus.
ekaia in macros/latex/contrib

Format for the Basque scientific journal Ekaia.
elzcards in macros/latex/contrib

Typeset business cards, index cards, flash cards.
etdipa in macros/latex/contrib

Lightweight template for scientific documents.
europasscv in macros/latex/contrib

Support for the 2013 Europass CV standard.
fancyslides in macros/latex/contrib

Custom presentation class built on beamer.
* fcolumn in macros/latex/contrib

New column type f for typesetting financial tables
from raw data.

fei in macros/latex/contrib

Support for the FEI University Center (Brazil) style.
fixocgx in macros/latex/contrib

Support ocgx in all known engines.
gender in macros/latex/contrib

Promote gender neutrality in gendered languages.
genealogytree in macros/latex/contrib

Pedigree and genealogical tree diagrams.
glossaries-* in macros/latex/contrib

Language modules for glossaries.
gsemthesis in macros/latex/contrib

Geneva School of Economics and Management PhD
thesis format.

havannah in macros/latex/contrib

Board diagrams for the games Havannah and Hex.
indextools in macros/latex/contrib

Fixed imakeidx with bidi support.
jslectureplanner in macros/latex/contrib

Generate and manage university course material.
jumplines in macros/latex/contrib

Newspaper-style teasers with later continuations.
leadsheets in macros/latex/contrib

Typeset leadsheets and songbooks.
ndsu-thesis in macros/latex/contrib

North Dakota State University disquisition class.
prftree in macros/latex/contrib

Typeset natural deduction proofs.
romanbarpagenumber in macros/latex/contrib

Typesetting roman page numbers with bars.
sduthesis in macros/latex/contrib

Thesis template for Shandong University.
sesamanuel in macros/latex/contrib

Support for Sesamath Society books and papers.
turabian-formatting in macros/latex/contrib

Chicago-style formatting based on Turabian’s work.
urcls in macros/latex/contrib

Support for University of Regensburg styles.

versonotes in macros/latex/contrib

Display brief notes on verso pages.
* xcolor-solarized in macros/latex/contrib

Defines the 16 colors from Schoonover’s solarized
palette.

xprintlen in macros/latex/contrib

Print TEX lengths in a variety of units.

macros/latex/contrib/babel-contrib

babel-bosnian in m/l/c/babel-contrib

Babel support for Bosnian.

macros/latex/contrib/beamer-contrib

epyt in m/l/c/beamer-contrib

Simple and clean theme for beamer.

macros/latex/contrib/biblatex-contrib

citeall in m/l/c/biblatex-contrib

Cite all entries of a bbl file created with BibLATEX.

macros/plain

epsf-dvipdfmx in macros/plain/contrib

Supplement for epsf.tex when using dvipdfmx with
non-origin EPS images.

macros/xetex

interchar in macros/xetex/latex

Managing character class schemes in X ETEX.
* xespotcolor in macros/xetex/latex

Spot colors in X ELATEX.

support

crossrefware in support

Scripts for working with crossref.org.
ctan_chk in support

gawk script for verification of CTAN uploads.
epspdf-setup in support

Standalone epspdf Windows executable.
hook-pre-commit-pkg in support

Pre-commit git hook to check LATEX syntax.
lug in support

Shell script to update TEX Local User Group web
pages from the LUG database.

web

yacco2 in web

LR(1) compiler-compiler that emits literate grammars.

macros/latex/contrib/ebproof

TUGboat, Volume 36 (2015), No. 1 57

Book review: Algorithmic Barriers Falling:

P=NP?

David Walden

Donald E. Knuth and Edgar G. Daylight,
Algorithmic Barriers Falling: P=NP? Lonely
Scholar, 2014, 116 pp. Paperback, US$20.00.
ISBN 978-94-9138-604-8.

This is the second booklet-length interview of Donald
Knuth by Edgar Daylight (done in June 2014). (For
a review of the prior booklet, see http://tug.org/
TUGboat/tb34-3/tb108reviews-knuth.pdf.)

Daylight is on a mission to further his “under-
standing of computer science by analyzing and doc-
umenting its past” (http://tug.org/interviews/
daylight.html). To this end he has interviewed
several pioneers of computer science and published
the interviews (http://www.walden-family.com/
ieee/daylight-knuth.pdf). Also to this end, Day-
light and his editor Kurt De Grave have established
a small publishing company for Daylight’s work.

This second interview of Knuth moves back and
forth between discussion of the early days of com-
puter science and Knuth’s current feelings about
topics such as the writing of computing history and
whether P=NP.

As with the first Knuth–Daylight interview book-
let, this interview is interesting, easy to read, and
relevant to the world of TEX.

In chapter 1, Knuth mentions how in the 1960s
he decided to call the work he liked to do “analysis
of algorithms” and hints that Analysis of Algorithms

would have been a more appropriate name for his
series of books titled The Art of Computer Program-

ming.
In chapter 2, Knuth discusses his views on the

writing of computing history (and the writing of sci-
ence history more generally). He uses this discussion
to include something he left out of his 2014 Stanford
lecture titled “Let’s Not Dumb Down the History
of Computer Science” (https://www.youtube.com/
watch?v=gAXdDEQveKw), a presentation that caused
a lot of debate within the sigcis.org discussion
group of historians of computing. Knuth returns to

this topic again in chapter 6. (Chapter 2 also touches
on the development of TEX.)

Chapter 3, 4, 5, and 7 discuss various topics in
the early history of computer science.

Chapter 8 is about the development of TEX and
literate programming. Some parts of this are al-
ready familiar to those of us who have read about
Knuth’s creation of TEX, but it also emphasizes how
he moved from his original idea of trying “to express
letters mathematically by measuring photographic
images” (that didn’t work out well) to the idea of
“capturing the intelligence of design instead of the
outcome of the design.” He also explains the dou-
ble meaning of the word “strokes” in the dedication
of The METAFONTbook: “to Herman Zapf, whose
strokes are the best”; Zapf not only draws beautiful
strokes—he also stroked Knuth in the form of posi-
tive and negative critique. With regard to literate
programming, I didn’t previously know that Knuth
was partially influenced in the METAFONT creative
effort by a report by P.-A. de Marneffe titled Holon

programming: A survey.
Chapter 9 discusses the problem of whether or

not P=NP and Knuth’s current opinion that P does
equal NP. This chapter finishes with Knuth noting
that he will write no more published papers (only
books). He says his last paper was the one pub-
lished in TUGboat that was the transcript of his talk
on iTEX (ding) at the TEX Users Group 2010 an-
nual conference in San Francisco (http://tug.org/
TUGboat/tb31-2/tb98knut.pdf). He sees that 2010
humorous paper as the proper bookend for his first
paper, also humorous, published 50 years ago in Mad

Magazine.
The booklet also has a 116-element list of refer-

ences and a nice index.
I recommend this interview booklet to several

different classes of readers:

• Computing historians and students of comput-
ing history who want to read another first hand
account touching on the early days of computer
science, or who are interested in what an eminent
computer scientist says about writing computing
history.

• Historians and computing people who are con-
sidering taking advantage of the relative ease
with which one can today publish a monograph
with worldwide distribution (e.g., Amazon.com)
without involving the academic presses.

• And, of course, those of us who are interested
in all things Knuthian.

⋄ David Walden

http://www.walden-family.com/texland

Book review: Algorithmic Barriers Falling: P=NP?

58 TUGboat, Volume 36 (2015), No. 1

Book review: History of the

Linotype Company

Boris Veytsman

Frank Romano, History of the Linotype Company.
RIT Press, 2014. 480 pp. Softcover, US$39.99.
ISBN 978-1-933360-60-7.

Few inventions changed the cultural and political
landscape as profoundly as those involving cheap and
quick copying of words. Gutenberg’s movable type
made books available to multitudes of people with
enormous consequences for civilization. However,
manual composition was still too slow and expensive
to mass-produce cheap newspapers. The invention
of hot-metal typesetting by Ottmar Mergenthaler
and his contemporaries made printing much faster
and cheaper. It is difficult to fully quantify the
consequences since it coincided with the advent of
radio, and both these events had a similar effect: the
deep penetration of news into everyday life. However,
there is little doubt that newspapers and cheap books
were very important in the history of the last century.
For about one hundred years—until the advent of
digital typesetting—Linotype machines ruled the
world of mass-produced copy. While newspapers
were the first adopters of the new technology, many
others followed; as Frank Romano writes in his book,
during World War II every US warship larger than
cruiser class had a Linotype machine on board.

The Mergenthaler Linotype Company, estab-
lished in 1886 (as Mergenthaler Printing Company)
has a rich and interesting history. It included tu-
multuous arguments with the eponymous inventor,
lawsuits, patent fights, mergers, acquisitions—and
also technological innovations, hard workers, great
artists and daring visionaries. Besides development
and promotion of hot-metal typesetting, the company

created an enormous number of typefaces, pioneered
teletypesetting (again of huge importance for the
newspaper business), experimented with phototype-
setting and contributed to digital composition. The
experience of its engineers with precision mechanical
devices allowed the company to venture into other
areas, including the production of bombsights and
other armaments (especially during the wars).

Frank Romano, now an Emeritus Professor with
RIT, worked at Linotype for eight years. He has
written a brilliant book about the company—not a
dry list of milestones, but rather a work of love and
appreciation. The book includes, in excerpts or in
full, rare or previously unpublished documents, such
as the autobiography of Ottmar Mergenthaler, man-
uscripts, letters, earning reports, court filings, news-
paper articles, brochures, author’s own interviews,
and many others. The book is lavishly illustrated,
with hundreds of reproductions of samples, advertise-
ments, photographs, books and other materials that
Linotype published over 127 years of its existence.

Romano’s foremost interest is in the people at Lino-
type. The book has many vivid biographical sketches
of extraordinary individuals who worked for the com-
pany or otherwise influenced it: from Ottmar Mer-
genthaler himself to the reclusive investor Gurdon
Wattles (by the way, a role model for Warren Buffett).
The people described in the book do not appear as
cartoonish figures on a backdrop of Linotype’s his-
tory: Romano has a rare ability to portray all his
personages, even those mentioned only briefly, as
alive and real. The human side of the history is his
strongest feature.

Another interest for the author is evidently the
financial side of company activity: he writes about
its mergers, acquisitions and loans with attention
to detail. If one wants to know the net income of
the Mergenthaler Company in 1967 or how many

Boris Veytsman

TUGboat, Volume 36 (2015), No. 1 59

founders’ shares were issued at the company incor-
poration, the information can be found in the book.
The author also describes the lawsuits Linotype was
involved in, including those about font copyright,
which are still very relevant in the US.

The book devotes many pages to the influence
of the company on the art of typography. Romano
reproduces cover pages and spreads of the famous
Linotype manuals, which defined the trends for con-
temporary typesetting. He describes the huge work
the company did in the design of typefaces. Among
the people of Linotype described in the book are
Chauncey H. Griffin, Harry L. Cage, Paul A. Ben-
nett, Mike Parker, and many other figures in the
world of font design and typesetting.

Having worked at Linotype from 1959 to 1967,
from mail boy to assistant ad manager, Romano
devotes a chapter of his book to his personal remi-
niscences. It describes the life at the great company
in the Sixties with loving detail: from the quality of
food in the nearby restaurants to the generosity of
expense accounts to the typical day in the ad depart-
ment. This chapter is great reading for any lover of
history.

Romano also briefly touches on the history of
technology: hot-metal typesetting and other rele-
vant inventions, such as punch-cutting machines and
double-wedge spaceband. I wish, however, he had
been as detailed here as in other parts of his book. I
feel the book could have been improved by the inclu-
sion of historical drawings, e.g., from the company’s
patent applications.

The book has many useful appendices, including
a detailed index, lists of typefaces originated or used
at Linotype (both alphabetical and chronological),
a time table and a large bibliography. This makes

the book indispensable for amateur and professional
historians.

The book is designed by Marnie Soom and type-
set in New Caledonia and MetroNova. The fonts are
very legible, and the illustrations are excellent.

Despite all the above, I confess I have several
gripes with the book design and typesetting.

First, the paper size is 10.5′′ by 8.5′′. This wide
book is difficult to read except when sitting at a desk,
and even more difficult to leaf through. The book is
typeset in three columns with rather narrow margins.
More generous margins could have been used for the
notes, which are now put at the end of each chapter.

I also do not understand why the book is typeset
ragged right. Narrow unjustified columns produce a
strange look since the sizes of the gaps are visually
comparable to the column width. With the ragged
right margin, the indented first line of a paragraph
sometimes looks centered (an example of such a
paragraph can be found in an illustration above).
Interestingly enough, justification was one of the
crucial problems for the early Linotype machines,
solved only when the company bought John Rogers’s
firm with its patent for the double-wedge justifier. As
discussed in the book, before this purchase Linotype
Co. even tried to refuse to pay Mergenthaler his
royalties unless he invented a way to circumvent
this patent, arguing that his machine was useless
otherwise.

Last, but not least, it is not a good idea to break
the line between “Mr.” and the person’s last name,
as it is sometimes done in this book.

Despite these minor gripes it is a very good
book. I think it might be especially interesting for
a TEX audience. Some of the metaphors used in
the description of TEX’s algorithms come from the
world of hot-metal typesetting. It gives a different
perspective to read about the mechanical justifiers, or
the literal setting of the slug. Many digital fonts we
use now originated at Linotype, and it is fascinating
to see how they were created.

I also think this book is essential reading for
anybody interested in the history of typesetting and
fonts.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University,

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: History of the Linotype Company

60 TUGboat, Volume 36 (2015), No. 1

BachoTEX 2014 proceedings

The BachoTEX 2014 proceedings was published by
GUST, the Polish language TEX user group (gust.

org.pl). The web page for the conference program
is gust.org.pl/bachotex/2014/program.

Jean-Michel Hufflen, What can typography
gain from ePub?; pp. 5–12

We show that ePub — a well-known format for
electronic books — has integrated many features re-
lated to nice typography in comparison with other
formats such as HTML5. However, due to their
respective designs, ePub does not reach the same
quality as (LA)TEX, even if some effects are easier to
implement. We explain why.

Jean-Michel Hufflen, Managing name conflicts
and aliasing with MlBibTEX; pp. 13–16

When several bibliography database (.bib) files
are used to build a LATEX document’s references,
BibTEX signals an error if a bibliographical key is
used more than once. A possible solution consists
of renaming bibliographical entries, but MlBibTEX
now provides a cleaner way, by means of namespaces
associated with .bib files. Symmetrically, we can
now express that a unique bibliographical item is
referred by several keys. These new features are
put into action by means of both MlBibTEX and an
additional LATEX 2ε package.

Jean-Michel Hufflen, Musical symbols in
the digital age; pp. 17–24

First, we briefly review the musical symbols
available in Unicode and MusiXTEX. Then we show
why the definition of such symbols is difficult if we
aim to express the whole information included in a
musical score.

Taco Hoekwater, MetaPost development
update; pp. 25–26

MetaPost 1.9 enabled the decimal arbitrary
precision system. Using that as an example, adding
the binary arbitrary precision system was a simple
operation. What this means is that MetaPost 2.0 is
finally finished. A momentous occasion for me, but
it is also the proper moment to call it quits. I have
no plans for further developments to MetaPost, nor
does it seem even remotely likely that I would be
able to find the time to implement any such even if
I did come up with something. This will be my final
MetaPost presentation as the active maintainer. The
development of MetaPost will continue with Luigi
Scarso as the primary maintainer.

Taco Hoekwater, Lua & TEX tokens; p. 27
LuaTEX has had a token Lua library since the

early beginnings, but it was more a proof of concept,
and has never worked really well at that. This talk
presents a new, better interface between Lua code
and the TEX language parsing.

Przemysław Scherwentke, Trup w każej
szafie (o książce: LATEX dla matematyków)
[A skeleton in every closet (a book review: LATEX
for Mathematicians)]; pp. 28–30

The book presents the basics of typesetting with
LATEX for lay people proudly called mathematicians.
Its positive side is that basic packages useful for the
daily tasks are presented, particularly those for type-
setting tables, pictures and mathematical formulas.
Unfortunately over and over again this book makes
the impression of being written by lay people. Truths
are mixed with semi-truths and false statements, and
a good part of the presented examples defies the rules
of proper typesetting. The article (review) lists the
most notable errors along with correction propos-
als, and compares each to a version from a different
manual. There are also a few suggestions as to what
should have been given but was omitted from nearly
300 pages of the book.

Piotr Bolek, Maria Bolek, and Mikołaj

Topicha-Dolny, Technika i estetyka książki
elektronicznej [The technology and aesthetics
of electronic books]; pp. 31–38

What are e-books? Classification of e-books;
Formats of e-books; Text formatting in e-books; De-
vices and software for e-book reading vs. aesthetic
and technical aspects; Paging and hyphenation; Ty-
pography and graphics; Interaction, animation and
multimedia; Practical examples.

Piotr Bolek, Używanie fontów systemowych
w TEXu w różnych systemach operacyjnych
[Using system fonts with TEX in various
operating systems]; pp. 39–42

A presentation for beginners and medium ad-
vanced users. The aim is to give simple prescriptions
on how to use the fonts given with the operating
system or other OTF and TTF fonts employing the fa-
cilities available with the modern implementations of
TEX (X ETEX, LuaTEX). Using alternative glyphs and
activating OTF features with ConTEXt and LATEX.

Kees van der Laan, PSlib.eps Catalogue,
preliminary and abridged version; pp. 43–95

A selection of PostScript definitions collected in
my PSlib.eps library and documented as an e-book

BachoTEX 2014 proceedings

TUGboat, Volume 36 (2015), No. 1 61

catalogue is presented. Now and then variant pic-
tures have been included from pic.dat which comes
with Blue.tex. Old Metafont code has been included
which may be useful for MetaPost programmers.
Variants of pictures enriched by postprocessing in
Photoshop show other possibilities. Escher’s dough-
nut is a teaser which has to be done in MetaPost.
Along with PSlib.eps is the file PDFsfromPSlib,
which contains the pictures in .pdf format. The
complete PSlib.eps, PDFsfromPSlib as well as the
catalogue as an e-book, will be released on occasion
of NTG’s 25th lustrum which will be celebrated in
the fall of 2014, on www.ntg.nl. A prerelease will be
offered to GUST’s file server. The (static) library for
TEX standalone pictures, pic.dat, packaged with
Blue.tex, will be redistributed as well.

Hans Hagen, Lua in MetaPost; pp. 96–104
For some years I have been wondering how it

would be to escape to Lua inside MetaPost, or in
practice, in MPlib in LuaTEX. The idea is simple:
embed Lua code in a MetaPost file that gets run
as soon as it’s seen. In case you wonder why using
Lua code makes sense, imagine generating graphics
using external data. The capabilities in Lua to deal
with that are more flexible and advanced than in
MetaPost. Of course we could generate a MetaPost
definition of a graphic from data but often it makes
more sense to do the reverse. I finally found time
and reason to look into this and in this article I will
describe how it’s done.

Hans Hagen, LuaTEX 0.79; pp. 105–108
Around version 0.50 the general picture of Lua-

TEX became more or less clear. Between versions
0.50 and 0.75 the program reached a level that made
it possible to use it for production. Currently we’re
moving toward version 0.80. This version has some
new features and existing features have been im-
proved. The backend code is somewhat better sepa-
rated due to a partial re-implementation of expansion.
We’re stepwise making the code base leaner, meaner
and cleaner (again as a by-product of a critical edi-
tion project). What started as a transition from
WEB to readable CWEB (an effort not to be under-
estimated) hopefully will become a coherent set of
files with proper documentation. As there is still a
long list of items to do; it will take us a few years to
get there, but we’re optimistic about the end goals.

In this talk I will discuss the work that has been
done in the last year and present some of our plans
for future versions.

Paweł Łupkowski, Online LATEX editors and
other resources; pp. 109–112

(Reprinted in this issue of TUGboat.)

Luigi Scarso, Experiments with OpenMP and
LuaTEX; pp. 113–138

This paper describes some experimental paral-
lel functions implemented using the OpenMP API.
A parallel version of sort is shown and discussed,
and also some results about performance and effi-
ciency.

Krzysztof Pszczoła, Książka papierowa
na rynku zdominowanym przez publikacje
elektroniczne: mniej powinno znaczyć lepiej
[Paper books on the market dominated by
electronic publications: fewer should mean better];
pp. 139–142

I am proposing a different viewpoint on the
supposed evolution of the trends in connection with
electronic and paper publications. The point I will
make is that proliferation of electronic publications
will enforce a change the way paper publications will
evolve: there will be fewer of them, better edited
and visually refined and, perhaps, they will bear less
similarity to the books as we know them now. I
envisage that, contrary to the prevailing belief that
proliferation of electronic publications is a threat for
people preparing paper publications (as less books
will be printed), this would mean an opportunity
for them (because paper publications will be better
prepared and so require more work).

I will present possible business models which
editors could employ when delivering both paper
and electronic versions of the same content. As a
brief digression, I will present a short elaboration on
the possible physical forms “new books” might have
(e.g., folder, leporello (concertina), or poster).

−∗ − ∗ − ∗−

The following presentations do not appear as arti-
cles in the proceedings, but have slides linked from
the on-line program. All the slides are located on
this page: www.gust.org.pl/bachotex/2014-pl/

presentations/; however, there are no links from
this page, so the name of the PDF file as shown below
must be entered as part of the URL.

BachoTEX 2014 proceedings

62 TUGboat, Volume 36 (2015), No. 1

Patrick Gundlach, Using LuaTEX the hard
way: How to use the internal node structure
of LuaTEX to create a PDF document without
using \backslashes

With LuaTEX it is possible to access the internal
data structures (so-called “node lists”) that TEX cre-
ates after parsing the user’s input. You can analyze
and modify the data before it gets written to the PDF

file. It is even possible to programmatically create
your own node lists and render these in the output
file. One can also create a node list and instruct TEX
to break the list into lines, hyphenate it or insert
ligatures.

This presentation gives an introduction to how
node lists work. The lua-visual-debug package for
LuaTEX serves as an example for using the necessary
callbacks to analyze the node lists and to manipu-
late them. A simple node list creator shows how
to construct an hbox and use TEX’s line breaking
algorithm to get nicely formatted text.

gundlach-1-b2014.pdf

Patrick Gundlach, speedata Publisher: Create
complex documents from databases

TEX and LATEX are well suited for many differ-
ent kinds of documents, not only when formulas are
needed. Once you need complex tables and lists, or
an index or table of contents or when you need auto-
matically correct cross references and bibliographies,
there are few programs better suited for typesetting
tasks. But there are remain many cases where LATEX
has its difficulties. For example: complex tables
that are broken across multiple pages with changing
headers and footers and running sums; good looking
paragraphs with absolutely no overfull boxes; type-
setting on a grid; free (exact) positioning of objects
on a page or on a page grid; using arbitrary fonts;
automatically adjusting paragraph shape based on
image shapes (text flows around images); using text
containers with overflow; safe usage of escaping char-
acters/catcodes; automatic selection of master pages;
and more.

gundlach-2-b2014.pdf

Hans Hagen, What makes using TEX and
MetaPost interesting

While working with TEX and MetaPost I often
run into interesting situations. Sometimes they result
in special styles (that probably go unnoticed), they
result in additional features (that probably never get
used because we forget about them), and they could
also result in tracing features (which probably seldom
get used). I use this opportunity to discuss a few
of them that came up last year: realtime metafonts

(or: a way out of lack of symbols); juggling nodes
(or: pseudo-extensions to Lua/TEX); surprising side
effects of hashing (or: how LuaJITTEX can be slower
than LuaTEX); generating graphics (or: visualizing
data).

bachotex-2014-metapost.pdf

Bogusław Jackowski, Piotr Strzelczyk, and
Piotr Pianowski, On the progress of the TEX
Gyre Math project: TG Schola Math

Three fonts — TG Pagella Math, TG Termes
Math, and TG Bonum Math — have been released
so far within the frame of the TEX Gyre Math Fonts
project. We’ll present the next font, i.e., TEX Gyre
Schola Math which completes the TEX Gyre Math
Font project. Of course, the maintenance of the TEX
Gyre collection will continue.

tgm-final03web.pdf

Andrzej Tomaszewski, Cuneiform script —
a phenomenon of civilization

I will talk about the evolution of this form of
writing from picture to alphabetic forms. About writ-
ers, written document types and writing materials
used by the people of Sumer, Babylon and Assyria.

pismo-klinowe.pdf

Andrzej Tomaszewski, Absolutely
non-computer and completely not programmable
new book forms

I will talk about the quest for new and uncon-
ventional forms of books, created chiefly in designer
circles connected to artistic books and the new world
trend called bookart and amongst creators of the so-
called liberature. It will be an apology of Krzysztof
Pszczoła’s prophecies preaching the development of
printed book forms.

formy-ksiazki.pdf

Ulrik Vieth, An improvised talk about
the state of OpenType math fonts

In this talk, we review the state of OpenType
math fonts which have been under development in
the last few years. We discuss how to evaluate or
test the quality of the design and implementation
of these fonts. While a lot of progress has been
made providing first releases of several new fonts, we
suggest areas where additional work may be needed
for improving and fine-tuning these fonts to reach
production quality.

conf-talk-ot-math-state.pdf

[Received from Jerzy Ludwichowski and
Tomasz Przechlewski.]

BachoTEX 2014 proceedings

TUGboat, Volume 36 (2015), No. 1 63

Die TEXnische Komödie 4/2014–1/2015

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). (Non-technical items are omitted.)

Die TEXnische Komödie 4/2014

Harald Lichtenstein, Mit LATEX-Bordmitteln
ein eigenes Verzeichnis definieren [Defining one’s
own lists of document pieces with LATEX’s built-in
means]; pp. 21–24

A few LATEX commands are sufficient to define
one’s own lists similar to the table of contents or the
list of figures. This article shows how.

Jens Knispel, LATEX für Psychologie [LATEX for
psychology]; pp. 25–29

The goal of this article is to show the advantages
of LATEX concerning scientific papers in psychology.
Utilizing comparisons with MS Word, we discuss the
handling of layout, tables, graphics and references
as well as templates for scientific papers.

Clemens Niederberger, LATEX und Chemie
[LATEX and chemistry]; pp. 30–45

According to the author’s subjective sense the
number of LATEX users among chemists is (very)
slowly increasing. The may be due to the fact that us-
ing packages such as chemfig, mhchem, chemmacros,
chemnum, modiagram, endiagram and bohr a chemist
has numerous options to typeset his papers. This
article gives an overview of the most important pack-
ages and briefly describes their functionality.

Uwe Bieling, Erweiterung des Artikels
«Briefumschlädge beschriften und frankieren»
[Extension of the article “How to stamp and print
envelopes with LATEX”]; pp. 46–54

This article shows how envelopes can be printed
and stamped for serialized letters. It is an extension
of the article published in DTK 3/2012, p. 50.

Herbert Voß, Symbole [Symbols]; pp. 54–63
The fontawesome package is an interface for the

symbol font of the same name, which is only available
in OpenType format and thus can only be used with
X ELATEX or LuaLATEX. The glyphs of the font are
easily accessible via Xavier Danaux’s fontawesome
package.

Petra Rübe-Pugliese, CTAN sucht Mitstreiter
[CTAN seeks supporters]; pp. 64–67

The CTAN world and the underlying workflows
are no mystery anymore. One or two additional
supporters would greatly ease the current team’s
workload and improve the reliability of the system.

Gerd Neugebauer, CTAN spricht Deutsch:
Sprachunterstützung für das Web-Portal [CTAN

speaks German: Language support for the web
portal]; pp. 67–72

[Also published in TUGboat 35:3.]

Die TEXnische Komödie 1/2015

Thomas Hilarius Meyer, TEXnik im
Wolkenkuckucksheim? Webbasierte LATEX-Editoren
in Überblick [TEXnic in Cloud-Cuckoo-Land? An
overview of web-based LATEX editors]; pp. 10–17

The big hype about cloud computing seems to
be over but today browser-based LATEX editors al-
low more or less convenient editing of documents
independent of time and space—and a local TEX
installation. Several platforms are introduced here.

Christine Römer, Von LATEX mit LATEX2RTF zu
EPUB [From LATEX to EPUB with LATEX2RTF];
pp. 18–25

This article shows how one can convert LATEX
to EPUB based on LATEX2RTF and a RTF2EPUB

converter. In addition the original TEX can be con-
verted to PDF with the standard TEX workflow. This
workflow is now much easier than using Docbook.

Uwe Ziegenhagen, Größere Dokumente mit
LATEX erstellen [Creating larger documents with
LATEX]; pp. 25–29

LATEX is well-known for its capability to handle
larger documents of all kinds, since the underlying
platform is very stable. But how does one organize a
project with hundreds of pages? From the experience
of a PhD-thesis, I want to explain how the work can
be simplified.

Uwe Ziegenhagen, Die neue scrletter

Umgebung in KOMA-Script [The new scrletter

environment in KOMA-Script]; pp. 29–31
Since version 3.15, KOMA-Script not only offers

letter functionality in the form of its own class, but
also as a package. In this article I briefly explain
how this feature can be used.

Rolf Niepraschk and Herbert Voß, Ausgabe
einer Liste der installierten Pakete unter TEXLive
[Printing the list of installed packages under
TEX Live]; pp. 32–33

Sometime it is desirable to get an overview of all
installed packages of a TeX installation. For TeX Live
this is possible using tlmgr info –only-installed.
The generated list, however, is not given in a for-
mat suitable for LATEX. Using a short script one
can transform the provided data and execute the
corresponding LATEX run.

[Received from Herbert Voß.]

Die TEXnische Komödie 4/2014–1/2015

64 TUGboat, Volume 36 (2015), No. 1

TUGBusiness

TUG 2015 election report

Nominations for TUG President and the Board of
Directors in 2015 have been received and validated.

For President, two individuals have been nom-
inated: Kaveh Bazargan and Jim Hefferon. Thus,
an election ballot is required, in accordance with the
TUG election procedures (tug.org/elecproc.html),
and has been mailed. This year, voting online is also
allowed, through the TUG members area, https:
//www.tug.org/members.

For the Board of Directors, the following indi-
viduals were nominated:
Pavneet Arora, Barbara Beeton, Karl Berry,
Susan DeMeritt, Michael Doob, Cheryl Ponchin,
Norbert Preining, and Boris Veytsman.

As there were not more Board nominations than
open positions, all these nominees are duly elected
for the usual four-year term. Thanks to all for their
willingness to serve.

Terms for both President and members of the
Board of Directors will begin with the Annual Meet-
ing. Congratulations to all.

Board members Taco Hoekwater, Ross Moore,
Steve Peter, and Philip Taylor have decided to step
down at the end of this term. On behalf of the Board,
I wish to thank them for their service, and for their
continued participation until the Annual Meeting.

Statements for all the candidates are appended,
both for President (order determined by lot) and
for the Board (in alphabetical order). They are
also available online at the url below, along with
announcements and results of previous elections.

⋄ Kaja Christiansen
for the Elections Committee
http://tug.org/election

Kaveh Bazargan

(Candidate for TUG President.)

About me

I fell in love with TEX in 1983, after discovering Don
Knuth’s “TEX and MetaFont”. I was the first TEX
user in Imperial College, London, and the first to
submit a PhD written in TEX. In 1988 I set up Focal
Image Ltd (now River Valley Technologies) to deliver

TEX typesetting to publishers. 25 years on, we are
one of few typesetters paginating exclusively with
TEX. I feel I am well connected in the publishing
industry and want to use that influence to promote
TUG.

How I have supported TUG

• Hosted and funded two TUG meetings and do-
nated back to TUG much of the registration
fees.

• Personally recorded 7 TUG meetings (and 5 local
TUG meetings) and arranged post-processing
and hosting, gratis—TUG 2014 is in progress.
The recordings have generated 100,000s of views
on zeeba.tv.

• Since 2004, I have worked on a TEX GUI to at-
tract non-TEXies, including funding a free open
version.

My plans for the future of TUG

Were I to be honored with the TUG presidency, here
are some suggestions for building on TUG’s outstand-
ing reputation:

Increase institutional memberships and revenue

• Attract more publishers and typesetters to be
members. Currently Springer is the only major
publisher who is an institutional member.

• Broader pricing options: Reduce the entry to
institutional membership, but increase the top
rate, possibly linked to turnover.

• Offer a prominent badge for their web sites,
e.g. “Supporting TUG” for institutional mem-
bers. This will help publishers win support of
TEX authors.

Educate the publishing industry

• TEX is a headache for publishers and typesetters.
Sadly, the “industry standard” for handling TEX
submissions is to convert them to Word! TUG

can play a part in organizing TEX workshops
which are badly needed.

Attract younger members

• Update the TUG home page with a modern
“responsive” theme, and extend the current func-
tionality.

• Add a modern front-end to CTAN, with thumb-
nails for each style file, graphical browsing, etc.

• Commission page designers to create non-tech-
nical templates for brochures etc.

Increase TUG meeting attendance

• Include sessions aimed at the publishing indus-
try.

• Set up one-day conferences for publishers, through
TUG, or via local TUG groups.

TUG 2015 election report

TUGboat, Volume 36 (2015), No. 1 65

• Stream conferences live. Ironically this seems
to increase attendance at conferences. (River
Valley can offer this through Zeeba.tv.)

Jim Hefferon

(Candidate for TUG President.)

Statement: TEX and friends are widely used today,
part of the infrastructure of mathematics and science
around the world. But we have challenges. Things
change so quickly in this area and we must be sure
to keep our tools sharp, so that they still do the job
that users need the tools to do.

TUG must continue to try to understand the
needs of our members and of the entire community,
and to see how we can help with those needs. We
must promote the TEX suite in wider areas and to
a new generation of users. And, crucially, we must
take what steps we can to address the decline in our
organization’s membership.

As in the past, key is coordinating with our
partners in other user groups around the world, con-
tinuing to hold conferences and to publish TUGboat,
continuing to sponsor development including that of
TEX Live, and continuing to help fund new projects
where feasible. But we must in addition try to find
new ways to make TEX and friends more visible, and
to make TUG membership as attractive as possible.
Biography: I am a mathematics professor at Saint
Michael’s College in the US. I first extensively used
TEX in the early 90s when I wrote a freely-available
textbook. Some people may know me from my time
working on CTAN. I am also a long-time TUG Board
member and am now Vice President.

Pavneet Arora

I design and engineer control and automation
systems for residential and commercial projects such
as lighting, audio/video, HVAC, security.

One great shortcoming in such projects is the
lack of adequate documentation—caused in no small
part because few systematic methods exist with
which to capture either the design or the implemen-
tation specific information. As such, my current
research interests involve the specification driven
documentation of signals using the TEX family of

tools. I firmly believe that TEX toolsets distinguish
themselves not only for the beauty of the output
they produce, but also by the ease with which they
integrate into modern documentation workflows as
well as their ability to handle the demands placed
upon them.

I am also passionate about mathematical liter-
acy in young children, especially in cases where these
students are shunted out of the mainstay curriculum,
and continue to explore the development of dynami-
cally generated math worksheets using TEX to aid
in their learning.

Barbara Beeton

Biography: For TEX and the TEX Users Group:

• charter member of the TEX Users Group; charter
member of the TUG Board of Directors;

• TUGboat production staff since 1980, Editor
since 1983;

• Don Knuth’s “TEX entomologist”, i.e., bug col-
lector, through 2014;

• TUG committees: publications, bylaws, elec-
tions;

• liaison from Board to Knuth Scholarship Com-
mittee 1991–1992.

Employed by the American Mathematical Society:

• Staff Specialist for Composition Systems; in-
volved with typesetting of mathematical texts
since 1973; assisted in initial installation of TEX
at AMS in 1979; implemented the first AMS

document styles; created the map and ligature
structure for AMS cyrillic fonts.

• Standards organizations: active 1986–1997 in:
ANSI X3V1 (Text processing: Office & publish-
ing systems), ISO/IEC JTC1/SC18/WG8 (Doc-
ument description and processing languages);
developing the standard ISO/IEC 9541:1991 In-
formation technology—Font information inter-
change.

• AFII (Association for Font Information Inter-
change): Board of Directors, Secretary 1988–
1996.

• STIX representative to the Unicode Technical
Committee for adoption of additional math sym-
bols, 1998–2012, with continuing informal con-
nections.

TUG 2015 election report

66 TUGboat, Volume 36 (2015), No. 1

Statement: Once again I’ve decided it’s not quite yet
time to retire. TEX continues to provide interesting
problems to work on, and TUG still provides a focus
for dedicated TEX users.

I believe there’s still a place in the TUG ranks
for one of the “old guard”, to provide institutional
memory when it’s appropriate, and cheer on the
younger folks who are trying new things.

With support from the members of this won-
derful community, I’d like to continue for four more
years.

Karl Berry

Biography: I served as TUG president from 2003–
2011 and was a board member for two terms prior
to that, and one term subsequently. I am running
again for a position on the board.

I have been on the TUG technical council for
many years, and co-sponsored the creation of the
TEX Development Fund in 2002. I’m one of the
primary system administrators and webmasters for
the TUG servers, and the production manager for
our journal TUGboat.

On the development side, I’m currently the edi-
tor of TEX Live, the largest free software TEX distri-
bution, and thus coordinate with many other TEX
projects around the world, such as CTAN, LATEX, and
pdfTEX. I developed and still (co-)maintain Web2c
(Unix TEX) and its basic library Kpathsea, Eplain (a
macro package extending plain TEX), GNU Texinfo,
and other projects. I am also a co-author of TEX for

the Impatient, an early comprehensive book on plain
TEX, now freely available. I first encountered and
installed TEX in 1982, as a college undergraduate.
Statement: I believe TUG can best serve its members
and the general TEX community by working in part-
nership with the other TEX user groups worldwide,
and sponsoring projects and conferences that will
increase interest in and use of TEX. I’ve been fortu-
nate to be able to work on TUG and TEX activities
the past several years, and plan to continue doing so
if re-elected.

Susan DeMeritt

My name is Susan DeMeritt, I live in Lakeside, Cali-
fornia, a suburb of San Diego.

I have been employed by the Center for Commu-
nications Research, La Jolla, in San Diego, California
for almost 22 years now as the only employee in the
Publications Department; I perform the technical
typing duties required as well as serving as a resource
for other employees with questions regarding the us-
age of LATEX. I started the position learning TEX
and am now working with LATEX2ε. I continue to
enjoy using LATEX2ε to typeset mathematical and
scientific papers; there is always something new to
learn and always another challenge to figure out.

I have been a member of the TEX Users Group
since 1989. I have been a member of the Board of Di-
rectors since March of 1998, and Secretary since 2001.
I really enjoy being part of the Board of Directors of
the TEX Users Group.

Michael Doob

I have been using TEX for more than a quarter-
century. In 1984 I wrote one of the first books in pure
mathematics to be printed using TEX and camera-
ready copy. In those pre-laser printer days, the out-
put used a dot-matrix printer (at a glorious 240dpi
using my home-written device driver). It was enti-
tled Recent Results in the Theory of Graph Spectra,
and the book, the printer, and the device driver have
all happily disappeared in the mists of bygone days.

TEX, on the other hand, has had an amazing
evolution. It has not only developed as an elegant
piece of software, but its syntax has become a lingua

franca for many scientific fields. The basic engine has
driven many applications that have revolutionized
mathematical publishing among other areas. Watch-
ing these changes has been exciting and exhilarating.
These applications continue to evolve and set new
standards in many unexpected ways. For example,
beamer has become the standard for many types of
mathematical presentations.

The TEX Users Group has done a wonderful job
of supporting the variations on the theme of TEX:
there are useful annual meetings with interesting
presentations, there are the publications TUGboat

and PracTEX which appeal to both novice and ex-
pert, and there is support on the web using CTAN

in general and TEX Live in particular. These efforts
are spearheaded by the Board of Directors. I believe
I can bring to this Board a background that will

TUG 2015 election report

TUGboat, Volume 36 (2015), No. 1 67

facilitate its efforts. I have experience as a mathe-
matician, as the founder of the TEX publishing office
for the Canadian Mathematical Society, and as a for-
mer Board member. I would appreciate the support
of you, the members, and, if elected, will give my
best efforts to encourage the wider and more varied
uses of TEX.

Cheryl Ponchin

My name is Cheryl Ponchin, I am employed at the
Center for Communications Research in Princeton.
I have been typesetting mathematical papers using
(LA)TEX since 1987.

I have been a member of the TEX Users Group
since 1989 and a member of the TUG Board since
March of 1998. I have done many workshops for
TUG as well as at several universities. I really enjoy
being part of TUG.

Norbert Preining

Biography: I am a mathematician and computer sci-
entist living and working wherever I find a job at a
university. After my studies at the Vienna Univer-
sity of Technology, I moved to the Tuscany area of
Italy for a Marie Curie Fellowship. After another
intermezzo in Vienna I have (temporarily?) settled
in Japan since 2009, currently working at the Japan
Advanced Institute of Science and Technology, work-
ing on intermediate logics and algebraic specification
languages.

After years of being a simple user of (LA)TEX, I
first started contributing to TEX Live by compiling
some binaries in 2001. In 2005, I started working on
packaging TEX Live for Debian, which has developed
into the standard TEX package for Debian and its
derivatives. During EuroBachoTEX 2007, I got (by
chance) involved in the development of TEX Live
itself, which is now the core of my contribution to
the TEX world. Up till now I am continuing with
both these efforts.

Furthermore, with my move to Japan I got inter-
ested in its typographic tradition and support in TEX.
I am working with the local TEX users to improve

overall Japanese support in TEX (Live). In this way
we managed to bring the TUG 2013 conference for
the first time to Japan.

More details concerning my involvement in TEX,
and lots of anecdotes, can be found at the TUG

interview corner and my web site, preining.info.
Statement: After many years in the active devel-
opment, I want to take up more responsibility by
becoming a board member of TUG. In my eyes, TUG

is the most influential user group, and its involvement
in the development, promotion, and support of the
whole TEX micro-cosmos is of essential importance
for the future survival.

The challenges I see for TUG in the next years
are the increase of members and funds, and technical
improvement of our software. Promoting TEX as a
(self-)publishing tool also outside the usual math/
CS environment will increase the acceptance of TEX,
and by this will hopefully bring more members to
TUG.

Boris Veytsman

Biography: I was born in 1964 in Ukraine and have
a degree in Theoretical Physics. I worked for var-
ious scientific and high-tech employers in Ukraine
and US: universities, research companies, govern-
ment contractors, etc. I participated in many differ-
ent projects: from the design of industrial vacuum
cleaners to the research in the thermodynamics of
complex systems to the development of Internet in
space to the design and implementation of air traffic
surveillance system to medico-biological research—
as well as teaching and writing. My CV is available
at http://borisv.lk.net/cv/cv.html.

I have been using TEX since 1994 and have been
a TEX consultant since 2005. I published a number
of packages on CTAN and papers in TUGboat &
Prac. TEX J.
Statement: As a TUG Board member I am interested
in making TUG more useful for the members and
attracting new members. We need this to ensure the
long term relevance of our group for the community.

I arranged some discounts for TUG members
from publishers and other vendors. I convinced
Google to join TUG as an institutional member. Re-
cently I helped to organize a membership drive for
TUG.

If the TUG community allows me to serve this
next term, I am going to continue this activity.

TUG 2015 election report

68 TUGboat, Volume 36 (2015), No. 1

TUG financial statements for 2014

Karl Berry, TUG treasurer

The financial statements for 2014 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was down about 3% in
2014 compared to 2013. (TUG began a member-
ship campaign to try to attract new members, http:
//tug.org/membership.) Product sales were nearly
doubled, primarily due to a single large Lucida site
license. Contributions were slightly down. The an-
nual conference had a large margin, due to better-
than-budgeted attendance. Interest and advertising
income were slightly down. Overall, 2014 income
was up 7%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

Payroll, TUGboat, DVD production, postage, and
other office overhead continue to be the major ex-
pense items. Most were less than budgeted; overall,
2014 COGS was down about 10% from 2013, while
general expenses were down slightly.

The “prior year adjustment” compensates for
estimates made in closing the books for the prior
year; in 2014 the total adjustment was positive: $423.

The bottom line for 2014 was positive: almost
exactly $14,000.

Balance sheet highlights

TUG’s end-of-year asset total is up around $17,000
(8%) in 2014 compared to 2013.

The Committed Funds are administered by TUG

specifically for designated projects: LATEX, CTAN,
the TEX development fund, and others. Incoming
donations have been allocated accordingly and are
disbursed as the projects progress. TUG charges no
overhead for administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the cur-
rent year (and beyond). Most of this liability (the
2014 portion) was converted into regular Membership
Dues in January of 2014.

The payroll liabilities are for 2014 state and
federal taxes due January 15, 2015.

Summary

TUG remains financially solid as we enter another
year.

TUG 12/31/2014 (vs. 2013) Revenue, Expense

Jan - Dec 14 Jan - Dec 13

Ordinary Income/Expense

Income

Membership Dues 91,785 94,800

Product Sales 13,529 7,498

Contributions Income 8,776 9,126

Annual Conference 8,720

Interest Income 425 625

Advertising Income 390 410

Services Income 671 3,493

Total Income 124,296 115,952

Cost of Goods Sold

Membership Drive 256

TUGboat Prod/Mailing 18,703 24,850

Software Production/Mailing 3,076 3,038

Postage/Delivery - Members 2,294 2,923

Lucida Sales Accrual B&H 5,993 2,875

Member Renewal 406 417

Total COGS 30,728 34,103

Gross Profit 93,568 81,849

Expense

Contributions made by TUG 2,000 3,324

Office Overhead 13,134 12,121

Payroll Exp 64,752 64,486

Interest Expense 94

Total Expense 79,886 80,025

Net Ordinary Income 13,682 1,824

Other Income/Expense

Prior year adjust 423 194

Other Expenses 106

Net Other Income 317 194

Net Income 13,999 2,018

TUG 12/31/2014 (vs. 2013) Balance Sheet

Dec 31, 14 Dec 31, 13

ASSETS

Current Assets

Total Checking/Savings 201,400 186,696

Accounts Receivable 2,655 180

Total Current Assets 204,055 186,876

TOTAL ASSETS 204,055 186,876

LIABILITIES & EQUITY

Liabilities

Committed Funds 30,838 27,711

Administrative Services 1,920 4,879

Deferred contributions 45 90

Prepaid member income 7,610 4,550

Payroll Liabilities 1,094 1,100

Total Current Liabilities 41,507 38,330

TOTAL LIABILITIES 41,507 38,330

Equity

Unrestricted 148,546 146,529

Net Income 14,002 2,017

Total Equity 162,548 148,546

TOTAL LIABILITIES & EQUITY 204,055 186,876

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Marquette University, Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

River Valley Technologies, Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

University of Wisconsin, Biostatistics &

Medical Informatics, Madison, Wisconsin

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 36 (2015), No. 1 69

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in: the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs.

Call or email to discuss your project or visit my
website for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sievers, Martin

Im Alten Garten 5
54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents. From setting up
entire book projects to last-minute help, from creating
individual templates, packages and citation styles
(BibTEX, biblatex) to typesetting your math, tables
or graphics— just contact me with information on
your project.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,

70 TUGboat, Volume 36 (2015), No. 1

Sofka, Michael (cont’d)

newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, C, C++ and other languages; Writing and
customizing macro packages in TEX or LATEX;
Generating custom output in PDF, HTML and XML;
Data format conversion; Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions
and much more. I have about eighteen years of
experience in TEX and three decades of experience
in teaching & training. I have authored several
packages on CTAN, published papers in TEX related
journals, and conducted several workshops on TEX
and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

TUG membership drive

throughout 2015
[invite friends, win prizes [

http://tug.org/membership

The 36th Annual Meeting of the TEX Users Group

July 20–22, 2015

Welcome Hotel

Darmstadt, Germany

http://tug.org/tug2015 tug2015@tug.org

April 10—bursary application deadline

May 1—presentation proposal deadline

May 15—early bird registration deadline

June 1—preprint submission deadline

July 20–22—conference

July 31—deadline for final papers for proceedings

Sponsored by the TEX Users Group and DANTE e.V.

2015

Apr 10 TUG2015 deadline for bursary
applications. tug.org/tug2015

Apr 16 – 19 DANTE Frühjahrstagung and

52nd meeting, Stralsund, Germany.
www.dante.de/events.html

Apr 17 – 19 Crafting Type introductory type design
workshop, Lesley University, Boston.
craftingtype.com

Apr 29 –
May 3

BachoTEX2015:

23rd BachoTEX Conference, “Various
faces of typography”. Bachotek, Poland.
www.gust.org.pl/bachotex/2015

Apr 30 –
May 1

TYPO San Francisco,
Yerba Buena Center for the Arts,
San Francisco, California.
typotalks.com/sanfrancisco

May 2 – 3 Paul Moxon—Vandercook Workshop,
Museum of Printing, Andover, Mass.
museumofprinting.org/txp/events2

May 11 TUG2015 deadline for presentation
proposals. tug.org/tug2015

May 11 TUG2015 deadline for early bird
registration. tug.org/tug2015

May 21 – 23 TYPO Berlin 2015, “Character”,
Berlin, Germany. typotalks.com/berlin

Jun 1 TUG2015 deadline for preprints for
printed program. tug.org/tug2015

Jun 11 – 13 Ladies of Letterpress, “Type
on the Cob”, Mt. Pleasant, Iowa.
www.letterpressconference.com

Jun 29 –
Jul 3

Digital Humanities 2015, Alliance of
Digital Humanities Organizations,
“Global Digital Humanities”,
Sydney, Australia. dh2015.org

Jun 30 TUG2015 deadline for discounted hotel
reservations. tug.org/tug2015

Jul 7 – 10 SHARP 2015, “The Generation and
Regeneration of Books”. Society for the
History of Authorship, Reading &
Publishing, Longueuil/Montreal, Canada,
www.sharpweb.org

72 TUGboat, Volume 36 (2015), No. 1

Calendar

TUG2015

Darmstadt, Germany.

Jul 20 – 22 The 36th annual meeting of the
TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2015

Jul 31 TUGboat 36:2, submission deadline
(proceedings issue).

Aug 9 – 13 SIGGRAPH 2015, “Xroads of Discovery”,
Los Angeles, California.
s2015.siggraph.org

Aug 9 – 14 Balisage: The Markup Conference,
Washington, DC. www.balisage.net

Aug 12 – 16 TypeCon 2015: “Condensed”,
Denver, Colorado. typecon.com

Aug 24 – 28 SHARP 2015, Society for the History of
Authorship, Reading & Publishing,
Jinan, Shandong Province, China,
www.sharpweb.org

Sep DANTE Herbsttagung and

53rd meeting, TU Graz, Austria
www.dante.de/events.html

Sep 8 – 11 ACM Symposium on Document
Engineering, Lausanne, Switzerland.
www.doceng2015.org

Sep 14 – 18 9th International ConTEXt Meeting,
“Taming ConTEXt”, Nasbinals, France.
meeting.contextgarden.net/2015

Oct 14 – 17 Association Typographique Internationale
(ATypI) annual conference,
Theme: “Challenges”,
São Paulo, Brazil. www.atypi.org

Oct 19 – 20 The Thirteenth International Conference
on Books, Publishing, and Libraries,
University of British Columbia,
Vancouver, Canada. booksandpublishing

.com/the-conference-2015

Status as of 20 March 2015

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de. Check
the archives of this list tug.org/pipermail/tex-meetings/ for the latest postings.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 36 (2015), No. 1

Introductory

3 Barbara Beeton / Editorial comments
• typography and TUGboat news

2 Steve Peter / Ab epistulis
• election, TEX Users Group’15 conference, http://tug.org/membership

8 Thomas Phinney / What does a typical brief for a new typeface look like?
• questions and answers on starting a new type design

10 Michael Sharpe / Inconsolata unified
• bold version, alternate forms, available in usual formats, samples

11 Peter Wilson / A TUG Postcard or, The Trials of a Letterpress Printer
• an account of making a postcard for the TEX Users Group membership campaign

Intermediate

55 Karl Berry / The treasure chest
• new CTAN packages, October 2014–March 2015

15 Peter Flynn / Typographers’ Inn
• Portable typesetting; typographic logos

17 LATEX Project Team / LATEX news, issue 21, May 2014
• regular LATEX2ε bug-fix release, retaining compatibility

25 Paweł Łupkowski / Online LATEX editors and other resources
• writeLATEX, ShareLaTeX, mobile apps, detexify, tables

20 Peter Wilson / Glisterings: Here or there; Parallel texts; Abort the compilation
• using the correct margin, and more

19 Joseph Wright / Beamer overlays beyond the \visible
• generalized overlays for only, alert, and other operations

Intermediate Plus

37 Paulo Cereda / The bird and the lion: arara
• a cross-platform tool for compilation workflows

28 Hans Hagen / Exporting XML and ePub from ConTEXt
• structured output approaches and styles

Advanced

48 Hans Hagen / Still tokens: LuaTEX scanners
• a new TEX token scanner library in LuaTEX

32 Frank Mittelbach / The box-glue-penalty algebra of TEX and its use of \prevdepth
• output routines, following paragraphs, and an unsolvable problem

41 Luigi Scarso / The SWIGLIB project
• building and distributing shared libraries to extend LuaTEX

Contents of other TEX journals

60 EuroBachoTEX 2014; Die TEXnische Komödie 4/2014–1/2015

Reports and notices

7 Barbara Beeton / Hyphenation exception log
• update for missed and incorrect U.S. English hyphenations

57 David Walden / Book review: Algorithmic Barriers Falling: P=NP?,
by Donald E. Knuth and Edgar Daylight

• review of this second extended interview with Knuth

58 Boris Veytsman / Book review: History of the Linotype Company,
by Frank Romano

• review of this history of the people, typography, and more at Linotype

64 TUG Election committee / TUG 2015 election

68 Karl Berry / TUG financial statements for 2014

69 Institutional members

69 TEX consulting and production services

71 TUG 2015 announcement

72 Calendar

