
TUGboat, Volume 35 (2014), No. 1 31

The beamer class: Controlling overlays
Joseph Wright

There was a question recently on the TEX StackEx-
change site (Gil, 2014) about the details of how slide
overlays work in the beamer class (Tantau, Wright,
and Miletić, 2013). The question itself was about
a particular input syntax, but it prompted me to
think that a slightly more general examination of
how overlays would be helpful to beamer users.

A word of warning before I start: don’t overdo
overlays! Having text or graphics appear or disappear
on a slide can be useful but is easy to over-use. I’m
going to focus on the mechanics here, but that doesn’t
mean that they should be used in every beamer frame
you create.

1 Overlay basics
Before we get into the detail of how beamer deals
with overlays, I’ll first give a bit of background to
what they are. The beamer class is built around the
idea of frames:
\begin{frame}

\frametitle{A title}
% Frame content

\end{frame}
which can produce one or more slides: individual
pages of output that will appear on the screen. These
separate slides within a frame are created using over-
lays, which is the way the beamer manual describes
the idea of having the content of individual slides
varying. Overlays are “contained” within a single
frame: when we start a new frame, any overlays
from the previous one stop applying.

The most basic way to create overlays is to
explicitly set up individual items to appear on a par-
ticular slide within the frame. That’s done using the
(optional) overlay argument that beamer enables for
many document components; this overlay specifica-
tion is given in angle brackets. The classic example
is a list, where the items can be made to appear one
at a time.
\begin{frame}

\begin{itemize}
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<3-> Visible from the 3rd slide
...

\end{itemize}
\end{frame}

As you can see, the overlay specification here is
simply the first slide number we want the item to be
on followed by a - to indicate “and following slides”.

We can make things more specific by giving only a
single slide number, giving an ending slide number
and so on.
\begin{frame}

\begin{itemize}
\item<1> Visible on the 1st only
\item<-3> Visible on the

1st to 3rd slides
\item<2-4,6> Visible on the

2nd to 4th slides, and the 6th slide
\end{itemize}

\end{frame}

The syntax is quite powerful, but there are at
least a couple of issues. First, the slide numbers
are hard-coded. That means that if I want to add
something else in before the first item I’ve got to
renumber everything. Secondly, I’m having to repeat
myself. Luckily, beamer offers a way to address both
of these concerns.

2 Auto-incrementing the overlay
The first tool beamer offers is the special symbol +
in overlay specifications. This is used as a place
holder for the “current overlay”, and is automatically
incremented by the class. To see it in action, I’ll
rewrite the first overlay example without any fixed
numbers.
\begin{frame}

\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<+-> Visible from the 3rd slide
...

\end{itemize}
\end{frame}

What’s happening here? Each time beamer finds
an overlay specification, it automatically replaces all
of the + symbols with the current overlay number.
It then advances the overlay number by 1. So in the
above example, the first + is replaced by a 1, the
second by a 2 and the third by a 3. So we get the
same behaviour as in the hard-coded case, but this
time if I add another item at the start of the list I
don’t have to renumber everything.

There are of course a few things to notice. The
first overlay in a frame is number 1, and that’s what
beamer sets the counter to at the start of each frame.
To get the second item in the list to appear on slide 2,
we still require an overlay specification for the first
item: I could have skipped the <1-> in the hard-
coded example and nothing would have changed. The
second point is that every + in an overlay specification
gets replaced by a given value. We’ll see later there

The beamer class: Controlling overlays

32 TUGboat, Volume 35 (2014), No. 1

are places you might accidentally add a + to mean
“advance by 1”: don’t do that!

3 Reducing redundancy
Using the + approach has made our overlays flexible,
but I’ve still had to be repetitive. Handily, beamer
helps out there too by adding an optional argument
to the list which inserts an overlay specification for
each line:
\begin{frame}

\begin{itemize}[<+->]
\item Visible from the 1st slide
\item Visible from the 2nd slide
\item Visible from the 3rd slide
...

\end{itemize}
\end{frame}

Notice that this is needs to be inside the “nor-
mal” [...] set up for an optional argument. Ap-
plying an overlay to every item might not be exactly
what you want: you can still override individual lines
in the standard way.
\begin{frame}

\begin{itemize}[<+->]
\item Visible from the 1st slide
\item Visible from the 2nd slide
\item Visible from the 3rd slide
\item<1-> Visible from the 1st slide
...

\end{itemize}
\end{frame}

Remember not to overdo this effect: just because
it’s easy to reveal every list line by line doesn’t mean
you should!

4 Repeating the overlay number
The + syntax is powerful, but as it always increments
the overlay number it doesn’t allow us to remove the
hard-coded numbers from a case such as
\begin{frame}

\begin{itemize}
\item<1-> Visible from the 1st slide
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<2-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}

For this case, beamer offers another special symbol,
a single period ‘.’, as in:
\begin{frame}

\begin{itemize}

\item<+-> Visible from the 1st slide
\item<.-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<.-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}

What happens here is that . can be read as
“repeat the overlay number of the last +”. So the
two + overlay specifications create one slide each,
while the two lines using . in the specification ’pick
up’ the overlay number of the preceding +. (The
beamer manual describes the way this is actually
done, but I suspect that’s less clear than thinking of
this as a repetition!)

Depending on the exact use case, you might
want to combine this with the “reducing repeated
code” optional argument, with <.-> as an override.
\begin{frame}

\begin{itemize}[<+->]
\item Visible from the 1st slide
\item<.-> Visible from the 1st slide
\item Visible from the 2nd slide
\item<.-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}

5 Offsets
A combination of + and . can be used to convert
many “hard-coded” overlay set ups into “relative”
ones, where the slide numbers are generated by
beamer without you having to work them out in
advance. However, there are still cases it does not
cover. To allow even more flexibility, beamer has
the concept of an “offset”: an adjustment to the
number that is automatically inserted. Offset values
are given in parentheses after the + or . symbol they
apply to, for example:
\begin{frame}

\begin{itemize}
\item<+(1)-> Visible from the 2nd slide
\item<+(1)-> Visible from the 3rd slide
\item<+-> Visible from the 3rd slide

\end{itemize}
\end{frame}

Notice that this adjustment only applies to the
substitution, so both the second and third lines above
end up as <3-> after the automatic replacement. If
you try the demo, you’ll also notice that none of the
items appear on the first slide!

Perhaps a more realistic example for where an
offset is useful is the case of revealing items “out of

Joseph Wright

TUGboat, Volume 35 (2014), No. 1 33

order”, where the full list makes sense in some other
way. With hard-coded numbers this might read
\begin{frame}

\begin{itemize}
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
\item<1-> Visible from the 1st slide
\item<2-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}
which can be made “flexible” with a set up such as
\begin{frame}

\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
\item<.(-1)-> Visible from the

1st slide
\item<.-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}
or the equivalent
\begin{frame}

\begin{itemize}
\item<+-> Visible from the 1st slide
\item<.(1)-> Visible from the 2nd slide
\item<.-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide
...

\end{itemize}
\end{frame}

As shown, we can use both positive and negative
offsets, and these work equally well for + and . auto-
generated values. You have to be slightly careful with
negative offsets; while beamer will add additional
slides for positive offsets, if you offset to below a
final value of 0 then errors will crop up. With this
rather advanced setup, which version is easiest for
you to follow will be down to personal preference.

Notice that positive offsets do not include a +
sign, but are just given as an unsigned integer: re-
member what I said earlier about all + symbols being
replaced. If you try something like <+(+1)>, your
presentation will compile but you’ll have a lot of
slides!

6 Pausing general text
The beamer class offers a very simple \pause com-
mand to split general material into overlays. A classic
problem that people run into is combining that idea
with the + approach to making overlays. For example,
the following creates four slides:

\begin{frame}
\begin{itemize}

\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide

\end{itemize}
\pause
Text after the list

\end{frame}

If you read the beamer manual carefully, this is what
is supposed to happen here, but the more important
question is how to get what you (probably) want:
three slides.

The answer is to use \onslide: the \pause
command is by far the most basic way of making
overlays, and simply doesn’t “know” how to work
with +-. In contrast, \onslide uses exactly the same
syntax we’ve already seen for overlays:
\begin{frame}

\begin{itemize}
\item<+-> Visible from the 1st slide
\item<+-> Visible from the 2nd slide

\end{itemize}
\onslide<+->
Text after the list

\end{frame}

As we are then using the special + syntax for all of
the overlays, everything is properly tied together and
gives the expected result: three slides.

7 Summary
The beamer overlay feature can help you set up
complex and flexible overlays to generate slides with
dynamic content. By using the tools carefully, you
can make your input easier to read and maintain.

References
Gil, Yossi. “Relative overlay specification in

beamer?” http://tex.stackexchange.com/q/
154521, 2014.

Tantau, Till, J. Wright, and V. Miletić. “The
beamer class”. Available from CTAN,
macros/latex/contrib/beamer, 2013.

� Joseph Wright
2, Dowthorpe End
Earls Barton
Northampton
NN6 0NH
United Kingdom
joseph.wright (at) morningstar2

dot co dot uk

The beamer class: Controlling overlays

http://tex.stackexchange.com/q/154521
http://tex.stackexchange.com/q/154521
macros/latex/contrib/beamer

	Overlay basics
	Auto-incrementing the overlay
	Reducing redundancy
	Repeating the overlay number
	Offsets
	Pausing general text
	Summary

