TUGDboat, Volume 35 (2014), No. 1

Macro memories, 1964—-2013
David Walden

Contents
1 Mecllroy’s 1960 ACM paper 99
2 Some prior history of macros 100
3 Strachey’s General Purpose Macrogenerator 101
4 Midas macro processor 101
5 More study and use of macro processors
(and language extension capabilities) 102
6 Midas, macros, and the
ARPANET IMP program 103
7 Ratfor and Infomail 104
8 TgX, macros for typesetting 104
9 M4 106
10 Reflections 107
Introduction

In the summer of 2013, I was looking at a 1973 listing
of the ARPANET IMP (Interface Message Processor)
program! which makes extensive use of macros. This
caused me to muse about the various macro proces-
sors I have used over the past 50 years which, in turn,
led to this note.

This note is not a thorough study, extensive
tutorial, or comprehensive bibliography about macro
processors. Such descriptions have already been pro-
vided by, for instance, Peter Brown, Martin Campbell-
Kelly, John Metzner, and Peter Wegner in their
longer presentations of the topic.2:3%® Instead, the
macro technology thread I follow herein is guided by
the order in which I used or studied the various macro
processors. I hope this is usefully representative of
the scope of macro processor technology.

I have three reasons for writing this note. (1) I
haven’t seen much new written about macro pro-
cessors in recent years (other than what is on the
web); thus, it is perhaps time for a new paper on
this sometimes under-appreciated topic. (2) Com-
puter professionals and computing historians who
have come to their fields only in the last decade or
two may not know much about macros, and this
is a chance to share my fondness for and perspec-
tive on macros. The citations in the endnotes also
may be a useful starting point for further study of
macros, and maybe these notes will rekindle mem-
ories for other long-time computing people like me
about some of their own experiences. (3) For (I&)TEX
users who may not be computer programmers or fa-
miliar with other macro processor systems and who
accomplish impressive things using TEX macros, this
note sketches the long technical history of which TEX
macros are a part.

99

I assume most readers know what macros are, but
just in case: Typically one gives a name to a string
of text, e.g., “\define\Macroname{Textstring}”;
then each time “\Macroname” is found (“called”) in
the input text stream, it is replaced by “Textstring”.

The macro definition can involve the additional
substitution of text specified when the macro defini-
tion is called. For example,

\define\Name#1{His name is #1}

defines a macro named “Name” where “#1” indicates
a parameter to be substituted for when the macro is
called. The macro might be called with “John” as
the substitution text, as in the following
\Name{John}
which would result in
His name is John

In addition to the “#1” indicating where a substitu-
tion is to take place in the macro definition when
the macro is called, in this example the “#1” imme-
diately after the macro name indicates there is one
such substitutable parameter. If there were more
than one such parameter, a list such as “#1#2#3”
would appear after the macro name in the definition,
specifying three such parameters.

Donald Knuth in the index to Volume 1 of The Art of
Computer Programming gives this succinct definition
relating to macros: “Macro instruction: Specification
of a pattern of instructions and/or pseudo-operators
that may be used repeatedly within a program.”

1 Mecllroy’s 1960 ACM paper

I'm pretty sure that while I was still in college at San
Francisco State (1962-64) and using an IBM 1620
computer, I had no concept of macros. The IBM
7094 at MIT Lincoln Laboratory, my first employer
after college (starting in June 1964), may have had
a macro assembly capability, but I don’t think I ever
used it.

Probably my first contact with the concept of
macros was when an older colleague at Lincoln Lab
gave me his back issues of the Communications of
the ACM (and I joined the ACM myself to get future
issues of the CACM). In one of these back issues,
I read the article by Doug Mcllroy on macros for
compiler languages.%

Mecllroy has the following example of defining a
macro (although I am using an equal sign where he
used an identity symbol):

ADD, A, B, C = FETCH, A

ADD, B

STORE, C
where ADD” is the macro name, and A, B, and C are
the names of macro arguments to be filled in at the

Macro memories, 1964-2013

100

time of the macro call, and the three lines of code
are what is substituted. Thus, Mcllroy shows this
macro being called with the sequence

ADD, X, Y, Z

resulting in the following:

FETCH, X
ADD, Y
STORE, Z

This style of macro definition uses symbolic names
for the substitutable parameters, which can be useful
in remembering what one is doing with long macro
definitions. However, it is also a bit more complicated
to implement such symbolic macro parameter names
compared with using special codes such as “#1”.

Mcllroy’s 1960 paper goes on to show examples
of macros in an ALGOL-like language and to explain
the benefits of various features of macro processors.
For instance,

macro exchange(x,y;z) :=

begin
begin integer x,y,z;
z:=y;
yi=Xx;
X:=z;

end exchange x and y
end exchange

defines a macro which, if called with
exchange (r1,ss3)
results in

begin integer rl,ss3,.gen001

.gen001:=r1;
ss3:=r1;
rl:=.gen001;

end exchange rl and ss3

Note that a special temporary register, .gen001, was
created to replace z which was defined following the
semicolon in the parameter list.

Mecllroy’s paper also has a summary list of “sa-
lient features” [the comments below in square brack-
ets are my notes on Mcllroy’s list]:

1. definitions may contain macro calls

2. parenthetical notation for compounding calls
[e.g., so arguments to macro calls can include
multiple items separated by commas]

3. conditional assembly

4. created symbols [e.g., so labels or local variable
names in the body of a macro definition are
unique for each call of the macro]

5. definitions may contain definition schemata

6. repetition over a list [see the example in the
discussion of Midas in section 4]

David Walden

TUGDboat, Volume 35 (2014), No. 1

Apparently Bell Labs was a particular hotbed
of macro activity in those early days. In a memorial
note for Douglas Eastwood,® Doug Mcllroy recounts:

On joining the Bell Labs math department, I
was given an office next to Doug Eastwood’s.
Soon after, George Mealy ... suggested to a
small group of us that a macro-instruction
facility be added to our assembler ... This
idea caught the fancy of us two Dougs, and
set the course of our research for some time
to come. We split the job in half: Eastwood
took care of defining macros; Mcllroy handled
the expansion of macro calls.

The macro system we built enabled truly
astonishing applications. Macros took hold
in the Labs’ most important project, elec-
tronic switching systems, in an elaborated
form that served as their primary program-
ming language for a couple of decades.

Once macros had been incorporated, the
assembler was processing code written whole-
sale by machine (i.e., by the assembler itself)
rather than retail by people. This stressed the
assembler in ways that had never been seen be-
fore. The size of its vocabulary jumped from
about 100 different instructions to that plus
an unlimited number of newly defined ones.
The real size of programs jumped because one
human-written line of code was often short-
hand for many, many machine-written lines.
And the number of symbolic names in a pro-
gram jumped, because macros could invent
new names like crazy.

By the way, Rosen’s book” also had a paper (pp. 535
559) by George Mealy that touched on macros: “A
Generalized Assembly System (Excerpts)”.

2 Some prior history of macros

Mcllroy’s paper also hints at some of the history of
macro processors including half a dozen references®
to prior macro processors; they were becoming fairly
widespread by the early 1960s. Lots of people were
thinking about macros and macro processing by 1960.
In section 6 of his paper, Mcllroy says,

... Conditional macros were devised indepen-
dently by several persons beside the author in
the past year. In particular, A. Perlis pointed
out that algorithms for algebraic translation
could be expressed in terms of conditional
macros. Some uses of nested definitions were
discovered by the author; their first imple-
mentation was by J. Benett also of Bell Tele-
phone Laboratories. Repetition over a list is

TUGDboat, Volume 35 (2014), No. 1

due to V. Vyssotsky. Perlis also noted that
macro compiling may be done by routines to a
large degree independent of ground language.
One existing macro compiler, MICA (Haigh),
though working in only one ground language is
physically separated from its ground-language
compiler. An analyzer of variable-style source
languages exists in the SHADOW routine of
M. Barnett, but lacks an associated mecha-
nism for incorporating extensions. Created
symbols and parenthetical notation are obvi-
ous loans from the well-known art of algebraic
translation.

Donald Knuth and Luis Trabb Pardo also touch
on the history of macros in their paper “The Early
Development of Programming Languages”.!? Early
in the paper,'! they note that Turing’s 1936 paper
on a universal computing machine used a notation
for programs which amounted to being “macroex-
pansions or open subroutines”. Later in the paper,'?
they say that Grace Hopper in 1951 came up with
the “idea that pseudocodes need not be interpreted;
pseudocodes could also be expanded out into direct
machine language instructions.” Later on the page
they note, “M.V. Wilkes came up with a very similar
idea and called it the method of ‘synthetic orders’;
we now call this macroexpansion.” 3

3 Strachey’s General Purpose
Macrogenerator

At the time I joined the ACM to receive the CACM,
I also subscribed to The Computer Journal. In this
I studied Christopher Strachey’s GPM (General Pur-
pose Macrogenerator).!4 The paper presents Stra-
chey’s macro processor and its possible uses. Then
the paper explains how it is implemented. Finally, it
has the code for the CPL language (sort of ALGOL-
like) which can be transliterated to implement GPM
in any other computing language.

GPM was a change in the way macro definitions
and calls were formatted from the series of macro
processors originally developed at Bell Labs in what
I will call the Mcllroy style. These early assemblers
and the macro processors tended to be shown in
columns with keywords (DEFINE, a defined macro
name, IRP, etc.) being recognized by the processor
as a special symbol and the other parts of the defini-
tion or call being detected by their separation with
spaces or commas, or perhaps bracketing parenthe-
ses. In fact, many of the early macro processors were
embedded parts of an assembler or language com-
piler. GPM indicated its macro definitions and calls
and their arguments with unusual characters, and
it was independent of any particular language —a

101

possible preprocessor for any other language or as a
stand-alone string processor.
Here is a simple definition in GPM:
§DEF,REFORMATNAME,<LAST="2, FIRST="1>;
It could be called like this:
SREFORMATNAME ,David,Walden;
which would produce the output:
LAST=Walden, FIRST=David

Note that the GPM approach to macro definitions
does not specify how many substitutable parameters
there are. Note also that bracketing macro defini-
tions and macro calls with special symbols (“§”, “;”)
makes it a bit simpler for definitions and calls to
occur anywhere in the input stream.

Strachey’s paper is a wonderful and now clas-
sic article (it’s a shame it resides behind an overly
expensive paywall for the journal). By introducing
the macro processor and its uses, describing its im-
plementation, and then providing the code for its
implementation, Strachey’s paper is a superb model
for presenting a programming language. This was
perhaps possible because Strachey, purportedly a
genius programmer, had managed a very general and
beautiful implementation. The CPL code was only
two double-column journal pages long; and, accord-
ing to the history of the m4 macro processor,'® fit
into 250 words of machine memory.

The just-mentioned m4 history also touches on
the influence of GPM on later macro processors. Also,
GPM was used by later authors as an illustrative
example of a macro processor.?:16

Some readers by this time may be asking, “But
how is a macro processor implemented?” One can
sketch this intuitively. Text in the input stream to
the macro processor that is not a macro definition
or macro call is just passed on to the output stream.
Macro definitions in the input stream are saved in a
software data structure with their names and associ-
ated definitions. When a macro call is spotted in the
input stream, the definition is pulled out of storage
to replace the macro call in the output stream with
the call parameters being substituted at the proper
places in the definition. If all this is done using a
first-in-last-out stack in the proper way, definitions
within definitions, recursive calls, and so forth are
possible. For a detailed description of a macro pro-
cessor implementation, access Strachey’s GPM paper
in its journal archive or find a used or library copy
of Peter Wegner’s book? (pp. 134-144).

4 Midas macro processor

The next macro processor I came across (and the first
I actually used) was the macro processor that was

Macro memories, 1964-2013

102

part of the Midas assembler for the PDP-1. PDP-1
Midas had its origins in MIT’s TX-0 computer, all
the way back to MACRO on the TX-0.

MACRO was an assembler with a macro proces-
sor capability written by Jack Dennis for the TX-0.
I don’t know of a manual for TX-0 macros; however,
MACRO was later released by DEC with its PDP-1
computer, and Jack Dennis states!” that he wrote
the manual for that.'8

When I asked Jack Dennis about predecessor
technology to MACRO, he mentioned Mcllroy’s pa-
per (which was published after MACRO was available
on the TX-0 in 1959, so perhaps Jack saw a draft
or preprint). Of his MACRO, Jack said,!® “Doug’s
macro processor was of the string substitution sort

. Mine was different: it permitted a user to give a
name to a sequence of assembly instructions, with in-
teger parameters that would be added to instructions
to create modified addresses. (Thus the essential
mechanism was one’s complement binary arithmetic
instead of string concatenation.)”

Next on the TX-0 came Midas, which was de-
rived by Robert Saunders from TX-0 MACRO. Then,
TX-0 Midas was moved to the PDP-1.20 The TX-0
Midas memo?! is dated November 1962 which sug-
gests that the PDP-1 Midas was up and running
sometime in 1963, as the Midas manual for the PDP-
1 says it was ported from the TX-0 where it had been
running for about a year.

In any case, the PDP-1 editing, assembling, and
debugging set of programs was probably the best set
of interactive program development and debugging
tools that were available for a mini-computer in the
mid-1960s. Therefore, four of us using a Univac 1219
computer at Lincoln Lab decided to reimplement
these PDP-1 tools for our 1219.%2

Midas for the PDP-1 and our version for the
Univac 1219 had macro processor definition and call
formats that were similar to those in the tutorial part
of Mcllroy’s paper, e.g., “MACRO NAME ARG1, ARG2
(string)” to define a macro and “NAME X,Y” to call
it with X and Y to be substituted for ARG1 and ARG2
in the macro definition. For example,

MACRO MOVE X,Y

(ENTAL X
STRAL Y)

The above when called with
MOVE K,L
resulted in

ENTAL K
STRAL L

Midas also had what I now think of as map
commands, i.e., apply some function over a list of

David Walden

TUGDboat, Volume 35 (2014), No. 1

arguments — the Midas commands IRP (indefinite
repeat over a list of arguments) and IRPC (indefinite
repeat over a string of characters). In our version of
Midas, the IRP command might have been used as
follows:

IRP A, (W1, W2, W3)

(ADD A

)
expanding to

ADD W1

ADD W2

ADD W3

and in another example
IRP X,Y,(4,Q,B,R,C,T)

(CLA X
STO Y
)
expanding to

CLA A
STO Q
CLA B
STO R
CLA C
STO T

The same thing could have been accomplished
using the command to repeat for each character in a
string of characters:

IRPC X,Y, (AQBRCT)
(CLA X

STO Y

)

I'm pretty sure that the following also worked
in our version of Midas:23

MACRO ADDTHEM X,Y,Z
(ENTAL X
IRP W, (Z)
(ADD W
)
STRAL Y
)

when called with ADDTHEM A,B, (C,D,E) resulted in

ENTAL A
ADD C
ADD D
ADD E
STRAL B

All in all, this macro effort was a significant piece of
computing and programming education for me.?*

5 More study and use of macro processors
(and language extension capabilities)

In September 1967, I moved to Bolt Beranek and
Newman Inc. in Cambridge, MA, where I had access

TUGDboat, Volume 35 (2014), No. 1

to the company’s PDP-1d time sharing system. I
immediately began extensive use of the macro facility
built into the editing program TECO.2°

TECO?? was an early, very powerful, text edi-
tor with a macro capability using the same type of
keystrokes one used for editing. One could type a list
of keystrokes to do some complex editing function
but delay evaluation and instead save the sequence
of keystrokes (i.e., defining a macro) and then later
give a few keystrokes to execute the saved string
of keystrokes (i.e., calling or executing the macro).
TECO macros typically looked very cryptic. People
also played games with what complicated things they
could do with TECO macros, e.g., calculating digits
of pi, implementing Lisp, etc.26

Also early on at BBN, as a weekend hack, I
transcribed the Algol-like listing of Strachey’s GPM
system from his 1965 paper into PDP-1 Midas assem-
bly language and made it run. This was easy to do
given Strachey’s complete description of the system.

I also investigated the TRAC language.?”>?® TRAC
was presented by Calvin Mooers as a text processing
language; but to my mind, TRAC was not so different
from a macro processor in the way it defines and
manipulates strings.??

The basic TRAC operation is a call to a built-in
function introduced by a pound sign, e.g.,

#(function-name,argl,arg?2,...)

Two of the built-in functions are define string (ds)
and call (c1), as follows:

#(ds,greeting,Hello World)
and

#(cl,greeting)
resulting in replacement of the call by the string
“Hello World”.

Another built-in TRAC function, ss, specifies
the strings for which a substitution is to be made at
call time. Thus,

#(ds,greeting,Hello, name)

#(ss,greeting,name)
creates a macro with one call-time argument, such
that

#(cl,greeting,Hello Dave)

results in the text string “Hello, Dave”.
There are other built-in functions for string com-
parison, and so on.

By this time, I was pretty fascinated by program-
ming languages and macros, in particular the idea
of extensions to programming languages.

Macros have often been used as a form of lan-
guage extension. For instance, complex add might
be defined, using Mcllroy’s notation, as

103

COMPLEXADD, A, B, C, D, E, F = FETCH, A
ADD, C
STORE, E
FETCH B
ADD D
STORE F

with the obvious substitution when called with
COMPLEXADD, U, V, W, X, Y, Z

From macros as a way of extending languages it
was a short step to the idea of extensible high-level
languages. From 1966-1968 I took computer sci-
ence courses at MIT as a part-time graduate student
and eventually did Master’s thesis work (never com-
pleted) on a capability for extending a high level
language. Unfortunately, I have lost the complete
draft of the thesis report (and I never finished the
accompanying program). However, I am sure that
my thesis literature research and thinking influenced
the next project I had at BBN.

In 1967 to 1968, with the assignment to think
about a programming language for what became
BBN’s PROPHET system (a tool to help medicinal
chemists and research pharmacologists), I looked
deeply into extensible languages. I studied and re-
ported on Mcllroy’s ideas® and the ideas and imple-
mentations of several other researchers.3? Eventually,
as a proof of concept, I translated James Bell’s Pro-
teus from the Fortran implementation in his thesis
into PDP-10 assembly language. I turned this effort
over to Fred Webb, who eventually replaced what I
had done with a fresh implementation of an extensi-
ble language named PARSEC.?! PARSEC was used
in various versions (and later as the basis for RPL
for the RS/1 system) by a multitude of people for
many years.

This note on macros is not the place to go more
deeply into extensible languages. The references in
note 30 are a decent introduction to the state of the
art circa 1968. For the state of the art a decade
later, John Metzner’s graded bibliography on macro
systems and extensible languages is relevant.®

6 Midas, macros, and the
ARPANET IMP program

At BBN I was part of the small team that in 1969
developed the ARPANET packet switch.!32 We de-
veloped the packet switch software for a modified
Honeywell 516 computer using the PDP-1d Midas
assembler, using lots of macros, etc., to adapt Midas
to know about the 516’s instruction set and paged
memory environment. Bernie Cosell primarily con-
structed this hairy set of conversation macros. Our
three person software team (Cosell, Will Crowther,

Macro memories, 1964-2013

104

and me) also used Midas macros to facilitate devel-
opment of the packet switching algorithms to run
on the 516. All this may be seen in a listing of the
IMP program available on the web.33 We also used
Midas macros to generate a concordance for the IMP
program®® as well as to reduce the probability of
writing time-sharing bugs.?®> A contemporary ver-
sion of this Midas macro assembler written in Perl
by James Markevitch is also available for study.?¢

7 Ratfor and Infomail

The next project on which I saw something like a
macro processor was an effort in the early 1980s to
develop a commercial email system that would run
on a variety of vendor platforms, e.g., DEC VAX,
IBM CICS, IBM 360, and Unix on the BBN C/70. For
portability we decided to implement our email sys-
tem (called InfoMail) in Fortran, for which compilers
already existed for the target platforms. However, to
avoid having to actually write Fortran code, we devel-
oped the system using Ratfor (Rational Fortran).?7
Ratfor was not actually a macro processor but rather
a programming language that acted as a preprocessor
to emit a Fortran program that could be compiled
by a standard Fortran compiler. Nonetheless, that
seems to me to be quite a lot like what a macro pro-
cessor does. Also, Chapter 8 of the Software Tools
book (see previous note) describes the implementa-
tion in Ratfor of a macro processor (based on the
macro processor for the programming language C).

Also during my BBN years between 1967 and 1995, 1
briefly used the C language, which includes a macro
processor,>® which optionally can be used indepen-
dently of the rest of C. But from 1982 on I did no real
computer programming and thus didn’t track what
was happening in the world of macro processors.

8 TgX, macros for typesetting

People who use (I4)TEX macros may already know
much of what is in this section. However, some of it
may be new to some readers.

After retirement from BBN in 1995, I had started
using (I2)TEX in place of a word processor such as Mi-
crosoft Word, particularly for documents that were
more than a one-page, one-time letter. This brought
me in contact with the very sophisticated and com-
plex macro processor embedded in the TEX type-
setting system. I have now been using this system
and its macro processor for typesetting for nearly 20
years, the longest in my life I have used any single
mMacro processor.
Here is an example of a TEX macro.

\def\Greeting#1{Hi #1! I hope you’re well.}

David Walden

TUGDboat, Volume 35 (2014), No. 1

If this is called with \Greeting{Dave}, it results in
Hi Dave! I hope you’re well.

The text “#1” tells the macro definition processor
(a) that there is one argument, and (b) where the
call-time argument is to be substituted in the body of
the macro. If the macro definition allowed three ar-
guments, for instance, the sequence “#1#2#3” would
appear after the macro name and before the open
curly bracket of the definition.

The TEX macro processor is enormously pow-
erful and flexible, in its unique way, and a compre-
hensively documented piece of software.3?,40,41,42
Massive programs have been (and continue to be)
written in its macro language. For example, INTEX is
implemented entirely with TEX macros, as are other
variants or supersets of TEX (called “formats” in
TEX jargon) as well as thousands of BTEX “packages”
which extend or modify the capabilities of IXTEX.
One modest-size example of the use of TEX macros
to extend TEX can be found on pages 6-10 of “The
bibtext Style Option”.%3

Personally, I tend to do my ETEX extensions us-
ing packages that other people have already written,
although sometimes I make minor modifications to
existing packages. More commonly I use TEX macros
(or a IWTEX variation) to replicate small snippets of
IXTEX code which are used repeatedly — for consis-
tency, and also to easily allow later changes of such
snippets as I figure out what I actually want them to
do. In 2004 I published an example of one such use
of a TEX macro;** I encourage readers to take a look
at it as it describes (far from completely) various
ways TEX macros are defined and can be called.

Historically, there has been an interesting set of
pressures around TEX’s macro capability. Originally
Donald Knuth included only enough macro capability
to implement his typesetting interface. However, he
was persuaded by early users to expand that macro
capability. That expanded capability allowed users to
construct pretty much any logic they wanted on top
of TEX (although often such add-on logic was awk-
ward to code using macro-type string manipulations).
On the one hand, TEX and its macro-implemented
derivatives have always been very popular and there
have been non-stop macro-based additions for over
30 years. On the other hand, users despair at how
annoying coding using macros is, moan about “why
Knuth couldn’t have included a real programming
language within TEX”, and otherwise cast aspersions
on TEX’s macro capability.

Over the years various attempts have been made
to link TEX to a “real” programming language, typi-
cally invoking the programming language from TEX

TUGDboat, Volume 35 (2014), No. 1

or the reverse; however, none of these efforts have
come into widespread use. Over the past few years,
however, a small group of TEX hackers have accom-
plished an apparently successful merger of the Lua
programming language and TEX, called LuaTEX.4?
LuaTgX maintains TEX’s macro processor (there is
really no way, and no reason, to get rid of it while
keeping TEX). Thus, the full power of the TEX macro
processor is available for the many situations in which
it is the best tool, and the Lua language is available
for things which can be done much more easily in a
procedural language.

The history of the TEX macro processor partially
explains the above. Knuth has made the point that
he was designing a typesetting system that he didn’t
want to make too fancy, i.e., by including a high
level language. He has also noted that when he was
designing TEX he created some primitive typesetting
operations and then created a set of macros for the
more complete typesetting environment he wanted.
He expanded the original macro capability when
fellow Stanford professor Terry Winograd wanted
to do fancier things with macros. Knuth’s idea was
that TEX and its macro capability provided a facility
with which different people could develop their own
typesetting user interfaces, and this has happened
to some extent, e.g., WTEX, ConTEXt, etc.

It is perhaps worth discussing a few of the things
that make the TEX macro capability different from,
for example, the capability of GPM.

GPM has a simple and unchanging definition and
calling syntax, as was described in Section 3. Macro
definitions can include other macro definitions, and
macros can have recursive calls (and without going
back to study the GPM paper carefully, I assume that
the scope of macro definitions happens in the natural
and obvious way). The definition associated with a
macro name can be “looked at” without evaluating
the definition; the definition associated with a macro
name can be assigned to a different macro name; and
there is a capability for converting numbers between
binary and decimal formats and for doing binary
arithmetic. No limit is specified for the number
of arguments a macro definition and call can have.
Finally, GPM is a stand-alone program; it processes
its input, and it is up to the user what happens next
with its output.

The TEX macro capability can do all those
things; but it cannot be used independent of TEX,
and in its straightforward form its macro definitions
and calls are limited to nine arguments. TEX also
has a way of defining a macro call to have a much
more free-form format, and with some programming
(or use of an appropriate TEX macro package) macro

105

call arguments can be specified with attribute-name/
value pairs. There are explicit commands in TEX
creating local or global definitions, as well as various
other definition variations, such as delayed defini-
tion and delayed execution of macro calls. TEX has
a rich rather than minimal set of conditional and
arithmetic capabilities (some related only to position
in typesetting a page). There are also ways to pass
information between macros and, more generally, to
hold things to be used later during long, complicated
sequences of evaluation and computation. These ca-
pabilities allow big programs to be written in the
macro language, and thus TEX also has a capability
to trace the flow of macro definition and execution.

TEX has another unusual capability that is some-
times used with macros, although it is a capability
more closely related to lexical analysis than to macro
definitions and calls; this is the TEX “category code”
feature. TEX turns its input sequence of charac-
ters into a list of tokens. A token is either a single
character with a category code (catcode) or a con-
trol sequence. For instance (using an example from
Knuth’s The TgXbook), the input “{\hskip 36 pt}’
is tokenized into

{ hskip36 , pt}

where the opening brace is given the catcode of 1
(begin group), hskip gets no catcode because it is a
control sequence, 3 and 6 get catcodes of 12 (other),
the space after 36 gets catcode 10 (space), p and t
get catcodes of 11 (letter), and the closing brace gets
catcode 2 (end group). (There are 16 such category
codes in all.)

The next step in the TEX engine decides what to
do with these different tokens, e.g., put the numbers
together into a numeric value and the letters together
into a unit of measurement, execute the primitive
hskip command, and so on. The backslash has a
catcode of zero indicating an escape character, thus
telling TEX that the following letters (five in this
case) form a control sequence; the space after the
command name delimits the end of the name and
doesn’t otherwise count as a space.

TEX also has the capability of changing which
character(s) have which catcode(s). For instance, the
dollar sign (by default having catcode 3, indicating
a shift to math mode) could be given the escape
character catcode, and the backslash could be given
the math shift catcode. This capability is routinely
used in TEX program libraries to define macro names
internal to a program in the library which users
of the library cannot use when (normally) defining
their own macro names. Basically, the entire input
language of TEX can be changed.

Macro memories, 1964-2013

106

The typeface design system, METAFONT, that
Knuth developed in parallel with TEX has a more
powerful macro capability (my memory is that he
says somewhere that this was because he assumed
more sophisticated people would be using META-
FONT than TEX).

When Knuth rewrote TEX and METAFONT us-
ing literate programming techniques and targeting
the Pascal programming language,?® he included a
macro capability in his literate programming WEB
system for two reasons: simple numeric and string
macro definitions were used to simplify coding given
the limitations of Pascal; another kind of macro sup-
ported literate programming by allowing source ma-
terial to be presented in an order suitable for human
readers, which was then reordered by the system into
the order needed for compiler processing.*” (When
literate programming systems targeting C were later
developed, WEB’s numeric and string macros were
no longer strictly needed since C has its own macro
processor, as noted above. The macros supporting
literate programming continued to be an essential
part of the system.)

I got to wondering when and where Donald Knuth
got his own introduction to macro processors. He
said:48

I worked with punched cards until the 70s. My
first “macro processor” was a plugboard for
the keypunch, setting up things like tab stops!
The assembler that I wrote as an undergrad,
SuperSoap for the IBM 650, had a primitive
way for users to define their own “pseudo-
operations”; but it was extremely limited. For
example, the parameters basically had to be
in fixed-format positions.

I learned about more extensible user-de-
finability with the first so-called “compiler-
compilers”, notably D. Val Schorre’s “META 11”7
(1964)%° and E. T. Irons’s syntax-directed com-
piler written at Yale about the same time.?°
Later I knew about the sort-of macros in other
compilers, e.g., PL/I.

But the first really decent work on what we
now call macro expansion was done I think by
Peter Brown ... it was his book Macro Proces-
sors (Wiley, 1974)? that was my main source
for macros in TEX, as far as I can remember
now.

9 M4

In about 2001, I was looking for a macro processor
to help me format an HTML list of the articles in the
Journal of the Center for Quality of Management

David Walden

TUGDboat, Volume 35 (2014), No. 1

that were relevant to the chapters of a book I co-
authored.”® I found the m4 macro processor.®?
The following first entry in an HTML table:®3

click- |Vol.-1-No.Tom-Lee-and-David- |What-is-the-Center-for- =
28.2a herez |1,-1992= Walden-= Quality-Management?c

was created with the following m4 macro definition
that outputs HTML markup:
define(‘_te’, ¢
<TR VALIGN="top">
<TD ALIGN="center">$1</TD>
<TD ALIGN="left">$2</TD>
<TD ALIGN="left">$3</TD>
<TD ALIGN="left">$4</TD>
<TD ALIGN="left">$5</TD>
</TR>
?)
which was called as follows (except all on one line):

_te(28.2,_url(00100),_i(1,1,1992),

Tom Lee and David Walden,What...)

4 W

where “_url” and “_i” are other m4 macro calls.
I gave the m4 macros names beginning with under-
scores so the names would be recognizable in the m4
source file which didn’t otherwise use underscores.

Use of m4 brought me full circle, in a sense, as
the m4 macro processor is somewhat derived from
GPM.%* Tt was also used for and with Ratfor.

One incarnation of m4 is a freely available pro-
gram under the GNU GPL, and thus that implemen-
tation is also available for study and other use.®®

My writing and publishing work using a IXTEX engine
involved me in publishing work flows, particularly
the need to have one source file be processable into
multiple publication formats. For example, in the
case of the TEX Users Group Interview Corner,?®
we use m4 macros to define a new markup language
which can, with different sets of definitions, be tar-
geted to output markup language code for either
IXTEX for paper printing or HTML for web posting.
In our interview sources files, we might write the
macro call “_i(Book Name)”. With our HTML set
of m4 definitions, that would convert to “<i>Book
Name</i>”. With our BTEX set of m4 definitions,
that would convert to “\textit{BookName}’. We
have hundreds of m4 definitions in each of the KTEX
and HTML m4 definition files that implement this ad
hoc markup language that targets the two methods
of output.

A language independent macro process such as GPM
or m4 can be used at any point in a workflow:

e as a preprocessor for a programming language
(as in many of the examples in this note)

e as a post processor (Martin Richards has noted
that a GPM-like macro processor was used to

TUGDboat, Volume 35 (2014), No. 1

convert the O-code output of his BCPL compiler
into machine language)®”

e as an intermediate step in the work flow (for in-
stance, a Perl program processes an input driver
file to generate m4 macro calls, the macro calls
generate IMTEX markup, and the ATEX engine
generates PDF files from the BXTEX markup).

10 Reflections

General reflections. A computing historian who
is a potential reader of this note might ask, “Why
should I care about macro processors?” There are
a couple of answers to this. First, macro proces-
sors played an important role in the history of pro-
gramming languages. They were used with early
assemblers, before higher level languages became
widespread. In fact, they allowed assembly language
users to create higher level language constructs by
grouping together useful sequences of assembly lan-
guage instructions under a single name, for exam-
ple, complex-add. As higher level languages came
into use (e.g., Fortran, ALGOL), the usefulness of
macro processors was carried over into higher level
languages (e.g., to create yet higher level linguis-
tic constructs). Soon stand-alone macro processors
were created that could act as a preprocessor for any
programming language rather than being embedded
within a particular programming language. Second,
both embedded and stand-alone macro processors
continue in widespread use today. We also find macro
processors embedded in the user interface of many
computer tools other than programming languages,
for instance, as part of text editors, operating system
shells, makefiles, and other applications and software
packages (one example is Actions in Photoshop —
repeatable sequences of Photoshop commands).
The reader might next ask, “If macro processors
have been important in the history of programming,
why isn’t more written about them?” I think the
answer to that question may have to do with the
relative simplicity of many macro processors, which
substitute one character string for another. That is
not an area that requires much research, and gener-
ally useful implementation methods have been well
known since the 1960s or earlier; also, it is not too
hard to do an ad hoc implementation of a macro
processor as part of some piece of software one is
writing. Being mostly implemented as string manip-
ulators, macro processors don’t have to have all of
the debatable research topics that a full program-
ming language has (side effects, call by name, scope,
etc. —although the sophisticated macro processors
such as m4 and TEX have parallels for these sorts of
programming-language-philosophy topics). Also, as

107

macro processors tend to operate at compile time,
sometimes in ways that increase runtime efficiency,
there probably hasn’t been as much interest in op-
timizing macro processor performance as there has
been with programming languages.

From the point of view of the professional pro-
grammer (versus historian), macro processors are
just another development tool, and they are avail-
able as preprocessors or embedded in whatever pro-
gramming language or other development tools the
programmer is using. Details about how a macro
processor works may annoy but probably won’t de-
ter such working programmers. They just use what
is available as best they can, and don’t write the
theoretical articles. Practical use of macros also
tends to be awkward, and describing their use can
be messy. Thus, it is difficult in a short paper to
describe serious uses of macros.

On the other hand, people who might be reluc-
tant to use a “real” programming language may use
macros (e.g., editor macros) in quite sophisticated
ways. In the multi-chapter interview of Knuth in his
Companion to the Selected Papers of Donald Knuth
(page 161),® Knuth says of his wife, “I don’t think
she will ever enjoy programming. She is good at
creating macros for a text editor, sometimes impress-
ing me with subtle tricks that I didn’t think of, but
macro writing is quite different from creation of what
we call ‘recursive procedures’ or even ‘while loops.””

Macro processors are also not as tractable a topic
for historical or theoretical writing as high level lan-
guages perhaps are. While many macro processors
may be for relatively straightforwardly extending a
programming language or aiding in a development
task, some macro processors (such as m4 and the
macro capability in TEX) have a big set of capa-
bilities for dealing with sophisticated programming
situations — they are set up to write big complicated
programs, just as regular higher level languages are,
but often in more clumsy-to-use ways. There is a
160-page manual to describe all the capabilities of
the stand-alone m4 macro processor. In addition to
Knuth’s own writings,?>4! Eijkhout’s book*’ has
more than 50 pages on the extensive macro capabil-
ities embedded in TEX, and Stephan von Bechtols-
heim wrote (perhaps excessively) a 650-page book®®
on using TEX macros. (There is probably an interest-
ing paper to be written comparing the issues inherent
in these powerful macro processors with similar issues
in regular procedural programming languages.)

The immediately preceding discussion brings to
mind the question, “Where on the spectrum of pro-
gramming languages do we put macro processors?”

Macro memories, 1964-2013

108

Early on they were used as ways to extend as-
semblers and compilers. Quickly they were used
to implement programming languages (e.g., WISP
and SNOBOL). They were used to simulate different
“computers” (e.g., BCPL’s compiler of O-code, the
assembly language of the Honeywell 516 IMP com-
puter). I personally have used them to define and
process little special purpose markup languages (as
described in the m4 and TEX sections above).

Many macro processors are Turing-complete and
in this sense can compute anything a typical higher
level language can compute. However, they are dis-
tinct from many higher level language compilers (dis-
counting macro capabilities they might have, or other
compile-time evaluation capabilities, as languages
which execute interpretively often have, e.g., Lisp,
Perl) in that much computation in macro processors
inherently goes on at “compile” time. This can make
their syntax and semantics harder to specify.

In Knuth’s paper “The Genesis of Attribute
Grammars”, reprinted in his Selected Papers on Com-
puter Languages,®® Knuth explains (pages 434-435)
that he didn’t use an attribute grammar to specify
the semantics of TEX because he hadn’t been able to
think of any good way to define TEX precisely except
through the implementation using Pascal. He also
couldn’t think of how “to define any other language
for general-purpose typesetting that would have an
easily defined semantics, without making it a lot less
useful than TEX. The same remarks also apply to
METAFONT. ‘Macros’ are the main difficulty. As far
as I know, macros are indispensable but inherently
difficult to define. And when we also add a capabil-
ity to change the interpretation of input characters,
dynamically, we get into a realm for which clean
formalisms seem impossible.”

Personal reflections. Macro overview books, such
as those by Brown and Campbell-Kelly, try to cate-
gorize the uses of macro processors, for example, to
extend a programming language, to allow late bind-
ing of variables to values, to communicate with the
operating system, to implement desirable-but-non-
existent machine instructions, to insert debugging
code into a program, and to simply abbreviate long
strings of text. Below is a short list of the ways I feel
I have made use of the macro processors described
in this note.

e The macro processor described in Mcllroy’s pa-
per, Strachey’s GPM, and Mooers’ TRAC were
for the study of programming languages, under-
standing of how macro processors work, and for
coding practice.

e Midas was about implementing a macro proces-

David Walden

TUGDboat, Volume 35 (2014), No. 1

sor and using one for production work includ-
ing retargeting Midas to a new computer and
putting hints in a real-time program to reduce
the probability of time-sharing bugs.

e TECO and other editor macros were to reduce
editing keystrokes, especially when regular ex-
pression searches and replacements are needed.

e Ratfor and C were for programming efficiency.

e TEX macros are for production typesetting, cre-
ating extensions to ITEX (e.g., the style for a
particular book), and as another sophisticated
macro processor to study.

e m4 use has been to create new markup languages
with which to target document source files to
different output media.

In addition to assembly languages for different com-
puters, Fortran for various mathematical projects,
and the languages mentioned above, I briefly pro-
grammed in Lisp and BCPL years ago. Lisp has
a macro capability and I may have used it, but, if
so, I don’t remember anything about it.®! While
writing these notes, I have learned that a version of
Strachey’s GPM existed for BCPL, known as BGPM.

In recent years I have used Perl for several large
and many small projects. Apparently Perl has a
capability for redefining parts of the Perl language
(the equivalent of macros and more), but it confused
me when I tried to read about it and am not likely
to try it. I suppose I can just use m4, which I already
know, as a preprocessor for Perl; but that doesn’t
stop me from wishing that a conventional macro
capability was built into Perl.

Acknowledgments

Chuck Niessen helped me remember the capabili-
ties of the Univac 1219 macro assembler we wrote.
Ralph Alter and Will Crowther responded to queries
relating to macro capabilities on Lincoln Laboratory
computers. Stan Mazor confirmed my memory about
whether or not we used macros in the early 1960s
on the IBM 1620 at San Francisco State College.
Tom Van Vleck reminded me of what languages with
macro processors were available at MIT in the late
CTSS and early Multics era. Jim Wood reminded
me of some things about PARSEC. Bill Aspray and
Martin Campbell-Kelly provided guidance on how
this paper might be developed into a more traditional
academic computing history paper. Bernie Cosell
pointed out half a dozen subtle issues or possibili-
ties in the paper. Ralph Muha gave me his copy of
Gimpel’s SNOBOL4 algorithms book. Most helpfully,
Karl Berry read drafts of this note, noted typos,
made suggestions for improvement, and provided ad-
ditional insight about and references for a number

TUGDboat, Volume 35 (2014), No. 1

of macro processors, particularly TEX. Karl, along
with Barbara Beeton, also edited the final draft of
the paper to ready it for publication.

Notes
! http://walden-family.com/impcode/imp-code.pdf

2 [Macro overview)] P.J. Brown, Macro Processors and
Techniques For Portable Software, John Wiley & Sons,
1974.

3 [Macro overview] Martin Campbell-Kelly, An Introduc-
tion to Macros (Computer monographs, 21), MacDonald

& Co., London, 1974.

4 [Macro overview] Peter Wegner, Programming Lan-
guages, Information Structures, and Machine Organiza-
tion, McGraw-Hill Book Company, 1968, section 2.6 and
section 3.1-3.4, pp. 130-180.

® [Macro overview] John R. Metzner, A graded bibliog-
raphy on macro systems and extensible languages, ACM
SIGPLAN Notices, Volume 14 Issue 1, January 1979,
pp. 57-64.

5 [Mellroy’s model] M.D. Mcllroy, Macroinstruction Ex-
tensions for Compiler Languages, Communications of the
ACM, vol. 3 no. 4, 1960, pp. 214-220.

"In 1967 Mcllroy’s paper was reprinted in the now classic
book Programming Systems and Languages, edited by
Saul Rosen, McGraw-Hill, New York, 1967. For this paper
I was looking at the reprint of Rosen’s book. In the reprint
Mcllroy doesn’t say anything about the macro name in
this example also being used within the definition but
not apparently as a recursive call of the macro, i.e., the 3-
argument call can be distinguished from the 1-argument
instruction.

8 [Macros at Bell Labs] May 4, 2009,
http://deememorial.blogspot.com/2009/05/
doug-mcilroy-recalls-bell-labs.html

9 [Other macro systems] M. Barnett, Macro-directive
Approach to High Speed Computing, Solid State Physics
Research Group, MIT, Cambridge, MA, 1959; D.E. East-
wood and M.D. Mcllroy, Macro Compiler Modifications
of SAP, Bell Telephone Laboratories Computation Cen-
ter, 1959; I.D. Greenwald, Handling of Macro Instruc-
tions, Communications of the ACM, vol. 2 no. 11, 1959,
pp- 21-22; M. Haigh, Users Specification of MICA, SHARE
User’s Organization for IBM 709 Electronic Data Pro-
cessing Machine, SHARE Secretary Distribution SSD-61,
C-1462, 1959, pp. 16-63; A.J. Perlis, Official Notice on
ALGOL Language, Communications of the ACM, vol. 1
no. 12, 1958, pp. 8-33; A.J. Perlis, Quarterly Report of
the Computation Center, Carnegie Institute of Technol-
ogy, October. 1969; Remington-Rand Univac Division,
Univac Generalized Programming, Philadelphia, 1957.
10 [Other macro systems] This article was originally pub-
lished in Volume 7 of the Encyclopedia and Computer
Science and Technology, published by Michel Dekker in
1977. The article is reprinted as chapter 1 of Donald E.
Knuth, Selected Papers on Computer Languages, Center

109

for the Study of Language and Information, Stanford
University, 2003.

1 Page 6 in the volume of Knuth’s selected papers.

12 Page 42 of the selected papers volume.

13 Martin Campbell-Kelly told me [email of 2013-11-23],
“Maurice Wilkes developed a macro-based system called
WISP for list processing (http://ai.eecs.umich.edu/
people / conway / CSE /M.V.Wilkes / M.V.Wilkes-Tech.
Memo.63.5.pdf) ... Peter Brown® was Wilkes’ PhD stu-
dent.”

14 @PM] C. Strachey, A General Purpose Macrogenera-
tor, The Computer Journal, vol. 8 no. 3, 1965, pp. 225—
241.

15 See Section 1.2, Historical References, at http://www.
gnu.org/software/m4/manual/

18 [@PM] Another implementation of GPM can be found
in Section 8.8 of James F. Gimpel’s book Algorithms
in SNOBOL4, John Wiley & Sons, 1976. (SNOBOLA4 it-
self was implemented using a collection of macros which
create a virtual machine for the purpose of language
portability: Ralph E. Griswold, The Macro Implemen-
tation of SNOBOL4, W.H. Freeman and Company, San
Francisco, 1972. SNOBOLA4 is sometimes known as “Macro
SNOBOL”.)

7 Email of November 16, 2013.

18 [Midas] MACRO Assembly Program for Programmed
Data Processor-1 (PDP-1), Digital Equipment Corpora-
tion, Maynard, MA, 1963, http://bitsavers.informatik.
uni-stuttgart.de/pdf/dec/pdpl/PDP-1_Macro.pdf

19 Email of October 28, 2013.

20 [Midas)] http://ia601609.us.archive.org/9/items/
bitsavers_mitrlepdpl_1535627/PDP-1_MIDAS.pdf

2! [Midas) http://1a601601.us.archive.org/11/items/
bitsavers_mittxOmemo_2363951/
M-5001-39_MIDAS_Nov62.pdf

22 Ralph Alter wrote a version of TECO, Dan Murphy’s
paper Tape Editing and Correcting Program: Dan Mur-
phy, The Beginnings of TECO, IEEE Annals of the History
of Computing, 31(4), October—December 2009, pp. 225—
241. Will Crowther wrote a version of Alan Kotok’s DDT
debugging program. Chuck Niessen and I wrote a version
of Robert Saunder’s macro assembler: Chuck wrote the
basic assembler and I wrote the macro-processor.

231 have the line printer assembly listing and my hand-
written flow chart for this macro processor. It is tempting
to try to make this macro processor run again on a 1219
emulator.

24 This was the first program in which I used stacks
and for which I thought about recursion in a profound
way. I think this was also the first time I wrote code for
managing a symbol table.

251 don’t remember using this capability in TECO at
Lincoln Lab.

261 won’t bother with further mention of macros in other
editors (or macros in various job control languages, shells,
or makefiles) in the rest of this note.

Macro memories, 1964-2013

110

2T [TRAC] Calvin Mooers and Peter Deutsch, TRAC: A
Text Handling Language, Proceedings of the 20th ACM
National Conference, 1965, pp. 229-246.

28 As part of my investigation, I visited TRAC creators
Calvin Mooers at his Cambridge office (of the Rockford
Research Institute) and Peter Deutsch at the Cambridge
home of his parents.

2 Brown’s book? in fact classifies TRAC as a macro
processor.

30 [Extensible languages) Niklaus Wirth, On Certain Basic
Concepts of Programming Languages, Technical Report
No. CS 65, Computer Science Department, Stanford Uni-
versity, May 1, 1967; B.A. Galler and A.J. Perlis, A
Proposal for Definitions in ALGOL, Communications of
the ACM, vol. 10 no. 4, April 1967, pp. 204-219; T.E.
Cheatham, Jr., A. Fischer, and P. Jorrand, On the Basis
for ELF — An extensible language facility, AFIPS Fall
Joint Computer Conference, 1968, pp. 937-948; J.V. Gar-
wick, J.R. Bell, and L.D. Krider, The GPL Language,
Programming Technology Report TER-05, Control Data
Corporation, Palo Alto, CA; Thomas A. Standish, A Data
Definition Facility for Programming Languages, PhD the-
sis, Carnegie Institute of Technology, 1967; James Rich-
ard Bell, The Design of a Minimal Expandable Program-
ming Language, PhD thesis, Stanford University, 1968.

31 [Extensible languages] F. Webb, The PROPHET Sys-
tem: An Overview of the PARSEC Implementation, BBN
Report 2319, September 1, 1972; PARSEC User’s Manual,
Bolt Beranek & Newman, Cambridge, MA, December
1972.

32F E. Heart et al., The Interface Message Processor
for the ARPA Computer Network, AFIPS Conference
Proceedings 36, June 1970, pp. 551-567.

33 http://walden-family.com/impcode/
c-listing-ps.txt

34 http://walden-family.com/impcode/
d-concordance.pdf

35 http://walden-family.com/impcode/
detect-interrupt-bugs.pdf

36 [Midas] http://walden-family.com/impcode/
midas516.txt

37 [Ratfor] Kernighan, B. and Plauger, P., Software Tools,
Addison-Wesley, 1976.

38 [C preprocessor] http: //gcc.gnu.org/onlinedocs/
cpp/

39 [TpX] Donald Knuth, The TgXbook, Addison-Wesley,
1986, particularly chapter 20.

40 [TEX] Victor Eijkhout, TEX by Topic, Addison-Wesley,
1991, particularly chapters 11-14, http://mirror.ctan.
org/info/texbytopic

41 [TgX] Donald Knuth, Computers & Typesetting, Vol-
ume B, TEX: The Program, Addison-Wesley, 1986.

42 [TpX] Donald E. Knuth, Digital Typography, Center
for the Study of Language and Information, Stanford
University, 1999.

David Walden

TUGDboat, Volume 35 (2014), No. 1

43 [TEX] http://mirror.ctan.org/macros/latex209/
contrib/biblist/biblist.pdf

44 [TEX] http://tug.org/TUGboat /tb25-2/
tb81lwalden.pdf

45 [TpX] http://wuw.luatex.org/

46 [TpX] Donald E. Knuth, Literate Programming,
http://literateprogramming.com/knuthweb.pdf

4" Email of December 5, 2013, from Karl Berry.

48 Private communication, January 11, 2014; the foot-
notes in the quotation are from the author of the present
paper, not from Knuth.

49D.V. Schorre, META-II: A Syntax-oriented Compiler
Writing Language, D. V. Schorre, Proceedings of the ACM,
19th ACM National Conference, ACM, New York, 1964,
http://ibm-1401.info/Meta-II-schorre.pdf

50 Edgar T. Irons, A syntax-directed compiler for ALGOL
60, Communications of the ACM, vol. 4, 1961, pp. 51—
55; Edgar T. Irons, The structure and use of a syntax-
directed compiler, Annual Review of Automatic Program-
ming 3, 1962, pp. 207-227.

*! http://walden—family.com/4prim/

52 [M4] http://www.gnu.org/software/mé/manual/

53 The full table is at http://walden-family.com/
4prim/archive/issues-1list.htm

54 [M4] http://en.wikipedia.org/wiki/

M4_ (computer_language)

55 While m4 was originally developed by Brian Kernighan
and Dennis Ritchie in 1977 and released as part of AT&T
Unix, the GNU version mentioned here was a complete
rewrite by René Seindal with continuing updates by many
others. The GNU m4 manual’s history section'® has a good
bit of additional history.

56 http://tug.org/interviews/

57 Martin Richards, Christopher Strachey and the Cam-
bridge CPL Compiler, Higher-Order and Symbolic Com-
putation (a special Christopher Strachey memorial issue),
13, 2000, pp. 85-88.

58 Donald E. Knuth, Companion to the Selected Papers
of Donald Knuth, Center for the Study of Language and
Information, Stanford University, 2012.

59 [TEX|] Stephan von Bechtolsheim, TgX in Practice,
Volume II1I: Tokens, Macros, Springer-Verlag, 1993.

50 Donald E. Knuth, Selected Papers on Computer Lan-
guages, Center for the Study of Language and Informa-
tion, Stanford University, 2003.

61 Tim Hart at MIT added a macro capability to Lisp in
1963. Macros in Warren Teitelman’s BBN Lisp, which I
used, were perhaps more well developed. In some sense
the original Lisp interpreter functioned a bit like a macro
processor.

¢ David Walden
http://walden-family.com

