TUGboat, Volume 35 (2014), No. 1

Selection in PDF viewers and
a LuaTgX bug
Hans Hagen

In January 2014 a message was posted to the Con-
TEXt mailing list asking for clarification about the
way PDF viewers select text. Let me give an example
of that (inside a convenient ConTEXt wrapper):
\startTEXpage [offset=2cm]
\hbox{$ x+y $}

\stopTEXpage

In figure 1 you can see how for instance Ac-
robat (which I use for proofing) and SumatraPDF
(which T use in my edit—preview cycle) select this
text. As reported in the mail, other viewers behave
like SumatraPDF does, with excessive vertical space
included in the selection.

Tty

T+y

Acrobat SumatraPDF

Figure 1: Some math selected in PDF viewers.

Part of the question was why wrapping a dis-
play formula in an \hbox doesn’t have this effect on
viewers. Think of:

\startTEXpage [offset=2cm]
\hbox{\startformula x+y \stopformula}
\stopTEXpage

This can be reduced to the following primitive
construct (which is rendered in figure 2):
\startTEXpage [offset=2cm]

\hbox{$$ x+y $$}
\stopTEXpage

Acrobat SumatraPDF

Figure 2: Some text selected in PDF viewers.

If you look closely you will see that we have text
and not math. This is because in restricted horizontal

69

mode (inside \hbox) TEX sees the $$ as a begin and
immediate end of math mode, so in fact we have
here some text surrounded by empty math. When I
realized that using ConTEXt’s \startformula could
have this side effect in some situations I decided to
catch this, but sometimes TEX can give surprises.
Already a while ago Taco and I decided that it
would be handy to have primitives in LuaTgX for
special characters (or more precisely: characters with
certain catcodes) as used in math and alignments.

Table 1: Some of the extra LuaTEX primitives.

token primitive(s)
\alignmark
& \aligntab
$ \Ustartmath \Ustopmath
$$ \Ustartdisplaymath \Ustopdisplaymath
- \Usuperscript
\Usubscript

As you can see in table 1, the dollars are some-
what special as in fact we don’t alias characters
(tokens) but have introduced primitives that change
the mode from text to inline or display math and
back. So, we can say:

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath}
\stopTEXpage

This renders okay in LuaTgX 0.78.1, but when
we tinker a bit like this (with an invalid \par inside
the \hbox):

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath
\par}
\stopTEXpage
we get this:

Assertion failed!

Program: c:\tex\texmf-win64\bin\luatex.exe
File: web2c/luatexdir/tex/texnodes.w, Line 830

Expression: p> my_prealloc

Oops. Furthermore, if we add some text after
the invalid \par:

\startTEXpage [offset=2cm]
\hbox{\Ustartdisplaymath x+y \Ustopdisplaymath
\par x}
\stopTEXpage

we get:
! This can’t happen (vpack).

As an excursion from working on the Critical
Editions project Luigi Scarso and I immediately

Selection in PDF viewers and a LuaTEX bug

70

started debugging this at the engine level and after
some tracing we saw that it had to do with packag-
ing. Taco joined in, and we decided that it made
no sense at all to try to deal with this at that level
simply because we ourselves had bypassed a natural
boundary of TEX: caching the start of display math
by seeing two successive $ as an inline formula. So
the solution is either to make \Ustartdisplaymath
more clever, but better is to simply issue an error
message when this state is entered. That way we
stick to the original TEX point of view, an approach
that has never failed us so far. The chosen solution
is to issue error messages (broken onto two lines for
TUGDboat):

! You can’t use ‘\Ustartdisplaymath’
in restricted horizontal mode

! You can’t use ‘\Ustopdisplaymath’
in restricted horizontal mode

If you really want this you can redefine the
primitive:
\let\normalUstartmath\Ustartmath
\let\normalUstopmath \Ustopmath

\let\normalUstartdisplaymath\Ustartdisplaymath
\let\normalUstopdisplaymath \Ustopdisplaymath

\unexpanded\def\Ustartdisplaymath % context way
{\ifinner
\ifhmode
\normalUstartmath
\let\Ustopdisplaymath
\normalUstopmath
\else
\normalUstartdisplaymath
\let\Ustopdisplaymath
\normalUstopdisplaymath
\fi
\else
\normalUstartdisplaymath
\let\Ustopdisplaymath
\normalUstopdisplaymath
\fi}

As with many things in TEX there is often a
way out, as long as things are open and accessible
enough. Currently in ConTEXt we do something like
the above for cases where confusion can happen.

With that fixed, it was time to return to the
original question. Why do math selections have such
large bounding boxes in some viewers? The answer
to that is in the PDF file. Let’s look at the font
properties of a math font, Latin Modern Math here:

Hans Hagen

TUGDboat, Volume 35 (2014), No. 1

24 0 obj
<<
/Type /FontDescriptor
/FontName /CXDZIF+LatinModernMath-Regular
/Flags 4
/FontBBox [-1042 -3060 4082 3560]
/Ascent 3560
/CapHeight 683
/Descent -3060
/ItalicAngle 0
/StemV 93
/XHeight 431
/FontFile3 23 O R
/CIDSet 22 0 R
>>
endobj

Compare these rather large values for FontBBox,
Ascent, etc., with a text font (Latin Modern Ro-
man):

24 0 obj
<<
/Type /FontDescriptor
/FontName /TEKCPF+LMRoman12-Regular
/Flags 4
/FontBBox [-422 -280 1394 1127]
/Ascent 1127
/CapHeight 683
/Descent -280
/ItalicAngle O
/StemV 91
/XHeight 431
/FontFile3 23 O R
/CIDSet 22 O R
>>
endobj

So, it looks like Acrobat is using the actual
heights and depths of glyphs (probably with some
slack) while other viewers use the font’s ascender
and descender values. So in the end the answer is:
there is nothing the user, ConTEXt or LuaTEX can do
about it, apart from messing with the values above,
which is probably not a good idea.

But trying to answer the question (by stripping
down, etc.) had the side effect of identifying a bug in
LuaTgX. A lesson learned is thus that even adding
simple primitives like the ones above needs some
studying of the source code in order to identify side
effects. We should have known!

¢ Hans Hagen
Pragma ADE
http://pragma-ade.com

