
TUGBOAT

Volume 34, Number 2 / 2013

General Delivery 111 Ab epistulis / Steve Peter

111 Editorial comments / Barbara Beeton

Barry Smith, 1953–2012; Yet another DEK interview; TeXdoc on line;

Fonts, typography, and printing—on the web and in print

112 In memoriam: Barry Smith (1953–2012) / Doug Henderson

113 Hyphenation exception log / Barbara Beeton

114 Running TEX under Windows PowerShell / Adeline Wilcox

Dreamboat 115 Does TEX have a future? / Hans Hagen

Software & Tools 120 TEX Collection 2013 DVD / TEX Collection editors

121 What is new in X ETEX 0.9999? / Khaled Hosny

123 MetaPost: PNG output / Taco Hoekwater

124 Converting Wikipedia articles to LATEX / Dirk Hünniger

Fonts 125 A survey of text font families / Michael Sharpe

132 Glisterings: A font of fleurons; Fonts, GNU/Linux, and X ETEX;

Mixing traditional and system fonts / Peter Wilson

136 Interview with Charles Bigelow / Yue Wang

Typography 168 Oh, oh, zero! / Charles Bigelow

Hints & Tricks 181 Production notes / Karl Berry

182 The treasure chest / Karl Berry

LATEX 184 Preparing for scientific conferences with LATEX: A short practical how-to /

Paweł Łupkowski and Mariusz Urbański

Literate Programming 190 LiPPGen: A presentation generator for literate-programming-based teaching /

Hans-Georg Eßer

Graphics 196 Entry-level MetaPost 2: Move it! / Mari Voipio

200 Creating Tufte-style bar charts and scatterplots using PGFPlots / Juernjakob Dugge

205 Typographers, programmers and mathematicians,

or the case of an æsthetically pleasing interpolation / Bogusław Jackowski

Philology 223 Representing linguistic pitch in (X E)LATEX / Kevin Donnelly

Book Reviews 228 Book review: Learning LATEX / Boris Veytsman

229 Book review: Zapf Exhibition: The Calligraphy of Hermann & Gudrun Zapf /

Boris Veytsman

230 Book review: What Our Lettering Needs / Will Adams

231 Book review: LATEX Quick Reference / Boris Veytsman

232 Book review: Presentations with LATEX / Boris Veytsman

Advertisements 233 TEX consulting and production services

Abstracts 235 Die TEXnische Komödie: Contents of issue 2/2013

235 ArsTEXnica: Contents of issue 15 (April 2013)

236 GUST: EuroBachoTEX 2013 proceedings

TUG Business 110 TUGboat editorial information

110 TUG institutional members

240 TUG 2013 election

News 243 Calendar

244 TUG 2013 announcement

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2013 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $65.

The discounted rate of $65 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: August 2013]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Jonathan Fine
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Philip Taylor
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Copyright c© 2013 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

“The Internet is completely decent-
ralized,” Mr. Rimovsky said.

[anonymous]
International Herald Tribune

(14 September 1998)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 34, NUMBER 2 • 2013
PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 34, No. 2) is the second
issue of the 2013 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat

web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

The third issue for this year will be the TUG 2013 pro-
ceedings. The deadline for receipt of final papers for that
issue is November 4.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site. We also accept submissions using ConTEXt.
Deadlines, tips for authors, and other information:
http://tug.org/TUGboat/location.html

110 TUGboat, Volume 34 (2013), No. 2

Suggestions and proposals for TUGboat articles are
gratefully accepted. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB,

Vilnius, Lithuania

TUGboat, Volume 34 (2013), No. 2 111

Ab Epistulis

Steve Peter

As I sit here writing this in the gentle hum of my
overworked air conditioner, I can attest that summer
has definitely reached the northern hemisphere. As
the weather here has been heating up, so too has the
planning for TUG 2013 in Tokyo.

Proposals are coming right now (the deadline is
here, which focuses the mind), and from what I’ve
seen so far, it looks to be an amazing conference,
with a focus (as you would expect) on East Asian
usage of TEX, but with plenty of content for TEX
users of every level and linguistic requirement. Even
if you aren’t giving a presentation, consider joining
us. The conference runs from October 23–26 at
the University of Tokyo, Komaba, Tokyo, Japan.
For full details, see the conference website at http:
//tug.org/tug2013.

Since I wrote for the last issue of TUGboat, we
have had an official TUG election. I’m very pleased
to be able to continue as president for another term
(even if I am thinking of re-styling this as the vice
president’s column). On the board of directors, we
have one director retiring, Jonathan Fine, and I’d like
to thank him for his service on the board. Joining
the board this year will be Arthur Reutenauer, whom
many of you will know from various TEX meetings in
Europe and abroad. I first met Arthur a few years
ago in Cork, and was immediately impressed both
with how smart he is, and how approachable. (And of
course, anyone who knows him knows that he wears
many hats, most of them quite stylish!) Returning
to the board are Kaja Christiansen, Steve Grathwohl
(a.k.a. Steve2), Jim Hefferon, Klaus Hoeppner, and
David Walden. Candidate statements and photos
are online at http://tug.org/election.

The TEX Collection 2013 DVD has shipped to
TUG members. I received my disc last week, and
several friends have already installed the latest and
greatest, and are playing around (re)discovering TEX
and friends.

Board member Boris Veytsman continues to
write prolifically. Now online at the TUG website are
new book reviews covering Presentations with LATEX

and LATEX Quick Reference by Herbert Voß, and
Learning LATEX by David Griffiths and Desmond
Higham. For these and other reviews, as well as
discounts and more, see http://tug.org/books.

Until next time. Happy TEXing!

⋄ Steve Peter

president (at) tug dot org

http://tug.org/TUGboat/Pres

Editorial comments

Barbara Beeton

Barry Smith, 1953–2012

My acquaintance with Barry was bounded by two
telephone calls. The second, last December from
Doug Henderson, informed me of Barry’s death in
October 2012.

The first call was much more upbeat. Early one
morning in 1982, I picked up the phone to hear an un-
familiar voice asking if it would be possible to output
the camera copy for a book on the Math Society’s
Alphatype. It was Barry. The book in question was
the manual for Oregon Pascal, as prepared in TEX80
by Barry and his partner at Oregon Software, Dave
Kellerman. Barry reported the successful creation in
his report in TUGboat 2:2 (page 34) as part of his
report on TEX for VAX/VMS:

Well, it works—TEX for the VAX running VMS

is alive, available, and in production use. (Pro-
duction use is defined by example—we’ve just
finished a 192 page manual for our optimizing
PDP-11 Pascal compiler that is entirely typeset
by TEX, including charts and diagrams.)

In the event, arrangements were made, and the out-
put that emerged from the Alphatype was classy—
much more attractive than other contemporaneous
compiler manuals, which were often “typeset” on a
line printer. The highlight, for me, was the section
containing the “railroad diagrams”, syntax diagrams
that presented in graphic form the Pascal grammar.
These pages really tested the alignment of the Alpha-
type, to ensure that no rules (the drawn kind) were
broken, and that they joined with the boxes at appro-
priate locations. Sadly, I’ve been unable to find an
image of these pages on the web; they really looked
spectacular.

Barry and David went on to form Kellerman &
Smith, providing TEX for the VAX. Then the Mac
arrived on the scene. Before Barry and David went
their separate ways (Barry to form BlueSky, devoted
to the Mac, and David, Northlake Software, con-
tinuing with VMS), they cooperated on one more
notable project for TUG: guest editing an issue of
TUGboat (7:1, 1986), including a new design by a
professional designer and a special cover drawing by
Duane Bibby, which was also featured on that year’s
meeting T-shirt. The issue is on the TUG web site—
take a look.

It’s hard to accept that Barry isn’t here any
more. His contributions were always pushing the
boundaries that other people took for granted. He
will be missed.

112 TUGboat, Volume 34 (2013), No. 2

Yet another DEK interview

In Vienna on May 16, Don presented the first annual
“Vienna Gödel Lecture” of the Faculty of Informatics
at Vienna University of Technology.

The lecture was videoed, you can watch it at
http://www.informatik.tuwien.ac.at/english/

vienna-goedel-lectures/2013. After the lecture,
Don submitted to an “All Questions Answered” ses-
sion, linked from the same page.

Don also took part in an interview, entitled “I
was born a geek”. The transcript (in German) can
be found at http://futurezone.at/digitallife/
15926-donald-knuth-ich-wurde-als-geek-

geboren.php. The interview is linked from the TUG

interviews web page.

TeXdoc on line

For those who have excluded most documentation
from their TEX installation, but still need to look
at package manuals from time to time, there is an
online version of texdoc developed and maintained
by “frequent contributors” to the site http://www.
texdoc.net/, The server is maintained by Stefan
Kottwitz, and the scripts by Paulo Cereda, both
active contributors to TeX.stackexchange. The in-
structions are simple and the material well organized.
Thanks, guys!

Fonts, typography, and printing—

on the web and in print

“TypeRider” (http://www.youtube.com/watch?v=
3diZa7pmSys) is a short video, the introduction to
a game that “aims to revive interest in the history
of typography through a multimedia world”. More
details at http://www.typerider.fr/; release of
the game is expected in September 2013.

Tibet: An Inner Journey, by Matthieu Ricard,
has recently been reissued in paperback. One chap-
ter is about a centuries-old print shop that uses
engraved wooden blocks. Astonishingly, it survived
the Chinese desecration of Tibet. It is still very ac-
tive, printing both sacred Buddhist texts (in red) and
secular material (in black). They also make some of
their own paper using a native Tibetan plant. The
text occupies only a few pages, but the story is il-
luminated by about a dozen pages of color photos.
(Thanks to Elizabeth Tachikawa, the Unix TEX office
person at the University of Washington in the 1980s.)

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

In memoriam: Barry Smith (1953–2012)

Doug Henderson

Barry Gordon Smith
1 September 1953–8 October 2012

A sad day has come to all that knew Barry

Smith. He passed away after a long battle with

cancer. The doctors gave him six months, and, as

was his way, he lived his life developing Textures, the

Mac version of TEX, as if he would never do anything

else— for almost another 2 years.

So optimistic he was in the last week that he

didn’t even let on to those most dear to him how

close he was to the end. He dearly loved Apple

technologies and was very close to finishing an iOS

version of Textures for the iPad.

I knew Barry as a coder like none other, and his

energy for coding perfection burned like few that I

have known in my life.

So it is with much regret that I inform everyone

of Barry’s death. He was actively working on Tex-

tures for the Mac and iOS when he left us. He was

strongly committed to making the best TEX system

possible and chose the Macintosh platform before I

came to work with him in 1989. His passing is a loss

for us all.

His work is at an end.

Hyphenation exception log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly. The full list last
appeared in TUGboat 16:1, starting on page 12,
with updates in TUGboat 22:1/2, pp. 31–32; 23:3/4,
pp. 247–248; 26:1, pp. 5–6; 29:2, p. 239; 31:3, p. 160;
and 33:1, pp. 5–6.

In the list below, the first column gives results
from plain TEX’s \showhyphens{...}. The entries
in the second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document. The full list of exceptions, as a
TEX-readable file, appears at http://mirror.ctan
.org/info/digests/tugboat/ushyphex.tex. (It’s
created by Werner Lemberg’s scripts, available in
the subdirectory hyphenex.)

Like the full list, this update is in two parts:
English words, and names and non-English words
(including transliterations from Cyrillic and other
non-Latin scripts) that occur in English texts.

Thanks to all who have submitted entries to
the list. Here is a short reminder of the relevant
idiosyncrasies of TEX’s hyphenation. Hyphens will
not be inserted before the number of letters specified
by \lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by TEX
except for “missing” hyphens at the beginning or
end, it has not been included here.

Some other permissible hyphens have been omit-
ted for reasons of style or clarity. While this is at
least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated in
the same way regardless of usage.

TUGboat, Volume 34 (2013), No. 2 113

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

Hyphenation for languages

other than U.S. English

Patterns now exist for many languages other than
U.S. English, including languages using accented and
non-Latin alphabets. CTAN holds an extensive col-
lection of patterns: see language/hyphenation and
its subdirectories.

A group of volunteers led by Mojca Miklavec
and Manuel Pégourié-Gonnard have created a com-
prehensive package of hyphenation patterns, called
hyph-utf8; see http://tug.org/tex-hyphen.

The list—English words

ape-ri-odic a-peri-odic
as-pheric a-spher-ic
as-pher-i-cal a-spher-i-cal
backscratch(er,ing) back-scratcher(-ing)
bedrid-den bed-rid-den
bigshot big-shot
cacheabil-ity cache-abil-ity
chancery chan-cery
dou-bletalk dou-ble-talk
droplet drop-let
dystopia dys-topia
elec-trophore-sis elec-tro-pho-re-sis
elec-trophoretic elec-tro-pho-ret-ic
ex-plana-tory ex-plan-a-tory
facelift(s,ing) face-lifts(-ing)
gazetteer gaz-et-teer
ge-ome-ter ge-om-eter
grandiose gran-di-ose
halftone half-tone
heinous hei-nous
hy-phen-ation hy-phen-a-tion
ir-ra-tional ir-ra-tio-nal
leaflet leaf-let
liftoff lift-off
metaphor meta-phor
metaphor-i-cal(ly) meta-phor-i-cal(-ly)
metempsy-chosis metem-psy-cho-sis
midafter-noon mid-after-noon
quadri-lat-eral quad-ri-lat-er-al
quadruped quad-ru-ped
quadrupole quad-ru-pole
reim-ple-ment(s,ed) re-imple-ment(s,ed)
reim-ple-men-ta-tion re-imple-men-ta-tion
re-nais-sance ren-ais-sance
rooftop roof-top
sce-neshift(er,ing) scene-shift-er(-ing)
shoplift(er,ing) shop-lift-er(-ing)

Hyphenation exception log

sig-nage sign-age
subn-ode(s) sub-node(s)
triplet trip-let
we-blog(s) web-log(s)
weightlift(er,ing) weight-lift-er(-ing)

Names and non-English words

used in English text

Al-go-nquian Al-gon-quian
Al-go-nquin Al-gon-quin
Au-flage Auf-lage
Got-tfried Gott-fried
Hoe-fler Hoef-ler
Ni-et-zsche Nietz-sche
Py-ongyang Pyong-yang
Werkzeuge Werk-zeuge

Some musings on misplaced hyphens

It should be obvious that text in a given language
should be processed with the proper patterns for
that language (and \left,righthyphenmin). Odd
things will surely ensue when the patterns for some
other language are in effect.

While not wishing to embarrass anyone, it is
nonetheless a fact that the following hyphenations
were found in the printed version of a recent collec-
tion. The format in which they are presented here
is, for convenience, the same as that used for the
“real” list. Do not use these for creating English
patterns!

“Good bad examples”

these the-se
Lua-\TeX Lu-aTEX
per-spec-tive perspecti-ve
peo-ple pe-ople
about abo-ut
soft-ware so-ftware
slightly sli-ghtly
pack-age packa-ge
make ma-ke
pub-li-ca-tion pu-blication
ap-pears appe-ars

⋄ Barbara Beeton
http://tug.org/TUGboat

tugboat (at) tug dot org

114 TUGboat, Volume 34 (2013), No. 2

Running TEX under Windows PowerShell

Adeline Wilcox

When I need to use TEX with Microsoft Windows, I
prefer compiling my (LA)TEX code from the command-
line shell called PowerShell to using cmd.exe.

After running, say, pdflatex mypaper.tex (file
extension optional), correcting LATEX code with gVim
(my editor of choice) and writing the file, typing r

at the PowerShell prompt reruns the last command
given to PowerShell.

Further, if a command has already been used
in the current PowerShell session, executing Power-
Shell’s Get-History cmdlet gives its Id number. For
example, if bibtex mypaper was previously run and
the command Id is 8, BibTEX can be rerun by typing
the short command r 8.

At the PowerShell prompt, typing ‘Get-Help
〈cmdlet-name〉’ works rather like the Unix man pages.

PowerShell also knows some Unix aliases. In-
stead of typing the PowerShell cmdlet

Move-Item oldfile.tex newfile.tex

the same thing can be done with

mv oldfile.tex newfile.tex

An object-based shell, PowerShell can be mad-
dening to experienced Unix shell programmers. But
as long as one does not attempt too much with
PowerShell, it can still be a handy way to run LATEX.

⋄ Adeline Wilcox

Department of Veterans Affairs

810 Vermont Ave, NW

Washington, DC, USA

adeline dot wilcox (at) va dot gov

TUGboat, Volume 34 (2013), No. 2 115

Does TEX have a future?

Hans Hagen

1 Introduction

Making the transition from ConTEXt MkII to MkIV
took a lot of time. In the process all kinds of code
was evaluated, improved and, occasionally, removed.
To some extent, the frozen state of MkII reflects
the requirements of automated typesetting of the
past two decades. Today, LuaTEX is advancing au-
tomated typesetting beyond what was previously
possible. But do we really need it? In this article I
will describe several issues we faced while rewriting
the code, the choices, and compromises, we made.
I will not attempt to answer the question whether
TEX has a future, but merely offer you my own ob-
servations and thoughts.1

2 Media

It is not hard to extrapolate the advance of e-books,
and the demise, in some countries, of paper books.
Less demand for printed books means less need for
typesetting. Of course, real-time rendering is also
typesetting. But since there is no one format compat-
ible with all e-book readers, publishers are unlikely
to produce multiple device-specific versions. To what
extent is a shift in the way documents are encoded
important for TEX development? And as publishers
cut quality and costs in an attempt to stay alive, who
will want high quality output? Personally, I think
more and more authors will turn to self-publishing.
In this respect we might see a revival of TEX and
more complex typesetting. It all depends on how im-
portant a particular look and feel is, and what price
you are willing to pay to achieve it. Nevertheless, we
cannot deny the fact that times are changing, and
that technological developments will influence how
TEX-like systems evolve.

From the start ConTEXt could produce very
complex interactive documents. But apart from its
inclusion in several projects, this functionality has
never been in any serious demand by the publish-
ing world. One reason for this is that compared to
the printed product, interactivity is seen as an addi-
tional ‘free’ feature. As we enter the age of electronic
books, we see that the features commonly used are
only a portion of those available. Nevertheless, all
this accumulated functionality is available in MkIV.
When a typesetter has an eye for quality, interesting
typographic and navigational details will appear.

Originally presented at EuroBachoTEX 2013.
1 This text was copy-edited for MAPS by Michael Gu-

ravage, whom I gratefully thank for helping me express my

thoughts.

3 Application

It is quite usual to find ConTEXt hidden in a larger
publication workflow. In such cases the input comes
from a database or some online editing environment.
The layout, and therefore the typesetting, are often
relatively simple. A predefined style tells ConTEXt
how to transform input to output. The input may be
predictable, but the user still has significant influence
on the workflow. In this situation, what sets MkIV
apart is its ability to analyze and manipulate data
sets. MkII can also deal with data, but with Lua on
board, MkIV solutions seem more natural. MkII is
sufficient for traditional typesetting situations, but
MkII is a dead end compared to MkIV.

We often talk of TEX users and user groups,
but the more abstract term usage might be a better
indicator of how much TEX is used. The number
of TEX users is not growing, but TEX usage might
be on the rise. Perhaps counting the number of
pages produced with TEX is a better indicator of
how prevalent TEX is than counting the number of
installed TEX systems.

4 Coding

Another observation is that ConTEXt users often
produce more advanced and demanding documents
than I do as part of my work. For me, the biggest
advantage of MkIV is its support for OpenType.
Fonts are easier to install, and all those encodings
disappear. Another advantage is that MkIV has a
flexible XML processor built in, which can save you
time in solving problems. Of course we continue to
use and improve basic rendering capabilities, but
we often have to simplify solutions when designers
fail to see the possibilities of automated typesetting.
Stability is often cited as the reason to use older
combinations of TEX engines and macro packages.
Ease of use and improved maintenance might be
sufficient reasons to move on.

In the early days of ConTEXt my colleagues
and I were its main users. One of the nice things
with TEX compared to a word processor—never
in my life have I had to use one— is that you can
automate things. Imagine that you attend a series of
meetings where several hundred learning objectives
are identified, described, ordered and grouped. If
you are in charge of such a task, it really helps to
have a system where numbering and breaking pages
comes for free. We were often able to get the adapted
documents in the post within a few hours of leaving
the meeting. The authors were impressed when, in
the next stage of the project, we presented them with
multiple professional looking documents derived from
the same source. No other application could easily

Does TEX have a future?

116 TUGboat, Volume 34 (2013), No. 2

handle 500 floating images on 300 pages without
crashing. This was the time that using TEX paid off
for us. That was more than 15 years ago.

Such a TEX-based workflow is a sequence of edit,
run and preview cycles; steps recognizable to any
old-time computer user. However, it is not something
that newcomers, like our children, might deem us-
able. It’s not ‘what you see is what you get’, but the
more abstract process of ‘what you key is what gets
done’. Wrapping TEX with a simpler interface would
only hide its power, flexibility and charm. Then, you
might as well use a word processor. Let’s face it,
using TEX directly only pays off when the user can
separate coding from rendering, wants to have full
control and desires to be independent of hard coded
solutions. Try explaining that to a twittering face-
booking kid. Regardless of how we move from MkII
to MkIV, the route from source to result remains the
same, and so does the intended audience. Updating
TEX engines and macro packages will not increase
TEX usage.

For some of our ConTEXt projects, traditional
paper-based books are complemented by content
intended for the web. Consequently, the document
source is often XML. We could encode documents
using a TEX-based coding, which, if they had the
freedom to choose, would likely be more comfortable
for authors to use. I wager that many authors who
have used TEX directly still prefer it as an input
language. Though XML is a widely accepted input
and storage format, it is not ideal for typesetting.
XML is geared toward publishing on the web and is
not as expressive as TEX. However, reusing content is
rare, so we needn’t worry too much about encodings.

Coding in XML has some advantages for process-
ing by TEX. There are no TEX commands for authors
to misuse or redefine, and valid XML documents pro-
duce no errors. Another advantage is that styling
and coding are completely separate. Of course, re-
lieving the author of the responsibility of rendering
complex documents can lead to sub-optimal output,
unless the author is willing to adapt his content. The
advent of XML has made people aware of the bene-
fits of structure. ConTEXt tries to enforce structure,
so TEX can fit nicely into modern publication work-
flows. However, for the quick and dirty one-time
documents, the overhead of adding structure might
not be worth the effort. So, even if in MkIV we
promote using \startchapter over \chapter and
\startitem over \item, we keep supporting the less
coding demanding variants.

The styles I write today are a mixture of TEX,
MetaPost and Lua. Solving the same problems with
MkII, if possible, would require considerably more

effort. Just as the faster Internet has become natural,
so has the MkIV mix.

5 Double-sided

An electronic medium is single-sided. A book is
always double-sided, and in the case of magazines
and newspapers also multi-column. ConTEXt has
quite some code to deal with double-sided layout.
Sometimes TEX collects more content than can fit on
one page. When this happens we have to keep track
of where content should end up. For instance, di-
mensions and alignment conditions for margin notes
must be swapped for odd and even pages.

In a single-sided universe, all the ConTEXt code
that deals with inner and outer positioning and
alignment could go away. Headers and footers could
also be simplified. By removing the distinction be-
tween left and right pages, we could also drop some
page synchronization code. Backgrounds wouldn’t
have to keep track of state either.

Related to this is page imposition. Page impo-
sition is built into ConTEXt and is rather advanced.
New imposition schemes occasionally appear through
the effort of Willi Egger, who not only typesets but
also prints and binds books. The advent of a new
folded paper gadget can be the impetus for adding
yet another variable to control the position of pages.

Some of our projects require that we produce
imposed products as part of an automated workflow.
Cover pages, combined with back pages, are on the
agenda for future integrated support. Since these
features are applied to finalized pages, implementing
them is relatively easy, and they do not interfere
much with existing code.

To separate content within electronic documents,
we might end up with all sorts of cover-like pages.
After all, additional e-pages are cheap, and color
comes for free. This means that we might see more
advanced page clustering and numbering schemes
in ConTEXt MkIV. For instance, it might be nice if
chapters had alternating or unique background colors.
It would be even nicer if this property could be im-
plemented without introducing new user commands
in the source document.

6 Paper size

Paper books have standard page sizes; electronic
books do not. Splitting tables with spans or large

Hans Hagen

TUGboat, Volume 34 (2013), No. 2 117

cells is somewhat painful. So why should we split a
large table in an e-document when we could just as
well scroll?

In a way we’re going back in time. Long ago
scrolls were used as a continuous medium. Thus,
scrolling on a display is not as new as it may seem.

The concept of a page is derived from the med-
ium—but what if we ignore this? For instance,
if each chapter of a book were a separate entity,
we could have one long page per chapter. This is
problematic since TEX sets a limit on how high a
page can be. But imagine that instead of thinking
vertically we go horizontal. Headers and footers go
away or get a new meaning, and the edges would give
some indication of where we were. Perhaps we need a
floating indicator; we’ve seen stranger things. Would
this require a programmable viewer that we could
control from our document, or could we anticipate
standard features in viewers and viewing devices?
Luckily for us we can adapt the TEX backend for
either eventuality; at least we have done so for over
three decades.

7 Floats

Floats are nice for paper. It is interesting to no-
tice that in ConTEXt’s early years floats were very
prevalent in the documents we produced. In fact,
they were a selling point. In educational documents
especially, graphics need to appear near to where
they are mentioned in the text. In a purely electronic
document we needn’t struggle with fitting graphics
on a page. Relaxing this requirement would sim-
plify designs. Removing the corresponding ConTEXt
code would definitely make the codebase leaner and
meaner. But don’t worry, we have no plans to delete
anything.

What if we combine the previously mentioned
vertical layout with horizontal extensions? Again
with a finger we swipe our way down the page, where
we run into an indicator denoting a larger image.
Swiping our finger to the left displays the image;
which might be accompanied by texts, images or

animations. Another swipe and we’re back in the
main thread. It is amazing that we can do this with
TEX. In fact we can proceed to multi-dimensional
or even parallel documents. I remember turning
the Metafun manual into a QuickTime 360 movie. I
must have a ConTEXt presentation style somewhere
that implements this one page presentation where
clicking on areas exposes different parts of the page.
TEX is and will always be a fine playground for such
concepts. MkIV with Lua and MetaPost makes it
even finer.

8 Margins

The first step from a paper document to, e.g., an
e-book device, is to get rid of margins. Due to
technical limitations all devices shipped around 2012
have rather hard-coded physical margins. Perhaps
one day we will have devices that have matte displays
running from edge to edge. Imagine a device without
buttons, logos or stickers proudly mentioning the
internal chip sets or operating system.

The current tendency is to remove margins. In
the near future we might see them coming back.
Margins provide structure, and also room for vari-
ous indicators and navigation aids. This is a good
thing. Support for putting things in margins is quite
important. In MkIV we already go further than in
MkII and more will come.

9 Accessibility

A table of contents still makes sense in an electronic
document, but what about an index? An index’s
usefulness is proportional to how carefully it was
prepared. In many cases a search option works just
as well. The concept of a table of contents can be
expanded to include local tables and navigation aids
that help the reader find what he wants. Similarly,
we can collect information in multiple indexes. We
added multiple interactive indexes to ConTEXt while
involved in a project that produced quality assurance
manuals. In another project we needed index entries
arranged in a linked list, which is why this func-
tionality exists in MkII. This cross-linked variant is
not yet available in MkIV only because I don’t know
anybody who needs it. Interestingly, implementing
it in MkIV is far easier than in MkII.

A great deal of functionality, some of it even
documented, is there because we once needed it.
Take, for instance, flow charts. We can make really
big ones. Selected cells can become hyperlinks—
allowing us to jump through the document. Again,
this functionality was a side effect of making those
interactive QA manuals.

Does TEX have a future?

118 TUGboat, Volume 34 (2013), No. 2

Mechanisms like these have always been part
of ConTEXt, even when they make no sense for pa-
per documents. They are more coding issues than
demanding typographical challenges. They do not
interfere with other typographical components, so
simplifying or removing this functionality has no ben-
efits. We can do much more in MkIV, but sometimes
I get the feeling that less is more.

A lot of code in ConTEXt deals with structure.
It makes sense to think about ways to improve how
we gain access to it: linked lists, pop ups, summaries,
reading routes, etc. MkII has several mechanisms
that make controlled reading possible, but they never
took off. In MkIV most mechanisms that structure
data also retain part of it for re-use. Because we store
data for use in a second or subsequent typesetting
pass, information can be used multiple times.

Some mechanisms also support user data. For
instance, when starting a chapter, besides setting its
title, you can also name a variable that stores the
name of an image—a sort of visual title. As this
name is carried around, the image can appear as an
icon in the table of contents and on the first page
of the chapter. We needed this a long time ago in
MkII. This is one reason why in MkIV we can now
set user variables in commands that start chapters
and sections.

In one project we participate in, a free math
method, the content is first published on the web.
Given the nature of electronic documents, it went un-
noticed that, when typeset for the printed page, the
document was quite large. Selective use of content,
multiple products, and efficient typesetting are solu-
tions to this. The e-book version is not constrained
by the number of pages. Information can be repeated
when needed; complemented with the necessary nav-
igational aids. I’m confident that ConTEXt can deal
with both variants.

There has been a time, probably due to the fact
that I gave presentations showing PDF on a projector,
that ConTEXt was promoted as a system for creating
electronic documents in PDF format. This is just one
feature, but interaction has always been integrated
in the core—never an add-on. However, there is a
fundamental difference between interaction in MkII
and MkIV. Using different techniques in MkIV, we no
longer have interfering status nodes. This makes the
whole mechanism more robust, although internally
it has become pretty complex.

10 Columns

Columns make sense in broadsheet newspapers and
journals where one wants to put as much as possible
on a page. But I wonder if columns make sense

in electronic documents. After all, electronic pages
are cheap, and getting rid of multi-columns makes
typesetting much easier. In TEX the mechanisms
that deal with columns, e.g., page builder, floats and
notes, are often complex. The code can be pretty
messy. It would be nice to get rid of this legacy.

A good application of columns can be found in
parallel bible translations. Not only must the text be
synchronized in multiple columns, it also has to be
broken across pages in a reasonable way. Footnotes
are another complication.

Will such products be made in the future? The
production of printed encyclopedias has already stop-
ped, and concordances might soon follow. On the
other hand, the fact that Thomas Schmitz typesets
sophisticated documents for tablets, notebooks, pro-
jectors, and paper indicates that, for critical editions,
the future is not yet determined. And I know several
TEXies who typeset catalogs for conferences and fes-
tivals where a proper paper version is the only way to
provide an effective overview. All these documents
share a mixture of one column, multi-column and
specially composed pages.

ConTEXt currently has two mechanisms that
deal with columns. The first mixes well with single
column mode, the second is more powerful and en-
capsulated. In MkIV the pluggability of the output
routine has been improved; so if needed we can sup-
port yet unforeseen page building schemes. Parallel
streams are first on the agenda.

11 Move on

If we consider only paper documents, do we antici-
pate needing more typesetting functionality than we
already have? Does it make sense to develop macro
packages any further? Of course, it is not difficult to
make a wish list including more support for complex
critical editions and parallel typesetting of transla-
tions. For those who use a simple input format such
as Markdown, existing ConTEXt functionality is more
than sufficient. In fact, as long as we can deal with
the concepts found in HTML we’re okay. Most of
these documents consist only of running text, tables,
images, a bit of sectioning, itemized lists and maybe
descriptions.

TEX is over thirty years old. It is still maintained
and kept up-to-date. It provides users with a lot of
freedom. It has an active user community. It is often
chosen for long term use. It is boringly stable. With
these attributes, we can safely assume that TEX will
be around for a while. The same is true for macro
packages. They will stay and evolve. But how will
TEX change along the inexorable path from paper to

TUGboat, Volume 34 (2013), No. 2 119

electronic media? Typesetting habits change slowly,
so we still have some time to ponder these questions.

On the other hand, look at how quickly the web
is evolving, and how quickly younger generations
adapt to new electronic devices. When using TEX it
is natural to think in book-related categories. But
just as a computer desktop is not a real desktop,
an e-book is not a real book. Real books have a
physical presence; we can hold them in our hands
and turn each page as we read. E-books try to mimic
these physical characteristics with ridiculous results.
For example, you can choose an e-book from an e-
bookshelf, and turning pages is simulated by showing
the binding and a moving cut edge. But will we want
or need these visual clues in the future when we have
instant access to everything from anywhere on any
device we choose? Why carry around a book when
we can have its contents projected on our retina, or
hear it spoken in our ear? Regardless of how TEX
and its attendant macro packages evolve, we’d best
refrain from predicting the future, let alone promote
TEX as the ultimate and last word on typography.
We can only hope that future hardware and software
will allow us to TEX like we allow printers to use
printing presses.

⋄ Hans Hagen

http://pragma-ade.com

Collection 2013

proTEXt
TEX for MS Windows

based on MiKTEX

MacTEX
TEX for MacOSX

including full TEX Live

TEX Live
TEX for GNU/Linux, Unix,

and MS Windows

CTAN
Comprehensive TEX

Archive Network

Editors: Thomas Feuerstack (proTEXt) • Karl Berry (TEX Live)

Richard Koch (MacTEX) • Manfred Lotz (CTAN)

TEX

DVD
June 2013

DANTE e.V.
www.dante.de

O
gutenberg.eu.org

www.tug.org

❧ http://www.tug.org/texcollection ❧ 2013

TEXt: an easy to install TEX system for MS Windows: based on
TEX, with the TEXstudio editor front-end.

Live: a rich TEX system to be installed on hard disk or a portable
ice such as a USB stick. Comes with support for most modern
tems, including GNU/Linux, MacOSX, and Windows.

cTEX: an easy to install TEX system for MacOSX: the full TEX Live
ribution, with the TeXShop front-end and other Mac tools.

AN: a snapshot of the Comprehensive TEX Archive Network, a set of
ers worldwide making TEX software publically available.

TEXt ist ein einfach zu installierendes TEX-System für MS Windows,
ierend auf MiKTEX und TEXstudio als Editor.

Live ist ein umfangreiches TEX-System, zur Installation auf
tplatte oder einem portablem Medium, z. B. USB-Stick. Binaries für
e Platformen sind enthalten.

cTEX ist ein einfach zu installierendes TEXSystem für MacOSX, mit
m vollständigen TEX Live, sowie TEXShop als Frontend und weitere
gramme.

AN ist ein weltweites Netzwerk von ftp-Servern für TEX-Software. Auf
DVD befindet sich ein kompletter Abzug des deutschen
N-Knotens dante.ctan.org.

TEXt : un système TEX pour Windows facile à installer, basé sur
TEX avec l’éditeur TEXstudio.

Live : un système TEX complet qui peut être installé sur disque dur
en mode portable sur une clé USB. Fonctionne sur la plupart des
tèmes modernes, dont GNU/Linux, MacOSX et Windows.

cTEX : un système TEX facile à installer pour Mac OSX. Il comporte
distribution TEX Live complète ainsi que l’éditeur TeXShop et

utres outils pour Mac.

AN : une copie du Comprehensive TEX Archive Network, le réseau de
eurs assurant la distribution publique de TEX et ses amis dans le

nde entier.

120 TUGboat, Volume 34 (2013), No. 2

TEX Collection 2013 DVD

TEX Collection editors

The TEX Collection is the name for the overall collec-
tion of software distributed by the TEX user groups
each year. Please consider joining TUG or the user
group best for you (http://tug.org/usergroups.
html), or making a donation (https://www.tug.
org/donate.html), to support the effort.

All of these projects are done entirely by volun-
teers. If you’d like to help with development, testing,
documentation, etc., please visit the project pages
for more information on how to contribute.

Thanks to everyone involved.

1 proTEXt (http://tug.org/protext)

proTEXt is a TEX system for Windows, based on
MiKTEX (http://miktex.org) and TEXStudio (for-
merly known as TEXMakerX) (http://texstudio.
sf.net) as corresponding editor.

For 2013, proTEXt now has a standard appli-
cation program (Setup.exe) which is accompanied
by a detailed document to guide your installation
(and which, due to the simplicity of the installation
process, you’ll probably never need).

proTEXt currently has English, German and
French as possible installation languages. Volunteers
to make additional translations are most welcome.

2 MacTEX (http://tug.org/mactex)

MacTEX is a TEX system for MacOSX, installing
TEX Live and additional Mac-specific tools. MacTEX
2013 runs on both Intel and PowerPC machines and
requires at least MacOSX 10.5 (Leopard). It runs on
MacOSX Leopard, Snow Leopard, Lion, and Moun-
tain Lion. The package installs the full TEX Live
2013, Ghostscript 9.07, the convert utility from
ImageMagick 6.8.3-3, and the current versions of
BibDesk, LATEXiT, TEX Live Utility, TeXShop, and
TEXworks, as well as the TEX Dist Preference Pane,
which allows users to switch easily between differ-
ent TEX distributions. After installation, PATH is
correctly set for shells, and all applications are con-
figured and ready to run.

The MacTEX 2013 install package as obtained
over the Internet works exactly as it has in the past,
but the DVD installation has been changed to be
more robust and provide more feedback. First, users
open Terminal (from /Applications/Utilities)
and copy two lines of text to this program from
a short MacTEX Install Part 1 document. This step
installs a complete TEX Live from the DVD without
asking any questions. Second, users run a program
which installs everything else and configures the sys-

tem. The third part is only required of users running
the older Leopard or Snow Leopard, and adds a GUI

front end which runs on these systems.
The Collection also includes MacTEXtras (http:

//tug.org/mactex/mactextras.html), containing
many additional items that can be separately in-
stalled. On the 2013 DVD, software that runs exclu-
sively on Tiger (MacOSX 10.4) has been removed,
along with software that is installed by the MacTEX
DVD installer. The main categories are: bibliography
programs; alternative editors, typesetters, and pre-
viewers; equation editors; DVI and PDF previewers;
and spell checkers.

3 TEX Live (http://tug.org/texlive)

TEX Live is a comprehensive cross-platform TEX
system. It includes support for most Unix-like sys-
tems, including GNU/Linux and MacOSX, and for
Windows. Major user-visible changes in 2013:

• The texmf tree merged into texmf-dist;
language collections merged.

• X ETEX: see following article by Khaled Hosny.
• LuaTEX: updated to Lua 5.2; new library to
process external PDF page content.

• MetaPost: native support for PNG output and
floating-point (IEEE double) added.

• xdvi: now uses FreeType instead of t1lib
for rendering.

• tlmgr: new pinning action to ease configura-
tion of multiple repositories.

• Platforms: added or revived armhf-linux,
mips-irix, amd64-netbsd, i386-netbsd;
removed powerpc-aix. Also, some platforms
are now omitted from the DVD (to save space),
but can be installed normally over the net.

More details are available in the TEX Live manual
and web pages.

4 CTAN (http://www.ctan.org)

CTAN is the Comprehensive TEX Archive Network,
a set of servers worldwide making TEX software pub-
licly available.

As usual, the CTAN snapshot was made from the
German node (http://dante.ctan.org) and omits
the other components of the Collection. It is available
to TUG members (and joint members) from the TUG

members area, https://www.tug.org/members.

⋄ TEX Collection editors
Thomas Feuerstack (proTEXt),
Dick Koch (MacTEX),
Herb Schulz (MacTEXtras),
Karl Berry (TEX Live),
Manfred Lotz (CTAN)
http://tug.org/texcollection

TUGboat, Volume 34 (2013), No. 2 121

What is new in X ETEX 0.9999?

Khaled Hosny

One of the strengths of X ETEX is the use of external
libraries from the underlying system as well as from
third parties to do the heavy lifting of supporting
modern font technologies and text layout require-
ments, as well as various aspects of Unicode support.
Unicode and modern fonts support can be hard to
get right and requires a great deal of time and effort;
by using those external libraries we can build upon
already existing work in these areas. For OpenType
layout we were using the ICU Layout Engine and Sil-
Graphite for Graphite layout. On MacOSX we were
using Apple’s Font Manager API for locating fonts,
ATSUI for AAT layout and QuickTime for loading
images. On other systems we were using FreeType
and FontConfig for loading and locating fonts, and
Poppler for PDF images.

But all this is not without a cost; depending on
external libraries requires continuous maintenance
effort to catch up with changes in these external
dependencies, if we want to remain relevant. So
version 0.9999 of X ETEX saw a long overdue update
to the underlying libraries.

When OpenType support in X ETEX was first
introduced in 2006, the ICU Layout Engine was the
best, cross-platform, free software choice at the time,
though it had a limited API and was also missing
several features that are vital for X ETEX, so we were
using (and maintaining) a locally patched version for
our own use.

However, over the past few years the ICU Lay-
out Engine has become unmaintained and many bugs
have crept into it, while in the meantime the new
and more widely-supported HarfBuzz library has
emerged and reached a mature stage. So, for 0.9999
I worked on porting X ETEX to HarfBuzz, which gives
us a maintained, more complete and more widely sup-
ported layout engine1 with less maintenance burden
and simpler code on our side.

The switch to HarfBuzz also fixed some long-
standing OpenType-related bugs in X ETEX, such
as support for version 2 Indic OpenType specifica-
tions, or the ability to activate and deactivate any
OpenType feature for any script (previously limited
to scripts that did not require any specific shaping
behaviour, such as Latin or CJK), and many other
smaller issues, thanks to the first tier OpenType
support provided by HarfBuzz and its versatile API.

1 Coincidentally, after we finished the HarfBuzz port, ICU

developers issued a statement that “users of ICU Layout are

strongly encouraged to consider the HarfBuzz project as a

replacement for the ICU Layout Engine.”

Figure 1: Some kerning bugs with Adobe fonts that
were fixed after the switch to HarfBuzz.

∩ ≨ ≳ ⊊ ⫌ ⊕ ⊗ ⊜ ⋚ ⨽ ⪬

∩ ≨ ≳ ⊊ ⫌ ⊕ ⊗ ⊜ ⋚ ⨽ ⪬
Figure 2: Some variants of mathematical symbols in
the XITS Math font (in text mode).

For example, some kerning improvements are shown
in fig. 1.

Another benefit we get from using HarfBuzz is
support for Unicode Variation Selectors. Variation
selectors are a way to represent variant glyphs for
certain Unicode code points without encoding them
separately or relying only on higher level protocols,
like OpenType alternates, to represent them; unlike
font alternates, valid variants are defined by Unicode.
Variation selectors are used to encode CJK glyph vari-
ants (called Ideographic Variation Selectors), certain
Mongolian contextual forms that can’t be inferred
from surrounding characters alone, and even stylistic
variants of some mathematical symbols (however,
X ETEX does not currently support variation selectors
in math mode), as shown in fig. 2.

ICU is, however, a general library for Unicode
support, so we still use it for other features like
encoding conversion and the optional locale-aware
line breaking.

On the Graphite front, the old SilGraphite en-
gine has been rewritten as Graphite2 to provide a
more robust implementation that is optimized for
the actual use cases of Graphite than what was en-
visioned when the original engine was written. So,
in 0.9999 we moved away from the old SilGraphite
engine; the layout is now done by HarfBuzz (which
in turn uses Graphite2), so we have a more unified
interface at the code level, but we still call Graphite2
directly for Graphite-specific line breaking support,
as well as for the primitives that query Graphite
features. We now also support 4-character feature
tags in Graphite fonts.

What is new in X ETEX 0.9999?

122 TUGboat, Volume 34 (2013), No. 2

A
2

2
L

2

2
Δ

2

2
T

2

2

A
2

2
L

2

2
Δ

2

2
T

2

2
Figure 3: Before and after support for OpenType
math cut-ins. (This example was artificially created to
show the extremes of cut-ins.)

The situation on MacOSX was even worse. All
the Mac-specific APIs that we were using have been
deprecated for several OS releases; furthermore, when
Apple moved to 64-bit (x86_64) architecture, they
didn’t port the deprecated frameworks to the new
architecture, forcing X ETEX to always be built as a
32-bit application, causing all sorts of build problems
and complications, and raising uncertainty about
X ETEX’s future on Mac (the platform it was originally
written for!) in the event of Apple dropping support
for 32-bit architecture—which is not unexpected.

Fortunately, Jiang Jiang kindly offered to port
X ETEX to Core Text and other new and supported
frameworks, and did all the essential work for this
port. Thanks to him we no longer depend on any
deprecated MacOSX libraries and X ETEX future on
MacOSX has been secured.

One regrettable side effect of the MacOSX up-
dates is that the new X ETEX is no longer compatible
with xdv2pdf output driver and thus that driver has
been dropped from TEX Live. Remaining X ETEX
features that require xdv2pdf will be dropped in the
next version.

Another small but important update in this re-
lease is the support for OpenType math cut-ins (see
fig. 3) which provide for finer control of the hori-
zontal placement of sub- and super-scripts than can
be achieved with the (ab)use of italic corrections
in traditional TEX math fonts. With this imple-
mented, X ETEX now supports all major features of
OpenType’s MATH table, putting it on par with the
Microsoft Office and LuaTEX implementations.

One more notable change in this release is that
the Unicode math primitives have been renamed to
use the \U-prefix instead of the \XeTeX-prefix, for
better compatibility with LuaTEX that has the same
primitives with the \U-prefix. Old names are still
allowed, but might be removed in the future.

Other miscellaneous changes in this release in-
clude: preferring OpenType or TrueType over Type 1
fonts with the same name when FontConfig is used;
proper printing of multi-byte characters to the log
and terminal; and proper handling for characters
outside Unicode’s basic multilingual plane (BMP) in
\show, \meaning and \showlists primitives as well
as in tracing output.

One last important bug that was fixed (actually
in version 0.9998) is the occasional mismatch be-
tween the font used by X ETEX and the output driver
xdvipdfmx when multiple versions of the same font
are installed, which would often result in garbage
output or prevent the driver from producing any
output at all.

My work on X ETEX has been supported by the
general TUG and MacTEX development funds.

⋄ Khaled Hosny
http://xetex.sourceforge.net

Khaled Hosny

TUGboat, Volume 34 (2013), No. 2 123

MetaPost: PNG output

Taco Hoekwater

Abstract

The latest version of MetaPost (1.80x) has a third
output backend: it is now possible to generate PNG

bitmaps from directly within MetaPost.

1 Introduction

For one of my presentations at EuroTEX2012 in
Breskens, I wanted to create an animation in order
to demonstrate a MetaPost macro that uses timer
variables to progress through a scene.

While working on that presentation, it quickly
became obvious that the ‘traditional’ method of cre-
ating an animation with MetaPost by using Image-
Magick’s convert to turn EPS images into PNG

images was very time-consuming. So much so that I
managed to write a new backend for MetaPost while
waiting for ImageMagick to complete the conversion.

2 Simple usage

MetaPost will create a PNG image (instead of EPS
or SVG) by setting outputformat to the string png:

outputformat := "png";

outputtemplate := "%j-%c.%o";

beginfig(1);

fill fullcircle scaled 100 withcolor red;

endfig; end.

This input generates a bitmap file with dimen-
sions 100 x 100 pixels, with 8-bit RGBA color. It
shows a red dot on a transparent background.

3 Adjusting the bitmap size

In the simple example given above, MetaPost has
used the default conversion ratio where one point
equals one pixel. This is not always desired, and it
is tedious to have to scale the picture whenever a
different output size is required.

To allow easy modification of the bitmap size
independent of the actual graphic, two new inter-
nal parameters have been added: hppp and vppp

(the names come from Metafont, but the meaning is
specific to MetaPost).

In MetaPost, ‘hppp’ stands for ‘horizontal points
per pixel’; similarly for ‘vppp’. Adding ‘hppp:=2.0;’
to the example above changes the bitmap to be
50 x 100 pixels. Specifying values less than 1.0 (but
above zero!) makes the bitmap larger.

4 Adjusting the output options

MetaPost creates a 32-bit RGBA bitmap image, un-
less the user alters the value of another new internal
parameter: outputformatoptions.

The syntax for outputformatoptions is a space-
separated list of settings. Individual settings use
〈keyword〉=〈value〉 syntax. Currently supported are:

format=[rgba|rgb|graya|gray]

antialias=[none|fast|good|best]

No spaces are allowed on either side of the equals
sign inside a setting.

The compiled-in default could be given as:

outputformatoptions

:= "format=rgba antialias=fast";

However, the outputformatoptions variable
value itself is initially the empty string, because that
makes it easier to test whether a user-driven change
has already been made.

Some notes on the different PNG output formats:

• The rgb and gray subformats have a white back-
ground. The rgba and graya subformats have
a transparent background.

• The bit depth is always 8 bits per pixel compo-
nent.

• In all cases, the current picture is initially cre-
ated in 8-bit RGB mode. For the gray and
graya subformats, the RGB colors are reduced
just before the actual PNG file is written, using
a standard rule:

gray = 0.2126 ∗ r + 0.7152 ∗ g + 0.0722 ∗ b

• CMYK colors are always converted to RGB dur-
ing generation of the output image using:

r = 1− (c+ k > 1 ? 1 : c+ k)

g = 1− (m+ k > 1 ? 1 : m+ k)

b = 1− (y + k > 1 ? 1 : y + k)

If you care about color conversion, you should do
a within 〈pic〉 loop inside extra_endfig. The
built-in conversions are intended as a fallback.

5 What you should also know

MetaPost uses Cairo (http://cairographics.org)
to do the bitmap creation, and then uses libpng
(http://www.libpng.org) to create the actual file.

Any prologues setting is always ignored: the
internal equivalent of the glyph of operator is used
to draw characters onto the bitmap directly.

If there are points in the current picture with
negative coordinates, then the whole picture is shifted
upwards to prevent things from falling outside the
generated bitmap.

⋄ Taco Hoekwater

http://tug.org/metapost

MetaPost: PNG output

124 TUGboat, Volume 34 (2013), No. 2

Converting Wikipedia articles to LATEX

Dirk Hünniger

Abstract

It is often desirable to have access to Wikipedia ar-
ticles in LATEX format. A translation by hand is
typically time-consuming and error-prone. Thus it
is natural to look for algorithmic solutions to this
problem. Our solution is currently available free of
charge under an open source license for Windows and
Debian GNU/Linux. It is not limited to Wikipedia
but supports all servers running the same wiki soft-
ware (MediaWiki) as Wikipedia. In particular, it is
also possible to process local wikis available only on
private networks inside institutions.

1 Introduction

A wiki provides a very convenient way of working on
a document with many contributors, without needing
to learn the details of specialized version control and
typesetting software. MediaWiki provides a function
to export PDF files. But the possibilities for incorpo-
rating individual requirements on the output layout
are very limited and usually insufficient for profes-
sional publishers. Also the typographic quality of
the output is far less elaborate than what is provided
by LATEX. Furthermore, the embedding of formulas
as raster graphics is often criticized.

2 User experience

In the default mode, our program takes a url to a web
page on a MediaWiki server and writes a PDF version
of that page generated with LATEX to local hard disk.
It is also possible to retrieve the corresponding LATEX
source code, including images.

Also in the default mode, the HTML generated
by the MediaWiki server is evaluated. There is also
an extended mode where the source code of the
wiki page written in the wiki markup language is
processed. The wiki markup language provides a
mechanism similar to the LATEX \newcommand direc-
tive, called “templates”. In this mode it is possible
to map templates to LATEX commands and imple-
ment them using \newcommand or similar methods in
the headers. This mechanism provides a fine-grained
control over the conversion process and thus gives
the user the full flexibility of LATEX.

3 On the history of the problem

Quite a few attempts have been made to tackle this
problem programmatically. We would like to em-
phasize the successful work of Hans Georg Kluge,
who modified MediaWiki’s original parser to produce
LATEX (http://code.google.com/p/wiki2latex).

Unfortunately it needs to be installed on the server
running the wiki in order to run and Wikipedia is
currently not attempting to install it. This is partly
because the security of the code is currently being
discussed, which is particularly a concern since it is
written entirely in PHP.

There have also been several attempts approach-
ing the problem with regular expression or Backus-
Naur forms. Recently we were able to provide a
simple proof, based on the pumping lemma, that im-
proper bracketing of HTML tags, as often found on
Wikipedia, causes the grammar to no longer be con-
text free, thus rendering it indescribable by Backus-
Naur forms and regular expressions. This, in turn,
rules out most standard parsing technology.

In our approach, we run all software on the user
machine, thus bypassing any security concerns of
Wikipedia. We opted for monadic parser combinators
as parsing technology, and were able to handle the
non-context-free grammar well with that approach.

4 Technical details of the implementation

The program is entirely written in the purely func-
tional language Haskell. To do the necessary image
processing the ImageMagick library is used. We cur-
rently use X ELATEX as the default compiler, although
we recognized that the source (with tiny changes
limited to the headers only) does also compile with
pdfLATEX and LuaLATEX.

Currently there still is no freely available font
that covers the whole range of Unicode. A problem
in this respect is also that certain code points used
for some Asian characters are used for more than
one symbol and Wikipedia does not always provide
a means to find out which symbol is actually meant
by a Unicode character. For now we use FreeSerif as
the default font, which omits Asian glyphs entirely.
So we also offer a computationally combined font,
made of several fonts available under the same open
source license that actually covers the full Unicode
range. In pdfLATEX we use just this one font with the
CJK package and thus can handle the first 16 bits of
the Unicode range. This approach allows the user to
still use custom fonts like Utopia, Courier, etc. For
X ELATEX we provide a set of fonts for bold, italic,
typewriter, small caps, and combinations thereof.
This approach basically works also with LuaLATEX,
but unfortunately caused huge memory and CPU

usage in our tests.

⋄ Dirk Hünniger

http://de.wikibooks.org/wiki/Benutzer:

Dirk_Huenniger/wb2pdf

dirk dot hunniger (at) googlemail dot com

Dirk Hünniger

TUGboat, Volume 34 (2013), No. 2 125

A survey of text font families

Michael Sharpe

Abstract

This is a survey of text font families, both free in
some sense and commercial, that might be considered
suitable for general text use within LATEX, seeking
to tabulate the qualities that matter most there, as
well as X ELATEX and LuaLATEX.

Introduction

In a TUGboat article twenty years ago, Berthold
Horn [1] noted that there were over 14,000 fonts in
Type 1 format but only a handful of TEX math fonts
to accompany them. There are now considerably
more choices of math fonts than there were then,
and it seems appropriate to ask instead where are

the text fonts? It’s not that there are fewer than there
were in the 1990s, but our typographic expectations
are higher than they used to be. Moreover, the
appropriate count should be text font families rather
than individual faces, and for most purposes, one
should count only serifed font families, as those are
the only serious candidates for the main text family
where the output may include paper or PDF.

For LATEX usage, the current minimal standard
for a text font family is, in my opinion:

(A) upright and italic shapes in both regular and
bold weights (four styles);

(B) real (i.e., not faked by reducing capital letters)
Small Caps in upright regular weight;

(C) full set of common f-ligatures— f_i, f_l, f_f,
f_f_i, f_f_l (fi, fl, ff, ffi, ffl) in each style;

(D) oldstyle figures in regular weight,
upright shape.

Both Computer Modern and its modernized form
Latin Modern (lmodern) meet these expectations, and
more, but many fonts derived from legacy PostScript
fonts do not. Most commonly, (C) fails, but (B)
and/or (D) may also be lacking, and in some cases,
(A) fails, usually because there is no Bold Italic.

A more demanding user would likely raise the
bar to the following stronger conditions:

(A′) upright and italic shapes in two weights (four
styles) and preferably three weights (six styles)
such as regular, semibold and bold;

(B′) real small caps are provided in all upright
styles, and preferably in all styles;

(C′) full set of common f-ligatures— f_i, f_l, f_f,
f_f_i, f_f_l (fi, fl, ff, ffi, ffl) in each style;

(D′) oldstyle figures in all styles.

(E′) other figure styles (e.g., proportional lining, tab
oldstyle, superior) in at least upright regular
style.

The free fonts considered in this article are
mostly available from CTAN and the commercial
fonts are mostly from the current Adobe Folio. Only
fonts with serifs are considered, as those are over-
whelmingly the most common main text font types
except when output is intended on a low resolution
screen, where sans serif, or perhaps a slab serif, ren-
ders more clearly. In most cases, the fonts are in
OpenType format, which may be used directly by
LuaLATEX and X ELATEX, and which may be converted
using utilities such as otfinst or autoinst to Post-
Script font families with LATEX support files. It seems
that there are now close to thirty font families, many
of them free, which come very close to satisfying
conditions (A′)–(E′).

I don’t have licenses for most of the commer-
cial fonts listed below, and in those cases I’ve re-
lied on information from the web site http://www.

myfonts.com, from which one may obtain glyph lists
and other essential information about most com-
mercial fonts. To search manually, go to the site
and follow Find Fonts -> Search, and enter the
font name, e.g., Goudy Oldstyle, which leads to a
screen with broad matching to that name. If you
select ‘Goudy Oldstyle family of 5 fonts from

Adobe’ you reach a screen showing the five individual
fonts. Press the first (Regular weight, upright shape)
to see a selection of its glyphs. Press Glyphs to
see the entire glyph catalog for that selection, from
which you may determine that Regular weight, up-
right shape has oldstyle figures, small caps, only f_i

and f_l ligatures, and a limited selection {1,2,3}

of superior figures. (This is more or less typical for
fonts derived from older PostScript fonts.) Examin-
ing the other variants establishes that they all have
oldstyle figures, but none has small caps.

While in the screen showing all glyphs, click on
a letter to bring up an enlarged image, which may be
saved for further examination. The glyph images are
drawn from anti-aliased .gif bitmaps which seem
to have been made at the scale 1px=3em, which is
handy for estimating the vertical stem widths, which
provides information about the relative weight of a
font. The information provided in the tables below
comes from these estimated values and from values
obtained from FontForge for fonts to which I own
licenses.

A survey of text font families

126 TUGboat, Volume 34 (2013), No. 2

Table 1: Free (at least of cost) fonts, in approximate order of heaviness (VStemW)

Name Source fLigs Smc VStemW OsF OF XH CH IA Notes TL

quattrocento impallari 2 70/113 459 660 −13 28 ✓

kpfonts public A A 73/89/117/135 A A 441 670 −11 10, 20 ✓

antt public A A 75/97/118/143 A A 473 703 −9.5 17 ✓

EBGaramond public A RI 80 2 2 405 656 −17 26 ✓

GFSBodoni public A R 84/117 A 476 705 −12 1, 24 ✓

venturis arkandis A A 84/139/178 A 432 643 −16 16 ✓

LinLibertine public A A 85/123/140 A A 431 647 −12 14 ✓

GFSArtemisia public A R 85/132 A 470 692 −12 22 ✓

Computer Modern public A A 89/144 A 431 683 −14 1, 10 ✓

Latin Modern public–GUST A A 89/144 A 431 683 −14 1, 3, 10 ✓

garamondx URW–AFPL A A 91/133 A 426 692 −16 2, 14 ◦

garamond mathdesign 2 91/133 426 692 −16 10, 21 ◦

mathpazo public A R 96/141 R 459 689 −10 5, 10 ✓

Pagella TEX Gyre A A 96/141 A A 459 689 −10 5, 13, 19 ✓

newpxtext public A A 96/141 A A 459 689 −10 5, 18, 19 ✓

pxfonts public A RB 96/141 A 459 689 −10 5, 10, 13 ✓

PT Serif public 2 96/150 500 700 −12 25 ✓

fourier GUT 2 99/160 490 693 −13 9, 10, 12 ✓

kerkis public A RB 99/117/174 RB 485 681 −10.3 4, 10 ✓

utopia mathdesign 2 99/160 490 693 −13 10, 21 ✓

GFSDidot public A R 100/140 A 456 689 −12 5, 23 ✓

Bonum TEX Gyre A A 100/176 A A 485 681 −10.3 4, 13 ✓

charter mathdesign 2 102/145 488 679 −11 10, 21 ✓

CharisSIL SIL A A 102/145 488 679 −11 8, 11 ◦

mathptmx public 2 RB 102/162 A 450 662 −15.5 7, 10, 12, 13 ✓

newtxtext public A A 102/162 A 450 662 −15.5 7, 14 ✓

Termes TEX Gyre A A 102/162 A A 450 662 −15.5 7, 13, 14 ✓

baskervald arkandis A 103/153/180 415 667 −16 15 ✓

librebaskerville impallari A 104/146 A 530 770 −15 27 ✓

Schola TEX Gyre A A 112/180 A A 466 722 −15 6, 13 ✓

Keys to font tables

In the font property tables, the following abbrevia-
tions are used:

fLigs indicates the type of f-ligatures available: A in-
dicates that all (fi, fl, ff, ffi, ffl) are available in
all variants, and 2 indicates that only the two
basic ones (fi, fl) are provided;

Smc indicates availability of real small caps: A
indicates all variants, R indicates only regu-
lar weight, upright shape, RI indicates regular
weight, upright and italic shapes, RB indicates
regular and bold weights, upright shape only,
and blank indicates none;

VStemW indicates the vertical stem widths (in
em units, which in most cases is 100em=1pt)
of each weight available in an upright shape—
these provide one simple measure of the relative
weights of fonts, though other factors such as
contrast (ratio of widest to narrowest stems)
and side-bearings play a rôle as well;

OsF indicates availability of oldstyle figures: A
means all variants have oldstyle figures available
as the default text figures, R means they are
available only in regular weight, upright shape,
and blank means they are not available at all;

OF indicates, if A, that other figures sets are avail-
able: e.g., superior figures other than {1, 2, 3},
or proportional figures other than oldstyle;

XH gives the x-height in em units;

CH gives the cap height in em units;

IA gives the italic angle, e.g., −10 means slanted
10 degrees clockwise from vertical;

Notes are given after the tables;

TL indicates whether the font is included
in TEX Live.

Michael Sharpe

TUGboat, Volume 34 (2013), No. 2 127

Table 2: Commercial fonts

Name Source fLigs Smc VStemW OsF OF XH CH IA Notes

StempelSchneidlerStd Adobe 2 50/68/96/151/184 450 715 −12 B
ChaparralPro Adobe A A 55/80/120/172 A A 420 650 −10 H
CaeciliaLT Adobe 2 A 55/86/113/147 A 516 699 −5 F
BriosoPro Adobe A A 57/78/86/108/131 A A 405 622 −10 E
RockwellStd Adobe 2 57/102/176/264 472 679 −13 B, F
GaramondPremierPro Adobe A A 60/83/90/119/140 A A 393 646 −18 K, Q
ArnoPro Adobe A A 61/84/124/142 A A 398 618 −11 D
UsherwoodStd Adobe 2 63/83/114/168 467 627 −12 B
NovareseStd Adobe 2 64/99/149/218 460 640 −12 B, O
KinesisStd Adobe A A 66/84/114/132 A A 439 629 −6 M
HorleyOldStyleMTStd Adobe 2 66/85/106/142 419 705 −9 B
BerkeleyStd Adobe 2 66/87/116 426 635 −8 B
CentaurMTStd Adobe A R 66/100 A A 363 631 −13 G
VersaillesLTStd Adobe 2 67/93/141/206 496 712 −12 B
WeidemannStd Adobe 2 69/97/129/160 507 711 −12 B
WarnockPro Adobe A A 76/90/129/142 A A 440 659 −15
KeplerStd Adobe A A 73/98/132/158/180 A A 430 634 −13 L
MaiolaPro Adobe A A 73/113 A A 414 611 −11 D
PerpetuaStd Adobe A R 76/129 A A 353 573 −12 P
VeljovicStd Adobe 2 77/110/150/204 452 626 −12 B
TiepoloStd Adobe 2 77/111/148 469 614 −9 B
GoudyStd Adobe 2 R 79/123/152/243 A 418 704 −7 J
LegacySerifStd Adobe 2 79/105/141/183 422 635 −12 B
DanteMTStd Adobe A R 80/104/124 A A 404 596 −9 I
FairfieldStd Adobe 2 R 80/111/150/201 A A 418 678 −9
WeissStd Adobe 2 82/108 407 694 −8 B
BemboStd Adobe A R 82/111/140/168 A A 396 622 −11.5 D
HiroshigeStd Adobe 2 82/113/148/193 504 692 −9 B
BellMTStd Adobe A R 84/105/137 A 410 644 −16 C
MeridienLTStd Adobe 2 85/114/150 460 634 −12 B
MinionPro Adobe A A 85/116/134 A A 437 650 −12
JensonPro Adobe A A 86/113/127 A A 388 649 −8 D
LeawoodStd Adobe 2 86/134/183/207 554 709 −12 B
MinsterStd Adobe 2 87/121/167/228 456 722 −10 B
Berling Adobe 2 88/126 447 709 −12 B
GalliardStd Adobe 2 88/132 442 680 −14 B
MeliorLTStd Adobe 2 90/148 465 692 −12 B
StempelGaramond Adobe 2 R 91/134 A 429 698 −16 R
SouvenirStd Adobe 2 92/148/183/239 473 732 −10 B
CaslonPro Adobe A R 93/127/150 A A 420 711 −22 Q
StoneInformalStd Adobe 2 96/140/212 500 700 −12 B
StoneSerifStd Adobe 2 97/140/211 500 700 −12 B
TrumpMediaeval Adobe 2 R 98/146 A 477 698 −12
SabonLTStd Adobe 2 R 99/128 A 442 698 −12 Q
UtopiaStd Adobe A RB 99/141/164/224 A A 461 653 −13 S
NewCaledoniaLTStd Adobe 2 RB 100/129/169/220 A 422 664 −12 A
JansonText Adobe 2 R 100/157 A 440 711 −15 A
LucidaOT TUG A RB 104/150 A 530 723 −11.25 N
NewBaskervilleStd Adobe 2 RB 105/152 A A 427 660 −16 A, T
NewAsterLTStd Adobe 2 111/138/178/228 464 692 −16 B
TiffanyStd Adobe 2 114/149/295 449 715 −13 B

A survey of text font families

128 TUGboat, Volume 34 (2013), No. 2

Notes on free fonts

1. High contrast (ratio of widest stems to narrow-
est).

2. Scale down about 5%.

3. Extension of Computer Modern.

4. Extension of URW version of Bookman.

5. Extension of URW version of Palatino.

6. Extension of the URW version of New Century
Schoolbook. This is the font to use for briefs
to the SCOTUS. The package fouriernc pairs it
with fourier math, should you wish to improve
your case with mathematical arguments.

7. Extension of URW version of Times.

8. Extension of Bitstream Charter.

9. Extension of original Utopia, donated to TUG

by Adobe. Can use expert fonts, if available (not
free), for OsF and real small caps. (Venturis is
another option.)

10. Text and math fonts included.

11. Not on CTAN, download from sil.org. Lacks
kerning tables.

12. Fake small caps.

13. Oldstyle figures available, but no option to des-
ignate them as the default text figures.

14. Can use newtxmath as math package.

15. Similar to Baskerville. Lack of small caps and
OsF is a drawback to serious LATEX use. Math
and tabular usage is problematic because no
tabular figures are provided.

16. Based on Utopia, but not as heavy. Full-featured.
Can use fourier for math.

17. Antykwa Toruńska text and math. Singular
appearance (see samples).

18. Resolves to Pagella, with added figures.

19. Can use newpxmath as math package.

20. Designs based originally on Palatino, but much
modified to have a unique appearance.

21. Uses a variant of the mathdesign math fonts.

22. By default, uses txfonts for math.

23. The name is misleading as the Roman glyphs
are based on URW’s version of Palatino, which
is an old-style, not a Didone. Uses pxfonts for
math.

24. By default, uses CM for math.

25. Lacks Latin script small caps and OsF, but
seems unsurpassed for coverage of Cyrillic and
Eastern European character sets.

26. This carries the promise of becoming a remark-
able font family, though currently only regular
weights of upright and italic are available. It

offers both small caps and “petite caps”, the
latter having an x-height equal to the x-height
of the font, and a greater selection of figure style
than most commercial fonts.

27. Unlike most Baskerville renditions, this has low
contrast, and the italic is quite heavy. No fixed
width or old style figures, nor small caps.

28. No fixed width or old style figures, nor small
caps.

Notes on commercial fonts

A. High contrast (ratio of widest stems to narrow-
est).

B. No oldstyle figures or small caps.

C. No oldstyle figures.

D. Scale up by about 6%.

E. Too decorative for scientific text?

F. Slab serif, very geometric. Maybe for slides?

G. Limited small caps. Scale up 10–15%. Fine-
looking font.

H. Slab serif. Slides?

I. Limited small caps. Scale up 7%.

J. Goudy Oldstyle.

K. Small x-height—elegant, but hard on older eyes.

L. Update of Utopia, even denser.

M. Slab serif with character.

N. Scale down about 8%. Includes math fonts.

O. Upper case italic not slanted.

P. Scale up by 15–18%.

Q. High italic angle—beautiful but less readable.

R. Glyphs very similar to garamondx but more
widely spaced.

S. More extensive than Utopia in Fourier.

T. This text font is the basis for fonts used by the
SMF (Société Mathématique de France) for its
journals, the mathematical fonts deriving from
Adobe Mathematical Pi and a private release
by Yannis Haralambous. See [2].

Some personal opinions

Fonts without small caps in at least the upright
shapes are severely lacking, as are those without
a full set of common f-ligatures in each style. I
think oldstyle figures make a real difference to the
appearance of a document and should be available
as the default text figures. These stylistic principles
have a bearing on the assertions below.

The number and quality of the text fonts in
the “free” category is much improved since Stephen
Hartke’s survey [3] of 2006, with LinLibertine perhaps
the most notable example. As is apparent from the

Michael Sharpe

TUGboat, Volume 34 (2013), No. 2 129

above list of properties of existing commercial fonts,
many have languished for years without improvement
and lack some combination of amenities which I now
consider essential.

Of the free fonts, I am most partial to LinLiber-
tine, garamondx and mathpazo/newpx. LinLibertine
and newpxtext (which is based on a slight modifi-
cation of TeX Gyre Pagella) have the quantitative
edge when scored by criteria (A′–E′), but I prefer the
overall appearance of garamondx, even though I wish
it were more generously spaced, in the manner of
StempelGaramond. Mathpazo and newpx come with
built-in math support, and matching math support
for LinLibertine and garamondx are available as op-
tions to newtxmath. Garamondx may also be used
with the mathdesign package using the garamond
option.

Among the commercial fonts, there are some
first-rate contenders. LucidaOT has the benefit of a
math font designed from ground up to accompany
the text font, and all at a very reasonable price.
The “Pro” font families in the list comprise some
of Adobe’s most impressive offerings, some of them
surely as close to technical perfection as font fami-
lies can be. Those that are the most interesting to
me—BriosoPro, WarnockPro, MaiolaPro—may lack
the gravitas required of academic research papers
and books, and GaramondPremierPro may now be so
overused as to appear old hat. I find UtopiaStd and
KeplerStd too plain and too cramped for comfortable
reading. My favorites among the rest come down
to BemboStd, CentaurMTStd and DanteMTStd which,
despite their slight technical inadequacies, possess,
so to speak, real character. There is much to be
thankful for with the Adobe fonts that are not sim-
ply licensed from others. Unlike most foundries, their
fonts have licenses that allow modifications.

Math fonts that are well-matched to the Adobe
fonts are not so easy to find. There is now a ho-
mogeneity of design in the newer Adobe fonts that
renders many of them poor contenders for mathe-
matical use because the italic v is almost indistin-
guishable from Greek \nu, requiring a substantial
work-around.

The MinionPro package on CTAN provides a
math package based on MnSymbol that is a good
match to MinionPro, but which has some problematic
features: (a) the symbols are on the small and light
side— indeed, some are borrowed from Computer
Modern; (b) math italic v and Greek small letter \nu
are indistinguishable; (c) the scale is not adjustable;
(d) the package is so cleverly constructed as to be
quite difficult to modify.

A number of Adobe text fonts may be adapted

to the newtxmath package, with some amount of labor
and skill required. The minion option to newtxmath
provides one example of what can be done—the
math italic and Greek symbols are taken from Minion-
Pro text but other symbols are from newtxmath, the
end result being a little heavier than MinionPro math.
NewBaskervilleStd adapts well to newtxmath, but has
some deficiencies: it lacks a full set of f-ligatures and
has small caps only in upright shapes. Baskervald is
not a good substitute for NewBaskervilleStd, having
much heavier italics that don’t match newtxmath well,
among its other issues. It may be that Baskerville is
the new black, in a manner of speaking. The recently
issued (and very expensive) Baskerville 10 Pro has
made quite a splash— for example, it is now the
Metropolitan Opera’s official font, replacing Gara-
mond.

References

[1] Horn, Berthold. “Where Are the Math Fonts?”
TUGboat 14:3 (1993), pp. 282–284.

[2] Haralambous, Yannis. “Une police mathématique
pour la Société Mathématique de France: le SMF
Baskerville”. Cahiers GUTenberg 32—actes du
congrès GUT’99, Lyon, mai 1999.

[3] Hartke, Stephen G. “A Survey of Free Math Fonts
for TEX and LATEX”. The PracTEX Journal 2006
No. 1, pp. 1–26.

Appendix—Some font samples

Further, more extensive, samples are available at
http://math.ucsd.edu/~msharpe/ffsamples.pdf

\usepackage[math]{anttor}

Roman text, SMALL CAPS, Italics, Bold ro-

man and Bold Italic, followed by some dis-
play math:

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt =

1 + erf
(

x√
2

)

2

\usepackage{baskervald}

\usepackage[lite]{mtpro2}% free

Roman text, Small Caps, Italics, Bold roman

and Bold Italic, followed by some display math:

ˆ.x/ D
1

p
2�

Z x

�1
e�t2=2 dt D

1 C erf
�

xp
2

�

2

A survey of text font families

130 TUGboat, Volume 34 (2013), No. 2

\usepackage{gtamacbaskerville}

\pdfmapfile{+gtamacfonts.map}

\usepackage[lite]{mtpro2}% free

Roman text, Small Caps, Italics,Bold roman and

Bold Italic, followedby somedisplaymath:

ˆ.x/ D
1

p
2�

Z x

�1
e�t2=2 dt D

1 C erf
�

xp
2

�

2

\usepackage[scaled=.84]{librebaskerville}

\usepackage[lite]{mtpro2}% free

Roman text, Small Caps, Italics, Bold roman
andBold Italic, followedby somedisplaymath:

ˆ.x/ D
1

p
2�

Z x

�1
e�t2=2 dt D

1 C erf
�

xp
2

�

2

%Computer Modern

Roman text, Small Caps, Italics, Bold ro-

man and Bold Italic, followed by some dis-
play math:

Φ(x) =
1

√

2π

∫ x

−∞

e
−t2/2

dt =
1 + erf

(

x√
2

)

2

\usepackage{fourier}

Roman text, SMALL CAPS, Italics, Bold roman

and Bold Italic, followed by some display math:

Φ(x) =
1

p
2π

∫

x

−∞
e
−t

2/2
d t =

1+erf
(

xp
2

)

2

\usepackage{fourier,venturis}

Roman text, Small Caps, Italics, Bold roman and
Bold Italic, followed by some display math:

Φ(x) =
1

p
2π

∫

x

−∞
e
−t

2/2
d t =

1+erf

(

xp
2

)

2

\usepackage{fouriernc}

Roman text, SMALL CAPS, Italics, Bold ro-

man and Bold Italic, followed by some dis-

play math:

Φ(x)=
1

p
2π

∫

x

−∞
e
−t

2/2
dt =

1+erf
(

xp
2

)

2

\usepackage{gfsartemisia}

Roman text, S C, Italics, Bold roman

and Bold Italic, followed by some display math:

Φ(x) =
1
√
2π

∫

x

−∞

e
−t

2/2
dt =

1 + erf

(

x√
2

)

2

\usepackage{gfsbodoni}

Roman text, S C, Italics, Bold ro-

man and Bold Italic, followed by some dis-

play math:

Φ(x) =
1

√

2π

∫ x

−∞

e
−t2/2

dt =
1 + erf

(

x√
2

)

2

\usepackage{gfsdidot}

Roman text, S C, Italics, Bold ro-
man and Bold Italic, followed by some
display math:

Φ(x) =
1
√
2π

∫

x

−∞

e
−t2/2

dt =

1 + erf

(

x√
2

)

2

\usepackage{kmath,kerkis}

Roman text, Small Caps, Italics, Bold roman

and Bold Italic, followed by some display

math:

Φ(x) =
1
√

2π

∫ x

−∞

e−t2/2 dt =

1 + erf

(

x√
2

)

2

Michael Sharpe

TUGboat, Volume 34 (2013), No. 2 131

\usepackage{kpfonts}

Roman text, Small Caps, Italics, Bold ro-

man and Bold Italic, followed by some dis-
play math:

Φ(x) =
1
√
2π

∫ x

−∞

e
−t2/2

dt =
1+ erf

(

x√
2

)

2

\usepackage{libertine}

\usepackage[libertine]{newtxmath}

Roman text, Small Caps, Italics,Bold roman and

Bold Italic, followed by some displaymath:

Φ(x) =
1
√
2π

∫

x

−∞

e
−t2/2

dt =

1 + erf

(

x√
2

)

2

\usepackage[sc]{mathpazo}

Roman text, Small Caps, Italics, Bold roman

and Bold Italic, followed by some display
math:

Φ(x) =
1

√

2π

∫

x

−∞

e
−t2/2

dt =
1 + erf

(

x
√

2

)

2

\usepackage{newpxtext,newpxmath}

Roman text, Small Caps, Italics, Bold roman

and Bold Italic, followed by some display
math:

Φ(x) =
1
√

2π

∫

x

−∞

e
−t2/2

dt =
1 + erf

(

x√
2

)

2

\usepackage{newtxtext,newtxmath}

Roman text, Small Caps, Italics, Bold roman and

Bold Italic, followed by some display math:

Φ(x) =
1
√

2π

∫

x

−∞

e
−t2/2

dt =

1 + erf

(

x√
2

)

2

\usepackage[lining]{ebgaramond}

\usepackage[garamondx]{newtxmath}

Roman text, SmallCaps, Italics, (no bold variants),
followed by some display math:

Φ(x) =
1
√

2π

∫ x

−∞

e
−t2/2

dt =

1 + erf
(

x√
2

)

2

\usepackage{garamondx}

\usepackage[garamondx]{newtxmath}

Roman text, Small Caps, Italics, Bold roman

and Bold Italic, followed by some display math:

Φ(x) =
1
√

2π

∫ x

−∞

e
−t2/2

dt =

1 + erf
(

x√
2

)

2

\usepackage[garamond]{mathdesign}

Roman text, SMALL CAPS, Italics, Bold roman

and Bold Italic, followed by some display math:

Φ(x) =
1
p

2π

∫ x

−∞

e
−t 2/2

d t =
1+ erf
�

x
p

2

�

2

\usepackage[utopia]{mathdesign}

Roman text, SMALL CAPS, Italics, Bold roman and

Bold Italic, followed by some display math:

Φ(x) =
1
p

2π

∫ x

−∞

e
−t 2/2

d t =
1+erf
�

xp
2

�

2

\usepackage[charter]{mathdesign}

Roman text, SMALL CAPS, Italics, Bold roman

and Bold Italic, followed by some display math:

Φ(x) =
1
p

2π

∫ x

−∞

e
−t

2/2
d t =

1+ erf
�

xp
2

�

2

⋄ Michael Sharpe
Math Dept, UCSD
La Jolla, CA 92093-0112
USA
msharpe (at) ucsd (dot) edu

http://math.ucsd.edu/~msharpe/

A survey of text font families

132 TUGboat, Volume 34 (2013), No. 2

Glisterings

Peter Wilson

This simple bug is tied from black Glister which is a

synthetic material with iridescence and peacock like

colouration.

Black Glister Bug, Hartley Fly Fishing

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine. This installment
presents fonts in some of their aspects.

Ornament is but the guilèd shore

To a most dangerous sea; the beauteous scarf

Veiling an Indian beauty; in a word,

The seeming truth which cunning times put on

To entrap the wisest.

The Merchant of Venice, William Shakespeare

1 A font of fleurons

In an earlier column [8] I showed how printers’ or-
naments and flowers could be combined to make
interesting patterns. A while later I obtained John
Ryder’s book on flowers, flourishes, and fleurons [5]
in which he discussed a rather fine set of fleurons
that are thought to have been cut by Robert Gran-
jon around 1565. These are known collectively as
Granjon’s Arabesque or Granjon’s Fleurons. I found
a commercial font of these, the Lanston Type Com-
pany’s LTC Fleurons Granjon, for Mac or Windows
and I purchased the Windows version which came
as both TrueType and Type1 fonts. The Type1 files
were LTCFleurGranj.afm and LTCFleurGranj.pfb.
The question then was: How do I use these in LATEX?

I read Philipp Lehman’s wonderful guide to in-
stalling Type1 fonts for LATEX and it seemed pretty
simple [3]. First, decide on a name for the font using
the Karl Berry naming scheme. But Lanston Type
Company was not a ‘known’ supplier and other as-
pects of the naming convention didn’t really seem to
apply, so I ignored the Berry scheme and made up a
name; the zlgf font with family name lgf.

Next, copy the original afm and pfb font files to
our newly named font (thus preserving the original
files in case of disaster, which did happen — several
times). So, we now have zlgf.afm and zlgf.pfb.

I then blindly used fontinst with the ‘default’
latinfamily which produced various files which I
then installed in their proper locations, and ran a
test file meant to show all the glyphs. It didn’t.

After much huffing and puffing, trying to read
encrypted binary files, looking at the font in George

Williams’ amazing FontForge [6], and other possibly
useful things I eventually managed to install the font
on, I think, the 5th attempt (I had paid money for
the font and I wasn’t going to give up).

FontForge revealed that the actual font name
was LTCFleuronsGranjon and the font’s family name
was LTC Fleurons Granjon. It also turned out from
using FontForge to check the font that some of the
glyphs were in LATEX’s normal range of 0–255 while
others were above that, and LATEX couldn’t deal with
the higher-numbered ones. I read the Font Instal-

lation Guide several more times and with its help
eventually came up with the following:

• Opened zlgf.pfb in FontForge and reencoded it
in Glyph Order, which just numbers the glyphs
continuously in the order they appear in the
file, then used Generate Fonts to keep the new
encoding and regenerate zlgf.afm to match.

• Followed Lehman’s example of installing symbol
fonts. That is, I created two files; the first, based
on [3, p.46], I called makelgf.tex:

% makelgf.tex fontinst file

% for Granjon’s Fleurons

\input fontinst.sty

\recordtransforms{lgf-rec.tex}

\installfonts

\installfamily{U}{lgf}{}

\installrawfont{zlgf}{zlgf}%

{txtfdmns,zlgf mtxasetx}{U}{lgf}{m}{n}{}

\endinstallfonts

\endrecordtransforms \bye

And the second, based on [3, p.17], I called
maplgf.tex:

% maplgf.tex fontinst file to

% generate map for lgf font

\input finstmsc.sty

\resetstr{PSfontsuffix}{.pfb}

\adddriver{dvips}{lgf.map}

\input lgf-rec.tex

\donedrivers \bye

Then I ran TEX on them, in that order. The
result was two files, the first ulgf.fd:

%Filename: ulgf.fd [...]

\ProvidesFile{ulgf.fd}

[2009/10/10 Fontinst v1.929

font definitions for U/lgf.]

\DeclareFontFamily{U}{lgf}{}

\DeclareFontShape{U}{lgf}{m}{n}{<-> zlgf}{}

\endinput

and the second lgf.map (one line):

zlgf LTCFleuronsGranjon <zlgf.pfb

Then I ran the program afm2tfm on zlgf.afm

to create zlgf.tfm.

Peter Wilson

TUGboat, Volume 34 (2013), No. 2 133

• Move the various files to their proper places in
the TDS tree. I made a lanston directory in
each place to hold the files in case I ever wanted
to install another Lanston Type Company font.
The several files ended up in the texmf-local

tree as:

.../fonts/map/dvips/lanston/lgf.map

.../fonts/afm/lanston/zlgf.afm

.../fonts/tfm/lanston/zlgf.tfm

.../fonts/type1/lanston/zlgf.pfb

.../tex/latex/lanston/ulgf.fd

and then refresh the database, in my case by
running texhash.

• Ensure the new .map file can be found by run-
ning updmap[-sys]. (Make sure that you ei-
ther always run updmap and never updmap-sys,
or you always run updmap-sys and never run
updmap. If you should ever alternate these then
access to your fonts is likely to be all messed
up.) In my case, as administrator/root I ran:

updmap-sys --enable Map=lgf.map

• The fonts should now be available for use. I
wrote a little test file to see if all the glyphs
were available by generating a font table, using
the fonttable package [7], and a macro to print
a glyph by giving its number in the font table:

% testlgf.tex Test the lgf font family

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage{fonttable}

% typeset a character by number

\newcommand*{\F}[1]{{%

\usefont{U}{lgf}{m}{n}\char#1}}

% zero extra line spacing

\newcommand*{\zeroxls}{%

\lineskip=0pt\lineskiplimit=0pt}

\begin{table*}

\centering

\caption{The Granjon Fleurons glyphs}

\label{tab:lgf}

\nohexoct

\fontsize{12}{12}

\xfonttable{U}{lgf}{m}{n}

\end{table*}

% usage examples

\begin{center}\zeroxls

\fontsize{24}{24}\F{11}\F{12}\\

\F{13}\F{14}

\end{center}

\begin{center}\zeroxls

\fontsize{24}{24}\F{14}\F{13}\\

\F{12}\F{11}

\end{center}

\begin{center}\zeroxls

\fontsize{24}{24}%

\F{26}\F{47}\F{75}\F{54}\\

\F{27}\F{46}\F{74}\F{55}

\end{center}

\end{document}

The results from the test file are in Table 1 and the
three arabesques below.

12
34

43
21

EZze
FYyf

Many other arabesques may be created, like those
below and the ‘moustachios’ used in a previous col-
umn as anonymous divisions setting off the TEXMAG
articles [9].

FH
ge

NP
om

Kk
Ll

kK
lL

All was well with using my fleurons font un-
til I came to install the next version of TEX Live,
when the fleurons suddenly became unfindable. Ap-
parently new fonts installed as I had done had to
be reinstalled whenever TEX Live was (re)installed.
Norbert Preining advised me on how to go about
avoiding this problem.

The best solution, at least at the time of writ-
ing, is to add the Map line(s) (the contents of the
file lgf.map, in my case) to the file (creating it if
necessary) .../web2c/updmap.cfg in the tree where
the fonts are installed — texmf-local in my case.

After updating updmap.cfg, it’s then necessary
to run

updmap-sys

which completes the operation. The idea is that
each texmf tree in use has its own updmap.cfg, and
updmap[-sys] reads them all to generate the final
files used by pdftex, dvips, et al.

Slow, slow, fresh fount, keep time with my salt tears.

Cynthia’s Revels, Ben Jonson

2 Fonts, GNU/Linux and X ETEX

Having gone to the trouble to get LATEX to use my
new fleurons font I thought that it might have been

Glisterings

134 TUGboat, Volume 34 (2013), No. 2

Table 1: The Granjon Fleurons glyphs

0 1 ! 2 # 3 $ 4 & 5 (6) 7

* 8 , 9 . 10 1 11 2 12 3 13 4 14 5 15

6 16 7 17 8 18 < 19 > 20 @ 21 A 22 B 23

C 24 D 25 E 26 F 27 G 28 H 29 I 30 J 31

K 32 L 33 M 34 N 35 O 36 P 37 Q 38 R 39

S 40 T 41 U 42 V 43 W 44 X 45 Y 46 Z 47

[48] 49 a 50 b 51 c 52 d 53 e 54 f 55

g 56 h 57 i 58 j 59 k 60 l 61 m 62 n 63

o 64 p 65 q 66 r 67 s 68 t 69 u 70 v 71

w 72 x 73 y 74 z 75 { 76 } 77 ‘ 78 ’ 79

“ 80 ” 81 À 82 Á 83 Â 84 Ä 85 Å 86 Ç 87

È 88 É 89 Ê 90 Ë 91 Ñ 92 Ø 93 à 94 á 95

â 96 ä 97 å 98 ç 99 è 100 é 101 ê 102 ë 103

ñ 104 ø 105 � 106 107 108 109 110 111

easier to use X ETEX as I understood that it could
handle any system font without the contortions in-
volved in setting one up for LATEX. It seems that
if you are on a Mac or Windows machine installing
a new system font is trivial. However, I work on
a Linux box and my first difficulty was in finding
out how to install a new system font. All articles
on the subject that I googled had different ideas on
the subject, some very complicated. I eventually,
with much trepidation, tried what appeared to be
the simplest method which was to:

• Copy the font afm and pfb files into a directory
under /usr/share/fonts, which I created and
called Lanston.1

• As root, run fc-cache -f -v so that it will
cache the new font for use.

• Run fc-list, which returns a list of the system
fonts, to check that the new font is now among
them.

Now for the test. A simple X ELATEX file:

\documentclass{article}

\usepackage{fontspec}

\fontspec{LTCFleuronsGranjon}

\begin{document}

ABCDEFGHI

\end{document}

which produced:
ABCDEFGHI

1 I tend to uppercase the first letter of directory names,

but not necessarily consistently.

. . . an abject failure! It should have typeset the
corresponding fleurons.

I had come across a method for displaying a
table of all the glyphs in a font by Guido Herzog in a
posting to the X ETEX mailing list [2]. I used X ETEX
on this for my fleurons font:

% glyphs.tex -- find glyphs and their index

\parindent 0pt

%% the font to test

\font\test="LTC Fleurons Granjon" at 14pt

% this next one also works

%\font\test="LTCFleuronsGranjon" at 14pt

\newcount\charcountA \charcountA 0

\newcount\charcountB

\charcountB \XeTeXcountglyphs\test

\advance\charcountB -1\relax

\newcount\charcountC \charcountC 0

\def\ystrut{%

\vrule height 15pt depth 5.5pt width 0pt}

\advance\vsize 4\baselineskip

\loop

\advance\charcountC 1\relax

\leavevmode

\hbox{\hbox to 10mm{%

\hss\number\charcountA\quad}%

\hbox to 10mm{%

\test\XeTeXglyph\charcountA\ystrut\hss}}%

\ifnum\charcountC = 8

\endgraf \charcountC 0\fi

\ifnum\charcountA < \charcountB

Peter Wilson

TUGboat, Volume 34 (2013), No. 2 135

\advance\charcountA 1\relax

\repeat

\bye

The result was a table similar to Table 1 displaying all
the fleuron glyphs. This meant that X ETEX found my
new font but for some reason my use of the fontspec

package [4] might have been at fault. I eventually
discovered that I should have called \fontspec in
the body of the document:

\documentclass{article}

\usepackage{fontspec}

\begin{document}

\fontspec{LTCFleuronsGranjon}

ABCDEFGHI

\end{document}

which made the fleurons the current font, or alterna-
tively use \setmainfont in the preamble:

\documentclass{article}

\usepackage{fontspec}

\setmainfont{LTCFleuronsGranjon}

\begin{document}

ABCDEFGHI

\end{document}

to make the fleurons the main (default) font.
Now, it seems simple enough to typeset with

new fonts on a Linux box.

We started off trying to set up a small anarchist

community, but people wouldn’t obey the rules.

Getting On, Alan Bennett

3 Mixing traditional and system fonts

A little while ago I was extending an older document
where I had been using several fonts set up for the
traditional LATEX methods — Type 1 fonts with tfm

and map files. For swapping from one font to another
I used a macro

\newcommand*{\FSfont}[1]{%

\fontfamily{#1}\selectfont}

where the argument is the font’s family name. This
worked well.

I then wanted to use a new font, IM_FELL_

Double_Pica_PRO_Roman, which didn’t come with
LATEX support files. So I added it to the system
fonts directory, added it to the document with my
\FSfont macro, and used xelatex, together with
fontspec, instead of pdflatex for processing. The
new font displayed well but all the others reverted
to the default Latin Modern fonts.

I eventually had to ask on ctt and Ulrike Fischer
responded [1] that with xetex/fontspec the default
encoding is set to EU1 but with pdflatex it is set
to T1. Therefore I had to take account of encodings
when moving from pdflatex to xelatex.

In my case I was only using the normal alphanu-
meric and punctuation characters which are in the
same slots in the EU1 and T1 encodings. Thus,
changing my \FSfont macro to:

\newcommand*{\FSfont}[1]{%

\fontencoding{T1}\fontfamily{#1}\selectfont}

fixed the problem for me.

References

[1] Ulrike Fischer. Re: XeLaTeX, fontspec and
fontfamily. Post to comp.text.tex newsgroup,
12 July 2010.

[2] Guido Herzog. Re: [XeTeX] Trouble with
displaying word containing 3 conjunct
consonants in Devanagari. Post to xetex

mailing list, 24 September 2009.

[3] Philipp Lehman. The font installation guide,
December 2004. (Available on CTAN at
/info/Type1fonts/fontinstallationguide).

[4] Will Robertson and Khaled Hosny. The
fontspec package, 2010. Available on CTAN in
macros/latex/contrib/fontspec.

[5] John Ryder. Flowers & Flourishes including a

newly annotated edition of A Suite of Fleurons.
The Bodley Head for Mackays, 1976. ISBN 0370
11308 X.

[6] George Williams. FontForge: An outline font
editor, 2009. Available at
http://fontforge.sourceforge.net/.

[7] Peter Wilson. The fonttable package, 2009.
Available on CTAN in macros/latex/contrib/

fonttable.

[8] Peter Wilson. Glisterings: Ornaments.
TUGboat, 32(2):202–205, 2011.

[9] Peter Wilson. Glisterings: Timelines, parsing a
filename. TUGboat, 33(1):39–42, 2012.

⋄ Peter Wilson

12 Sovereign Close

Kenilworth, CV8 1SQ

UK

herries dot press (at)

earthlink dot net

Glisterings

136 TUGboat, Volume 34 (2013), No. 2

Interview with Charles Bigelow

Yue Wang

Abstract

Interview of Charles Bigelow by Yue Wang,

conducted in 2012.

Y: In this interview we are very lucky to have Charles

Bigelow with us. Professor Bigelow is a type histo-

rian, educator, and designer. With his design part-

ner, Kris Holmes, he created the Lucida family of

fonts used in the human-computer interfaces of Ap-

ple Macintosh OS X, Microsoft Windows, Bell Labs

Plan 9, the Java Developer Kit, and other systems,

bringing historical and technical understanding of

type to hundreds of millions of computer users. In

2012, Bigelow retired from the Melbert B. Cary Dis-

tinguished Professorship at Rochester Institute of

Technology’s School of Print Media. He is now the

RIT Scholar in Residence at the Cary Collection, RIT’s

rare book Library.

C: Thank you for your visit.

1 Entering the digital type era —

the birth of Lucida

Y: Let’s get started. Can you briefly introduce the

design goal of Lucida?

C: In the early 1980s, we saw that computers would

become more widely used and that digital typogra-

phy would be possible for more people. At that time,

digital printers and computer screens had low reso-

lutions. The goal of Lucida was to create a new, orig-

inal family of fonts for medium and low-resolution

digital printers and displays.

Y: Is this the reason why that’s called Lucida?

C: Exactly. We wanted to give it a name that could

suggest it was made of light and was clear despite

the low resolutions. “Lucida” comes from the Latin

word “lux” for light and clarity. It turned out that

Lucida was the first original typeface designed for

both digital printers and computer screens.

Y: Wow, really?

C: Yes. There had been previous digital typefaces

designed for high-resolution typesetting machines

in the late 1970s and early 1980s; a few were orig-

inal types like Hermann Zapf’s Edison, but none

were new and original for laser printing and display

screens (mainly CRTs in that era). Adobe developed

their own font format called “PostScript Type 1” and

digitized 35 typefaces for Apple’s LaserWriter Plus

This interview was made possible with support from Program-

mer Magazine in China, http://www.programmer.com.cn.

Figure 1: Lucida was the first new, original family of types

designed for digital laser printers and screens. This is the

first Lucida specimen, printed on a 300 dot per inch digital

printer by the Imagen Corporation in California. Distributed

at the ATypI conference in London, September 1984.

printer. These fonts, including Helvetica, Times Ro-

man, Palatino, etc., had originally been designed as

metal type, and some like Zapf Chancery for photo-

typesetting. Designed before the digital era, those

faces were not created for low-resolution digital ren-

dering. When the first commercial font of Lucida

was shown in 1984, it surprised Adobe. They knew

of it; they had even digitized a test version, but they

hadn’t thought anyone would take the risk of making

new designs for the new technology of laser printing.

Instead, a Silicon Valley digital printer firm, Ima-

gen, founded by Stanford researchers and graduates,

some of whom had worked with or been students

of Donald Knuth, brought out Lucida first. Imagen’s

type director, Mike Sheridan, wanted to produce a

new design for the new technology and chose Lucida.

Now, 30 years later, it appears he was right, but at

the time, he took a risk. Adobe licensed Lucida fonts

some years later and still distributes them.

C: Here (fig. 1) is the first Lucida (seriffed) specimen,

printed on a 300 dot per inch digital printer by the

Imagen Corporation in California. It was distributed

at the ATypI conference in London, September 1984.

Y: Cool. The specimen only included Lucida (ser-

iffed).

C: Yes. The seriffed family was first shown in 1984,

and the sans-serif family was released in 1985.

Y: What makes Lucida look great even in low resolu-

tions?

C: We first did experiments, making bitmap letters

by hand and comparing them to what we thought

would be the outlines that could produce them. We

found out several factors (see fig. 2). First, a big

x-height packs more pixels into the most visually

important portions of text, the x-height parts of

letters. A big x-height is an advantage for texts read

mostly on screens. That’s one reason Apple has been

using Lucida Grande as the standard user interface

typeface on Mac OS X.

Yue Wang

TUGboat, Volume 34 (2013), No. 2 137

Early studies for Lucida, comparing brush and pen written lettersFigure 2: Early studies for Lucida, comparing brush and pen

written letters to bitmap redesigns for low-resolution printers

and computer screen displays.

Y: That’s why Lucida’s x-height is bigger than most

fonts, such as Times Roman or Baskerville, when

composed at the same point size.

C: Exactly. There are still questions today about the

importance of x-height for legibility in Latin alpha-

betic fonts. A vision scientist, Gordon Legge, and I

recently wrote an article on the importance of type

size for legibility, and we argued that x-height is the

main factor that affects perception of type size [6].

The measure of x-height applies only to typography

with upper and lower-cases: Latin, Greek, Cyrillic,

and Armenian. For case-less writing systems, various

other factors affect the impression of size.

Secondly, Kris Holmes and I observed that tech-

nical publications make frequent use of words in all

capitals, such as acronyms, emphasized expressions,

keywords, and the like. Therefore, we made the Lu-

cida capital height a little shorter than the ascender

height (e.g. the height of a lower-case ‘h’ or ‘l’), to re-

duce the distracting look of words set in all capitals.

This was not a new idea in typography; in 1495, the

famous Venetian printer Aldus Manutius introduced

a roman type with slightly shortened capitals cut by

Francesco Griffo.

Third, the weight of Lucida is darker than tradi-

tional book typefaces. We noticed that on screens

with black text on white backgrounds, the letters

were slightly eroded, seeming too light, so we dark-

ened the Lucida stem weights a little bit. The stem

weight is 1/5.5 of the x-height, and a little bit less

than 1/10 of the body size. Its overall gray tone is

roughly 22% when the text is set solid (no extra line

spacing).

Fourth, at low resolutions, a single pixel is often

the only space between letters rendered at text sizes

(8 point to 16 point). If letterspacing is tight, which

was fashionable in advertising typography in the

Figure 3: Scanned image from a book printed by Nicholas

Jenson in Venice, 1478. These early typographic letters are

rather dark and widely spaced.

Fletibus & busto idecore

: Marte sub aetholum do

Aemachiae cladem truxs

ec Alceus in Philippi uitu
Figure 4: The same text from Jenson composed in the

original Lucida font. Lucida is also somewhat dark and widely

spaced, for early digital printing technology and display, but

it is not a copy of Jenson.

1970s and 1980s, it can cause letters to touch. Some

designers called this “sexy spacing”, but it turns out

to impair legibility. There are still debates about

whether legibility is based on recognizing whole

words or individual letters. Lucida is on the side

of letter recognition. Computer screens were read

from greater distances than print, which visually

reduced letterspacing and caused crowding of the

shapes, so we gave Lucida slightly loose spacing to

counteract these tendencies.

Also, we created letter forms with large open

counters — the internal open spaces like in ‘a’ and

‘e’ — to keep the interiors from collapsing and reduc-

ing legibility. Another small detail, which almost

nobody notices, is that we lowered the joins of the

arches in letters like ‘n’, ‘m’, ‘h’, ‘r’, and ‘u’, to give

them more definition.

Y: So it won’t clog up :).

C: Yes. For instance, we didn’t want the top of an

‘n’ to clog up and look like a smeared ‘o’. In fact,

most of the ideas behind Lucida were not new. Some

we borrowed from very early typography. Here’s a

scanned image from a book printed by Nicholas Jen-

son in Venice, 1478, when printing technology didn’t

have as high a quality as in later eras (fig. 3). These

early typographic letters are rather dark and widely

spaced, too. The forms are somewhat distorted by

the technology of early printing. Rough paper, soft

metal type that wears quickly, uneven pressure and

Interview with Charles Bigelow

138 TUGboat, Volume 34 (2013), No. 2

ink squash, and so on. We borrowed some of Jen-

son’s design ideas and believe we were the first to try

them in the low-resolution digital era. Here (fig. 4) is

the same text composed in the original Lucida font.

It is not a copy of Jenson but shares similar goals —

to make legible letters for a noisy medium. Jenson’s

type was around 15 point, but Lucida is more often

used at smaller sizes — 10 to 14 point on screens —

so we made its spacing even a little looser.

Y: Amazing!

C: Lucida, by showing some successful solutions

to resolution-restricted text, also encouraged other

designers to innovate. An interesting question is

whether designers should try to compensate for lim-

itations of new technology or design ideal shapes.

Lucida is a design to compensate for limitations

of resolution and imaging, but, in contrast, exuber-

ant digital cursives like Zapfino or Apple Chancery

are designs that take advantage of technological ad-

vances in character substitution.

Ten and twenty years after the first Lucida fonts,

other designers created their own solutions to the

problem of creating new faces for low resolutions.

This is Lucida in 1985–87. In 1996, Microsoft re-

leased Verdana and Georgia by Matthew Carter, for

the Windows operating system and Internet Explorer.

Ten years after that, Microsoft released the ClearType

font collection, including Calibri, Cambria, Candara,

Consolas, Constantia, Corbel, and Cariadings (see

fig. 5) by several designers, among them my former

student, Gary Munch (Candara). These fonts take

advantage of advanced screen display technology by

Microsoft.

Y: They look similar to Lucida. Corbel and Lucida

Sans are almost the same.

C: Well, but they are not copies of Lucida. These

later designs show similar adaptations to the prob-

lem of design for screens: large x-heights, loose

letter spacing, open counter-forms, and simplified

letter shapes. In the alphabet samples at the bottom,

the types are scaled to equal x-heights, to show sim-

ilarities more clearly. Our emphasis on open coun-

ters and Renaissance forms for Lucida came from

the calligraphic instruction Kris Holmes and I had

with Lloyd Reynolds, calligrapher laureate of Oregon.

Our idea of applying Renaissance forms to sans-serif

came from Hans Meier’s Syntax design, a sans-serif

book typeface based on Renaissance humanist types

and handwriting. It came out as metal type in 1968

and influenced not only us, but later generations

of designers. The ideas of Syntax are now common

in so-called “humanist” sans-serifs, but Syntax re-

mains a splendid design, a great improvement on its

successors.

A: Body sizes the same, x-heights vary

1984 Lucida, 1985 Lucida Sans, 1987 Lucida Bright

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

1996, Verdana, Georgia

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

2006 Calibri, Candara, Corbel, Cambria, Constantia

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

A quick brown fox jumps over the lazy dog.

B: x-heights equal, body sizes vary

Lucida Sans [12 point]

A quick brown fox jumps over the lazy dog.

Verdana [11.7 point]

A quick brown fox jumps over the lazy dog.

Corbel [13.7 point]

A quick brown fox jumps over the lazy dog.

Lucida Bright [12 point]

A quick brown fox jumps over the lazy dog.

Georgia [13.2 point]

A quick brown fox jumps over the lazy dog.
Cambria [13.6 point]

A quick brown fox jumps over the lazy dog.

Figure 5: Examples of original typefaces designed for digital

printing and screens, showing convergent evolution. Lucida

was the first original family for screens and laser printers.

Later designs show similar adaptations to the problem of

design for screens: large x-heights, loose spacing, open

counter-forms, simplified letter shapes. In the alphabet

samples at bottom, the types are scaled to equal x-heights to

show relationships more clearly.

Y: I see. Why did Lucida Sans come out later than

Lucida (serif).

C: We released the seriffed family first, as a kind

of proof-of-concept, and then worked on the sans-

serif. After the seriffed design came out, there was

interest in the sans-serif version, which we released

within the next year. Historically, because of the ef-

fort involved, large typeface families were not often

released all at once. For a seriffed family, maybe only

roman and italic would be released, and later one

or more bold weights. If a typeface became popular,

then a firm might release more variants (like more

bold weights) or companion typefaces (like sans-

serif, or fancy characters). In the mid-1930s, Jan van

Krimpen in Holland was the first designer to create

a family that included serif and sans-serif, and also

Yue Wang

TUGboat, Volume 34 (2013), No. 2 139

chancery cursive variations, in his Romulus typeface

family. The sans serif set was never commercially

released, alas. Following Van Krimpen, we believed

that a more harmonious pattern of text could be

achieved if the different styles of type were designed

together as an integrated set. This principle has held

up well over the years. So, we created an extended

family of serif, sans-serif, monospaced (typewriter),

and various scripts (calligraphy, handwriting, casual),

incrementally, over a period of several years.

Y: Because people use more variants in a single doc-

ument? Knuth’s Computer Modern is a complete

font family too.

C: Yes. Donald Knuth, approaching typography with

a mathematical intellect, also recognized the same

principle that Van Krimpen first saw, that a typeface

family could be implemented as a group of para-

metric variations of a basic form. Although Knuth

says his goal was to imitate a metal typeface called

Monotype Modern 8A, Computer Modern has many

original ideas underlying its forms. In visual form,

the basic seriffed version of Computer Modern did

imitate Monotype Modern, but in conception and

technical implementation, Computer Modern was

original. It is noteworthy and commendable, too,

that Knuth published all the Metafont code for his

designs. For commercial reasons, most typefaces are

marketed with intellectual property restrictions, but

Knuth saw his typographic work as part of a greater

goal, the publication of scientific literature and the

dissemination of knowledge. He did the same with

his TEX system for mathematical composition, pub-

lishing the source code for wide usage. A paragon

of enlightened generosity.

An interesting aspect of Knuth’s work on Com-

puter Modern and the way he uses it in his TEX com-

position system, is that he established additional

semantic categories for technical typography. Tech-

nical documents usually use different font variants

to indicate different semantic meanings of the text

and formulae. For example, in TEX, there are three

slant variants — a slanted roman variant to indicate

book names, a cursive italic to indicate emphasis,

and a math italic for math equations. Prior to that,

roman typefaces had either true cursive italic or

a slanted roman (sometimes called italic) as their

companion design, but not both. Times Roman, for

example, has a cursive italic, but Helvetica has a

slanted roman for italic. I am ignoring the slight

visual adjustments that designers make to ostensi-

bly slanted forms. In his work, Knuth began to use

three slant variants, true italic, slanted roman, and

math italic, and that led to us making the three italic

variants for Lucida Bright math fonts: the normal

text italic, which is semi-cursive; a slanted roman;

and a cursive italic for math variables. To these, we

added a chancery cursive in the 16th century Italian

style, which we called Lucida Calligraphy. It can be

used for math, but is more often used for display

and ornamental typography.

This idea of a family of typographic variations is

not new. It evolved over hundreds of years. In digital

typography today, it is easier to produce typefaces

than in the hand-cut metal era, so we can make big-

ger families within a few years instead of centuries.

One of the most fascinating trends in the his-

tory of typography is the development of new type

forms and their incorporation into standard typog-

raphy. Historically, roman capitals were used for

inscriptions and formal handwriting during the Ro-

man Empire (approximately 100 A.D.). Handwriting

changed over the centuries and transformed the cap-

itals into other styles that we now see as separate

forms. Around 800 A.D., scribes working in the court

of the emperor Charlemagne developed a “minus-

cule” handwriting (“small” handwriting) that had

ascenders and descenders like today’s lower-case.

This Carolingian minuscule handwriting had no cap-

itals. It was “mono-case” in today’s terms. Around

1400, an Italian humanist scribe, Poggio Bracciolini,

revived and combined the ancient roman capitals

with the Carolingian minuscule to make a new kind

of formal handwriting that he and other humanists

thought was more legible than the gothic scripts

then in wide use. (I should explain that these human-

ists were Italian Renaissance scholars and writers

who shifted their studies from religion and theology,

which had been medieval concerns, to philosophy,

literature, classical languages (Greek and Latin), his-

tory, and other subjects we now call the “human-

ities”.) Poggio made an amalgamation of what we

now call upper- and lower-case in typography. A

scholar friend of Poggio, named Niccolò Niccoli, de-

veloped a fast version of Poggio’s handwriting. This

was before printing; Niccoli copied many books, so

he wanted a faster style of handwriting that was

still legible. The Italians called Niccoli’s style “run-

ning” hand(writing), “corsiva” in Italian. Today we

use the term “cursive” in English to mean the same

thing, a faster, freer script. The cursive tendency

appears in other writing traditions as well. In Chi-

nese writing, for example, there are both formal and

cursive styles. You will know the Chinese names

better than I do. On the formal side, there is Offi-

cial style or clerical script (li shu) and a somewhat

more cursive Regular style (kai shu). On the infor-

mal side, there is the semi-cursive style or running

script (xing shu), and the very cursive style (cao shu).

Interview with Charles Bigelow

140 TUGboat, Volume 34 (2013), No. 2

To make a very rough comparison, Niccoli’s cursive

handwriting might be the equivalent of “xing shu”.

Some of Hermann Zapf’s writing, like Zapfino, might

be closer to “cao shu”.

The first humanist roman types were cut around

1467, and the ancestor of most modern romans was

cut in 1470 by Jenson in Venice. The first humanist

cursive (italic) was not cut until 1501, and interest-

ingly, it was cut in lower-case only. Its capitals were

upright roman capitals. This shows that in those

days, 500 years ago, capitals were not as tightly

bound to lower-case as today. Also, cursiveness was

not defined by slant alone, but by an ensemble of

features, of which slant was only one. At first, italic

type was an alternative to roman and whole books

were composed in italic only. Italian calligraphers

and type designers created many variations of italic,

and later, in France, Robert Granjon cut many varia-

tions of cursive types. Around 1570, italic became a

subordinate, complementary companion to roman

instead of a stand-alone alternative to roman. Today,

italic is an important component of a typeface fam-

ily, but of secondary rank. In the 1700s, the French

type designer Pierre-Simon Fournier expanded the

concept of a typeface family to include variations

with different widths and x-heights. In the 1800s, En-

glish typographers developed bold typefaces, which

at first were separate from standard roman and italic,

but by the early 20th century, especially in the de-

signs of Morris Fuller Benton, some typeface families

included bold weights as integrated members of the

family. Thus, we see a pattern of incorporation of

variations within a family. Sans-serif types were in-

vented in the early 19th century but didn’t become

widely used for text until the 20th century. Looking

at the pattern of type family evolution at the end of

the 20th century, it seemed to us that incorporation

of sans-serif into type families was a trend we should

follow, and indeed, today in the 21st century, there

are now several type families that include seriffed

and sans-serif variations.

Adrian Frutiger is one of the most prominent

figures in this movement to extend the visual range

of type families. It is difficult to describe weight and

style variations in words. We have to use cumber-

some names like light, extra light, semibold, extra

bold, ultra bold, light condensed, and so on, and

the words are different in each language, so there

are international communication confusions. For his

large Univers family designed in the 1950s, Frutiger

developed a two digit system to differentiate the

weights, widths, and slants of the variations. The

base of the system was 55, a normal weight roman,

upright font. The first digit of the classification ex-

Figure 6: From left: Lucida Bright, Lucida Casual,

Lucida Handwriting; comparison of letter ‘a’. All three

designs have the same x-height.

Lucida Serif

Lucida Sans

Figure 7: Comparison of original Lucida (seriffed) and

Lucida Sans, showing close similarities of forms.

pressed the thickness of the weights, for example,

4 is light, 5 is regular, 6 is semi-bold, and 7 is bold.

The second digit describes the style, for example, 6

is italic, 7 is condensed. So, 56 means normal weight,

slanted, whereas 65 means roman, semi-bold, and

so on.

Y: It looks like a periodic table!

C: It sure does. So after Univers, designers were

able to use many variants in a single document.

Emil Ruder, a famous Swiss teacher of typography,

demonstrated this in his book “Typography” [9].

Ruder’s students continued this design approach.

Thus nowadays we need large families of fonts for

the most expressive kinds of modern typography.

Y: What are the common features among the big

variations within the Lucida family?

C: In technical perspective, all the Lucida fonts have

the same x-height, capital height, and similar series

of stem weights, which helps give a harmonious look

to a page that uses different font styles. Here (fig. 6)

is a comparison of the letter ‘a’ in Lucida Bright,

Lucida Casual, Lucida Handwriting. All three designs

have the same x-height.

Y: I see.

C: But there are a lot of similarities among different

font styles as well. For example, this (fig. 7) is the

original Lucida Serif and Lucida Sans. The design is

really harmonized. This (fig. 8) is an early specimen

of the first four Lucida seriffed and sans-serif type-

faces around 1986. But we didn’t stop. We created

an extended font family that included seriffed, sans-

serif, and fixed-pitch (typewriter) designs. Around

2000, we had almost all the main variations of the

Lucida typeface family of today. Here (fig. 9) is a list

of them in normal form. As you can see (fig. 10),

the typeface family is still highly unified and har-

monized. The Lucida Bright family was developed

Yue Wang

TUGboat, Volume 34 (2013), No. 2 141

of the first four Lucida serifed and sans-serif typefaces,
Figure 8: An early specimen of the first four Lucida seriffed

and sans-serif typefaces, circa 1986.

Lucida Bright & Italic

Lucida Sans & Italic

Lucida Casual & Italic
Lucida Fax & Italic

Lucida Calligraphy
Lucida Handwriting
Lucida Blackletter

Lucida Typewriter
Lucida Sans Typewriter
Figure 9: The main variations (in normal weight) of the

Lucida typeface family, circa 2000.

for higher resolution systems, and was first used

as the text face for Scientific American magazine in

October 1987 (fig. 11).

Y: But for scientific journals there are also a lot of

math equations.

C: Exactly. After Kris and I went to California, where

I taught digital typography at Stanford in association

with Donald Knuth, we wanted to make Lucida work

well with TEX. Lucida’s mathematical characters ben-

efitted from the close association with Knuth. In

Figure 10: Study of differences in forms of different designs

in the Lucida family.

nts of Scientific American, using Lucida Bright.
e redesigned by Bigelow & Holmes, using Lucida family.Figure 11: Table of Contents of Scientific American, using

Lucida Bright. Magazine redesigned by Bigelow & Holmes

using the Lucida family.

fact, we continue to learn from Knuth’s examples.

This (fig. 12) is sample mathematical formulae with

Lucida math fonts in 1992.

Y: Oh, this is an equation sample in Knuth’s The

TEXbook. It looks better in Lucida Math!

C: Thank you, but many people still prefer Com-

puter Modern. Our Lucida math designs give users

more choice, because the families look very different

in text. With Berthold and Blenda Horn of Y&Y, we

augmented the Lucida math character set with many

more of the math operators and arrows in the Uni-

Interview with Charles Bigelow

142 TUGboat, Volume 34 (2013), No. 2

ple mathematical formulae with original Lucida math fonts, 1992.

Figure 12: Sample mathematical formulae with original

Lucida math fonts, 1992.

Lucida Bright and Lucida New Math in design of
book Non-commutative Geometry by Alain Connes.
Figure 13: Lucida Bright and Lucida New Math in the design

of the book Non-commutative Geometry by Alain Connes.

code character standard. Y&Y also developed many

careful adjustments to ensure that the Lucida math

fonts worked well with TEX. It was not an easy task.

Here (fig. 13) is a book called Non-commutative Ge-

ometry by Alain Connes, which uses Lucida Bright

and Lucida New Math. The book was designed by

Peter Renz. Recently (2012) we upgraded the Lucida

math fonts in cooperation with TUG, the TEX Users

Group. We expanded the character set to include the

latest Unicode math character blocks, including a

new math script face by Kris, and the fonts were pro-

duced in OpenType format with the indispensable

help of Khaled Hosny and others in TUG.

Y: So even without TEX, we can access these symbols

using Unicode values?

C: Right. Because of Unicode encoding, computer

fonts can finally contain a wide range of characters,

letters, digits, glyphs, symbols, ideograms, logo-

grams, and many others. You can include glyphs

from various languages into the font. So we de-

signed a lot of glyphs from various languages for

Lucida Sans. This gave birth to Lucida Sans Unicode.

We made Lucida Sans Unicode for Microsoft to show

the possibility of what a Unicode font can do. Kris

Holmes and I wrote a paper about this in 1993, which

can be found on the web, “The Design of a Unicode

Font” [2].

Y: Why make Lucida Sans Unicode? I remember

Lucida Bright came out before Lucida Sans.

C: Lucida Sans was chosen to do this because of

its popularity. For some typeface families that in-

clude both serif and sans-serif faces, one or the

other is more popular. For Frutiger, the original

sans-serif family is more popular than the Frutiger

Serif, which is Frutiger’s classic Meridien seriffed

design re-worked and given additional weights and

condensed italics by Frutiger and Akira Kobayashi

and released in 2008. In contrast, with Palatino, the

original seriffed design remains more popular than

the very new and interesting Palatino Sans, by Zapf

with Kobayashi, released in 2007. For text faces,

it takes time for new designs to become widely ac-

cepted, so the balance of popularity between serif

and sans could change in those families or ours. Ev-

ery new, original type design is a risk because you

don’t know how well it will be accepted, and if you

care only for acceptance, you don’t give your design

the fresh but risky insight that can make it popu-

lar. I like to quote the eminent physicist Niels Bohr:

“Prediction is difficult, especially about the future.”

Y: Also true for Erik Spiekermann’s ITC Officina Sans

and ITC Officina Serif which both came out in 1990.

C: Yes. A preference for sans-serif may be because

sans-serif fonts are somewhat better for display on

screens, probably because the sans-serif fonts are

simpler in design, with fewer details, and therefore

render slightly better at low to moderate resolutions.

A vision study by Robert Morris, Kathy Aquilante,

Dean Yager, and me [7] found nearly no difference

between the legibility of seriffed and sans-serif type-

faces when all the parameters (x-height, weight, spac-

ing, etc.) are controlled — except that at small sizes

on screens, sans-serif is slightly more legible. How-

ever, we did that study ten years ago, and although

we controlled for resolution, today’s new, higher res-

olution and higher contrast screen displays could

perhaps alter our findings. I believe that serif types

benefit from higher resolutions.

To cover more of the Unicode range for Lucida

Sans, we designed characters for Unicode Extended

Yue Wang

TUGboat, Volume 34 (2013), No. 2 143

Figure 14: Lucida Sans (= Lucida Grande) non-Latin designs.

Page 1 of 3http://www.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.01.0125;layout=;loc=1.1.0

Classics:
Classics
collection
contents
About the
Classics
collection

Greek Hist.
Overview
Art & Arch.

Catalogs

Greek Tools:
Grammar

Overview
Dictionaries
Morphology
Word Search

Vocabulary in
this document

Other Tools &
Lexica

Display text
chunked by:
book
chapter (default)
section

Contents:
Book 1
Book 2
Book 3
Book 4
Book 5
Book 6
Book 7
Book 8

Book 9

Herodotus, The Histories

Editions and translations: Greek | English (ed. A. D. Godley)
Your current position in the text is marked in red. Click anywhere on the line to jump to
another position.

Table of Contents Go to 1.1.0

Click on the asterisks (*) for commentary notes, the crosses (+) for
references from other works.

I.[0] "#$%&'$()*+,-#./001$2 30'$#4/2 56&%78+2 9%7, :2 ;<'7 '=
>7.&;7.- ?8 5.@#A6B. 'C D#&.E ?84'/*- >1./'-+, ;<'7 F#>- ;7>G*-
'7 ,-H @B;-0'G, '= ;I. J**/0+ '= %I K-#KG#$+0+ 56$%7D@1.'-, 5,*7L
>1./'-+, 'G '7 M**- ,-H %+' N. -O'4/. ?6$*1;/0-. 5**<*$+0+.

P7#01B. ;1. .(. $3 *&>+$+* Q$4.+,-2* -O'4$(2 R-04 >7.10@-+ 'S2
%+-R$#S2. '$T'$(2 >=# 56& 'S2 U#(@#S2* ,-*7$;1./2 @-*G00/2*

56+,$;1.$(2 ?6H '<.%7 'V. @G*-00-., ,-H $O,<0-.'-2 '$W'$. 'X.
DY#$. 'X. ,-H .W. $O,1$(0+, -Z'4,- .-('+*4[0+ ;-,#\0+ ?6+@10@-+,
56->+.1$.'-2 %I R$#'4-]O>T6'+G '7 ,-H ^00T#+- '\ '7 M**[
?0-6+,.170@-+ ,-H %V ,-H ?2 _#>$2. [2] 'X %I _#>$2 'W'. 'X.
D#&.$. 6#$7`D7 a6-0+ 'Y. ?. '\ .W. b**G%+ ,-*7$;1.[DB#\.
56+,$;1.$(2 %I '$T2 Q$4.+,-2 ?2 %V 'X _#>$2 '$W'$ %+-'4@70@-+ 'X.
R&#'$.*. [3] 61;6'[%I c d,'[e;1#[56' f2 564,$.'$,

?87;6$*/;1.B.+ 0R+ 0D7%&. 6G.'B., ?*@7`. ?6H 'V. @G*-00-.
>(.-`,-2 M**-2 '7 6$**G2 ,-H %V ,-H '$W K-0+*1$2 @(>-'1#-: 'X %1 $3
$g.$;- 7h.-+, ,-'= 'i('X 'X ,-H J**/.12 *1>$(0+, j$W. 'V. j.GD$(:
[4] '-T'-2 0'G0-2 ,-'G 6#T;./. 'S2 .7X2 i.170@-+ 'Y. R$#'4B.
'Y. 0R+ k. @(;&2 ;G*+0'-: ,-H '$l2 Q$4.+,-2 %+-,7*7(0-;1.$(2
m#;S0-+ ?6' -Z'G2. '=2 ;I. %V 6*7W.-2 'Y. >(.-+,Y. 56$R(>7`., 'V.
%I j$W. 0l. M**[0+ n#6-0@S.-+. ?0K-*$;1.$(2 %I ?2 'V. .1-
$oD70@-+ 56$6*1$.'-2 ?6']O>T6'$(.

There are a total of 24 comments on and cross references to this page.

Herodotus text on-line (Perseus Digital Library): Greek text in Lucida Grande.

Figure 15: Herodotus text on-line (Perseus Digital Library):

Greek text in Lucida Grande.

Latin, Greek, Cyrillic, Hebrew, Arabic, Thai, and other

languages. After we did this for Lucida Sans roman,

we designed extended Unicode sets for Lucida Sans

demibold, and Lucida Sans Typewriter. This gave

birth to the Lucida fonts used in the Java 2 developer

kit in 1999 (see fig. 14). Starting in 2001, Apple’s

Mac OS X includes Lucida Grande, which is a further

extension of Lucida Sans Unicode, as the main oper-

ating system font. For example, the on-line version

of Herodotus (the first written “history” book in west-

ern civilization), released by Perseus Digital Library,

uses Lucida Grande to display Greek text (fig. 15).

2 Research on digital rendering technologies

Y: It’s amazing to see you follow so closely with the

advancement of font technologies. Can you tell us

more about how Lucida followed the development

of font and rendering technologies? You said Lucida

design was highly optimized for the screen. As dig-

ital fonts evolved from generation to generation, I

guess Lucida changed too.

Figure 16: Pen written italic calligraphy by Kris Holmes

compared to design of Lucida Bright Italic.

Figure 17: Comparison of bitmaps at different digital

resolutions of original Lucida ‘a’.

C: As I mentioned before, we did many experiments

at the beginning. Here are the early studies of Lu-

cida (see fig. 2). We realized that we should change

some part of the shapes of the calligraphy to make

it legible on a computer screen. For example, this

(fig. 16) is the pen written italic calligraphy by Kris,

but the glyph in the final digital font is different.

Y: At that time, most computer systems still used

bitmap fonts.

C: Yes. On the Mac and Windows, screen fonts were

originally stored in hand-tuned bitmap font files that

specified individual pixel locations for a font at a

particular size. We released bitmap Lucida fonts in

various point sizes. Most times, for a given glyph

outline, we marked every pixel inside the outline

as black, and white for pixels outside the boundary.

But this leaves ambivalences along the borders, so

sometime manual fixes were needed to make char-

acters more legible. Take the previous ‘a’ drawn by

Kris as an example: here (fig. 17) is a comparison of

bitmaps for different digital resolutions.

Y: I see. Then outline fonts were widely adopted,

replacing the bitmaps.

Interview with Charles Bigelow

144 TUGboat, Volume 34 (2013), No. 2

C: Adobe was the pioneering digital publishing com-

pany at that time. They invented the PostScript lan-

guage as their document format together with the

PostScript outline font formats. Soon the PostScript

language was widely adopted and PostScript’s dom-

inance seemed assured, and computer companies

moved to adopt outline font technologies.

Y: So Adobe wanted to control PostScript to earn

more money.

C: Yes, because they are a business. Adobe was in

complete control of the PostScript technology at this

point, and published an open PostScript language

font format, called Type 3, but it didn’t rasterize as

well or as fast as Adobe’s proprietary format, Type 1.

A company had to license Adobe’s PostScript to get

Type 1 font technology, but major system software

vendors like Apple and Microsoft didn’t want a key

font technology controlled by another company and

didn’t want to pay royalties for its use.

Y: So Apple developed their own scalable font tech-

nology.

C: Exactly. The code name was Royal, and later be-

came called TrueType in 1991. The major technical

differences between a PostScript font and a True-

Type font, however, is that TrueType uses quadratic

B-splines to represent the outlines, whereas cubic

Bézier curves are used by PostScript. (See Robert

Bringhurst, The Elements of Typographic Style, with

a nice illustration on p. 183 in the third edition.)

Y: TrueType was a new technology. Why did it use a

simpler representation (quadratic versus cubic)?

C: Some background. Several outline font formats

were known then. Polygonal outlines — in which

curves were approximated by a series of straight

lines — were easiest to rasterize and been used for

some successful digital typesetting machines, but

needed too many points and were aesthetically in-

ferior at larger sizes and higher resolutions, where

the polygonal approximations of curves could be

detected. Outlines composed of vectors and circu-

lar arcs needed fewer points and were fairly fast to

process, but the radii of shallow arcs would be very

long in comparison to the very short radii of small

arcs. This problem was called numerical instability.

Also, at high resolutions, there were noticeable dis-

continuities at tangents where a circular arc joined

a straight line and curvature fell to zero.

When the outline description went beyond circu-

lar arcs and vectors, computer scientists tended to

choose representations more on mathematical aes-

thetics than visual aesthetics. Peter Karow’s Ikarus,

the first commercially successful digital outline font

development system, used cubic splines in Hermite

form as a master format but for practical graphical

output converted the Hermite cubics to circular arcs.

Knuth preferred cubic splines and based Metafont on

the mathematics of parametric cubics by Sergei Bern-

stein — also spelled Bernshtein — a Russian mathe-

matician. Adobe chose cubic Bézier splines, devel-

oped for computer graphics by Pierre Bézier, also

based on Bernstein’s work.

Apple chose quadratic B-spline outlines in part

because they already used them in MacDraw, a draw-

ing program for Macintosh, so Apple had a propri-

etary outline technology in-house. Apple planned to

use TrueType technology for the Macintosh user in-

terface, so they wanted fast processing and believed

that quadratic B-splines could be rendered faster

than cubic splines.

A very interesting outline technology was de-

veloped by Vaughan Pratt, a computer scientist at

Stanford, and used by Sun in a font format called F3.

It was based on generalized conic curves [8]. Pratt’s

inspiration went all the way back to an ancient trea-

tise on conics by a Greek mathematician, Apollonius

of Perga.

I personally liked Pratt’s approach best because

it was a nice compromise between computational

elegance, processing speed, and intuitive geometric

understanding by designers. Sun did not push to

establish their conic technology as a standard, so

it was eventually overwhelmed by TrueType and

Type 1. I tried to persuade some Sun executives to

make it an open format and the standard in Solaris

and Unix, but they apparently preferred to let it die

than to let it out. Later, the Java language was saved

from nearly the same fate.

With such a wealth of varied mathematical rep-

resentations of fonts, it was difficult to tell which, if

any, were artistically superior. Visually, the quadratic

and cubic forms seemed more or less equally good

at representing known type forms, so different firms

chose font outline representations for engineering or

commercial reasons or for non-visual mathematical

aesthetics.

Y: So you created the TrueType version of Lucida

using quadratic splines.

C: Yes. At this stage, Apple asked us to help them

explore how to make things as simple as possible.

We conducted a lot of experiments using Lucida.

We went with Apple’s font manager and chief font

engineer to URW in Hamburg, Germany, where Peter

Karow at URW had invented Ikarus in the 1970s.

URW had over time developed a big library of digital

outline fonts. To make TrueType successful, Apple

needed a good supply of high-quality digital font

data, and URW had the best and the most. They also

Yue Wang

TUGboat, Volume 34 (2013), No. 2 145

had the technical ability to write accurate conversion

programs from their format to TrueType. Most of

the early TrueType fonts were produced from Ikarus

format data, including the Lucida fonts, because

we used the Ikarus system to digitize our designs.

One of the most important experiments was, how

to use as few points as possible to represent a font

outline. If we had fewer points, font file sizes were

smaller and, importantly, computers could render

fonts faster.

Y: This is also true today. Today most of the graph-

ics and animations are offloaded and processed us-

ing special hardware in the computer. So ironically

text rendering is even slower than graphics display.

C: That’s interesting. Text has some advantages

over general graphics, at least for alphabetic fonts,

because there are relatively few characters, so once

they are rasterized for a given size and resolution,

the rasters can be cached and fetched very quickly,

so the pages are essentially tilings of a small num-

ber of stored and repeated graphical elements. For

Chinese fonts, however, the characters are more

complex and many more of them are needed, so pro-

cessing was still a problem until recently. In those

early days, in addition to limited processing capa-

bility, we also had other problems. Computers had

limited memory, and most people were still using

floppy disk. Though quadratic splines use fewer pa-

rameters than cubic splines, we needed more points

to represent the shape well. To save memory, it was

important to use as few points as possible, but you

cannot use too few of them or the glyph outlines will

be distorted. Kris and I did a lot of experiments to

show Apple how many points to use when creating

a font outline.

There is a particularly interesting problem with

TrueType splines when the number of points repre-

senting a curved quadrant is reduced below some

threshold. The shape of the curve bulges out at the

corner, and a quadrant of a circle or ellipse becomes

hyper-elliptical, to use a term by Piet Hein. This is

a subset of a general question about mathematical

representations of shapes that were created by mo-

tions of the human hand. When Donald Knuth was

working on Metafont at Stanford, he would meet

with interested students and colleagues at lunch to

discuss a wide range of questions and problems that

came out of his research. He called it the “Metafont

for lunch bunch”. We discussed how the mathemat-

ics of the equations affected the forms of the curves

in typefaces, and we wondered what kinds of curves

were sufficient for representing the aesthetics of tra-

ditional typefaces. I am not a mathematician, but I

found those discussions fascinating because Knuth

was leading all of us into a barely explored realm

where mathematics and aesthetics met.

Today, a quarter century later, most computer-

aided drawing programs and type design programs

uses Bézier cubics, and sometimes I see a tendency

for recent typefaces designed directly on the com-

puter to seem similar in the modeling of forms. I

believe that this is the result of interaction between

vision, user interfaces, and mathematics. Bézier

splines can behave in surprising and anti-intuitive

ways, at least for artists accustomed to drawing and

writing on paper, and they don’t necessarily resem-

ble the motions of the human hand. When designing

on screens and using a mouse instead of a pen or

brush, type artists tend to be conservative, using a

small number of points on the curves and adjust-

ing the off-curve control points carefully to make

smooth shapes that are easier to understand and

control. The curves are usually pleasant, but they

are more limited than the shapes that result from

the living hand moving a traditional tool through a

complex path. The motions of the tip of a Chinese

calligraphy brush are especially complex and subtle,

for example.

Y: So, Apple asked you to help them solve very prac-

tical problems.

C: Right. Apple, Adobe, Microsoft, and a firm called

Imagen, founded by two Stanford computer scien-

tists, asked us for advice and consultation on vari-

ous font technology and aesthetic issues. In the late

1980s, Apple invited us to do some new experiments.

As I said, naive algorithms for rasterization cause

various aesthetic problems on computer screens and

low resolution printers, like irregular stem thick-

nesses and spacing, irregular letter heights, loss of

serifs, broken hairlines, and so on. So when Adobe

developed the PostScript font format, and later when

Apple developed the TrueType font format in 1989–

1991, font hinting was introduced to solve those

problem.

I should explain that “font hinting” is the use of

computer program instructions to adjust the display

of an outline font so that it lines up with a rasterized

grid. At low screen resolutions, hinting is critical

for producing a clear, legible text. Hinting can be

generic for all sizes, but TrueType hinting also has

the capability of adjusting hints for specific resolu-

tions. This localized or hand-tuned hinting has to

be done by people, who can test and view different

approaches. It has become a special skill practiced

by a small number of experts. A typical kind of hint-

ing problem is to make all the vertical stems of a

font have the same pixel thickness, so the text looks

regular in tone and rhythm. At a given size, the

Interview with Charles Bigelow

146 TUGboat, Volume 34 (2013), No. 2

mathematical thickness of a stem might be, let’s say,

2.5 pixels. So, depending on how a letter falls on the

raster grid, a stem might be 2 pixels or it might be

3 pixels thick. This makes for a splotchy, irregular

image. With hinting, all the stems can be forced to

be 2 pixels, or 3 pixels, to enforce regularity. The

actual outlines are being distorted, but the results

look better to readers.

Y: So Lucida has hinting instructions inside the font

file?

C: Right! In fact Lucida Sans roman was the first

fully hinted TrueType font in history. Apple devel-

oped the format but didn’t completely hint a font. At

that time there weren’t mature tools for hinting, and

Apple didn’t have type designers on staff, so they

asked us to test the format by hinting a font, using

low-level tools developed for programmers to write

hinting code. Kris Holmes hinted a whole font that

way. It was a lot like writing macro-instruction code.

Kris showed that TrueType hinting worked in a prac-

tical design context, but the experience also made us

realize that hinting was a separate kind of task from

designing. We decided to stick to designing forms,

not hinting them.

Y: Amazing! But I heard that hinting is not used in

Apple’s system any more.

C: Yes. Increasing resolution screens and new font

rendering technologies, often called “anti-aliasing”

or “smoothing”, eventually made hinting unneces-

sary on later generations of screens and printers.

That took more than a decade of progress, because

display and printing technologies improve much

more slowly than the rate of Moore’s law. By the late-

1990s, grayscale and color display screens gained

enough market dominance that rendering algorithms

could take advantage of the range of gray tones avail-

able on screens.

Y: Is this related to using anti-aliasing techniques

from computer graphics?

C: Yes, the term and technique come from computer

graphics. For a given glyph outline, the edge of a con-

tour usually does not fall exactly on a pixel bound-

ary. An edge pixel might be partly inside the contour

(black) and partly outside the contour (white). Anti-

aliasing adjusts the gray tonal value of that edge

pixel in proportion to how much of the pixel is in-

side the contour or black area. The resulting edge

looks smoother because the intermediate gray tone

is not as noticeable as an all-black pixel. This method

works better at higher resolutions. Below 100 pixels

per inch, viewed at a normal reading distance, the

result looks fuzzy or blurry. Above 200 pixels per

inch, the result usually looks smooth without objec-

tionable blur. In between, the reader’s impression

of sharpness or fuzziness depends on the display

technology, such as LCD or e-ink, the contrast, the

reading distance, and other factors. On very high res-

olution screens, like the Retina screens of iPhones or

iPads, the edges look smooth and sharp because the

human eye usually can’t perceive lower contrast in-

dividual pixels at those resolutions. Vision scientists

have measured the sensitivity of the human visual

system to contrast and detail and found that as de-

tail gets finer and contrast gets lower, it is harder

and harder to see fine features like tiny pixels. Con-

versely, for fine details to be seen, they have to be

high-contrast.

Y: What about ClearType?

C: As color LCD screens with resolutions above 120

pixels per inch gained in the market, subpixel anti-

aliasing became feasible. Most computer color dis-

plays use pixels made up of three subpixels: red,

green, blue stripes. Usually, each subpixel has 8 bits

of tone value, equalling 256 possible gray levels. A

white pixel has all three subpixels turned on, while

a black pixel has all three subpixels turned off, and

other RGB tone values produce millions of colors

in-between. Because the subpixels are adjacent, a

clever hack is to represent different spatial positions

and line thicknesses by choosing different colors for

the whole pixel that will turn on or off selected sub-

pixels. Microsoft developed this concept into their

“ClearType” technology in Windows. It effectively

triples pixel resolution in one direction, because it

uses sub-pixels, which are 1/3 of a full RGB pixel.

Subpixel anti-aliasing works better at resolu-

tions above 150 pixels per inch, where color fringe

effects become nearly imperceptible. At resolutions

above 300 pixels per inch, the color effects are im-

perceptible, and resolution seems very sharp. It is

also important to note that subpixel anti-aliasing

works in only one direction, either horizontally or

vertically, depending on the orientation of the RGB

subpixels. For better resolution of letter stems and

bowls in Latin alphabetic type, the RGB sequence

should be oriented horizontally. For Chinese, which

has more horizontal strokes, better resolution is ob-

tained when the RGB sequence is oriented vertically.

However, devices like iPad and iPhone can display

in both orientations, so it isn’t possible to optimize

the character forms for one orientation.

Y: What’s Apple’s counterpart of ClearType?

C: Apple uses similar techniques in OS X and iOS, but

without a trademark name. I assume that because

of the cross-licensing of TrueType font technology

between Apple and Microsoft, Apple can use sub-

pixel rendering algorithms like ClearType without

Yue Wang

TUGboat, Volume 34 (2013), No. 2 147

infringing Microsoft’s methods or patents, but that’s

just my guess. However, ClearType is Microsoft’s

trademark, so that is presumably why Apple doesn’t

use that name. Apple’s Retina displays use both high

resolution and anti-aliasing.

Y: So you also need to think about how subpixel

rendering affects the display of Lucida.

C: We can think about it, but it is hard for designers

to do much about it. Subpixel rasterizing of larger

type sizes on high resolution screens, which now

have a major share of the market, needs no spe-

cial efforts by designers because the edge artifacts

from rasterization, including jagged staircase pat-

terns, fuzzy contours, and color fringing, are small

in comparison to the size of the letters and do not

appreciably degrade the quality of the text image.

Below 14 point, and at lower resolutions, type size is

small relative to the sizes of pixels, so the rasteriza-

tion artifacts are big in comparison to letter details

like serifs, hairlines, and stems. The artifacts are

noise that obscures the signal of character shape. In

extended texts, there may be thousands of charac-

ters on a screen, so en masse, the artifacts can make

text visually “uncongenial”. Readers may not like the

look of the text, though they may be able to read it

nevertheless. Vision scientists have shown that low-

resolution or fuzzy text can often be read as quickly

and accurately as sharply rendered high-resolution

type. The care that designers put into the shapes of

characters, and the ingenuity that engineers put into

rendering technology, contribute more to aesthetics

than to legibility. Type is both aesthetic and informa-

tive. Well-formed and well-rendered text contributes

to the pleasure of reading a text.

Recognizing the importance of designing for

subpixel anti-aliasing of text types at text sizes,

Microsoft commissioned several new, original font

families to work especially with ClearType technol-

ogy. Several were for Western scripts — Latin, Greek,

and Cyrillic — and one was for Japanese Kanji, Kana,

and Romaji. We tested them in my course on news

typography at RIT a few years, and they all looked

good. I was happy to see such strong support of

artistic creativity for a new technology, from a major

technology company. I should say that one of the

ClearType font designers was a former student of

mine, and others were friends, and that Microsoft

also licenses Lucida fonts, though not as part of the

ClearType set.

I think the next big challenge for designers of

text type will not be pure legibility, although that is

the worthy goal of most text face designers and is

achievable with existing designs in current render-

ing technology on high-res screens. Instead, I expect

to see more emphasis and experimentation with ex-

pressiveness in design, coupled with congeniality

for the reader. In the past five centuries of develop-

ment, Latin alphabetic typefaces have become highly

refined in their forms, weights, patterns, and vari-

ations, and many have proved to be legible over

centuries. More than half of the new novels pub-

lished in the US in the past decade were composed

with “Old Style” type designs based on typefaces first

cut more than 250 years ago. Some of the designs,

like various faces based on those by Garamond and

his contemporaries, were first cut more than 450

years ago. So, at least for print book readers, the

great old seriffed fonts of the past are still the great

new fonts of today, in digital format.

Digital design tools and rendering enable greater

precision and regularity in type forms, but the risk

is that the designs look boring — too regulated, too

repetitive, too rigid, too homogenized. Randomly

adding irregularity doesn’t improve the appearance —

the designs then look boring but awkward. Some

graphic and interface designers want neutrality in

typography, but I don’t believe that any type design

is truly neutral. Every typeface carries some degree

of expressiveness, even those intended to be plain,

simple, and neutral. For example, a user-interface

in Helvetica expresses a different feeling than one

in Lucida, but the two designs are similar in weight

and x-height. Helvetica is more modernist, Lucida

more humanist. Helvetica more carved, Lucida, more

handwritten. Helvetica more tightly spaced, Lucida

more open. A Swiss poet made a memorable compar-

ison of the feeling of Helvetica compared to Syntax

Antiqua, a very readable sans-serif typeface by Hans

E. Meier, which is even more closely based on human-

ist handwriting and early Renaissance typography

than Lucida. The poet said, when he reads a page

in Syntax, it is like walking through a field of flow-

ers, but when reading a page in Helvetica, it is like

walking through a field of stones.

So, a problem for future designers will be: how

much expressiveness to put into a type. What ex-

pression does the design convey to the reader? For

the reader, highly expressive typefaces are lively but

can look too complex for long texts. Free scripts can

look graceful but may seem too undisciplined for

modern readers accustomed to rigidly regular fonts.

When technology changes, there are opportuni-

ties for new designs. We can find many historical ex-

amples. More than 50 years ago, typography shifted

from metal to photographic technology. Hermann

Zapf’s Optima, first created for metal typography,

became wildly popular in photo typography because

it gave greater expressiveness to the sans-serif genre.

Interview with Charles Bigelow

148 TUGboat, Volume 34 (2013), No. 2

Optima’s subtly flaring terminals and classical let-

ter structures brought a hint of Renaissance pro-

portions and humanist handwriting into a modern

idiom, through a new technology that crisply repro-

duced designs photographically and lithographically,

without the usual wear and ink squash of metal type.

Yet, the subtle qualities that made Optima so suc-

cessful in photo technology were difficult to render

in early digital typography because of low resolu-

tions on screens and printers, so Optima lost pop-

ularity in laser printing. Instead, Zapf’s Palatino

gained popularity in desktop laser printing because

it conveyed some of the handwritten vigor of Ren-

aissance typography and calligraphy even in low

resolution of 300 dots per inch. Today, as digital

resolutions increase, Optima is regaining popularity

for a new generation of graphic designers. We may

see new type designs for screens that enjoy simi-

lar popularity in the new media of e-books, smart

phones, and pad computers.

I believe that expressiveness is also an inter-

esting challenge for East Asian scripts. Chinese

type styles derived from woodblock printing, like

the Song/Sung styles, were adapted to metal typog-

raphy and are now widely used in many variations

in a large range of sizes in digital typography The

same is true of the related Mincho styles in Japanese

typography. The rectilinear structure of this type

genre, which may have made it easier to cut in wood,

makes it seem stiff and rigid but functional. It may

be that Song style was easier to cut and cast in small

sizes of type, which would have made the style more

economical because small type sizes use less paper,

and are thus more widely used.

Typefaces based on brush-written Chinese

scripts have more handwritten grace but historically

were more difficult to adapt to metal typography,

and probably that is why they are less popular than

Song or Mincho styles. Digital typography relaxes

the technical limitations on producing and printing

fonts, and makes it easier to “draw” digital charac-

ters, so we are beginning to see more expressive

styles in Chinese and Japanese typography, but

mostly for “display” in advertising, headlines, and

other contexts, at relatively large sizes. Many of

the recent fonts are not in traditional calligraphic

styles, but are fanciful designs, like clouds, fat fish,

childish writing, blurred writing, and so on. Perhaps

some of these were already known in hand-painted

signs and banners, and now can be made into type.

If “folk” styles are getting made into type, that is

fascinating. In American music, folk styles went

mainstream because of the recording industry and

we got jazz, rock ‘n’ roll, and country and western

musical genres, which have since gained worldwide

popularity. However, America has not produced a

“breakthrough” folk typography, probably because

lettering art, calligraphy, and typography have not

been folk cultures, but the practice of literate elites.

The ancient literate traditions of China, Japan, and

Korea may, however, include styles of writing that

could become newly popular in digital form. And,

of course, young designers do not always want to

follow old traditions, and instead invent new styles.

I think this is an exciting challenge for designers

in China, Japan, and Korea — to capture the expres-

siveness of classical styles and adapt them to newer

technology, without seeming quaint, old-fashioned,

or reactionary, and to find interesting historical

styles worthy of revival, but also to invent new styles.

These trends are already happening in display types,

used in large sizes, but the big challenge is, how to

produce those kinds of expressiveness in text types

that can be read at small sizes.

In English language book publishing, sans-serif

fonts are very rare in literature of any kind, whether

important literature or popular genres like crime,

romance, and science fiction. Fiction is generally

seriffed. Books about graphic design, photography,

and modern art, however, use sans-serif types fairly

often, so the choice of type style depends on the

content and on the reader. I wonder if similar dis-

tinctions occur in East Asian publishing.

The recent popularity of Japanese “cell phone

novels”, which are usually about the lives of young

people and often written by young women, are said

to use more hiragana characters than traditional

Japanese literature. I wonder if this increases inter-

est in expressive hiragana fonts, when cell phone

novels are published in print. There are already

many expressive kana designs, which can be com-

bined with appropriate weights and forms of Kanji

to achieve subtly different text effects. When there

is a shift in literary taste, there can also be a shift in

typographic taste. Another interesting mixed writing

system is the Korean, which uses Hanja characters

based on Chinese, along with the unique Hangul al-

phabet. Compared to the Latin alphabets, Hangul

more accurately represents the significant sounds of

speech. So, I wonder whether literary expression that

favors Hangul motivates trends in the graphical de-

sign or usage of Hangul fonts. Do font styles reflect

literature? Are Korean pop novels and cell-phone

novels using more Hangul than Hanja characters?

The Korean Hangul writing system was sans-serif

in early examples, but late styles became similar to

brush-written characters.

Y: What about different weights in Lucida?

Yue Wang

TUGboat, Volume 34 (2013), No. 2 149

Figure 18: Spectrum of possible weights for Lucida Sans.

Top group = “light” weights; second = “normal” weights;

third = semi-bold weights; bottom = “bold” weights.

C: Here (fig. 18) is a series of experimental weights

for Lucida Sans. The top group is for light weights,

the second group for normal weights, the third for

semi-bold weights, and the bottom group for bold

weights. In the first generation of Lucida fonts, the

low screen and printer resolutions could not sup-

port such fine gradations of weights, so we made

only a few weights: normal, demibold, and bold.

Now, higher-resolution display technologies and anti-

aliasing techniques can render finer weight grada-

tions, so we have designed additional weights of

Lucida Sans, to be released next year. By studying

the weights of popular text typefaces today, and

also going back hundreds of years, we concluded

that there is no single ideal weight, but a range of

preferred weights, depending on printing quality,

reading conditions, and, in digital displays, screen

technologies.

At RIT, I did a study of “just noticeable differ-

ences” in the weight of a sans-serif face. For a given

weight, how much darker must a slightly bolder

weight be for a reader to notice that it is darker?

The results appear to follow the Weber-Fechner law

in psychophysics, which says that perception of dif-

ference is proportional to stimulus. I found that for

a “normal” font of a certain weight, a just-noticeably

darker font needs to be approximately 2.5% bolder

than the normal weight. The same is true for a bold

weight: the next perceptibly darker weight must be

2.5% darker than the bold, so perception of weight

difference follows a geometric progression.

Y: The weight spectrum reminds me of the Frutiger

numbering system!

C: Yes, Frutiger was a pioneer in the numbering of

typeface weight systems with his Univers family and

later with his Frutiger family and others. He saw

Figure 19: Current weights of Lucida Sans. Assuming stem

weight of “normal” = 1.0, then “light” weight = 0.75 x normal;

“demibold” = 1.5 x normal; “bold” = 2.0 x normal.

that typographic weight nomenclature was a confus-

ing mess. Different designers, type foundries, and

font vendors used different and incommensurate

names. Frutiger rationalized weights within Univers

and designated them with two-digit numbers. I al-

ways liked that. Recently, a three-digit numbering

system has been developed for Univers, to incorpo-

rate additional weights and widths. It is useful but

doesn’t exactly match the original two-digit system,

which makes it confusing for me because I remem-

ber the older, simpler system. Around 20 years ago,

Peter Karow, developer of the Ikarus software for

type digitization, made an interesting study of the

statistics of typeface weights, using a large digital

font database. He made a reasonable proposal for

rationalizing typeface weights in an 11-step system

but it was not adopted. Today, W3C recommends a

set of font-weight names and associated numerical

values in a 9-step system, but it is, to my mind, in-

consistent with existing progressions, arbitrary, and

too limited, so I don’t see it as an effective solution.

I’m afraid, it is a muddle that won’t be cleared up

soon, if ever.

Y: What’s the current weight of Lucida then?

C: For Lucida Sans normal, the stem thickness is

18% of the x-height. Lucida Sans demibold is 1.5

times the normal stem, and the bold stem is 2.0

times the normal. (See fig. 19.) This approximates a

progression based on the square root of 2. However,

weight measured by ratio of stem to x-height, which

designers like, is not the same as weight measured

by percentage of black pixels in total text area, which

an engineer might prefer. Using pixel area weight

measure, Lucida Sans normal is roughly a 22% gray

tone. Lucida Sans demibold is approximately 29%

gray, and Lucida Sans bold is 36% gray, which is

1.6 times the normal weight. Thus, the gray tone

Interview with Charles Bigelow

150 TUGboat, Volume 34 (2013), No. 2

progression does not increase as much as the stem-

weight to x-height ratio, because of the way weight is

distributed in a Latin typeface — more of the weight

is in the x-height region, less in the ascender and

descender region.

Text typefaces appear to cluster into weight

groupings. The normal weights of seriffed roman

text faces tend to have light gray tones, ranging from

around 14% to 18% gray. Seriffed types designed for

screen display tend to be somewhat darker, around

18% to 22% gray tone. Sans-serif fonts for print and

screen also tend to be darker, ranging from 19% to

23%. Of course, there are lighter and darker weights

in many typeface families; I’m talking about what

are called “normal” or “regular” roman text weights.

As a side note, Chinese fonts also cluster into

tonal groups, but to measure the average gray tones

is challenging, because the number of strokes in a

character and therefore its density varies much more

than in Latin typefaces, and the frequency distribu-

tion of characters can vary according to content and

usage. In my very rough estimates, Song style faces

have average gray tones that cluster like traditional

seriffed Western fonts, but slightly darker, ranging

from 15% to 20%. Sans-serif Chinese fonts tend to

be darker yet, ranging from roughly 22% to 35% gray

tone. However, I guess that weights darker than

30% are not often used in running texts. Kanji fonts

cluster into similar tonal groups. I hope that type

scholars in Asia will explore some of these patterns

of usage.

Back to Lucida — to make Lucida Grande work

well in Apple’s OS X font menu, Apple preferred the

designation “bold” to “demibold”, so Lucida Grande

Bold in OS X is the same weight as Lucida Sans Demi-

bold in Windows. I regret the confusion — another

difference between operating systems and platforms.

Weight measurements, names and numerical values

remain an unsolved problem of lack of standard-

ization, in part because of the technical needs of

various systems, and in part because designers sim-

ply make weights the way they think looks best.

3 State of the art — smart fonts

Y: Interesting. What other new technologies are you

involved in when designing typefaces?

C: Apart from computer graphics techniques and

higher resolutions, an important font technology is

the glyph substitution technique used in OpenType.

Glyph substitution makes math fonts less cum-

bersome because different forms and sizes of glyphs

can be substituted according to context. In Ara-

bic typography, smart fonts are aesthetically func-

tional. They enable easy use of context-sensitive

Lucida Handwriting

Kolibri

Figure 20: Demonstrations of the joining structure of

Lucida Handwriting compared to Kolibri, a script design by

Kris Holmes for URW, developers of the Ikarus font software

used by Bigelow & Holmes.

shape variations that are aesthetically necessary in

Arabic scripts. This encourages artistic expression

and experimentation, both in capturing traditional

styles and in imagining new styes. In terms of glyph

variations, Latin alphabet fonts were simplified dur-

ing the first hundred years of typography, with most

ligatures, abbreviations, and alternate forms elim-

inated for economic reasons. So, smart fonts are

not crucial for Latin alphabet typography, but do

have artistic and ornamental value. Hermann Zapf’s

Zapfino, a graceful yet free script with glyph substitu-

tion, has become very popular. Some of Kris Holmes’

scripts like Apple Chancery, which has many glyph

variants, and Kolibri, which has intricate joining,

also show the aesthetic possibilities of smart fonts.

Jim Wasco’s Elegy script also shows elegant use of

OpenType.

Before OpenType, Apple invented a similar tech-

nology called TrueType GX, later called AAT. The

software that renders text parses the strings for

certain combinations and contexts of letters, and,

when they are found, the software substitutes alter-

nates from the font if the substitutions have been

programmed into the font. A common example in

English and European languages is the f-ligatures.

To keep the dot of the letter ‘i’ or the top of the letter

‘l’ from bumping into the upper arm and terminal of

the ‘f’, typefounders used to cast special combina-

tions of ‘fi’, ‘fl’, ‘ffi’, and ‘ffl’, and more rarely, ‘fj’, for

words like “fjord”. A few like ‘fi’ and ‘fl’ are common

in most fonts today. When we were designing Lucida,

glyph substitution wasn’t available so we designed

the ‘f’ with a short top arm that didn’t collide with

the ‘i’ or ‘l’. In Lucida Grande, several f-ligatures are

available, like ‘fi’, ‘fl’, ‘ff’, ‘ffi’, and ‘ffl’.

Kris continued to experiment with more com-

plex character sets. We designed Lucida Casual with

three alternative styles, though two of them have not

been released because we were experimenting to see

Yue Wang

TUGboat, Volume 34 (2013), No. 2 151

if glyph substitution made sense for them. However,

glyph substitution is often not necessary, even for a

lively script. You can see that in Lucida Handwriting.

Kris crafted it so all the end strokes were placed in

a single horizontal line. It looks like free handwrit-

ing, but has a simple joining method. As another

example of alternative forms, Kris worked with Peter

Karow at URW to design the Kolibri script, which has

a more complex joining pattern than Lucida Hand-

writing, so that every character can join elegantly,

but that requires many alternate forms. URW++ has

now produced it in OpenType (fig. 20).

Y: Amazing experiment. So now we have four differ-

ent ‘e’s. This script is really elegant.

C: Yes. Kris has a special liking for lively script

faces. (I think I am permitted to boast on her behalf!)

She studied dance and choreography for years as

well as studying calligraphy, so her type designs

learned many things from choreography, especially

a feeling for motion and rhythm but also a sense

of order within complexity. When Apple created a

“smart” font technology based on their TrueType, it

was first called QuickDraw GX in the mid-1990s but

later evolved into Apple Advanced Typography, or

AAT. In AAT, there can be several degrees of ligature

control, old style figures, small caps and drop caps,

swash variants, and alternative glyphs.

Y: This sounds very similar to Microsoft and Adobe’s

OpenType.

C: Exactly. When Microsoft wanted to use Apple

Advanced Typography, Apple refused to license it,

so Microsoft and Adobe worked together to create

OpenType, which is technically somewhat different,

but provides much of the same functionality. But

back to QuickDraw GX and AAT — when Apple was

developing the new font technology, they showed us

a page like this (fig. 21). It’s chancery cursive writing

by Ludovico Vicentino degli Arrighi, in a wood block

printed book published in 1522. Apple said, well,

okay, we can do character substitution now, and

technically we could produce a page like this, but we

need you to design a font that would enable us to

do that.

Y: So what’s your design procedure?

C: The first thing we did was go back to our calli-

graphic teaching manual from Lloyd Reynolds, who

was our calligraphy teacher at Reed College, in Ore-

gon. Kris and I studied with him, at different times.

Steve Jobs took calligraphy courses at Reed, too.

Here’s a picture (fig. 22) of Reynolds, standing out-

side his calligraphy studio at Reed College in 1967

and a sample of his italic handwriting. After the com-

riting by Arrighi (Ludovico Vincentino), wood bloock print in 1522.
anted to be able to do this on their screen.

Figure 21: Chancery cursive writing by Arrighi (Ludovico

Vincentino), wood block print in 1522. Apple wanted to be

able to do this on their screens.

Figure 22: Lloyd Reynolds, calligraphy teacher of Kris

Holmes and Charles Bigelow. Standing outside his calligraphy

studio at Reed College, circa 1967. A sample of his italic

handwriting.

mencement, he printed it out so all of his calligraphy

students could have a copy of it.

Y: How’s your reproduction process based on his

teaching manual?

C: Arrighi’s manual is clear and elegant, with many

fine flourishes, but the letters were cut in wood and

are a little more angular than examples of his actual

Interview with Charles Bigelow

152 TUGboat, Volume 34 (2013), No. 2

Figure 23: Variations of ‘k’.

Lucida Calligraphy
Apple Chancery

Lucida Calligraphy
Apple Chancery

Figure 24: Comparison of Lucida Calligraphy to Apple

Chancery; both designs are chancery cursives by Bigelow &

Holmes. Apple Chancery is more like the form of calligraphy

taught by Lloyd Reynolds, based on Arrighi’s models. The top

pair are both set at a body size of 28 pt; in the lower pair, the

Apple Chancery size has been increased to equalize x-heights.

handwriting and of other scribes of that era, so Kris

wrote all the characters with a pen and worked out

as many variants of every letter of the alphabet as

she could dream up. For example, if you look at

the lower case ‘k’, there’s a very simple ‘k’, a more

complicated ‘k’, a ‘k’ that would go at the beginning

of the line, a ‘k’ that would go at the end of the line,

and so on. (See fig. 23.)

Kris created her samples based on Reynolds’

teaching and manual, and we enlarged them, and

then we redrew them. And we made a few changes

to make them sturdier looking for typographic use

so the hairlines were thickened up a little bit and the

characters were made a little wider than they would

be just with a pen written character. The result was

Apple Chancery. A “chancery” was a medieval or

Renaissance clerical office where scribes wrote the

documents needed to organize a kingdom or city or

organization. A special kind of handwriting used

in Italian Renaissance chanceries came to be called

“chancery cursive”. So, we suggested that this italic

handwriting, designed for Apple, could be called

“Apple Chancery”.

Y: It looks like Lucida Calligraphy.

C: Yes, both were based on our study of italic hand-

writing with Reynolds, who based his teaching on

calligraphers like Alfred Fairbank, who based his on

the works of Arrighi and other Italian calligraphers

of the 16th century. Lucida Calligraphy has a big

Figure 25: Apple Chancery (left) compared to Lucida

Calligraphy (right).

Figure 26: Reynolds’ hand-drawn calligraphy compared to

Apple Chancery.

x-height, much bigger than the Italian Renaissance

models, so it can align with other Lucida fonts. Apple

Chancery stands alone, so it has a smaller x-height,

more like the traditional chancery handwriting and

fonts of the Renaissance. Here (fig. 24) is the com-

parison of Lucida Calligraphy (big x-height) to Apple

Chancery (small x-height), at the same body size.

The type with the smaller x-height looks smaller.

But when we designed Lucida Calligraphy, the old

Canon printing technology tended to increase dark

shapes and some of the details would clog up, like

the ‘n’ here. We made modifications to the shapes to

prevent this from happening. But in Apple Chancery

we didn’t need that any more (fig. 25).

Y: So the shape is more beautiful.

C: Apple Chancery is more like the Renaissance pro-

portions of calligraphy taught by Lloyd Reynolds,

based on Arrighi’s models. We produced a huge

character set for this font. In the end it had more

than a thousand glyphs in it. This was how Apple

Chancery came into being.

Y: So Apple Chancery was the testbed of smart font

technology?

C: It was the most extensive use of Apple’s True-

Type GX font technology in its first release. Apple

Yue Wang

TUGboat, Volume 34 (2013), No. 2 153

also used smart technology in other fonts released

around the same time, so Apple Chancery wasn’t

the only pioneering smart font, but it was the most

ambitious at that time. Zapfino is a smart font that

came later, in OS X, with even more variant charac-

ters in a free calligraphic style. When we finished the

Apple Chancery project, Kris made this (fig. 26): on

the left is a page from Reynolds’ calligraphy book.

And on the right is the same page duplicated in

Apple Chancery. You can see the difference. The

typographic forms are a little lighter. They’re a little

wider, not quite as rich in variation. But we were

very pleased with this, because I think that the spirit

of Reynolds’ calligraphy is in here. Steve Jobs was

at Reed a few years after Kris. He also studied cal-

ligraphy there, so he was influenced by the same

ideas from Lloyd Reynolds, which he described in a

commencement speech at Stanford some years ago.

So these traditions and interactions fit together in

a coincidental but intriguing way. Apple Chancery

is intended to honor Lloyd Reynolds’ memory, and

in a way also commemorates Steve Jobs’ experience

studying calligraphy.

Y: Given that all recent fonts are moving to incorpo-

rate AAT or OpenType features, what’s your recent

plan for Lucida?

C: Good question. We recently adopted OpenType

for a very functional purpose: a new version of Lu-

cida Math for TEX. Almost 20 years ago, we worked

with the firm of Y&Y to make a set of Lucida Math

fonts in PostScript Type 1 format for TEX. Berthold

and Blenda Horn did a lot of work to make Lucida

fonts compatible with TEX. Since then, the Unicode

standard has added several blocks of math sym-

bols and alphabets, and OpenType enables glyph

substitution. To upgrade Lucida to OpenType, we

added more math symbol sets, a new math script

alphabet, plus Greek and Cyrillic alphabets, and we

encoded all the characters in Unicode. Previously,

we offered basic text fonts plus TEX-oriented math

fonts like “Math Italic”, “Math Symbol” and “Math Ex-

tension” for TEX. Those are now combined into one

math font in OpenType (http://tug.org/lucida).

Karl Berry coordinated the project on behalf of TUG,

we designed the new glyphs and Khaled Hosny com-

bined the new character sets with the older ones and

built the fonts in OpenType format. Several people

from the TEX community helped test and critique

the fonts. Mojca Miklavec, Hans Hagen, Ulrik Vieth,

Will Robertson, Michael Sharpe, Taco Hoekwater, Bo-

gusław Jackowski, and Barbara Beeton. I hope I got

all their names right. An international undertaking.

The new Unicode standards for math symbols

incorporate style variations as semantic variations.

As one small example, in addition to the usual text

versions of ‘a’, we provide separate math versions

for upright ‘a’ and italic ‘a’, as well as sans-serif

and bold variations, which have different semantic

meanings in math.

Y: Yes. Because in math equations, upright is used

to mark labels, while italic is for variables. Bold

marks are used for vectors.

C: So now in Lucida Math OpenType, we include all

these variations that are specified in Unicode. Now

there are more than 3100 math glyphs in Lucida

Bright Math and around 1700 in Lucida Bright Demi-

bold Math.

Y: Amazing. So you are using the new OpenType

MATH table feature introduced in Microsoft Word

2007?

C: Yes, but we didn’t make the math tables, Khaled

Hosny did them. First, Kris and I designed the glyphs,

using various tools, old and new, including Ikarus,

Illustrator, and FontLab, and then Khaled Hosny as-

sembled the fonts and generated the MATH tables

using FontForge.

Y: The latest TEX engines like X ETEX and LuaTEX fully

support OpenType, so it’s much easier to use them.

C: Yes, that’s why TUG suggested we make the up-

grade. We also took the opportunity to redesign the

math operators. When Donald Knuth designed TEX

and his Computer Modern typeface, he used rela-

tively large operators compared to the alphabetic

characters. I think perhaps as a mathematician he

thought the operator relationships were more im-

portant than the variables themselves. But, when

we first designed math characters for Lucida in the

early 1980s, we made the operators relatively small

because we were thinking that the symbols should

be proportioned like the alphabetic characters, and

that it would be helpful if most of the operators were

the same width, either like figures or some other set

width, so the symbols could easily be used in tables.

Later, we agreed more with Knuth’s practice, so we

increased operator symbol sizes for the Y&Y Lucida

Math fonts. And, after more years of experience

working on math fonts and seeing them used by

mathematicians and computer science, we believed

that Knuth had been right all along, so we increased

the sizes of the operators again when making the

OpenType Lucida Bright math fonts. Now they are

close to the proportions Knuth chose more than 30

years ago.

Y: But I still like the original flavor. Maybe you can

leave this as an option for users?

C: We kept some of the smaller symbols as alter-

nates in the fonts for those who preferred them.

Interview with Charles Bigelow

154 TUGboat, Volume 34 (2013), No. 2

The older operator designs are also in the PostScript

Type 1 Lucida math fonts, which are still available

from TUG, so they aren’t lost.

Y: You mentioned that there is a demibold version

of Lucida Bright math.

C: Yes, when we were working with Y&Y years ago,

we added bold operators because Y&Y and some of

their customers said, “We need bold for the symbols

as well!” because bold is a semantic category for

math variables; logically, bold could apply to opera-

tors, too, though currently, not all operators have a

semantically bold form. So, for Lucida Math Open-

Type, we made a whole math font in Demibold. Not

only because bold characters have semantic mean-

ings, but because mathematicians and technical au-

thors are logical — they think, if we have bold letters,

bold greek, bold scripts, and so on, why don’t we

have bold symbols? Because mathematicians keep

thinking of new ideas and need new symbols to rep-

resent them, they keep making little bits of new work

for type designers. We try to keep up, but math fonts

are never really finished, because mathematics keeps

expanding. It isn’t clear which math characters re-

ally need to be bold, so Lucida Bright Demibold Math

doesn’t offer bold versions of all the characters in

the normal weight. We added a bold typewriter to

the Lucida Demibold Math font, because there is a

Math Typewriter alphabet in the normal weight Lu-

cida Math, and the same for a bold script, in two

styles, chancery and English roundhand, and bold

arrows as well as bold operators. I expect we will get

requests for more bold characters.

Y: Do you make the symbols bold by hand or by

using software to automatically make it bolder?

C: Design by hand. We use software to input shapes

and edit contours, but not to make automatic bolds.

Some math symbols are easy to embolden because

their geometry is simple and clear, but some take a

little more work, though most are not as difficult as

emboldening alphabetic characters. Generally, you

get a sharper, crisper, better design by emboldening

by hand because you see what you are doing. For

outline font formats, there is no single algorithm to

make good bold weights, though I have seen that

the algorithms are getting better at making pseudo-

bold weights. Early methods made a smeary mess

of the shapes. In Metafont, however, there is an

easy way to embolden shapes, because Metafont can

use a pen metaphor: a nib of a certain size, shape,

and orientation follows a path and the image of the

character is the trace swept out by the nib. You

can keep the same path but make the nib bigger

to make the shape bolder. More subtle methods

change the size, shape, and orientation of the nib.

An outline format like TrueType does not use that

metaphor. Because of its pen metaphor, Metafont is

closer to traditional writing than to traditional metal

typography, which used carved outlines.

For bold characters, a design challenge is, how

to prevent acute angled joins, like where the hairline

of the arch meets the stem in an ‘n’, from clogging

up when printed with heavy ink or toner? In the

first versions of Lucida for 300 dot-per-inch print-

ers, we opened up more white space in those areas,

but as printers improved, we removed the cut-outs.

On screen, there can be the opposite problem — the

backlighted background can make characters look

lighter. Digital technology keeps presenting new

challenges for designers.

Y: Can the Lucida Math characters be used without

TEX?

C: Yes, the characters are encoded in the fonts with

Unicode. Applications that let users find characters

by Unicode code point or that show the whole glyph

set let users access the characters. Equations may

not look quite the same when Lucida fonts are used

with Microsoft Word’s math engine, because the Lu-

cida Bright Math fonts don’t have exactly the same

metrics nor all the same characters, as Microsoft’s

Cambria Math font. Our goal was to augment the

TEX-friendly Lucida Math fonts for OpenType, not

emulate Microsoft’s font, but we always enjoy de-

signing new characters, so if user feedback tells us

that we should include the Cambria math set as a

subset of Lucida Bright Math, I expect we will even-

tually include those characters.

Y: You mentioned chancery script and roundhand

script. Are both included, and what is the difference?

C: Originally, Y&Y used our chancery script, Lucida

Calligraphy for the default math script. A chancery

script for math is found also in Herman Zapf’s script

capitals in the Euler fonts. A chancery script is “cur-

sive”, which means a fast, “running” style, but the

letters usually don’t join. Some TEX users asked for

the English style of roundhand script, which is more

common in math composition than the chancery

style. In English roundhand, the lower-case letters

join, and there is a strong difference between thick

stem and thin hairline strokes. Kris designed a true

English roundhand face, based on her studies of

English writing masters. That is now the default

in the Lucida Bright OT math fonts, but the Lucida

chancery characters are still in the font as alternates

for those who prefer them. Both the chancery and

roundhand scripts have normal and bold weights. A

very different set of capitals in Lucida Math is the

Blackboard Bold set, in which the forms are based

more on geometry than handwriting, but they are

Yue Wang

TUGboat, Volume 34 (2013), No. 2 155

not purely Euclidean constructions — the capitals re-

late to the Lucida Sans capitals. We also made a bold

Blackboard Bold for Lucida Bright Math demibold.

4 Metafont and the TEX world

Y: You mentioned Metafont’s pen metaphor. Do you

think the idea of the pen is still useful in the design

of a font?

C: Yes, the idea of the pen is still powerful, but the

long history of metal typography firmly established

the outline metaphor. Whenever a type designer,

called a punch-cutter until the end of the 19th cen-

tury, tried to imitate a handwriting style, he had to

cut it in steel. Also, the letters had to be cast sepa-

rately, and for economy and efficiency, there could

not be many variant letters or ligatures — characters

tied together. Probably the greatest punch-cutter of

scripts of all time was a 16th century Frenchman

named Robert Granjon. He cut many different fonts

of roman, italic, chancery, and cursive blackletter, as

well as Armenian, Cyrillic, Syriac, Arabic and other

non-Latin scripts. So, punch-cutting could imitate

handwriting in the hands of a master. It is much

easier to create type today; it doesn’t have to be

laboriously cut in steel, but even now, most typo-

graphic scripts are created as outlines.

In early digital typography, companies were in

a hurry to reproduce metal or photo type in digital

form. Helvetica, Times Roman, etc. Even Lucida, an

original design for digital, was based on an outline

metaphor. But, at Stanford, Knuth explored the pen

metaphor in his own creation of Computer Modern,

and also commissioned the Euler font designs from

Hermann Zapf.

I should say a little about how the Euler fonts

were produced in Metafont. Zapf drew the letters

as outlines; after a career of four decades, he knew

well how to render handwriting in outline drawings.

The reverse process was much harder for those of

us working for and with Knuth at Stanford: how

to turn drawn outlines into pen-based paths in the

Metafont metaphor. Knuth himself could have done

it, but he was busy finishing TEX and Metafont, so

he assigned the project to one of his talented grad-

uate students, but progress was slow, so then my

students also became engaged in the project, and

yet it still went very slowly. The students despaired

of ever getting true Metafont characters to match

Zapf’s drawings. Eventually, I advised them to give

up on the “meta” aspect and the pen metaphor, and

instead digitize Zapf’s drawings as outlines, using a

simple-minded hack: set the Metafont pen nib to be

very small — one pixel — on a high resolution field,

and code the outline contours as paths. This worked

well, the characters matched Zapf’s drawings, and

the production went much faster. However, the re-

sulting characters were not “meta”. Normal weight

could not be turned into bold by changing pen nibs,

serifs could not be altered by changing nibs. Outline

representations of characters are basically unintelli-

gent blobs, whereas Metafont representations have

structure, but we were not able to reconcile these

two different approaches.

I regretted that neither I nor my students could

see how to solve the more difficult problems. Given

a shape traced by a pen or brush, we can digitize the

graphical trace in various ways, but given a drawn

outline, it isn’t at all clear what path and what pen

produced that shape, nor even if that shape can be

made by a pen and a path. How to make the char-

acters “meta” — that is, how to design them so that

bold, narrow, and other variations can be produced

by substituting virtual pen nibs — adds another layer

of difficulty. I’ve always felt guilty about turning an

intellectually fascinating but very difficult problem

into a simpler but achievable solution under con-

strained circumstances. Nevertheless, there were

practical advantages to the outline solution. After

the Euler fonts were produced as digital outlines

with Metafont, a group of mathematicians and pro-

grammers were able to translate them into the Post-

Script Type 1 format: Berthold Horn at Y&Y, Henry

Pinkham and Ian Morrison at Projective Solutions,

and Douglas Henderson at Blue Sky Research. A few

years ago, the Euler fonts were revised with further

contributions by Zapf [4].

I should mention that the Euler project at Stan-

ford was using Metafont79, not the current Meta-

font(84). In mf79, only the pen metaphor was avail-

able; in mf84, outlines are also directly supported.

Indeed, it was partly because of the Euler experience

that Knuth completely rewrote Metafont to support

outlines as the primary drawing mechanism.

The pen metaphor is still valid as inspiration,

but it has mostly been ignored in commercial font de-

velopment. Today, nearly every digital font designer

uses a visual application like FontLab or Fontforge,

not Metafont. So I don’t think there is any need to

use the pen metaphor for actual production. Even to

capture handwriting, as long as the shapes produced

by pen strokes can be turned into outlines, design-

ers are happy about it. I am sometimes sorry to see

that the spirit and grace of the moving hand and

tool, whether pen, brush, or reed, are lost in modern

typographic technology, but now that the basic prob-

lems of outline font technology are solved, perhaps

someone in the future will work on restoring the

human action.

Interview with Charles Bigelow

156 TUGboat, Volume 34 (2013), No. 2

Y: So you think Metafont is too hard for designers.

C: Yes, at least for visually oriented designers. Meta-

font is mathematically based, whereas most design-

ers rely on their visual intuition and avoid math-

ematics. Metafont uses an abstruse programming

language to describe characters, which must be writ-

ten and tested like computer code, and which makes

it nearly impossible for visually trained designers

to learn to use it. The intersection of Programming

Experts and Design Experts is nearly the Empty Set,

though some younger designers both write code and

create typefaces, but in the outline metaphor. If

Knuth had developed a more user-friendly interface

to Metafont, or if someone else had successfully

worked on a project to automatically record a real

pen or brush movement and determine the virtual

pen that produced the resulting shape, I think the

pen metaphor would have been more widely adopted.

Remember, too, that at the output end, all the font

engines for screens and printers were biased toward

outlines, beginning with PostScript, and followed

by TrueType. Nevertheless, a fair number of fonts

have been produced with Metafont, especially for

non-Latin alphabets and character sets, symbol sets,

and others.

Y: I think the same for TEX too.

C: TEX fits in with a technical, logical intellect. For

visual designers who prefer WYSIWYG interfaces, TEX

is difficult. Very few graphic designers or typogra-

phers appreciate it. However, that is not true for the

thousands of mathematicians, physicists, computer

scientists, and others who use TEX to write scientific

and engineering papers.

A personal anecdote to support that claim: My

neighbor is a retired mathematician, Norman Alling.

He wrote a book on real elliptic curves and taught

himself TEX in his 50s, so he could compose his book

and papers himself, and he still uses TEX now, in

his 80s. He says TEX liberated math journals and

authors from dependence on commercial math type-

setting, which was slow, expensive, and fraught with

typographical errors needing proofreading and cor-

rection. When I told him that some people suggested

that Knuth could have better spent his time finishing

the Art of Computer Programming books instead of

spending a decade developing TEX, he replied: Oh no,

TEX liberated so many mathematicians and scientists

from the bottleneck of typesetting that it was a great

boon to all of math and science, more important

for the world-wide science and technical professions

than Knuth’s unpublished books on computing, how-

ever excellent they might be. That’s just one opinion,

of course, but it suggests how liberating TEX was and

still is. And, of course, Don Knuth is still working

on his books, and many people hope for his success

in finishing them.

As a side note, did you know that Knuth’s work

on typography was anticipated by the Italian math-

ematician Giuseppe Peano, a founder of mathemat-

ical logic? Peano was concerned with the precise

forms of mathematical notation in print, and was

frustrated by the difficulties of getting mathematics

typeset and printed, so to further his grand ambition

to publish an encyclopedia of mathematical formu-

lae, he purchased his own printing shop and took

classes in composition and printing. Typography is

the graphic art that seems to appeal most to math-

ematicians (apart, perhaps, from the prints of M. C.

Escher). Do you know the mathematician who devel-

oped the Unicode TEX fork for non-Latin scripts? He

also wrote the book Fonts & Encodings [5].

Y: Oh, you mean Yannis Haralambous’s Omega?

C: Yes. His book is a massive volume of informa-

tion. It touches on nearly every subject in digital

typography, often in great detail. His Omega system

deals with non-Latin typography, which Kris Holmes

and I also find fascinating, but we look at it from

the character design aspect, not the programming

aspect. Haralambous developed an actual system.

It’s really an impressive body of work.

Y: Yes. And the source code has been merged into

the future version of TEX called LuaTEX.

C: It’s wonderful how many dedicated people con-

tinue to contribute to the expansion of TEX.

Among computer scientists who showed early

interest in digital typography were the developers

of Unix at Bell Labs. In 1979, Ken Thompson, Brian

Kernighan, Joe Condon, and perhaps others, wrote

software for Unix systems to drive the Linotron 202,

a new digital typesetter that Bell Labs had bought.

They found that the Linotron 202’s factory-installed

software was buggy and that the font encryption

prevented them from inputting their own graphics.

In a brilliant summer project, amusingly and suc-

cinctly described in an internal Bell Labs report, they

disassembled the typesetter’s own operating system

and replaced it with their own software. They also

decrypted the typesetter’s font encryption scheme

so they could input their own graphics. As well as

being less buggy, their new software was faster at

processing mathematical texts, although slower at

processing newspaper texts — the Labs published

technical papers, not newspapers. They also devel-

oped software to input digital graphics like diagrams,

chess pieces, logos, and so on. The Labs’ internal

report was a nice description of problem-solving by

intelligence. They didn’t use big brute force number-

crunching to decrypt the machine’s software, but

Yue Wang

TUGboat, Volume 34 (2013), No. 2 157

simply studied and analyzed its workings, then ex-

perimented with their own code. Looking back, it

is clear that they were seeing the future, six years

before PostScript printers and imagesetters revolu-

tionized digital text and graphics imaging. Their

approach could have been more widely exploited,

but I believe the paper was not published and their

software not distributed with Unix because of legal

issues with reverse-engineering. However, their pa-

per has finally been scanned and released for its

historical interest; it’s on Brian Kernighan’s page

on the Bell Labs site: http://www.cs.bell-labs.

com/cm/cs/who/bwk/202.pdf. A modern revival

is being reprogrammed by David Brailsford for the

Document Engineering 2013 conference.

5 Beyond Latin alphabets

Y: The Lucida Grande fonts in Mac OS X have sev-

eral non-Latin alphabets, like Greek, Cyrillic, Hebrew,

Thai, and Arabic. Do they use advanced typography

as well?

C: Yes, to some extent, but not a lot. Modern Latin,

Cyrillic, and Greek fonts don’t really need advanced

typography like Apple’s AAT or OpenType. Latin

fonts may benefit from the aesthetic possibilities of

glyph substitution, but they don’t need it for legible

text. In metal typography, simplification of character

sets made typesetting and printing more economi-

cal, because fewer characters needed to be cut, cast,

stored, and composed. Hence, by the middle of the

16th century, most abbreviations, ligatures, and vari-

ant forms of characters had been eliminated from

standard roman and italic fonts. For Cyrillic type,

a similar simplification took place in the early 18th

century under the direction of Czar Peter the Great

of Russia. Greek fonts, which could be very com-

plex because of many ligatured forms and complex

sets of accented vowels, were gradually simplified

over the centuries by elimination of ligatures and

variants. In the late 20th century Greek “monotonic”

standard, ligatures are eliminated and the number

of accented letters greatly reduced.

Typefaces based on cursive handwriting, how-

ever, tend to have more joining forms and context-

sensitive complexity. Apple Chancery has more than

1,000 characters, with hundreds of variants and liga-

tures. Herman Zapf’s Zapfino has more than 1400

glyphs, including letter variants and ligatured forms

using advanced typographic features.

However, the Arabic writing system really needs

advanced typographic support in order to make tra-

ditional styles practical in typesetting. The first re-

lease of Lucida Grande Arabic in 2001, a sans-serif

design but in the Arabic Naskh style, definitely made

use of advanced typography, in the form of Apple’s

AAT system. Most Arabic typefaces today use Open-

Type, and many interesting and elegant Arabic type-

faces have been designed in the past decade, because

of the new freedoms of advanced typography and

glyph substitution.

The Devanagari writing system used for mod-

ern Hindi and some other languages of India, and

also for classical Sanskrit, also benefits greatly from

advanced typography. For Sun Microsystems we

designed a Lucida Sans Devanagari face that uses

OpenType, but it was not included in Lucida Grande.

Y: How did you expand Lucida from Latin to other

alphabets?

C: Our teacher of calligraphy, Lloyd Reynolds, em-

phasized that written forms must have life and ac-

tion. He liked to quote an ancient Chinese art philoso-

pher, Xie He, whose first principle of painting was,

“qiyun shengdong”, spirit breath rhythm life move-

ment. Nearly all typographic forms were originally

imitations of handwriting, though the subsequent

evolution of typefaces takes different routes. Be-

cause Lucida was based to a large extent on Ital-

ian Renaissance handwriting, we tried to base the

Lucida Greek alphabet on older Greek handwriting.

Kris practiced writing medieval styles of Greek, and

then we modernized them into sans-serif styles. Of

course, many Greek capital letters are shared with

Roman forms, but by starting with handwriting for

the lower-case, we tried to give it more life and ac-

tion. We used similar principles for Cyrillic, though

its modern forms are more directly derived from

typefaces, not traditional handwriting.

Again, for Hebrew and Arabic, we first studied

traditional calligraphy. Arabic writing has a long

tradition of elegant calligraphy, but it is difficult to

distill that to fonts that are legible in small sizes on

computer screens. Apple asked that Lucida Grande

Arabic look almost as big as Latin at small screen

sizes, to be legible in menus, captions on icons, and

so on, so we designed it as a sans-serif design in

the Naskh style, based on a design we had also done

for Sun Microsystems’ Java Developer Kit. Lucida

Grande looked very legible at small sizes, and was

shown in a book about Arabic typography by Huda

Smitshuijzen AbiFares [1]. Later, however, some

people told Apple it looked too big when printed,

so Apple replaced it with a more traditional looking

Arabic font as default. However, after Lucida Sans

Arabic for Java and Lucida Grande Arabic, several

new sans-serif Arabics have been designed with big

“looks”, so the design idea has become popular.

Our first international font was Lucida Sans Uni-

code for Microsoft, in 1993. It was one of the first

Interview with Charles Bigelow

158 TUGboat, Volume 34 (2013), No. 2

TrueType fonts to incorporate several different al-

phabets — Latin, Greek, Cyrillic, and Hebrew, plus

mathematical and technical symbol sets. We wrote

an academic paper about how and why we did it [2].

Apple asked to include that kind of interna-

tional Lucida in an operating system that never came

out. It only had a code name but was never released.

Y: It’s called Copland.

C: Yes, Copland. So Apple acquired a license for

Lucida Sans. At that time it was not called “Lucida

Grande”, but when we included more glyphs for

Latin-based orthographies, including Turkish, Czech,

Slovak, and many others, plus Greek, Cyrillic, Arabic,

Thai, and other international languages, it became

much grander, so Apple thought it should be called

“Grande” to emphasize its larger, more grandiose

character repertoire.

Y: So in 1999 if Apple wanted to use something new,

why use Lucida? It was already 15 years old. Why

not ask you to create something new for the 21st

century?

C: Great question. I think it would have been a good

idea to do something totally new. We love to do

new designs, but Apple didn’t have time for the

development and testing of a totally new font. A

fact about text fonts is that it takes most of them

years to prove themselves. Ornamental faces can

become quick “hits”, but text fonts are usually slow

to become popular. Continuous reading is a subtle

process and preference for fonts emerges slowly.

Adobe considered Lucida in the very early days of

PostScript, 1983–84, but Lucida had not yet been

released and Adobe was unsure about whether it

would be popular on the Apple LaserWriter, so they

chose well known existing fonts. By 1999, Lucida

was well known and proven in practice, so Apple

wasn’t taking a risk by making it the system font for

OS X. It was already well liked by computer users.

Y: Speaking of Mac OS X, why there is no italic variant

in the Lucida Grande typeface?

C: Oh, interesting question. There are true italics

for Lucida Grande, but Apple did not release them

with OS X. Next year (2013), we plan to release them

ourselves. Lucida Sans Italic is a cursive design,

based on the same Arrighi chancery handwriting of

the 16th century that inspired Lucida Calligraphy

and Apple Chancery, but we simplified it greatly

for the sans-serif style. Eric Gill first did this with

his Gill Sans Italic in 1928, and Hans Meier’s Syntax

italic of 1968 is also a cursive design, though he

kept the humanist form of lower-case ‘a’ and ‘g’.

Lucida Sans Italic was first released in 1985. In the

decades since then, sans-serif italics have become a

0 Ò Ó Ø × ò
 zero zero-slash zero-dot capital O-slash empty set circle-slash math

O Õ Ö ó ö õ
 capital O theta capital Theta circle-dot math circle-minus math circle-minus math alt

Figure 27: Variations on zero, and related forms.

style popular with several designers. For example,

in Frutiger Next, released in the year 2000, a true

cursive italic replaced the original slanted roman of

1976. I think it is a sign that sans-serif is continuing

to mature and evolve.

On the computer screens of 10 to 12 years ago,

simple forms usually looked better than complex

ones, and some designers preferred the simplicity

of slanted roman to the more complex cursive of

true italic. In a different way, Donald Knuth used

both true italic and oblique styles in TEX, for differ-

ent semantics. Oblique designs are not a new idea,

because sloped roman for italic was proposed by

Stanley Morison in 1926, and most sans-serifs used

slanted romans, not cursive italics. In our Lucida

Math fonts, we provide both true italics and obliques.

Y: Here’s a question from a friend. Why in Lucida

Grande is the en dash actually shorter than the hy-

phen?

C: Your friend has spotted an interesting problem.

In Lucida Grande, the default hyphen is not a true

hyphen but a hybrid between hyphen and minus

sign from the ASCII standard. It is longer than a

true hyphen but shorter than a true minus, because

people use it for both functions. The en dash is by

definition one-half of an em square wide, including

a little space on each side. The minus is wider than

an en dash, because Lucida math symbols are fairly

wide. So, when we made the hybrid hyphen-minus, it

turned out wider than the en dash. I hope to adjust

the disparity in the next version of Lucida Grande

when we release it ourselves. Currently, it is only

distributed by Apple. (Has your friend spotted any

other anomalies that need fixing? Now is a good

time to ask about them.)

Another interesting problem that affects tech-

nical users is the design of the zero (fig. 27). If you

peek into the unencoded glyphs of Lucida Grande,

you can find alternate forms of zero. The encoded

form is the standard open or empty zero, nothing

inside. It’s a nice iconic symbol, like an empty set.

However, in computing, the problem of confusion

between zero and capital ‘O’ has been debated since

Yue Wang

TUGboat, Volume 34 (2013), No. 2 159

the 1960s, e.g., in the journal of the ACM (Associa-

tion for Computing Machinery). So, some computer

fonts have a zero with a slash. OK in English, but in

Danish and Norwegian, there is a slashed capital ‘O’

and a slashed lower-case ‘o’, which can be confused

with the slashed zero. Other people prefer a zero

with a dot in the center, but that can be confused

with Greek capital Theta, and programmer friends

of mine say it is aesthetically displeasing and call it

the “fly-speck zero”. For Apple, in Lucida Grande,

we provided all three variants, and recommended

that Apple could use whichever one seemed correct

for any given localization. The open zero is the de-

fault. When Apple asked us to redesign Monaco for

TrueType and System 7, we made the zero with a

slash because programmers were using the font. We

also differentiated the capital ‘I’, lower-case ‘l’, and

figure ‘1’, for programmers. But, some people still

don’t like the slashed zero. In Lucida Console. we

used the open zero because there it is less likely that

zero and capital ‘O’ will be confused, because the ‘O’

is shorter than the zero. But, in the next version of

Lucida Console, we will use a slashed zero.

The more characters in a font, the more design

puzzles and potential conflicts between design, cul-

ture, and technology we encounter. Here’s another

little example, but it takes a while to explain. When

we made Lucida Console for Microsoft, we were

asked to include the Unicode character 010F, called

the “dcaron” or “Latin small letter d with caron” (d’),

which is used in Czech and Slovak, two related Slavic

languages of Central Europe. The d-caron marks a

phonetic variant of the sound represented by the

letter ‘d’. In early Czech orthography, it was a little

dot above the letter, and that eventually became an

inverted circumflex, called a “haček” or “caron” in

English. The capital form is a ‘D’ with haček above it,

but in printing, the lower-case became a ‘d’ followed

by an apostrophe, probably because that was easier

to make in metal type. It is difficult to fit a haček

above the ascender of the ‘d’ in metal type. In a

fixed-pitch font like Lucida Console, the apostrophe

variant is difficult to design because the apostro-

phe takes up space to the right of the letter. A

designer can squash the width of the ‘d’ and cram

in the apostrophe, which I don’t like, or fit a caron

over the bowl of the ‘d’ but not above it, but some

Czech readers don’t like that. For Lucida Console,

we couldn’t hang or kern the apostrophe beyond the

right edge of the fixed-width cell, nor put it above

the ascender, because those violated a screen display

rule in Windows NT, and in any case could overlap

a neighboring letter. So, we made three different

versions and put them in the font we delivered to

��������
��������
cdcdcdcd
babababa
{|{|{|{|{
ehfgehfg
hegfhegf
��������
��������
éëíïðïíëé
ÏÐÑÒÓÒÑÐÏ
Figure 28: Wingdings fleurons (originally for Lucida). From

top, the rosebud fleurons have four symmetry variants in

normal and bold weights. The eglantines (wild rose flowers)

have outline and filled variants. The vine tendrils have four

symmetry variants in normal and bold. The stars have a

range of points and the Xs have a range of weights.

Microsoft, suggesting that Microsoft ask their Czech

localization experts which one is best, and use that

in the standard Unicode encoding. The font got re-

leased with the caron positioned above the bowl of

the ‘d’, and no one complained, until several years

later, Microsoft told us that some Czech users, prob-

ably programmers, because they are the main users

of Lucida Console, didn’t like that default version.

Microsoft asked us to fix it, and we said, sure, it’s

easy. Just replace it with the alternate character

from the original font we delivered. That was maybe

10 years ago, but I don’t think it has been replaced

yet. We will release a new version next year, with the

preferred version, now that we know it is preferred.

6 From the present to the future

Y: I also have a question related to Microsoft. What

was in your mind when designing the Wingdings

typeface? Is there any connection between the sym-

bols and their letter representation?

C: No. It is a complicated but instructive story. The

characters in the Wingdings font originally came

from three fonts of non-alphabetic characters called

Lucida Symbols, Lucida Stars, Lucida Arrows, and

Lucida Icons. We designed them to work with Lucida,

Interview with Charles Bigelow

160 TUGboat, Volume 34 (2013), No. 2

and to be useful or decorative, or both. There are

several pretty ornamental “fleurons” or flowers in

Wingdings, in addition to more functional designs

(see fig. 28). Microsoft licensed and distributed them

in a beta-test release with Windows 3.1 in 1991. Then

Microsoft bought outright the icons, arrows, and

stars fonts, to make a new, exclusive symbol font for

Windows. The other Lucida fonts were licensed, so

B&H still owns them. Back then, Microsoft Windows

was distributed on floppy disks, and Microsoft found

if they included all three symbol fonts, they would

need an extra floppy to hold the files, so they decided

to merge only their favorite symbols from the three

fonts into one font.

Y: But floppies are cheap.

C: Yes, but since there would be tens of millions

of copies of Windows sold, it would have cost Mi-

crosoft a lot more money. Another issue in those

days was that symbol fonts had to be mapped to

the keyboard for characters to be accessed. One

symbol was mapped to capital ‘A’, another to ‘B’,

and so on. Some Microsoft managers and font ad-

visers chose their favorite symbols from the three

fonts and had them merged them into one font. This

merging meant that all the original mappings from

the B&H fonts were changed by Microsoft. This font

became Wingdings.

Y: But then users found interesting sequences.

C: Yes. The first discovery was that the character

sequence “NYC” in Wingdings was rendered as a

skull and crossbones, a Star of David, and a thumbs

up gesture. This was interpreted as an anti-semitic

message, in an article in the New York Post newspa-

per, but the popular magician, Penn Jillette, wrote

a column for a computer magazine debunking the

Post’s story, pointing out that the assignment of

symbols to letters on a keyboard inevitably results

in sequences that can be interpreted as meaningful,

even when no meaning was intended. The problem

was that Microsoft hadn’t sent the newly encoded

Wingdings font out for beta-testing. From a technical

engineering view, the font worked perfectly. It was

in user psychology that the problem arose. This is

why software should be tested outside a firm. Later,

we were told about many other messages suppos-

edly found in Wingdings. One was that the symbols

assigned to the sequence “LBJ JFK” proved that Lyn-

don Johnson was complicit in the assassination of

John F. Kennedy.

Y: And when 9/11 happened, you became the most

reported type designer in history.

C: Yes. An email went viral on the Internet, claim-

ing that in Wingdings, typing ‘Q33 NY’, supposedly

the flight number of the first plane to hit the Twin

Towers, would show an icon sequence of a plane

flying into two towers, followed by the skull and

crossbones symbol and the Star of David. But, the

real flight number wasn’t Q33 NY. Somebody just

made it up. In the Wingdings design, the rectangles

were icons for documents with text, not buildings.

And the font was made 10 years before 9/11. But

none of that mattered to gullible journalists who

didn’t check the supposed “facts” they read on the

net, and asked me after September 11, 2001, “Why

is Wingdings associated with the terrorists?” This

was back when some naive journalists still believed

what they read on the web.

Y: [Laugh.]

C: I also heard that people were typing the names of

their husbands and wives in Wingdings, to find clues

to whether their spouses were “cheating” on them.

People like to find hidden messages, even when the

messages are noise, not signal. There is a whole field

of study about why people like to believe in hidden

messages and conspiracy theories.

Y: So Wingdings became a hot topic at that time.

Many people talked about it. Has there been an

increase of public awareness and interest in typogra-

phy in general over the years?

C: Yes, very much. People talk and write much more

about these issues now. About legibility. About

whether some typefaces make a text more believable,

some less believable. 30 or 40 years ago such discus-

sion only appeared in design journals. But now I see

discussions of fonts every week in newspapers like

the NY Times or magazines, and of course on the

Internet. I recently saw a book of Guatemalan poetry

entitled ‘Times New Roman Punto Doce” (Times New

Roman 12 point).

People also react strongly to typefaces used in

movies. In the movie “Avatar”, the font Papyrus

was used in subtitles for the Na’vi language of the

alien people, probably because it has a charming,

rough, hand-made look, but the movie-makers didn’t

think about the reactions of font-familiar viewers.

Instead of enhancing the experience, it distracted

viewers from the story: young people felt cheated

because they recognized Papyrus as an Earthly type-

face bundled with millions of personal computers.

My students made complaints like, “This is not a

new font from outer space! We’ve already seen it in

Mac OS X!” It caused a lot of comments on the web,

most of them negative.

Y: Haha, interesting.

C: What’s interesting to me is not the specific opin-

ions, which on the Internet are often either love or

Yue Wang

TUGboat, Volume 34 (2013), No. 2 161

hate, but that so many people voiced their opinions.

Here, I should make an appeal, as some of the com-

menters on the web also did, for the type design

profession. James Cameron spent $300 million dol-

lars making “Avatar”. He even hired a linguist to

invent the spoken language of the alien people, the

Na’vi. So, instead of using a common font found

on millions of computers, he should have commis-

sioned a young, or old, type designer to create a

totally new, unique typeface for those subtitles.

Speaking of subtitles, I enjoy watching Chinese

movies but have to read English subtitles to un-

derstand the dialogue. I understand that in China,

movies are also subtitled, so speakers of different

dialects of Chinese can understand what is being

spoken. In the American release of “Crouching Tiger,

Hidden Dragon”, the English subtitles used Lucida

Sans Italic. An exciting HK-crime movie was “Infer-

nal Affairs”. The Chinese poster is typographically

intriguing because the design of the characters is

like a maze and suggests the complexity of the story,

and the title means “Endless Path”; a nice integration

of visual form and symbolic meaning. Because “dou”

is “tao”, the movie is a Buddhist and Taoist lesson :-).

Y: Yes. And at the same time, movies promote type-

faces too. I really love the 2007 film “Helvetica”

directed by Gary Hustwit. Maybe sometime in the

future we can make a film about Lucida.

C: Yes, Helvetica is a good movie that reveals a lot

about why people like type. And since you mention

the idea, I should say that a movie is now being made

about Kris Holmes and her work. It will include

Lucida, and other things. So, we can hope that will

someday be shown on the big screen, too.

Ah. Another example of types and personalities

is in the presidential elections of 2008 and 2012;

both sides cared very much about the typefaces they

used.

Y: In 2008, Obama used Gotham, which is also used

in Batman.

C: Yes, Gotham is an urban sans-serif, while Optima,

a more delicate semi-sans-serif was used by the 2008

John McCain campaign. The public analyzes the type-

face to tell the personality of the candidates. The In-

ternational Herald Tribune praised the Obama choice

for its “potent, if unspoken, combination of contem-

porary sophistication with nostalgia for America’s

past and a sense of duty.” Wow! In the 2012 elec-

tion, many of the Romney signs used Trajan, which

is a modern revival of lettering used on imperial

Roman inscriptions. I wonder if the public got the

idea that Romney’s ideas were 2,000 years old, or

that he wanted to be an Emperor. Certainly, the

visual impression of Trajan is formal and stiff, like

Romney.

Y: In the election happening just now in Taiwan,

this is also true. The Democratic Progressive Party

in Taiwan cares about campaign design very much.

I really love all the posters, photos and clips they

made. It reflects the novelty and neutrality of Tsai

Ing-wen, the candidate. In my view, the Democratic

Progressive Party does a much better job than the

Nationalist Party of China. But it’s a pity that ty-

pography does not mean everything. Today, this

morning they lost the election. But it’s interesting to

see that Asians are following closely.

C: Yes. I don’t think typefaces can influence elec-

tions much, unless the candidates are otherwise in-

distinguishable and one uses Comic Sans and the

other, Times Roman. But speaking of elections in

Taiwan, digital typography has made it much easier

to develop and use expressive typefaces for Chinese.

My student, and your friend, Xuan Zhang and I did

a study of the expressiveness of Chinese typefaces,

but, alas, we didn’t finish the study before he gradu-

ated. Nevertheless, I was intrigued to study the wide

variations in Chinese type designs available today.

Back to your question about public awareness

of typography, there are numerous blogs about type-

faces now, and discussion groups like Typophile.

People write how they love or hate certain typefaces.

There is a site that express how much the blogger

hates Comic Sans (Ban Comic Sans). It’s amusing

and not too serious, more fun than nasty.

Y: The same for Arial too!

C: I haven’t seen the anti-Arial sites, but I confess,

I disapprove of Arial for ethical reasons. I feel it is

a too-close imitation of Helvetica, a nearly identical

style with the same width metrics, x-height, capital

height, stem weights, and proportions so it can re-

place Helvetica but be just different enough in little

details to not be an obvious rip-off or plagiarism. It

was said that Monotype offered Arial to Microsoft

much less expensively than what Linotype wanted

to license Helvetica, so Arial is a font made for busi-

ness reasons, not for artistic integrity, and as such,

it doesn’t advance the art of type design.

Y: Oh, I have another question related to Helvetica.

As you know, Apple switched to a Helvetica flavored

typeface on the iOS platform and many professional

Mac apps as well instead of continuing to use Lucida

Grande. What’s the motivation behind that?

C: I don’t know the answer. I guess that Steve Jobs

saw the Helvetica movie and decided he wanted to

switch to that instead of Lucida. Did you know that

Steve Jobs and Kris Holmes studied with the same

Interview with Charles Bigelow

162 TUGboat, Volume 34 (2013), No. 2

calligraphy teacher, Robert Palladino, a former monk

who taught at Reed College in Oregon? But not at

the same time. Typefaces have a lifetime. Text

faces get adopted slowly, sometimes over decades,

and slowly become old-fashioned, also over decades,

though some older designs get revived. Lucida took

several years to become widely used in the main-

stream computer world, but by the 1990s, it had

been adopted by Microsoft and Sun Microsystems,

and was licensed by Adobe as well. Apple licensed it

for System 7, but then postponed release until the

Copland system, and when that was never released,

Lucida was postponed again until it became the user

interface font for Mac OS X.

Y: Then Apple’s Mac OS X has been using Lucida for

more than ten years.

C: Exactly. Designers of operating systems some-

times change fonts, just as magazine designers do.

Helvetica, in my opinion, was not very legible at low

resolutions and small sizes on screens. It is too

tightly fitted and the letter shapes are too similar.

That’s one of the reasons we designed Lucida, with

more humanistic letter forms and looser spacing for

better legibility on screens. But, as screen resolu-

tions increase, and anti-aliasing techniques improve,

we see better and better displays (like Apple’s Retina

displays), so Helvetica’s subtleties can now be ren-

dered more clearly.

Y: And what’s your opinion on that?

C: Well, we designed Lucida in the 1980s to be an

alternative to Helvetica, so that reveals my opinion.

Though the designs have roughly the same x-height

and stem weights, the letter spaces between Lucida

letters are proportionally greater than in Helvetica,

and the Lucida letters are more differentiated in

shape. Thus when rendering on a computer screen

you will find it much easier to read Lucida than

Helvetica. It’s easy to demonstrate — see, now you

are reading questions in your Mail application which

uses Helvetica, so you have to move your head (and

eyes) much closer to the computer screen.

Y: Oh! Yes, I never think about that. And there is no

way to switch back to Lucida in the Mail application.

C: If you keep that posture for too long, maybe your

neck will hurt. No typeface is perfect for every size

and reading distance. Digital technology makes it

easy to scale type to any size, but human vision puts

different constraints on type designs. Among other

factors, there is a visual phenomenon called “crowd-

ing”, which limits how closely objects can be spaced.

When objects such as letters are too close to each

other, you have trouble recognizing them unless you

bring the text closer to your eyes, thus making the

images, and their spaces, bigger on the retinas of

your eyes. In a practical way, type designers have

known this for five hundred years and have adjusted

smaller fonts to have more space between letters. If

you enlarge a photo of a 6 point font cut in 1550 to

the same size as a 12 point font cut at the same time

by the same punch-cutter, the 6 point font will be

wider and more widely spaced. So, types intended

for small sizes on screens should be spaced more

widely than types intended for large sizes.

Y: Similar question. You and Kris are also two of the

authors of Monaco. Monaco was originally the main

console font for Terminal application, as well as the

font to display code in their Xcode development tool.

But they are migrating away from Monaco.

C: Yes, Actually Monaco is one of the Apple city

fonts that were originally bitmaps in the first Macin-

tosh. The bitmap fonts with “city” names were cre-

ated by Susan Kare, an artist and graphic designer

who created many of the interface elements for the

Apple Macintosh in the 1980s. Later, she left Apple.

Y: Yes. She came to NeXT with Steve Jobs and served

as Creative Director at NeXT.

C: OK, and she still designs icons and other digital

images. In 1989, Apple asked Kris and me to make

new versions of the bitmap city fonts — New York,

Monaco, Geneva, and Chicago — to vectorized form

in the TrueType font format that Apple invented.

So we did. The new fonts began with Susan Kare’s

designs, but it was impossible to make them exactly

the same in vector format, so we had to change

several features and proportions. In Monaco, we

had legibility in mind, along with the need to dif-

ferentiate certain letters for better recognition by

programmers and technicians. Characters are dis-

tinct, and it is difficult to confuse 0 (figure zero) and

O (uppercase O), or 1 (figure one), | (vertical bar),

I (uppercase i), and l (lowercase l). We tried to main-

tain the hint of cursive that was seen in the original

‘a’ in the bitmap Monaco, but we innovated several

other features. We wrote a short paper about the

project [3].

Y: But now Apple is switching from Monaco to Menlo.

What’s the main reason behind this move?

C: I don’t know, but I guess that one reason might

be that Menlo has a full set of italic and bold weights,

whereas Monaco has only roman. Years ago, we of-

fered to expand the Monaco family with bold weights

and italics, but Apple never chose to do so. I assume

Menlo was named after the Menlo Park city in Cal-

ifornia. Menlo is also free and open source. It’s a

revision of open source Bitstream Vera and the open

source Deja Vu font family based on Vera. Thus I’m

Yue Wang

TUGboat, Volume 34 (2013), No. 2 163

not astonished to see Apple adopt it. It’s free and

they can modify it as they wish.

Y: And I guess because Menlo came from an open

source font, most Linux or other open source oper-

ating system programmers are familiar with it. So it

makes them happy to switch to develop applications

for Mac.

C: Yes, that sounds reasonable.

Y: You just mentioned screen resolution got much

higher over these years. Do you think more people

will switch to screen reading?

C: Yes. In 2009, less than 3 percent of publishers’

book sales were e-books, but today, around 20 per-

cent are e-books. Based on the current adoption

rate, I guess that screen publications will outnumber

paper ones in 10 years or sooner, including books,

magazines, and newspapers. Of course, prediction

is difficult, especially about the future. Maybe it will

be sooner, and maybe later. In the 1980s, screen

resolution was not high enough to render type well,

so most people still read newspapers. However, by

the 1990s, computer screens got better and better.

While for older people, newspapers are still their

main reading media by habit and preference, many

young people spend more time reading computer

screens than reading print newspapers. Now, on this

graph, you can see that the readership trend line for

print newspapers is dropping quickly as screen reso-

lutions increase. Now that we have very high resolu-

tion displays, for example Apple’s Retina displays, I

expect that in the future more people will read from

screens than paper. The trend is accelerating with

the iPads from Apple, the Android tablets from var-

ious firms, and the Kindles from Amazon. For 500

years, printing on paper was the dominant informa-

tion technology for Europe and most of the world.

Now, digital media are the information technology

of the 21st century, but for humans to receive the

information, it must be read, and reading requires

typefaces and fonts. Happily, most fonts have made

the leap from analog to digital. Not all of them work

as well in digital, but that provides opportunities for

designers to create new typefaces, and to revive and

revise older ones for new technology. Print might be

dying, but typography is living better than ever.

Y: In the era of LCD screens at max 500 DPI, must

the design of a font be influenced by the screen res-

olution, which is still low compared with the 600 DPI

of a common laser desk printer, so that it can be

used also in a tablet/ebook reader without many

problems?

C: Good question. With high resolution screens,

finer details of a typeface can be shown. Hinting

has already been abandoned on Apple’s Retina dis-

plays. Steve Jobs claimed the Retina display has so

high a resolution that the human eye cannot see

single pixels any more. This is not always true, ac-

cording to some scientific study, but yes, you can

expect that screens and prints will look much more

similar these days.

Y: So there is a trend of convergence between digital

and print type, as the quality of display improves?

C: Yes. I think so. But there’s still something one

should care about — for display fonts, a larger x-

height and more letterspacing will make the font

easier to read on a display. Also, as I have mentioned,

the same glyph looks thinner on display than on

prints so a font with a little bit of darkness will be

better. You should care about these things when

designing a typeface.

Y: Even without background illumination, most E-

ink readers also choose dark fonts.

C: Yes. This is because the screen’s resolution is still

not high enough. And moreover there are two other

reasons to make the problem worse. First, E-ink

has a far coarser gray scale than modern computer

screens and doesn’t have RGB subpixels. Thus, sub-

pixel rendering doesn’t work on those devices, and

normal font anti-aliasing works more poorly than on

a computer screen. Also, the background color of an

E-ink display is already gray. A darker font is more

legible.

Y: You just said people will read more and more on

a screen. I have a related question. What do you

think of the recent hype over web fonts?

C: Oh, yes this is a good thing: web fonts enable

readers to read web pages just as books — previously

only a limited collection was available for designers

to use.

Y: Yes, with the release of the WOFF (Web Open Font

Format) specification as an open standard, more and

more browsers support it. So designers can use

whatever font they like.

C: And moreover, hobbyists are able to create their

own fonts and release them to the public to get

wider adoption, while previously all of these can

only be done by professionals. Web fonts lower the

barrier of typographic design and you will see more

typefaces appear in the near future.

Y: Then what about the downsides?

C: Well, a web font is much easier to get pirated, and

it’s harder for type designers to make money from

it. That’s why TypeKit or similar businesses were

born. We should explore this market more to find a

reasonable business model for the type designers to

make a living.

Interview with Charles Bigelow

164 TUGboat, Volume 34 (2013), No. 2

7 Ancient type digitizations

Y: You said that nowadays hobbyists create their

own typefaces, and release them to the public. Last

month, font designers in China had a heated argu-

ment on one font created by a hobbyist. His name is

Digidea. He bought a Kangxi Dictionary which was

the standard Chinese dictionary during the 18th and

19th centuries. The dictionary contains 47,037 char-

acters including obscure, variant, rare, and archaic

characters. Then he scanned all the characters into

the computer, and use auto-tracing tools to trace the

outlines of those characters. Finally he released the

font called KangXiZiDianTi (see fig. 29).

C: This looks amazing!

Y: Yes, but when you scale the font, you see prob-

lems And even if you don’t scale the font large

enough, you will see uneven thickness among glyphs,

even in a single stroke as well.

C: Ah. I see that now. But first of all I should say,

if he did not use auto-tracing, this font wouldn’t be

possible.

Y: Right. It’s a huge amount of work — manual font

creation would take one person years to do fifty

thousand characters.

C: But in most situations you have to. This typeface

is lucky, because it’s a reproduction of a typeface in

a dictionary, where almost all glyphs are presented.

The “reviver” of the typeface is lucky to have such

a wealth of characters to start with. But in most

cases, type designers are not lucky. What if we want

a typeface in Xizhi Wang’s style? Or Mengfu Zhao’s?

Y: We should ask someone who is really good at

those styles to write them, or at least we should ask

experts to analyze these styles and figure out the un-

derlying logic of the handwriting to provide guidance

for the type designers to make glyphs according to

these rules.

C: Yes. This is a wonderful challenge involving art,

practice, and logic. You write the Slender Gold style

devised by Emperor Huizong of Sung. Perhaps you

could write a large set of characters at a big size

and scan those! And being a computer scientist, you

could think about the logic of artistically combin-

ing the strokes to make new characters that aren’t

in any extant examples of Slender Gold. A good

hobby for a computer scientist! There was a callig-

rapher in Japan, Yanagida Taiun, who studied Xizhi

Wang’s style very well. He practiced Xizhi Wang’s

Lantingji Xu so well that he could create very good

copies, at least, I am not able to distinguish them.

I have read that none of Xizhi Wang’s original writ-

ing survives, only copies, so modern calligraphers

make copies of copies. In western calligraphy, there

昌
黎
先
生
全
集
錄
卷
二

　
　

鄆
州
谿
堂
詩

憲
宗
之
十
四
✇
始
定
東
✆
᧕
分
其
地
以
華
州
刺
史
禮
部
尙
⹕
兼
御

史
大
夫
扶
風
馬
公
爲
鄆
⹖
濮
節
度
觀
察
等
使
鎮
其
地
卽
一
✇
褒
其

軍
號
曰
天
✆
軍
᧖
卽
位
之
二
✇
召
公
入
且
將
用
之
以
其
人
之
安
公

也
復
歸
之
鎮
᧖
之
᧕
✇
公
爲
政
於
鄆
⹖
濮
也
適
四
✇
矣
治
成
制
定

衆
志
大
固
惡
絕
於
心
仁
形
於
色
竱
心
一
力
以
供
國
家
之
職
于
時
沂

密
始
分
而
殘
其
帥
其
後
幽
鎮
魏
不
悅
於
政
相
扇
繼
變
復
歸
於
舊
徐

昌
黎
先
生
全
集
錄
卷
二　
　
　
　
　
　
　
　
　
　

一

T
ypeLand

康
煕
字
典
體
樣
張

Figure 29: The KangXiZiDianTi font, (re)created by

Digidea Lee, 09-26-2010, http://blog.typeland.com.

are similar traditions. Many 20th century calligra-

phers learned the chancery cursive style from a book

by Ludovico degli Arrighi, published in 1522. But,

the calligraphy was cut in wood blocks, so what

some people today are really copying are the wood

cuts, not the original handwriting, though some ac-

tual samples of Arrighi’s handwriting do survive.

What Kris Holmes and I and many others learned

of chancery cursive was based on modern calligra-

phers — our teachers — who had reinterpreted how

to write chancery from the early printing. We were

taught handwriting, not woodblock graphics. For

Apple, Kris Holmes designed Apple Chancery, which

is an interpretation in digital type of our calligra-

phy teacher, Lloyd Reynolds, whose handwriting was

based on Arrighi’s manual and on manuals by En-

glish calligraphers who reinterpreted Arrighi.

Y: But in the previous case, if all the glyphs, or per-

haps most of the glyphs are available, or those not

available can be derived from available parts, do you

think ancient type can be made by auto-tracing, or

they must be fine tuned by a human?

C: This is a very important question: what is the

best way to “revive” a script or typeface from old

times? Calligraphers do it by learning to write so

their results resemble scripts in surviving old man-

uscripts. It is like choreography for the hand. You

learn a dance of the pen or brush and the traces of

Yue Wang

TUGboat, Volume 34 (2013), No. 2 165

your moves are the graphic image of the script. Kris

Holmes studied dance, and that is why her scripts

are so lively with implied motion. (Lucida Hand-

writing, Kolibri, Isadora.) We can understand why

some of the old calligraphers especially in China and

Japan, saw a mystical aspect of calligraphy, influ-

enced by Taoism or Buddhism. Movement, which

involves rhythm, breathing, discipline, relaxation,

and so on, creates the graphical forms, which are

2-dimensional intersections of 3-dimensional paths

in time, so 4 dimensions total. There is an amaz-

ing movie by a mathematician (Thomas Banchoff)

showing a 4-dimensional cube, a tesseract, moving

through 3-space, and of course projected into 2-

space on a screen. At one screening years ago, the

audience cheered as they understood what was hap-

pening. I think this is analogous to the mystical as-

pects of calligraphy — those two higher dimensions

in 3- and 4-space, that we can infer from the 2-D

graphical forms. Of course, there are good callig-

raphers and type designers who don’t believe in

the mystical aspects, who care only about the 2-D

images, but the higher dimensions can enrich our

appreciation.

For typography, the problem of revival is more

like signal processing: how to distinguish signal

from noise? The hand motions of the punch cutter

are not important because the fonts are a kind of

shallow sculpture, bas-relief. The engraved contours

are the important things. For some typefaces, like

some 16th century cuts by Garamond and Granjon,

and 18th century cuts by John Handy, who cut type

for Baskerville, we can get a very good idea of the

signal because their hand-cut steel punches survive,

and sometimes their matrices, the impressions that

the punches make when driven into a blank of cop-

per. But, reproducing the face of the punch is not

a perfect solution for today, because the old punch-

cutters compensated a little bit for subsequent pro-

cesses, especially ink-squash of type on the paper.

The problem is much harder for typefaces for which

no punches, matrices, or old type survives, like the

types of Jenson, Aldus, and Fournier. There are two

ways of doing things. First, let’s preserve the origi-

nal printed form as much as possible. This includes

some noise along with the signal.

Y: Then you will get very ugly fonts.

C: Yes, I think so, but people who like this approach

don’t think it’s ugly; rather, they say these imperfec-

tions preserve the feeling of ancient typography.

Y: Just like metal type typesetting was dead years

ago, but now Apple makes letterpress cards for cus-

tomers. Sometimes old-fashioned things get revived.

C: Exactly. We like the imperfections of the old

methods because they have more personality than

our modern methods, which often seem to lack soul,

despite their advantages. The second approach is

to re-interpret the type by trying to understand the

intentions of the original type artist, and the limi-

tations of the medium, and then reinterpret those

intentions in modern media. A vision scientist who

studies reading once told me that he doesn’t really

care how a typeface is made or printed — what he

cares about is the image on the retina of the eye;

that is what is communicated to the brain.

Y: Why not make the revival as authentic as the

original one?

C: Sometime you can’t. Between the old days of early

type and digital type now, technology has changed,

from wood block to metal type to mechanical type to

phototype to digital type, from paper to CRT screens

to LCD screens, to e-ink. And aesthetics and taste

have also changed. In Europe, from old-style type-

faces like Garamond, to modern styles like Bodoni,

to sans-serifs like Helvetica. After high resolution

digital typography made well-rendered classical de-

signs cheap and easy, young designers in the 1990s

rebelled against perfection and used “grunge” types

and “distressed” types, full of dirt, errors, jaggies,

and other noise.

In the KangXiZiDianTi you mentioned, the ear-

liest printed editions were cut in wood blocks, I

assume. Is that correct? First, some calligraphers

had to write every character in the dictionary on

paper, as models for the wood-cutter. Second, prob-

ably many wood-cutters cut the characters in wood

blocks for printing. I don’t know if individual char-

acters were cut in wood, small individual pieces of

wooden type, or a whole page on a single block. I

think the latter, a whole block per page. After the

calligraphers have died and their original handwrit-

ten examples transferred to wood and lost in history

without a trace, there’s no chance you can find them.

Today, you cannot find the earliest wood blocks ei-

ther. Third, after the wood cutting, there was the

printing process — which slightly deforms the glyph

shape as the ink is squeezed onto paper. And, after

many impressions, the characters on wood become

worn and less distinct. The same is true for metal

type. The paper that early printers used, the ink

they made, all have effects on the image in the final

book. There may be more “signal” information lost

in these processes. Fourth, the book preserved to

this day may not look the same as it was hundreds of

years ago. The humidity and temperature of the en-

vironment may change the glyph shape as well, not

to mention disasters like insects eating the paper.

Interview with Charles Bigelow

166 TUGboat, Volume 34 (2013), No. 2

Fifth, during the photocopy and scanning process

conducted today, there might also be other informa-

tion losses. I believe that scanning at 600 pixels per

inch is not enough to capture all the artistic infor-

mation in text sizes of type. 1200 pixels per inch is

much better, but it takes more time, and thus costs

more. Even at 1200 ppi, the image is not perfect,

because of noise. Then, if you scan with some level

of gray depth, later you may have to threshold down

to bi-level pixels for fitting curves around contours,

although there are also methods of fitting contours

to gray-scaled images.

Y: So it’s not possible to trace down the original

shape any more.

C: Exactly. In the western world we have already

known that since the late 19th century, when English

typographers began to revive old types by enlarging

photographs of old books from the so-called “cradle”

of printing, the years before 1501. Well before the

digital era, it was recognized that data about the

image was being lost in analog restorations. So most

designers did a kind of creative renovation instead

of trying to just remove noise from enlargements of

the original form.

Y: I see.

C: Take the Jenson text as an example. I showed you

a page typeset in Jenson earlier (fig. 3). Jenson was

the first great creator of the “humanist” roman types

that became the model for all subsequent printing

in the Latin alphabet, but all his original punches,

matrices, and types have been lost. A great pity. So

all Jenson reproductions are redesigns from the im-

ages in books that Jenson printed from 1470 to 1480.

There is a wide variation of weights and shapes of

modern types modeled on Jenson.

Bruce Rogers’ Centaur, created in 1914–15, is

crisp and sharp, designed by reworking photographic

enlargements with a pen. It was re-cut by Monotype

in 1929 in a range of sizes. Morris Fuller Benton’s

Cloister of 1913 is darker and sturdier, made by engi-

neering-style drawings based on enlargements, with

attention to mechanical letterpress printing of the

early 20th century. Robert Slimbach’s Adobe Jenson

of 1996 is a careful reconstruction for digital typog-

raphy. Their variations show the visual senses, goals,

and artistic or technical limitations facing modern

designers.

Y: I know this typeface [Centaur], it was created for

the Metropolitan Museum of Art.

C: Yes, that’s true, so you know. Centaur has a

lighter, sharper quality than Adobe Jenson, perhaps

reflecting Rogers’ pen-inscribed approach. It is rather

light in digital imaging today because it was designed

A: Body sizes the same

Centaur (Rogers 1915) [14 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&1234567890

Adobe Jenson (Slimbach 1996) [14 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz&1234567890

Breughel (Frutiger 1981) [14 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz&1234567890

B: x-heights the same

Centaur [17.45 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz&1234567890

Adobe Jenson [16.45 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz&1234567890

Breughel [14 point]

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz&1234567890

Figure 30: Comparison of Jenson revivals.

for letterpress printing, which added weight because

of ink-squash. Ron Arnholm’s Legacy of 1993 is Jen-

son modernized to late 20th century taste, with a

larger x-height than the original. George Abrams’

Venetian, circa 1999, is another careful and notewor-

thy Jenson revival. Also there is Hermann Zapf’s

Aurelia of 1983, for digital typesetting, which has

some of the calligraphic accents of Palatino.

I include among Jenson revivals Adrian Fruti-

ger’s most intriguing Breughel design of 1981. (See

fig. 30 and also http://odaddyo.com/typography/

type_class/FrenchOldstyle.pdf.) It is not con-

cerned with imitating superficial aspects of Jenson’s

types, but is a deep attempt to render the philosoph-

ical spirit of Jenson’s era, when handwriting was

reduced to sculpture and mechanical reproduction.

Breughel was released by Linotype 501 years after

the death of Jenson. I think typographers weren’t

ready for such an innovative design in 1981. Maybe

fifteen years later, in the era of punk and grunge

typography, Breughel might have become more pop-

ular — unusual, a bit irregular, but legible. The Swiss

typographer, Bruno Pfaffli, who was Frutiger’s studio

partner for many years, used it very well in catalogs

and posters for French museums.

Y: No two of them look exactly identical.

Yue Wang

TUGboat, Volume 34 (2013), No. 2 167

C: And this is good in some sense — rather than re-

stricting modern type designers to historical details,

the new digital reproduction processes give them

the freedom to create something new. So such a

discussion in China, regarding the Kangxi dictionary

characters, is wonderful. I am really happy to hear

of such a discussion if it turns out to generate new

thoughts and ideas.

Y: Thank you very much, Prof. Bigelow, for taking

the time to do this interview. I have learned a num-

ber of things I didn’t know. And many thanks also

for your great contribution in digital type design and

research, especially the work of the Lucida typeface

family.

C: Because of its high legibility, I’m happy to see

Lucida on computer platforms like Apple’s Mac OS X,

Sun’s Java platform, Bell Labs’ Plan 9 and Microsoft

Windows. We’re working on a web site for B&H

at http://www.lucidafonts.com which will have

(even) more information. For now, let’s close by

mentioning a very different example of Lucida in

use — in a Colorado corn field in 2002 on the Fritzler

farm; the corn plants are used as “pixels” to render

Lucida Handwriting: http://www.fritzlermaze.

com/mazes.html.

Acknowledgments

Many thanks to Prof. Charles Bigelow for doing this

interview. Many parts of this talk have Prof. Kris

Holmes’ contributions as well. Without their help

this interview would not be possible. Thanks to

Xuan Zhang for introducing me to Prof. Bigelow.

Jiang Liu provided the funding and invested a lot

of resources to edit and publish this interview. A

few questions in this interview were collected from

Jiang Jiang, Rex Chen, Karl Berry, Luigi Scarso, and

Shiang-Ing Ji.

References

[1] Huda Smitshuijzen AbiFares, Arabic

Typography, Saagi Books, London, 2001.

[2] Charles Bigelow and Kris Holmes, “The

design of a Unicode font”, Electronic

Publishing, 6:3 (1993), 289–305. http:

//cajun.cs.nott.ac.uk/compsci/epo/

papers/volume6/issue3/bigelow.pdf

[3] Charles Bigelow and Kris Holmes, “Notes

on Apple 4 Fonts”, Electronic Publishing, 4:3

(1991), 171–181. http://cajun.cs.nott.ac.

uk/compsci/epo/papers/volume4/issue3/

ep050cb.pdf

[4] Hans Hagen, Taco Hoekwater, Volker RW

Schaa, “Reshaping Euler: A collaboration

with Hermann Zapf”, TUGboat, 29:2 (2008),

283–287. http://tug.org/TUGboat/tb29-2/

tb92hagen-euler.pdf

[5] Yannis Haralambous, Fonts & Encodings,

O’Reilly, Sebastopol, CA, 2007.

[6] Gordon E. Legge and Charles A. Bigelow,

“Does print size matter for reading?

A review of findings from vision science

and typography”, J. Vis., 11:5 (2011) 8.

http://www.journalofvision.org/cgi/

content/abstract/11/5/8

[7] Robert A. Morris, Kathy Aquilante, Charles

Bigelow, and Dean Yager, “Serifs slow RSVP

reading at very small sizes, but don’t matter

at larger sizes”, Submission to Symposium

session “Legibility and Usability Issues for

Text Displays”. SID Symposium Digest of

Technical Papers, 33:1, pp. 244–247, May 2002.

http://www.cs.umb.edu/~ram/rsvp/

publications/SerifsSubmittedV2.doc

[8] Vaughan Pratt, “Techniques for Conic Splines”,

ACM SIGGRAPH Computer Graphics, 19:3,

July 1985, pp. 151–160. http://dl.acm.org/

citation.cfm?id=325225

[9] Emil Ruder, Typographie, Verlag Arthur

Niggli, Sulgen, Switzerland, 1967.

http://www.designers-books.com/

typography-emil-ruder-1967/

⋄ Yue Wang

yuleopen (at) gmail dot com

Interview with Charles Bigelow

168 TUGboat, Volume 34 (2013), No. 2

Oh, oh, zero!

Charles Bigelow

Abstract

Despite exponential increases of computing power
over the past half-century, at least one problem in-
volving ones and zeroes has defied easy solution: how
to shape the graphical forms of numeral ‘0’ (zero)
and capital letter ‘O’ (Oh) so a human reader can
easily distinguish between them.

1 Introduction

What follows is a look at three aspects of the zero-Oh
problem.1 First, a survey of computing and typo-
graphic literature discussing the problem in the 1960s
and 1970s. Second, examples of practical solutions in
digital fonts from the 1980s to present. Third, exam-
ples of the origins of the problem in the typography
of the Italian and French Renaissance, and in English
and American typography during the Industrial Rev-
olution. The focus is on typographic symbols. For
histories of mathematical notation before typography,
see Cajori (1993) and Ifrah (1998).

2 Zero versus Oh in computing

R.W. Bemer (1967), in a playfully entitled paper,
“Toward Standards for Handwritten Zero and Oh:
Much Ado about Nothing (and a Letter), or A Par-
tial Dossier on Distinguishing Between Handwritten
Zero and Oh” presents a compilation and discussion
of proposals made between 1958 and 1966 to disam-
biguate the handwritten forms of zero and Oh. The
goal of the study was to enable more accurate reading
of handwritten code and data by the keypunch oper-
ators who typed punched cards for computer input.

It is doubtful that Bemer’s paper led to lasting
changes in handwriting, but Bemer also helped de-
velop the American Standard Code for Information
Interchange (ASCII), which, along with the advent of
direct keyboard input, shifted the zero-Oh problem

1 In this paper, the first reference to a character frames
it in quotes, followed by the character’s common name in
parentheses. Subsequent references use the common name or
a disambiguating term. Examples: ‘O’ (Oh) for capital letter
Oh; ‘0’ (zero) for numeral zero; ‘1’ (one) for numeral one;
‘l’ (ell) for lowercase letter ell; ‘I’ (capital I) for capital let-
ter I; ‘∅’ (zero-slash) for slashed zero; ‘ſ’ (zero-dot) for dotted
zero. Characters representing numbers, e.g. 0 1 2 3 4 5 6 7 8 9,
are here called “numerals”, although typographic literature
typically uses the term “figure” for a character representing a
numeral, e.g. “old-style figures”, “lining figures” (Bringhurst,
1996). The Unicode character standard uses the term “digit”
(Unicode, 2007). The Unicode standard distinguishes “charac-
ter” as a unit of a writing system from “glyph” as a graphical
mark representing a character, but that distinction is not
fastidiously maintained in this paper.

0 Ò Ó Ø × ò
 zero zero-slash zero-dot capital O-slash empty set circle-slash math

O Õ Ö ó ö õ
 capital O theta capital Theta circle-dot math circle-minus math circle-minus math alt

Figure 1: Zero and Oh: look-alike characters.

from handwriting reform, a fraught topic, to typo-
graphic legibility, which is no less problematic but
substitutes mass-produced, prefabricated letters for
the wayward penmanship of programmers. Not that
this solved the problem of ambiguity in displayed or
printed zeroes and Ohs, as exemplified by DIN 1450,
the most recent legibility and typography standard
from the German Institute for Standardization (DIN,
2013), which once again revisits the perennial prob-
lem of differentiating zero from Oh in contemporary
typography.

Advances in font technology have complicated
the problem by enabling fonts to contain much larger
character sets, increasing the chances that several
confusable letters and symbols may appear in a font
or font family, especially in scientific and mathemat-
ical publishing. Figure 1 shows a set of characters
similar to zero and capital Oh, from Lucida Sans and
Lucida Math fonts.

The zero-Oh solutions proposed in Bemer (1967)
include: a loop, flourish or stroke at the top of Oh; a
slash through zero or Oh; a dot or dash in the center
of Oh or zero; a rectangular shape for Oh but an
elliptical shape for zero (or vice-versa); an Oh wider
than zero; a lozenge orientation of Oh but square
orientation of zero; a horizontal bar over Oh. One
entry in the dossier briefly addresses the problem of
differentiating numeral ‘1’ (one) from capital letter
‘I’ (I), and numeral ‘2’ (two) from capital letter ‘Z’
(Zee or Zed).

A subsequent tentative agreement on handwrit-
ten letter and numeral forms for computing was pub-
lished in 1969 by an ANSI (American National Stan-
dards Institute) working group as “Proposed Ameri-
can National Standard: Presentation of Alphameric
Characters for Information Processing” (Kerpelman,
1969). The proposal recommends a handwritten loop
at the top of the capital Oh to distinguish it from a
plain oval zero (Figure 2).

Kerpelman makes an intriguing observation re-
garding an evident difference in preference between
two groups of programmers: “Programmers accus-
tomed to use of business-type languages seemed to
favor marking the zero. Those using mathematical

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 169

Figure 2: Zero and Oh from (Kerpelman, 1969).

Figure 3: Modification to Oh proposed by
Vartabedian (1969, 1970).

or scientific-type languages conversely favored mark-
ing the letter.” (Kerpelman, 1969). This preference
difference, which can be characterized as between
humanists and engineers, is a recurrent theme in the
zero-Oh annals.

After these ACM and ANSI publications, the
zero-Oh debate moved to a typographic forum, the
Journal of Typographic Research, where psychologist
Dirk Wendt (1969) analyzes the problem of discrimi-
nation and confusion between different forms of zero
and Oh but does not recommend a single solution,
other than an observation that zero narrower than
Oh is more often interpreted correctly. In the same
journal issue, a Bell Laboratories researcher, Allen G.
Vartabedian, reports the results of a different legi-
bility study and proposes that a loop or stroke be
added to the top of the Oh to distinguish it from
zero (Vartabedian, 1969). The proposal to add a
loop to Oh is similar to that of Kerpelman.

In a letter in a later issue of the same journal,
calligrapher and type designer Hermann Zapf (1970)
objects to Vartabedian’s proposal and proposes a
contrary modification—the addition of a short hori-
zontal stroke to the top right of the zero. Vartabedian
(1970) responds with additional argument in favor
of modifying the Oh. An engineer (Vartabedian) fa-
vors altering the Oh, while a humanist (Zapf) favors
altering the zero, as shown in Figures 3 and 4.

Figure 4: Proposed modification to zero by Hermann
Zapf. The zero resembles a tall lowercase sigma.

2.1 Forms and ideas

Plato (or the character Socrates in Dialogues written
by Plato) discusses how letters express ideas. He sug-
gests, for example, that the letter omicron expresses
roundness, though it is not clear whether Socrates
(or Plato) is referring to the round shape of the letter
or to the round shape of the lips when pronounc-
ing the vowel signified by omicron. Perhaps both.
Ancient Greek mathematics did not use a written
symbol for the concept of nothing, but the atomist
philosopher Democritus, possibly a contemporary of
Socrates, uses the word “void” in contrast to “full”,
as attested by Aristotle in his Metaphysics (1989).

In modern semiotic discourse, the question can
be asked: Is the graphical symbol “iconic”? Does
the glyph resemble the thing it signifies? For most
typographic glyphs, the answer is “no”, but the zero
glyph, a late addition to Latin script, is an elliptical
or circular ring; its vacant interior containing noth-
ing. Hence, it appears to be iconic. In writing and
typography, an empty space separates symbols or
groups of symbols, but does not signify something.
Hence, to denote “nothing” there must be a mark
that in some way delineates the presence of noth-
ing. Yet, if the empty interior of the zero is iconic
of nothing, then a mark inserted into it indicates
that something is in the void, thus contradicting the
iconicity of the empty glyph. In its long history,
zero has sometimes been represented by a dot rather
than a ring, so it could be argued that a zero-dot
glyph is a double nothing, like a double negative is
emphatically negative.

In set theory, an iconic representation of the
empty set is a pair of braces framing an empty space:
{ }. The zero glyph has also been used to denote
the empty set, but to disambiguate the number zero
from empty set, glyphs made from zero with a slash
(‘∅’) or a circle with a slash (‘∅’) have been adopted
as symbols for the empty set. In Unicode, the empty

Oh, oh, zero!

170 TUGboat, Volume 34 (2013), No. 2

Figure 5: No Smoking symbols.

set character has code point hexadecimal 2205; Uni-
code does not separately encode zero-slash and circle-
slash, instead considering them to be different visual
forms. Both forms can still be provided as alter-
nate glyphs within one font, as in the Lucida Math
OpenType shown here. (To confound further, there
is a slashed-zero variant appearance for zero itself
which—though seldom used in seriffed fonts—often
appears in sans-serif monospaced fonts (Figure 9),
as we will discuss later.)

The empty set forms do not begin to exhaust
the slashed circle symbols. A circle with a slash not
projecting beyond the ring (‘⃠’) has been adopted
in European (and some American) signage to signify
prohibition—“no” or “not”. The prohibition slashed
circle is usually, but not always, in an orientation
opposite to that of the empty set, with the prohibi-
tion slash running from northwest to southeast but
the empty set slash running northeast to southwest.
Unlike the empty set symbol, the prohibition symbol
usually contains something to be negated, such as
a cigarette, as in Figure 5, which shows both ori-
entations. The prohibition symbol is at code point
hexadecimal 20E0 in Unicode.

Still more: the mathematical operator “circled
division slash” (⊘) is oriented like the empty set but
the slash does not protrude beyond the rim of the
circle; it has code point hexadecimal 2298. And the
programming language APL’s “circle-backslash” char-
acter (‘⍉’) is encoded at hexadecimal 2349; it has var-
ious possible forms combining circle and backslash.

And, though not strictly circular, let us not
forget the character Oh-slash ‘Ø’ (O with stroke,
code point 00D8), and its lowercase form oh-slash ‘ø’
(00F8), a common letter in the orthographies of the
Scandinavian languages Danish, Norwegian, Faroese,
and Sami.

Let’s turn back to the common zero and Oh. In
several recent fonts, excepting OCR-A and OCR-B

from the 1960s and later fonts imitating them, the
zero gets marked instead of the Oh. Hermann Zapf,
however, who originally proposed to modify the zero
with an additional stroke, found a calligraphic way to
retain the purity of the empty, unadorned zero when
he designed the Euler fonts for Donald Knuth and the
American Mathematical Society in the early 1980s

0Oo ��
 zero Oh oh Theta theta

Figure 6: Zero, Oh, oh, Theta, theta from the Euler
typeface by Hermann Zapf.

(Figure 6). In the Euler roman typefaces (1987),
Zapf drew the zero as a narrow elliptical shape with
a calligraphic point at the top and a rounded base,
almost as if it had been written with a pen in a single
curved stroke. In contrast, the Euler Oh has a wider,
smoother, almost super-elliptical shape. Hence, in
the Euler typefaces, Zapf found a middle path for
both engineers and humanists: neither zero nor Oh
are marked by slashes, bars, dots, dashes, or gaps.
Oh-like forms with interior marks represent tradi-
tional Greek letters, capital and lowercase theta (Θ
at hexadecimal 0398 and θ at 03B8).

2.2 Patterns of marking and legibility

Upon first impression, the varied proposals by math-
ematicians, engineers, psychologists, and designers
seem to be in free variation. Some propose to modify
the zero, others to modify the capital Oh; some want
to add a diagonal slash, others to add a loop, others
to add a dot, or a horizontal dash, or a projection.
Some propose to reshape the curves of the zero, oth-
ers to reshape the Oh, and at least one (Lo, 1967)
suggests characters from another writing system, Chi-
nese. Despite such variety, a few patterns can be
discerned. One is that most of the proposals call for
adding marks to existing forms, but none propose
deleting parts of existing forms. Strokes and dots
are to be added, but not gaps or breaks in contours.

The addition of black marks is in keeping with
the common view of type forms, that the black marks
are what are important, while the white spaces are
not significant. Type designers, typographers, and
graphic designers would say otherwise, but they are
a small set of professionals, not the vast majority
of readers. Another pattern is that the proposed
marks are usually located at or above the midpoint
of the character, and more often in the right up-
per sector than in the left. This follows a general
tendency for Latin typographic alphabets to cluster
most distinguishing features above the mid-point of
the lowercase letter, near the x-line, and more often
in the right upper sector than the left, a tendency
noted by Huey (1908) and Legros and Grant (1916).

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 171

Figure 7: FE-Schrift, designed by Karlgeorg Hoefer
(with later modifications by others) for German vehicle
registration plates. The gap in rectangular zero helps
distinguish it from capital Oh; the serif arrangement of
capital I helps distinguish it from numeral 1.

There is, however, at least one instance of an
open gap to mark zero: on modern German vehi-
cle registration plates, which use a font called FE-

Schrift, originally designed by calligrapher and type
designer Karlgeorg Hoefer (Figure 7). The zero is
semi-rectangular and has a gap in the upper right
corner, making it recognizably different from the Oh,
which is an egg-shaped oval with unbroken contour.
The numeral 1 is differentiated from the capital I in
the size, orientation, and arrangement of serifs.

Zero vs. Oh confusion was uncommon before the
computer era in part because letter versus numeral
ambiguity was resolvable by context. A round, open
form amidst numbers was presumably a zero. A
round, open form among capital letters, or beginning
a sentence or a proper noun, was presumably a capi-
tal Oh. In computing, however, symbol strings often
mix alphabetic and numeric characters, thus render-
ing context insufficient as a means of distinguishing
similar characters.

Among the proposals in Bemer (1967) is dis-
ambiguation of numeral one from capital I, though
not from lowercase letter ‘l’ (ell). Few of the char-
acter sets used in computing in the 1950s and early
1960s included lowercase (American Standards Asso-
ciation, 1963), so there were fewer opportunities for
confusion between numeral one and lowercase letter
ell compared to those between zero and Oh. The
numeral one vs. letter ell became more problematic
when the 1966 revision of the ASCII character set
added lowercase.

The graphical forms of numeral one and low-
ercase ell had been differentiated in traditional ty-
pography but were merged on typewriters, where a
single glyph and key was used for both graphemes.
Character encoding standards distinguished those
characters numerically, e.g. in ASCII the numeral
one is decimal 49 and lowercase ell is decimal 108,
or in Unicode hexadecimal, they are 31 and 6C re-
spectively, but as visual designs in fixed-width fonts,
they have often remained similar in appearance.

1IlB0OD5SZ2
 Futura (1927)

1IlB0OD5SZ2
 Helvetica (1957)

1IlB0OD5SZ2
 Frutiger (1976)

1IlB0OD5SZ2
 Lucida Sans (1985)

1IlB0OD5SZ2
 Verdana (1996)

1IlB0OD5SZ2 †ÒÓ
 Lucida Grande & alternates (2001)

1IlB0OD5SZ2 0l
 Frutiger Neue 1450 & alternates (2013)

1IlB0OD5SZ2 Il0Ó
 Lucida Grande 1450 & alternates (2013)

Figure 8: Sans-serif typefaces showing: numeral one,
capital I, ell; B, zero, Oh; D, 5, S; Z, 2. All types set
at same body size.

3 Zeroes and Ohs in contemporary fonts

Given the history of interest in the zero-Oh problem,
and its transference to the realm of type design in-
stead of handwriting, what solutions are found in
contemporary typefaces? Many thousands of fonts
are available today, but a small selection of widely
used fonts can show the main features of the prob-
lems: see Figure 8.

In sans-serif typefaces, the problem of confusion
between numeral one, capital I, and lowercase ell
is more difficult than in seriffed faces because serifs
function to distinguish capital I from lowercase ell
and both from numeral one. (A seriffed capital I has
four serifs, a lowercase ell three serifs with the upper
left shaped differently than that of the capital I, and
the numeral one has three serifs with the upper left
serif distinguished in shape from that of both the I
and ell.) In many sans-serif typefaces, capitals and
lowercase ascenders are the same height, removing
another distinguishing feature.

Oh, oh, zero!

172 TUGboat, Volume 34 (2013), No. 2

In the geometric sans-serif Futura by Paul Ren-
ner (1927), the zero is a narrow vertical ellipse and
the capital Oh is wider and visually circular. The nu-
meral one has a short horizontal stroke at upper left,
and is the same height as capital I, while lowercase
ell is noticeably taller than capital I or numeral one.

In the neo-grotesque sans-serif typeface Hel-
vetica by Max Miedinger and Eduard Hoffman (1957),
the zero is distinctly narrower and slightly shorter
than the capital Oh. The numeral one is distin-
guished from capital I and lowercase ell by a ramp-
like stroke at upper left. The lowercase ell and capi-
tal I are the same height and differentiated only by a
slightly greater weight of the capital I—a difference
that is nearly or entirely imperceptible at small sizes
and low digital resolutions.

In the Transitional-style sans-serif Frutiger by
Adrian Frutiger (1976), the zero is noticeably nar-
rower than the capital Oh, but both are the same
height. The lowercase ell is slightly taller than the
capital I, and the numeral one is differentiated from
both capital I and ell by a short diagonal stroke at
upper left.

In the humanist sans-serif Lucida (1985) by
Charles Bigelow and Kris Holmes, the zero and Oh
are differentiated by width but not height, reflecting
the study by Wendt (1969). The lowercase ell is
noticeably taller than the capital I (except at very
small sizes and low resolution) and the numeral one is
differentiated from both by the short diagonal stroke
at upper left.

In Verdana by Matthew Carter (1996), the zero
and Oh are differentiated by width but not height;
baseline serifs are added to the numeral one and four
serifs to the capital I for greater differentiation of
the three characters.

In Lucida Grande, based on Lucida Sans, the
numeral one is reworked with baseline serifs but the
default zero and Oh are the same as in the original
version. The Lucida Grande font also includes both
slashed and dotted versions of zero, as well as a
seriffed variant of capital I, but these are not the
default forms.

In Neue Frutiger 1450, by Adrian Frutiger and
Akira Kobayashi (2013), the capital I acquires four
serifs, the zero a dot, and the lowercase ell a curved
exit similar to that of lowercase ‘t’. An open zero and
rectangular lowercase l are provided as alternates.

In Lucida Grande 1450 by Bigelow & Holmes
(2013), the slash zero and seriffed capital I are de-
faults, along with a lowercase ell with exit stroke.
The numeral one has baseline serifs as in standard
Lucida Grande. A dotted zero and open zero, as well

as rectangular lowercase ell and rectangular capital I
are provided as alternates.

From this look at recent and widely used fonts,
we can see that from the many proposals for character
disambiguation made over the past 50 years, a few
trends have emerged and converged. In the zero
vs. Oh pair, the zero is almost always the character
that receives an added element, usually an internal
diagonal slash or an internal dot. The Oh does
not get decorated with loops or twiddles, despite
such suggestions in Bemer (1967) and Vartabedian
(1969). In proportionally spaced fonts, the zero form
is generally a narrow ellipse, while the capital Oh
is usually a broader, nearly circular form, reflecting
the findings of Wendt (1969). In terms of the debate
between humanists and engineers, the ‘humanist’ side
has won—the numeral gets modified, not the letter.

In the case of numeral one versus capital I and
lowercase ell, the outcome is more like a draw. The
numeral one is given baseline serifs in several sans-
serif typefaces, while the capital I is given serifs in
others, and in some sans-serif fonts, seriffed versions
of both characters occur. The lowercase ell is variable,
sometimes differentiated from capital I and one by a
serif or a stroke in upper left or lower right, or both.

These trends are seen to an even greater de-
gree in monospaced fonts (Figure 9), which have
the added constraint that zero cannot be differen-
tiated from Oh by width because all characters in
a monospaced font must of course have the same
advance width. Although typewriters as machines
have become obsolete, monospaced fonts developed
for typewriters, despite their retro appearance and
association with old technology, are flourishing in the
digital era. Several new monospaced font families
have been designed since the widespread adoption
of digital font technology for laser printing and com-
puter displays in the 1980s. Just as the forms of
letters made the leap from handwriting to print in
the 15th century, they have made the leap from
analog to digital technology in the 20th and 21st
centuries. Technology has influenced the forms of
letters over the centuries, but the visual forms them-
selves can exist beyond any particular technology,
reminding us of Plato’s philosophy of eternal forms.

Courier by Howard Kettler (1955) is a seriffed
monospaced font for IBM typewriters. It became
the most used typewriter font of all time and was
therefore one of the first to be implemented in digital
form. A seriffed font, Courier has two baseline serifs
on numeral one, three serifs on lowercase ell, and
four serifs on capital I, all as would be expected of a
seriffed typeface. Numeral zero is differentiated from
capital Oh by height, because in Courier, unusually,

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 173

1IlB0OD5SZ2
Courier (1956)

1IlB0OD5SZ2
Letter Gothic (1962

1IlB0OD5SZ2
Lucida Sans Typewriter (1986)

1IlB0OD5SZ2
Monaco (1991)

1IlB0OD5SZ2 0
Lucida Console (1993) & alternate (2013)

1IlB0OD5SZ2
Andale Mono (1997)

ɨIlB0OD5SZɩ 0ɧll
Consolas (2006) & alternates

1IlB0OD5SZ2
Inconsolata (2009)

1IlB0OD5SZ2
Lucida Retro (2013)

Figure 9: Monospaced typefaces showing:
numeral one, capital I, ell; B, zero, Oh; D, 5, S; Z, 2.
All types set at same body size.

the numerals are taller than the capitals and also
more loosely spaced; thus zero is a tall, narrow ellipse
while capital Oh is shorter and more nearly circular.
Capital I is noticeably shorter than either numeral
one or lowercase ell.

Letter Gothic by Roger Roberson (1962) is a
“fineline” sans-serif for IBM Selectric typewriters. The
numerals and capitals are the same height. Numeral
one has two base serifs and diagonal upper left stroke,
capital I has four serifs, and lowercase ell has a single
horizontal serif at upper left. The zero and capital
Oh are indistinguishable. (Letter Gothic looks lighter
than the other fonts because the original design had
a light stroke weight to compensate for ribbon spread
in typewriting.)

Lucida Sans Typewriter (1986) by Bigelow &
Holmes distinguishes numeral one, capital I, and
lowercase ell by position and number of serifs: one
upper left serif on ell, two serifs plus upper diagonal
stroke on numeral one, and four serifs on capital I.
The numeral one is distinguished from the lowercase
ell by the shape of the stroke or serif at upper left,
diagonal on numeral one and horizontal on ell, by
the presence of baseline serifs on numeral one but
not on ell, and slightly greater height of ell and other
ascending lowercase characters compared to numerals
and capitals. Zero is narrower than the capital Oh
but has the same height and does not have other
distinguishing marking.

Monaco, by Bigelow & Holmes for Apple (1991),
derived from bitmap fonts by Susan Kare (1984), has
capitals and numerals of equal height but slightly
shorter than ascenders. Capital I has serifs, numeral
one has baseline serifs as well as the diagonal stroke
in the northwest, and lowercase ell has serifs only at
upper left and lower right. Zero has a diagonal slash,
but is not distinguished from capital Oh by height
or width.

Lucida Console (1993) by Bigelow & Holmes has
capitals noticeably shorter than the numerals, due to
technical constraints in Microsoft Windows NT, for
which the font was first developed. Most of the other
letters and numerals are similar to those in Lucida
Sans Typewriter. A slashed zero was considered, but
the designers and Microsoft decided that the height
difference would be sufficient to distinguish the two
characters. However, in a new version to be released
in 2013, B&H have added the slash to the zero.

Andale Mono by Steve Matteson (1997) has serif
patterning similar to that of Monaco for the figure
one, capital I, and ell. The zero is dotted, rather than
slashed, and slightly narrower than capital Oh but
the same height. Capitals, numerals, and lowercase
ascenders are equal in height.

Consolas by Lucas de Groot (2006) has a slashed
zero as default, but as an OpenType font, it includes
an alternate dotted zero and open zero. All the
zeroes are slightly narrower than capital Oh but
the same height. The font also contains old-style
numerals including all three zeroes, which align with
the lowercase. The numerals and capitals are equal
in height and shorter than lowercase ascenders.

Inconsolata by Raph Levien (2009) has a slashed
zero narrower than, but the same height as, the
capital Oh. The numeral one has the usual diagonal
stroke at upper left but lacks baseline serifs, thus
being differentiated from lowercase ell, which has
three serifs, as in Consolas.

Oh, oh, zero!

174 TUGboat, Volume 34 (2013), No. 2

Lucida Retro by Bigelow & Holmes (2013) has
a slashed zero narrower than the capital Oh and a
two-seriffed lowercase ell as in Andale and Monaco.
Proportions and heights are similar to those of Lucida
Sans Typewriter, from which it is derived. Additional
differences occur in certain other lowercase letters
and symbols.

Thus, as we can see, in most digital monospaced
sans-serif fonts strict modernist design purity is sub-
ordinated to legibility, because many of these fonts
are used in programming and terminal and console
windows of operating systems and programming envi-
ronments, where legibility is paramount. Despite the
fonts being sans-serif, letters subject to confusion,
like capital I and lowercase ell, are given serifs to
distinguish them from each other and from numeral
one, which may also be given baseline serifs, contrary
to sans-serif purism.

If there is a lesson to be drawn from these com-
parisons, it is that in the computer era, the trend has
been toward more marked differentiation of confus-
able forms, even when the markings are contrary to
historical tradition or design purity. It appears that
the particular details of individual character designs
are not as important as the overall structure of the
set of differentiations. Zero may be distinguished
from capital Oh and from lowercase oh by slashes,
dots, heights, or shapes.

The numeral one, lowercase ell and capital I
may be distinguished by the presence, location, and
orientation of serifs, but the exact number and loca-
tion of serifs may vary depending on the preferences
of the designers or functions of the font.

4 A brief historical survey

Implicit in Bemer (1967) is an assumption that zero–
Oh confusion results from lack of clarity in the hand-
writing of the 1950s, when computing began to be
used widely in industry, government, and academia.
The graphical problem long predates computing, how-
ever, and may be traced back to the handwriting and
early typography of the Italian Renaissance, when
our modern alphabets took form and when the Ara-
bic numerals began to be integrated into humanistic
and scientific writing and publishing.

Our modern roman and italic typefaces are de-
rived from humanist handwriting, which amalga-
mated two distinct forms of the Latin alphabet:
Roman capitals, which had reached their canoni-
cal forms by the 1st century A.D., and Carolingian
minuscules, which were based on cursive descendants
of the capitals re-formalized by scribes in the court
of Charlemagne around the end of the 8th century
A.D. Most of the minuscules, which in typography

Figure 10: Numerals in gothic handwriting, 1459.
http://commons.wikimedia.org/wiki/File:

Ms.Thott.290.2%C2%BA_150v.jpg

are commonly called “lowercase”, evolved into forms
different from their capital antecedents, such as ‘a’
from ‘A’, ‘b’ from ‘B’, and ‘e’ from ‘E’, but minus-
cule ‘o’ retained the form of capital ‘O’. Capital and
minuscule Latin letterforms evolved in isolation from
the Hindu-Arabic numerals, which were not intro-
duced to Europe until the end of the 10th century
A.D. The zero appears not to have been used in Eu-
rope to any appreciable extent until early in the 13th
century Ifrah, 1998). The influential mathematical
book Liber Abaci, written around 1202 by Leonardo
of Pisa (known as ‘Fibonacci’), brought Arabic nu-
merals and zero into wider use in bookkeeping and
mathematics, but roman numerals, based on letters
and letter-like forms, continued in wide usage.

Although the glyphs of writing systems change
form over time, the changes generally maintain dif-
ferentiation between the elements of the system. The
centuries of evolution of Latin letters separately from
Hindu-Arabic numerals meant that there was no pres-
sure to distinguish the numeral zero from the letters
Oh or oh, because they were parts of different sys-
tems. From the 9th to the 15th century, Carolingian
minuscules gradually morphed into the various gothic
hands known as blackletters or broken scripts. As
Arabic numerals increased in usage, they were used
with gothic handwriting, in which the zero glyph
tends to have a slight point where the loop stroke
joins itself (Figure 10).

4.1 A sampling of early zeroes in print

In both gothic and humanist manuscripts, Arabic nu-
merals had ascending and descending strokes, what
we call “old style” numerals today. The ‘0’, ‘1’
and ‘2’ were roughly x-height; the ‘3’, ‘4’, ‘5’ and ‘9’
descended below the baseline, and the ‘6’ and ‘8’
ascended above the baseline. These features were
continued in typographic fonts. The symbol zero in
Renaissance handwriting and typography was usually

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 175

a circular shape roughly like lowercase oh. Occasion-
ally, the zero was more pointed when used with gothic
scripts, and more circular when used with humanist
scripts. Following are some specific examples.

1473. A calendar by the German mathemati-
cian called “Regiomontanus” (Johann Müller von
Königsberg; see Figure 11) was printed in Nurem-
berg in 1473 using Arabic numerals including zero.
An example reproduced by Cajori (1993) is crude,
and the forms of the numerals, including zero and
oh, are more variable than would be expected from
movable type, but the 1474 edition shows a nearly
circular zero glyph without strong thick-thin shading,
while the oh glyph is larger and darker with more
contrast of thick and thin. Also noteworthy is the
use of a humanist roman typeface in a book printed
in Germany at this relatively early date. Thus, zero
was distinguished from oh early in printed books.

The 1476 edition printed by Erhardt Ratdolt in
Venice also uses the circular zero in movable type,
with a humanist roman typeface. Ratdolt’s edition
has the distinction of the first known ornamented
title page in a printed book, as well as extensive
(though not the first) use of rubrication in print.

1474. The Fasciculus Temporum, an encyclo-
pedia of history, by Werner Rollevinck, printed by
Arnold ther Hoernen in Cologne in 1474, makes ex-
tensive use of Arabic numerals, cut in gothic style,
including zero, in dating events in history (Figure 12
shows a sample from a different edition).

1478. An arithmetic text, Arte dell’Abbaco
(author unknown), written in Venetian dialect and
printed in Treviso in 1478 by Gerardus de Las de
Flandria or Michele Manzolo shows a roughly cir-
cular zero glyph that is apparently the same as the
lowercase letter oh glyph. A peculiar twist is that the
glyph for numeral one has a dot above it and it ap-
pears identical to the lowercase letter ‘i’. Apparently,
neither author nor printer deemed it necessary to dis-
tinguish those numerals from their similar letters in
this humble text. See http://www.columbia.edu/

cu/lweb/eresources/exhibitions/treasures/

html/160.html.
1491. According to Ifrah (1998), the word “zero”

first appeared in print in De Arithmetica Opuscu-
lum, by Philippi Calandri, printed at Florence in
1491. The Arabic name for zero, “sifr” meaning
“empty, void”, was borrowed into medieval Latin
as “zephirum” in Fibonacci’s work, and later sim-
plified to Italian “zefiro” and then shortened to
“zero”). German “Ziffer”, French “chiffre”, and Span-
ish “cifra”, which include all numerals, come from
the same Arabic word, as does English “cipher”,
which can mean zero, or more generally a numeral,

Figure 11: Three different editions of the calendarium
of Regiomontanus: (a) 1473 Nuremberg (from Cajori
(1993), p. 97); (b) 1474 Nuremberg (http://daten.
digitale-sammlungen.de/0003/bsb00031144/images/

index.html?fip=193.174.98.30&id=00031144&seite=

7); (c) 1476 Venice (from the Digital Rare Book
Collection at the Vienna University Observatory,
http://www.univie.ac.at/hwastro).

or a secret (code). See http://www.metmuseum.org/
toah/works-of-art/19.24 and http://www.lib.

umn.edu/apps/bell/map/PTO/GEO/clklg.html.
1494. In Luca Pacioli’s Summa de Arithmetica

(Somma di arithmetica in Italian) printed by Pa-
ganinus de Paganinis in Venice in 1494, the zero is
nearly circular without any contrast of thick to thin
strokes, whereas in the gothic rotunda text face of
the book, the letter oh is taller, more pointed, and
compressed. The difference is evident whether the
zero appears in tables with other numerals or in lin-
ear text with numerals and letters. A high resolution
digitized example can be seen on-line from the Max
Planck Institute for the History of Science. (It is

Oh, oh, zero!

176 TUGboat, Volume 34 (2013), No. 2

Figure 12: Zeroes and ohs from Fasciculus Temporum
1485, Venice: (a) Name index (A’s); (b) Folio (10).
http://archive.org/details/OEXV552P1

clear enough that an arithmetically minded reader
should be able to spot a numero-typographical error
in one of the multiplication examples on (digital)
page 77, book folio 31.) The printed impressions of
the letters and numerals are somewhat variable due
to the textured, hand-made paper and imperfections
of early printing, but the zeroes in the tables notice-
ably differ from the lowercase letter oh in the text
columns. See http://echo.mpiwg-berlin.mpg.de/
ECHOdocuView?url=/permanent/

archimedes_repository/large/pacio_

summa_504_it_1494/index.meta&start=71&pn=77.
1498. A manuscript of another work on mathe-

matics by Luca Pacioli, De Divina Proportione (Fig-
ure 13), written in Milan in 1494, is illustrated with
drawings of polyhedra attributed to Leonardo da
Vinci, but, alas, the scribe who wrote the text in
an elegant humanist bookhand remains anonymous.
The text uses Arabic numerals but the scribe, despite
evident mastery of the edged pen, does not appre-
ciably distinguish zero from oh. This is probably
because it is difficult to write an unshaded circular
form with an edged pen. Although Arabic numer-
als are used in the diagrams and calculations, the
page numbers are in roman numerals, indicating the
conservative power of the older system.

In books printed in humanist typefaces (our “ro-
man” style) before the 16th century, Arabic numer-
als appear to have been rare in body texts, though
appearing in indices, lists, tables, and calculations.
Even page numbers or “folii” were usually printed
in roman numerals until the 16th century. My im-
pression of the paucity of the Arabic numerals is,

Figure 13: From De Divina Proportione by
Luca Pacioli, manuscript dated 1498, scribe
unknown. Aboca Edizione, Italy, 2010. Facsimile of
Manuscript 210, Library of the University of Geneva.

however, based on a fragmentary survey, so further
investigation might alter our understanding.

The reason for such rarity of Arabic numerals
in humanist texts is unclear, but may have been
because the humanists were interested in classical
philosophical, literary, and historical works more
than mathematical and practical treatises on arith-
metic and accounting. Humanist artists and archi-
tects did produce treatises on the design of roman
capital letters by Euclidean constructions, but these
did not extend to minuscules (lowercase) or numerals.
It appears that humanists were more interested in
Oh than zero. Likewise, in De Divina Proportione,
Pacioli also constructed the roman capitals, but not
minuscules or numerals.

The ring-shaped zero, rather than a calligraphic
zero, begins to appear with humanist roman type-
faces in the last decade of the 15th century. In
humanist works, context was probably sufficient to
differentiate numeral zero from letter oh in most
instances, but our next example shows one case of
possible confusion, perhaps due to the compositor
or to the absence of the characters in the roman
font. (When setting type by hand, it is easy to con-
fuse look-alike letters, such as ‘p’ and ‘q’ (hence the
maxim to mind them) and possibly zero and oh.)

1498. Aldus Manutius in Venice published the
Opera of Angelus Politanus in 1498 (Figure 14). On
a page of “Epigrammatum graecorum”, the Arabic
numerals (such as “1490”) use a zero that is the
wrong size and alignment for the rest of the numer-
als. Instead, the zero looks to be the same size and
alignment as the oh of the roman text font, Aldus’
first roman, cut by Francesco Griffo. The type is
approximately 15 point in size, but the numerals
seem somewhat smaller. Possibly, the compositor
confused letter oh with numeral zero, or perhaps the
set of numerals didn’t include a zero, though that

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 177

Figure 14: Politanus, Opera, printed by Aldus
Manutius, 1498. Munich Digitization Center and
Digital Library. http://daten.digitale-sammlungen.

de/0005/bsb00050563/images/index.html?fip=193.

174.98.30&id=00050563&seite=903

Figure 15: Error page of Hypnerotomachia Poliphili
(author unknown) printed by Aldus Manutius,
Venice, 1499. Rochester Institute of Technology,
Cary Collection.

seems less likely, because Griffo, or whoever cut the
numerals, should have been able to cut a zero as well
as the other numerals.

1499. A year later, Aldus did use a zero properly
aligned with other numerals cut at a very small
size, on the “errata” page of the Hypnerotomachia
Poliphili printed in 1499 (Figure 15).

The Hypnerotomachia is composed in a large
(approximately 15 point) humanist roman typeface
cut by Griffo. The lowercase is based on the earlier
roman, but the capitals are new. Numerals in the
main body of the book are roman numerals, but in
the “erratta” page at the end, small Arabic numerals
(approximately 60% of the x-height of the text face)
are interposed. These numerals have the ring-shaped
zero design that became standard for roman faces in
the 16th century. See “20” in line 1 and “10” in line 2.

These examples suggest that Italian Renaissance
readers of humanist manuscripts and printed books
would have been unlikely to confuse zero with capital
Oh; confusion could have occurred between zero and
lowercase oh. In most instances, however, numer-
als and letters occurred in different contexts, which
would have lessened the chances of confusion. Where
they did co-occur, numeral zero and lowercase oh
were differentiated by different size and/or different
ductus, at least in type, where the more circular
form and lack of thick-thin shading in the zero dis-
tinguished it from the humanist oh, which did have
thick-thin shading.

Later, in the 16th century and especially in
France, Arabic numerals gradually became more of-
ten used with roman typefaces. A type specimen

Figure 16: Type specimen of François Guyot, circa
1565. Type Specimen Facsimiles, ed. John Dreyfus.
Bowes & Bowes and Putnam, London. 1963. Original
document in Folger Library, Washington, D.C. Note
numero-typographical error of ‘6’ substituted for
rotationally symmetrical ‘9’.

Figure 17: Gaillarde by Robert Granjon, 1570. Type
Specimen Facsimiles II, H.D.L. Vervliet and Harry
Carter, ed. John Dreyfus. Bodley Head, London, and
University of Toronto Press, Toronto. 1972. Original
document in Plantin-Moretus Museum, Antwerp.
Original approximately 9 point.

attributed to François Guyot (Figure 16), circa 1565,
displays complete Arabic numerals for several sizes of
type. As in 15th century Arabic numerals, Guyot’s
numerals had ascending and descending forms. The
zero is cut as a small circular ring roughly the size
of a lowercase oh but without thick-thin shading.
Guyot’s types are cut in the style of Garamond, a
canonical form in 16th century typography, and may
be the earliest example of Arabic numerals cut for
each size and style of type by the punch-cutter and
cast by the typefounder.

A specimen of a small (approximately 9 point)
roman, named “Gaillarde”, cut by Robert Granjon,
is dated 1570, with the circular ring-form zero (Fig-
ure 17). (The cutting is very fine, but the photo
reproduction of the printed specimen makes it look
rougher than it is.)

Thus, during the second half of the 16th century,
Arabic numerals became incorporated into common
expectations of what characters a “font” contained—
at least capital and lowercase letters, punctuation,

Oh, oh, zero!

178 TUGboat, Volume 34 (2013), No. 2

0123456789 0o
0123456789 0O
Sabon Next

0123456789 0o
0123456789 0O
Adobe Garamond

0123456789 0o
0123456789 0O
Galliard

Figure 18: Old-style and lining numerals from
three modern revivals of Oldstyle typefaces:
Sabon (Garamond), Adobe Garamond, and Galliard.
Old-style numerals are in the first line, with old-style
zero and lowercase oh for comparison, and lining
numerals in the second line, with lining numeral zero
and capital Oh for comparison.

and Arabic numerals. This amalgamation of dis-
parate forms became the standard in printing from
the 16th to the 19th century.

Modern revivals of 16th to 18th century types of-
ten include old-style numerals in addition to lining nu-
merals, which are usually capital height (Figure 18).

Sabon by Jan Tschichold (1967) and Sabon Next
by Tschichold and Jean François Porchez (2002) are
revivals of types cut by Claude Garamond circa
1550 (an exact date is difficult to ascribe because
Tschichold may have used more than one Garamond
model). Porchez suggests that Tschichold’s design
was also influenced by types cut in Garamond’s style
by Guillaume Le Be, a younger contemporary of
Garamond. In Sabon, the old-style zero is shaded
but with heavier strokes at top and bottom instead
of left and right, thus reversing traditional shading
so as to reduce potential confusion between zero and
lowercase oh. This zero design may be an inven-
tion by Tschichold, not Garamond. In the lining
numerals of Sabon, the zero is capital height and
distinctly taller than lowercase oh, so there is little
possibility of confusion with oh. The lining zero
has traditional shading— lighter strokes at top and
bottom, heavier at left and right, as with traditional
capitals, which reduces the difference between zero
and capital Oh, but because the zero is distinctly
narrower than capital Oh, the difference between
them is evident.

Adobe Garamond by Robert Slimbach (1989),
another revival of types cut by Garamond, uses a
monoline ring form of zero like that seen in the Guyot
specimen.

Galliard by Matthew Carter (1978), based on de-
signs by Robert Granjon, also uses the monoline ring
zero. The name is taken from Granjon’s “Gaillard”
type but is not an exact copy of that particular size.

In the late 19th century, the typewriter was
developed and became popular. Huckleberry Finn,
published in 1884, is said to have been the first type-
written manuscript submitted to a printer. The dom-
inant style of printing type was known as “Modern”,
which includes a broad range of designs, from the
elegant cuttings of Bodoni and Didot, used today for
high-fashion advertising, to their workaday descen-
dants, including Scotch Roman, American Monotype
Modern 8a and Donald Knuth’s Metafont derivative
of it, Computer Modern.

Modern typefaces arose in the last decades of
the 18th century, and included new proportions for
the designs of numerals. Instead of the old-style
numerals with ascenders and descenders extruding
above the x-line or below the baseline, Modern-style
numerals were cut so that the tops of the numerals all
aligned. The first of these equal-height numeral sets
was a late Transitional face cut by Richard Austin for
John Bell, in 1788; the numeral height was intermedi-
ate between capital height and x-height. This style of
numeral was adopted by other English and Scottish
type foundries. The typeface called Scotch Roman
is derived from types originally founded in the early
19th century by Scottish foundries, in particular the
William Miller foundry in Edinburgh, Scotland. Cer-
tain of the Scottish types were recast nearer the end
of the 19th century and sold in the U.S. under the
name Scotch Roman. The dark version of Scotch Ro-
man produced in the early 20th century by Monotype
has lining numerals slightly shorter than the capitals.

The 1815 catalog of the London typefoundry of
Vincent Figgins shows lining numerals for a range of
text faces, and the numeral height is equal to that
of the capitals. The 1828 catalog of the Edmund Fry
typefoundry also shows lining numerals for a range
of text faces, and the numeral height is equal to that
of the capitals.

Bringhurst (1996) suggests that this change from
old-style to lining numeral designs derived from hand-
written numerals in English shop signs and placards
in the 18th century, and was thus a consequence of
the rising British middle-class. However that may
be, it is evident that by the time the typewriter
was developed at the end of the 19th century, the

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 179

0123456789 0Oo
Bell

0123456789 0Oo
Scotch Roman

Figure 19: Revivals by Monotype of the Transitional
typefaces Bell and Scotch Roman. Numerals align in
height, but are slightly shorter than the capitals, as
seen in the zero Oh oh combinations.

standard model for numerals had become the Modern
style of equal heights (Figure 19).

To reduce complexity, both in the mechanics of
the machine and in the mind of the typist, nearly all
typewriters used monospaced (fixed-width) charac-
ters. (An exception was the IBM electric Executive
typewriter in the 1940s and 1950s, and some models
of the IBM Selectric typewriters made in later years,
which used proportional spacing.) In the “fonts” of
most typewriters, therefore, zero and Oh could not
be differentiated by width. Moreover, most type-
writer faces were unshaded or mono-line, that is,
lacking the thick-thin modulation of printing types,
so zero and Oh could not be differentiated by stroke
shading. Thus, a zero and an Oh with same width,
height, and monoline stroke looked very much the
same in typewriting.

In typewritten documents before the computer
era in mid-20th century, context was presumably
sufficient to distinguish numerals from letters, but in
computing, there appears to have been greater min-
gling of numerals with letters, giving rise to the issues
discussed by Bemer (1967). In computer printing,
the symbol shapes were occasionally differentiated
by making one more rectangular and the other more
oval, but there was no agreement on which symbol
should be which shape, so confusion continued. Ex-
acerbating the problem, similar confusion of zero
with Oh also occurred in speech, when the numeral
zero was, and indeed still is, often pronounced as
“oh”. A comment in Bemer (1967) points out that
the popular Boeing 707 aircraft was called a ‘seven-
oh-seven’, not a ‘seven-zero-seven’. On a telephone
dial or keypad, the “Oh” for “Operator” is the zero
key, not the 6 key (covering MNO). Telephone area
codes are likewise spoken with the vowel oh or the
spelling “oh” representing zero, as in ‘five-oh-three’
(503), the area code for northwest Oregon.

On many manual typewriters, the numeral one
and lowercase letter ell were merged entirely, with
one glyph on one key representing both graphemes,
presumably for keyboard economy. In computing,
the one-ell pair became visually confusable when low-

Figure 20: Part of a Fortran program printed by
an ASR 33 Teletype. In this capitals-only font, the
zero has a slash to distinguish it from the Oh. The
sample shows that worn or poorly adjusted print
heads may erode the differences between characters,
such as numeral one and capital I in the expression
“I=1”. http://www.pdp8.net/asr33/pics/fortran_

printout.shtml

ercase was added to the ASCII standard (USA, 1967).
As in the case of zero and Oh, context was not suffi-
cient to differentiate such glyphs in the computer era.

When computer input and print-out began to
be done through Teletype machines, the zero and Oh
were distinguished by a slash through the zero, as in
the print-out from a Teletype ASR 33 (Figure 20).

Although traditional typewriter fonts often did
not distinguish zero from Oh, special-purpose fonts
in the computer era have sometimes emphasized the
difference, as recommended by proposals made in
Bemer (1967). In OCR-A, a font devised for opti-
cal character recognition (OCR) by ANSI, the zero
is nearly rectangular and the Oh is lozenge-shaped.
The first version of the font was produced in 1968
by American Typefounders. Technological progress
has made OCR-A obsolete as an OCR font, but it
is still used as a display font to give a retro-techno
look to images and documents. In the font OCR-B

designed by Adrian Frutiger in 1968, the zero is taller
and more rectangular than the oval Oh. The one,
capital I, and ell are differentiated by the presence,
location and angularity or curvilinearity of serifs
(Figure 21). It is notable that some features of mono-
spaced fonts designed four decades later imitate the
design solutions that Frutiger devised in the 1960s
(see Figure 9).

5 Conclusion

Latin letters and Hindu-Arabic numerals evolved
independently in handwriting in separate cultures,
but each of the resulting sets of characters developed
a small, open, circular or elliptical form: zero in the
numerals; oh in the letters. There was no problem of
confusion between the numerals and letters until they
were used together in European texts in the 12th
and 13th centuries, when Hindu-Arabic numerals
began to be adopted by European mathematicians.

Oh, oh, zero!

180 TUGboat, Volume 34 (2013), No. 2

Figure 21: Traditional Typewriter revival by
Monotype, OCR-A, and OCR-B.

For a few centuries, however, different contexts and,
sometimes, different writing styles, appear to have
been sufficient to disambiguate the meaning of the
similar-looking glyphs.

In the 15th century, however, printing vastly
increased the production and distribution of books
and also increased pressure for standardization of
character shapes when marketing books to much
larger international readership. Early in the appear-
ance of the numeral zero in print, and again near
the end of the 15th century, zero took on a circular
shape that was more or less unshaded, that is, with-
out thick-thin contrast. This ring-like shape helped
distinguish zero from the (typically) shaded letter
oh of typefaces derived from humanist handwriting.
The ring-like zero was eventually adopted for most
roman typefaces in the 16th and was used until the
end of the 18th and beginning of the 19th century.

In the last decades of the 18th century, a new
style of numeral appeared that was more or less the
same height as the capital letters. The increased
height made zero easily distinguishable from oh, but
created a new confusable pair: zero and capital Oh.
In printing types, the zero glyph was generally nar-
rower than Oh, so the two characters could still be
distinguished, but in the last decades of the 19th
century, typewriters forced all characters to have the
same width, thus eliminating this width difference
between zero and Oh. Context was apparently still
sufficient to distinguish typewritten zero and Oh in
most correspondence and documents, but in the mid-
20th century, computer printers using typewriter-like
fonts, and computer code that used greater mixing
of letters and numerals, exacerbated the confusion.
There ensued several decades of design proposals, ar-
guments, and experiments in developing better differ-
entiation of zero and Oh. Proposals from the “human-
ist” camp usually were to modify the zero, whereas
proposals from the “engineer” camp were usually to
modify the Oh. Technological progress in comput-
ing sometimes aided differentiation but sometimes

hindered it, whether through changes in imaging or
through proliferation of confusable character forms.

In actual fonts developed for digital systems
over the past three decades, signs of consensus have
emerged: the zero glyph is usually the one modified,
whether with a slash or a dot or other means, while
the capital letter Oh is unscathed. To this extent, the
humanists have been victorious. Other confusable
characters have arisen, however, including the triplet
of capital ‘I’, lowercase ell, and numeral one. Some
trends have emerged among those glyphs as well,
though not as clearly as for zero and Oh. Incorpora-
tion of mathematical symbols in fonts, and increasing
use of mathematical symbols in electronic documents,
enable further kinds of confusion, so for type design-
ers, document designers, and readers, the problem
of look-alike symbols has not been entirely solved.

6 Acknowledgements

I thank Karl Berry and Barbara Beeton for suggest-
ing this article and patiently waiting for it, and for
making valuable suggestions to improve the text and
images, and Karl again for putting it all into TEX for-
mat. Thanks to Steven Galbraith and Amelia Hugil-
Fontanel for making the splendid resources of the RIT

Cary Collection available for study of this subject,
and Amelia again for photographing the page of the
Hypnerotomachia Poliphili. Thanks to Rolf Rehe for
help obtaining and understanding parts of DIN 1450,
and to Otmar Hoefer for comments on Karlgeorg
Hoefer’s design of the alphabet for German vehicle
license. Thanks to Kris Holmes for assembling the
image for Figure 21 and for many years of inspired
collaboration on the designs of the Lucida fonts.

7 References

American Standards Association. American Standard
Code for Information Interchange, ASA X3.4-1963,
June 17, 1963.

Aristotle. Metaphysics, Books I–IX. (H. Tredennick,
trans.) Loeb Classical Library No. 271,
Met. 1.985b, Harvard University Press, 1989.

Bemer, R.W. Toward standards for handwritten zero
and oh: Much ado about nothing (and a letter),
or a partial dossier on distinguishing between
handwritten zero and oh. Communications of the
ACM 10(8), August 1967.

Bigelow, C. and Holmes, K. Notes on Apple 4 Fonts.
Electronic Publishing 4(3), pp. 171–181, 1991.
http://cajun.cs.nott.ac.uk/compsci/epo/

papers/volume4/issue3/ep050cb.pdf

Bringhurst, R. The Elements of Typographic Style.
Hartley & Marks, Vancouver, CA, 1996.

Cajori, F.A. History of Mathematical Notations. Dover
Publications, Mineola, NY, 1993. (Original edition:
Open Court, Chicago, 1928–29.)

Charles Bigelow

TUGboat, Volume 34 (2013), No. 2 181

Deutsches Institut fur Normung. DIN 1450 Schriften –
Leserlichkeit (DIN 1450 Typefaces – Legibility),
DIN Beuth. 2013.

Gorn, S., Bemer, R.W., Green, J. The American
Standard Code for Information Interchange.
Communications of the ACM 6(8), August 1963.

Ifrah, G. The Universal History of Numbers.
(D. Bellos, E.F. Harding, S. Wood, I. Monk, trans.)
John Wiley & Sons, New York, 1998.

Kerpelman, C. Proposed American National Standard:
Presentation of alphameric characters for
information processing. Communications of the
ACM 12(12), December 1969.

Lo, P.P. Use Chinese for zero and oh? Communications
of the ACM, 10(12), December 1967.

Proposed revised American Standard Code for
Information Interchange. Communications of the
ACM 8(4), April 1965.

Schulz-Anker, E. Syntax-Antiqua, a sans-serif on a
new basis. Gebrauchsgraphik 7, 1970.

Unicode Consortium. Unicode Standard 5.0.
Addison Wesley, 2007.

United States of America Standards Institute.
USA Standard Code for Information Interchange,
USAS X3.4-1967, revision of X3.4-1965, 1967.

Vartabedian, A. A Proposed Fontstyle for the Graphic
Representation of the Oh and Zero. The Journal
of Typographic Research 3(3), pp. 249–258, 1969.

Vartabedian, A. Reply. The Journal of Typographic
Research 4(2), pp. 181–183, 1970.

Wendt, D. O or 0. The Journal of Typographic
Research 3(3), pp. 241–248, 1969.

Zapf, H. Proposal. The Journal of Typographic
Research 4(2), pp. 179–180, 1970.

⋄ Charles Bigelow
http://www.lucidafonts.com

Production notes

Karl Berry

The most TEXnically unusual part of this article, and of
the entire issue, was handling the rare characters shown
in the footnote on the first page and the rundown of
circle-slash characters on the next two pages. Although
they could have been inserted as small images, the au-
thor (Chuck Bigelow) sent me fonts including them, so I
wanted to try typesetting them directly. He wanted to
typeset them all in a consistent font, rather than mixing
glyphs from Computer Modern and other sources.

The first version Chuck sent me was in .otf format,
with the characters we wanted (zero-slash, prohibition,
etc.) replacing lowercase letters. So it sufficed to start up
FontForge (by George Williams, fontforge.sf.net) and
use its ‘Generate Fonts’ feature to create a .pfb+.afm,
which takes the first 256 characters. Easy. (I wanted to
use Type 1 since this was happening quite far along in
the article’s processing, and I had been using pdfLATEX
thus far; switching to X ELATEX or LuaLATEX would have
meant losing functionality from microtype and thus los-
ing considerable time fixing line breaks.)

Then Chuck sent me a revised font with additional
characters. This time it was a .ttf, and the characters
were in the correct Unicode positions (which are far
beyond the first 256 characters, of course), so I couldn’t
just use the simple FontForge generation. (I could have
asked Chuck to rearrange the characters, but I decided
to take it as a challenge; after all, it’s an article of our
faith that TEX should be able to use any font.)

Instead, I followed the article by Hàn Thé̂ Thành
about using TrueType fonts directly in pdfTEX (30:1, tug.
org/TUGboat/tb30-1/tb94thanh.pdf). First I created
a custom encoding file, altzero.enc, starting like this:

/enclucidaaltzero [

/emptyset % U+2205

/uni20E0 % prohibition

/emptyset.var % glyph index #2225

...]

These character names are specified in the font. I discov-
ered them by looking at the font in FontForge and using

‘View→Goto’ to navigate to the characters; thankfully,
searching for uni... works even when the character does
not have a name of that form. Chuck told me the name
of the variant emptyset glyph (zero-slash in this case),
which does not have a Unicode assignment.

Still following Thành’s article, I then made the .tfm:

ttf2afm -e altzero.enc -o altzero.afm ZeroFont.ttf

afm2tfm altzero.afm

In the LATEX document, the font was used like this:

\pdfmapline{+altzero ZeroFont <altzero.enc

<ZeroFont.ttf}

\font\altzero = altzero

{\altzero\char0}% of our encoding: emptyset

All was fine, until Chuck sent me one more revision
of the font. This time it was again .otf, but now using
the Unicode positions. pdfTEX cannot read .otf, and
converting .otf to .ttf seemed fraught with potential
problems to me. So I used a third tool: otftotfm (by
Eddie Kohler, lcdf.org). Once I read the documentation
enough times, I happily discovered that I could re-use
the same encoding file. The invocation this time:

otftotfm -e altzero.enc --no-encoding \

ZeroFontOT.otf altzero

(The --no-encoding option just tells otftotfm not to
generate its own new encoding file; the final altzero ar-
gument is the base name of the .tfm and .pfb generated
by otftotfm.)

Usage in the LATEX source is similar to the above,
but now we have a .pfb:

\pdfmapline{+altzero ZeroFontOT <altzero.enc

<ZeroFontOT.pfb}

The tools themselves output the map lines needed, ac-
cording to the names embedded in the font files, etc.

Moving on from the technicalities, it was a great
pleasure to work with Chuck on his articles in this is-
sue. He has had a great (and positive!) influence on me,
with recommendations for schools to attend, professors
to work with, and personally encouraging my lifelong
interest in typography and typesetting. As it turned out,
we effectively finished work on the article on Chuck’s
birthday. Happy birthday Chuck!

182 TUGboat, Volume 34 (2013), No. 2

TheTreasure Chest

This is a list of selected new packages posted to
CTAN (http://ctan.org) from March 2013 through
July 2013, with descriptions based on the announce-
ments and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

http://tug.org/ctan.html

fonts

divine in fonts

Informal calligraphic font from the T.26 foundry.

fontawesome in fonts

Font of high-quality web icons.

* gentium-tug in fonts

Includes Type 1 as well as OTF Gentium fonts, with
both LATEX and ConTEXt support.

* librecaslon in fonts

(LA)TEX support for this revival by Pablo Impallari.

nanumtype1 in fonts

Unicode font for the Korean script, in Type 1.

newpx in fonts

Revised metrics, options for (mostly) pxfonts glyphs.

raleway in fonts

Support for the Raleway sans serif font family.

sansmathfonts in fonts

Sans serif small caps and math for use with CM.

graphics

pxpgfmark in graphics/pgf/contrib

Make PGF’s inter-picture connections work with
e-pTEX & dvipdfmx.

spath3 in graphics/pgf/contrib

Manipulating TikZ soft paths, e.g., calligraphic
paths and knot diagrams.

tikz-bayesnet in graphics/pgf/contrib

Bayesian networks, graphical models, factor graphs.

info

* detexfaq in info/german

German FAQ extracted from texfragen.de.

language

greek-fontenc in language/greek

Greek font encoding definition files (LGR).

ptex2pdf in language/japanese

Script to get PDF output from pTEX-based engines.

macros/generic

xint in macros/generic

Expandable arithmetic operations.

macros/latex/contrib

bxeepic in macros/latex/contrib

Implement eepic via pict2e.

changes in macros/latex/contrib

Manually mark up textual changes.

conteq in macros/latex/contrib

Automated layout of a continued equality.

download in macros/latex/contrib

Download via wget or cURL from LATEX.

ebook in macros/latex/contrib

Style for PDF e-books on small readers.

* esami in macros/latex/contrib

Typeset exams with question types, randomization,
support for several languages, and more. (http:
//tug.org/TUGboat/tb34-1/tb106messineo.pdf)

factura in macros/latex/contrib

Issue invoices in Venezuelan style.

feupphdteses in macros/latex/contrib

Template for theses of FEUP in Portugal.

feynmp-auto in macros/latex/contrib

Automatically run MetaPost on feynmp output.

horoscop in macros/latex/contrib

Astrological charts for LATEX.

iitem in macros/latex/contrib

Convenient writing of nested list items.

interval in macros/latex/contrib

Format math intervals with proper spacing.

leipzig in macros/latex/contrib

Typeset and index linguistic gloss abbreviations.

lengthconvert in macros/latex/contrib

Convert a given length to another unit.

lplfitch in macros/latex/contrib

Typeset natural deduction proofs in Fitch style.

matc3,matc3mem in macros/latex/contrib

Commands and a class for MatematicaC3 project
textbooks.

memory in macros/latex/contrib

Declare object or array containers in LATEX.

mnotes in macros/latex/contrib

Margin notes for collaborative writing.

newenviron in macros/latex/contrib

Collect and execute environment bodies.

fonts/divine

TUGboat, Volume 34 (2013), No. 2 183

noconflict in macros/latex/contrib

Resolve macro conflicts among packages.

nox in macros/latex/contrib

Arrays of text transformed to a variety of tables.

numberedbloc in macros/latex/contrib

Include and sequentially label code snippets.

pfarrei in macros/latex/contrib

Arrange A5 output onto A4 landscape.

pythontex in macros/latex/contrib

Run Python code from within LATEX.

rterface in macros/latex/contrib

Access to R from within LATEX.

skdoc in macros/latex/contrib

Documentation class loosely based on ydoc.

skmath in macros/latex/contrib

Enhanced math typesetting.

skrapport in macros/latex/contrib

Class for simple reports.

snotez in macros/latex/contrib

Sidenote support.

stackengine in macros/latex/contrib

Customizable stacking of general objects.

tabriz-thesis in macros/latex/contrib

X ELATEX class for theses at the Univ. of Tabriz.

textglos in macros/latex/contrib

Typeset inline linguistic examples.

thalie in macros/latex/contrib

Typeset dramatic plays.

titlecaps in macros/latex/contrib

Extended support for capitalization of initial letters,
including accents, font changes, and more.

udesoftec in macros/latex/contrib

Template for theses at the Univ. of Duisburg-Essen.

unswcover in macros/latex/contrib

Thesis cover page for the Univ. of New South Wales.

uowthesistitlepage in macros/latex/contrib

Thesis title page for the Univ. of Wollongong.

vdmlisting in macros/latex/contrib

Add-on for listings to support VDM in ASCII.

macros/latex/contrib/babel-contrib

thai in m/l/c/babel-contrib

Babel support for Thai.

macros/latex/contrib/beamer-contrib

beamertheme-upenn-bc in m/l/c/beamer-contrib

Color themes for Boston College and the University
of Pennsylvania.

bxdpx-beamer in m/l/c/beamer-contrib

Make navigation symbols and \framezoom regions
work with dvipdfmx.

macros/latex/required

* babel in macros/latex/required

Specific language support now separated from the
core package; new contributions welcome.

macros/luatex

enigma in macros/luatex/generic

Encryption at the node level with a three-rotor
Enigma machine.

luabidi in macros/luatex/latex

Bidirectional typesetting in LuaTEX.

selnolig in macros/luatex/latex

Selectively suppress ligatures.

macros/plain

expex in macros/plain/contrib

Typeset linguistic examples and glosses, including
referencing.

macros/xetex

xevlna in macros/xetex/generic

Automatic insertion via X ETEX of nonbreakable
spaces (in, e.g., Czech).

xetexko in macros/xetex/generic

Typesetting of Korean, including Old Hangul.

support

classpack in support

XML mastering for LATEX packages.

create-struktex in support

Java support for Nassi-Shneiderman structure charts.

intex in support

Aid consistent typesetting of phrases, acronyms and
proper names.

latex-git-log in support

Generate git version history as LATEX source.

latexindent in support

Perl script to indent LATEX files.

try in support

Python script for automated compilation via source
comments.

wheretotrim in support

Suggest where to trim text to reduce page count.

systems

parsitex in systems

WEB change file for localized Persian and bidirectional
extension of TEX.

184 TUGboat, Volume 34 (2013), No. 2

Preparing for scientific conferences

with LATEX: A short practical how-to

Pawe l Lupkowski and Mariusz Urbański

Abstract

In this paper we will present a short practical how-to
guide considering the complete experience of prepar-
ing materials for a scientific conference. This will
cover the preparation of: a paper with figures and
charts, a PDF presentation and a conference poster.
The paper is based on our hands-on experience in
this area.

Introduction

The main aim of this paper is to present a short
practical how-to guide considering the complete ex-
perience of preparing materials for a scientific con-
ference. Attending conferences is one of the essential
aspects of being a researcher. There are a huge num-
ber of conferences which involve preparing different
materials, such as papers, presentations and posters.
What is more, organisers of many of these confer-
ences demand preparing at least some of these ma-
terials (usually papers) in LATEX. This paper covers
our experience in attending conferences in different
domains (cognitive science, psychology, logic, com-
puter science, linguistics). Our experience is that
LATEX constitutes a single extremely efficient envi-
ronment to prepare all the necessary materials. One
major virtue of LATEX is that it allows for easy use
of the content in different forms (whether a paper,
a presentation, or a conference poster).1

We are not aiming at novelty in this paper. Our
aim is to write down and share our tips and tricks
used in everyday work with LATEX in science. We
hope that it will be a useful guide, especially for
LATEX beginners and also for scientists wondering
which combination of tools will be useful in their
work and is worth the time and effort to learn. We
assume that our reader has a basic knowledge and
skills in typesetting in LATEX.2 Preparing for a con-
ference is often done under time pressure. We hope
that this paper will serve as a quick reference for
those of you who don’t have time to read manuals
and search for specific solutions.

The paper is structured as follows. The first
section covers preparing a conference paper, the sec-
ond section a presentation, and the third a poster.

Originally presented at EuroBachoTEX 2013.
1 It is worth mentioning that there is a method which

allows to produce three types of outputs (a paper, a poster
and a presentation) from one input file— see [1].

2 For a paper with convincing reasons to start using LATEX
in the first place, see [6].

In the summary we point at some issues that we
find difficult or disturbing in our work with LATEX
in preparing materials for conferences.

1 Conference paper

We attend conferences in different domains. Usu-
ally, the organisers ask for submission of a talk pro-
posal in a form of a short or a long paper. In such
a case you should check for a paper template pro-
vided by the organisers. Sometimes it is a specially
prepared class for the paper (as for the Logic and

Cognition conference3), or a general class used for
certain domains, like the EACL class for linguistic
conferences (cf. Semdial4). Also, specific require-
ments for the most popular article class might be
given (cf. IWCS 2013 5). You should always search
for a Call for Papers or Information for Authors

section. Many different solutions used in different
LATEX classes (especially for author and title fields)
might be difficult to grasp, and sometimes reading
example articles and guidelines provided by the or-
ganisers is necessary. When you prepare your paper
in advance, our advice is to simply use the article

class without any custom commands and modifica-
tions. Then adjusting your source to the conference
requirements should be fairly easy.

One of the problems that we often encounter
preparing our papers is how to produce high quality
pictures in an easy way. Below we present a class
for preparing bar charts within LATEX. We also de-
scribe how you can use Inkscape to generate pictures,
which might be then exported into a LATEX code and
used directly in your paper. It is worth mentioning
that using the presented methods involves compiling
your file first with LATEX and then with a DVI-to-
PostScript converter such as dvips.

Bar charts One of the simplest ways to put a
chart into a paper (not using software other than
LATEX itself) is the bchart package. If you don’t
already have it installed, it can be obtained from
CTAN: http://www.ctan.org/pkg/bchart.

The basic structure of a chart is the following:

\begin{bchart}[max=5, step=1]

\bcbar{4.5}

\end{bchart}

The option max defines the maximum value on
the x-axis (the default is 100). If you want to define
regular steps along the x-axis, you can use the step

option (or, an option steps={...} allows you to
give irregular step values, e.g. steps={1, 3, 5}).

3 http://logicandcognition.org/
4 https://sites.google.com/site/semdial2012seinedial
5 http://www.ling.uni-potsdam.de/iwcs2013/

Pawe l Lupkowski and Mariusz Urbański

TUGboat, Volume 34 (2013), No. 2 185

49%BNCDP

35.58%CHILDES

80%BEE

100%AMEX

0% 100%

% without CRs

Figure 1: An example bar chart using bchart

The command bcbar puts a bar with a given value.
For this command you can use several options, like
text (to print some text inside the bar), color (to
define the bar’s colour), label (to assign a label
to the bar, which will be visible on the left side of
the bar). To add a caption to the x-axis use the
command \bcxlabel{...}.

A very convenient feature is that the charts are
scalable. There are two ways to obtain this effect.
First, you can scale only the chart (without a text)
by adding the option scale into the bchart com-
mand. The second one is to put the chart into the
command \scalebox{〈factor〉}{...}.

An example chart presented in Figure 1 is gen-
erated by the following code:

\scalebox{0.7}{

\begin{bchart}[max=100, unit=\%]

\bcbar[label={\tt DP}, text=BNC,

color=white]{49}

\bcbar[text=CHILDES, color=gray!10]{35.58}

\bcbar[text=BEE, color=gray!50]{80}

\bcbar[text=AMEX, color=gray!80]{100}

\bcxlabel{\% without CRs}

\end{bchart}

}

Other useful commands available via this pack-
age can be found in [8].

LATEX and Inkscape To include a more sophis-
ticated picture into your paper, you may want to
use Inkscape (an open source vector graphic edi-
tor).6 Using Inkscape you can prepare your picture,
then export it to *.png or *.pdf format, and after-
wards include it into your paper in the usual way.7

However, one of the most convenient ways is to use
the LATEX export function in Inkscape. To do this
choose File > Save as . . . and then pick the LATEX

with PSTricks option. This will save your drawing
into a *.tex file. Then you can put it in your paper
with the \input{foo.tex} command, or — to ob-
tain a self-contained paper — simply copy and paste
the code into the paper’s source. Remember also to
load the pstricks package in your preamble. An ex-
ample picture prepared in Inkscape and then embed-

6 http://inkscape.org
7 For a short, but comprehensive, guide see [2].

Figure 2: A drawing prepared in Inkscape and
exported to LATEX (figure from the Inkscape examples
set, file l-systems.svgz)

(a) Sierpinski triangle (b) Dragon curve

Figure 3: Side by side figures (figures from the
Inkscape examples set, file l-systems.svgz)

ded in this paper is presented in Figure 2. Such a pic-
ture might be easily scaled using the same command
as in the barchart case, namely \scalebox....

Inkscape (from version 0.48) can also export the
graphics to PDF/EPS/PS, and the text to a LATEX
file, so you can obtain a vector image with the same
font and size as in normal text. This might be espe-
cially useful when you want to prepare a picture with
mathematical formulas included.8 For the Inkscape
manual, see [5].

Side by side figures Sometimes there is a need
to arrange pictures inside a figure environment (e.g.
to save some space for the main text). This can
easily be done by using the subfigure package.9 An
example of such a solution is presented in Figure 3.
Below you may trace the code used to generate the
example. Each picture is placed with a subfigure

command. A very useful feature is the optional ar-
gument to supplement each figure with a description.
As a consequence, you may easily produce a complex
figure with a caption and description for each of its
elements.

\mbox{\subfigure[Sierpinski triangle]{%

\input{sierpinski.tex}}

\quad

\subfigure[Dragon curve]{\input{dragon.tex}}

}

8 LATEX and Inkscape fans might be also interested in
an extension for Inkscape that allows using LATEX inside
the drawing program itself. See http://www.johndcook.com/

blog/2009/12/22/including-latex-in-inkscape/.
9 From http://www.johndcook.com/blog/2009/01/14/

how-to-display-side-by-side-figurs-in-latex/.

Preparing for scientific conferences with LATEX: A short practical how-to

186 TUGboat, Volume 34 (2013), No. 2

2 Conference presentation

Probably the most popular way of preparing presen-
tations with LATEX is by using the Beamer class.10

It allows for fast and easy preparation of presenta-
tions (especially on the basis of a previously writ-
ten paper). Beamer produces a PDF file on output,
which guarantees that the presentation will look ex-
actly the same on different machines. In addition,
it allows using sections and subsections to structure
the presentation in a paper-like style — very conve-
nient when we build a presentation on the basis of a
paper. Last but not least, it allows preparing attrac-
tive presentations with well-balanced colour schemes
and slide elements that make it easier for the au-
dience to track the presentation (number of slides,
short title, author etc.).

If you would like to take a look at the complete
set of default Beamer themes available, see [9, Sec-
tion 30]. You will find there names and pictures of
Beamer themes (title slide and a regular one). If you
are interested in the range of possible modifications
of the standard themes see [9, Section 29].

Slide customisations The first modification you
may want to make is to change the basic colour
of your presentation. You may have a situation
when you want to match the colour scheme to the
colours used in your poster, or your corporate iden-
tity colour scheme etc. The simplest way is to use
RGB colour description (the numerical values for a
given colour might be obtained easily using Inkscape
or GIMP). To use the colour you’ve picked, include
a \usecolortheme command into the preamble of
your presentation, as shown:

\documentclass{beamer}

\usecolortheme[RGB={241,200,144}]{structure}

\usetheme{Warsaw}

One of the useful features of Beamer is the possi-
bility of changing the theme (and its colour scheme)
of the whole presentation after it is prepared. This is
might be useful especially when technical conditions
for your presentation will not match the theme you
used for the presentation (e.g. the room where you
are giving your talk is too bright or the beamer is of
poor quality). Changing one line of LATEX code (an
argument of the usecolortheme command) might
make your slides visible again — see Figure 4, where
one slide is presented in two different colour themes
(dove and albatros). However, you should remember

10 Other options are e.g. the powerdot class (http:
//www.ctan.org/pkg/powerdot), the prosper class
(http://www.ctan.org/pkg/prosper), and an interesting
KOMA-script based presentation—see [7] and http://www.

latextemplates.com/template/koma-script-presentation.

(a) Warsaw, dove (b) Warsaw, albatros

Figure 4: Beamer allows for easy modification of the
colour scheme of your presentation, so you can adjust
it to your needs (even after the presentation is ready)

(a) CambridgeUS (b) Antibes

Figure 5: When changing the slide theme remember
that themes have different slide architecture, and
sometimes the content does not fit the new theme

that some themes have more extensive slide struc-
ture than others (see e.g. Figure 5; the content which
fits the slide in the CambridgeUS theme does not fit
the slide in the Antibes theme). Thus it is useful to
check in advance which theme changes are safe for
your content.

Beamer offers also the possibility of setting a
background image for the slides (see Figure 6). To
do this, use the following command in the preamble
of your document [9, Section 27]:

\setbeamertemplate{background canvas}

{\includegraphics[width=\paperwidth,

height=\paperheight]{backgroundimg.jpg}}

Figure 6: Custom background for a Beamer slide

Pawe l Lupkowski and Mariusz Urbański

TUGboat, Volume 34 (2013), No. 2 187

Figure 7: Side by side content of a Beamer slide with
the columns environment

Side by side content on a slide Sometimes you
may need to arrange the content of a slide in two
(or three) columns. One way to do this is to use the
columns environment. Below you will find sample
code, which generates the slide presented in Figure 7.
You may put pictures, blocks, lists and regular text
inside columns. The option [c] of the columns com-
mand centres columns vertically. Each column en-
vironment constitutes one column, where you give
its width as an argument of the \begin{column}

command.

\begin{columns}[c]

\column{5.5cm}

\begin{block}{Research}

A corpus study of query responses in the

British National Corpus.

\begin{small}

\begin{itemize}

\item 1051 examples of query-query

response pairs.

\end{itemize}

\end{small}

\end{block}

\column{5cm}

\begin{block}{Results}

\begin{itemize}

\item A taxonomy of query responses.

\item Modeling query response categories

in the KoS framework.

\end{itemize}

\end{block}

\end{columns}

References with BIBTEX If you want to include
references in your presentation, and you want to use
BibTEX, we recommend the following method:

\begin{frame}[allowframebreaks]{References}

\def\newblock{}

\bibliographystyle{plain}

\bibliography{mybibliography}

\end{frame}

The option allowframebreaks allows Beamer to pro-
duce new slides for references if they will not fit in
the initial one. We recommend using the plain bib-
liography style. This is due to the fact that Beamer
does not fully support BibTEX (it will generate com-
pilation errors with the natbib package, for example).
If you would like to have author-year citations in
Beamer (with BibTEX) you may try ignoring com-
pilation errors and see if the output looks fine.11

Hyperlinks between slides One of our favoured
features of Beamer presentations is the possibility of
defining non-linear changes of slide via the use of hy-
perlinks. Using this feature you may skip slides in
case of lack of time or unveil hidden slides if it ap-
pears that you have some time left. You can also
have extra slides prepared for discussion after pre-
sentation and easily access them using hyperlinks
(without the necessity of skipping lots of slides in
front of the audience).

First you should define the target for the hyper-
link. You do this adding a label for a slide in the
following way:

\begin{frame}[label=yourlabel]

Afterwards you define the hyperlink to the labelled
slide:

\hyperlink{yourlabel}{hyperlink text}

This method produces a hyperlink which is typeset
as regular text. If you want fancier hyperlinks you
may use the following modification to the command:

\hyperlink{yourlabel}{\beamergotobutton

{hyperlink text}}

The \beamergotobutton command produces an at-
tractive graphic button which is a hyperlink to the
labelled slide.12

Navigation symbols Our last tip is about chang-
ing a small detail in Beamer presentations,13 namely
the navigation symbols visible in the bottom right
corner of each slide. As it happens, we never use
them, so it would be nice to get rid of them. This
is very simple; it is enough to add the following line
to the preamble:

\setbeamertemplate{navigation symbols}{}

11 Another solution—perhaps preferable if you have pre-
pared your paper earlier— is to use the *.bbl file ob-
tained from compilation of your paper. See http://tex.

stackexchange.com/questions/3542/bibtex-and-beamer.
12 You can find tips and tricks for adjusting the button’s

appearance at http://tex.stackexchange.com/questions/

63171/beamergotobuttons-color.
13 This comes from http://nickhigham.wordpress.com.

Preparing for scientific conferences with LATEX: A short practical how-to

188 TUGboat, Volume 34 (2013), No. 2

Figure 8: Example poster with the baposter class

3 Conference poster

Designing a conference poster is a very demanding
task. You have to combine carefully picked and
structured content with an attractive visual form
(similar to the presentation, but here we have to be
even more aware of space limitations). LATEX allows
us to prepare a good-looking poster with minimal
effort spent on the visual form and allows you to fo-
cus on the most important thing — what content it
should have.

One basic document class for preparing posters
with LATEX is a0poster.14 However, our favoured
class for typesetting posters is baposter ; it is also
quite simple, and allows for various modifications of
a poster structure and appearance. You will find
the manual and examples at the project homepage:
http://www.brian-amberg.de/uni/poster/. The
simplest way to learn how to use this class is to down-
load examples and analyse them. Here we will list
some of interesting and useful commands available
in this class. An example of a poster prepared with
this class is presented in Figure 8.

14 http://www.ctan.org/pkg/a0poster

The class options In the class options you may
declare — int. al. — the following:

• page layout: landscape, portrait;

• paper size: a0paper, a1paper, a2paper,
a3paper, a4paper;

• showframe: draw a frame around the page
(mainly useful for debugging).

Poster options The main environment for this
class is poster. The environment has some options
available, such as:

• grid={yes,no}— turns on/off the visibility of
a grid (useful for designing the layout);

• columns=〈n〉— number of columns (default 4 in
landscape and 3 in portrait format; maximum
number is 6);

• colspacing=〈length〉— defines the distance be-
tween the columns of the poster;

• background=〈bgtype〉— defines the background
for the poster. The simplest options are none

for no background and plain for a single back-
ground colour, which is defined by the option
bgColorOne=〈pgf-colour-name〉.15

The content is formatted in columns and placed into
attractive boxes. The box is declared with a com-
mand:

\headerbox{〈boxtitle〉}{name=〈boxname〉,
column=0,row=0}{

〈content〉
}

Thus, as you can see, each box has its own label and
column indication. You use the labels to place one
box under another one, e.g.:

\headerbox{RESEARCH}{name=research,below=intro,

column=0,row=0}{

〈content〉
}

This code will place the box entitled “RESEARCH”
in the first poster column under the box labelled as
intro (see Figure 8).

You can easily modify the appearance of boxes
(like headers, borders, shapes and fill types). Try
the following poster options:

• textborder=〈type〉— type of border for the
lower part of the box (possible values: none,
bars, coils, triangles, rectangle, rounded,
faded);

• headerborder=〈type〉— which sides of the
text box headers should have a border (none,
closed, open);

15 Other types of background are available, such as
different gradients; see the class manual for details:
http://www.brian-amberg.de/uni/poster/baposter/

baposter_guide.pdf.

Pawe l Lupkowski and Mariusz Urbański

TUGboat, Volume 34 (2013), No. 2 189

• headershape=metatype— type of ornament
for the text box headers (rectangle,
small-rounded, roundedright, roundedleft,
rounded).

The example poster presented in Figure 8 uses
the following options:

• textborder=roundedleft

• headerborder=closed

• headershape=roundedright

Saving space If you want to save some space in
your poster you can make lists more compact. To
do this just use the command \compresslist after
the \begin{enumerate} or \begin{itemize}.

If you are interested in other classes or general
guidelines for preparing posters with LATEX, see [3,
4, 10].

Summary

We hope that we have convinced you to use LATEX as
a unified environment for preparing your conference
materials. We think that the biggest advantage of
LATEX is that it allows you to focus on the important
thing, namely the quality of the content. It is LATEX
that takes care of the form of your materials (and we
have to admit that we like the results). However, we
should also admit that there are some issues that we
sometimes find disturbing. Many LATEX document
classes use different approaches to some standard
commands (e.g. author, title) or define completely
new commands to use, so there are cases when we
need to meticulously study guidelines or examples
provided by the conference organisers. This — un-
fortunately — might take some time.

As we have pointed out, we value LATEX for the
possibility of easily reformatting the content from
paper into a presentation or a poster. Last but not
least, sometimes we find it very difficult to fit our
content in the page limit using the document class
provided by the organisers. However, one may argue
that this is to some extent a universal problem.

Acknowledgements This work was supported by
funds of the National Science Council, Poland (DEC-

2012/04/A/HS1/00715).

References

[1] David Allen. Screen presentations, manuscripts,
and posters from the same LATEX source. The

PracTEX Journal, 2005. http://tug.org/

pracjourn/2005-1/allen/allen.pdf.

[2] Patrick Daly. Graphics and Colour with LATEX.
http://tex.loria.fr/graph-pack/grf/grf.pdf,
1998.

[3] Tomas Morales de Luna. Writing posters
in LATEX. The PracTEX Journal, 2008(3).
http://tug.org/pracjourn/2008-3/morales/.

[4] Paulo Rogério de Souza e Silva Filho and
Rian Gabriel Santos Pinheiro. Design and
Preparation of Effective Scientific Posters using
LATEX. The PracTEX Journal, 2010(2). http:

//tug.org/pracjourn/2010-2/rogerio.html.

[5] Johan Engelen. How to Include an SVG Image
in LATEX. http://tug.ctan.org/tex-archive/

info/svg-inkscape/InkscapePDFLaTeX.pdf,
2010.

[6] Peter Flom. LATEX for academics and
researchers who (think they) don’t need it.
The PracTEX Journal, 2005(4). http:

//tug.org/pracjourn/2005-4/flom/flom.pdf.

[7] Marius Hofert and Markus Kohm. Scientific
Presentations with LATEX. The PracTEX Journal,
2010(2). http://tug.org/pracjourn/2010-2/

hofert.html.

[8] Tobias Kuhn. bchart: Simple Bar Charts in
LATEX. http://www.ctan.org/pkg/bchart, 2012.

[9] Rouben Rostamian. A Beamer Quickstart.
http://www.math.umbc.edu/~rouben/beamer/

quickstart.html, 2004.

[10] Han Lin Shang. Writing Posters with
Beamerposter Package in LATEX. The PracTEX

Journal, 2012(1). http://tug.org/pracjourn/

2012-1/shang.html.

⋄ Pawe l Lupkowski
Institute of Psychology
Department of Logic and Cognitive Science
Adam Mickiewicz University
Poznań, Poland
pawel.lupkowski (at) gmail dot com

http://amu.edu.pl/~p_lup/

⋄ Mariusz Urbański
Institute of Psychology
Department of Logic and Cognitive Science
Adam Mickiewicz University
Poznań, Poland
Mariusz.Urbanski (at) amu dot edu dot pl

http://mu.edu.pl

Preparing for scientific conferences with LATEX: A short practical how-to

190 TUGboat, Volume 34 (2013), No. 2

LiPPGen: A presentation generator for

literate-programming-based teaching

Hans-Georg Eßer

Abstract

Literate programming techniques can be used as a
teaching method—not only in book form, but also
for lectures in the classroom. I present a tool which
helps instructors transform their literate programs
into lecture presentations: LiPPGen, the Literate-
Programming-based Presentation Generator, takes a
standard literate program (with LATEX as the docu-
mentation language) as input and lets the instructor
comfortably generate presentation slides for each
code chunk. It then assembles the provided slide
texts and the code chunks and turns them into a
browser-based presentation.

LiPPGen offers unique features in comparison to
standard presentation programs (such as PowerPoint)
in that code chunks may be larger than the space on
a slide permits: if so, the code can be scrolled during
the presentation. The code is also presented with
syntax highlighting using simple regular-expression-
based rules. Currently, C and Python are supported.

This article describes both the features and us-
age of LiPPGen and provides an example, showing
a small literate program (the implementation of a
component of an educational operating systems) and
its transformation into lecture slides.

LiPPGen is available under an open source li-
cense so that others who use literate programming
in an instructional environment can also use the
software and modify it to their needs.

1 Introduction

Literate programming [5] is a programming technique
invented by D. E. Knuth which lets developers create
source code and documentation in one “literate pro-
gram” from which both well-readable documentation
and compilable source files can be extracted. It can
be used to create textbooks on any computer science
topic that involves presenting and explaining larger
program code blocks. This approach has been used
by a few authors, including Knuth himself, when he
published the TEX source code [6], but also more
recently, for example by Pharr and Humphreys who
explain the art of 3D rendering in their book [10]. Ad-
ditional literate-programming-based textbooks are
mentioned in the “Books: Applies Literate Program-
ming” section of the literateprogramming.com link
list [7].

One of the advantages of literate programming
over other development styles is that the order of pre-

sentation does not depend on syntactical constraints.
For a developer this means that the original creative
process can be recorded in the literate program, al-
lowing both top-down and bottom-up approaches.
Instructors can base the presentation on didactic con-
siderations, for example, they can first give function
definitions and structure declarations in an incom-
plete form (when the audience does not have the
required knowledge to understand the full versions)
and later extend them when the missing information
has been taught.

Since a book is not helpful in a classroom setting,
the question arises of how an instructor might create
lecture slides from a literate program. While it is
possible to copy and paste fragments from the literate
program into a presentation and manually add text,
such a procedure is tedious and will not always lead
to good results. Also, whenever the author modifies
the original literate program, he or she must also
manually update the slides. Until now, there has
been no software to aid the instructor in creating a
literate-programming-based presentation.

2 LiPPGen features

LiPPGen [2] lets you select a part (or several parts)
of a literate document by marking blocks with begin

and end comments. When running the tool on such
a file, it creates an HTML file and opens it in the
browser (Figure 1). The page shows code chunks
and documentation blocks separately (with most
LATEX code either stripped or converted to equiva-
lent HTML), and for each code chunk you can enter
some descriptive text in an HTML editor field sit-
ting next to the code chunk. (The program displays
the documentation parts as well so that you can
easily decide what information to pick for the slide

Figure 1: LiPPGen lets you convert literate programs
into presentations, with large parts of the process
being fully automatic.

Hans-Georg Eßer

TUGboat, Volume 34 (2013), No. 2 191

content.) The editor allows for simple markup, such
as enumerations, bullet lists, bold, and italics.

When you’ve entered all the information, you
can send the data back to the program (it supplies a
simple HTTP server for just this purpose), and then
LiPPGen creates an HTML presentation file with the
code chunks and your added input. Finally it opens
the new presentation in the browser.

Additional features are:

• You can repeat the editing process several times;
data entered in a preceding program run remains
available.

• The presentation shows chunk names in a way
that is similar to the formatting in a traditional
literate program (e. g., 〈name〉), both for the
definition (as in 〈name〉≡. . . and 〈name〉+≡. . .)
as well as for occurrences in other code chunks.

• LiPPGen recognizes repeated (i. e., continuing)
definitions of code chunks. The first one is al-
ways shown as 〈name〉≡, whereas the following
ones use 〈name〉+≡. Also, the chunk names
are used as slide titles, and if a chunk occurs on
several slides, LiPPGen increments a counter.

• Simple syntax highlighting (via regular expres-
sions) is available for C and Python source code,
so there’s a bit of pretty printing. You can easily
extend this to other languages.

• As part of the syntax highlighting LiPPGen
also breaks code lines which are too long. The
continuation is shown via an arrow character at
the end (similar to the display in the XEmacs
editor) and there are dots at the beginning of the
following line. That way it is clear where a line
begins and ends, without a need to introduce
line numbers.

• When you give the presentation, you can scroll
code chunks up and down using the cursor keys
(for code chunks which are longer than the slide
permits). Each code chunk “remembers” the
current scrolling position, so when you later
return to a slide, the display of the code chunk
is as it was when you last left the slide.

3 Implementation

When attempting to convert a document which is
basically in LATEX syntax—though in its extended
Literate Programming form—the natural choice for
slide creation would be to stick with LATEX and use
one of the available LATEX document classes for pre-
sentations, such as beamer [13]. However, the end
result of any approach using LATEX will be a PDF

document, and such documents are static.
In contrast, HTML allows elements on a page to

be scrollable, and this feature comes in handy when

we want to show code which exceeds the available
space on a slide.

3.1 Recycling: Use what’s there

Classically, open source developers are too lazy to
reinvent the wheel, and so at the beginning I checked
for available tools which might be able to reduce my
own development efforts. I found two very helpful
programs:

• The “Simple Standards-based Slide Show Sys-
tem” (S5) contains CSS files which let users
create complete presentations in single HTML

files [8]. Adding a slide is as simple as writing

<div class="slide">

<h1>Slide Title</h1>

...

</div>

in the source file, and bullet items need no more
than standard HTML lists (...
).
A LiPPGen presentation looks a lot like a

standard S5 presentation, except for the added
literate programming bits.

• The “NicEdit Inline Content Editor” [4] is a
JavaScript program that provides an HTML edi-
tor which can be embedded in HTML pages. It
is customizable, and for LiPPGen I’ve disabled
most of the available buttons, since they are not
needed.

3.2 The power of Python

Python comes with several useful libraries and allows
the on-the-fly implementation of a simple web server.
(This is true for many other script languages, but I
know Python best— the simple reason for choosing
it.) We need one for accepting the user’s input on
the web form, and Python’s socket module let me
integrate the web server into the program.

The complete lippgen script is only about 700
lines long, and these few lines of code handle pars-
ing the literate program document, generating the
HTML form, accepting the user input, and assem-
bling the final HTML files with syntax highlighting,
line breaking and other stuff.

3.3 Some JavaScript as well

In order to allow scrolling of the code chunks, I had
to slightly modify the JavaScript code that is part
of the S5 system. In brief, I’ve given HTML names
to all code chunks and changed the key-press event
code so that [Cursor up] and [Cursor down] scroll
the currently displayed code chunk up and down.

I also modified S5’s default/pretty.css file so
that the standard font for listings (tt) is M+ 1m [9]

LiPPGen: A presentation generator for literate-programming-based teaching

192 TUGboat, Volume 34 (2013), No. 2

since this font runs narrower than the standard
Courier type fonts.

4 LiPPGen tutorial

To try out LiPPGen yourself, download the software
and install it; then pick a sample literate program
and use lippgen. We’ll describe the process here.

4.1 Installing LiPPGen

Do the following to install the program:

1. Unpack the archive and copy the lippgen and
lippgen-sanitize files to some directory in
your path (e. g., /usr/bin/ or ~/bin). Create
/usr/share/lippgen/ and recursively copy the
lippgen.d/ directory into that new directory.
If you cannot write in /usr/share you can pick
some other location but will then have to modify
the assignment

LIPPGEN_D = \

"/usr/share/lippgen/lippgen.d"

in the lippgen script.

2. Check if the pre-configured port number 12349
of lippgen is free on your machine— if not,
change it to something else in the line

PORT = 12349

Modify the command which opens a URL in
a web browser; it is currently set to

BROWSER_COMMAND = \

"open %s -a \"Google Chrome\""

which works on a Mac with Google Chrome
installed. For Firefox on a Linux machine the
proper command would be

BROWSER_COMMAND = "firefox -new-tab %s"

4.2 Using LiPPGen

Assume you have a literate program in a file named
example.nw (which is the standard file extension if
you use noweb). Any other extension except .html
is fine as well.

1. Mark the relevant part(s) of the literate pro-
gramming source file by inserting two lines

%%% BEGIN LITERATE TEACHING %%%

and

%%% END LITERATE TEACHING %%%

(without any leading spaces) around each part
that is to be included in the slides. (You can
omit the last end marker; in that case LiPP-
Gen will go on processing until the end of the
document.)

2. Run ./lippgen on the file, e. g. by issuing the
command ./lippgen example.nw; this produ-
ces a file example.form.html and opens it in
the preconfigured browser.

The default language for syntax highlighting
is C. If you want Python instead, use Python

as a second argument to lippgen. If you use a
different language, modify the program.

3. In the browser, fill in the text input boxes next
to the code chunks. You can leave input boxes
empty if you want to create slides that only
have code on them. Click Send at the end of
the page.

4. Submitting will transfer the input boxes’ con-
tents to the program’s built-in server, where
the processing continues. Your entries in the
fields will also be saved in example.lip so that
it will be reused if you run lippgen on the same
file again (the input boxes will already be filled
with the entries from the last time). This step
creates the final presentation file example.html
and opens it in the browser.

5. Check the resulting slides and make changes if
necessary (going back to step 3).

6. Give the lecture.

4.3 Generating extra pages

It’s also possible to create extra presentation pages
without code, but LiPPGen has no way of knowing
that in advance. After you’ve initially created the
HTML slides, you can edit the HTML file and insert

<div class="slide">

<h1>Slide Title</h1>

...

...

...

</div>

blocks between other div elements of class slide.
This will disrupt the enumeration of slides (and as
a consequence scrolling will not work in slides after
the first manually included one). Thus, for post-
processing of a manually modified HTML file, there’s
an extra tool called lippgen-sanitize that will
renumber the slides.

However, modifying the HTML file this way still
makes it harder to keep the original literate program
and the presentation in sync; when your regenerate
the slides with lippgen, you lose the slides which you
have added manually. Future versions of LiPPGen
may improve this procedure.

Hans-Georg Eßer

TUGboat, Volume 34 (2013), No. 2 193

4.4 Adding keywords

Currently syntax highlighting knows only a few key-
words which typically occur in C or Python pro-
grams. They are registered in the C_KEYWORDS and
P_KEYWORDS variables, e. g.

C_KEYWORDS = ["uint ", "int ", "char ",

"#define", "typedef", "struct", "return",

"#include", "if ", "else "]

If you want to add your own keywords to the list
(so that LiPPGen will highlight them), just append
them to the appropriate variable.

A future version of LiPPGen might use the
highlight program [12], or similar, to provide better
highlighting.

4.5 Publishing a LiPPGen presentation

If you want to publish a LiPPGen presentation on
a website, you will need to copy the HTML file and
the automatically generated lippgen.d subdirectory
to the web server. All files in that subdirectory are
referenced via relative "lippgen.d/..." URLs, so
the file should display properly without further ado.

5 An example

I’ve developed LiPPGen as part of my Ph.D. research
which mainly consists of implementing Ulix [3], a
new Unix-like operating system using literate pro-
gramming. To test whether the literate program-
ming approach is helpful in an operating systems
class, I’m going to convert parts of the literate pro-
gram into slides and use them during lectures; that
first real-world test is scheduled for the winter term
2013/14 when I’ll be giving a course called “Imple-
menting Operating Systems with Literate Program-
ming” at Nuremberg University of Applied Sciences
(TH Nürnberg). When the course starts, slides will
be available from the course website [1].

Figure 2 shows an excerpt from the signal han-
dling chapter of the unpublished Ulix code which
implements the kill system call. That part of the
book contains four code chunks, and LiPPGen will
convert them into four slides which may then be
described.

When calling lippgen, a browser window dis-
plays the generated HTML form, as shown in Figure 3.
You can then enter the slide contents and also pro-
vide metadata for the title slide (title, author, and
organization). After clicking the Send button, the
browser opens the final presentation file, shown in
Figure 4.

6 License

The licensing for LiPPGen may look a little irritating,
but since I’ve used other components, I need to

follow their licenses. Thus, the modified S5 code
is in the public domain, the NicEdit component is
available under the MIT license, and the Python
script lippgen is GPLv2-licensed.

To summarize this, you’re basically free to do
whatever you like with the package. If you modify
and re-publish LiPPGen, you just have to be aware
of the third party code’s licenses.

7 Future work

I’ve also looked into the alternative presentation
tool Prezi [11] which allows zooming into and out
of presentation parts. There, the presentation is
basically a big mind map.

Since using code chunks is somewhat similar to
the Prezi approach, it would be interesting to have a
tool which allows quick replacement of a chunk name
with the chunk content (when clicking it).

I’m also planning to experiment with the above-
mentioned highlight program [12] since it makes
no sense to invest time into developing a separate
highlighting engine when similar code is available.

References

[1] Hans-Georg Eßer. Implementing Operating
Systems With Literate Programming.
Lecture slides, Nuremberg University of
Applied Sciences, Winter term 2013/14.
http://ohm.hgesser.de/be-ws2013/.

[2] Hans-Georg Eßer. LiPPGen.
http://hgesser.de/software/lippgen/.

[3] Felix Freiling and Hans-Georg Eßer. ULIX.
http://www.ulixos.org/.

[4] Brian Kirchoff. NicEdit Inline Content Editor,
2008. http://nicedit.com/.

[5] Donald E. Knuth. Literate Programming.
The Computer Journal, 27(2):97–111, 1984.

[6] Donald E. Knuth. TEX: The Program.
Addison Wesley Publishing Company, 1986.

[7] Literate programming link list. http://www.

literateprogramming.com/links.html.

[8] Eric A. Meyer. S5: A Simple Standards-Based
Slide Show System. http://meyerweb.com/

eric/tools/s5/.

[9] Coji Morishita. M+ 1M font.
http://mplus-fonts.sourceforge.jp/

mplus-outline-fonts/design/index-en.

html.

[10] Matt Pharr and Greg Humphreys. Physically
Based Rendering, Second Edition: From

Theory To Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA,
2010.

LiPPGen: A presentation generator for literate-programming-based teaching

194 TUGboat, Volume 34 (2013), No. 2

[11] Prezi website. http://prezi.com/.

[12] Andre Simon. Highlight Manual. http://

www.andre-simon.de/doku/highlight/en/

highlight.html.

[13] Till Tantau et al. Beamer document class for
LATEX. http://ctan.org/pkg/beamer.

⋄ Hans-Georg Eßer
Univ. Erlangen-Nürnberg
Lehrstuhl 1 für Informatik
Martensstraße 3
D-91058 Erlangen, Germany
h.g.esser (at) cs dot fau dot de

http://hgesser.de/

323a 〈kernel declarations 59b〉+≡ (61a) � 322c 327a �

void kill (int pid, int signo);

Uses kill.

Note that we do no checking in this function, kill can be called by the kernel itself (which
may send any signal to any process), but it cannot be called directly by a process. Sending
by a process requires using a system call, and the system call handler will check whether the
process is allowed to send the signal to the target process before calling kill.
It is also classical for a process to send a signal to itself; that is what the raise function

does. We will not implement it specifically inside the kernel, but in the user mode library:
raise(sig) is the same as kill(getpid(),sig).

Here’s the code for the system call handler:

323b 〈initialize syscalls 94c〉+≡ (64a) � 313b

insert_syscall (__NR_kill, syscall_kill);

Uses insert syscall and syscall kill.

323c 〈syscall functions 93c〉+≡ (86d) � 100f

void syscall_kill (struct regs *r) {

// ebx: pid of child to send a s signal

// ecx: signal number

int ok, retval;

int target_pid = r->ebx;

int signo = r->ecx;

〈check if current process may send a signal 323d〉

if (ok) {

kill (target_pid, signo);

retval = 0;

} else

retval = -1;

r->eax = retval;

〈run scheduler if this was a raise operation 324〉
return;

};

Uses kill and syscall kill.

We only allow sending a signal if either the sender’s owner has user ID 0 or if sender and
recipient have the same owner:

323d 〈check if current process may send a signal 323d〉≡ (323c)

Figure 2: This excerpt from the literate program “Ulix” contains four code chunks.

Hans-Georg Eßer

TUGboat, Volume 34 (2013), No. 2 195

Figure 3: The HTML form lets you enter content for the slides.

Figure 4: The HTML presentation file created by LiPPGen. The listing on the right hand side is scrollable.

LiPPGen: A presentation generator for literate-programming-based teaching

196 TUGboat, Volume 34 (2013), No. 2

Entry-level MetaPost 2: Move it!

Mari Voipio

This installment introduces some of the basic com-
mands for moving a line or an object— i.e. a path—
to a different position: shifting, rotating, reflecting,
repeating. In programs with a graphical user inter-
face, these operations are typically done by clicking
and dragging or clicking and selecting a command
on a toolbar.

MetaPost has a slightly different approach to e.g.
rotation and this can be confusing at first, although it
is completely logical on its own terms. It adds to the
confusion that some commonly used commands like
flip and duplicate do not exist in MetaPost (nor Meta-
Post manuals), although the operations are doable
once you know what to look for.

For basic information on running MetaPost, ei-
ther standalone or within a ConTEXt document, see
http://tug.org/metapost/runningmp.html.

1 Store it first

Before we start to manipulate a path, we typically
store it for further access by defining a path variable.
In many MetaPost tutorials you see paths named p,
q and r, but I prefer slightly longer and more descrip-
tive names, even though that means more typing.
Below we first define and then draw a diamond that
is used for many examples in this tutorial.

beginfig (1) ;

numeric u ; u := 1cm ; % define the unit

% define path variable "dmnd" (diamond shape,

% intentionally asymmetrical)

path dmnd ;

dmnd := (1u,0u) -- (0u,2u) -- (1u,4u) -- (2u,2u)

-- cycle ;

% drawing diamond (outline)

draw dmnd ;

endfig ;

end .

Here is the output:

Troubleshooting: If your file compiles but the graphic
is empty, you probably forgot to draw at least one
path, i.e. the output “paper” is still empty. No draw/
fill/filldraw command at all leads to an empty file.

When multiple path variables are defined, they
can all go at the top of the file to make sure that we
define each variable before trying to use it. However,
we can use the variables in any order after that and
as many times as is needed. Personally I like to
list my variables in alphabetic order so I can find
one quickly if I need to check or change the path
definition.

2 Shift (copy, duplicate)

To shift means to move, and that is exactly what the
command does. It works in a fairly intuitive way:

draw dmnd shifted (3u,0u) withcolor red;

That line can be read as “take a diamond, draw
it to (3u,0u) using a red pen”. Visually:

If we draw the original diamond as well as the
shifted one, we now have two diamonds, i.e. we have
copied an object. We can change the attributes of
the second (shifted) diamond, e.g. to make a coloured
diamond by using the fill command. For example:

Here’s the MetaPost code. The beginning is
what we saw in the first section.

beginfig (1) ;

numeric u ; u := 1cm ; % define the unit

% define path variable "dmnd" (diamond shape)

path dmnd;

Mari Voipio

TUGboat, Volume 34 (2013), No. 2 197

dmnd := (1u,0u) -- (0u,2u) -- (1u,4u)--(2u,2u)

-- cycle;

% draw dashed diamond at original location

draw dmnd dashed evenly ;

% draw second diamond to the right, in red

draw dmnd shifted (3u,0u) withcolor red ;

% draw third diamond, filled with blue,

% to the right and up from original

fill dmnd shifted (6u,1u) withcolor blue ;

endfig ;

end .

The shift command only applies to the ele-
ment preceding it; we need to use parentheses if we
intend otherwise. Thus draw (0u,2u) -- (2u,5u)

shifted (4u,1u) and draw ((0u,2u) -- (2u,5u))

shifted (4u,1u) produce very different results:

draw (0u,2u) -- (2u,5u)

shifted ...

draw ((0u,2u) -- (2u,5u))

shifted ...

The black is the original (0u,2u)--(2u,5u)

line, while the red is the result of the whole expres-
sion, including the shift. Here is the code (combined
for exposition):

...

% set the penwidth (see previous article)

drawoptions (withpen pencircle scaled 1/10u) ;

% draw original line in black

draw (0u,2u) -- (2u,5u) ;

% draw red line with shift of endpoint only:

% (first example)

draw (0u,2u) -- (2u,5u) shifted (4u,1u)

withcolor red ;

% ... or ...

% draw red line with whole line being shifted:

% (second example)

draw ((0u,2u) -- (2u,5u)) shifted (4u,1u)

withcolor red ;

...

3 Rotate

Rotation is another basic graphical transformation.
In MetaPost, the basic operation is done with the
keyword rotated. We also always need to specify
the angle of rotation. However, if one is used to
a graphical program (say, Inkscape), the results of
rotated can be a bit of a surprise at first. Let’s look
at an example.

% define a path variable "tetris"

path tetris ;

tetris := (3u,2u) -- (4u,2u) -- (4u,5u)--(2u,5u)

-- (2u,4u) -- (3u,4u) -- cycle ;

% draw solid blue tetris block

fill tetris withcolor blue ;

% draw rotated tetris block in red

fill tetris rotated 90 withcolor red ;

And the output (scaled down, here and in the follow-
ing, from 1cm for TUGboat’s narrow columns):

Say what?
The logic becomes more apparent if we add a

small dot at origin (0,0):

% mark origin with a black dot

fill fullcircle scaled 1/10u ;

yielding:

The lesson: The rotated command rotates the
path’s bounding box around the origin (0,0),
and rotation direction is counterclockwise.

If we want to rotate the path around any other
point, we have to use the command rotatedaround,
for which we need to specify both the location of the
rotation point and the angle of rotation. Example:

% draw a diamond rotated around its top point,

% at (1u,4u)

fill dmnd rotatedaround ((1u,4u),90)

withcolor blue;

Entry-level MetaPost 2: Move it!

198 TUGboat, Volume 34 (2013), No. 2

To rotate around the “midpoint” of the object
(that is, the center of bounding box, the default
rotation point in many programs), we don’t need
to painfully compute the coordinates for the center.
MetaPost has a handy keyword center for that:

% draw diamond outline

draw dmnd ;

% draw red diamond rotated around its center

fill dmnd rotatedaround (center dmnd,45)

withcolor red;

% draw tetris outline

draw tetris;

% draw tetris block rotated around its center

fill tetris rotatedaround (center tetris, 90)

withcolor blue ;

% these commands would make the centers visible:

%fill fullcircle scaled 1/10u shifted

% (center dmnd) ;

%fill fullcircle scaled 1/10u shifted

% (center tetris) ;

4 Reflect (flip, mirror)

Another command that may seem to be missing in
MetaPost is horizontal or vertical mirroring (also
known as flipping). The functionality does exist, in-
voked with the keyword reflectedabout, although
a bit of practice is needed to get used to it—but on
the other hand we can specify any straight line to be
the reflection axis, it doesn’t have to be horizontal
or vertical. Consequently, to use reflectedabout,
we must specify two points for the reflection axis. If
you find this hard, think of a mirror and where you’d
place its edge to get the reflection needed.

Here I’m playing around with a Greek key pat-
tern and its reflection (yes, they do overlap in the
middle) around a vertical line.

And the code to produce it:

beginfig (2) ;

% design source:

% http://gwydir.demon.co.uk/jo/greekkey/turns.htm

numeric u ; u := 3.8mm ; % define the unit

% creating sharp squared joins

linecap := squared ;

linejoin := mitered ;

% set the penwidth

drawoptions (withpen pencircle scaled 1/2u) ;

% define the path for the greek key

path gkey;

gkey := (origin) -- (0u,5u) -- (5u,5u) -- (5u,1u)

-- (2u,1u) -- (2u,3u) -- (3u,3u) -- (3u,2u)

-- (4u,2u) -- (4u,4u) -- (1u,4u) -- (1u,0u)

-- (5.5u,0u);

% draw it

draw gkey ;

% flip it and draw it in red

draw gkey reflectedabout ((5.5u,0u),(5.5u,5u))

withcolor red ;

endfig ;

end .

By adding another, horizontally flipped, key and
then a key with rotation we can create a square Greek
key pattern variation:

draw gkey reflectedabout ((origin),(5.5u,0u))

withcolor blue ;

draw gkey rotatedaround (lrcorner gkey,180)

withcolor green ;

The pattern is more apparent entirely in black:

Mari Voipio

TUGboat, Volume 34 (2013), No. 2 199

If you want to flip an object along a side of
the bounding box, the MetaFun package provides a
set of handy shortcuts: the corners of the bounding
box are called llcorner, lrcorner, ulcorner and
urcorner. Thus, to flip an object along the right
edge of the bounding box, the lower right and upper
right corner are called for:

% drawing flipped tetris block

fill tetris reflectedabout (lrcorner tetris,

urcorner tetris)

withcolor green ;

Yielding:

5 . . . and repeat

If you need to repeat the same pattern at regular
intervals, a combination of shift and loop is possible.
Besides the angular variety above, I’ve also designed
a rounded version of the Greek key that could e.g.
make a nice header for a book. To alter the size of the
“frieze” I can either change the number of repetitions
or the final size, depending on what shape is desired.

% define one spiral

path spiral;

spiral := (0,7/4) .. (2,4) .. (5,2) .. (3,0)

.. (2,2) .. (4,2) .. (3,1) ;

% repeat to get 10 spirals in a row

for i = 0 step 5 until 45 :

draw spiral shifted (i,0) ;

endfor ;

% add a bit of white around the pattern

setbounds currentpicture

to boundingbox currentpicture

enlarged 1/4 ;

% resize the whole thing

currentpicture := currentpicture xsized 7cm ;

And the output:

6 MetaFun

The xsized command used in the last line, like the
corner shortcuts mentioned above, is part of the
MetaFun package, not MetaPost proper. MetaFun is
loaded in ConTEXt by default, but needs to be explic-
itly loaded when using standalone plain MetaPost
documents, like this:

mpost --mem=metafun yourfile.mp

See http://wiki.contextgarden.net/MetaFun for
more.

⋄ Mari Voipio

mari dot voipio (at) lucet dot fi

http://www.lucet.fi

Entry-level MetaPost 2: Move it!

200 TUGboat, Volume 34 (2013), No. 2

Creating Tufte-style bar charts and

scatterplots using PGFPlots

Juernjakob Dugge

Abstract

In this article I describe how to use PGFPlots to
create bar charts and scatterplots in the style de-
scribed by Edward Tufte in The Visual Display of

Quantitative Information [1].
I demonstrate how to implement range frames,

which are axis lines drawn only over the range of
the data points, and dot-dash plots, which are scat-
terplots with tick marks representing the marginal
distribution of the data.

1 Bar chart

(I adapted this section from my latex-community.

org post on this topic, namely latex-community.

org/know-how/437-tufte-charts.)
Assume we have numerical data in a data file

called dataA.csv that looks like this:

1, 8.5

2, 12

3, 6.5

4, 7

5, 3

6, 17.5

7, 13

8, 8.5

9, 6

10, 11

11, 5

12, 10

Creating a bar chart of this data using PGFPlots
is simple. All we have to do is put the following code
at the point where we want the chart to appear:

\begin{tikzpicture}

\begin{axis}[ybar]

\addplot table [col sep=comma] {dataA.csv};

\end{axis}

\end{tikzpicture}

The result is shown in Figure 1.

1.1 Bar colour

In his book, Tufte uses a particular shade of yel-
lowish gray for the bars. Custom colours for use in
PGFPlots can be defined using the \definecolor

macro provided by the xcolor package, which is au-
tomatically loaded by PGFPlots. The colour used in
Tufte’s book can be made available using.

\definecolor{tufte1}{rgb}{0.7,0.7,0.55}

The most straightforward way to fill the bars
of the plot using this colour and to disable the out-
lines of the bars is to add the keys fill=tufte1,

0 2 4 6 8 10 12

5

10

15

Figure 1: Bar chart using the default settings.

draw=none to the optional argument of the \addplot
command. Alternatively, we can set a cycle list

consisting of these options:

cycle list={

fill=tufte1, draw=none\\

}

That way, no options have to be supplied to the
\addplot command.

1.2 Bar width

By default, the bars in PGFPlots are thicker than
those in Tufte’s plot. The width of the bars is con-
trolled using the bar width key, which can be speci-
fied in absolute units (like 5mm) or, since PGFPlots
version 1.7, in terms of axis units. The latter requires
setting the key compat=1.7 or higher.

Using axis units to specify the bar width has
the advantage that the widths of the bars will shrink
as more data points are added, avoiding overlap
between the bars. Sometimes, though, it might be
desirable to keep the widths of the bars constant
and instead increase the overall width of the plot as
the number of data points increases. This can be
achieved by using an absolute width for the bars, and
specifying the length of the x unit vector in terms of
the bar width:

bar width=2mm,

x=1.5*\pgfkeysvalueof{/pgfplots/bar width}

would make the bars 2mm wide with a 1mm gap
between neighbouring bars, and the axis would grow
or shrink horizontally to fit all the bars.

1.3 Grid lines

In Tufte’s plot, there are gaps in the bars at regular
intervals instead of conventional grid lines in the
background of the bars. This can be simulated in
PGFPlots by placing white horizontal grid lines on
top of the bars by setting

ymajorgrids,

grid style=white,

axis on top

Juernjakob Dugge

TUGboat, Volume 34 (2013), No. 2 201

1.4 Axes

In Tufte’s plot, the y axis is not drawn. In PGFPlots,
an axis can be hidden using the key hide y axis.
However, this key also deactivates the tick labels. In
our case, since we only want to make the axis line
invisible, we can instead set its opacity to zero using
y axis line style={opacity=0}.

The x axis line in Tufte’s plot is aligned with
the first and last bar. This means that the x axis
needs to run from the left edge of the first bar to the
right edge of the last bar. In PGFPlots, this can be
achieved by setting the padding of the x axis to half
the bar width using

enlarge x limits={

abs=0.5*\pgfkeysvalueof{/pgf/bar width}

}

where abs indicates that the padding is specified in
terms of absolute units and not in axis units.

Since we only want an axis line at the bottom
of the plot and not on the top, we set

axis x line*=bottom

By using the starred version of the key, no arrow tip
is added to the axis line.

There are no tick labels on the x axis in Tufte’s
plot. In most real applications this would not be
recommended, but in order to recreate Tufte’s plot
as faithfully as possible, let’s go ahead and switch
the labels off using xtick=\empty.

The y tick labels are expressed as percentages.
We can specify how to print the tick labels in PGFPlots
using the yticklabel key:

yticklabel=\pgfmathprintnumber{\tick}\,\%

The code passed to yticklabel is executed for every
tick label. The \tick macro contains the current
tick value, which is printed in a consistent format by
\pgfmathprintnumber. After the tick value, we add
a thin space (\,) and the percent sign, which has to
be escaped using a backslash to distinguish it from
its use as the comment character.

Note that there is also a yticklabels key (with
a trailing s). This is used to provide a comma-
separated list of tick labels, whereas the yticklabel
key is used to provide a pattern for printing the
labels, typically based on the tick value.

Finally, we can switch off the tick marks with

major tick length=0pt

1.5 Creating an axis style

There are different ways of activating all these op-
tions. The keys can be directly added to the optional
argument of an axis environment, in which case they
only apply to that axis.

They can also be activated globally using

\pgfplotsset{

〈keys〉
}

which applies the keys to all axis environments that
follow.

Lastly, we can create a new PGF style that
acts as a container for the keys, and apply that new
style to the axis environment:

\pgfplotsset{

tufte bar/.style={

〈key1 〉,
〈key2 〉,
...

}

}

\begin{axis}tufte bar

Grouping options using styles is a very useful
technique, as it helps to keep the code readable and
maintainable.

Putting all the keys described above into a style
and applying that style to the axis in the first listing
results in the plot shown in Figure 2.

0%

5%

10%

15%

Figure 2: Bar chart in the style of Edward Tufte

2 Scatterplot

A scatterplot can be created in PGFPlots just as
easily as a bar chart. A simple plot of some random
data points like the one shown in Figure 3 can be
created using

\begin{tikzpicture}

\begin{axis}[

only marks,

domain=1:10

]

\addplot

({cos(rnd r)*x+rnd},{(rnd+1)*x+rnd});

\end{axis}

\end{tikzpicture}

The key only marks instructs PGFPlots not to
draw connecting lines between the data points.

Creating Tufte-style bar charts and scatterplots using PGFPlots

202 TUGboat, Volume 34 (2013), No. 2

2 4 6 8 10

5

10

15

Figure 3: Default scatterplot

2.1 Basic scatterplot adjustments

With only a few options, we can already get quite
close to the scatterplots in Tufte’s book. The plot
marks are black and slightly smaller than in the
default plot, so we set

cycle list={black},

mark size=1.5pt

(the default mark size is 2 pt).
The remaining adjustments are related to the

plot axes.

2.2 Range frames

Instead of conventional axis lines, Tufte uses so-called
range frames : The axis lines are not drawn over the
entire extent of the plot, but only between the levels
of the lowest and highest data points.

One way of creating range frames in PGFPlots
is by erasing the standard axis lines and drawing
lines of the required lengths using \draw commands.
For this, we can make use of the fact that PGFPlots
stores the lowest and highest data coordinate values
in internal macros. These macros, called

\pgfplots@data@xmin

\pgfplots@data@xmax

...

can be made accessible by putting

\makeatletter

\let\pgfplotsdataxmin=\pgfplots@data@xmin

\let\pgfplotsdataxmax=\pgfplots@data@xmax

\let\pgfplotsdataymin=\pgfplots@data@ymin

\let\pgfplotsdataymax=\pgfplots@data@ymax

\makeatother

before the specification of the \draw command. Then
the values can be referred to as \pgfplotsdataxmin,
\pgfplotsdataxmax, and so on.

To draw the lines, we can use

\draw ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmin,0})

-- ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmax,0});

This might look a bit intimidating at first, so
let’s go through it step by step. The basic com-
mand is \draw (A) -- (B);, which simply draws a
straight line between points A and B.

In this case, A is defined as

({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmin,0})

This is a coordinate specification of the type (C-|D),
which describes the point located at the intersection
of a horizontal line through C and a vertical line
through D.

Here, C is rel axis cs:0,0, which is the point
in the lower left corner of the axis, and D is

axis cs:\pgfplotsdataxmin,0

which is the point with an x component equal to
that of the leftmost data point and a y component
of zero.

If the x axis was at y=0, we could simply use

\draw (axis cs:\pgfplotsdataxmin,0)

-- (axis cs:\pgfplotsdataxmax,0);

Since that is not necessarily the case, though, we’ll
have to make use of the more complicated expression.

To automatically execute the \draw command
at the end of the plot, we pass it to the axis like this:

after end axis/.code={

\draw ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmin,0})

-- ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmax,0});

\draw ({rel axis cs:0,0}

|-{axis cs:0,\pgfplotsdataymin})

-- ({rel axis cs:0,0}

|-{axis cs:0,\pgfplotsdataymax});

}

To complete the plot style, only a couple of
minor adjustments are needed.

Erase the default axis lines using

axis line style={opacity=0}

Only show the tick marks on the left and bottom
edge of the plot by setting

tick pos=left

And finally, align the tick marks on the outside
of the plot area using

tick align=outside

Wrapping all these keys in a new style and ap-
plying that style to the plot shown in Figure 3 results
in the plot shown in Figure 4.

2.3 Dot-dash plot

Another technique used by Edward Tufte is the dot-

dash plot, which is a combination of a conventional

Juernjakob Dugge

TUGboat, Volume 34 (2013), No. 2 203

2 4 6 8

5

10

15

Figure 4: Scatterplot with range-frame

scatterplot (the dots) and plots of the marginal dis-
tributions of the data points in the form of short
lines along the outside of the plot (the dashes).

This can be implemented in PGFPlots surpris-
ingly easily. By default, the tick marks are placed at
regular intervals along the axis. By specifying

xtick=data,

ytick=data

tick marks are placed at the data points’ locations.
Removing the axis lines and tick labels, and

making the tick marks black and a bit longer is all
it takes to create a basic dot-dash plot:

axis line style={opacity=0},

xticklabels={},

yticklabels={},

tick style=black

To aid the viewer in reading the plot, we can
label the first and last of the tick marks. We can do
this by again using our macros that store the limits
of the data. PGFPlots makes it possible to highlight
some tick positions by placing additional tick marks
that can be specified using

extra x ticks={

\pgfplotsdataxmin,

\pgfplotsdataxmax

}

These extra ticks can be formatted indepen-
dently from the standard ticks by specifying the
required keys in

extra tick style={

〈options〉
}

In this case, we need to reactivate the tick labels
for the extra ticks. By setting

extra tick style={

xticklabel={\pgfmathprintnumber[

fixed,

fixed zerofill,

precision=1

]{\tick}},

1.8 9.2

2.8

15.5

Figure 5: Dot-dash plot

yticklabel={\pgfmathprintnumber[

fixed,

fixed zerofill,

precision=1

]{\tick}},

scaled ticks=false

}

the values of the outer ticks will be printed as fixed
point numbers rounded to one decimal digit. Setting
scaled ticks=false is necessary when the number
formatting style is explicitly set to fixed. Otherwise,
PGFPlots would print a separate scaling factor when
the axis contains very large numbers.

Applying all these options to the plot results in
the plot shown in Figure 5.

3 Conclusion

In this article, I aimed to demonstrate the flexibility
of PGFPlots by recreating plots from Edward Tufte’s
The Visual Display of Quantitative Information.

While some of the techniques used in this ar-
ticle used internal PGFPlots macros, no alteration
of the code was necessary to implement reasonably
advanced features like range frames or dot-dash plots.

I hope that this article will succeed in encour-
aging some of the readers to try their hand at more
intricate plot customisations of their own. Once the
necessary options and values have been found, the
style feature of the pgfkeys key-value framework
used by PGFPlots makes it very easy to reuse plot
styles. This helps in creating plots with a consistent
appearance with very little effort.

Acknowledgments

I would like to thank Dr. Christian Feuersänger for
his very helpful review of this manuscript, and for
his continued excellent work on PGFPlots.

References

[1] Edward R. Tufte. The visual display of

quantitative information. Graphics Press,
Cheshire, Conn, 2nd edition, 2001.

Creating Tufte-style bar charts and scatterplots using PGFPlots

204 TUGboat, Volume 34 (2013), No. 2

Appendix: Complete styles

Make the extreme values available and define the
colour:

\makeatletter

\let\pgfplotsdataxmin=\pgfplots@data@xmin

\let\pgfplotsdataxmax=\pgfplots@data@xmax

\let\pgfplotsdataymin=\pgfplots@data@ymin

\let\pgfplotsdataymax=\pgfplots@data@ymax

\makeatother

\definecolor{tufte1}{rgb}{0.7,0.7,0.55}

3.1 Bar chart

\pgfplotsset{

tufte bar/.style={

ybar,

axis line style={draw opacity=0},

xtick=\empty,

ymin=0,

bar width=2mm,

x=2*\pgfkeysvalueof{/pgf/bar width},

ymajorgrids,

grid style=white,

axis on top,

major tick length=0pt,

cycle list={

fill=tufte1, draw=none\\

},

enlarge x limits={

abs=0.5*\pgfkeysvalueof{/pgf/bar width}

},

axis x line*=bottom,

x axis line style={

draw opacity=1,

tufte1,

thick

},

yticklabel=\pgfmathprintnumber{\tick}\,\%

}

}

3.2 Basic scatterplot

\pgfplotsset{

tufte scatter/.style={

only marks,

cycle list={black, gray!50},

axis lines*=left,

mark size=1.5

}

}

3.3 Range frame

\pgfplotsset{

range frame/.style={

tick align=outside,

axis line style={opacity=0},

after end axis/.code={

\draw ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmin,0})

-- ({rel axis cs:0,0}

-|{axis cs:\pgfplotsdataxmax,0});

\draw ({rel axis cs:0,0}

|-{axis cs:0,\pgfplotsdataymin})

-- ({rel axis cs:0,0}

|-{axis cs:0,\pgfplotsdataymax});

}

}

}

3.4 Dot-dash plot

\pgfplotsset{

dot dash plot/.style={

tufte scatter

axis line style={opacity=0},

tick style={thin, black},

major tick length=0.15cm,

xtick=data,

xticklabels={},

ytick=data,

yticklabels={},

extra x ticks={

\pgfplotsdataxmin,

\pgfplotsdataxmax

},

extra y ticks={

\pgfplotsdataymin,

\pgfplotsdataymax

},

extra tick style={

xticklabel={\pgfmathprintnumber[

fixed,

fixed zerofill,

precision=1

]{\tick}},

yticklabel={\pgfmathprintnumber[

fixed,

fixed zerofill,

precision=1

]{\tick}}

}

}

}

⋄ Juernjakob Dugge

Schwaerzlocher Str. 64

72070 Tuebingen

Germany

juernjakob (at) dugge dot de

Juernjakob Dugge

TUGboat, Volume 34 (2013), No. 2 205

Typographers, programmers and mathematicians,

or the case of an æsthetically pleasing interpolation

Bogusław Jackowski

Abstract

The reason for preparing this report is that the author has been con-
vinced for many years that John D. Hobby’s algorithm for connecting
Bézier segments, implemented by Donald E. Knuth in METAFONT and
later transferred by Hobby to METAPOST, based on the notion of a “mock
curvature”, is a genuine pearl which deserves both proper acknowledge-
ment and a far wider awareness of its existence. Of course, one can find
nearly all the necessary details in the relevant papers by Hobby and in the
METAFONT source, but, needless to say, it is not easy to dig through the
publications. The present paper provides a full mathematical description
of Hobby’s interpolation algorithm, discusses its advantages and disad-
vantages (in particular, its instability) and compares Hobby’s approach
with a few selected simpler approaches.

1 Introduction

The most popular curves in computer graphics applications are based on polynomials of de-
grees 2 and 3. These include Bézier curves and B-splines of orders 2 and 3. Bernstein poly-
nomials (cf. [3], [6, p. 14] and [8]) allow Bézier curves to be generalized to degree n as defined
by the formula

B(t)
def
=

n
∑

i=0

(n

i

)

ti(1 − t)n−iBi, (1)

where Bi, i = 0, 1, . . . , n are points in a k-dimensional space.
In practical applications, k = 2 or k = 3. The present paper discusses the case k = 2,

n = 3, i.e., planar Bézier curves; such curves are used in the PostScript language (including
PostScript fonts), in page description formats such as SVG or PDF and in graphic design
programs such as CorelDRAW, Adobe Illustrator and the (free software) Inkscape program.
In such applications, the main problem is interpolation, i.e., connecting Bézier curves in an
æsthetically pleasing manner. A single Bézier arc is capable of expressing relatively few shapes,
whereas combining multiple Bézier arcs provides more possibilities.

It might seem that discussing the notion of “æsthetic pleasingness” or “beauty” with
respect to a strictly mathematical problem makes no sense. However, the physiology of the
human eye provides a valuable insight: the eye surprisingly easily identifies straight lines and
circles in a muddle of lines (cf. figure 1). Therefore, it seems reasonable to assume that perhaps
for this reason we prefer curves changing the direction uniformly (circles) or not changing the
direction at all (straight lines).

Mathematicians use the notion of curvature to investigate changes of curve direction.
A method for connecting Bézier segments that minimizes curvature change has been

proposed by J. R. Manning [7]. It turns out, however, that preserving exact curvature at
junction points is computationally complex and not necessarily needed. J. D. Hobby’s paper [2]
presents an interesting solution, substantially reducing the computational complexity of this
process due to a smart curvature approximation. The solution has been implemented by
D. E. Knuth in the METAFONT program [6] which is basically meant for creating fonts. The
same algorithm has been transferred later by Hobby to METAPOST (a modification of META-
FONT which generates PostScript output).

This paper aims at investigating Hobby’s method, discusses its advantages and disadvan-
tages, and compares it with a few other interpolation methods. Hobby’s approach presents
an interesting case which illustrates how important a mathematician can be as a link between

This paper was presented at the BachoTEX 2010 conference, and originally published in Polish
in Acta Poligraphica 1/2013. Translated and reprinted by permission.

Typographers, programmers and mathematicians . . .

206 TUGboat, Volume 34 (2013), No. 2

Figure 1: Exercise: find the segment of a straight line and a circle.

an artist, e.g., a typographer who creates fonts, and a programmer, who prepares relevant
computer tools. A mathematician creates reality models (here: “smoothness” models) and
equips programmers with a theoretical basis for creating appropriate tools.

It is assumed that readers have a basic knowledge of mathematics, for example, they are
aware that the derivative of a function f(t) at a point t has something to do with a limit
lim∆t→0

(

f(t + ∆t) − f(t)
)

/∆t. On the other hand, although professional mathematicians
would find them unnecessary, the details of the derivation of almost all formulas have been
presented here, to minimize the prerequisite mathematics. Overall, the author finds Hobby’s
idea for connecting Bézier curves a real gem that deserves a careful and more widely accessible
description than the ones presented in [2, 5].

2 Determinants

Let us start by recalling the notion of a determinant: a second order determinant, i.e., the
determinant for a pair of planar vectors, v1 = (x1, y1) and v2 = (x2, y2), is defined as

det(v1, v2) ≡
∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

def
= x1y2 − x2y1. (2)

The following determinant property will be useful later in this paper: it is easy to check with
direct calculations for planar determinants that

det(v1 + pv2, v2) = det(v1, v2 + qv1) = det(v1, v2), (3)

where p and q are arbitrary real numbers. The geometric interpretation of a determinant
will be useful as well: the absolute value of a planar determinant represents the area of the
parallelogram spanned on the vectors in question and its sign depends on the orientation
of the vectors — for the counterclockwise orientation of the vectors v1 and v2 the respective
determinant is positive.

A small digression: the above interpretation is, in general, so important that the outstand-
ing Russian mathematician Vladimir I. Arnold in his article on the teaching of mathematics [1]
emphasizes: The determinant of a matrix is an (oriented) volume of the parallelepiped whose
edges are its columns. If the students are told this secret (which is carefully hidden in a pure
algebraic education), then the whole theory of determinants becomes easy to understand. If de-
terminants are defined otherwise, then any sensible person will forever hate all determinants.

3 Differentiating Bernstein polynomials

The derivative of a parametrically defined curve is determined by differentiating components
of the vector defining the curve. Let us imagine a vehicle (point) whose location at time t is
defined by (x(t), y(t)); then (x′(t), y′(t)) simply defines the direction and value of the velocity
of this vehicle and (x′′(t), y′′(t)) defines the direction and value of vehicle’s acceleration.

Let us now return to formula (1) in its general form in order to determine the value of
the first and second derivative of the function B(t) at points t = 0 and t = 1, i.e., at the nodes

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 207

B(0) = B0 and B(1) = Bn. Differentiating the polynomial once and twice produces results of
the form

B′(t) = n(1 − t)n−1(B1 − B0) + V(t),

B′′(t) = (n− 1)n(1 − t)n−2
(

(B0 − B1) + (B2 − B1)
)

+ W(t),
(4)

where V(t) and W(t) are certain polynomials (the exact formulas are unimportant here) such
that V(0) = W(0) = V(1) = W(1) = 0, hence

B′(0) = n(B1 − B0), B′′(0) = (n− 1)n
(

(B0 − B1) + (B2 − B1)
)

. (5)

For t = 1, similar relations can be found:

B′(1) = n(Bn − Bn−1), B′′(1) = (n− 1)n
(

(Bn−2 − Bn−1) + (Bn − Bn−1)
)

. (6)

Note that defining “normalized” derivatives as

B
′
(t) ≡

(

B
′
x(t), B

′
y(t)

) def
=

1

n
B′(t), B

′′
(t) ≡

(

B
′′
x(t), B

′′
y(t)

) def
=

1

(n− 1)n
B′′(t), (7)

we can rewrite dependencies (5) and (6) as

B
′
(0) = B1 − B0, B

′′
(0) = (B0 − B1) + (B2 − B1), (8)

B
′
(1) = Bn − Bn−1, B

′′
(1) = (Bn−2 − Bn−1) + (Bn − Bn−1). (9)

The geometric interpretation, shown in figure 2, should help to understand the formu-

las (8) and (9), especially the expression for the second derivative. For example, vectors B
′′
(0)

and B
′′
(1) shown in figure 2, indicate the direction of the centripetal force acting on a fic-

tive point passenger of the point vehicle (mentioned at the beginning of this section) at the
endpoints B0 and Bn, respectively.

B0

B1
B2

· · ·
Bn−2

Bn−1

Bn

B
′

(0) B
′

(1)

B0

B1
B2

· · ·
Bn−2

Bn−1

Bn

B
′′

(0) B
′′

(1)

Figure 2: Geometric interpretation of the first and second derivatives of a Bernstein polynomial.

4 Curvature

In what follows, the precise definition of the curvature of a planar curve will be needed. For
the purpose of this paper, the most commonly accepted definition which is simple and is (the
author believes) the most natural one will be used. According to this definition, the curvature
of a flat curve is simply the measure of the change of curve direction; more precisely, the
change of the angle counted with respect to the curve length for an infinitesimal change of the
“time” parameter — see figure 3.

Applying elementary transformations of the curvature formula presented in figure 3, one
obtains

κ(t) = lim
∆t→0

∆ϕ

∆t

1

∆s/∆t
= lim

∆t→0

∆ϕ

∆t

1
√

(∆x/∆t)2 + (∆y/∆t)2
=

=
dϕ

dt

1
√

(

dx
dt

)

2
+
(

dy
dt

)

2
. (10)

Typographers, programmers and mathematicians . . .

208 TUGboat, Volume 34 (2013), No. 2

(

x(t), y(t)
)

(

x(t+∆t), y(t+∆t)
)

ϕ(t)

ϕ(t+∆t)

∆ϕ=ϕ(t+∆t)−ϕ(t)

∆x=x(t+∆t)−x(t)

∆
y
=
y
(t
+
∆
t)
−
y
(t
)

∆s
≈

√ (∆
x)
2 +

(∆
y)
2κ(t)

def
= lim

∆t→0

∆ϕ

∆s

Figure 3: Definition of the curvature κ(t) of a planar curve defined
parametrically as (x(t), y(t)); for purposes of consistency with the definition
of a determinant (2), counterclockwise angles will be considered positive
(cf. figure 4).

B0

B1

B2

B3

B0

B1

B2

B3

B0

B1

B2

B3

B0

B1

B2

B3

Figure 4: Convention of determining of the angle ÷ BaBbBc with absolute
value less than π: the sign of the directed angle (from the arm BbBa

to the arm BbBc) at the vertex Bb will be considered consistent with
the sign of the determinant det(Ba − Bb, Bc − Bb); arrows denote the
assumed orientation of the angles, gray lines mark the shape of the Bézier
arcs defined by the respective quadrilaterals B0B1B2B3, according to
equation (1) for k = 2 and n = 3.

Using a more convenient notation already used in the previous point, namely, x′(t) ≡ dx
dt ,

y′(t) ≡ dy
dt , formula ϕ(t) = arctan

(

y′(t)
x′(t)

)

, and applying basic differential calculus identities,

one obtains

dϕ

dt
≡ ϕ′(t) =

(

arctan

(

y′(t)

x′(t)

)

)

′

=
1

1 +
(

y′(t)
x′(t)

)

2

(

y′(t)

x′(t)

)

′

=
1

1 +
(

y′(t)
x′(t)

)

2

x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

=
x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2 + y′(t)2
. (11)

Observe that the numerator of formula (11) is nothing other than the determinant, namely,
det
(

(x′(t), y′(t)) , (x′′(t), y′′(t))
)

, which explains our interest in determinants. We will come
back to determinants later.

Combining equations (10) and (11) eventually yields

κ(t) =
x′(t)y′′(t) − y′(t)x′′(t)
(

x′(t)2 + y′(t)2
)

3/2
. (12)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 209

The above derivation is far from complete mathematical precision but making it more
rigorous does not seem difficult (e.g., it suffices to take arccot instead of arctan in order to
handle the case x′(t) = 0).

The resulting formula (12) can be assigned a simple geometrical meaning.
The simplest case is a straight line defined by z(t) = (axt+ bx, ayt+ by), where ax, bx, ay

and by are real numbers such that a2
x +a2

y 6= 0. Obviously, it has curvature equal to zero which
is no surprise. Consider thus a less trivial example, namely, a circle of radius R with its center
in the origin of the coordinate system, oriented counterclockwise: z(t) =

(

R cos(t), R sin(t)
)

,

0 ≤ t < 2π. Obviously, z′(t) =
(

−R sin(t), R cos(t)
)

and z′′(t) =
(

−R cos(t),−R sin(t)
)

; from
formula (12), it can immediately be derived that

κ =
R2

(

R2
)

3/2
=

1

|R| = const.

Note that changing the curve orientation to clockwise, z(t) =
(

R cos(t),−R sin(t)
)

, results in
the change of the sign of curvature:

κ = − 1

|R| .

This example explains why the entity κ−1 is called the radius of curvature and why clockwise
planar curves are called negatively oriented while counterclockwise planar curves are called
positively oriented.

The sign of curvature is, obviously, related to the accepted convention for determining
the sign of an angle (cf. figures 3 and 4). The curvature is constant in the case of a straight
line and a circle. In general, it is a local quantity. Positive curvature means that the curve
(locally) turns to the left, negative curvature that it turns to the right. The points at which
the curvature changes sign are called inflection points.

4.1 Curvature of Bernstein polynomials

The formula for curvature for Bernstein polynomials (12) expressed with “normalized” deriv-
atives (7) takes the form

κ(t) =
B′

x(t)B′′
y (t) −B′

y(t)B′′
x(t)

(

B′
x(t)2 +B′

y(t)2
)

3/2
=
n− 1

n

B
′
x(t)B

′′
y(t) −B

′
y(t)B

′′
x(t)

(

B
′
x(t)2 +B

′
y(t)2

)

3/2
. (13)

Hence, taking into account formulas (2), (8) and (9), it is easy to determine the curvature for
t = 0 and t = 1

κ(0) =
n− 1

n

det
(

(B1 − B0), (B2 − B1) + (B0 − B1)
)

|B1 − B0|3 ,

κ(1) =
n− 1

n

det
(

(Bn − Bn−1), (Bn−2 − Bn−1) + (Bn − Bn−1)
)

|Bn−1 − Bn|3 ,

(14)

where the notation |V| means the length of a vector V. Next, using property (3), one obtains

κ(0) =
n− 1

n

det
(

(B1 − B0), (B2 − B1)
)

|B1 − B0|3 ,

κ(1) =
n− 1

n

det
(

(Bn − Bn−1), (Bn−2 − Bn−1)
)

|Bn−1 − Bn|3 .

(15)

Let h0,1
2 be the distance (directed) of the point B2 to the straight line connecting the

points B0 and B1 and, similarly, let hn−1,n
n−2 be the distance of the point Bn−2 to the straight

line connecting the points Bn−1 and Bn; note that h0,1
2 and hn−1,n

n−2 have the same signs as
the determinants det

(

(B1 − B0), (B2 − B1)
)

and det
(

(Bn − Bn−1), (Bn−2 − Bn−1)
)

, respec-

tively — cf. figure 5: ha corresponds to h0,1
2 and hb corresponds to hn−1,n

n−2 , i.e., h2,3
1 .

In other words, if the point B2 is located to the right of the straight line directed from B0

to B1, then h0,1
2 < 0; if it is located to the left, then h0,1

2 > 0. Similarly, if the point Bn−2

Typographers, programmers and mathematicians . . .

210 TUGboat, Volume 34 (2013), No. 2

a

b

d

ha<0

hb>0

B0

B1

B2

B3
α>0

β<0

1

2
π

1

2
π

Figure 5: Geometrical interpretation of formulas (17) for a Bézier arc
(n = 3); the curvature at the points B0 and B3 is given by (18).

is located to the right of the straight line directed from Bn−1 to Bn, then hn−1,n
n−2 < 0; if it is

located to the left, then hn−1,n
n−2 > 0.

As was said in section 2, the absolute value of a determinant of a pair of vectors on a
plane is equal to the area of the relevant parallelogram, thus

det
(

(B1 − B0), (B2 − B1)
)

= h0,1
2 |B1 − B0|,

det
(

(Bn−1 − Bn), (Bn−2 − Bn−1)
)

= hn,n−1
n−2 |Bn−1 − Bn|.

(16)

Hence eventually

κ(0) =
n− 1

n

h0,1
2

|B1 − B0|2 , κ(1) =
n− 1

n

hn,n−1
n−2

|Bn−1 − Bn|2 . (17)

The derivation of formulas (17) completes our considerations for the general (n+1)-node case.

4.2 Curvature of Bézier arcs

Now we can proceed to deriving formulas for the curvature of Bézier arcs, i.e., for the 4-node
case. The resulting formulas will be used for the smooth connection of arcs.

As was already mentioned, curvature sign depends on the convention for determining the
sign of an angle. In the following, we will determine the sign of an angle (less than π) in a
B0B1B2B3 quadrilateral according to the convention accepted so far, i.e., we will consider
each angle as directed from the previous to the next edge (see figures 3 and 4). Let us examine
the situation presented in figure 5: obviously α > 0 whereas β < 0. According to the definition
of the directed distance introduced in section 4.1, ha < 0 and hb > 0.

Using the same notation as in figure 5, the curvature formulas for the nodes (endpoints)
can be expressed as follows (regardless of the vertex configuration of the relevant quadrilateral):

κ(0) =
2

3

ha

a2
, κ(1) =

2

3

hb

b2
. (18)

Now, we will eliminate the entities ha and hb from formulas (18) in order to express
curvature as a function of length (which is always non-negative) of the handles (a and b), the
chord (d), and the (directed) angles α and β.

It follows from figure 6 that c = d− b sin(β) cot(α) − b cos(β) and ha = −c sin(α), hence

ha = − (d sin(α) − b sin(β) cos(α) − b sin(α) cos(β)) = b sin(α+ β) − d sin(α). (19)

Similarly

hb = a sin(α+ β) − d sin(β). (20)

Making use of formulas (19) and (20), we arrive eventually at the expression for Bézier curva-
ture at the endpoints, expressed as a function of length of the handles and angles between the
respective handles and the chord

κ(0) =
2

3

b sin(α+ β) − d sin(α)

a2
, κ(1) =

2

3

a sin(α+ β) − d sin(β)

b2
. (21)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 211

a
b

d

c

h
a <0 hb<0

B0

B1

B2

B3

α>0 β>0

1

2
π

1

2
π

Figure 6: Auxiliary sketch for deriving formula (21) which describes the
relationship between curvature and the relevant angles (here α and β) and
the length of the handles and the chord (a, b and d, respectively).

Let us emphasize once again that the resulting formulas are invariant with respect to the
vertex configuration of the quadrilateral B0B1B2B3, i.e., they do not depend on the signs of
the angles α and β (cf. figure 4).

4.3 Curvature peculiarities

As figure 7 shows, the mathematical notion of curvature usually reflects what the human eye
can see; curves with slightly changing curvature are likely to be called smooth or “neatly
formed”. If curvature changes rapidly, then we are usually able to point to the place where
such a change occurs without mathematical considerations.

(a)
B0 B3

0 λ=1.257

κ

0
25
50
75

100

(b)
B0 B3

0 λ=1.154

κ

0
2
4
6
8
10

(c)
B0 B3

0 λ=1.114

κ

0
1
2
3
4
5

(d)
B0 B3

0 λ=1.080

κ

0
0.5
1.0
1.5
2.0
2.5

(e)
B0 B3

0 λ=1.051

κ

0
0.2
0.4
0.6
0.8
1.0
1.2

(f)
B0 B3

0 λ=1.046

κ

0
0.2
0.4
0.6
0.8
1.0
1.2

(g)
B0 B3

0 λ=1.027

κ

0
0.5
1.0
1.5
2.0
2.5
3.0

(h)
B0 B3

0 λ=1.009

κ

0

5

10

15

20

(i)
B0 B3

0 λ=1.003

κ

0
25
50
75
100

Figure 7: Curvature κ of the Bézier arc having a unit chord (|B0 −B3| = 1);
case (f) results from applying formula (29).

Typographers, programmers and mathematicians . . .

212 TUGboat, Volume 34 (2013), No. 2

It follows from equation (21), however, that curvature can achieve large values when the
respective handles are short. It can even approach infinity if control points are very close to
the respective endpoints. Even worse, infinite curvature can be imperceptible to the human
eye, as figure 7 shows: for cases (a)–(c) the change of curvature is clearly visible in the middle
of the diagram; cases (d)–(f) are perceived as fragments of a circle or “circle-like” shapes; cases
(g)–(i) illustrate a transformation from a Bézier arc to a chord as the control nodes approach
the respective endpoints; in the latter case, paradoxically, the curvature near the endpoints
suddenly increases despite the eye not noticing it.

5 Bézier arc and a circle

Let us assume that for given angles α and β, −π < α, β ≤ π, and for chord length d 6= 0, the
length of the handles can be calculated from the following formulas

a =
1

3
d
ρ(α, β)

τa
, b =

1

3
d
σ(α, β)

τb
, (22)

where ρ(α, β) and σ(α, β) are certain functions, not necessarily given explicitly (we will discuss
them in a moment) and τa and τb are given real (positive) numbers; we will call these numbers
tensions.

In the METAFONT and METAPOST programs, tensions can be specified explicitly using the
‘tension’ operator ([6, pp. 129–132 and p. 136, ex. 14.15]). Usually, in practical applications,
τa = τb = 1 which is the default tension value in METAFONT and METAPOST.

Let us assume for a moment that τa = τb = 1; moreover, assume that d = 1 (in other
words, adjust units in such a way that d = 1). Then, the first derivative vectors at the
endpoints (t = 0 and t = 1; cf. (5) and (6)) have the length ρ(α, β) and σ(α, β), respectively.
This explains why the functions ρ and σ are called velocity functions.

In applications under consideration, it is natural to assume a basic symmetry property:
an exchange of variables should return a geometrically congruent (mirrored) figure, precisely

ρ(α, β) = σ(β, α). (23)

Therefore, we are actually dealing with one function, but it is more convenient to distinguish
between the velocity functions at the points t = 0 and t = 1.

In the METAFONT and METAPOST programs, the velocity function is defined with a
relatively complex heuristic formula (due to Hobby):

ρ(α, β) = σ(β, α) =
2 +

√
2(sinα− 1

16 sin β)(sin β − 1
16 sinα)(cosα− cosβ)

(

1 + 1
2 (

√
5 − 1) cosα+ 1

2 (3 −
√

5) cosβ
)

, (24)

substantiated in his paper [2]. An alternative form is also given (defined for 0 < |α| ≤ β < π),
which supposedly works better in asymmetrical cases but is far more complex computationally
and more difficult to analyze theoretically:

ρ(α, β) = f(α, β) + γ(β) sin

(

ψβ

(

α

β

))

, σ(α, β) = f(α, β) − γ(β) sin

(

ψβ

(

α

β

))

, (25)

where

f(α, β) =
mµ2 + µ+ 2n

µ+ n cos(ν) + n
, m = 0.2678306, n = 0.2638750,

µ = (β − α)

(

β − α

2β

)1.402539

, ν =
α+ β

2

(

2β

α+ β

)0.7539063

, (26)

γ(β) =
1.17

π
β − 0.15 sin

(

2β
)

, ψβ(x) = π

x+ (x2 − 1)

(

(

0.32 − β

2π

)

x+ 0.5 − β

2π

)

.

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 213

Knuth, in his collection of essays entitled Digital Typography [4], devotes some attention
to the choice of functions ρ and σ; he proposes, among others, the following formula

ρ(α, β) = σ(β, α) =
2 sin(β)

(

1 + cos

(

α+ β

2

)

)

sin

(

α+ β

2

)

(27)

and suggests how to improve it.
A formula of this kind, but much simpler, was first proposed by J. R. Manning in his al-

ready cited paper [7] (Hobby’s formula (24) is in fact a sophisticated modification of Manning’s
formula):

ρ(α, β) = σ(β, α) =
2

1 + c cos(β) + (1 − c) cos(α)
. (28)

Manning suggests setting c = 2
3 . The idea behind Manning’s formula stems from a simple

observation: if α = β, then the formula ρ(α) = 2/
(

1 + cos(α)
)

provides a good approximation
of a circle by a Bézier arc. Namely, if both (symmetric) handles of the Bézier arc B(t) have
the length given by

ρ(α) =
d

3

2

1 + cos(α)
, (29)

where d is the length of the chord of the arc and α is the angle between handles and the
chord, then the point B

(

1
2

)

coincides with the center of the segment of a circle going through
the points B(0) and B(1) and tangent to the Bézier arc at these points. Such a Bézier arc,
especially for small angles, is visually indistinguishable from a circle — more information on
the precision of such an approximation can be found in [4]; cf. also figure 7f.

All in all, we may note that the velocity function is intended to be a generalization,
heuristic of course, to two parameters of the function ρ(α) guaranteeing a good approximation
(equation (29)) of a circle by a Bézier arc. This remains, of course, related to our primary
goal — striving to obtain a possibly smooth joining of Bézier arcs. Bézier arcs computed using
velocity functions as defined above are expected to imitate circles optically which, because of
their constant curvature, are supposed to be an ideal candidate for an “æsthetic model”. This
observation provides a clue for our final results.

6 Smooth joining of Bézier arcs — J. D. Hobby’s method

Finally, we have all the necessary tools and measures necessary to face the following task:
given a series of n + 1 points on a plane P0, P1, . . . , Pn, n > 1, connect these points with
Bézier arcs in such a way that the result forms a possibly “elegant” (smooth, neat) curve.

The sine qua non condition is obvious: at a connection point the curve should not change
its direction abruptly, meaning that the handles at the connection points must be collinear.
(Collinearity of handles is a weaker condition than equality of derivatives; the equality of
derivatives, as defined by formulas (5) and (6), implies the equality of the lengths of adjacent
handles.)

This condition does not guarantee a unique solution. We might impose an additional
condition that the curvature at a junction point is the same on both sides of this point.
However, this leads to a system of trigonometrical equations that is hard to solve.

In such cases, mathematicians and physicist often replace a function with its linear approx-
imation (not always justifiably); in this particular case, the sine function would be replaced
by a linear function of the argument and the relevant velocity function — with a function
identically equal to 1.

sin(α) ≈ α, ρ(α, β) ≈ σ(α, β) ≈ 1. (30)

Such an approximation can be justified mathematically for small values of arguments (with
respect to their absolute values) for (24) and (28) (formulas (25) and (27) are undefined for
α = β = 0), but it will also be used for values significantly different from zero. Therefore, we
can consider (30) to be a heuristic simplifying assumption.

Typographers, programmers and mathematicians . . .

214 TUGboat, Volume 34 (2013), No. 2

Applying relation (30) to the formula for Bézier curvature at endpoints, derived from
combining formulas (21) and (22), yields

κ(0) =
2

3

1

3
d
σ(α, β)

τb
sin(α+ β) − d sin(α)

(

1

3
d
ρ(α, β)

τa

)2 =
2τ−1

b σ(α, β) sin(α+ β) − 6 sin(α)

dτ−2
a ρ2(α, β)

,

κ(1) =
2

3

1

3
d
ρ(α, β)

τa
sin(α+ β) − d sin(β)

(

1

3
d
σ(α, β)

τb

)2 =
2τ−1

a ρ(α, β) sin(α+ β) − 6 sin(β)

dτ−2
b σ2(α, β)

,

(31)

and we have

κ(0) ≈ κ(0)
def
=

2τ−1
b (α+ β) − 6α

dτ−2
a

, κ(1) ≈ κ(1)
def
=

2τ−1
a (α+ β) − 6β

dτ−2
b

. (32)

The function κ defined above is the mock curvature introduced by Hobby in [2], mentioned by
Knuth in [6] and discussed in detail in [5, § 274–277]. It constitutes a key to joining Bézier
arcs smoothly: first we solve a set of linear equations, derived from (32), obtaining the values
of angles between chords and the respective handles, and then we compute the length of the
relevant handles from (22).

6.1 Equations

At the junctions of Bézier arcs, we require that mock curvature be preserved, bringing the task
to solving a set of linear equations. The formulation of these equations consists of a series of
tedious but elementary calculations.

First, let us adopt the notation and conventions presented in figure 8.

··· Pk−2

Pk−1

Pk

Pk+1

Pk+2 ···

τa,k−1

τb,k−1 βk−1

αk−1

τa,k

τb,k

βk

αk

γk
κk−1(1)=κk(0)

dk−1= |Pk−Pk−1|, dk= |Pk+1−Pk|

Figure 8: Notation assumed for formulating linear equations (38); index k

refers (unlike in [5]) to the quantities related to the Bézier arc based on the
endpoints Pk and Pk+1.

Second, observe that the collinearity of handles at junction points implies that

αk + βk−1 + γk = 0 for k = 1, 2, . . . , n− 1, (33)

where γk is the turning angle of the broken line P0P1 . . .Pn at the point Pk.
Third, observe moreover that the preservation of the mock curvature at the point Pk

results in a simple linear equation

κk−1(1) ≡
2τ−1

a,k−1(αk−1 + βk−1) − 6βk−1

dk−1τ
−2
b,k−1

=
2τ−1

b,k (αk + βk) − 6αk

dkτ
−2
a,k

≡ κk(0). (34)

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 215

By making use of (33), we can eliminate βk−1 and βk from (34) obtaining

τ−1
a,k−1(αk−1 − αk − γk) − 3(−αk − γk)

dk−1τ
−2
b,k−1

−
τ−1

b,k (αk − αk+1 − γk+1) − 3αk

dkτ
−2
a,k

= 0, (35)

i.e.,

τ−1
a,k−1

dk−1τ
−2
b,k−1

αk−1 +

(

3 − τ−1
a,k−1

dk−1τ
−2
b,k−1

+
3 − τ−1

b,k

dkτ
−2
a,k

)

αk +
τ−1

b,k

dkτ
−2
a,k

αk+1

= −
3 − τ−1

a,k−1

dk−1τ
−2
b,k−1

γk −
τ−1

b,k

dkτ
−2
a,k

γk+1 .

(36)

Now, by introducing one-letter symbols for known values (coefficients)

Ak
def
=

τ−1
a,k−1

dk−1τ
−2
b,k−1

, Bk
def
=

3 − τ−1
a,k−1

dk−1τ
−2
b,k−1

, Ck
def
=

3 − τ−1
b,k

dkτ
−2
a,k

,

Dk
def
=

τ−1
b,k

dkτ
−2
a,k

, Ek
def
= −Bkγk −Dkγk+1 ,

(37)

we obtain a set of n− 1 linear equations with n+ 1 unknowns:

A1α0 + (B1 + C1)α1 +D1α2 = E1 ,

A2α1 + (B2 + C2)α2 +D2α3 = E2 ,

A3α2 + (B3 + C3)α3 +D3α4 = E3 ,
· · ·

An−1αn−2 + (Bn−1 + Cn−1)αn−1 +Dn−1αn = En−1 .

(38)

Thus, two more equations are needed.
If a closed curve is to be obtained, then αn = α0 and the problem reduces to n unknowns.

The missing equation can be obtained by assuming that mock curvature is preserved at the
point P0 = Pn,

A0αn−1 + (B0 + C0)α0 +D0α1 = E0 . (39)

If an open curve is to be obtained, then either the angles α0 and αn should be given explicitly
which reduces the number of unknowns by 2, or another condition must be found.

Before we proceed to this issue, let us discuss a purely technical detail; the angle that we
want to find is, in fact, βn−1 because αn is located outside the broken line P0P1 . . .Pn. It
is, however, more convenient (because of the symmetry of formulas), to use the unknown αn;
therefore, we accept an artificial condition

γn = 0. (40)

This means that relation (33) for the angles β0 and βn−1, in the case of an open curve, takes
the form

β0 = −α1 − γ1, βn−1 = −αn . (41)

We may also assume that mock curvature at the endpoints is given explicitly or implicitly
or, alternatively, we may impose the requirement of the equality of mock curvature at the
endpoints and at the respective neighbouring nodes, namely, κ0(0) = κ0(1) and κn−1(0) =
κn−1(1). The latter condition can be generalized in a natural way as follows:

κ0(0) = ω0κ0(1), ωnκn−1(0) = κn−1(1), ω0, ωn ≥ 0. (42)

It is exactly this idea that has been used in the METAFONT program (there is, however, no
possibility of explicitly setting the mock curvature at a given point). The additional parameters
ω0 and ωn are called curls.

Both METAFONT and METAPOST allow to explicitly set curls at the endpoints of a
path using the ‘curl’ operator ([6, pp. 128ff.]); by default, curl=1. Conditions (42) can be

Typographers, programmers and mathematicians . . .

216 TUGboat, Volume 34 (2013), No. 2

transformed to

2τ−1
b,0 (α0 − α1 − γ1) − 6α0

d0τ
−2
a,0

= ω0

2τ−1
a,0 (α0 − α1 − γ1) + 6(α1 + γ1)

d0τ
−2
b,0

,

ωn

2τ−1
b,n−1(αn−1 − αn) − 6αn−1

dn−1τ
−2
a,n−1

=
2τ−1

a,n−1(αn−1 − αn) + 6αn

dn−1τ
−2
b,n−1

.

(43)

by using the definition of mock curvature (32) to develop κ0(0), κ0(1), κn−1(0), and κn−1(1).
Using relation (41) to order equations (43) yields
(

τ−1
b,0

τ−2
a,0

− 3

τ−2
a,0

−
τ−1

a,0ω0

τ−2
b,0

)

α0−
(

τ−1
b,0

τ−2
a,0

−
τ−1

a,0ω0

τ−2
b,0

+
3ω0

τ−2
b,0

)

α1 =

(

τ−1
b,0

τ−2
a,0

−
τ−1

a,0ω0

τ−2
b,0

+
3ω0

τ−2
b,0

)

γ1 ,

(

τ−1
b,n−1ωn

τ−2
a,n−1

− 3ωn

τ−2
a,n−1

−
τ−1

a,n−1

τ−2
b,n−1

)

αn−1−
(

ωnτ
−1
b,n−1

τ−2
a,n−1

−
τ−1

a,n−1

τ−2
b,n−1

+
3

τ−2
b,n−1

)

αn =0,

(44)

By multiplying the first equation (44) by −τ−2
a,0 , and the second by −τ−2

b,n−1 (thanks to which
the obtained formulas are easier to compare with those given in [5]), we finally obtain the two
missing equations:

C0α0 +D0α1 = E0 ,

Anαn−1 +Bnαn = 0,
(45)

where

C0 = ω0

τ−3
a,0

τ−2
b,0

+ 3 − τ−1
b,0 , D0 = ω0

τ−2
a,0

τ−2
b,0

(

3 − τ−1
a,0

)

+ τ−1
b,0 , E0 = −D0γ1,

An = ωn

τ−2
b,n−1

τ−2
a,n−1

(

3 − τ−1
b,n−1

)

+ τ−1
a,n−1, Bn = ωn

τ−3
b,n−1

τ−2
a,n−1

+ 3 − τ−1
a,n−1.

(46)

One may of course ask about the solvability of the set of linear equations thus formulated.
In this way, we go back to determinants as those are exactly the determinants (of degree equal
to the number of unknowns) that mathematicians use for examining this problem; columns
(or rows) of coefficients of the set of equations constitute relevant “vectors”. If a determinant
for a given set of equations is non-zero, then there exists a unique solution.

We will not go into mathematically advanced analysis of this issue (readers interested in
details, please refer to [2]). We content ourselves by adducing without proof the theorem given
in [2] (see also [5, § 276]): if for 0 ≤ k ≤ n− 1 we assume τa,k ≥ 3

4 , τb,k ≥ 3
4 (a limitation built

into METAFONT and METAPOST), then the equation sets for both a closed path (38)+(39)
and an open path (38)+(45) have unique solutions and, in general, any disturbance introduced
at a given node, caused, e.g., by the change of a node location, disappears exponentially as
the distance from this node grows (more precisely: the change of conditions at node k results
in an angle change at node j proportional to 2−|k−j|). It should be noted, however, that there
are cases for which a tiny perturbation at a certain node may cause the global change of the
shape of the resulting curve (see subsection 6.4, figures 10 and 11).

6.2 Two-point case

So far we have assumed that n > 1. The discussion can be extended to the n = 1 case, i.e., to
the two-point case, but this requires additional assumptions.

If n = 1 and we are dealing with a closed curve, then it is reasonable to assume that this
is simply a degenerate case, i.e., P0 = P1 and, moreover, lengths of both handles are equal to
zero — cf. equation (22). Note that the METAFONT path expression ‘(0,0)..(1,0)..cycle’
corresponds, in fact, to the case n = 2: P0 = (0, 0), P1 = (1, 0), P2 = (0, 0) = P0.

If n = 1 and we are dealing with an open curve, then the degenerate case P0 = P1 can
be treated as above. In other cases, the set of equations reduces to two equations (45). In
this case, E0 = 0 (because γ1 = 0 by (40)) which means that α0 = α1 = 0, provided the
relevant matrix determinant is non-zero. However, for default values of coefficients defining
curl and tension, i.e., 1, we have C0 = D0 = A1 = B1 = 3, thus the determinant equals 0

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 217

which means that the set of equations (45) has infinitely many solutions and therefore again
an additional assumption is needed. The simplest way would be to assume that if no angles
are given explicitly, then α0 = α1 = 0.

If the angle α0 is given, then α1 can be computed from the second equation of system (45);
and vice versa, if the angle α1 is given, then α0 can be computed from the first equation of
system (45); the asymmetry is due to the asymmetry of the curl boundary conditions (equations
(45) and (46)) and to the fact that curl and angle cannot both be specified at a given endpoint.

At this stage, we have all the angles in question either given explicitly or calculated. The
only remaining task is to calculate the length of the handles from formula (22).

6.3 Operator ‘atleast’

The above discussion explains how all the METAFONT path constructors work except for the
‘tension atleast’ operator ([6, p. 129, 132, 136, and ex. 14.15]) which is a variant of the
‘tension’ operator (section 5, equation (22)). It is a primitive operator in the METAFONT

and METAPOST engines but, in principle, it could be implemented using METAFONT/META-
POST macros. The recipe is as follows: first skip the ‘atleast’ operator (modifier), i.e., use
the standard ‘tension’ operator thereby reducing the problem to a known issue.

Figure 9 illustrates the further procedure. Assume that we have computed all the handles
by using the algorithm described above. Then we check whether the nodes defining the relevant
Bézier segments form a concave quadrilateral (case (d) in figure 9). If so, then the extension
of one of the handles bisects the other — the handle being bisected should be shortened by
moving its endpoint to the intersection point (which, on the one hand, results in increasing
tension and, on the other hand, introduces a discontinuity of mock curvature). More precisely,
the length of the shortened handle (a in figure 9) can be determined using the law of sines.
In such a way, inflection points can be avoided. Sometimes, however, surprising results are
obtained, namely, when the “shortening handle” is very short.

(a) (b) (c) (d)

a

b

d

a

b

d

α

β

α

β

a=
d sin(β)

sin(α+β)

Figure 9: Implementation of the ‘atleast’ operator: only the configuration
of the control points presented in figure (d) is to be taken into account; (a),
(b) and (c) configurations are ignored.

Let us note that the ‘tension atleast’ operator is a little like increasing the tension
just enough to avoid concave quadrilaterals such as shown in figure 9d, except that increasing
the tension might affect the direction of angles α and β.

6.4 Instability of the interpolation algorithm — the straight angle issue

One of the crucial steps of Hobby’s algorithm is determining angles γk between subsequent
segments of the broken line P0P1 . . .Pn — see figure 8 and equation (33). If the broken line
turns by an angle significantly different from the straight angle (its absolute is much less
than π), then the algorithm behaves stably, i.e., small changes in the location of the points P0,
P1, . . . ,Pn yield small changes in the shape of the resulting curve. Unfortunately, an essential

Typographers, programmers and mathematicians . . .

218 TUGboat, Volume 34 (2013), No. 2

problem arises for angles close to the straight angle. This problem is not in the least specific
to METAPOST and METAFONT. It seems to be an intrinsic quandary in the realm of discrete
graphics (in general, numerical methods), as small perturbations are unavoidable there due to
rounding errors.

In the case of METAFONT and METAPOST, it is a convention adopted by the authors
that is the immediate source of problems, namely, both programs operate on angles less than
or equal (with respect to the absolute value) to π. If a temporary value occurs which does
not meet this limitation, then it is reduced to the appropriate numerical range by adding or
subtracting a multiple of 2π. For example, an angle π + ε, where π > ε > 0, will be replaced
by the angle π + ε− 2π = −π + ε. If ε ≈ 0, then unstable behavior can be expected (we omit
here the issue of the precision of the computer representation of the number π).

In order to see how instability can manifest, let us consider a trivial example, namely,
a cyclic path built from two nodes, P0 and P1; as mentioned in subsection 6.2, it is convenient
to regard this example as a three-point case, i.e., to apply the interpolation algorithm to the
points P0, P1 and P2, where P0 = P2 which means that the respective broken line turns by
the straight angle at the points P0 = P2 and P2. The question is: to the right or to the left?

For this case, α0 = α2 and equations (38) and (39) boil down to the system of two linear
equation with two unknowns

(B0 + C0)α0 + (A0 +D0)α1 = E0 ,

(A1 +D1)α0 + (B1 + C1)α1 = E1 .
(47)

Coefficients on the left side of system (47) are given by simple formulas, namely

A0 = A1 = D0 = D1 =
1

d
, B0 = B1 = C0 = C1 =

2

d
, (48)

where d = |P1 − P0|, provided the default values of the curl and tension parameters are
assumed. Coefficients E0 and E1 depend on the turning angles γ0 and γ1 of the broken line
P0P1P2 (cf. equation (33))

E0 = −2γ0 + γ1

d
, E1 = −γ0 + 2γ1

d
. (49)

The above conditions can be rewritten as

4α0 + 2α1 = −(2γ0 + γ1), 2α0 + 4α1 = −(γ0 + 2γ1). (50)

If we assume turning to the left, i.e., γ0 ≈ π and γ1 ≈ π, then α0 ≈ 1
2π and α1 ≈ 1

2π; but if we
assume turning to the right, i.e., γ0 ≈ −π and γ1 ≈ −π, then α0 ≈ − 1

2π and α1 ≈ − 1
2π. In

other words, using the angle ≈ π instead of ≈ −π reverses the orientation of the resulting path.
Theoretically, two other cases might occur: γ0 ≈ −π, γ1 ≈ π and γ0 ≈ π, γ1 ≈ −π, which
would produce figure-eight shaped curves. It turns out, however, that the METAFONT and
METAPOST path expression ‘P0..P1..cycle’ usually creates positively oriented nearly circular
paths, occasionally creates negatively oriented nearly circular paths (see figure 10), but never
figure-eight shaped curves; however, if the direction at one node is specified explicitly, figure-
eight shapes may occur: the expression ‘(0,0){down}..(100,0)..cycle’ creates an oval path
while the expression ‘(0,0){up}..(100,0)..cycle’ creates an figure-eight shape.

If the broken line “turns back”, i.e., turns by a nearly straight angle, the algorithm
implemented in METAFONT and METAPOST tries to detect this situation and, in most cases,
chooses the positive angle (see [5, § 454]). Sometimes, however, despite the precautions taken,
the algorithm fails to decide properly whether the angle in question is a positively oriented
nearly straight angle, or a distorted by rounding errors negatively oriented (on purpose) nearly
straight angle.

Based on the foregoing considerations, it is not difficult to predict that if input data
contains several (nearly) collinear adjacent points, instability is bound to emerge.

Without a detailed analysis, we present one more example, a little bit less trivial: we apply
the interpolation algorithm to creating a cyclic path (nota bene, cyclicality is not crucial) for
input data consisting of five nearly collinear points, arranged horizontally. It turns out that
shifting one of the nodes (vertically) by 2−16, i.e., by the smallest non-zero value accepted by

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 219

P1≈ (96.57745, 25.93689)

P0

P1

P1≈ (96.57745, 25.93536)

P0

P1

P0=(0, 0), |P1|≈100

Figure 10: A very small location change of the point P1 reverses the
orientation of the resulting curve (gray arrow); the curve on the left side
of the figure was created with the following METAFONT/METAPOST path
expression ‘(0,0) .. ((100,0) rotated 15.03189) .. cycle’, the curve on
the right side with the slightly modified path expression ‘(0,0) .. ((100,0)

rotated (15.03189+.0003)) .. cycle’.

(a)

(d)

(b)

(c)

Figure 11: Even a minimal location change of a single point can result
not only in the change of orientation, but also in a change of the shape
of the resulting curve. In case (a), points are distributed uniformly,
i.e., Pi = (20i, 0), for i = 0, 1, . . . , 4; in case (b), P1 is shifted up
by 2−16, in case (c), P4 is shifted down by 2−16; in case (d), P0 is shifted
down by 2−16; in all cases, the METAFONT/METAPOST path expression
‘P0..P1..P2..P3..P4..cycle’ was used.

METAFONT and “canonical” implementations of METAPOST (without double precision), can
change not only the orientation of the resulting curve, but also its shape — see figure 11.

Although the problem cannot, by its nature, be cured, it is rather innocuous in practice.
Nevertheless, as suggested by John D. Hobby (in private communication), the following fixes
to METAFONT/METAPOST implementations can be proposed:

• One natural idea is that users should avoid approaching this situation. METAFONT and
METAPOST already have internal variables that can be used to enable and disable certain
error messages and an appropriate error message could be helpful.

• Since the discontinuities are caused by adding or subtracting 2π from the γk angles, users
should perhaps have a way of specifying whether or not to do this.

6.5 Other technical details

It is clear that the implementation of such a complex algorithm as the one described above
abounds in technical challenges. Not all of them can be discussed in a paper like this one.
Information on specific implementation-related solutions, such as, for example, the fact that
METAFONT imposes a limit ≤ 12 (for default tension values) on Hobby’s velocity function (24)
or that the curl value can be altered in some cases, can be found in [5] (§ 116 and § 296,
respectively). A word of warning is needed, however: the program source is not an easy read.

Typographers, programmers and mathematicians . . .

220 TUGboat, Volume 34 (2013), No. 2

7 Comparison of selected interpolation methods

The interpolation algorithm described in section 6 works well in most applications, except for
the (rarely encountered in practice) cases of instability. This fact is well-known to METAFONT

and METAPOST users. It does not mean, however, that the algorithm is recommended in
every situation. Sometimes it is better to use other algorithms and this issue will be briefly
surveyed at the end of our discussion.

P0

P1

P2

P3

P4

P5

P6

P7

P8

t=0

κ
123 4 5 6 7 8 0

0 λ

conditions (51)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t=0

κ
123 4 5 6 7 8 0

0 λ

conditions (52)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t=0

κ
123 4 5 6 7 8 0

0 λ

conditions (53)

P0

P1

P2

P3

P4

P5

P6

P7

P8

t=0

κ
123 4 5 67 8 0

0 λ

Hobby’s
interpolation

Figure 12: Comparison of interpolation methods for a closed curve;
curvature scale κ is common for all the cases; parameter λ, as in figure 7,
refers to the length of a path.

Let a series of points P0, P1, . . . , Pn, n > 1, be given as above and let Pk, Pa
k , Pb

k+1,
and Pk+1 (a— after, b— before) be the nodes of a Bézier arc based on the chord PkPk+1.

The easiest way to connect the points is to use a broken line:

Pa
k = Pk +

1

3
(Pk+1 − Pk), Pb

k = Pk +
1

3
(Pk−1 − Pk). (51)

METAFONT and METAPOST users do not need to calculate the handles explicitly. Such a
connection of points can be obtained by using the macro ‘--’, which expands to the following
path expression ‘{curl 1} .. {curl 1}’. A similar optical effect could be achieved by super-
imposing conditions Pa

k = Pk, Pb
k = Pk; the macro ‘---’, which expands to ‘... tension

infinity ...’, yields a similar result, i.e., Pa
k ≈ Pk, Pb

k ≈ Pk, but the latter two methods,
seemingly equivalent, can yield perceptibly different curves.

In order to smooth corners, setting the first derivative explicitly (cf. equation (5)), e.g.,

Pk − Pb
k = Pa

k − Pk =
1

3

(Pk+1 − Pk−1)

2
, (52)

may yield fairly satisfactory results. This is a local method, i.e., a change of coordinates of
point Pk has an impact on the resulting curve only at points Pk−2, Pk−1, Pk+1, and Pk+2.

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 221

A non-local method, far less complex than the method described in section 6, involves the
assumption of the equality (continuity) of the first and second derivatives at junction points
(see formulas (5) and (6)):

Pk − Pb
k = Pa

k − Pk ,

(Pa
k−1 − Pb

k) + (Pk − Pb
k) = (Pk − Pa

k) + (Pb
k+1 − Pa

k).
(53)

As already mentioned, Hobby’s interpolation usually produces satisfactory results. Fig-
ure 12, an example excerpted from [2] and [7], provides a convincing argument. Let us note
that the continuity of the first and second derivative (conditions (53)) implies the continuity
of curvature (equation (12)) while Hobby’s interpolation does not guarantee the continuity of
curvature (figure 12, t = 1, 4, 6, 8).

conditions (51)

P0

P1

P2

P3

P4

P5

P6

conditions (52)

conditions (53)

Hobby’s
interpolation

Figure 13: Comparison of interpolation methods for a sample 7-point set of
data; an additional boundary condition P0 = Pa

0 , P6 = Pb

6 has been imposed
in each case except the broken line interpolation.

Hobby’s interpolation exhibits the smallest curvature fluctuation and produces the most
regular optical curves in comparison with the other methods. In particular, curves obtained
by applying condition (53) do not look as smooth. It turns out that curvature discontinuity
is nearly imperceptible unless it is accompanied by a noticeable change of curve direction.
(cf. remarks in subsection 4.3). And vice versa, even though curvature is constant for a broken
line, namely, equal to zero except nodes where its value is undefined, the eye immediately
catches these points because curve direction is not preserved there.

A typical task for which Hobby’s method cannot be recommended is the visualisation
of empirical data — METAFONT and METAPOST generate too “rotund” shapes (figure 13).
Condition (53) also produces hardly acceptable results in this particular case — the diagram of
a function should rather not reveal loops. In such cases, the best approach seems to be using
as simple a method as possible, e.g., (51) or (52).

Of course, there are many variants of the methods briefly reviewed in this section. We
have not discussed them here at length not because they are not worthy of being applied.
On the contrary, it is good to know that the unquestionably excellent Hobby’s interpolation
algorithm can sometimes successfully be replaced by a simpler one.

8 Acknowledgements

The author very gratefully thanks Alan Hoenig, Daniel Luecking, and John Hobby for review-
ing an earlier version of this paper and suggesting several significant improvements, as well as
correcting drafting errors.

References

[1] Arnold, Vladimir I., On teaching mathematics, 1997, http://pauli.uni-muenster.de/

~munsteg/arnold.html, accessed 14.04.2013.

Typographers, programmers and mathematicians . . .

222 TUGboat, Volume 34 (2013), No. 2

[2] Hobby, John. D., “Smooth, Easy to Compute Interpolating Splines”, Discrete and
Computational Geometry, 1986, vol. 1(2), ftp://db.stanford.edu/pub/cstr/reports/

cs/tr/85/1047/CS-TR-85-1047.pdf, accessed 14.04.2013.

[3] Joy, Kenneth I., Bernstein Polynomials, 2000, http://www.idav.ucdavis.edu/

education/CAGDNotes/CAGDNotes/Bernstein-Polynomials.pdf, accessed 14.04.2013.

[4] Knuth, Donald E., Digital Typography, CSLI Publications, Stanford, California, 1999.

[5] Knuth, Donald E., METAFONT: The Program, Computers & Typesetting, vol. D,
Addison-Wesley, Reading, Massachusetts, 1986.

[6] Knuth, Donald E., The METAFONTbook, Computers & Typesetting, vol. C,
Addison-Wesley, Reading, Massachusetts, 1986.

[7] Manning, J. R., “Continuity Conditions for Spline Curves”, Computer Journal, 1974,
vol. 17(2), p. 181–186, http://comjnl.oxfordjournals.org/content/17/2/181.full.

pdf, accessed 14.04.2013.

[8] http://en.wikipedia.org/wiki/Bernstein_polynomial, accessed 03.06.2013.

⋄ Bogusław Jackowski
GUST

Gdańsk, Poland
b_jackowski (at) gust dot org dot pl

Bogusław Jackowski

TUGboat, Volume 34 (2013), No. 2 223

Representing linguistic pitch in (X E)LATEX
Kevin Donnelly

Abstract
Linguists, especially those working with tone languages,
may need to depict pitch levels in the language examples
they use. This article looks at some options in LATEX and
X ETEX for representing pitch and tone. The emphasis is
on Africanist linguistics, since that is the area with which
I am most familiar.

1 Introduction
For extended linguistic work X ETEX is preferable, since it
uses UTF-8 natively, and allows fonts to be chosen that
will represent all aspects of the language’s orthography
(whether that is already standardised, or is one of the
things that you are working on). However, it is still pos-
sible to represent pitch and tone efectively even if you
need to use LATEX, though a diferent set of tools is re-
quired. Notes for both TEX lavours are given here, and
sample documents for each are attached — pitch_latex.tex
and pitch_xetex.tex. Everything has been tested on Ubuntu
12.04 running TEX Live 2012 (note that older TEX Live ver-
sions may not produce the same output).

2 Setting up the document
Both sample documents assume that you are writing a
book, and additional packages or code to enable pitch
and tone to be represented are then added.

For LATEX, the package tipa [8] is used, with addi-
tional code to allow pitch marks to be printed without
sidebars (this is common for East Asian languages, but
not for African languages):
\makeatletter

\renewcommand\@tonestembar{%

\setbox0\hbox{\tipaencoding\char'277}%

\hbox{\vrule height \ht0 depth \dp0

width 0pt}}

\makeatother

Times is set as the default font:
\usepackage{mathptmx}

For X ETEX, the package fontspec [9] is used. Most
(but apparently not all) of the features in tipa are now
part of xunicode, so there is no need to activate tipa

(doing so produces warnings such as: Command \sups al-
ready deined). Unfortunately, without tipa, commands
like \textupstep in X ETEX do not work properly (they
appear after the letter they refer to rather than before
it), so some workaround code is needed — see Section 3.
Moreover, the LATEX code above to print pitch marks with-
out sidebars will not work (thanks to Alan Munn for point-
ing this out), since the equivalent glyphs in Unicode can-

not be segmented — an alternative will be presented in
Section 4.

Charis SIL [10] is selected as the main font. This is a
normal text font, like Times, but includes a vast range of
glyphs to meet a range of phonetic and orthographic re-
quirements. (This article is typeset in Charis SIL instead of
the normal TUGboat font in order to enable easier display
of text being discussed.)
\defaultfontfeatures{Mapping=tex-text,

Scale=MatchLowercase}

\setmainfont{Charis SIL}

The \defaultfontfeatures command must precede
the actual font selection, and tells fontspec to use com-
mon TEX aliases (e.g. -- will produce – , and | will pro-
duce | instead of —), and to scale all fonts to match the
main font’s lower-case size. This ensures that any ad-
ditional fonts selected (see next paragraph) will better
match the weight of the main font.

fontspec also allows fonts to be set up for particu-
lar purposes. For instance, if we are annotating the syn-
tactic relationships of particular words, and wish to use a
separate font for that, in the preamble we could add
\newfontfamily{\syntaxfont}{Liberation Sans}

\newcommand \syn[1]{{\syntaxfont #1}}

Here, the irst line speciies Liberation Sans as the font
for syntax annotations in example glosses, and the second
line sets up a new command so that
\syn{annotation}

can be used instead of the more cumbersome
{\syntaxfont annotation}

For both iles, the package expex [2] is optional,
but recommended because it ofers good typesetting of
linguistic examples, and allows word-by-word glossing.

3 Tone-marking individual words
The irst priority in representing a tone-language is the
availability of suicient glyphs (mostly diacritics) for the
tone-marking. It is worth noting that the readability of
diacritics (or even whether they are displayed at all) de-
pends crucially on the font — not all are capable of show-
ing all diacritics, or placing them in the right location.

Diacritics commonly used in representing tone in-
clude: á à â ǎ ā a̋ ȁ a̍ ꜛa ꜜa ꜝa ꜞa. This list is not exhaus-
tive — many other diacritics are available.

Many of these diacritics may already be available
via your keyboard (for instance, on the default UK key-
board in Ubuntu, á is produced using AltGr+; then a; à
by AltGr+# then a, and â by AltGr+’ then a). If dia-
critics are to be used frequently, it is worth setting up a
keyboard layout to allow this.

In LATEX, commands can be used to access diacrit-
ics — the Comprehensive LATEX Symbol List [6] and Appen-

Representing linguistic pitch in (X E)LATEX

224 TUGboat, Volume 34 (2013), No. 2

dix A.3 of the TIPA Manual [8] are valuable here. Most of
the other diacritics above can be accessed as follows:

ǎ \v{a}

ā \={a}

a̋ \H{a}

ȁ \H*{a}

a̍ \textvbaraccent{a}}

ꜛa \textupstep{a}

ꜛa \textdownstep{a}

The exceptions are the superscript exclamation marks ꜝ
and ꜞ (used in African-language linguistics to represent
upstep and downstep respectively).

X ETEX ofers more scope for deining diacritics, since
UTF-8 allows diacritics to be combined (rather than hav-
ing to depend on precomposed glyphs). This means that
writing a\char"030D will produce a,̍ because the num-
ber for the UTF-8 combining diacritic for the vertical dia-
critic is 030D — the relevant numbers for each glyph can
be found by using a utility like KCharSelect. [3]

However, since it is diicult to remember these char-
acter numbers, and they are tedious to type, it is best to
set up commands to produce them. Setting up the follow-
ing commands in the preamble:
\newcommand \aup[1]{\char"F19E#1}

\newcommand \adown[1]{\char"F19F#1}

will allow us to get the Africanist up/downstep characters
by using \aup{a} and \adown{a}: ꜝa, ꜞa.

In those cases where the LATEX tipa commands do
not produce the desired results in X ETEX, you can override
them — this may also be useful if you have an older text
which you are converting, where you wish to minimise
the number of textual changes that need to be made:
\renewcommand \textupstep[1]{\char"A71B#1}

\renewcommand \textdownstep[1]{\char"A71C#1}

This allows \textupstep{a} and \textdownstep{a} to
continue to be used to give ꜛa and ꜜa respectively.

The greater lexibility ofered by combining diacrit-
ics can also be used to produce new diacritics. For in-
stance, adding an acute and then a macron:
\newcommand \hbend[1]{#1\char"0301\char"0304}

can yield a diacritic to represent the end of a high-tone
bridge: \hbend{a} gives á.̄

However, not all combining diacritics may be visible
to X ETEX — in Charis SIL, for instance, glyphs in the ranges
07nn, 1Dnn and 20nn do not give the expected output.

4 Pitch representation for individual words
Inline pitch representation of individual words has been
used in the past in African-language linguistics to draw at-
tention to the pitch contours of individual words, so that,
for example, the pitches of the kiKongo word ibuuna [
] (so) can be shown without drawing premature con-

clusions as to how these pitches should be represented in
the tone-marking.

The \tone command can be used for this in LATEX:
ibuuna [~\tone{11}\, \tone{5555}\, \tone{11}~]

Here, the individual pitches are represented by the num-
ber of the tone letter (see A.2.1 of the TIPA Manual [8]) —
ive levels are available. Longer pitches can be depicted
by repeating the tone numbers, as in \tone{5555}. Glides
can be represented by sequences of numbers, and some
variation is possible here; as shown in the accompany-
ing ile pitch_latex.tex, a rising pitch on the last syllable of
a variant pre-pausal form of ibuuna can be represented
using any of \tone{13}, \tone{113}, \tone{1133} and
\tone{133}.

The most reliable way of handling spacing between
the pitchmarks is to use \hspace{⟨dimen⟩}, giving mea-
surements in em, mm or pt. For ease of use, this can be
set up in a command such as:
\newcommand \gap[1]{\hspace{#1mm}}

so that a gap of 2mm length can then be inserted by using
\gap{2}, and so on.

In X ETEX, Charis SIL provides ive tone letters similar
to those in TIPA, in each of four variants: line or dot with
tonestembar on the right or the left (see section 1.4 of
Marking Tone [7]). Issuing the command
\fontspec[Renderer=Graphite, RawFeature=

{Special=Hide tone contour staves}]

{Charis SIL}

after \begin{document} will remove the tonestembars on
glides, but not on level pitches, so these glyphs are inap-
propriate for African-language linguistics.

However, Charis SIL also provides a set of nine pitch
marks (glyphs F1F1–F1F9) speciically aimed at address-
ing this issue (see section 2 of Marking Tone [7]); these
allow pitches to be shown inline. To simplify usage, the
glyph numbers can be replaced by a \pitch command:
\newcommand \pitch[1]{\char"F1F#1}

and ibuuna [] can then be produced by writing:
ibuuna [~\pitch1\gap{1}\pitch9\pitch9

\gap{1}\pitch1~]

repeating the glyph number if longer pitches need to be
shown. Inserting the command:
\fontspec[Renderer=Graphite]{Charis SIL}

after \begin{document} will again allow glides to be rep-
resented in a variety of ways: [] [] []
[].

Since these pitch-glyphs are in the Private Use Area
of the font (in other words, they are not yet oicial Uni-
code glyphs) Charis SIL is the only font that they can be
used with.

Mark Wibrow has presented a solution [1, 13] us-
ing TikZ [11] that works with both LATEX and X ETEX, is

Kevin Donnelly

TUGboat, Volume 34 (2013), No. 2 225

font-independent, and allows a greater variety of pitch-
marks. Using this, marking such as ibuuna [....................] can
be produced by writing:
[\tikz[baseline={(0,0.25ex)}]%

\contour[contour only, contour scale=2ex/6,

contour marks={1.55.1}]

{ibuuna};]

The positioning and size of the inline marking is han-
dled by the baseline and contour scale directives. The
marking itself is input using numbers 1–5 to represent
the levels, locating them above each letter that requires a
pitchmark; letters not requiring pitchmarks must be des-
ignated by a full stop (.) — that is, the number of items
in the pitchmark line must be the same as the number of
letters, spaces, etc. in the text line. (To do this easily,
your editor should be switched temporarily to a mono-
space font if it is not already using one.)

A variety of glides can be represented: [....................]
[....................] [....................] [.......................] [.......................], along with the
sort of shape which would be diicult to represent with
either of the earlier options, e.g. [...........] [...........]

Since only the pitchmarks are shown, they can be
lengthened by duplicating letters in the text. For instance,
to get an extra-long mark for the irst syllable, use:
contour marks={1111.55.,}]

{iiiibuuna};]

giving [.............................] — see also the end of section 7.

5 Representing pitchlevels over word-sequences
Depicting pitchlevels over word-sequences rather than in-
dividual words is usually best done using a tiered format.
The same general principles as for inline marking apply.

For LATEX, the tipa pitchmarks look best when used
in conjunction with expex, as shown in the accompa-
nying ile pitch_latex.tex, where the pitchmark line takes
the place of a gloss. Note that sequences of more than
one word in the text line need to be enclosed in braces,
and items in the text line which do not need pitchmarks
aligned to them should be marked by empty braces in the
gloss (pitchmark) line.

The main drawback to this approach is that trial-
and-error is required to place the pitchmarks, experiment-
ing with diferent \gaps until the marks are aligned with
the relevant syllable. The pitchmark line is also hard to
edit, since it is unclear to which part of the text line it
refers.

For X ETEX, the Charis SIL pitchmarks can be used in
conjunction with expex — as with tipa, this requires the
same trial-and-error to space the pitchmarks (in the fol-
lowing examples, a raised dot (·) denotes a short pause):
(1) ibuuna

· basiidi kilumbu

so · they set aside a day …

An approach that avoids this uses pstricks code
by John Frampton, which sets up six pitchmarks (glides
can also be speciied). The marks are then applied simply
by prefacing each vowel with the relevant level, so that
writing:
\1ib\5u\5un\1a · b\1as\5i\5id\4i

k\3il\2umb\pitchup u

will give:
(2) ibuuna · basiidi kilumbu

so · they set aside a day
Mark Wibrow’s TikZ solution [13][1] works on both

LATEX and X ETEX. The correspondence between letters and
pitchmarks makes it easy to place and edit the marks
while keeping the text easy to read:
contour marks={0.55.0....0.55.4..3.2..?}]

{ibuuna · basiidi kilumbu};

The pitchmarks can be placed above or below the
text, depending on the values used for contour raise:

(3)
..i..b.. u.. u.. n.. a.... ·.... b.. a.. s.. i.. i.. d.. i.... k.. i.. l.. u.. m.. b.. u..........................

so · they set aside a day …

(4) ..i..b.. u.. u.. n.. a.... ·.... b.. a.. s.. i.. i.. d.. i.... k.. i.. l.. u.. m.. b.. u..........................
so · they set aside a day …

Note that the TikZ solution will not work in LATEX
if the text contains characters such as raised dots (·), so
this is another argument for using X ETEX. Note also that
expex places its example number at the baseline of the
TikZ graphic — there is currently no means of adjusting
the vertical placement of the example number.
6 Representing pitch contours over phrases
In tone languages, the pitch domain is the syllable, and
sections 3–5 have shown various means of representing
pitch on the syllable. For pitch-accent and intonation lan-
guages, the pitch domain is the word, phrase, or sentence,
and this section sets out a method for depicting pitch con-
tours over these longer stretches.

Mark Wibrow’s TikZ code [1, 12] allows contours
to be represented in a variety of ways in both LATEX and
X ETEX. In the following examples, an English interroga-
tive sentence (“Where are you going?”) will be used, on
which two pitch contours will be represented. The irst
of these (a) is the neutral or default contour, in answer
to “I’m going out now” — this has high pitch on where and
go. The second contour (b) is a focussed one, in answer
to “I’m going out now, but not to the shops”, and has high
pitch on are.

Representing linguistic pitch in (X E)LATEX

226 TUGboat, Volume 34 (2013), No. 2

One option is to place the words themselves on dif-
ferent levels, using the tokens follow contour directive.

(5) a. ..

W

...

h

...

e

...

r

...

e

.......
a

..
r

..
e

....
y

..
o

..
u

....
g

...
o

... i..... n.. g.. ?..

b. ..W.. h.. e.. r.. e....

a

...

r

...

e

.......
y

..
o

..
u

.... g.. o.. i.. n.. g.. ?..

An inline notation is used, where a deined character
(by default, the pipe character |, but this can be changed
to other characters, e.g. an asterisk) is used to specify the
anchor points for the contour, and the height of the con-
tour is speciied by a following digit from 0–10 in square
brackets:
\contour[tokens follow contour]

{|[10]_Where_ |[3]are you |[6]_go_|[0]ing?};

The stress/high-pitch composite in example (5) has
been marked by underlining (generated by a preceding
and following underscore). It is also possible to place the
words in boxes (box tokens), and expand the spaces be-
tween them (space token width), as in this example:

(6) a. ..

W

..

h

..

e

..

r

..

e

....
a

..
r

..
e

....
y

..
o

..
u

....
g

..
o

.... i.. n.. g.. ?..

A more familiar option is to show the text on a line
as usual, with a contour line above it. Example (7) shows
this, and also diferent styles for the contour line (contour
/.style) — thick and gray in (a), and ultra thick and red
in (b):

(7) a. ..W... h... e... r... e....... a.. r.. e.... y.. o.. u.... g... o... i..... n.. g.. ?..

b. ..W.. h.. e.. r.. e.... a... r... e....... y.. o.. u.... g.. o.. i.. n.. g.. ?..

A contour can be displayed by itself, without show-
ing the text line, by using contour only:

(8) a.
..

In some cases it may be useful to compare two con-
tours directly. This can be done by drawing both con-
tours, but setting one of them to contour only, as in ex-
ample (9). In this case, the focussed contour is compared
to the neutral contour, with the latter styled so that it is
drawn with a dashed line. This example also shows how

the gap between the text line and the contour can be spec-
iied by using contour raise— the gap here is twice that
in the previous examples.

(9) ..W.. h.. e.. r.. e.... a.. r.. e.... y.. o.. u.... g.. o.. i.. n.. g.. ?...

The contour can also be annotated by drawing ad-
ditional \paths such as the following, part of example
(10):
\path [draw=red, ->] ([yshift=0.25cm]

mycontour-1) -- ([yshift=0.25cm]

mycontour-3) node [midway, sloped, above]

{\small rising};

contour mark prefix is used to give the contour a name
(here mycontour), and then a red arrow (grayscaled for
the printed version) is drawn between the relevant anchor
points of mycontour, counted sequentially (in this case,
between anchor points 1 and 3). The yshift directive
speciies how far above the contour the arrow should be,
and the node clause speciies the location and size of the
annotation “rising”. The contour is also styled to appear
as a dotted line.

(10) b. ..W.. h.. e.. r.. e.... a.. r.. e.... y.. o.. u.... g.. o.. i.. n.. g.. ?...

risi
ng

.

falling

7 Replicating early typesetting of tone
Nowadays the conventions of describing tone and into-
nation are well-established, but at the beginning of the
study of the role of pitch in languages even concepts such
as “absolute pitch” and “relative pitch” were not well-
understood. One of the earliest researchers in this ield,
Karl Laman, a Swedish missionary to the Kongo, produced
the irst dictionary of an African language to be tone-
marked throughout [5]. His 1922 book, The Musical Ac-
cent or Intonation in the Kongo Language [4], was one of the
irst modern attempts to systematise and describe pitch
linguistically.

When referring to early research, it may be useful
to quote it in its original format, and this may include
diacritics and pitchmarks that are no longer widely used,
or were even invented solely for that particular piece of
research. LATEX and X ETEX ofer possible ways to replicate
this type of material.

Laman’s 1922 marking system for the six main pitch-
levels he posits for kiKongo (there are a few others) are
set out in Table 1. His marking is emulated here by using

Kevin Donnelly

TUGboat, Volume 34 (2013), No. 2 227

stress diacritics (\textprimstress and \textsecstress

from the tipa package for LATEX, and Unicode characters
02C8 and 02CC for X ETEX, though the tipa characters
will work in X ETEX too), and a super/subscript + sign.

Gradation Designation Diacritic

high very high aˈˈ
high aˈ

mid semi-high a+
semi-low a+

low low aˌ
very low aˌˌ

Table 1: Laman’s pitch-marking system

For ease of use, commands can be set up to repro-
duce the marks (which can appear before or after the rel-
evant vowel):
\newcommand{\hi}{\textprimstress}

\newcommand{\vlo}{\char"02CC\char"02CC}

\newcommand{\shi}{{$^{\scriptscriptstyle +}$}}

and so on. This allows Laman’s examples to be replicated
by inserting the mark shortcut at the appropriate point in
the word, as the following examples (from p. 12 of [4],
but with inline pitchmarking added) show:

mfu+mu [...........] (king)
mukˌaˈnda [.................] (book)
zoˈbongo+ [.................] (antelope)
ka+ba [...........] (to share)
ba+kaˌla+ [.................] (man)
tū+la [..............] (to put)
di+nsuˌsuˌ [....................] (herbal plant)
Similar approaches can be used for other markings

in [4], and for works by other early researchers, enabling
such material, of intrinsic interest to the history of linguis-
tics as well as to descriptive linguistics, to be distributed
without great expense.

These examples incidentally demonstrate that more
aesthetic placement of the inline pitchmarks discussed in
section 4 can be achieved by manipulation of the text line
in the contour marks directive. For instance, writing out
mukanda in full
contour marks={.1.>..1}]

{mukanda};]

gives mukˌaˈnda [.......................], which contains unsightly
gaps in the inline marking. To deal with this, simply re-
move excess letters, using:
contour marks={1.>.1}]

{ukana};]

to give the more attractive mukˌaˈnda [.................].
8 Conclusions
TEX is a powerful and versatile system for typesetting aca-
demic work dealing with pitch, whether relating to tonal

or intonational languages. A variety of diacritics is avail-
able, particularly if X ETEX is used to give access to a com-
prehensive font like Charis SIL. Add-on packages such as
TikZ/PGF allow diagrammatic representation of pitch lev-
els and contours. Intricate marking systems from early
works on pitch can be replicated simply and inexpen-
sively.
9 Acknowledgements
I am grateful to Christina Thiele for comments on earlier
versions of this paper.
References

[1] Kevin Donnelly and Mark Wibrow. TikZ pitch
contour, 2013. http://gitorious.org/

tikz-pitch-contour.
[2] John Frampton. ExPex, 2012. http://www.math.

neu.edu/ling/tex/expex.
[3] KDE. KCharSelect, 2013. http://utils.kde.org/

projects/kcharselect.
[4] Karl E. Laman. The Musical Accent or Intonation in

the Kongo Language. Svenska Missionsförbundet,
Stockholm, 1922. Available from the Internet
Archive at http://archive.org/details/
musicalaccentori00lamarich.

[5] Karl E. Laman. Dictionnaire Kikongo-Français. IRCB,
Brussels, 1936.

[6] Scott Pakin. The Comprehensive LATEX Symbol List,
2009. http://www.ctan.org/pkg/comprehensive.

[7] Lorna Priest. Marking tone, 2007. http://scripts.
sil.org/cms/scripts/render_download.php?

format=file&media_id=PitchContours.v1.

pdf&filename=PitchContours.v1.pdf

via http://scripts.sil.org/ipahome.
[8] Fukui Rei. tipa — Fonts and macros for IPA phonetics

characters, 2002. http://www.ctan.org/pkg/tipa.
[9] Will Robertson. fontspec — Advanced font selection in

X ELATEX and LuaLATEX, 2013.
http://www.ctan.org/pkg/fontspec.

[10] SIL. Charis SIL 4.112, 2011. http://scripts.sil.
org/CharisSIL.

[11] Till Tantau. TikZ and PGF, 2010.
http://www.ctan.org/pkg/pgf.

[12] Mark Wibrow. Using TikZ to depict intonation, 2013.
http://tex.stackexchange.com/questions/

107941/using-tikz-to-depict-intonation.
[13] Mark Wibrow. Using TikZ to depict pitchlevel, 2013.

http://tex.stackexchange.com/questions/

108530/using-tikz-to-depict-pitchlevel.

⋄ Kevin Donnelly
Llanfairpwllgwyngyllgogerychwyrndro

bwllllantysiliogogogoch
Wales
kevin (at) dotmon dot com

http://kevindonnelly.org.uk

Representing linguistic pitch in (X E)LATEX

228 TUGboat, Volume 34 (2013), No. 2

Book review: Learning LATEX

Boris Veytsman

David F. Griffiths and Desmond J. Higham,
Learning LATEX. SIAM, 1997. x+84 pp. Paperback,
US$33.00. ISBN 978-0-898713-83-1.

When Karl Berry and I discussed the current situa-
tion with LATEX books for beginners, he mentioned
the old text by Griffiths and Higham as an example
of the one made “just right”. I was surprised to find
that the book is still in print. Thus I ordered a copy
for myself and read it.

I must say Karl was right: this is indeed an
incredibly good introduction to LATEX. Even today,
when many good books are available for beginners,
this one stands out.

First, it is incredibly short. The great free book
by Tobias Oetiker et al. used to be called LATEX2ε
in 120 minutes, where 120 referred to the number of
printed pages. On my machine texdoc lshort now
gives me LATEX2ε in 157 minutes, and the number
grows every time I update my copy of the TEX Live
distribution. Well, Learning LATEX has 53 pages of
main text (not counting preface, table of contents,
appendices, index and bibliography), and 94 pages
total. Of course, one cannot write a LATEX book of
this size without making white lies by omission, and
the authors admit as much on page 1.

For example, here is how the authors introduce
infinitely stretchable lengths. They start with the
\vspace{〈length〉} command and explain its usage.
Then they say, oh, by the way, there is an infinite
length \fill, so \vspace{\fill} will push your
text down to the bottom of the page unless counter-
balanced by another infinite spring below. Of course

an advanced user knows that there are three in-
finities in TEX (0pt plus 1 fil, 0pt plus 1 fill

and 0pt plus 1 filll), but this might be confus-
ing for a beginner, so the authors’ brief explanation
seems to be a smart choice.

Another example of the authors’ unique style
is the way floats are introduced. This is rather a
“hard” topic, and many beginners have a problem
grasping the concept (“I’ve put my table here—why
did it travel to the next page?”). The authors explain
tabular, show how to create the table, and then say,
by the way, if you want a caption and number for the
table, put everything inside a table environment.
And by the way, the table will not interrupt your
text, but will be placed in some proper place. Oh,
and you can do the same with the figures too.

There are numerous short examples, each well
written and to the point, often with a distinct sense
of humor (e.g. the authors demonstrate spacing after
abbreviations with the phrase, Incomplete lists etc.

are signs of lazy writing).
This writing is easy to read, and may seem easy

to write, but this latter impression is misleading. As
any experienced author would agree, it is very hard
to write “easy”. There is much work and thought
behind the seemingly effortless passages. Thus I was
not surprised when I read in the preface that this
book is based on the lectures and courses the authors
taught several times and polished over time.

The book is old, and this shows. It contains
a section about LATEX2.09 and the “new” features
of LATEX2ε; PDF format is not mentioned at all, as
well as such now-popular features as non-CM fonts,
hyperlinks, colors, etc. However, one of the strengths
of good software is that the knowledge of it does not
become obsolete easily. Thus, it is a testament to
(LA)TEX and the authors’ efforts that this book can
still be used as a first LATEX book or as a basis for a
short practical course.

It would be also interesting to see a book using
the same approach but updated with the new mate-
rial. Making it as concise and easy to read as this
one will be a challenge.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

USA

borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 34 (2013), No. 2 229

Book review: Zapf Exhibition:

The Calligraphy of Hermann & Gudrun Zapf

Boris Veytsman

Minako Sando & Akira Kobayashi, Zapf Exhibition:
The Calligraphy of Hermann & Gudrun Zapf.
Japan Letter Arts Forum, 2011, 64 pp. Paperback,
US$29.95.

The Great East Japan Earthquake of 2011 lead to
15,883 deaths, 6,145 injured, and 2,671 people miss-
ing. It caused the meltdown at the Fukushima Dai-
ichi nuclear disaster and incalculable damage to pub-
lic health and the national economy. The way in
which the consequences of the catastrophe were han-
dled shows the amazing resilience of the Japanese
people. The destroyed roads, buildings, and bridges
are being restored, normal life is resumed. In par-
ticular, it is noteworthy that the exhibition of the
calligraphy of Hermann and Gudrun Zapf, sched-
uled for March–April 2011 and postponed due to the
catastrophe, opened as early as September of the
same year. Only a small slip of paper, tucked in the
catalog and correcting the dates, reminds us about
the delay.

Several copies of this catalog found their way to
the US. I bought one at RIT Press.

Of course reading a catalog is a pale substitute
for actually visiting an exhibition. Still, the rich
illustrations in this book are a real treasure for those
who love beautiful letters.

The works of Hermann Zapf are well known to
the TEX community. He is a permanent honorary
board member of TUG; many of his fonts are included
in TEX distributions, and his algorithms influenced
the development of modern TEX. Several of Hermann
Zapf’s books demonstrate his calligraphy, including
the beautiful Alphabet Stories (reviewed in TUGboat

28:2). Gudrun Zapf, a great artist in her own right,
is perhaps less known among TEX people—except

for those who have read DEK’s 3:16 Bible Texts Illu-

minated, who may remember her beautiful rendering
of 2 Thess. Thus some pages in the catalog are famil-
iar to the aficionados of calligraphy and type, while
others are refreshingly new.

Several illustrations from the catalog can be
found at the web page http://www.typetoken.net/
typeface/zapf-exhibition/. We reproduce below
a quotation from Walter Crane by Hermann Zapf
and a quotation from Hölderlin by Gudrun Zapf.

The book includes short introductory notes by Mi-
nako Sando & Akira Kobayashi and a biography of
Hermann and Gudrun Zapf. Minako Sando is the
director of the Japan Letter Arts Forum, while Akira
Kobayashi is a renowned font designer who worked
for many years with both Hermann and Gudrun Zapf.

As an appendix, the catalog reproduces some
font design documents and photos of metal type, as if
to remind us about the intimate connection between
the written word and the printed word.

The book is well printed on beautiful paper.
Fittingly, it is typeset in the fonts Optima Nova by
Hermann Zapf and Akira Kobayashi, Diotima Clas-
sic by Gudrun Zapf and Akira Kobayashi, Hiragino
Mincho by Akira Kobayashi and Aldus Nova by Her-
mann Zapf and Akira Kobayashi. The blending of
Japanese and English type is perfect. The colors are
reproduced carefully.

This is a beautiful book and a real gem for a
collection of anybody interested in letters, calligraphy
and book art.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: Zapf Exhibition: The Calligraphy of Hermann & Gudrun Zapf

230 TUGboat, Volume 34 (2013), No. 2

Book review: What Our Lettering Needs:

The Contribution of Hermann Zapf

to Calligraphy & Type Design

at Hallmark Cards

William Adams

Rick Cusick, What Our Lettering Needs: The

Contribution of Hermann Zapf to Calligraphy &

Type Design at Hallmark Cards. RIT Cary Graphics
Art Press, 2011. 136 pp. Paperback, US$24.95.
ISBN 978-1-933360-55-3.

What Our Lettering Needs by Rick Cusick (with a fore-
word by Sumner Stone) covers a deceptively narrow topic
which would at first glance seem too specific to warrant
even this slim, elegant volume. Instead, it addresses
a lacuna which has haunted books on graphic design
and typography for years— the one line showings of pro-
prietary Hallmark typeface designs which represent the
iceberg-like tip of seven years of work by Prof. Hermann
Zapf at Hallmark (1966–1973, pg. 95).

While such Flying Dutchman-like showings are too
many to count, there is also a certain difficulty in enu-
merating the typefaces themselves due to the passage
of time, the combination of one design with another to
constitute a third and confused naming (pg. 38). There
are all-too-brief samples shown on the two-page spread
in the 2001 Zapfest exhibition catalog Calligraphic Type

Design in the Digital Age: An Exhibition in Honor of

the Contributions of Hermann and Gudrun Zapf (pgs.
26 and 27), the author’s article which was the precursor
to this work.

In this new book, a page or two, or more, is de-
voted to a dozen of these designs (an informal script,
Jeannette; the contemporary Chancery Italic, Firenze;
Hallmark Uncial; Hallmark Textura; the text face Crown
Roman; an upright calligraphic font with civilité char-
acteristics, Missouri; the unconnected script Scriptura;
a calligraphic sans, Shakespeare, by Gudrun Zapf von

Hesse; the combinatorial Stratford, Charlemagne, and
Winchester; as well as Constanze, a script alphabet de-
signed by Joachim Romann), showing not just the fin-
ished alphabets, but also initial studies as well as ex-
amples of usage of the typefaces. None of these, how-
ever, are among the 87 typefaces which Hallmark has
licensed to Monotype Imaging (http://www.fonts.com/
findfonts/searchresults.htm?kid=hallmark). Read-
ers however should be certain to compare the pages on
Crown Roman with the book Hunt Roman: The Birth

of a Type by Hermann Zapf and Jack Werner Stauffacher
(available online at http://posner.library.cmu.edu/

Posner/books/book.cgi?call=744.2_Z35H).
Just as important as the typeface designs is the

coverage of some of the technical details of Prof. Zapf’s
design work, including the “clip and tip” where a swash
is drawn on one sheet of paper and then cut out and
attached to a letterform in the layout, and many pages
from The Hallmark Lettering Instruction Book (or The
Manual as it was called—an entire chapter is devoted to
it) are shown in full color as are all the photographs and
illustrations. Some such details are very humbling, such
as the exquisitely beautiful design study for Zapfino-like
capitals intended for use with Firenze shown with the 49-
cent Deluxe Fine Point Bic ballpoint pen used to render
the letters (pg. 43).

The chronography covers a time in which technology
was rapidly changing and the breadth of material cov-
ered in each chapter reflects this, making it a wonderful
introduction to what design work used to be like. More
importantly, the cast of characters reads like a “Who’s
Who” of the design world, making the book a wonderful
vade mecum for the designer who needs suggestions on
what to read next (be sure to consult the Sources on
pg. 109). The book’s usefulness as research material is
aided by having an index (presumably prepared by Molly
Cort, who is credited with “Editorial and Production”
in the book’s colophon). It stands alone as a reference
on the gift book line, Hallmark Editions, and also has a
fascinating appendix on The Crabgrass Press and Phil
Metzger.

The book has a few shortcomings—too small to
show at actual size the larger originals (the pages from
The Manual especially suffer from this); too short to show
all the typefaces in the same detail as the dozen which
were featured; some typographic infelicities such as allow-
ing the last word on a page to break (e.g.,“nevertheless”
from the bottom of pg. 72 to the top of pg. 75); allowing
as many as three hyphens in a row; and some odd choices
in the formatting, e.g., the usage of a single master page
for the page design for much of the book, one with the
marginal notes column on the left and the page’s folio on
the right, which leaves us with the uncomfortable feeling
of all compromises.

Nevertheless, all puns aside, this book is what every
graphic designer, typographer and calligrapher needs.

⋄ William Adams
willadams (at) aol dot com

William Adams

TUGboat, Volume 34 (2013), No. 2 231

Book review: LATEX Quick Reference

Boris Veytsman

Herbert Voß, LATEX Quick Reference.
UIT Cambridge, 2011. vi+234 pp. Paperback,
US$29.95. ISBN 9781906860219.

A bookcase in my home is filled with dictionaries
and reference books. Several times I promised myself
to stop buying them: they take up too much space,
and it is much easier to look up a definition on
the Internet or in an electronic book using search
functions. Still I just cannot resist. Thus if Herbert
had not given me a copy of this book at the last TEX
Users Group meeting, I probably would have ended
up buying it anyway: this book is a perfect addition
for this bookcase.

The author warns the readers this is not an
introduction to LATEX: you cannot use it for self-
learning or as a textbook for LATEX. Rather, it is a
reference book. The difference between a textbook
and a reference is the organization of material. In a
textbook the topics are introduced in a pedagogical
order. A reference book puts the material in the order
which is easy to look it up. This is the difference
between a phrase book with the chapters like “In a
restaurant”, “On a bus” etc., and a dictionary with
chapters “A”, “B”, “C”, etc.

While alphabetical order is natural for a dictio-
nary (at least for alphabetic scripts), it is not so for
reference books about computer languages like LATEX.
If the commands are explained alphabetically, then
to find the command, say, \DeclareSymbolFont, I
need first to know its spelling. However, when I need
the information I usually do not know the spelling—
or even whether such command exists. I probably
have just a vague understanding of the task, for ex-
ample, ‘I want to use the symbols from another font
for my math’. Getting the name of the command
may be the result of my query rather than its start.
Therefore most reference books about TEX or LATEX
assume the logical order of organization. For exam-

ple, Victor Eijkhout’s TEX by Topic has chapters
like Characters, Boxes, Grouping, Spacing, etc. The
LATEX Companion by Mittelbach, Goossens, et al.,
has chapters like The Layout of the Page, Fonts and

Encodings, Mastering Floats, etc.
Unfortunately, LATEX Quick Reference uses al-

phabetical order for most of its chapters. choosing
simplicity over meaningful context. For example,
pages 16–22 are occupied by a long list of all doc-
ument classes currently existing on CTAN accom-
panied with one-line descriptions, sometimes rather
cryptic; e.g. qcm is described as multiple choice. An-
other chapter is devoted to LATEX commands; it con-
sists of three lists, Environments (pp. 41–46), Com-

mands (pp. 46–67) and Special Commands (pp. 67–
70). Another chapter has lists of all counters and
lengths in core LATEX. The entries in the lists are
short— sometimes too short. A chapter about fonts
has a list of fonts with samples (I liked this list the
most simply because I love to study font shapes).

Besides these chapters, reminding one of Um-
berto Eco’s The Infinity of Lists, there are some less
dry ones, much better written. There is a chapter
about TEX binaries with a description of useful aux-
iliary programs like pdfcrop, rarely discussed in TEX
books. There is a chapter about several selected
packages such as hyperref or xcolor with a nice in-
troduction to these packages. There is a chapter
about BibTEX and the newer alternative biblatex.
Even in these chapters one finds long alphabetical
lists (for instance, four pages of hyperref options and
six pages of bst files), but also finds a useful discus-
sion, covering topics usually not explained elsewhere.
These chapters alone probably can justify buying the
book.

The book is nicely typeset, printed and bound—
although the margins might be a little more generous.

In conclusion, I can imagine a reader thumbing
through the book, stopping at an interesting passage
or enjoying a font sample. It is less clear to me how
to use the book as a reference due to the way the
material is organized. Maybe an electronic version
of the book with the possibility of full text search
would be a better idea. Otherwise I would much
prefer a logical grouping of the topics.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: LATEX Quick Reference

232 TUGboat, Volume 34 (2013), No. 2

Book review: Presentations with LATEX

Boris Veytsman

Herbert Voß, Presentations with LATEX.
DANTE e.V., Lehmanns Media, 2012. vi+206 pp.
Paperback, €19.95. ISBN 9783865414960.

The early period of LATEX-based presentations may
be called a Gothic era. The lack of versatile building
materials (even color was not so easy to achieve in
those times) led to relatively pristine design with few
or no visual effects.

This does not mean that all slides created with
the SliTEX, seminar or foils classes were necessarily
beautiful. Even among Gothic buildings one can
find both masterpieces and ugly monsters. (By the
way, the designation “Gothic” itself was originally a
pejorative: Renaissance architects derisively stated
that only uncouth Barbarians like Goths could make
medieval buildings.) However, these slides were in-
variably simple. Presentations were just documents
designed for a specific aspect ratio (usually 4:3) with
large fonts (usually sans serif) and logos, often re-
peated on each page.

Meanwhile the purveyors of commercial pro-
grams—the ubiquitous PowerPoint being the pack
leader—promoted a very different presentation style,
with optical effects, complex page transitions and
sophisticated overlays. At some point classical LATEX
presentations started to appear rather quaint. There
was a distinct demand for a more “modern” presen-
tation alternative.

The early efforts in this direction tried to copy
PowerPoint’s approach and effects. Even their names,
such as texpower or powerdot, sometimes suggested
the connection. However, at some point it became
clear that TEX, being a programming language, can
give one almost infinite possibilities, far beyond those
provided by non-extensible, end-user-oriented pro-

grams. These possibilities are especially evident in
such packages as the current version of powerdot
and the snazzy beamer. Here a user can, for exam-
ple, typeset a mathematical formula having different
terms highlighted and explained on different overlays,
animate a sequence of frames, etc.—not even men-
tioning such common tasks as inserting a movie, or
creating complex page transitions. Of course these
possibilities give a user plenty of rope to hang him-
self, overloading the presentation visuals in a way
detrimental to the presentation content. But in the
hands of a good designer with taste and experience
they may improve the result. Thus these packages
opened the Baroque period of TEX-based presen-
tations, with its indulgence and richness—and its
tendency to over-emphasize effects.

One of the results of this development is the com-
plexity of the interface for the modern presentation
packages. The cheat sheet of foils commands can be
put on a card-sized piece of paper, while the com-
mand texdoc beamer opens a 245-page document.
While the packages have comprehensive manuals, for
many people reading such a tome is a formidable task.
Such users might prefer books written by somebody
on the side of the user rather than the author. Thus
books like the present one have a wide audience and
an important task to perform.

Herbert Voß describes two packages: powerdot,
based on PSTricks, and beamer, based on PGF (and
initially written by Till Tantau of TikZ/PGF fame).
It opens with a short chapter of obligatory advice
about slide layout. Most of the material here is more
or less known—and some, like the (in)famous one
about no more than ten lines per slide would cause
protests from the fans of Edward Tufte’s designs.

The strength of the book is in the very well-
written chapters about powerdot and beamer. The
explanation here follows the logic of developing a
presentation. This makes the book much easier to
read. The level of description is detailed, but the
overall discussion is not lost in the details, and the
reader is always aware of the general plan. The
explanation of each package follows more or less the
same path: Voß does not try to make two completely
different presentation sequences, but neither does
he blindly follow the parallel structures when the
material does not justify this.

The book has many color illustrations including
the comparison tables of slides using different motifs
provided by the package authors. This should prove
very useful for those lost in the hundreds of differ-
ent combinations of beamer “outer themes”, “inner
themes”, “font themes” and color schemes.

Boris Veytsman

Besides “themes”, both powerdot and beamer

provide extensive means to customize the output.
However, it seems that many users feel intimidated
by this richness. Many presentations at physics meet-
ings look like identical twins: the authors just take
the default template. Unfortunately the same is often
true for TUG meetings, where death by PowerPoint

becomes death by beamer. Herbert Voß devotes two
detailed chapters to customization of powerdot and
beamer respectively. The chapters are well written
and will hopefully help the users to make their pre-
sentations more original. On the other hand, I dread
the day when I see the first LATEX-produced slides
typeset in Comic Sans (unfortunately the fontspec

package makes this task too easy, as shown).
There are two bonus chapters in the book. The

first one is a concise explanation of color manipula-
tion in LATEX. Of course the xcolor package has an
extensive manual, but Herbert’s text is much shorter
and easier to read, keeping the most used features
and omitting the more advanced and exotic ones.
The second one, with the slightly misleading title
Questions and Answers, is devoted to various odds
and ends related to the packages and programs used
in the book, and contains several useful hints as well
as workarounds for some known bugs.

The book was originally published in German.
The translation is good, and the couple of remaining
examples of German syntax are rather cute; they do
not disturb the reading.

The co-publishers, as with all of Voß’s recent
books, are the German-speaking TEX users group
DANTE, and Lehmanns Media. As is fitting for a
TEX group-sponsored book, the typesetting is very
good. In fact, this is the first of Herbert’s books I’ve
read where his name on the cover is spelled as “Voß”
rather than “Voss”. The fonts selected for the book,
Linux Libertine, Lucida Sans and Bera Mono, are a
good match.

This is a useful book which should be of interest
to the wide audience of people preparing presenta-
tions with TEX.

⋄ Boris Veytsman
Systems Biology School and

Computational Materials
Science Center, MS 6A2

George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

http://borisv.lk.net

TUGboat, Volume 34 (2013), No. 2 233

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: texnical.designs (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Choolaimedu, Chennai-600094,
Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) gmail.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for nearly 20 years, and
handled various projects. I am a software consultant
with Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
eBooks, ePub, Mobi, iBooks, DTD, XSLT, XSL-FO,
Schema, ebooks, OeB, etc.

Sievers, Martin

Klaus-Kordel-Str. 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

234 TUGboat, Volume 34 (2013), No. 2

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about seventeen years of experience
in TEX and thirty years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.latexcopyeditor.net

http://www.editingscience.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

TUGboat, Volume 34 (2013), No. 2 235

ArsTEXnica #15 (April 2013)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (http://www.guitex.org).

Gianluca Pignalberi, Editoriale [From the
editor]; p. 3

Claudio Fiandrino, Drawing ER diagrams with
TikZ; pp. 5–14

The paper will illustrate some techniques to rep-
resent Entity-Relationship (ER) diagrams with TikZ.
In particular, it will focus on the standard internal
library er, on the external package TikZ-er2, on
the external tool Graphviz and on the object-oriented
approach provided by the er-oo library.

Claudio Fiandrino, Sa-TikZ: A library to draw
switching architectures; pp. 15–24

The article illustrates how it is possible to draw

some types of switching architectures in a simple
manner. The Sa-TikZ library provides not only the
keys devoted to the drawing part, but also the keys
devoted to customizing aspects of the architectures
in the spirit of normal TikZ syntax.

Gianluca Pignalberi, Realizzazione di
un layout complesso: la prima pagina de
La Settimana Enigmistica [How to design a
complex layout: The first page of La Settimana

Enigmistica]; pp. 25–30
Making a complex page layout with LATEX in-

volves the use of multiple specialized packages. We
will see how to use TikZ, shapepar and textpos

while attempting to reproduce part of the cover of
an old issue of La Settimana Enigmistica.

Massimiliano Dominici, Una panoramica su
Pandoc [An overview of Pandoc]; pp. 31–38

This paper is an overview of Pandoc, a utility
for the conversion of Markdown-formatted text in
many output formats, including LATEX and HTML.

Claudio Beccari, LATEX e le lingue romanze
alpine: il friulano [LATEX and Alpine Romance
languages: Friulan]; pp. 39–45

LATEX is used to typeset in a variety of languages:
at the time of writing, it can handle 74 different lan-
guages (plus many variants), some of them used by
very few people, some by many millions. At the
moment, there are no facilities for typesetting doc-
uments in the various more or less official Alpine
Romance languages. This paper would be another
step toward extending the LATEX language capabili-
ties to the various Romance languages that are used
by large communities in the European Alps. In this
second article on the subject we deal with Friulan,
spoken, read, and written by almost 800,000 peo-
ple in northeastern Italy and within other Friulian
communities around the world.

Claudio Beccari, Le filigrane e le figure di
sfondo [Watermarks and background figures];
pp. 46–58

Our TEX system has several packages available
for inserting watermarks or background images. But
each one of these packages has specific features that
make it more suitable in certain applications rather
than others. In this article the mechanism for insert-
ing such “decorations” is thoroughly examined so as
to fully understand how it works.

Luigi Scarso, LuaJITTEX; pp. 59–69
[Published in TUGboat 34:1.]

[Received from Gianluca Pignalberi.]

Die TEXnische Komödie 2/2013

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (http://www.
dante.de). [Non-technical items are omitted.]

Christina Möller, Beschlüsse der 48.
Mitgliederversammlung [Spring Meeting and 48th

General Meeting of DANTE e.V.]; pp. 6–13
After last year’s Autumn meeting, jointly held

as EuroTEX in Breskens, Netherlands, the Spring
meeting took place in Gießen. From March 5–8 the
TEX community came together to listen to talks from
various areas, discuss problems and exchange ideas.

Christine Römer, Handouts setzen [Typesetting
handouts]; pp. 27–36

This short article meets the wishes of TEX users
for templates for specific kinds of text.

Rolf Niepraschk, Herbert Voß, Test auf eine
Zahl [Testing for a number]; pp. 37–39

In TEX applications it is sometimes necessary to
check an argument for its properties. In this article
we show how to test an argument for an integer value.

Christine Römer, Logikzeichen [Logic symbols];
pp. 40–55

With the formal markup language of mathemat-
ical logic, special symbols were introduced that are
also used in linguistic formal semantics and philos-
ophy of language. Since there is only one package
available to typeset Frege’s Begriffsschrift from 1879,
this article shows a list of the special symbols with
their LATEX syntax. For those working with these
symbols this may be helpful.

[Received from Herbert Voß.]

236 TUGboat, Volume 34 (2013), No. 2

EuroBachoTEX 2013 proceedings

The EuroBachoTEX 2013 proceedings was published
by GUST, the Polish language TEX user group. Their
web site is http://www.gust.org.pl.

Bogusław Jackowski, and Marek Ryćko,
Two typographic etudes for basic calculus and
implementation; pp. 5–8

Two simple techniques for creating certain Bézier
curves will be presented. Although mathematically
nearly trivial, they are potentially useful, especially
when implemented as an interactive option.

Bogusław Jackowski, Łukasz Dziedzic and
Marek Ryćko, Joining two Bézier arcs smoothly;
pp. 9–12

Bogusław Jackowski, Łukasz Dziedzic

and Marek Ryćko, Constructing a family of
constrained (metrically consistent) Bézier arcs;
pp. 13–16

(Combined and expanded version published in
this issue of TUGboat.)

Hans Hagen, Speed performance in ConTEXt;
pp. 17–24

In the ‘mk’ and hybrid progress reports I have
written some words on speed. Why is speed still
important today?

Hans Hagen, Does TEX have a future?; pp. 25–29
(Published in this issue of TUGboat.)

Hans Hagen, SwigLib basics; pp. 30–32
SwigLib aims to add portable library support to

LuaTEX. It does not provide Lua code except where
absolutely required, since different macro packages
have different needs. It also fits in the spirit of TEX
and Lua to minimize core components.

Luigi Scarso, The swiglib project; pp. 33–36
This project has the following objectives:

• Set up an infrastructure for building libraries
for LuaTEX using Swig so that we stay close to
the original APIs.

• Investigate libraries of different complexity. We
also explore the impact of dependencies on other
libraries.

• Provide a set of common helpers that can be
integrated in libraries.

• Provide documentation on how to use this in-
frastructure and how to roll out your own.

• Come up with a naming scheme to allow avoid-
ing clashes between similar libraries. In principle
a user or macro package should be able to gen-
erate libraries independently of others and use
these in a regular TEX setup.

• Make a couple of working examples of libraries,
available for all major platforms.

The project will be initially hosted at https:

//github.com/luigiScarso/swiglib.

Paweł Łupkowski and Mariusz Urbański,
Preparing for scientific conference with LATEX. A
short practical how-to.; pp. 37–44

(Published in this issue of TUGboat.)

Paweł Łupkowski, How to teach LATEX?
Cognitive science curriculum case study; pp. 44–47

In this paper I will present my experience teach-
ing LATEX in an introductory information technology
course. I will present my syllabus for the course and
the idea of embedding LATEX skills into other sub-
jects in the cognitive science curriculum. I will also
compare the results of the LATEX course evaluation
for its four editions (2010, 2011, 2012 and 2013).

Bartosz Marciniak, Converting LATEX source
files into XML format with XQuery; pp. 48–50

The XQuery language, designed for querying
XML documents, in practice allows performing any
transformation of XML document sets. It also allows
performing transformations of data in formats which
can be formulated as XML, e.g., CSV files.

A source LATEX file is also such a format. Its
structure and instructions should be describable with
a set of XML tags. In this presentation an attempt to
use XQuery for a transformation of a LATEX document
into an XML document will be presented.

Przemysław Scherwentke, Translating into the
Pokémon language; pp. 51–53

According to one of its definitions, the Pokémon
language is a dialect of the Polish language used by
the majority of teenage girls or simply Pokémons.
According to Nonsensopedia (the Polish encyclope-
dia of humor, http://nonsensopedia.wikia.com/
wiki/Pokemoniaste_pismo): “That language is of-
ten regarded as a script of the feeble minded and
cretins but in reality comprises an ingenious cipher
which in itself is not difficult to crack but a normal
person encountering such a cipher loses interest in
trying to solve the riddle of the Pokémon language
. . . We will present a (TEX, of course) tool which
allows ordinary people to translate normal language
utterings into the Pokémon language.

David Kastrup, Extension language integration
of LuaTEX and LilyPond; pp. 54–58

LuaTEX uses Lua as its extension language while
the music typesetter LilyPond employs the Scheme
dialect Guile for that purpose.

It is interesting to see how those extension lan-
guages are integrated into the “core” language and

EuroBachoTEX 2013 proceedings

TUGboat, Volume 34 (2013), No. 2 237

what interfaces are used for passing information back
and forth between user, principal language, and ex-
tension languages and to what degree the languages
interact to form a coherent experience or one more
modelled along the line of “I’d rather like to discuss
this with your brain surgeon”.

Kees van der Laan, Spirals in PostScript;
pp. 59–66

Programming curves specified in polar coordi-
nates work elegantly in PostScript, because of PS’s
facility for rotation of user space. This is shown for
the cardioid, limaçon, lemniscate, Archimedes, and
growth spirals. The Gyre logo is analysed and imi-
tated in PostScript. Printing of text along spiral-like
belts on a sphere in the projection plane is done,
yielding poor man’s typesetting on a sphere in pro-
jection, for want of better.

Kees van der Laan, Head and tail in
summation: Catching up with numerical math and
Mathematica; pp. 67–74

Direct summation of slowly convergent series
is not efficient. Splitting up the sum into head and
infinite tail and applying Euler summation to the
tail yields an efficient technique. Applying Boole’s
transformation to the tail may, for slowly convergent
alternating series, drastically improve accuracy. Se-
ries for ζ(x), η(x), λ(x), and β(x) have been included.
This note reflects my understanding of chapter 1 of
Nico Temme’s book Special Functions (Wiley, 1996),
and is aimed at those who want to refresh their
summation-of-series knowledge and skills and add
Mathematica to their toolbox. Mathematica has
changed calculus education. Notebook publishing is
an extra to (LA)TEX publishing, for the moment.

Jean-Michel Hufflen, MlBibTEX in 2013: The
point; pp. 75–78

Our MlBibTEX program—aiming to be a bet-
ter BibTEX—is now able to build bibliographies for
documents in LATEX. It can also take into account
some particular features for the bibliographies pro-
cessed by the biblatex package and the bib module
of ConTEXt. We review the present abilities of this
program before an important change in its implemen-
tation language (now Scheme). We will also explain
why this change could enlarge MlBibTEX’s features.

Jean-Michel Hufflen, Why typesetting music is
so difficult; pp. 79–84

Some software allows users to specify musical
pieces, possibly using several staves for different
voices and instruments. These pieces can be type-
set in order to get a result suitable for musicians.
For simple cases, this result is very nice. However,

typesetting a musical score is not comparable to
typesetting a text. Also, some meta-information
is needed in order to typeset correctly some pieces,
especially in baroque music. We propose an explo-
ration of these difficulties. Attending this talk only
requires basic knowledge about music and scores.

Jean-Michel Hufflen, XML today: Success or
failure?; pp. 85–94

XML came out in the late 1990s as a possible
standard for information interchange between diverse
programs. What is its point in 2013? Has XML

completely eclipsed its predecessor, SGML? What is
XML’s place within the world of the Web and within
programming activity?

Jean-Michel Hufflen, BachoTEX song;
pp. 95–98

A printed score of this renowned tune.

Paweł Jackowski, TEX beauties and oddities;
pp. 99–105

Collected TEX pearls, with contributions from
Bogusław Jackowski, Gunter Essers, Jerzy Ludwi-
chowski, Piotr Strzelczyk, and Marcin Borkowski.

Abstracts; pp. 106–110
The remaining abstracts had no corresponding

papers submitted.

Kaveh Bazargan, How TEX helps deliver
XML-first production to journal publishers

Almost all publishers of academic journals re-
quire a granular XML of each article, along with PDF,
HTML, and other formats. The XML is the archive
of the article, so it is imperative that the content of
all formats match precisely. I will show how TEX
can be used both to generate XML from the author
manuscript, and to convert the XML into PDF and
other deliverables.

Piotr Bolek, The traditional vs. the future book
What do the tablet revolution and the growing

popularity of e-readers mean for the books, publish-
ing industry and readers? A digital book, audiobook,
multibook or just an application? A multimedia pub-
lication—only a toy, a manual or something more?

Examples of publications, ideas and new oppor-
tunities. The book of future and its production—
technologies, standards, formats and tools.

Digital distribution vs. intellectual property and
access to digital content. Models of distribution
and access to content. Contemporary and informal
distribution channels.

EuroBachoTEX 2013 proceedings

238 TUGboat, Volume 34 (2013), No. 2

Katarzyna Burakowska, Communication
outside of words. Meta-communication.

Research showed that words of a message ac-
count only for 7% of the perceived value of a spoken
message, while the tone of voice accounts for 38% and
facial expression for up to 55%. Thus the non-verbal
elements of verbal communication are very important
for its efficiency. There is a lot of research regarding
importance of meta messages in verbal communica-
tion. This knowledge is being used in creative ways
by theatre artists. I haven’t come across research
evaluating meta-messages in written communication,
though graphics artists use them very often in their
works. I would like to share my thoughts regarding
that issue. I’m not a typographer, but do work in
visual arts, so my presentation will be, as usual, a
little bit off the main conference subject.

Willi Egger, Workshop: Bookbinding
Based on last year’s success there will be a work-

shop in bookbinding. This time we are going to build
a sturdy shoe-box type of box. While waiting for the
glued box to dry we will make other types of boxes,
small and suitable for gift-packaging.

Hans Hagen, Those typographic things TEXies
are proud of . . . do they really make sense?

Why do we use TEX? Is it because we have no
other choice? Is it because we like to program? Do
we go for the looks? It is no problem to locate users
who, no matter how they started, praise the virtues
of this typesetting system. Isn’t it one of the reasons
why we meet at BachoTEX? How valid are these
sentiments? Does all this focusing on details makes
sense or not? What are those features that we like
so much and do they really make that much sense?

Hans Hagen, Bits and pieces: ConTEXt,
MetaPost, Lua and more, part 1

Last year ConTEXt MkIV became a bit more
what I had in mind when we moved to LuaTEX. I
will give a quick overview of what has been (re)done,
extended, finalized, set in motion and what might
happen.

Hans Hagen, Bits and pieces: ConTEXt,
MetaPost, Lua and more, part 2

Because we want our machinery to do more
and more, performance becomes an issue, especially
in workflows where there is lots of output. I will
discuss some aspects of performance as well as some
experiments that Luigi Scarso and I did in the process
of getting LuaJITTEX up and running.

Hans Hagen, LuaTEX tutorial
Participants will learn at least: what LuaTEX

is really; for whom LuaTEX is useful; the prerequi-

sites to using it; what callbacks are; how to use the
LuaTEX reference manual.

Last but not least several examples will be dis-
cussed in detail, so that the basic mechanisms can
sink in. Handouts will be provided.

Hans Hagen and Frans Goddijn, Books will go
. . . are you sure?

In the Netherlands (and probably elsewhere too)
there is a web shop where you can buy designer
knitware produced by grannies. Apart from the
social aspects, this new business model might as well
translate to producing books.

If you go to a bookshop you will notice that the
kids corner still offers lots of books, and surprisingly,
many of these are well designed (and definitely better
bound than those for grown-ups).

In this session some old folks will discuss the
future of books and design with you from this per-
spective. Please bring with you, your favourite books
from childhood (the ones that impressed you) or nice
ones that you gave friends and family. Of course kids
are invited to join in.

Aleksandra Hankus, The end of the world will
come. Books will go.

We have been debating for many years during
our conferences whether a “paper” book will survive.
The title of my talk may suggest the debate to be
continued. Perhaps. . . Still, the talk will concern the
XIX century in the first place. The time which people
sensitive to beauty would like, in my opinion, to move
to. I will attempt to show a journal (a weekly) from
those years. A weekly issued (typeset) in such a way
that it completely took away my willingness to buy
printed stuff nowadays.

Ryszard Kubiak, A personal view of markup
languages

A markup language is a notation in which a
textual document can be written down in order to
later give it an elegant graphical form by a computer.
Many such languages have been and are continu-
ally being designed, the language of TEX being one
of them. The creators of markup languages take
into account various aspects of human-computer and
human-human communication. The talk will be
about my personal views and experience of using
various languages.

Bogusław Jackowski, Piotr Strzelczyk and
Piotr Pianowski, On the progress of the TEX
Gyre Math project: The TG Bonum Math font

Two fonts—TG Pagella Math and TG Ter-
mes Math—have been released so far within the
frame of the TEX Gyre math project. Currently,

EuroBachoTEX 2013 proceedings

TUGboat, Volume 34 (2013), No. 2 239

the TG Bonum Math font is under preparation; we
will present the current state of the work. The re-
maining font, TG Schola Math, will, hopefully, be
(pre)released by the end of 2013.

Paweł Łupkowski, A poster: Online LATEX
editors— fancy toys or usable tools?

I review several LATEX editors available online.
I will pay attention to the range of offered packages
and compilation options available. I will also take
a closer look at options of integration with other
services (like Dropbox) offered by the editors. In
addition, mobile solutions will be described.

Arthur Reutenauer, Polyglossia update
Polyglossia was created five years ago as the

X ETEX-aware replacement of Babel, whose develop-
ment had come to a halt. Aiming at providing what
its predecessor had done two decades ago for then-
existing variants of TEX, it has grown to support over
70 languages. For many languages it relies heavily on
fontspec, whose extensive font-handling capabilities
are essential, and which several years ago was made
to support LuaTEX. However, Polyglossia itself had
notably left LuaTEX aside until now.

Today, work has started on experimental sup-
port for LuaTEX, and work on Babel has also thank-
fully resumed. I will discuss the relationship between
both packages, and plans for Polyglossia’s future in
the ever-evolving world of TEX.

Arthur Reutenauer, Behaviour-driven
development for TEX

Behaviour-driven development is a software de-
velopment process whose central idea is that in order
to write any computer program, one should first
specify how its different parts should behave, and
only then start implementing them. It builds on a
slightly older method called test-driven development,
whose main tenet is to write tests before the code.
Behaviour-driven development thus recommends to
not only write tests and specifications beforehand,
but also to conduct an analysis of what the different
parts should do, and to let that analysis drive the
development workflow.

This is evidently a very different approach from
the one we usually use for writing packages and
macros, but, having used it for a couple of years
in the industry, I would like to introduce it to the
TEX community and to explore options and ideas
from these areas that would, in my humble opinion,
benefit us.

Barbara Wilińska, Workshop: Painting initials
You’ll be able to paint your own initial, little by

little, with your teacher’s trifling help, but still all
by yourself.

Inspirations may be found at http://bancroft.
berkeley.edu/digitalscriptorium/, http://www.
enluminures.culture.fr/documentation/

enlumine/fr/, or, perhaps, in your family’s
collections . . .

Andrzej Tomaszewski, On readability of script
and print

An attempt to define the underlying notions and
present the area of interest of the research community.
A survey of some research on readability (during the
twentieth century), initially on reading hygiene and
sight protection, with a later focus on improving
perception. The figure of Miles Albert Tinker, the
leading researcher on print readability. How those
problems were seen in Poland.

Zofia Walczak, Spring cleaning in the garden—
grafting LATEX

Spring in the garden. We are trying to do ev-
erything in order to have a good harvest. And how
about LATEX? Are we doing enough for the people
who don’t know LATEX yet? I will ask many questions
and give a few answers.

Marcin Woliński and Adam Twardoch,
Designing a scientific journal following the example
of Journal of Language Modelling

Journal of Language Modelling (http://jlm.
ipipan.waw.pl) is a new, free (no publication fees)
open-access journal. All content is available under a
Creative Commons licence.

We will talk about the design process of the
journal’s layout and its implementation as a X ELATEX
document class.

[Received from Jerzy Ludwichowski.]

EuroBachoTEX 2013 proceedings

240 TUGboat, Volume 34 (2013), No. 2

TUGBusiness

TUG 2013 election report

Nominations for TUG President and the Board of
Directors in 2013 have been received and validated.
Because there is a single nomination for the office
of President, and because there are not more nom-
inations for the Board of Directors than there are
open seats, there will be no requirement for a ballot
in this election.

For President, Steve Peter was nominated. As
there were no other nominees, he is duly elected and
will serve for two years.

For the Board of Directors, the following indi-
viduals were nominated:
Kaja Christiansen, Steve Grathwohl, Jim Hefferon,
Klaus Höppner, Arthur Reutenauer, David Walden.

As there were not more nominations than open posi-
tions, all the nominees are duly elected for the usual
four-year term. Thanks to all for their willingness to
serve.

Terms for both President and members of the
Board of Directors will begin with the Annual Meet-
ing. Congratulations to all.

Board member Jonathan Fine has decided to
step down at the end of his term. On behalf of the
Board, I wish to thank him for his service, and for his
continued participation until the Annual Meeting.

Statements for all the candidates, both for Pres-
ident and for the Board, are appended (in alphabet-
ical order). They are also available online at the
url below, along with announcements and results of
previous elections.

⋄ Barbara Beeton

for the Elections Committee

http://tug.org/election

Kaja Christiansen

Biography:
I live in the city of Aarhus, Denmark and work at

the University of Aarhus. My job at the University
involves system administration of Unix machines
at the University as well as software, including the
responsibility for up-to-date TEX & friends suite.

I heard about TEX for the first time in the fall
of 1979. In Palo Alto at the time, I wanted to audit
courses at Stanford and my top priority was lectures
by Prof. Donald Knuth. That, I was told, was not
possible as Prof. Knuth was on leave due to work on
a text processing project. . . This project was TEX!
Back home, it didn’t take long till we had a runnable
TEX system in Denmark.

Personal statement:
I have served as a Board member since 1997,

as the chair of TUG’s Technical Council since 1999,
co-sponsored the creation of the TEX Development
Fund and served as TUG vice-president from 2003–
2011. I share system administrator’s responsibilities
for the TUG server (which access to the Internet
is currently facilitated by my University). In my
rôle as a member of the board, my special interests
have been projects of immediate value to the TEX
community: TEX Live, TUGboat and TUG’s web site.
During the years 2002–2011 I served as the president
of the Danish TEX Users Group (DK-TUG).

Steve Grathwohl

Biography:
I have used TEX since 1986, first as a hobby,

then “professionally” after I joined Duke University
Press in 1993 on the staff of the Duke Mathematical

Journal. Eventually I supervised the production of
the journal (for both print and online incarnations),
and I wrote and maintained the class files for typeset-
ting. Since 2005 I have been responsible for loading
content for our 50 journals and monographs onto
multiple platforms as well as being TEXnical liaison
for Duke to Project Euclid, a hosting service for over
50 independent mathematics journals. My current
work involves a significant amount of work with XML

content and metadata schemas as well as being the
in-house TEX specialist.

Personal statement:
TEX has proved to be an astoundingly robust

piece of software, and the continuing development
of projects like LATEX3, LuaTEX and X ETEX helps
ensure TEX’s vitality into the future. I would like
to see the TUG board continue to support these and

TUG 2013 election report

TUGboat, Volume 34 (2013), No. 2 241

others (like TEX Gyre and TEXworks) that contribute
to a 21st-century TEX.

Jim Hefferon

I have enjoyed working on the Board, trying to
promote the interests of TEX and friends. In the
future I would like to continue to do so, trying to
balance fiscal prudence with taking the opportunities
that arise.

Klaus Höppner

Biography:
I got a PhD in Physics in 1997. After several

years in the Control Systems group of an accelerator
center in Darmstadt, I’ve been working at an accel-
erator for cancer therapy in Heidelberg. My first
contact to LATEX was in 1991, using it frequently
since then.

I was preparing the CTAN snapshot on CD, dis-
tributed to the members of many user groups, from
1999 until 2002. I was heavily involved in the organi-
zation of several DANTE conferences and EuroTEX
2005. Since 2000, I am a member of the DANTE

board, some years acting as president or vice presi-
dent, now as treasurer.

Personal statement:
In the years since Karl Berry’s presidency the

cooperation of TUG and European user groups im-
proved a lot. My candidacy is in the hopes of helping
to continue this trend. Projects like TEX Live and
CTAN owe their success to the work of active volun-
teers, but also to the support and cooperation of the
user groups.

Steve Peter

Biography:
I am a linguist and publisher originally from

Illinois, but now living in New Jersey. I first en-
countered TEX as a technical writer documenting
Mathematica. Now I use TEX and friends for a
majority of my publishing work, and work with sev-
eral publishers customizing TEX-based publishing
systems. I am especially interested in multilingual
typography and finding a sane way to typeset all of
those crazy symbolisms linguists create. As if that
weren’t bad enough, I also design typefaces. (Do I
know lucrative markets, or what?)

I got involved in TUG via translations for TUG-

boat, where I also work on the production team. I
was on the TUG board of directors for several terms
before becoming TUG president in 2011.

Personal statement:
The future of TEX and TUG lies in global com-

munication and cooperation to promote and sustain
the amazing typographic quality associated with TEX
and friends. Projects such as LuaTEX show that
there remains a dynamic and bright future for our
preferred typesetting system. I am especially inter-
ested in having TUG support projects (technical and
artistic) that will serve to bolster TEX and TUG’s
visibility in the world at large.

Arthur Reutenauer

Biography:
I have been using TEX for the past 15 years,

first as a mathematics student then as a language
enthusiast. Having been president of GUTenberg, the
French-speaking TeX user group, for one term, I have
contributed to founding the ConTEXt Group to help
with development of that part of TEX community. I
am currently the maintainer of Polyglossia.

Personal statement:
Being about as old as TEX, I have come to it in

times where it was already mature but, maybe, not
always up to date with the most recent developments
in computer typesetting. This situation has however

TUG 2013 election report

242 TUGboat, Volume 34 (2013), No. 2

recently improved with the advent of X ETEX and
LuaTEX amongst others, and I do believe that TEX
still has a great potential to produce the best typeset
documents, in which TUG can play its part.

David Walden

Biography:
I was supposed to be studying math as an un-

dergraduate at San Francisco State College; but,
from my junior year I was hacking on the school’s
IBM 1620 computer. While working as a computer
programmer at MIT’s Lincoln Laboratory, I did the
course work for a master’s degree in computer science
at MIT. Most of my career was at Bolt Beranek and
Newman Inc. (BBN) in Cambridge, Massachusetts,
where I was, in turn, a computer programmer, tech-
nical manager, and general manager. At BBN, I had
the good fortune to be part of BBN’s small ARPANET

development team. Later I was involved in a vari-
ety of high tech professional services and product
businesses, working in a variety of roles (technical,
operations, business, and customer oriented).

Throughout my business career and now during
my so-called retirement years, I have always done
considerable writing and editing. This led to my
involvement since the late 1990s with TEX, becoming
a member of TUG, and eventually as a TUG volunteer.
I have served as a member of the TUG Board since
2005 and also served in the role of Treasurer (I know
bookkeeping from my business career).

I helped create The PracTEX Journal, doing
its initial website development; I founded TUG’s
Interview Corner; I have helped behind the scenes
with the TUGboat web site; and I was the “local
organizer” person on the program committee for
TUG’s 2012 annual conference in Boston.

More personally, I use LATEX and other tools in
the “arsenal” of TEX and friends all the time, for
example:

• to write and publish books
(http://walden-family.com/public/mybooks),
including two books created for TUG in collabo-
ration with Karl Berry

• to write numerous articles, some of which are
related to TEX (http://walden-family.com/
texland)

You can learn more about me at http://www.
walden-family.com and at http://www.tug.org/
interviews/walden.html.

Personal statement:
I am interested in continuing to serve on the

TUG Board:

1. To continue to serve the community that has
so generously served me via comp.text.tex,
CTAN, TUGboat, etc.

2. As a way of explicitly contributing to maintain-
ing the viability for years to come of TEX and
the TEX world, entities I believe are “world trea-
sures”.

As a TUG Board member, my frame of mind has
been to get things done quickly and pragmatically
with enough generality so evolution is possible.

TUG 2013 election report

2013

Jul 21 – 25 SIGGRAPH 2013, “Left Brain + Right
Brain”, Anaheim, California.
s2013.siggraph.org

Aug 5 – 9 Balisage: The Markup Conference,
Montréal, Canada. www.balisage.net

Aug 21 – 25 TypeCon 2013: “Portl&”,
Portland, Oregon. www.typecon.com

Sep 9 TUG2013 preprints deadline.
tug.org/tug2013

Sep 10 – 13 ACM Symposium on Document
Engineering, Florence, Italy.
www.doceng2013.org

Sep 15 – 20 XML Summer School, St Edmund
Hall, Oxford University, Oxford, UK.
www.xmlsummerschool.com

Sep 23 – 29 7th International ConTEXt Meeting and
TEXperience 2013 (CSTUG meeting),
Brejlov (Prague), Czech Republic.
meeting.contextgarden.net/2013

Sep 26 – 27 The Eleventh International Conference
on the Book, Universität Regensburg
Universitätsbibliothek,
Regensburg, Germany
booksandpublishing.com/the-conference

Sep 30,
Oct 7,
14

Introduction to Metal Typesetting and
Letterpress Printing, St Bride Library,
London, England. sbf.org.uk/

index.php/styles/200-printwrkshop

(Listing includes other workshops)

Oct 9 – 13 Association Typographique
Internationale (ATypI) annual
conference, Theme: “Point Counter
Point”, Amsterdam, The Netherlands.
www.atypi.org

Oct 18 – 19 American Printing History Association’s

38th annual conference, “Seeing Color /
Printing Color”, Grolier Club, New York.
www.printinghistory.org/programs/

conference/conference_2013.php

TUGboat, Volume 34 (2013), No. 2 243

Calendar

Oct 22 Beatrice Warde Memorial Lecture,
“Frederic Warde: the Gatsby of Type”,
by Simon Loxley, St Bride Library,
London, England. stbride.org/events

TUG2013

Tokyo, Japan.

Oct 23 – 26 The 34th annual meeting of the
TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2013

Nov 1 – 6 ASIS&T 2012, 75th Annual Meeting,
“Beyond the Cloud: Rethinking
Information Boundaries”, American
Society for Information Science
and Technology, Montréal, Canada.
www.asis.org/asist2013/M2013CFP.pdf

Nov 2 DANTE Herbsttagung and

49th meeting, Köln, Germany
www.dante.de/events.html

Nov 4 TUGboat 34:3, submission deadline
(proceedings issue)

2014

Feb 29,
Mar 1 –
2

Typography Day 2014, Symbiosis
Institute of Design Pune, India.
www.typoday.in

Apr DANTE Frühjahrstagung and 50th

meeting, Universität Heidelberg,
Germany.
www.dante.de/events/DANTE2014.html

Apr 10 – 14 TYPO San Francisco, Yerba Buena
Center for the Arts, San Francisco,
California. typotalks.com/sanfrancisco

Status as of 10 July 2013

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

The 34th Annual Meeting of the TEX Users Group

October 23–26, 2013

Graduate School of Mathematical Sciences, the University of Tokyo

3-8-1 Komaba, Meguro-ku

Tokyo, Japan

http://tug.org/tug2013 tug2013@tug.org

Sept. 9, 2013 —preprint submission deadline

Oct. 23–26, 2013 —conference

Nov. 4, 2013 —deadline for final papers

Sponsored by:

Graduate School of Mathematical Sciences, the University of Tokyo

SANBI Printing

TEX Users Group DANTE e.V.

TUGBOAT Volume 34 (2013), No. 2

Introductory

111 Barbara Beeton / Editorial comments
• typography and TUGboat news

115 Hans Hagen / Does TEX have a future?
• musings on TEX, interactivity, ebooks, page layout, and more

111 Steve Peter / Ab epistulis
• conferences; software; reviews

120 TEX Collection editors / TEX Collection 2013 DVD

• very high-level overview of changes in the 2013 software releases
114 Adeline Wilcox / Running TEX under Windows PowerShell

• tips on Unix-ish usage with this Windows shell

Intermediate

182 Karl Berry / The treasure chest
• new CTAN packages, March–July 2013

168 Charles Bigelow / Oh, oh, zero!
• survey of confusable characters (0O1Il, etc.) in historical and modern typography

123 Taco Hoekwater / MetaPost: PNG output
• creating bitmap images directly from MetaPost

121 Khaled Hosny / What is new in X ETEX 0.9999?
• moving to HarfBuzz, Core Text on Macs, and more

124 Dirk Hünniger / Converting Wikipedia articles to LATEX
• the wb2pdf Haskell project for local conversion of wiki to LATEX

125 Michael Sharpe / A survey of text font families
• comparison of many font families usable with (LA)TEX for general text

196 Mari Voipio / Entry-level MetaPost 2: Move it
• shifting, rotating, reflecting, repeating

136 Yue Wang / Interview with Charles Bigelow
• in-depth discussion of Lucida and typography

Intermediate Plus

181 Karl Berry / Production notes
• an application of FontForge, ttf2afm, and otftotfm

200 Juernjakob Dugge / Creating Tufte-style bar charts and scatterplots using PGFPlots
• including range frames and dot-dash plots in Tufte’s style

190 Hans-Georg Eßer / LiPPGen: A presentation generator for literate-programming-based teaching
• Python package to create slides from literate programs

184 Paweł Łupkowski and Mariusz Urbański / Preparing for scientific conferences with LATEX:
A short practical how-to

• methods for creation of a related paper, presentation, and poster
132 Peter Wilson / Glisterings

• a font of fleurons; fonts, GNU/Linux, and X ETEX; mixing traditional and system fonts

Advanced

205 Bogusław Jackowski / Typographers, programmers and mathematicians,
or the case of an æsthetically pleasing interpolation

• in-depth mathematical description of Hobby’s algorithm for connecting Bézier segments
223 Kevin Donnelly / Representing linguistic pitch in (X E)LATEX

• typesetting linguistic pitch representations, directly or with TikZ, et al.

Contents of other TEX journals

235 Die TEXnische Komödie 2/2013; ArsTEXnica 15 (2013); EuroBachoTEX 2013

Reports and notices

110 Institutional members
112 Doug Henderson / In memoriam: Barry Smith (1953–2012)
113 Barbara Beeton / Hyphenation exception log

• update for missed and incorrect U.S. English hyphenations
228 Boris Veytsman / Book review: Learning LATEX, David Griffiths and Desmond Higham
229 Boris Veytsman / Book review: Zapf Exhibition: The Calligraphy of Hermann & Gudrun Zapf

• description of the catalogue of this 2011 exhibition in Japan
230 Will Adams / Book review: What Our Lettering Needs, Rick Cusick

• The contribution of Hermann Zapf to calligraphy & type design at Hallmark cards
231 Boris Veytsman / Book review: LATEX Quick Reference, Herbert Voß
232 Boris Veytsman / Book review: Presentations with LATEX, Herbert Voß
233 TEX consulting and production services
240 Barbara Beeton / TUG 2013 election
243 Calendar
244 TUG 2013 announcement

