
TUGBOAT

Volume 33, Number 3 / 2012

General Delivery 239 Ab epistulis / Steve Peter

240 Editorial comments / Barbara Beeton

New printings of Computers & Typesetting;

Three printing-related symposia;

An open source font from Adobe: Source Sans Pro;

Errata: TUGboat 33:1 and 33:2

241 KOMA-Script comes of age / Markus Kohm

245 Almost 30 years of using TEX / Christina Thiele

LATEX 263 Changing the font size in LATEX / Thomas Thurnherr

265 The calculator and calculus packages: Arithmetic and functional calculations

inside LATEX / Robert Fuster

272 The xtemplate package: An example / Clemens Niederberger

276 A patent application design flow in LATEX and LYX / Peter Pupalaikis

282 Page style tricks with scrpage2 / Markus Kohm

Expanding Horizons 285 CrafTEX: Applying TEX, MetaPost, and friends in crafts / Mari Voipio

Philology 289 MayaPS: Maya hieroglyphics with (LA)TEX / Bruno Delprat and Stepan Orevkov

295 Experiences with Arabic font development / Sherif Mansour and Hossam Fahmy

Fonts 299 The fonts we choose / Boris Veytsman

301 Using TEX Gyre Pagella OpenType Math / Herbert Voß

302 OpenType math font development: Progress and challenges / Ulrik Vieth

309 From drawn to filled paths / Linus Romer

Macros 313 Glisterings: Cutout windows / Peter Wilson

316 Stubborn leaders and juggling boxes: A slightly unusual table of contents /

Boris Veytsman

Hints & Tricks 319 The treasure chest / Karl Berry

Book Reviews 320 Book review: PSTricks: Graphics and PostScript for TEX and LATEX /

Boris Veytsman

322 Book review: Just My Type: A book about fonts / David Walden

Abstracts 324 Les Cahiers GUTenberg : Contents of issue 56 (2011)

(simultaneously published as MAPS 43 and Zpravodaj 2–4/2011)

325 ArsTEXnica: Contents of issue 14 (October 2012)

326 The PracTEX Journal : Contents of issue 2012-1

Letters 328 PUB and pre-TEX history / Don Knuth

News 328 TUG 2013 announcement

329 Calendar

Advertisements 330 TEX consulting and production services

TUG Business 238 TUG institutional members

332 TUG 2013 election

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2012 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $65.

The discounted rate of $65 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The follow-
ing trademarks which commonly appear in TUG-

boat should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: November 2012]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Jonathan Fine
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Philip Taylor
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Copyright c© 2012 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

[This] is what makes the history of technology interesting
and relevant: it not only teaches us about the way things
used to be done; it also gives us perspective on how things
are done today—and how they most likely will be done in
the future.

Henry Petroski
The Book on the Bookshelf (1999)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 33, NUMBER 3 • 2012
PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 33, No. 3) is the last issue
of the 2012 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat

web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

The deadline for receipt of final papers for the next issue
is March 1, and for the one after, July 1.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site. We also accept submissions using ConTEXt.
Deadlines, tips for authors, and other information:
http://tug.org/TUGboat/location.html

238 TUGboat, Volume 33 (2012), No. 3

Suggestions and proposals for TUGboat articles are
gratefully accepted. Please submit contributions by elec-
tronic mail to TUGboat@tug.org.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

TUGboat, Volume 33 (2012), No. 3 239

Ab Epistulis

Steve Peter

Since I last wrote at the beginning of the year, many
things TEX have been transpiring, not the least of
which (for the present group at least) was the annual
meeting in Boston. I had an amazing time there,
reconnecting with old friends, meeting new people,
and having a great time talking TEX! (Have a look at
http://www.tug.org/2012 for a recap of what you
might have missed.) Next year, the meeting will be
in Tokyo, from October 23–26. The local organizing
committee is hard at work making arrangements,
and we will have more to say here and on the main
TUG website and the dedicated http://www.tug.

org/2013 in the not-too-distant future (or RSN as
they say in the software world).

Next year is also an election year for TUG. It
will be a presidential election year, and several direc-
tor’s positions are also up for election. An official
announcement appears elsewhere in this issue.

Another announcement from TUG is that we
are now able to offer the Lucida fonts in OpenType
format. The Type 1 Lucida fonts are frozen and will
not be developed further, while the OpenType fonts
continue to be actively maintained and developed.
For instance, the OpenType fonts support more lan-
guages, with a variety of visual improvements to
their glyphs and spacing. Lucida OpenType is also
one of the few font sets currently supporting Open-
Type mathematical typesetting, and (uniquely, to
our knowledge) provides a bold math variant. The
regular-weight Lucida OpenType math font includes
a newly-designed script alphabet design. Check out
the TUG website to order.

The TEX Collection DVD for this year (which
contains TEX Live, MacTEX, proTEXt, and a snap-
shot of CTAN) has shipped to TUG members since
I last wrote. Nonmembers can also order the DVD

from the TUG store at http://tug.org/store, and
all the software may be freely downloaded (http:
//tug.org/texlive).

New, corrected printings of Computers and Type-

setting and Digital Typography are available. Don-
ald E. Knuth writes “. . . the books themselves are
significantly better in hundreds of small ways. I went
through every page very carefully and introduced
many refinements, which have made me extremely
happy with the result. I’m now able to replace my
personal desk copies, in which hundreds of handwrit-
ten notes had been scrawled since the Millennium
edition came out, by fresh versions that are essen-
tially perfect (as far as I know). This is especially
true of Volume B, because important updates to the

TEX software that were made in 2002 and 2007 have
never before been available in print.”

The TUG website has a section (http://www.
tug.org/books) that offers these and other books of
either TEX or typography interest. A small portion
of the sales benefits TUG so that we may continue
to support various projects.

And speaking of books (I seem to write that a
lot—maybe I should make a macro), CSLI Publica-
tions is now offering a 20% discount for TUG mem-
bers on all their books, including the newly reissued
(and corrected) Digital Typography. Such discounts
are only one of the benefits available to you as a
TUG member. Check out http://tug.org/books/
#discounts for all the currently-available discounts.

And not to sound like a broken record (or a
scratched CD) there are a number of worthy tasks
looking for volunteers. Karl Berry maintains a list
of projects in the TEX community looking for help
at http://www.tug.org/help.

On a more somber note, the book world has
lost two distinguished members in the last couple
of months. Although neither was in the TEX world
per se, their influence on the larger world of books
merits their mention here.

Dan Carr was a punchcutter and printer operat-
ing in Ashuelot, New Hampshire, as the Golgonooza
Letter Foundry & Press. Born in Rhode Island in
1951, he first came to my attention for his work on
Greek typefaces, in particular Parmenides, but he
cut the outstanding Regulus Latin typeface and, not
being tied exclusively to the past, digitized his types
as well. He is survived by his wife and business
partner, Julia Ferrari.

Bill Hill was born in Scotland (hearing him
speak, there was no doubt) and began in the tra-
ditional world of the newspaper industry. Upon
seeing his first personal computer, he saw the future
and joined Aldus to work on page layout before be-
ing hired by Microsoft in 1994. At Microsoft, he
was one of the key figures behind ClearType and
a strong proponent of onscreen reading. I knew
Bill online through our various discussions of ebooks
and typography. In fact, our last exchange was in
the form of a (good-natured) argument over the
meaning of margins in ebooks. Esoteric, to be sure,
but each of us had deeply-felt opinions on the mat-
ter, and I will miss being able to bounce ideas off
him. For a wonderful example of his worldview, see
http://youtube.com/watch?v=RP8D4uWEw5A.

⋄ Steve Peter

president (at) tug dot org

http://tug.org/TUGboat/Pres

240 TUGboat, Volume 33 (2012), No. 3

Editorial comments

Barbara Beeton

New printings of Computers & Typesetting

Following on to Steve’s comments, some additional
information: The new printings of the hardcover edi-
tions of C&T volumes A (19th printing), B (9th
printing), and C (8th printing) were released in April;
new printings of volumes D and E are still “in press”
but not yet released. The new printings were necessi-
tated by the loss of the original films; work on the new
versions has produced archival-quality PDF files that
should withstand future reprintings without the dan-
ger of loss to which more tangible media are subject.
The whole story is on Don’s web page, http://www-
cs-faculty.stanford.edu/~knuth/abcde.html,
near the bottom under “Spiffy New Printings”.

Since these are new printings, not new editions,
it isn’t clear from vendor listings (e.g., Amazon)
whether what is being sold is the new printing or an
old one. However, if you order through the member
link on the TUG bookstore page, and specify that
you want only the new printing but receive the wrong
printing in error, a message to the publisher’s cus-
tomer service should result in a prompt correction.

The updated source files haven’t been posted
to CTAN yet, but we’ll follow up to see if this can
happen before TEX Live 2013 is produced.

Three printing-related symposia

Reading Digital was the topic of a symposium
held in April at the Rochester Institute of Technology.
Organized by Chuck Bigelow, his charge was stated
thus: “I invited vision scientists to talk about scien-
tific studies of reading in relation to digital screen
displays.” The presentations, while directed mainly
at how to present material for best comprehension
when read from a screen, also provided much food
for thought regarding the possibilities for effective
communication through all text-based media.

An overview and highlights of the symposium
were posted by one of the speakers, Mario Gar-
cia, on his blog: http://garciamedia.com/blog/

articles/the_rit_reading_digital_symposium_

vision_studies_take_center_stage .
Although the symposium was recorded, it is not

yet clear if the videos will be posted for public access.
The symposium was held in conjunction with

the presentation of the Frederic W. Goudy Award
for Excellence in Typography. This year’s recipient
was Kris Holmes, co-creator of the Lucida family
of typefaces. A reception and exhibit of Kris’ work
followed her lecture, “Moving Right Along”. (The

recipient of the first Goudy Award was Hermann
Zapf; other recipients include Matthew Carter and
Chuck Bigelow, names well known to TUG members.)

29th Isaiah Thomas Award On September 20,
two anniversaries were celebrated—the 200th anni-
versary of the founding of the American Antiquarian
Society, and the 75th anniversary of the RIT School
of Printing (now the School of Media Sciences)—by
presentation of 2012 Isaiah Thomas Award to the
AAS. This award recognizes leaders in the newspa-
per industry, and earlier honorees represent a Who’s
Who of editors, Pulitzer Prize winners, and other
practitioners. As noted by Dave Walden in his intro-
duction at TUG 2012 to the printing and publishing
world of Boston, Isaiah Thomas was the printer and
publisher of The Massachusetts Spy (or the “Sedition
factory”, as it was also known to the British), and
author of The History of Printing in America, first
published in 1810; in 1812, Thomas founded the AAS

in Worcester, where he had moved his press in order
to take it out of range of the British fleet in Boston.

This year’s award was both a celebration of the
founder of the AAS and recognition of the Society’s
contribution to the preservation of historical docu-
ments and making them accessible in a digital age.

A panel discussion addressed the issue of preserv-
ing the history of news—the primary source from
which scholars derive their material for study. The
AAS is engaged in digitizing their holdings, but they
also keep the originals. (At the Society’s headquar-
ters, after the celebration, the first number of the
Spy printed in Worcester was on display, along with
other materials published by Thomas and some of his
tools of the trade. The paper on which this first edi-
tion is printed is in as good or better condition than
newspapers printed in the middle of the last century,
and eminently readable, although this reader’s eyes
did spot a typo on the front page.) Many newspapers
that have “preserved” their archives on microfilm or
other media more compact than paper, and then dis-
posed of the paper copies, have discovered, to their
distress, that the new images were unreadable. (This
ignores the matter of different local editions, which
often aren’t saved at all; only the “city” edition usu-
ally warrants that consideration.) The obsolescence
of each new medium is also a concern; who still has
the equipment to read a 5-inch floppy disk?

A special treat was the appearance of Isaiah
Thomas himself, portrayed by actor Neil Gustafson
in appropriate 18th century garb. He gave a spirited
first-person account of his life as a printer, publisher,
and patriot. He is often a welcome visitor at local
schools, where he helps make history come alive.

TUGboat, Volume 33 (2012), No. 3 241

Coverage of the award ceremony can easily be
found with the help of Google; the report by the
Worcester Telegram & Gazette has a particularly fine
photo of Thomas expounding on his life and times.

Oak Knoll Fest XVII The topic of this year’s sym-
posium was “The Fine Book in the Twenty-First
Century—Yes, It Will Survive!”. Books created in
limited editions by private press printers, often using
hand presses, are a special case. They are usually
acquired by serious collectors and for library special
collections. So the main question was not, is there
enough interest in the physical books, but, will the
tools and supplies continue to be available to the
individuals who wish to create such books?

One of the speakers was Jerry Kelly, author of
many books on typography (one on Zapf was re-
viewed in TUGboat 33:2); his topic included the im-
pact of technology on typography, one facet being the
use of polymer plates created using computer type.

An open source font from Adobe:

Source Sans Pro

Early in August, Adobe released their first open
source font family, as reported by Paul Hunt in an
Adobe type blog:

http://blogs.adobe.com/typblography/2012/

08/source-sans-pro.html

This family of fonts is based on the gothic forms of
designs by Morris Fuller Benton, in particular News
Gothic and Franklin Gothic. The target applications
include UI labels, where the need for legibility is
paramount, and longer passages of text on screen
and in print.

All the source files used in the production of
Source Sans Pro are available “so that they can
be referenced by others as a resource on how to
build OpenType fonts with an AFDKO [Adobe Font
Development Kit for OpenType] workflow”. They
have been released under the SIL Open Font License.

A followup blog post on September 24:

http://blogs.adobe.com/typblography/2012/

09/source-code-pro.html

announced the release of a monospace font in the
family—Source Code Pro.

All fonts and related software tools are available
through the Open@Adobe portal on SourceForge. De-
tails regarding design considerations and availability,
as well as extensive discussion, can be had from the
cited web pages.

LATEX support for Source Sans Pro and Source
Code Pro was posted to CTAN shortly before this
issue went to press.

Errata: TUGboat 33:1 and 33:2

In the contents-by-difficulty listing on the inside back
cover of 33:1, the author of the “intermediate plus”
article on page 54, “Generating barcodes with Lua-
TEX”, was erroneously listed as Joseph Wright. The
actual author is Patrick Gundlach. Apologies to
both Patrick and Joseph. The on-line listing has
been corrected.

The translation of Arno Trautman’s article, “The
chickenize package— fun with node manipulations
in LuaTEX”, alleged in the abstracts on page 121 of
33:1, Die TEXnische Komödie, to be “published in
this issue of TUGboat“ wasn’t. We hope to see it in
the future.

In the proceedings issue for TUG 2012, 33:2, the
introductory article, which summarized all the rest
of the program, failed to mention the presentation
by Dave Walden, “My Boston: Some printing and
publishing history”.

Also in 33:2, the article by Federico Garcia
included a number of examples of musical notation
generated with METAFONT. On page 161, in section

2.5, the triple-sharp key signature
�

that should

have appeared on every staff in the example and in
text a few lines farther down was missing. It has now
been restored to the on-line version of the article.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

KOMA-Script comes of age

Markus Kohm

Abstract

In 1994 not only LATEX2ε but also KOMA-Script

came into the world, thus having its 18th birthday
this year. In contrast to LATEX2ε, which was com-
pletely developed at birth, KOMA-Script had to grow
during the last 18 years. It started as a baby, not
only complaining in each and every situation but
getting on the nerves of its father and the environ-
ment. Thus an occasion for the father to write a
short retrospective.

1 The conception

The exact date of the conception and the length of
the pregnancy is hard to tell. More or less by chance
I came across Frank Neukam’s Script collection at

Editor’s note: First published in Die TEXnische Komödie

3/2012, pp. 10–16; translation by Uwe Ziegenhagen.

242 TUGboat, Volume 33 (2012), No. 3

the beginning of the 1990s. It contained essentially
everything I needed for technical documents during
my studies.

What I was missing were the adjustments needed
for literary texts, for example support for DIN A5
format. Without further thought I added the most
important changes into the style files. The licence of
Script was somewhat unclear and the author hard
to reach. Therefore I decided to publish my modified
version via Maus KA1 as an alternative.

Script was altered by others as well, so for
a while there were various, incompatible versions
floating around. When Neukam published Script 2.0

in December 1993 he rightly complained about the
confusion. Script 2.0 contained all my changes.

Shortly afterward I heard for the first time that
a successor of LATEX 2.09 was on the way and that it
would change everything. I started thinking about
the future of my documents, which by that time com-
pletely relied on Script 2.0. Beginning in February
1994 I tried to get into contact with Frank Neukam
to prevent a muddle of new versions. About that
time— it is hard to tell when exactly— I managed
to get a beta version of LATEX2ε on my computer.

Since I did not intend to poach again in some-
body else’s preserve—Neukam could not be reached
either by mail or e-mail— I developed KOMA-Script

2.0 based on Script 2.0, the standard classes and my
own ideas. The version number and the choice of the
Grotesk font for the name were intended to create
the link to Script 2.0. Primarily the whole thing was
designed as a kind of “Script 2.0 for LATEX2ε”.

2 The birth

The baby was born on July 7th 1994 in the Maus KA.
It consisted of just the three basic classes scrbook,
scrreprt, scrartcl, the typearea package and a
manual, which at that time was just a slightly modi-
fied version of the Script 2.0 manual.

Like most babies it could cry, demanded atten-
tion and was hungry. One could like it, get annoyed
by it or just ignore it. It didn’t play soccer, yet.

3 The suckling babe

Even in the early days of KOMA-Script the folks
around hassled its father. Not only did everyone
want to see the baby, they also wanted to touch it,
some thought a finger was too small, others a toe
too big, the eyes too blue, too green, too gray, they

1 Maus KA was a mailbox of MausNet, a mailbox network
that was quite prominent in Germany, Austria and Switzerland
when acoustic couplers and modems were state of the art. The
name was derived from the local license plate; KA stood for
Karlsruhe.

wanted to have a hat here and a jacket there. Daddy
liked the attention and tried hard to please everybody.
In the meantime the baby had to get patched up and
its belly massaged to cover its deficiencies.

As early as October 1994 KOMA-Script switched
to docstrip. This meant its own dtx files for the
core as well as for the first additional packages.

4 The toddler

Since I rarely wrote business letters and preferred
a fountain pen for my private communication I had
put no energy into this area. This changed fast
when Axel Kielhorn contributed a first adaptation of
script l.sty for LATEX2ε to KOMA-Script. Thus
the first KOMA-Script letter class, scrlettr, was
created.

After that was one critic demanding a proper
manual. As a proud dad who was—besides his
studies—quite busy with the KOMA-Script baby,
some DVI-driver development for the Atari ST and
the copublishing of a series of amateur anthologies
I forbade those requests. So the LATEX career of
“Harald”2 started with the creation of an updated
manual for KOMA-Script.

Before its first birthday KOMA-Script became
a mingle-mangle of classes, packages and example
files. Especially varied were the packages for all the
hats and shoes requested by people who had seen the
baby crawling. I was not keen on creating new hats
and shoes every week but fancyheadings—the only
package in existence for this purpose—always caused
trouble when interacting with my baby. So I decided
to create scrpage. From then on all questions for
new hats and shoes were answered.

Another big step consisted of some extensions
proposed by Werner Lemberg. He dealt extensively
with the so-called CJK languages.3 To typeset these
languages he needed a few extensions not available
in the standard classes. In KOMA-Script they were
implemented quickly but not fully sufficient. At
this time it became clear that KOMA-Script had to
become more international. Thanks to Werner Lem-
berg there was an abbreviated English translation of
the German KOMA-Script manual.

5 The childhood

At the turn of the millennium KOMA-Script was not
only again a collection of manifold classes and pack-
age but the rather monolithic structure increasingly
complicated further development. Even when its dad

2 Named Axel Sommerfeldt in the mundane world, known
for his tremendous caption package and his help with many
LATEX issues. I got to know him as Harald.

3 Chinese, Japanese, Korean

Markus Kohm

TUGboat, Volume 33 (2012), No. 3 243

wanted to implement a minor change he had to make
changes at three or four places in a file far away from
each other. This was due to the source code being
based on the logical processing of the class files: first
the options, then the basic settings, building on the
commands and environments. It was time for a more
topic-based approach!

There were also—partly similar— issues with
the manual. Basically it was still the same manual
Axel Sommerfeldt had created years ago. It was
not structured according to the classes and packages;
rather, the topics came in an arbitrary sequence.
Although mostly consistent they were hard to fol-
low and understand. And although the manual had
grown from 60 pages to almost 100 pages, most top-
ics were handled briefly. While at the beginning only
nerds like me had used LATEX and technical, concise
manuals were okay, the users of LATEX now included
even “ordinary” people. LATEX had become a tool for
everybody, and they wanted to play with my baby!

To cut a long story short it was time to teach
the child some structure. Its sentences had to get
connectives and were not to be thrown into the room
unmotivated. The problem was: I didn’t have the
time. I had a small (human) son now and shared
work and school with my wife. Thus I looked for
some help.

Help was found fast, or let’s say suspiciously
fast. When it came to the distribution of work for
a new version of the KOMA-Script manual, all help
was suddenly gone. So I started on my own with the
restructuring of the KOMA-Script source code. I had
estimated it would take from mid-2001 to the end of
2003. By then I wanted to complete the new manual
as well. When I pulled the KOMA-Script sources
apart it became clear that the scrlettr package
had flaws at every inch and corner. If the original
design by Frank was to blame, Axel’s implementation
or my extensions, no one knows. Probably it was
some kind of “joint blame”.

To compensate for my frustration with the man-
ual I created a completely new design of a letter class.
I don’t remember how the contact to Torsten Krüger
came about but he proved to be the best tester of
scrlttr2 that I ever had. This positive experience
gave me the kick to continue with the manual. This
was additionally encouraged by Jens-Uwe Morawski
who in a short time created various chapters of the
new manual on the basis of explanations from the
old one. He also created all the new examples for
the scrpage2 package which was to replace the old
scrpage.

6 Growing up

When KOMA-Script reached a two-digit age there was
a new manual, a new package for headers and footers
and a completely new letter class featuring a new
user interface. However there was one thing missing:
the new code base! What was planned originally
for the end of 2003 had a significant delay. In the
meantime I had become the head of development
for a commercial company, had fathered a daughter
and had quit my job to completely take care of my
kids. All this had led to some turbulence affecting
the development of KOMA-Script. Furthermore it
wasn’t simple to work on two completely separate
code trees.

But in 2006 it finally arrived! On July 5th 2006
KOMA-Script 2.95 was published, two days before its
twelfth birthday and featuring the new code base!

After that the development gathered speed. On
November 3rd 2008, with the publication of the 17th

iteration of the KOMA-Script code, all changes I
had planned were implemented, resulting in version
number 3. All concepts I had tested with scrlttr2

and considered well done were not only implemented
for all classes but also documented. This resulted in
a newly restructured manual.

In the meantime there were 34 iterations of
KOMA-Script on the basis of the new code. There
were a few new packages, among them scrlfile,
tocbasic and scrjura for special purposes. There
is a printed, significantly extended manual in its 4th

edition.4 And there’s no end in sight!

7 Really grown up?

In July 2012 KOMA-Script had its 18th birthday. I
asked myself if this makes it grown up and full-blown.
It is surely grown up. But grown up does not mean
either full-blown or finished. Nowadays nobody can
stop learning only because we finished our years of
apprenticeship. We continuously learn and evolve.
So I see no end to the development of KOMA-Script.
In fact I have more ideas in my drawer than I can
ever implement. While in earlier times I was annoyed
if someone had the same idea and finished a package
faster than me, today I am happy since then I can
do other things.

It may surprise some, but my intention was
never to implement as many features as possible
into KOMA-Script. I just wanted to simplify the

4 Before the first official publication there was a preprint
by DANTE for its members only. In cooperation with
Christoph Kaeder and especially through his personal efforts
the Lehmann’s edition of the manual was published. This book
was also the beginning of the successful DANTE book series
where mostly books from Herbert Voß have been published.

KOMA-Script comes of age

244 TUGboat, Volume 33 (2012), No. 3

user’s work. The work with KOMA-Script should
force the user neither to go through meters of partly
contradictory literature nor to dive into TEX internals
to get the typography right. The user should also not
be required to load potentially incompatible packages
to make minor changes to the form of the document—
an inevitable necessity with the standard classes.
Typographically useful changes should be applicable
with a minimum of work and a clear concept.

In the early days of KOMA-Script the resources
of the TEX distributions, the computer itself or “best
practices” often defined the limits. In the meantime
new concepts, especially with regard to user interac-
tion, were created and implemented by me on the
long road to KOMA-Script 3. There is however still
huge potential for further development.

Once upon a time I was a little pink baby with
a squeaky voice myself. During puberty the voice
went down and hair covered my face. From ver-
sion 2 to version 3 KOMA-Script has undergone such
a huge change as well. In the meantime my eyes
have become worse, the hair thinner—and not only
at places where it had annoyed me anyway. Maybe
KOMA-Script will face the same destiny. But KOMA-

Script does not need glasses. Maybe one can ignore
the eyes and remove the hair permanently instead
of always having to shave it. Maybe one can even
renew or change huge parts of the body.

8 What else there is to say. . .

I started to work on KOMA-Script for two reasons:
for my own purposes and because I wanted to give
something back to the community that had brought
me TEX. More or less overnight, however, the project
gained an enormous level of attention. Faced with
the decision between guarding my baby and ignoring
all requests or responding to others’ needs, I decided
for the latter.

Still, not everything has found its way into
KOMA-Script. Take for example an extended layout
package: developed with much hard effort and then
used only for a few weeks. In the end only a small
portion of the original package found its way into
KOMA-Script as scrpage2. Due to the complexity
of the user interface the rest was thrown away.

Of course there were times during the last 18
years when I was close to quitting all work on KOMA-

Script. Countless hours were spent supporting users,
often a burden, partly harassment. People called
me—me, the notorious phone hater!—at half past
ten in the evening to discuss a LATEX issue they had,
unrelated to KOMA-Script. One evening a professor
rang my doorbell and offered me a job. It embar-
rassed me then—today it rather amuses me. I’m

even wondering that no one has yet banged on my
door at four in the morning to get help, but who
knows what the future may bring. . .

On the other hand I was glad to be able to help
people. On various occasions this support inspired
me and helped expand my horizons. Sometimes I
had to remind myself that I dealt with strangers, to
align my own priorities.

I would like to have avoided the whole infamous
discussion about license breaches. In the toddler
times of KOMA-Script I really could have used some
help with these things. Even today I think it is a big
mistake to annoy developers with the peddling and
enforcement of their wishes and claims.

But when I look back I don’t just see a mountain
of code— several tens of thousands of lines now and a
growing book—but also many nice encounters with
people:

There was Luzia, who played an important role
in the publication of early versions of KOMA-Script;
Bernd and David who gave advice on the way TEX
works; Ulrike5 who is not tired of explaining to peo-
ple the logic behind KOMA-Script and who still sends
me bugs; Robin, who has provided my domain for
years and had the idea for the KOMA-Script docu-
mentation project; Rainer, Alexander, Heiner and
many more, who provided me with wine, hardware
and consoling words; Rolf, who with his calming
influence nevertheless has the ability to stimulate;
all people who drove me, cheered me up, calmed
me down, inspired me; the Wise Guys6 who helped
me to cope at various times of frustration, although
they don’t even know me and therefore have a pretty
one-way nature of communication with me.

People from DANTE have consistently supported
me. It is partly this support that has kept me from
throwing everything down.

The most important thing was all these years,
that I met people I could call friends. People that I
consider as valuable to me, although I hardly have a
chance to put the level of attention to these friend-
ships that they deserve.

Just one more thing: KOMA-Script still can’t
play soccer. As ever, there is something to be done!

⋄ Markus Kohm

Freiherr-von-Drais-Straße 66

68535 Edingen-Neckarhausen

Germany

komascript (at) gmx dot info

http://www.komascript.de

5 I would like to use this occasion to congratulate her on
receiving the DANTE Award 2012!

6 http://www.wiseguys.de

Markus Kohm

TUGboat, Volume 33 (2012), No. 3 245

Almost 30 years of using TEX

Christina Thiele

Abstract

It’s not just TEX that’s gotten older and more sea-
soned . . . Reflections on changes in TEX and friends
as used in a small typesetting company: software
and hardware, of course, but also procedures and
skills, resources that went from zero to virtually
infinite, all of it interwoven with life and personal
change. It’s not earth-shaking news, but we’ve come
far enough that looking back yields some interesting
comparisons.

1 How it all began

I first came across TEX at Carleton University in
Ottawa in 1983. I had returned to the university the
year before, to undertake graduate work in linguistics,
with a monthly $300 (CDN) grant, which didn’t even
cover rent. So, a job was needed and here was one
that just fell into my lap: working for Bill Cowan, one
of the department professors and his new editorial
project, the Canadian Journal of Linguistics.

Since 1975, Bill Cowan had been editor of the
long-standing Papers of the Algonquian Conference,
and in fact remained its editor until 1993 (the 25th
conference). His colleague, Jean-Pierre Paillet, a
specialist in Inuktitut, was keen on computers and
had convinced Bill that a really great program had
just been installed at Carleton, and they were looking
for a suitable project to use it on. So, Bill took the
plunge, reassured that J-P would be around whenever
we had problems.1

The first publication to give TEX and the AM

fonts a trial run before committing the Canadian

Journal of Linguistics to its use was the 1983 edition
of the 14th Papers.2 With this book of over 400 pages
behind us, we were ready to tackle CJL the following
year.3

Editor’s note: From a presentation at TUG 2012.
1 Much of this is described in a memorial piece I wrote

after Bill’s death (Thiele 2001). Where the stories diverge, I
would be inclined to go with the 2001 text, as it was closer to
the events.

2 Bill Cowan was editor of the Papers from 1975 till 1993;
vols. 14 through 25 were done with TEX, and then LATEX, at
Carleton. Before TEX, these annual proceedings had been
typescripts on 8.5× 11 paper, which were then photo-reduced
to the final trim size of 6× 9.

3 As with the Papers, CJL was also prepared with TEX,
then LATEX. The 1984 volume had only two issues, with
roughly 230 pages. The next year, with the same budget, CJL

became a quarterly, averaging well over 400 pages a year until
2006, when it changed to three yearly issues still averaging
some 400 pages. Through four changes in editors, I continue
to typeset CJL to this day.

CJL’s pages are, in fact, a record of TEX’s own
evolution, from the Almost Modern AM fonts and
in-house phonetic bitmaps, proofing to paper in the
absence of screen previewers, mainframes and balky
text editors, (snail-)mailing proofs and then camera
copy, to today’s plethora of fonts, emailing of PDF

files, and CTAN as the motherlode of macros for
almost anything conceivable.

2 Hardware/software journeys

Our overall plan was to get dot-matrix proofs out
to authors early in the year, so that editorial work
could progress in parallel with development of the
TEX elements: macros and a phonetic font. By the
time the editorial/proofing cycle was done, we would
have a functioning TEX process, access to a 240 dpi
laser printer, and have copies in time for the October
annual meeting. Figure 1 shows the same page, from
both processes.

2.1 Gutenberg-to-TEX, on a Peach

In 1983, TEX was just at v0.93 on the Carleton
mainframe (a Honeywell, running CP-6).4 We used
a locally made Apple clone (called a ‘Peach’ !5) to
do the data entry; authors in the humanities weren’t
using computers much—and it never occurred to
us that those who did might send us a disc. So
everything was input from scratch.

We used a software program written by a fellow
down in Kingston, Ont., called Gutenberg (I kid you
not!).6 And Gutenberg’s great feature was that it
used tags rather than function keys to format text —
just like TEX! Another great feature was that you
could design additional characters—so that took
care of all our phonetic symbols.

We’d print those files on a dot matrix printer
as proofs for authors, and input the changes into
the same file (sub-figure 1a). Still no sign of TEX
code at this point. Once the editorial work was done,
it was time to prepare the files for transfer to the
mainframe, where they’d be run through TEX. Our
trusty J-P wrote up a conversion program (in LISP,
I think it was) which did a pretty good job of trans-
lating Gutenberg’s codes into basic TEX commands.
Then I’d upload the files via modem and a program

4 I’ve not been able to locate a .log file from that ‘era’;
however, I did find a printout of one from 1988, on CP-6:
This is TeX, DPS8/CP-6 Version 2.0 (preloaded

format=lplain 87.6.25).
5 Wikipedia has a list of Apple][clones, and many are

indeed ‘fruity’: Citron II, Golden, Orange, Pearcom, Pineapple
6502, . . .

6 I did a google search on this and, incredibly, came up
with a review from 1983 (Glenn 1983), which included the
name of the program’s author: John Wagner.

Almost 30 years of using TEX

246 TUGboat, Volume 33 (2012), No. 3

(a) Gutenberg + dot-matrix printer (b) TEX + laser printer (reduced from 120%)

Figure 1: Comparison of outputs from Erickson (1983)

called Kermit. Transfer rate was 300 baud, from
my apartment—one article would take about one
supper (from prep to washing up) to complete.

Once on the mainframe, I’d run the file through
TEX, ignoring all the screen-displayed log info, forcing
TEX to eat through to the end of the file or, more
commonly, until TEX threw up its hands and cried,
“TeX capacity exceeded”.

Editing on CP-6 was a bit of a trick. The EDIT

program was a line editor with a maximum of 255
characters per line (Figure 2). Deleting text on a line
was no problem but adding material (changes to the
text or additional TEX code) meant that a line would
easily reach its maximum capacity. So you had to
insert a new line number (up to 999 ‘lines’ between
any two whole-numbered lines; in the sample shown,
l. 1.010), then keyboard the new material. Copying

the file over itself would re-write the line numbers.
We worked like this for several years (until 1991,

when I got my very own UNIX box!). All in all, very
labour-intensive, quite unsophisticated at times, and
compared with today’s workflow (the term didn’t
even exist in those days!), extremely inefficient. But
we managed, like most everyone else who was trying
hard to use TEX, especially to do more than just
math and science.

There was no screen-preview at the time so
we proofed to paper—which cost us 10 cents per
sheet. We had many defective pages of output, which
we kept in a growing stack by the filing cabinet
because they were the source of replacement letters
and words for last-minute discoveries in what we
thought was our perfect printed camera copy: the
necessary ‘repair’ letters or words would be carefully

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 247

! EDIT

CP6 EDIT B00 HERE

* TY

1.000 The first publication to give \TeX\

2.000 before committing the

3.000 \textit{Canadian Journal of

4.000 Linguistics} to its use was the 1983

5.000 edition of the 14th \textit{Papers}.

* IN 1.010

1.010 and the \acro{AM} fonts a trial run

1.020 <return>

*TY

1.000 The first publication to give \TeX\

1.010 and the \acro{AM} fonts a trial run

2.000 before committing the

3.000 \textit{Canadian Journal of

4.000 Linguistics} to its use was the 1983

5.000 edition of the 14th \textit{Papers}.

Figure 2: EDIT session on CP-6

Figure 3: ‘. . . and we become pragmatic TEX users . . .
The true delights of such a page only become apparent
when you print on the back . . . and half a word drops
through the hole . . . ’

excised with an Exacto knife and glued over the
offending error on the camera copy (Figure 3; see
also Thiele n.d., 2007).

Originally, all output was produced at 120%,
then photo-reduced to the desired text size, to yield
a crisper image (sub-figure 1b).7 When the CM fonts
arrived, we changed that, producing the journal text
at the final design size—no more photo-reducing.
Saved a step at the printers’, which meant it also
saved us a bit of money.

When we had tree diagrams, we worked out a
two-stage process. I had figured out that a table
structure was a good way to set the nodes and labels.
Then Bill would carefully apply LetraLine in solid,
dashed, or dotted versions, to the final paper copy
to finish off the trees. The irony of using a tried-and-
true traditional solution on pages produced with the
very latest and hottest typesetting program around
was not apparent to us for quite some time . . .

Following the 1986 TUG meeting in Seattle,
Dean Guenther introduced me to Janene Winter—
and so began my involvement with developing the
WSUIPA suite of fonts. At about the same time,
a terrific phonetics book by Pullum and Ladusaw
(1986) had been published, which was all about how
to properly draw IPA symbols . . . and each one was
shown with horizontal rules for baselines, ascender
and descender lines, and best of all, the equivalent of
the x-height. Perfect descriptions to feed into Meta-
font, which she did — tirelessly, endlessly, repeatedly
. . . I proposed we borrow the names already in use in
the Pullum and Ladusaw for macro names, and other

7 I believe subsequent testing showed there wasn’t all that
much of a gain but it was a working rule of thumb at the time.

than a hasty renaming of \stop to \glotstop, those
remain in effect. From 1988 until 2005, the WSUIPA

fonts were used. By then, Fukui Rei’s TIPA/XIPA

fonts had been in distribution for a few years, and
I finally switched everything over to his, and they
have become, I believe, the standard choice for most
people doing linguistics with TEX.8

2.2 Building up the programs

2.2.1 manmac into cjlmac

J-P modified manmac to gradually arrive at CJL’s
style and a psychology student (Mike Dunleavy) be-
gan to write documentation,9 as J-P kept devising
more macros to do what Bill wanted. As with all
programming, initially the macros did only what
Jean-Pierre’s code told them to, with results that oc-
casionally could be likened to a Venn diagram: there
was an intersection area where what we wanted was
what we got, but there seemed an awful lot of ‘what
we wanted’ which was not ‘what we got’ outside of
that area (Figure 4).10

2.2.2 Creating fonts

At the same time that manmac was being reshaped

8 I also ran across some mail and files from Johannes
Braams, where he’d sent me a sample of a phonetic font he’d
devised (also from 2005) but I don’t know how widespread its
use became before TIPA.

9 Actually, Mike began writing macros as well, and was the
designer of the original \diatop macro, for multiple diacritics
on a single character.

10 This reminds me of something from the back cover of
a book by Sebastian Rahtz (1987) and credited to Brian
Kernighan: WYSIAYG, ‘What You See Is All You Get’ . . .
although perhaps one could adjust this one to WYCIAYG,
‘What You Code Is All You Get’ . . .

Almost 30 years of using TEX

248 TUGboat, Volume 33 (2012), No. 3

‘When at first we first try to code . . . ’

What we want. What we get.

We get

what

we want.

Figure 4: ‘But that’s not what I wanted!’

...****...****..

*******.*******.

...******..*****

...*****...*****

...*****....***.

...*****........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.........

...****.....***.

....*****..*****

.....****..*****

......*********.

.......******...

Figure 5: Verbatim copy of bitmap for \rtail

Figure 6: Sample with ph10 and ph7 bitmapped fonts (Source: Aubin 1983, pp. 240–241)

into cjlmac, the design of a phonetic font — an IPA

font—was also progressing, in bitmap form (Fig-
ure 5). J-P worked best at night; Bill best in the
morning—almost every day began with newsprint
fanfold printouts, one shape per sheet;11 Bill would
mark them for reworking, leave them for J-P, and
new versions would appear the next morning. And
so it went. We had ph10 for regular text and ph7

for the small text in footnotes, quotes, and the bib-
liography (Figure 6)—but neither had a matching
italics.12 So the upshot was that we tried to avoid

11 Dean Guenther’s article from the 1990 Cork meeting
includes one of these, on p. 156. A complete chart of ph10

can be found on p. 155 of Dean’s article, as well as in Thiele
(1987, p. 8).

12 Normally, not an issue, as phonetic transcriptions are
usually only in roman; on the other hand, if they’re in an

having IPA symbols in titles. And of course, once the
final pages were photo-reduced, the ‘small’ ph7 font
was painfully tiny, as shown in Figures 1 (footnotes)
and 6 (examples with IPA).

2.3 Leaving our low-tech, low-TEX cocoon

We eventually left the Apple clone and Gutenberg,
and moved on to the university’s in-house DOS com-
puter, called a Raven, where I learned to use this
ASCII-based editor called Emacs. I have never
changed—and brief bouts with WordPerfect and
Word have never convinced me I was wrong. By
then, our macros had been settled upon, we had

italicised title . . . — and it so happened that the CJL titleblock
style put the title into italics. But that didn’t much matter,
as we didn’t have a ‘ph17’ bitmapped phonetic font anyways!
(At least, I don’t remember that we did.)

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 249

our documentation, and we were inserting TEX into
author files directly, leaving our crutches (Gutenberg,
with J-P’s conversion programs) behind.

We had also begun to receive submissions on
disc (Thiele 1987, p. 24), and I would often wrestle
with files, trying to get them up to the mainframe,
hopefully losing all their hidden word processing
codes, and then downloading essentially an ASCII

file, which we’d code from scratch. But we were
capturing author keystrokes, and on balance, came
out ahead, in terms of accuracy and turn-around
times. So that was good.

As well, I’d begun to finally read the .log info
on-screen to try and catch obvious typos (\itme
and \exmaple were two of my better ones), hboxes
that were overfull by 213pt at times — and the more
challenging searches for missing braces. At no time
did we really consider moving to PCs, even though
µTEX, PCTEX, and TurboTEX, to mention a few,
had been coming out. We were on the mainframe
from 1983 until 1991, in fact.

At some point, we decided we needed to have a
laser printer of our own, in our building — did I men-
tion that the dime-a-page charge was the prize/price
we paid after hiking over to the other side of cam-
pus, to the computing services department on the
4th floor of the administration building?! A group
of journal editors bought a 240 dpi Imagen printer
by Ahearn and Soper (I’m amazed I can come up
with that name so quickly!), with a driver devised
by Rick Mallett, who also happened to be the TUG

site coordinator for CP-6 (Mallett 1974).

3 There are journals everywhere . . . !

Other journal editors were becoming interested in
how CJL was being produced. However, the queries
would quickly lead to ‘And you’ll do the typesetting,
right?’, as opposed to ‘And you can teach me how
to do this?’. In the end, we actually did both.

As our work became known around campus,
another editor (Toni Miller) and I realised there was
an awful lot of scholarly editing going on, mainly but
not exclusively in the humanities. We approached the
library and asked if we could put together a display
of scholarly journals. We devised a questionnaire, I
typeset the results, and we mounted each journal and
its description on large panels. In all, we had found
over 50 publications whose editorial work was being
done on campus. It was that display in early 1987
which also brought home the potential for typesetting
on a much larger scale than we’d been planning.

Around 1988, with the urging of senior staff in
the Computing Services division, I submitted a pro-
posal to the university, suggesting that a centralised

Figure 7: The Secret Life of an Editor (drawn by
George Chouchani)

production centre would be a good way to consol-
idate the many disparate typesetting jobs (books
and journals) which were humming along in relative
obscurity across campus. Maybe make some money,
raise the university’s publishing/publications profile,
as well as support its academic staff’s initiatives.

3.1 The Journal Production Centre

The Journal Production Centre (JPC) existed from
1988 till 1991, and at times I had two employees,
who mainly worked on keyboarding, coding, and
initial processing, while I did debugging and final
production runs. There were probably 6–8 journals
which we worked on regularly, as well as a number
of annual publications and one-off books.

We produced a lot of journal issues and books,
but weren’t making money to cover our expenses
because I had no idea how to properly charge for
our services. We were asking $3 and $4 per typeset
page and it should have been more like $10 or $12,
given the hours we were putting into them. Quite
inefficient — and eventually the university grafted us
onto Carleton University Press. That lasted about
a year or so and we produced at least half a dozen
books for them; eventually, though, we were cut loose

Almost 30 years of using TEX

250 TUGboat, Volume 33 (2012), No. 3

Table 1: The home network

Year Machine Speed OS Memory Drive(s)

1991 IPC* 12.5 MHz SunOS 4.1.3 8 MB 105 MB SCSI

2002 Sparc10* 2 × 40 MHz Solaris 8 2 × 128 MB 105 MB SCSI

Ultra1 170 MHz Solaris 9 448 MB 4 GB SCSI

Ultra10 440 MHz Solaris 9 512 MB 9 GB SCSI

2008 Sunblade 1000 2 × 900 MHz Solaris 10 4 GB 2 × 73 GB Fiber Channel

2009 Sunblade 2000 2 × 1.2 GHz Solaris 10 4 GB 2 × 73 GB Fiber Channel

2012 Intel architecture† 2 × 3 GHz Solaris 10 8 GB 2 × 80 GB SATA

* The IPCs and Sparc10 were 32-bit machines; all the rest have been 64-bit.

† The latest upgrade makes it possible to create virtual PCs running Windows 7. A cheap way to get a PC that
can be rolled back to the last snapshot taken—which means not re-installing software all over again. As well,
the underlying system is still UNIX and thus my sysadmin is still in complete control—and can fix what goes
wrong. Not the case at all were we to go to real PCs.

• Back-ups have followed a similar ramping up over the years:

– 5 MB tapes — until there was more data than any individual tape could hold
– 5 GB Exabyte tapes
– DTL tapes (10 and 20 GB)
– currently: disc-to-disc back-up

When my own work was in high production mode, back-ups were done every week, and a year’s worth of back-ups
were stored. Now it’s more of an on-demand basis: when proofs and final production PDFs have been generated,
I usually ask that one be done. However, with ZFS snapshots as backups, I have access to old versions of files
back to Jan. 2008.

and I became a sole proprietorship, as they call it.
A home-based business with one employee, in short.
On April 1st, 1991, I filed the paperwork for my
company, the Carleton Production Centre (CPC).

4 Freelancer at last —
the JPC becomes my CPC

My fledgling office was marvellous! Large window,
an enormous table surface, and all the comforts of
home. Clients came to the house, or I cycled in to
their university offices. Almost idyllic!

4.1 The home network

The inevitable shift away from mainframes to work-
stations in the late 1980s/early 90s on campus also
had repercussions at home: we wired the house for
UNIX workstations, and the home network was born
(see Table 1). I had to learn, in order to do my
work; and my husband Mike (not Dunleavy!) used
the network to do beta-testing for the university.

The first machines were two Sun IPCs, at $5000
each (the educational discount at the time). Along
with Sunblade 1000s, bought perhaps a decade later,
these were the only machines we actually bought
new; everything else has been on the trailing edge
in hardware for us (EBay, re-sellers, university cast-
offs), all repurposed for the home network.

We’ve gone through several machines since then,
with changes in operating systems, hardware, back-
up procedures (my husband swears by ZFS, for those
who’re interested)—but on only three occasions,
upgrades to TEX.

Then there are the monitors— the change has
been physically enormous. The usual tiny PC moni-
tors had been replaced by the enormous cathode-tube
monsters that came with workstations, as deep as
they were wide, always taking up too much room.
Flat-screen panels suspended on arms have made
a huge change in the battle for real estate on the
desk. But now the skirmish to move sideways with
two such flat screens side-by-side is looming. I’m
resisting . . . so far.

As for printers, my LaserJet 4M, bought in 1991
for about $2,500 finally died last year (2011). It’s
been replaced by a Lexmark X543d: it prints colour,
it scans paper into .pdf files, it inhales toner of all
colours. The LJ4 never did any of that — but it did
give me 20 years of solid reliable service. I somehow
don’t see the Lexmark hanging on for that long.

4.2 Ahhh! This is much better!

The change from mainframe to workstation yielded
a number of improvements right away:

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 251

• No longer hampered by finite disc storage space.

• Files were edited with Emacs and run through
TEX on the same machine! Until the switch,
files had been edited on a PC with Emacs, then
uploaded to the mainframe, where they were
processed by TEX.

• Saving old projects became feasible—all the
work on the mainframe had to be deleted as
each issue/book was published; there was no
archiving possible (unless we wanted to pay for
taped back-ups). Now I had—at that time—
infinite storage . . . and ‘infinite’ seems to keep
getting bigger, as the years go by.

• Printing was done on-site, in the same room as
the computers.

• The monitor screen was enormous, compared
with those used on either the PCs or the ones
accessing the mainframe.

• Previewing — actually seeing the typeset results
on-screen and not proof-to-paper — was a huge
advance. Saved loads of trees, I’m sure!

4.3 Moving (slowly) through TEX versions

Well, in the beginning there was plain TEX and then
I moved gingerly over to LATEX around 1995.13 Now,
of course, it’s LATEX2ε (Table 2). I don’t use pdfTEX
or pdfLATEX since I’m totally dependent on pstricks —
still one of the great tools from the early days.

Until recently, I had three TEX versions available:
‘oldtex’, ‘newtex’, and ‘rnewtex’ (‘really new TEX’!)
were command-line switches on my machine. When
the second TEX Live was installed, I made Mike keep
the older one around, as that’s what all the archival
files from before 1999 ran on and I’ve been very
nervous that old plain files won’t run the same; I’m
even more nervous about the old LATEX 2.09 files,
mainly because their macros were already rather
hybridised versions of the original plain macros. I
actually had to use the ‘oldtex’ set-up a few years
back, in order to generate .pdf files from very old
.tex and .dvi files. And I’ll be doing the same with
even older files from CJL’s backlist, for the journal’s
60th anniversary in three years’ time.

My current TEX is from the 2003 TEX Live
CD — ‘rnewtex’. Once it was available, the previous
‘newtex’ became redundant, and was retired. And
it’s that old 2003 CD version which finally gave me

13 It was Mimi Burbank who convinced me that I didn’t
need to rewrite/have someone rewrite all the plain macros
into LATEX structures; that there were only a few lines to
change near the top and that would be it. And she was right!
Once that worry was laid to rest, I was very happy to move
over to LATEX, because that finally allowed me to access the
ever-increasing number of packages coming on-line via CTAN.

Table 2: TEX versions I’ve gone through

original TEX on my UNIX box:

This is TeX, C Version 2.93 (preloaded

format=plain 90.2.15) 15 JUN 1993 17:53

oldtex

This is TeX, Version 3.1415 (C version 6.0)

(format=lplain 94.1.31) 8 MAR 2000 13:55

... LaTeX Version 2.09 <25 March 1992>

newtex

This is TeX, Version 3.14159 (Web2C 7.2)

(format=latex 1998.3.25) 18 NOV 2003

... LaTeX2e <1997/12/01> patch level 1

rnewtex

This is e-TeXk, Version 3.141592-2.1 (Web2C

7.5.2) (format=latex 2004.3.11) 10 JUL 2012

14:51 .. LaTeX2e <2001/06/01>

. . . and coming soon . . .

An x86 implementation TEX . . . perhaps by
Christmas 2012.

access to LATEX2ε. However, all of these run on the
one remaining piece of old hardware we have; all
the other machines have been replaced with faster
and more energy-efficient ones. The upgrade from
Sparc to x86 has also made it possible to provide a
platform for me to install PCTEX for client work.

After this conference, the testing begins, to en-
sure that old files using TEX from an old machine
will still run on the new architecture, with a more
current TEX implementation.

5 My favourites

5.1 Macros

My all-time favourite macros are \llap and \rlap

(‘print but don’t measure’) and \phantom (‘measure
but don’t print’). They’re everyday tools for dealing
with things that won’t fit: in tree diagrams, tables,
faking decimal alignments, overwide column entries.
These are invaluable to me. I learned them early,
doing linguistic tree diagrams within tabular.

Early on in typesetting linguistics material, we
needed super- and subscripts in text rather than
math mode, where the vertical displacement (up or
down) was preset. So we did a lot of \raiseing and
\lowering of \hboxes. The flexibility of assigning
any value (we used ex as our unit of measure) was
applied to everything from individual characters to
whole words. And as this was TEX, one could then
combine the up/down of the \hbox with the left/
right shifting that the ‘lap’ commands afforded, to
give a roughly centred combination of characters.14

14 I know that \kerning achieves much the same effect but
never got the hang of it.

Almost 30 years of using TEX

252 TUGboat, Volume 33 (2012), No. 3

These are followed closely by negative \hskip

and \vskip (and eventually their LATEX counterparts
\hspace and \vspace). As a non-mathematician,
the idea of going up by using a negative value for
going ‘down’ was quite arresting at the time. Same
for having text pull to the left via negative horizontal
values.

Nothing sophisticated about these—they just
work without fail.

Ever since he wrote them up for TTN, I’ve been a
firm devotee of Claudio Beccari’s \T and \B (Beccari
1993), to insert struts into tables (usually above or
below horizontal rules)—although now there’s the
bigstrut package, which has some advantages.

Several years ago, Paul Mailhot of PreTEX intro-
duced me to the \includeonly approach for working
from a single run-file to control an entire journal is-
sue.15 I just love it! I’ve expanded the contents
now to include article-specific macros and parame-
ters, so that just about everything is controlled via
the run-file, and the .tex source files focus on the
contents; it’s now about 800 lines. A few extracts
appear in Figure 8. I suppose I could move all the
titleblock material into the run-file as well — it’s only
just now crossed my mind that perhaps that could
be done. But then my source files would be devoid
of any useful identifying content at the top . . . no,
I think it’s better this way. The headers/footers
are in the run-file, but the actual title, author, af-
filiation info is still in the source file. One of those
‘just-’cause-I-can-doesn’t-mean-I-should’ decisions.

And finally . . . although not a single macro: all
the symbols in math mode! Ever since I learned
to define a specific font (in the ‘old’ way, granted),
in order to access a specific character, I’ve plun-
dered the math fonts and many others, for unique
and useful characters. These have been as varied
as the \widetilde used here as a separator, and
special symbols used in linguistics optimality theory
tableaux: ☞ ✗ ❆ :

%% a. pointing hand:

\font\speciala=pzdr at 12pt

\newcommand{\Hand}{{\speciala\char’053}}

\newcommand{\notgood}{{\speciala\char’067}}

%% b. skull-and-crossbones:

%% single-char font:

%% Henrik Christian Grove

%% grove@math.ku.dk

%% [2002/01/23 v0.1]

\font\specialb=skull at 10pt

\newcommand{\death}{{\specialb\char’101}}

15 The basic idea is described in Mittelbach and Goossens
(2004, pp. 18–20).

5.2 Utility programs

Let’s start with xdvi—it goes without saying much
more than that! Next — I could not function without
dvips and ps2pdf!

To my mind, these three are the solid workhorses
that have made it possible to stay with TEX for
typesetting documents, and then smoothly interface
with the wider world of authors, editors, printers
(both human and mechanical), and publishers. They
have gradually let go of being worried that something
done in TEX will smell of CM fonts, and indeed have
gradually let go caring about what’s used before
they receive .pdf files for their proofs, prefinals, and
production runs. Which is as it should be—how
I achieve the necessary end-product is not really
something they need to know much about. One
publisher did get very exercised about TEX being
behind the .pdf files until we finally got him to
understand that he wasn’t going to be getting any
.tex files to work on (that was my job) and no-one
was expecting him to install and use TEX at any
point—he was only doing the printing. And in the
end, his production manager wrote to say the output,
in Times Roman, did indeed look a lot better than
any Times Roman they were able to generate. A
nice, if small, victory for the TEX side.

In terms of utility programs, Emma Pease’s
package tree-dvips, which depends on pstricks, was
an early winner, allowing me to typeset complete
tree diagrams, using LATEX’s tabular environment
for node placement and pstricks to draw in lines, and
something that had never been possible via Letra-
Line — curves! Lines and curves with arrows, in solid,
dashed, and dotted lines! Marvellous stuff. For now,
this means that pdfTEX/pdfLATEX are out of bounds,
but I can still get to PDF via dvips + ps2pdf.

I encountered rtf2latex2e in the mid-2000s and
used it extensively. But before even rtf2latex2e, I
would regularly save all files in ASCII, getting rid of
all coding in the files, to leave a clean playing field for
the TEX — and then LATEX — codes. It was a chance
reference to rtf2latex2e that led me to poke around
the web and then convince my husband/sysadmin
to install it. Compared with coding from scratch, it
was like heaven! Life was good, work was easy!

Then about a year ago, an upgrade to StarOffice
came with an ‘Export to LaTeX2e’ option, and now
life’s even better, work’s even easier.

5.3 cjlmac spawns new packages

In the beginning, I didn’t input TEX code at all.
The basic formatting codes were inserted during
the transfer of Gutenberg-encoded files up to the
mainframe. I just ran the file and hoped it would get

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 253

%% 22 MAR 07: began using a new approach to putting an issue

%% together -- a master run-file, using \includeonly and

%% \include -- based on a model provided by Paul Mailhot

%% of PreTeX Inc. Copied cjal-run-file.tex from

%% cjal/vol-10-1/ and customised for CJL (Ch.)

[...]

\documentclass[twoside]{article}

[...]

%% 20 MAY 09: dimens changed:

\usepackage{cjlmac-l3} %% \textwidth = 27 --> 28pc

%% \textheight = 43 --> 45pc

[...]

\usepackage{slashbox} %% 24 JUL 09: for AKINLABI tables (in 54,2)

%% for FILE-MURIEL (in 55,1)

[...]

%

art-baker-vinokurova, %% PROOFS sent: 31 MAY 12 %% CORR input: 14 JUN 12

art-heycock, %% PROOFS sent: 25 MAY 12 %% CORR input: 13 JUN 12

art-massam, %% PROOFS sent: 2 MAY 12 %% CORR input: 12 JUN 12

art-mcconnell-ginet, %% PROOFS sent: 18 APR 12 %% CORR input: 5 JUN 12

art-nickel, %% PROOFS sent: 13 APR 12 %% CORR input: 5 JUN 12

art-gil, %% PROOFS sent: 14 MAY 12 %% CORR input: 12 JUN 12

%

[...]

%%%%%%%%%%%%%%%%%%%%

%% NOTES:

%% a. for blank versos, use \watermark

%%

%% b. FOR MUSE version of .pdf, they don’t want the watermark,

%% so uncomment next line and reprocess the run-file:

%%

%% \let\watermark=\blankverso

[...]

%% ARTICLES:

\pagenumbering{arabic}

%% For final camera run:

%% a. uncomment all \crop[cam] lines

%% b. uncomment next line, to set final pagestyle:

\pagestyle{cjlmac}

[...]

%% BAKER-VINOKUROVA:

\bgroup

%% \selectlanguage{english}

%% \pagestyle{proofs}

%% \pagestyle{secondproofs}

%% \pagestyle{prefinalproofs}

%% \setcounter{page}{1001}

\pagerange{177--207}

%

\def\DUP{\textsc{dup}\spacefactor = 1000 }

\def\FACT{\textsc{fact}\spacefactor = 1000 }

\def\NEUT{\textsc{n}\spacefactor = 1000 }

\def\NSF{\textsc{nsf}\spacefactor = 1000 }

\def\PUNC{\textsc{punc}\spacefactor = 1000 }

\def\STAT{\textsc{stat}\spacefactor = 1000 }

\def\TIME{\textsc{t}\spacefactor = 1000 }

%

\markboth{\Leftheader{}}

{BAKER and VINOKUROVA}

%% \crop[cam]

\include{art-baker-vinokurova}

\watermark %% = p.208

\egroup

[...]
Figure 8: Extracts from cjl-57-2-runfile.tex

Almost 30 years of using TEX

254 TUGboat, Volume 33 (2012), No. 3

Table 3: Macro packages galore!
algmac.sty
algmac-l.sty
burmac.sty
calsmac.sty
campbell-l.sty
cilob-l.sty
cjal-l.sty
cjlmac.sty
cjlmac-l.sty
cjlmac-l2.sty
cjlmac-l3.sty
crispmac.sty
critmac.sty
demonmac.sty

edmac.sty17

escmac.sty
escmac-l.sty
escmac-l2.sty
flormac.sty
flormac-l.sty
fosmac.sty
gaumac.sty
gilmac.sty
kormac.sty
lathesis-newmacs.sty
leftmac.sty
ling-atl-l.sty
lukas-l.sty

musicmac.sty
quemac.sty
revmac.sty
richemac.sty
rightmac.sty
ronimac.sty
rsmac.sty
rsmac-spanish.tex
scamac.sty
shortmac.sty
tolleymac.sty
wademac.sty
walkmac.sty
weber-l.sty

• The ones with -l are for LATEX use—some old, some new.

• Many are simply cjlmac clones, with the much-mentioned
20–30 formatting revisions, to address layout differences
between journals.

to the end. After several months, I began learning
how to add TEX code, to address changes from the
editor. The macros began proliferating, so we had
documentation written up (I still have the binder),
until we were inputting TEX codes into ASCII files
from scratch.

And just as gradually, I began looking at those
macros, leafing through The TEXbook, and making
my first forays into tinkering with the definitions.

As other projects (first journals, then books)
came along, I would modify cjlmac, renaming it
something suitable: escmac for English Studies in

Canada, burmac for an enormous book on 12th-
century Spanish accounts,16 and so on.

The proliferation of such *mac files (Table 3),
where almost 95% of the contents were identical, even-

16 Part of ‘Projecto Burriel’. Originally keyboarded with
Nota Bene, auto-converted into TEX, with macros written by
Andrew Dobrowolski.

17 This is not the same package first designed by John
Lavagnino and Dominik Wujastyk. For my first critical edition
(1988–1993), I had heard of this package, which was still in
beta form; I hired Andrew Dobrowolski to build on its base,
to address all the needs of such a format for John Donne’s
Pseudo-Martyr (Raspa 1993). These were then extended even
further to deal with a very large Spanish-language project
(Hernandez, 1993). It was keyboarded in Nota Bene, which
first required Andrew to write a conversion utility into TEX.
After that opus, our edmac and ancillary files continued to
be used in several series of Renaissance plays I typeset for
Dovehouse Press, Ottawa, until 2005.

My failure to rename the file was inexperience—and also
not knowing whether Dominik and John’s package was ever
going to go beyond beta. It eventually did, and so our home-
grown package has remained in-house, to avoid confusion. And
my impression is that the ‘real’ edmac has gone far beyond
what ours had, so I don’t think ours is a loss to the TEX
community. But it is a bit of an object lesson in the need
to adhere to the tenet that variations on an existing package,
even if it’s only in beta, must be renamed, even if you don’t
think the original will continue.

%% %% %% Production log:

%% 10 SEP 12: began file clean-up and encoding

%% (to p.3) (Ch.)

%% 11 SEP 12: continued clean-up and coding (to p.24)

%% NOTE: all former exx nos. are those found on

%% the .pdf I printed as reference (Ch.)

%% 12 SEP 12: continued clean-up and coding (to

%% p.34) (Ch.)

%% 13 SEP 12: finished coding file (Ch.)

%% 14 SEP 12: screen-proofed file; generated

%% proofs (Ch.)

%% [...]

Figure 9: Sample of comments in .tex file

tually led to a more sophisticated solution: Macro
packages would load cjlmac first, and then simply
overwrite the 20 to 30 commands which were the
significant differences from the linguistics journal’s
layout.18 Much more streamlined, took up much
less space, and the essential differences were all that
the new macro package contained. Each subsequent
variant was simply a modified version of the previous,
with new macros being either additional reworked
macros from cjlmac or entirely new ones I was grad-
ually able to write.19

With the advent of LATEX2ε, things changed
again. Instead of cjlmac being the base file, it was arti-

cle which did the job. Macros from previous packages
were brought into the new version, adjusted where
necessary, or simply replaced with publicly available
packages and their special options or modifications;
for example, titling, fancyhdr, titlesec, caption, . . .

And finally, once I began using \includeonly

syntax, with a run-file for the entire publication,
the journal-specific macro file became just another
add-in to the run-file; the master file for everything.

One thing I have done from very early on is
document my work, with a running commentary on
what I’m doing. In my .tex files, I keep a dated
log of work done (Figure 9).20 In my macro files, in
addition to the same style of entries at the top, I
also make notes within the package on any changes,

18 I’ve often claimed there are no more than 20–30 journal-
specific layouts that affect the main look of a document: head-
ers and footers, titleblocks and opening page footers, lists,
citation blocks, footnotes or endnotes, superscripts, bibliogra-
phies, contents page, font size, assigned font usage, text width
and height, headings (from 2 to 5 levels), float parameters,
indentions, and a few others. Some elements may take several
macros to define (e.g., titleblock usually has title, author,
affiliation, maybe also email) but for the most part, that’s it.

19 However, much of my macro-writing ‘expertise’ remains
confined to modifying existing macros, copying them from
others I’ve found via the web, asking for assistance on the
ling-tex list, or as most often now happens, finding a new
package on CTAN! I’m no Amy Hendrickson or Karl Berry!

20 My log entries are always at the top of the file, so they’re
the first thing I see when I open it.

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 255

including which of my previous packages I’ve copied
or modified a macro from. I think I realised that,
as the only one working on a file, especially macros,
there was no-one else to ask, and there were so many
files, it was necessary to keep a record of such things.

5.4 Resources

Again, there are constant and true resources, without
which I could not have done TEX typesetting for 30
years: these are the TEX community, email and the
Internet, and courier services (!).

But more than any of these, the most important
resource I have had has been my sysadmin husband,
Mike McFaul. He’s done all the computer work that
allows me to just sit at my keyboard, and get on
with my job. He doesn’t use TEX, doesn’t much like
installing it (requires him to know stuff he doesn’t,
and I can’t help as I don’t know the stuff he needs).
But he provides the entire infrastructure of a com-
pany’s IT staff. From hardware/software upgrades to
back-ups, from giving me the UNIX commands I need
to do certain tasks to fixing files that go wonky, from
email service to Internet connectivity, it’s all there.

I am very fortunate.

There are many other great resources I’ve been able
to tap and count on. To name a few:

1. Mining down into the TEX community itself,
probably a good 20–30 percent of everyone at
the conference has helped me in some way or
another. Being an active member of TUG since
1986 helped build up those connections, opened
doors in a few cases to typesetting contracts, and
by osmosis (especially during the years spent
editing conference proceedings) I learned and
was taught a great many things that no class-
room could have ever provided.

Becoming further involved in that community,
I started up the ling-tex list in 1994, which
was a self-serving event at first. But it is still
going, still viable, and many many people have
asked far more questions than I! So I’m very
pleased it’s continued for almost 20 years.

2. Email, to stay connected with that community,
and the Internet. Without these, no work in
TEX could really be done, in my opinion.

3. CTAN’s huge collection of all those wonderful
contributions from people around the globe. The
CTAN-ANN list has been a great way to keep
up, and eventually remember that something
came through a while back that might be what
I need.21

21 The CTAN-ANN notices also appear on TUG’s home
page, www.tug.org.

4. Courier services were becoming more pervasive,
targetting home businesses in particular. It was
easier to get a 24-hour turnaround in documents
(when a printed hardcopy was what printers
wanted) using those courier services than any
inter-departmental mail service or even personal
delivery by car. Couriers made it possible to
totally ignore where I was, and where my client
was: we were both within 24 hours of one an-
other for physical materials, and almost instan-
taneous contact via email and phone.

6 How things have changed

6.1 Exchanging and processing submissions

At the start, there were no author submissions on
disc— everything was input from scratch. The CJL

editor would edit the hardcopy ms., and I would
input both the text and the edits. Everything was
done on our Apple][clone, formatted with Gut-
enberg software, to generate proofs that were already
roughly in the final layout (as described above).

Once author submissions began coming in on
floppy, the files were converted to ASCII, for use with
Emacs. We had both a PC and a basic Mac in the
office and some conversion tools to bring the files
into an un-encoded state, ready for inputting both
edits and formatting codes.

By the late 1980s, author submissions increas-
ingly came on disc (both PC and Mac) using a variety
of software: Word, WordPerfect, Nota Bene, Word-
Star are the main ones that come to mind. The
editors would send edited hardcopy and matching
disc, and I’d input those edits.

Even after moving from the mainframe to the
UNIX box, the same procedures were followed. When
I had employees, they used WordPerfect for inputting
edits and TEX code, avoided any of the WP function
keys, and saved the files in ‘Text only’ format. The
files were then saved in ASCII, I checked them in
Emacs, and then ran them through TEX.

By the mid- to late 1990s, submissions seemed
to converge on Word’s .doc format, the PC and Mac
versions having pretty much aligned.

By the early 2000s, editors were taking care
of editorial changes themselves, sending only edited
.doc files and a matching hardcopy by mail/courier.
This was as much a cost-cutting choice as a practical
one — editors were themselves becoming skilled users
of the software, for their own academic work, and
were transferring that skill to their journal editing.

This convergence on the .doc format made it
possible to take advantage of RTF as a bridging
mechanism: use StarOffice to save the file in .rtf

and run that through the utility rtf2latex2e to yield

Almost 30 years of using TEX

256 TUGboat, Volume 33 (2012), No. 3

a fairly accurate TEX-encoded file. Not only did this
save time but it also ensured that all the care and
time authors had taken, especially with their special
characters and font changes, would be preserved.

In most cases, the cleaning out of extraneous
TEX code was still more efficient than inputting it
all from scratch. However, on occasion, a file would
have a great number of special characters that failed
to be picked up by the half-way step through RTF.
The only way to deal with that — to make sure that
all the original and unique keystrokes were retained —
was to go into the .doc file and replace each one with
a unique ‘dummy code’, some alphanumeric sequence
that would pass through the conversion untouched.

As mentioned elsewhere, rtf2latex2e has now
been replaced by StarOffice’s own export utility into
LATEX, which has been an even bigger time-saver.

At present, the only technical hiccup is with
.docx submissions. Fortunately, editors have been
most accommodating in resaving in the older format.

Somewhere in here, our Mac became obsolete:
no Mac floppy had been seen in ages. And its removal
cleared up desk space! Indeed, there were no discs
from anyone — emailing files had become much easier
and there were no more costs incurred either buying
discs or shipping them along with their hardcopy
mss. More cost savings for everyone. And I could
get rid of some equipment from my work space.

The PC was still needed— its Acrobat Reader
was better at viewing/printing .pdf files than the
UNIX version, especially if font substitution was hap-
pening.

By the mid-2000s, I began sending .pdf proofs
to editors, but still courier’d the marked-up mss,
which had all my queries and comments marked.

Editors then began using the .pdf format to
replace the hardcopy and both it and the .doc file
would arrive via email. No more courier costs at
either end.

However — I still work entirely from paper. I’m
a firm believer in the paper trail. The manuscript
.pdf is printed,22 to get hardcopy for my queries
and comments.

Corrections come back as scanned .pdf pages
(which I then also print, to make sure everything’s
been taken care of). Some authors are sending back
the proof .pdf, with annotations. Unfortunately, I
can’t print these pages, so those annotations often
have to be written onto a hardcopy of the page
needing correction.

Something I’ve been doing lately is printing the

22 The exception is files where so much font substitution
has happened that it’s more accurate to print the .doc file!

.pdf manuscript files in landscape, two pages per
sheet — saves paper at my end. And when I scan the
marked-up manuscript into a .pdf, it’s fewer sheets
for the recipient. Anything that’s not quite clear can
be zoomed in on via the Reader.

Now, everything is done in PDF. Even the au-
thor’s marked-up manuscript is scanned into a .pdf

and sent via email or left on an ftp server (file sizes are
expanding, like the universe!). Mailing and courier
costs have been reduced to almost nothing.

The physical paperwork that does remain at the
end is then returned to the editors (by regular mail
now, rather than courier). Where once I would go
through a box of paper (5,000 sheets) every half year
or so, a box now lasts me a couple of years at least.
Yet another cost savings.

Hardcopy camera copy on high-contrast laser
printer paper has similarly given way to production
.pdf files for printers. And here, the cost of moving
physical material around has been removed entirely.

Some printers (companies, I mean) were ini-
tially leery of my .pdf files, until it was clear that
no font substitutions, even of the Base14, were hap-
pening. I had poked around the web, looking for
ps2pdf commands in submission instructions for var-
ious publishers and publications and finally found
the right syntax (all on one line):

ps2pdf -dPDFSETTINGS=/printer

-dCompatibilityLevel=1.3

-dMaxSubsetPct=100 -dSubsetFonts=true

-dEmbedAllFonts=true

As a very small operation, I feel that I have
to be as good as the ‘big guys’, and make sure no
objections can be found for rejecting my files — and
thus losing a client to someone using more widely-
used — known software familiar to the printers. But
soon there was a more concrete reason to have found
this solution.

Publishers of books and journals now often re-
quire a matching .pdf file for web-based distribution
of the publication. I am eternally grateful to the
people who devised ps2pdf and the switches that
fully embed all the fonts, include the current Base14
(used to be Base35, remember?). I have solid robust
.pdf files—at least, I’ve never heard anything to
the contrary.

The next step after .pdf files for the web has
been the need (so far, only one journal) to have live
links. So, back to CTAN for the solution—which
is, of course, hyperref. As with a number of these
utilities, I come to need them years after they’ve
been developed, which means that most of the bugs
and such wrinkles as cross-package interference issues
have been found and usually resolved. Being behind

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 257

the curve has its advantages at times!
Graphics, illustrations — anything I can’t create

with TEX or xFig. In the beginning, .tex output
had blank spaces where hardcopy provided by the
authors would be cut-and-pasted into position. In
those days, there were very few illustrations in CJL;
most were for the Algonquian Papers.

It wasn’t till the early 2000s that authors began
offering up figures in various formats, often of a
quality far inferior to their text. As I had none
of the half-dozen or so popular software packages
around at the time, any edits or changes needed had
to be done by the author—and this didn’t always
work out.

A couple of years of this and I finally decided I
had to find someone who could handle graphics files —
I simply was not skilled enough, and it bothered me
that great-looking text (which had been properly
edited) was being accompanied by shabby figures
(which often weren’t consistent with that text). I
think a small-time typesetting business like mine
does have to weigh the costs (time and money and
expertise) of doing it all, or paying better people to
do things you’re not so good at. Again, advances
in technology kept making this more cost-effective:
email renders geographic location irrelevant, attach-
ments and ftp simplify file transfers both to and
from the graphics person, payments made via Pay-
Pal (what a marvellous invention that’s been, eh?!).

6.2 TEXnical enhancements over time

As mentioned earlier (Table 2), we’ve only upgraded
TEX three times, none of them smooth (‘Why can’t
this install like a normal UNIX program?!’ is often
heard around here). Based on what people were
telling me at this summer’s Boston meeting, things
are quite different now, so I’m almost looking forward
to having the new TEX Live DVD installed.

So, leaving aside such major upgrades, the pro-
gression of enhancements to TEX and company have
been significant and noticeable, and the output of
the past 30 years visibly reflects those changes:

• AM fonts to CM fonts for text: this is purely an
appearance thing.

• The in-house bitmapped ph10 and ph7 were
replaced by the Metafont suite of WSUIPA fonts
from Washington State University, which at last
made italic phonetic characters possible. The
WSUIPA fonts were in turn replaced by Fukui
Rei’s TIPA/XIPA. This upgrade path is about
more than just appearance.

The TIPA fonts, under LATEX, make the pho-
netics font as fully flexible as the regular text
fonts. The greatly expanded repertoire of avail-

able characters, as well as the tools to build
even more complex combinations, is a tremen-
dous change. On the more mundane side of
things, the coding intricacies have been greatly
reduced. For example, looking at diacritics for
these non-CM fonts, one can appreciate the sim-
plicity which TIPA now affords:

ph10 \v{\normalphn\char’162} n/a
WSUIPA \v\tailr ˇ❋

\v{\ipa\char’106} ❋̌

TIPA \v\textrtailr ó̌

• plain TEX eventually gave way to LATEX 2.09,
and now to LATEX2ε.

• In-house macros based on manmac gradually hy-
bridized into a combination of newer LATEX-
based syntax working alongside existing plain
TEX definitions, supplemented with task-specific
packages from CTAN: caption, tree-dvips, multi-

row, and so on.

• Every new layout or character in authors’ .doc
files has found a response in CTAN’s ever-ex-
panding collection of packages: that is, as au-
thors’ writings become more complex, there is
often a package that already addresses that need.
In the old days, a new layout was usually greeted
with ‘Why?’ and ‘Is there a significant differ-
ence in meaning by not doing this the old way?’.
Now, it’s usually just a matter of either finding
an appropriate package or asking for assistance
via the ling-tex list!

• Documentation on using TEX has gone from one,
sometimes inscrutable source, The TEXbook, to
an explosion of information, both printed and
on-line, for all user levels and for far more than
‘just math and science’.

7 . . . and some things hardly change at all

In no particular order . . .

• I work from paper— .pdfs with sticky notes
are quite simply annoying: I can’t print them
to have hardcopy proof of what the author’s
corrections are, I can’t cut-and-paste anything
out of those sticky notes, and I can’t compare
pages easily. So I have no use for ’em. And of
course, with the basic Acrobat Reader, I can’t
generate them either! So I’m a paper-based
editor and typesetter and that’s just the way it
is — it’s faster and more accurate for me to write
notes by hand than to mess around with teeny
tiny notes that wink out whenever my cursor
goes out of the yellow box or into the yellow box
or some place in between. Yuck.

Almost 30 years of using TEX

258 TUGboat, Volume 33 (2012), No. 3

• Annotations at the top of a file, showing its
work history. I noticed this the first time I edited
papers for the 1986 proceedings for the Montreal
meeting. As I was exchanging files with the
authors, it became a habit. Many prefer having
such log files at the bottom, out of the way, but
I prefer opening the file and seeing right away
what’s been worked on last, whether it was me or
someone else, the commented history has been
a terrific crutch, when there’s just too much to
keep track of or simply as memory fades . . .

• Pens — I depend on Pilot Hi-Techpoint V5 pens
in extra fine turquoise to mark all my edits,
notes, comments, queries on hardcopy. Early
on, Bill and I used non-reproducing light-blue
pencils (or markers): their marks wouldn’t be
noticed by photocopiers and, for the most part,
by printers (at that time). So we were safe in
making small annotations on final copy (instruc-
tions to the printer), or using a ruler to mark
tree diagram lines on camera copy for placement
of LetraLine.

We had our pen colour assignments: blue
was mine, his was green, and authors could
have anything else (!). None of that happens
anymore, and yet, I still use those turquoise
markers, which are actually rather difficult to
find these days. I suppose I could change but
. . . These days too, I like corrections made in
red as it’s so much easier to spot than the ever-
so-diplomatic lead pencil or black pen — useless
when the eyesight starts to go!

• For tree diagrams, I still use tabular and tree-

dvips rather than front ends such as qtree; I like
to think I have more control over the appearance.
And at this stage of the game, I’m too lazy to
learn more than I have to (!).

• Daily tracking of hours per project—this has
always been to the quarter-hour, marked on
slips of paper. Then manually transferred to
each project’s production chart, tallied once a
job’s done, and then (eventually) an invoice is
done up. Not efficient at all. But I don’t see it
changing at this point!

• Rates — I’ve increased these perhaps twice. Ini-
tially, it was per hour, then per typeset page,
now a combination: typeset pages + per/hour
when the hours exceed the norm. Eventually
this builds up a track record of how much time
a project (journal issue or book) ought to take,
compared with what it actually took. Then I see
how things look, on balance, over the long term.

• Production charts and account books—also
done manually, but at least here I do the en-

tries as invoices are sent and payments received.
Needless to say, the forms are typeset in TEX.

• I still print on both sides of the page— in the
days when proofs were on paper, my stack of
recycle paper was much higher.

• Fonts—my knowledge of how to set up and
access the many hundreds of fonts available these
days continues to be hampered by being an
end-user on the UNIX box, unable to explain
exactly what goes where, when it comes to all
the font files. I understand that there are good
installation tools/scripts these days but . . . well,
everyone’s got a black box they sort of dread
having to open, and this one’s mine. I really
and truly have had no feel for this subject, and
it’s been a real barrier.

The one time I did need something special was
Baskerville, for a collaborative project (Beecher
and Ciavolella, 2010) where the main work had
been done using Y&Y TEX, which I already had
on my laptop (running Win98). In fact, the
PC was networked to my workstation, with the
big monitor, so I did all the editing in Emacs
and then would turn to the laptop (and its tiny
screen) to process the file. I found the program
was really nice to use, but the fact that both
the laptop’s OS and the TEX implementation
were ancient made it unrealistic to undertake
new projects. But I have to say that the ease of
use for installing fonts was a real treat. I just
wish it were that easy with UNIX!

8 Passing TEX along

8.1 Within the university environment

Along with this student job working on the Algon-

quian Papers and CJL, I was also working on my
master’s — and of course, it was going to be typeset
using TEX!23

By 1985, along with the fellow who’d written
the user guide for the CJL macros (Mike Dunleavy),
I was asked by the university’s Computing Services
dept. to help write The Local Guide to LATEX — how
many of you have done the same thing at some
point?!24 By virtue of our working on CJL’s TEX

23 Using cjlmac and plain TEX and AM fonts.
24 For those who don’t know this bit of history . . . Both

editions of Lamport’s book LATEX: A Document Prepara-

tion System tell the reader (on p. 2) that “how you actually
run LATEX depends upon the computer system . . . For each
computer system, there is a short companion to this book,
titled something like Local Guide to LATEX for the Kludge-499

Computer (the 2nd ed. calls it the McKludge PC). After
the initial confusion about the existence of such a document,
people finally figured out that it meant the creation of a “local
guide” had just been passed along to them!

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 259

macros and documentation — and apparently a fear
that our expertise might lead us to leave the univer-
sity — caused various administrators to find a way to
keep us around; Computing Services got the mission.

While we wrote up this local guide, several other
elements began to coalesce and converge on LATEX:

• The idea of using LATEX for thesis production
was taking shape. I was just finishing mine, us-
ing plain TEX, for linguistics, so surely LATEX
would not only be easier but would also help
move TEX out of the math/science sphere into
the larger (and TEXnically less demanding) hu-
manities faculties.25

• An institutional membership in TUG was taken
out by the university, with copies (seven, I be-
lieve) being distributed across campus to likely
hubs of interest (Math Dept., Engineering, Com-
puting Services, CJL, and so on).

• The math department was pushing to have its
secretarial staff work on faculty members’ pa-
pers, notes, and so on, using TEX, so there was
training that needed to take place.

• Various engineering departments were looking
to do the same as well, and while some had a
few secretaries already working with TEX, more
formal courses were being sought.

The net result of all these threads was a series of
mini-courses on using LATEX for various purposes, a
Local Guide, a macro package called lathesis, and the
Journal Production Centre (JPC; see Section 3).

8.2 Beyond the university . . . someone
knows someone who . . .

You never know when someone who knows what you
do will act on that knowledge and pass your name
on for potential work. I’ve never done any concerted
advertising about what I do and yet, by word-of-
mouth, many jobs have come my way. I think this is
the way with many TEX users who either dabble as
consultants or do it full-time. Our community is as
much about recommending its fellows as it is about
helping them solve problems.

A poster session at a 1993 SSP (Society for Schol-
arly Publishing) conference,26 which focussed on

25 I’m sure the associated ‘discussions’ on how to bend,
adjust, or simply silently circumvent some of the university’s
typewriter-based requirements are familiar to many who’ve
done the same thing. I smiled when I saw that two presenta-
tions at this conference (Flynn, Veytsman) would be about
using LATEX for thesis preparation. I suspect there are many
of us out there who’ve been down a similar path.

26 This is one organisation (sspnet.org) I would strongly
encourage joining; they are a year or so older than TUG, and
represent a very broad range of fields related to publishing.
The exposure to potential clients is one not to ignore.

TEX’s suitability in a large-scale production envi-
ronment, especially one with journals and/or series,
made quite an impression. One interested fellow was
from the NRC (see below) and even at that early date,
thought the idea most applicable to the Research
Press, although nothing came of it at the time.

On the other hand, it was about 18 months later
when someone from the U.S.-based Oxford University
Press office contacted me, saying they’d spent a long
time trying to find me (how much of an ego-boost do
you think that was!). They had a difficult text, done
for the most part in TEX, which needed to be set
in the house style. I worked for a very exacting but
patient person, and eventually the book was done. A
second followed—and that was it. Nevertheless, it
a very good learning experience with a “professional”
publisher and had come about by happenstance.

Similarly, one of the secretaries in the math
department mini-course I’d taught moved on to a job
at the NRC (National Research Council, Canada) in
the Research Press around 1998. It was she who had
them contact me to teach them how to use TEX for
their journals. This became my first consulting job —
with Robin Fairbairns doing all the heavy lifting, in
terms of writing up macros to suit their one- and
two-column journal formats. TEX was replaced by
XML-focussed software around 2004; however, late in
2011 they decided to call us back in and move their
physics journal back into TEX: it was just too hard
to make physics fit into the XML mould.

Being rather specialised in linguistics (as is the
current TUG president, Steve Peter, by the way)
means it’s easier for people to remember you, and
contact you. Several years ago, the TUG office itself
passed my name on to an American publisher, and
again, it was a TEX-encoded project which needed to
be adapted to their specifications. Curiously, some-
thing very similar came my way a couple of years
ago (files which had been worked on since the early
1990s!) and that 1245-page volume is now in print,
the last in its series.

It’s always a challenge taking TEX-encoded files
that have been worked on for a long time, because
they show the evolution of the author’s skills over
time — as well as availability of packages that may or
may not have undergone changes and/or upgrades.

The long and short of it is—as expertise in-
creases, and the client base expands, opportunities
arise from unexpected quarters.

8.3 Joining the TEX community

While my work using TEX and my involvement with
TUG were deeply intertwined on a daily basis, lengthy
reminiscences about the latter should wait for an-

Almost 30 years of using TEX

260 TUGboat, Volume 33 (2012), No. 3

other time, another article. Some highlights might,
nevertheless, be pertinent at this point.

Only a few years after I began working with
TEX, I joined TUG (1984), and then became active
on the board, from 1987 till 1995, serving on many
committees and in several positions, culminating in
president. I’m still a member— just a lot less ac-
tive. Almost everything I know today about meeting
procedures and about collaborating with very dif-
ferent people (TEX expertise, languages, academic
backgrounds) stems from my years on TUG’s board
and continues to serve me well.

I attending the annual meetings for TUG for
many years, as well as a few hosted by various Euro-
pean user groups. Often the committee and board
work limited the time spent listening to presentations
but there was always lots of time spent talking and
listening outside of the formal schedule — useful and
indeed invaluable, especially in the period from 1986
till 1993, when one’s fellow attendees were the main
source of information, support, and teaching.27

As well, for many years, I edited our conference
proceedings, from 1988 and 1989 alone and was grate-
ful when others joined, as of 1990. Building on this,
it eventually lead to the creation of the TUGboat

production team.
For a time I was a member of the original pro-

duction team, along with Barbara Beeton, Mimi
Burbank, Robin Fairbairns, Sebastian Rahtz, and
Michel Goossens. Being part of that group gave me
exposure to a different level of production values,
definitely a very different level of TEX programming
and skill levels, and models of how to make collab-
oration over long distance (and time zones) work
smoothly and productively. That education, along
with all the time spent on TUG’s board, has come
back repeatedly in all my subsequent activities. So I
am extremely grateful for having had these oppor-
tunities, very rarely conducted in person, to expand
and extend my own abilities.

From 1991 till 1995, I was involved in getting
TUG’s first small-scale newsletter, TTN (TEX and

TUG News); Peter Flynn carried on with TTN for
several years after that, until TTN ’s contents were
folded back into both TUGboat and Lance Carnes’
on-line PracTEX Journal.

While I think I’m still listed as the contact for
a Technical Working Group in linguistics, it’s the

27 Unlike today’s annual meetings, this was when vendors
were showing their newest software for PCs and Macs, im-
proving the user interface, selling books that were a precious
source of information . . . the web hadn’t yet really turned up
so all we had was The TEXbook, our TUGboat issues, and
one another.

ling-tex list 1994 which has been the more suc-
cessful mechanism for the community using TEX for
linguistic material.

I started the ling-tex list in 1994, and it’s still
going strong. It’s just about the best resource for
me and my linguistics typesetting—and it seems
to serve that same purpose for a great many other
people. I have to admit that I’m quite proud of the
list, that it continues to function, providing users of
all skill levels the help and encouragement they need.
Since 1995 or so, it’s been generously housed at the
University of Oslo and is still being maintained by
Dag Langmyhr.28

From around 2000 till 2003, I was part of a
technical support group for users of Y&Y TEX, along
with Mimi Burbank and Robin Fairbairns. As often
as not, I found myself learning a lot about PCs and
how TEX ran on them. We wrote documentation,
and did an awful lot of testing. Eventually that came
to an end, but the collaborative atmosphere was a
very positive and productive one.

The details of all the above can be found in the
pages of TUG publications and its website.

Much of this activity has now ceased—except for
ling-tex. And it’s been 13 years since I last came
to a TUG meeting. But perhaps because so much
communication has been done via email that it never
seems that long. Friendships and acquaintances,
never really gone, are picked up again with an email
query; familiar faces are seen again, if a little older —
and, of course, so much wiser :-).

9 Life and personal change

9.1 Then . . .

I was single when this whole adventure began. In
time, my thesis was completed, so I no longer had
to split my time between earning money and doing
research. I could stay late any night of the week,
working in my office, dawdling about with paperwork
for the journal or single-mindedly plugging away at
coding or debugging. I’d be there most Friday nights
till late,29 order pizza, and be happy as a clam. I
had a computer in my apartment as well, and would
do the same there.

Eventually, I had a boyfriend, and work was
confined more to regular hours and more to the

28 However, I want to point out that the list was first
hosted by George Greenwade at Sam Houston State University
(SHSU); I’m grateful to George for that generosity in taking
an idea and making it reality.

29 Not something one probably needs to do these days,
given the portability of devices as well as the current system
of connectivity everywhere.

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 261

office. In 1991, we had rented a house, and it became
possible to consider moving my work place from the
university to home, as an independent business.

First thing—Mike wired the house to network
our brand-new IPC computers (wires strung through
the walls or just lying along the baseboards). I had an
upstairs bedroom for the office, which clients reached
by coming up quite steep and narrow stairs. I got
a new LaserJet 4M printer, which put out 600 dpi
as opposed to the old one’s jagged 240 dpi. I looked
like a pro!

Next was finding ways to getting paperwork to
and from my clients still at the university — increas-
ingly I depended on couriers, rather than cycling in
(not so good in an Ottawa winter!). It soon became
clear that the courier services took away one last hur-
dle — what happens when a journal editorship moves
away from Carleton and Ottawa? It was virtually
a seamless shift, given the 24-hour turnaround that
most companies were offering. A seemingly trivial
point — but with almost 8 years of being on campus,
sneaker-netting between client offices and my own,
the client possibilities beyond the university suddenly
became very real.

The downside to this was, of course, a significant
decrease in cycling to university, as a car was so much
easier . . . and clients so much further (the NRC, for
example, were on the other side of the city!) and the
gradual decline in my level of fitness . . . !

We married in 1998 and added our lovely daugh-
ter in 2000. I stopped working till 2002, starting
up again when Anna went to home care, just across
the backyard. Productivity jumped right back up
there and remained fairly steady as school became a
full-day routine.

Journals in Canada are usually funded partly by
memberships in associations, partly by government
grants. As money became tighter in the late 2000s,
some of my client journals left, either to be produced
only in on-line versions (usually via Word) or they
simply faded away. Table 4 shows the ebb and flow
in pages and projects over time.

Some of the small publishers whose books I had
typeset for years also ceased operations: one sold
his backlist to a larger publisher, another finally re-
tired. I got a few not-quite-finished projects, where
I had to find my way through someone else’s TEX
code— like doing historical research! There have
been various editing jobs, with or without the subse-
quent typesetting, and several very long-term book
projects.

9.2 . . . and now

Now I have only two journals: CJL, the old stalwart,

Table 4: Page counts 1992–2011

Year Pages Projects Year Pages Projects

1992 2,365 13 2002 3,152 18
1993 3,609 19 2003 2,077 10
1994 3,240 16 2004 715 4
1995 2,737 17 2005 976 6
1996 3,643 21 2006 937 5
1997 3,528 19 2007 1,009 5
1998 2,435 13 2008 1,357 9
1999 2,984 15 2009 1,396 8
2000 3,490 21 2010 613 4
2001 1,023 6 2011 630 4

is still with me,30 and an annual collection of papers
from the University of Ottawa’s OLBI (Official Lan-
guages and Bilingualism Institute); and there’s the
renewed consulting work for the NRC.

From time to time I lend a hand to others, edit-
ing texts and/or inputting edits to TEX files. I don’t
mind bibliography work either, which is often where
editors have difficulties.

It’s been a good run so far. Many inventions
and opportunities, coming together at the same time,
have made it all work out quite well, I think.

TEX has allowed me to have my own small busi-
ness and work from home, close to my family. It has
made it possible for me to have a job where I know
I have contributed to the larger world of scholarly
research and publication, as well as passing my skills
and enthusiasm on to others of the same mind.

TEX—and TUG —have led to long-standing
friendships in many places far beyond Ottawa, expe-
riences in working on a variety of boards and com-
mittees and lists, and an appreciation of the role
each of us can have in making things better for one
another, and for everyone.

References

[1] Aubin, George F. 1983. A Lord’s Prayer in
Wampanoag? Actes du quatorzième congrès

des algonquinistes, ed. William Cowan,
239–244. Ottawa: Carleton University.

[2] Beccari, Claudio. 1993. “Hey— it works!”.
TEX and TUG News (TTN), 2,3, pp. 10–11.

30 Having started with vol. 29 in 1984, I’m currently fin-
ishing vol. 57. For its 60th anniversary, my proposal to have
the entire backlist put into PDF files for its MUSE collection
has been accepted—which means some new work over the
next year or two. I have files back to vol. 35 (1990) and
will generate true searchable PDF files through vol. 47 (2003).
Everything before that (1954–1989) will be scanned into PDF,
from originals held by the University of Toronto Press.

Almost 30 years of using TEX

262 TUGboat, Volume 33 (2012), No. 3

[3] Beecher, Donald, and Massimo Ciavolella, eds.
2010. De la maladie d’amour ou mélancolie

érotique. Paris: Éditions classique Garnier.

[4] Carleton University. 1987. Local Guide to

LATEX. Ottawa: Computing Services, Carleton
University. (Written by Mike Dunleavy and
Christina Thiele.)

[5] Erickson, Vincent. 1983. “The Mohawks are
Coming!” Elijah Kellogg’s Observation.
Actes du quatorzième congrès des

algonquinistes, ed. William Cowan, 37–47.
Ottawa: Carleton University.

[6] Glenn, Patricia D. 1983. “Gutenberg
(evaluation)”. Creative Computing Vol. 9,
No. 6, p. 64 (June). www.atarimagazines.
com/creative/v9n6/64_Gutenberg.php.

[7] Guenther, Dean, and Janene Winter.
1990. An International Phonetic Alphabet.
TUGboat 12:1, pp. 149–156.

[8] Hernandez, Fernando. 1993. Las Rentas del

Rey: Sociedad y fisco en el reino castellano del

siglo XII. Madrid: Ramón Areces.

[9] Lamport, Leslie. 1986. LATEX: User’s

Guide and Reference Manual. Reading:
Addison-Wesley.

[10] Lamport, Leslie. 1994. LATEX: A Document

Preparation System, 2nd ed. Reading:
Addison-Wesley.

[11] Mallett, Rick. 1974. TEX82 on CP-6. TUGboat

4:2, pp. 73–74. Site coordinator report.
tug.org/TUGboat/tb04-2/tb08site.pdf.

[12] Mittelbach, Frank, and Michel Goossens.
2004. The LATEX Companion. 2nd ed. Boston:
Addison-Wesley.

[13] Lukasiewicz, Julius. 2011. Rue Lukasiewicz:

Glimpses of a Life. Ottawa: Golden Dog Press.

[14] Pullum, Geoffrey K., and William
A. Ladusaw. 1986. Phonetic Symbol

Guide. Chicago: University of Chicago Press.
(2nd ed. published in 1996.)

[15] Rahtz, Sebastian P.Q. 1987. Information

Technology in the Humanities: Tools,

Techniques, and Applications. London: Ellis
Horwood Ltd.

[16] Raspa, Anthony. 1993. Pseudo-Martyr.
Kingston: McGill–Queen’s University Press.

[17] Thiele, Christina. 1987. TEX, Linguistics,
and Journal Production. TEXniques no. 5,
pp. 5–26. Conference Proceedings from
the 8th Annual TEX Users Group Meeting,
Seattle, Aug. 24–26, 1987.

[18] Thiele, Christina. 1991. “Hey— it works!”.
TEX and TUG News (TTN), 0,0, pp. 30–31.

[19] Thiele, Christina. 1992. So we know what
we’re doing, eh? Paper presented at UKTEX
Users Group meeting, “Book and journal
production”, London (February). Unpublished.

[20] Thiele, Christina. n.d. ‘. . . from the deepest
archives . . . ’. Ottawa: Carleton University.
[An in-house ‘survey’ of our progress using
TEX.]

[21] Thiele, Christina. 2001. In Memoriam:
William G. Cowan (1929–2001). Canadian

Journal of Linguistics 46:291–306. [Not yet
available on-line via MUSE.]

[22] Thiele, Christina. 2007. Interview Corner.
tug.org/interviews/thiele.html.

⋄ Christina Thiele
15 Wiltshire Circle
Nepean, Ont. K2J 4K9
Canada
cthiele (at) ncf dot ca

Christina Thiele

TUGboat, Volume 33 (2012), No. 3 263

Changing the font size in LATEX

Thomas Thurnherr

Abstract

Changing the font size in LATEX can be done on
two levels, affecting either the whole document or
elements within it. Using a different font size on a
global level will affect all normal-sized text as well
as the sizes of headings, footnotes, etc. By changing
the font size locally, however, a single word, a few
lines of text, a large table, or a heading throughout
the document may be modified. Fortunately, there is
no need for the writer to juggle with numbers when
doing so. LATEX provides a set of macros for changing
the font size locally, taking into consideration the
document’s global font size.

1 Changing the font size on the

document-wide level

The standard classes article, report and book sup-
port three different font sizes: 10pt, 11pt, 12pt. By
default, the font size is set to 10pt and can be mod-
ified by passing any of the previously-mentioned
value as a class option. As an example, suppose you
want to change the font size for normal text to 12pt

throughout the document. For the class report, this
is how you would do that:

\documentclass[12pt]{report}

In most cases, the available font sizes for the
standard classes are sufficient and you do not have to
bother about loading special packages that provide
more options.

1.1 Extended font sizes for basic classes

Should you ever require a different font size, how-
ever, the extsizes package comes in handy. Along
with the standard font sizes mentioned above, it
provides the following additional options: 8pt, 9pt,
14pt, 17pt, and 20pt. As these font sizes require a
reimplementation of the document classes, names are
slightly different from the standard classes article
and report:

\documentclass[9pt]{extarticle}

\documentclass[14pt]{extreport}

1.2 KOMA-script and memoir classes

The KOMA-script document classes work very much
the same in terms of font size as the standard classes.
The only difference is the default font size which is
11pt for all classes except scrlettr. The latter has
a default size of 12pt.

The memoir class, however, is more flexible when
it comes to font sizes. It provides additional sizes

ranging from 9pt all the way to 60pt. These op-
tions are available: 9pt, 10pt, 11pt, 12pt, 14pt,
17pt, 20pt, 25pt, 30pt, 36pt, 48pt, and 60pt. The
following example illustrates their usage:

\documentclass[60pt,extrafontsizes]{memoir}

The example illustrates a common problem with
fonts larger than 25pt and the standard LATEX font
Computer Modern (in 0T1 encoding). They cannot
exceed 25pt since larger sizes are not defined and
therefore not available. The memoir class solves
this problem with the extrafontsizes option. It
changes the standard font to the scalable Latin Mod-
ern in T1 encoding. This is equivalent to the following
two lines of code in the document preamble:

\usepackage{lmodern}

\usepackage[T1]{fontenc}

1.3 Other classes

The AMS document classes have a few more font
sizes than the basic classes, though not as many
as extsizes. It’s always good to check the class
documentation to see what’s supported—not all
classes are the same.

2 Changing the font size locally

A common scenario is that the author of a document
needs to change the font size for a word or paragraph,
decrease the font size of a large table to make it fit on
a page or increase the size of a heading throughout
the document. LATEX implements a set of macros
which allow changing font size from Huge to tiny,
literally. That way, the author does not have to
worry about numbers. The macros, including the
exact font size in points, are summarized in table 1.

A good rule of thumb is not to use too many
different sizes and not to make things too small or
too big.

LATEX provides two different ways to use these
font size modifier macros: inline or as an environment
using \begin...\end:

{\Large This is some large text.\par}

\begin{footnotesize}

This is some footnote-sized text.

\end{footnotesize}

The \par command at the end of the inline
example adjusts baselineskip, the minimum space
between the bottom of two successive lines.

2.1 More sizes: \HUGE and \ssmall

The moresize package adds two additional options
to the list of macros above, \HUGE and \ssmall.
The first provides a font size bigger than the largest

Changing the font size in LATEX

264 TUGboat, Volume 33 (2012), No. 3

Class option 10pt 11pt 12pt

\Huge 25pt 25pt 25pt
\huge 20pt 20pt 25pt
\LARGE 17pt 17pt 20pt
\Large 14pt 14pt 17pt
\large 12pt 12pt 14pt
\normalsize (default) 10pt 11pt 12pt
\small 9pt 10pt 11pt
\footnotesize 8pt 9pt 10pt
\scriptsize 7pt 8pt 8pt
\tiny 5pt 6pt 6pt

fontsize \Huge

fontsize \huge

fontsize \LARGE

fontsize \Large

fontsize \large

fontsize \normalsize

fontsize \small

fontsize \footnotesize

fontsize \scriptsize

fontsize \tiny

Table 1: Font sizes available in standard LATEX.

available by default, whereas the latter fills the gap
between \scriptsize and \tiny.

Since \HUGE changes the font size to a number
bigger than 25pt and, as mentioned above, the stan-
dard font is not scalable, LATEX displays a warning
saying the font size is not available and that it was
replaced by the next smaller (\Huge). Again, one
needs to use another font type, such as the Times
Roman equivalent available in the PSNFSS package
(see example below). This way, you can benefit from
that “HUGE” font size provided by the moresize

package. Here is an example:

\documentclass[11pt]{report}

\usepackage{mathptmx}

\usepackage[11pt]{moresize}

\begin{document}

{\HUGE HUGE text}

{\ssmall Can you see a ‘‘ssmall’’ text?}

\end{document}

HUGE text Can you see a “ssmall” text?

2.2 Not enough?

There is an alternative, completely flexible approach.
The anyfontsize package scales the closest bigger
or smaller font size available to any size.

The usage is very similar to the inline exam-
ple shown before. The package implements the
\fontsize command which takes two arguments,
the new font size and the size of the baselineskip.
\fontsize {〈size〉} {〈baselineskip〉}

It is recommended to use a baselineskip of roughly
1.2× font size in order to get a reasonable space

between two successive lines. Of course the best
value depends on the document and font design.

The following example shows font sizes 50pt

and 5pt and compares them with \Huge and \tiny.
The difference between 5pt and \tiny (6pt for the
11pt class option) is barely visible.

\documentclass[11pt]{report}

\usepackage{mathptmx}

\usepackage{anyfontsize}

\usepackage{t1enc}

\begin{document}

{\fontsize{50}{60}\selectfont Foo}

{\fontsize{5}{6}\selectfont bar!}

{\Huge Foo}

{\tiny bar!}

\end{document}

Foo bar! Foo bar!

Again, this only works with a scalable, non-standard
font.

2.3 Memoir classes

As with font size class options, the memoir class
also provides additional font modifier macros at the
extreme ends of the scale, \minuscule and \HUGE.
These macros use font sizes of 4pt, 20pt respectively,
for the 9pt class option and 20pt, 132pt respectively,
for the 60pt class option. Usage is exactly the same
as for the standard LATEX classes.

⋄ Thomas Thurnherr

texblog (at) gmail dot com

http://texblog.org

Thomas Thurnherr

TUGboat, Volume 33 (2012), No. 3 265

The calculator and calculus packages:

Arithmetic and functional calculations

inside LATEX

Robert Fuster

Abstract

The calculator package allows us to use LATEX as
a calculator, with which we can perform many of
the common scientific calculations (with the limita-
tion in accuracy imposed by the TEX arithmetic).
The calculus package uses calculator to compute
simultaneously a function and its derivative.

1 Introduction

The packages presented in section 2 define several
commands to realize calculations within a LATEX
document. The calculator package introduces sev-
eral new instructions that allow you to calculate
with integer and real numbers using LATEX. As well
as add, subtract, multiply and divide, calculator
computes powers, square roots, exponentials, loga-
rithms, trigonometric and hyperbolic functions, and
performs usual operations with integer numbers such
that integer division (quotient and modulo), great-
est common divisor, fraction simplification, . . . In
addition, the calculator package supports some el-
ementary calculations with vectors in two and three
dimensions and with 2× 2 and 3× 3 square matrices.

The calculus package adds to the calculator
package several utilities to use and define elemen-
tary real functions and their derivatives, including
operations with functions, polar coordinates and
vector-valued functions.

Several packages can realize some arithmetic op-
erations in TEX and LATEX, but as far as I know, only
the calculus package has the ability to calculate
derivatives.

These two packages are designed to perform the
calculations needed in the package xpicture (Fuster,
2012b), so the precision it gets is usually sufficient.
But if we see TEX as a programming language, why
should not we use it to make our calculations? In
fact, we can use the calculator package as a length
calculator, an alternative to the calc package; and,
as another possible application, we can calculate
and print the value of a mathematical expression,
without using any external application. In this sense,
these packages are appropriate if high precision is
not required.

In section 3 we review some packages offering
similar functionality to calculator. Section 4 de-
scribes the main algorithms used by calculator and,

finally, in section 5 we explain our conclusions and
future improvements of these packages.

2 The calculator and calculus packages

The calculator package defines a large set of com-
mands intended to use LATEX as a scientific calcula-
tor. Its companion package, calculus, gives us some
tools to define, manipulate and operate with func-
tions and derivatives. These packages are available,
together, from CTAN (Fuster, 2012a).

2.1 calculator

This package operates with numbers (at least from
the standpoint of the user),1 not lengths, as is usual
within other packages. The operations implemented
by the calculator package include routines for as-
signment of variables, arithmetical calculations with
real and integer numbers, two and three-dimensional
vector and matrix arithmetic and the computation
of square roots, trigonometrical, exponential, loga-
rithmic and hyperbolic functions. In addition, some
important numbers, such as

√
2, π and e, are prede-

fined.
The names of all these commands are spelled

in capital letters (with a very few exceptions) and,
in general, they all need two or more mandatory
arguments, one (or more) of which is a number and
one (or more) the name of a command where results
will be stored, as shown in the examples below.2

The new commands defined in this way work in
any LATEX mode.

For example, this instruction

\MAX{3}{5}{\solution}

stores 5 in the command \solution. Similarly,

\FRACTIONSIMPLIFY

{10}{12}{\numerator}{\denominator}

defines \numerator and \denominator as 5 and 6,
respectively. Moreover, some of these commands
support a first optional argument.

The data arguments need not be explicit num-
bers; they may also consist of commands expanding
to a number. This allows us to chain several calcula-
tions, as in the following example:

Example 1

2.52√
12

+ e3.4 = 31.7685

% store 2.5^2 in \tempA

\SQUARE{2.5}{\tempA}

1 Internally, numbers are converted into lengths, but a
user need not be aware of this.

2 Logically, the control sequences that represent special
numbers (such as \numberPI) do not need any argument.

The calculator and calculus packages: Arithmetic and functional calculations inside LATEX

266 TUGboat, Volume 33 (2012), No. 3

% store sqrt(12) in \tempB

\SQUAREROOT{12}{\tempB}

% store e^3.4 in \tempC

\EXP{3.4}{\tempC}

% \division:=\tempA/tempB

\DIVIDE{\tempA}{\tempB}{\division}

% \sol:=\division+\tempC

\ADD{\division}{\tempC}{\sol}

% round to 4 decimal places

\ROUND[4]{\sol}{\sol}

\[

\frac{2.5^2}{\sqrt{12}}+\mathrm{e}^{3.4}

=\sol

\]

It does not matter if the results arguments are
previously defined. But these commands act as dec-
larations, so the scope is local.

The calculator and calculus user manual,
embedded as usual in the source file calculator.dtx
and also accessible on CTAN as calculator.pdf, de-
scribes all the commands in that package. We include
below an overview and (incomplete) summary.

2.1.1 Predefined numbers

A few numbers are predefined: π and some of its
multiples and divisors, the square roots of the first
natural numbers (2, 3 and 5), e, 1/e, e2 and 1/e2,
the useful cosines of π/6 and π/4 (or 30o and 45o),
the golden ratio and its inverse, the logarithm of
10, and assorted others. Every predefined number is
directly accessible calling the command \numberXXX ,
where XXX is a reasonable name of the number (for
example, \numberPI, \numberSQRTTWO, \numberE,
\numberCOSXXX or \numberGOLD).

The choice of these numbers is obviously arbi-
trary, but you can define any number, either directly,
using the command \COPY,

\COPY{12.56637}{\numberFOURPI}

or as the result of an operation

\SQUAREROOT{7}{\numberSQRTSEVEN}

You can use any admissible command name in place
of \numberSQRTSEVEN.

2.1.2 Real arithmetic

The four basic operations are implemented as \ADD,
\SUBTRACT, \MULTIPLY and \DIVIDE. As a special
case, with the \LENGTHDIVIDE command we can di-
vide two lengths and obtain a number.

Example 2 One inch equals 2.54 centimeters.

\LENGTHDIVIDE{1in}{1cm}\sol

One inch equals \sol{} centimeters.

Other implemented operations include integer
powers, maximum and minimum of two numbers, ab-
solute value, integer and fractional parts, truncation
and rounding.

Example 3 √
2 +

√
3 ≈ 3.1463

\ADD{\numberSQRTTWO}

{\numberSQRTTHREE}

{\temp}

\ROUND[4]{\temp}{\sol}

\[

\sqrt{2}+\sqrt{3}\approx\sol

\]

2.1.3 Integer numbers

We can compute the integer quotient and remainder
of integer division, greatest common divisor and least
common multiple of two numbers, and the irreducible
fraction equivalent to a given fraction.

Example 4
4255

4830
=

37

42

\FRACTIONSIMPLIFY{4255}{4830}{\num}{\div}

\[

\frac{4255}{4830}=\frac{\num}{\div}

\]

2.1.4 Elementary functions

The following real functions are defined: square root,
exponential and logarithm, trigonometric (sine, co-
sine, tangent and cotangent) and hyperbolic (hyper-
bolic sine, cosine, tangent and cotangent).

Example 5

e2 cosπ/3 = 3.69453

\EXP{2}{\exptwo}

\COS{\numberTHIRDPI}{\costhirdpi}

\MULTIPLY{\exptwo}{\costhirdpi}{\sol}

\[

\mathrm{e}^2\cos \pi/3=\sol

\]

The exponential and logarithm functions admit
bases other than e. Trigonometric functions allow ra-
dians or degrees as arguments (and also an arbitrary
number of circle divisions).

Example 6

log
10

2 = 0.30103 cos 72 = 0.309

Robert Fuster

TUGboat, Volume 33 (2012), No. 3 267

\LOG[10]{2}{\logtwo}

\DEGREESCOS{72}{\cosseventytwo}

\[

\log_{10}2=\logtwo\quad

\cos 72=\cosseventytwo

\]

2.1.5 Vectors and matrices

This package operates only with two and three-dim-
ensional vectors and 2× 2 and 3× 3 square matrices.

Within that limitation, it can add and subtract
two vectors, compute the scalar product of two vec-
tors, scalar-vector product, the norm of a vector,
normalized vectors and absolute value (in each en-
try) of a vector.

Example 7

‖(1, 2,−2)‖ = 3

\VECTORNORM(1,2,-2)\sol

\[

\left\|(1,2,-2)\right\|=\sol

\]

With matrices, the implemented operations are
addition, subtraction, matrix product, scalar-matrix
product, matrix-vector product, transposition, de-
terminant, inverse matrix, absolute value (in each
entry) of a matrix, and solution of a linear (square)
system.

The bmatrix environment in the following ex-
ample requires the amsmath package.

Example 8




1 2 1
−2 1 1
3 0 0





−1

=





0 0 0.33333
1 −1 −1
−1 2 1.66666





\INVERSEMATRIX(1, 2, 1;

-2, 1, 1;

3, 0, 0)(\aUU,\aUD,\aUT;

\aDU,\aDD,\aDT;

\aTU,\aTD,\aTT)

\[

\begin{bmatrix}

1 & 2 & 1 \\ -2 & 1 & 1 \\ 3 & 0 & 0

\end{bmatrix}^{-1}=

\begin{bmatrix}

\aUU & \aUD & \aUT \\

\aDU & \aDD & \aDT \\

\aTU & \aTD & \aTT

\end{bmatrix}

\]

2.2 calculus

The calculus package computes simultaneously the
values of an elementary function and its derivative.
It includes some predefined functions and diverse
tools to define new functions, operating with either

pre-existing functions or programming the required
operations. Moreover, we can also define vector-
valued functions and, in particular, curves referring
to polar coordinates.

Example 9 If f(t) = cos t, then

f(π/4) = 0.7071 f ′(π/4) = −0.70709

\COSfunction{\numberQUARTERPI}

{\cosine}{\Dcosine}

If $f(t)=\cos t$, then

\[

f(\pi/4)=\cosine\quad

f’(\pi/4)=\Dcosine

\]

For each function defined here, you must use
the following syntax:

\function{num}{\cmd1}{\cmd2}

where num is a number (or a command expanding
to a number), and \cmd1 and \cmd2 two control
sequences where the values of the function and its
derivative (in this number) will be stored.

2.2.1 Predefined functions

The following functions are defined:

• zero (f(t) = 0) and one (f(t) = 1) constant
functions,

• identity (f(t) = t),
• reciprocal (f(t) = 1/t),
• square (f(t) = t2),
• cube (f(t) = t3),
• square root (f(t) =

√
t),

• exponential (f(t) = exp t),
• logarithm (f(t) = log t),
• trigonometric (f(t) = sin t, f(t) = cos t,
f(t) = tan t and f(t) = cot t),

• hyperbolic (f(t) = sinh t, f(t) = cosh t,
f(t) = tanh t and f(t) = coth t),

• and the Heaviside function (f(t) = 0, if t < 0;
f(t) = 1, if t ≥ 0).

All these functions can be used as in example 9.

2.2.2 Operating with functions

The easiest way to define new functions is to perform
some operation with already-defined functions. Avail-
able operations allow us to define constant functions,
to add, subtract, multiply or divide two functions,
scale variable or function, raise a function to an inte-
ger power, compose two functions and make a linear
combination of two functions.

Example 10 If f(t) = (1 + cos t)2, then

f(π/3) = 2.25 and f ′(π/3) = −2.59804

The calculator and calculus packages: Arithmetic and functional calculations inside LATEX

268 TUGboat, Volume 33 (2012), No. 3

% g(t)=1+cos(t)

\SUMfunction

{\ONEfunction}{\COSfunction}

{\gfunction}

% F(t)=g(t)^2

\COMPOSITIONfunction

{\SQUAREfunction}{\gfunction}

{\Ffunction}

% sol=F(pi/3), Dsol=F’(pi/3)

\Ffunction{\numberTHIRDPI}{\sol}{\Dsol}

\noindent If $f(t)=(1+\cos t)^2$,

then $f(\pi/3)=\sol$ and $f’(\pi/3)=\Dsol$.

2.2.3 Polynomials and low-level

function definition

Although the polynomials can be defined as linear
combinations of powers, calculus includes some
commands to directly define linear, quadratic, and
cubic polynomials. For example, we can define the
polynomial p(t) = 2− 3t2 by typing

\newqpoly{\mypoly}{2}{0}{-3}

Also, low-level commands exist to define a func-
tion by programming it and its derivative.

2.2.4 Vector-valued functions and

polar coordinates

A vector-valued function can be identified with a
pair of ordinary functions.3 If the functions \Xfunct
and \Yfunct are already defined, then

\VECTORfunction{\Ffunct}{\Xfunct}{\Yfunct}

declares the new vector-valued function \Ffunct

with component functions \Xfunct and \Yfunct.
For example, we can define the function f(t) =
(t2, t3) by typing

\VECTORfunction{\Ffunction}

{\SQUAREfunction}{\CUBEfunction}

The xpicture package uses vector-valued func-
tions to plot parametrically defined curves.

In this respect, curves defined in polar coordi-
nates are a particularly interesting case. To define
the polar curve ρ = f(φ) (where ρ and φ are the
polar radius and arc), the calculus package includes
the command

\POLARfunction{\ffunction}{\Pfunction}

where \ffunction is an already defined function
and \Pfunction is the new polar function. In the
following example, we define the five-petal curve,
ρ = cos 5φ.

3 Only two-dimensional vector functions are defined.

Example 11 The polar curve ρ = cos 5φ passes through

the point (0.24998, 1.73204). At this point, its tangent

vector is (0.43298, 3.99986).

\SCALEVARIABLEfunction{5}{\COSfunction}

{\myfunction}

\POLARfunction{\myfunction}{\FIVEROSE}

\FIVEROSE{\numberTHIRDPI}{\x}{\y}{\Dx}{\Dy}

\noindent The polar curve $\rho=\cos 5\phi$

passes through the point (\x,\y). At this

point, its tangent vector is (\Dx,\Dy).

3 Other arithmetic-related packages

in TEX

The limitations of classic TEX arithmetic are well
known (Knuth, 1990). In short, TEX can operate
with integer numbers n restricted by the relation
|n| ≤ 232 − 1.4 Noninteger arithmetic is performed
on lengths via conversion to a whole number of
scaled points (sp). The largest admissible length is
16383.99998 pt ≈ 214 pt = 230sp (a point equals 216

scaled points). Therefore standard TEX can not man-
age real numbers greater than 16383.99998. More-
over, considering that the smaller length is one scaled
point (1 sp ≈ 0.000015 pt), TEX cannot distinguish
between two lengths differing in less than 0.00002
points. With the standard TEX behavior, this is the
maximum level of accuracy we can expect.

These restrictions are absolutely negligible if you
consider the main aim of TEX: for fine typesetting
of text documents, TEX arithmetic is more than
sufficient. But for some questions (e.g., composing
quality graphics in high definition) more exacting
arithmetic is required. Either for this reason or to
implement a more user friendly syntax, a few authors
have worked on issues related to the TEX arithmetic,
as we can see from a look at the literature or in
packages on CTAN. Some representative examples:

• Probably the most widely used package in this
matter is calc (Thorup, Jensen, and Rowley,
1998). This package introduces a friendly syn-
tax for the end user, reimplementing the LATEX
length and counter manipulating commands and
adding the ability to manipulate counters and
lengths with infix notation. Among other im-
provements, this package allows you to multiply
and divide by real numbers.

• In fact, calculating divisions is a notable problem
for a TEX user, because the \divide command
only supports integer divisors. Claudio Beccari

4 In other words, the absolute value of an integer must not
be greater than 2147483647.

Robert Fuster

TUGboat, Volume 33 (2012), No. 3 269

introduced a nice algorithm for division (Bec-
cari, 2006) in his curve2e package, which was
subsequently adopted by Gäßlein, Niepraschk,
and Tkadlec (2011) in pict2e.

• For obvious geometrical reasons, we often need
to calculate trigonometrical ratios; the trig

package, distributed within the graphics bun-
dle (Carlisle, 2005), solves this problem by ap-
proximating the sine function with the Taylor-
McLaurin series.5 Beccari, in curve2e, uses a
continued fraction approximation for the tan-
gent function.

• The pgf/tikz bundle (Tantau, 2010) includes a
mathematical engine to compute calculations
needed by tikz pictures, including real and
integer operations. This engine may be used
separately by loading the pgfmath package.

For the calculations it can perform, this pack-
age is the closest to calculator. Table 1 com-
pares the results obtained using calculator

and pgf with some of the examples included
in this document. The selection is obviously
arbitrary, but it shows that performance of cal-
culations in these two packages is similar.

Regarding the problem of precision, the fp package
(Mehlich, 1999) extends the fixed-point arithmetic
to the interval

[−999999999999999999.999999999999999999,

999999999999999999.999999999999999999]

which is more than enough in many cases. The
fltpoint package (Guthöhrlein, 2004) provides sim-
ilar results.6

To deal with numbers of arbitrary magnitudes,
however, fixed-point arithmetic is always limited.
The future LATEX3 (Mittelbach et al., 2009) will sup-
port a floating point arithmetic that is already avail-
able as a part of the experimental package expl3

(The LATEX3 Project, 2012).
The pgf/tikz system includes, as an alternative

to its mathematical engine, a fixed point library
(using fp) and also a floating point library, to work
with very large or very small numbers.

Another approach to arithmetic problems is to
call an external application to take care of the cal-
culations; this option has the obvious advantage of
avoiding the restrictions imposed by the TEX arith-
metic, both in efficiency and accuracy. The sagetex

5 For small values of x, the seven-degree McLaurin poly-
nomial of sinx is a very accurate approximation.

6 Despite its name, this package works with fixed point
arithmetic.

package (Drake, 2009)7 or the commercial product
Scientific WorkPlace8 are well-known examples of
these ideas. In a more general way, LuaTEX (Hoek-
water, 2009) integrates an interface between TEX
and the programming language Lua (Ierusalimschy,
Celes, and de Figueiredo, 2012).

4 The algorithms

calculator performs additions, subtractions and
products using ordinary TEX arithmetic on lengths.
Division is essentially identical to Beccari’s algorithm
(adapted to the calculator syntax) with only one
small improvement: as in Beccari’s approach, each
decimal place is calculated by multiplying by 10
the last remainder and dividing it by the divisor;
but when the remainder is greater than 1638.3, an
overflow occurs, because 16383.99998 is the greatest
number. So, instead, we multiply the divisor by 0.1.

To calculate square roots and logarithms, we
use Newton’s method:

√
x is the limit of

x0 = x, xn+1 = xn − x2
n
− x

2xn

and log x is the limit of

x0 = x− 1, xn+1 = xn +
x

exn

− 1

(this iterative method is used for x ∈ [1, e2]; other-
wise, the relation log xy = log x+ log y is used).

Trigonometric and exponential functions use
generalized continued fractions: trigonometric func-
tions are computed by reduction to sine or tangent,

sinx =
x

1 +
x2

2 · 3− x2 +
2 · 3x2

4 · 5− x2 +
4 · 5x2

6 · 7− x2 + · · ·

tanx =
1

1

x
−

1

3

x
− 1

5

x
− 1

7

x
− 1

9

x
− 1

11

x
− · · ·

(for |x| < π/2; otherwise, angles are reduced to this
case). The exponential applies this approximation

7 Sage (The Sage Project, 2012) is a free, open-source
math software that supports research and teaching in algebra,
geometry, number theory, cryptography, numerical compu-
tation, and related areas. The sagetex package acts as an
interface between Sage and LATEX.

8 Scientific WorkPlace (MacKichan Software Inc., 2012) is
a LATEX typesetting and computer algebra integrated system.

The calculator and calculus packages: Arithmetic and functional calculations inside LATEX

270 TUGboat, Volume 33 (2012), No. 3

calculator pgf

expression scilab result rel. error result rel. error

2.52√
12

+ e3.4 31.76831964 31.76854 0.000007 31.76741 0.000029
√
2 +

√
3 3.14626437 3.14627 0.000002 3.14627 0.000002

e2 cosπ/3 3.694528049 3.69453 0.000001 3.69435 0.000048
log10 2 0.301029996 0.30103 0.000000 0.3001 0.003089
cos 72o 0.309016994 0.309 0.000055 0.30902 0.000010

Table 1: Comparison between calculator and pgf. The second column shows
results obtained with scilab; columns four and six contain the relative errors when
using calculator and pgf.

(Lauschke, 2009):

expx ≈ 1 +
2x

2− x+
x2/6

1 +
x2/60

1 +
x2/140

1 +
x2/256

1 +
x2

396
(for −6 < x < 3; otherwise, the relation exp(x+y) =
(expx)(exp y) is applied).

5 Conclusions and future work

The packages calculator and calculus were born
as working tools for the xpicture package, and they
provide sufficient accuracy for the requirements of
this package.

The package calculator is also appropriate to
do geometrical calculations related to page compo-
sition and, in general, this package can be used for
any scientific calculation which does not require over-
much precision. In fact, the performance of this
package is similar to those of other packages that use
the arithmetic of TEX. Only high precision packages
give good results in complex calculations.

With respect to the calculations it can make,
the performance of calculator is similar to those
of pgfmath; all other packages offer a very limited
set of functions.

The calculator package uses the typical TEX
syntax: calculations are performed by calling the
calculator commands and results are stored in new
commands. The fp package behaves similarly. Other
packages, like pgfmath and experimental expl3, ad-
mit infix mathematical notation; this is a nice feature
not supported by calculator.

The calculus package provides a user friendly
method to define functions and simultaneously calcu-
late the values of a function and its derivative. The
accuracy of the calculations is related to the accuracy

of the calculator package, so if this is improved,
the calculus package will become a solid tool to
evaluate functions and derivatives. No other package
has the ability to calculate derivatives.

There are some improvements that we hope to
add soon, such as the implementation of additional
functions (the inverse trigonometric and hyperbolic
functions, and maybe some boolean functions), the
inclusion of more utilities related to the definition of
polynomials (definition of polynomials of arbitrary
degree, construction of polynomials from their roots,
implementation of the interpolating polynomial), . . .

On the other hand, to make these packages truly
interesting, we will attack the issue of accuracy. We
will study the possibility of incorporating the option
to obtain more accurate results, perhaps by loading
the fp package, or exploring the possibility of using
floating point arithmetic.

References

Beccari, Claudio. “LATEX2ε, pict2e and complex
numbers”. TUGboat 27(2), 202–212, 2006.

Carlisle, D. P. “Packages in the ‘graphics’ bundle”.
Available from CTAN, /macros/latex/
required/graphics, 2005.

Drake, Dan. “The SageTEX package”. Available
from CTAN, /macros/latex/contrib/sagetex,
2009.

Fuster, Robert. “The calculator and calculus

packages: Use LATEX as a scientific calculator”.
Available from CTAN, /macros/latex/
contrib/calculator, 2012a.

Fuster, Robert. “The xpicture package: A
LATEX package intended to extend the picture
environment”. http://www.upv.es/~rfuster/
xpicture, 2012b.

Gäßlein, Hubert, R. Niepraschk, and J. Tkadlec.
“The pict2e package”. Available from CTAN,
/macros/latex/contrib/pict2e, 2011.

Robert Fuster

TUGboat, Volume 33 (2012), No. 3 271

Guthöhrlein, Eckhart. “The fltpoint package”.
Available from CTAN, macros/latex/contrib/
fltpoint/, 2004.

Hoekwater, Taco. “The LuaTEX program”.
Available from CTAN, /systems/luatex/base,
2009.

Ierusalimschy, Roberto, W. Celes, and L. H.
de Figueiredo. “Lua: The programming
language”. http://www.lua.org, 2012.

Knuth, Donald E. The TEXbook. Addison Wesley,
Reading, Massachussets, 1990.

Lauschke, Andreas. “Convergence Acceleration
with Canonical Contractions of Continued
Fractions”. http://216.80.120.13:8080/
webMathematica/LC/general.jsp, 2009.

MacKichan Software Inc. “Scientific WorkPlace.
The integration of LATEX and Computer
Algebra”. http://www.mackichan.com, 2012.

Mehlich, Michael. “The fp Package”. Available
from CTAN, /macros/latex/contrib/fp,
1999.

Mittelbach, Frank, R. Schöpf, C. Rowley,
D. Carlisle, J. Braams, R. Fairbairns,
T. Lotze, W. Robertson, J. Wright, and
B. Le Floch. “The LATEX3 Project”. http:
//www.latex-project.org/latex3.html,
2009.

Tantau, Till. “The TikZ and PGF Packages.
Manual for version 2.10”. http://sourceforge.
net/projects/pgf. Also available from CTAN,
/graphics/pgf, 2010.

The LATEX3 Project. “The expl3 package and
LATEX3 programming”. Available from CTAN,
/macros/latex/contrib/expl3, 2012.

The Sage Project. “Sage: Open source
mathematics software”. http://www.
sagemath.org, 2012.

Thorup, Kresten Krab, F. Jensen, and C. Rowley.
“The calc package. Infix notation arithmetic
in LATEX”. Available from CTAN, as part of
the tools bundle, /macros/latex/required/
tools, 1998.

⋄ Robert Fuster
Universitat Politècnica de València
Departament de Matemàtica Aplicada
Camı́ de Vera, 14
València E46022
Spain
rfuster (at) mat dot upv dot es

http://www.upv.es/~rfuster/

The calculator and calculus packages: Arithmetic and functional calculations inside LATEX

272 TUGboat, Volume 33 (2012), No. 3

The xtemplate package: An example

Clemens Niederberger

Abstract

One of the most important points in the development
of LATEX3 is— roughly speaking—the separation of
implementation, layout design and user interface.
The package xtemplate connects the first two— it
is part of the Designer Interface Foundation Layer.
This article tries to demonstrate the idea behind
the package and its usage with a (not necessarily
practical) example.

1 Introduction

Not too long ago I had a first look at the xtemplate

package which is part of the l3packages bundle.1 Af-
ter I understood the idea behind it I was immediately
excited. So: what idea am I talking about?

The underlying structure for LATEX3 has been
discussed, for instance, by Frank Mittelbach at the
TUG 2011 conference [1]. Of course I’m not going to
repeat that.2 An important part— if not the main
idea— is the strict separation of different so-called
layers. I’m confident you’ve already heard about the
Core Programming Layer — expl3.

The xtemplate is part of a different layer, the
Designer Interface Foundation Layer. So principally
it is directed at package and class authors but I
believe it will also play a big role in a LATEX3 kernel,
at least conceptually. The idea behind it isn’t new,
as one can read in “New Interfaces for LATEX Class
Design” (1999) [2].

Roughly speaking, the idea is this: a class has to
provide a suitable design for different objects, such
as section headings or lists. Preferably this would be
done via a simple interface that would allow authors
to adjust certain parameters to their own wishes
or requirements. In other words (from xtemplate’s
documentation [4]):

1. semantic elements such as the ideas of sections
and lists;

2. a set of design solutions for representing these
elements visually;

3. specific variations for these designs that repre-
sent the elements in the document.

One should be able to determine the number and pos-
sibly the kind of arguments from both the definition
and the interface.

xtemplate now allows one to declare objects,
and so-called templates for these objects. For every

1 From directory macros/latex/contrib/l3packages
2 I wouldn’t be qualified anyway.

object instances can be defined (figure 1). The user
interface is then defined with the help of xparse [3].3

I for my part learn best through examples and
I’m guessing I am not alone with that. So, I am
going to demonstrate the concept and the different
commands using an example that is not necessarily
a practical application of xtemplate. Inspired by
a question on tex.stackexchange.com [5], I will
declare an object names and two templates fullname
and initial. Declaring the instances will then show
how flexible and easily extendable the concept is.

In the end, the code

\name{Jack Skellington} \par

\name[init-it-rev]{Jack Skellington}

will give:

Jack Skellington
Skellington, J.

A small warning: if you’re not familiar with
expl3—the “programming language” of LATEX3—
details of the code might seem cryptic. But I will
keep the example short so you should be able to
follow the important parts.

2 The important commands

Basically there are four commands that are impor-
tant for the definition of the structures:

1. \DeclareObjectType
{〈object〉}
{〈number of args〉}

2. \DeclareTemplateInterface
{〈object〉}
{〈template〉}
{〈number of args〉}
{〈interface〉}

3. \DeclareTemplateCode
{〈object〉}
{〈template〉}
{〈number of args〉}
{〈parameter〉}
{〈code〉}

4. \DeclareInstance
{〈object〉}
{〈instance〉}
{〈template〉}
{〈parameter〉}

The first command, \DeclareObjectType, declares
the object and specifies how many arguments it gets.

Then the object can be specified with the sec-
ond command, \DeclareTemplateInterface. More
precisely an interface is declared, i.e., the number

3 Also part of the l3packages bundle.

Clemens Niederberger

TUGboat, Volume 33 (2012), No. 3 273

object

template 1

instance a instance b

template 2

instance c instance d

Figure 1: Schematic figure of the relationships between object, templates and instances.

and type of parameters are declared with which the
template can be customized later.

The third command, \DeclareTemplateCode,
is where the actual definitions are made. The param-
eters defined in the interface get variables assigned,
and code is defined that determines the behaviour
of the template.

The fourth command, \DeclareInstance, at
last defines an instance that instantiates a template
with concrete values for the parameters. Each of
these instances can then be used in the user command
with \UseInstance.

3 An example

Now let’s consider an actual example.

3.1 The object

The first thing to do is to think about the basic
interface. The user command of our object names
is going to be \name, with one argument taking the
lastname and firstname separated with a space. At
a level deeper, though, we want to handle lastname
and firstname as two separate arguments. Thus the
object is going to get two arguments:

\usepackage{xtemplate,xparse}

% we use expl3, so activate the expl3 namespace

\ExplSyntaxOn

% #1: lastname, #2: firstname

\DeclareObjectType { names } { 2 }

The next thing to do is to specify the templates.

3.2 The templates

Templates are declared for an existing object. First
the interface has to be specified. The number of
arguments of the template and a possible list of
parameters has to be declared. Every parameter is
given a certain type and can get a default value.

% the interface for the template ‘fullname’:

\DeclareTemplateInterface{names}{fullname}{2}

{

reversed : boolean = false ,

use-last-name : boolean = true ,

use-first-name : boolean = true ,

last-name-format : tokenlist ,

first-name-format : tokenlist ,

}

% the interface for the template ‘initial’:

\DeclareTemplateInterface{names}{initial}{2}

{

reversed : boolean = false ,

use-last-name : boolean = true ,

use-first-name : boolean = true ,

last-name-format : tokenlist ,

first-name-format : tokenlist ,

last-name-initial : boolean = false ,

first-name-initial : boolean = true ,

}

The parameters that are defined here can easily be
extended and are determined by the type of object
and of course the desired degree of complexity. Here
we have just a few to demonstrate the concept.

After the interfaces for the templates have been
declared the actual code can be defined. Let’s start
with fullname. We’re going to need suitable vari-
ables or functions for the parameters. In the 〈code〉
part \AssignTemplateKeys will define them with
actual values and activate them.

Our code now only tests the values of the bool-
ean variables and writes the names in the given order.
The solution is not the most elegant one but will do
for this demonstration:

% variables first:

\bool_new:N \l_names_reversed_bool

\bool_new:N \l_names_use_last_bool

\bool_new:N \l_names_use_first_bool

\tl_new:N \l_names_last_format_tl

\tl_new:N \l_names_first_format_tl

% now the template code:

% #1: lastname, #2: firstname

\DeclareTemplateCode {names} {fullname} {2}

{

reversed = \l_names_reversed_bool ,

use-last-name = \l_names_use_last_bool ,

use-first-name = \l_names_use_first_bool ,

last-name-format = \l_names_last_format_tl ,

The xtemplate package: An example

274 TUGboat, Volume 33 (2012), No. 3

first-name-format = \l_names_first_format_tl,

}

{

\AssignTemplateKeys

\bool_if:NTF \l_names_reversed_bool

{

\bool_if:NT \l_names_use_last_bool

{{\tl_use:N \l_names_last_format_tl #2}}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{,~}

\bool_if:NT \l_names_use_first_bool

{{\tl_use:N \l_names_first_format_tl #1}}

}

{

\bool_if:NT \l_names_use_first_bool

{{\tl_use:N \l_names_first_format_tl #1}}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{\tl_use:N \c_space_tl}

\bool_if:NT \l_names_use_last_bool

{{\tl_use:N \l_names_last_format_tl #2}}

}

}

We can reuse most of the variables for the tem-
plate initial but we’re going to need a helper func-
tion that gets all but the initial of a name. The code
is going to become a little bigger. Of course it could
be written in a more elegant way but again, this will
suffice for our demonstration purposes.

% two additional variables:

\bool_new:N \l_names_last_initial_bool

\bool_new:N \l_names_first_initial_bool

% helper function:

\cs_new:Npn \names_get_initial:w #1#2\q_stop

{#1.}

% the template code:

% #1: lastname, #2: firstname

\DeclareTemplateCode {names}{initial}{2}

{

reversed = \l_names_reversed_bool ,

use-last-name = \l_names_use_last_bool ,

use-first-name = \l_names_use_first_bool ,

last-name-format = \l_names_last_format_tl ,

first-name-format = \l_names_first_format_tl ,

last-name-initial = \l_names_last_initial_bool ,

first-name-initial = \l_names_first_initial_bool,

}

{

\AssignTemplateKeys

\bool_if:NTF \l_names_reversed_bool

{

\bool_if:NT \l_names_use_last_bool

{

\group_begin:

\tl_use:N \l_names_last_format_tl

\bool_if:NTF

\l_names_last_initial_bool

{\names_get_initial:w #2\q_stop}

{#2}

\group_end:

}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{,~}

\bool_if:NT \l_names_use_first_bool

{

\group_begin:

\tl_use:N \l_names_first_format_tl

\bool_if:NTF

\l_names_first_initial_bool

{\names_get_initial:w #1\q_stop}

{#1}

\group_end:

}

}

{

\bool_if:NT \l_names_use_first_bool

{

\group_begin:

\tl_use:N \l_names_first_format_tl

\bool_if:NTF

\l_names_first_initial_bool

{\names_get_initial:w #1\q_stop}

{#1}

\group_end:

}

\bool_if:nT

{

\l_names_use_first_bool &&

\l_names_use_last_bool

}

{\tl_use:N \c_space_tl}

\bool_if:NT \l_names_use_last_bool

{

\group_begin:

\tl_use:N \l_names_last_format_tl

\bool_if:NTF

\l_names_last_initial_bool

{\names_get_initial:w #2 \q_stop}

{#2}

\group_end:

}

}

}

We’re nearly there. For every template we need to
declare at least one instance. And of course we need
to define the user command.

3.3 The instances

Declaring the instances is not complicated at all.
You choose the template and assign values to the
parameters. Here we will make three instances for
each template:

Clemens Niederberger

TUGboat, Volume 33 (2012), No. 3 275

% a few instances, starting with ‘fullname’:

\DeclareInstance {names}{standard}{fullname}{}

\DeclareInstance {names}{it-rev}{fullname}

{

first-name-format = \itshape ,

reversed = true

}

\DeclareInstance {names}{first-only}{fullname}

{use-last-name = false}

% and now ‘initial’:

\DeclareInstance {names}{init-first}{initial}{}

\DeclareInstance {names}{init-it-rev}{initial}

{

first-name-format = \itshape ,

reversed = true

}

\DeclareInstance {names} init-all}{initial}

{last-name-initial = true}

Defining more instances wouldn’t be any problem.
With every additional instance the user command
we’re going to define next would get another option.

3.4 The user command

For the definition of this command we’re going to
use the package xparse. This makes it easy to define
the wanted argument input: lastname and firstname
separated with a blank space.

The command is going to get an optional ar-
gument with which the instance to be used can be
specified. It should test if the chosen instance exists
and if not, use the standard instance. Of course it
could also raise a warning or an error.

% yet more variables:

\tl_new:N \l_names_instance_tl

\tl_set:Nn \l_names_instance_tl { standard }

% the internal command:

\cs_new:Npn \names_typeset_name:nnn #1#2#3

{

\IfInstanceExistTF {names} {#1}

{ \UseInstance {names} {#1} }

{ \UseInstance {names} {standard} }

{#2} {#3}

}

\cs_generate_variant:Nn

\names_typeset_name:nnn {V}

% the user command:

\DeclareDocumentCommand \name

{o>{\SplitArgument{1}{~}}m}

{

\group_begin:

\IfNoValueF {#1}

{\tl_set:Nn \l_names_instance_tl {#1}}

\names_typeset_name:Vnn

\l_names_instance_tl #2

\group_end:

}

\ExplSyntaxOff

Now we’re ready to comprehend the examples
from the beginning (and a few others):

\name{Jack Skellington} \par

\name[it-rev]{Jack Skellington} \par

\name[first-only]{Jack Skellington} \par

\name[init-first]{Jack Skellington} \par

\name[init-it-rev]{Jack Skellington} \par

\name[init-all]{Jack Skellington}

And the output:

Jack Skellington
Skellington, Jack
Jack
J. Skellington
Skellington, J.
J. S.

4 Before the end

I hope this little excursion can provide a first insight
into the functionality of xtemplate. My own knowl-
edge is not much deeper. In my opinion the idea
behind xtemplate has a great future and I am excited
to see how it will be used in LATEX3.

References

[1] Frank Mittelbach. LATEX3 architecture
and current work in progress, 2011.
http://river-valley.tv/latex3-architecture-

and-current-work-in-progress.

[2] Frank Mittelbach, David Carlisle, and Chris
Rowley. New interfaces for LATEX class design.
1999. http://www.latex-project.org/

papers/tug99.pdf.

[3] The LATEX3 Project. The xparse package.
Available from CTAN, macros/latex/contrib/
l3packages/xparse.dtx.

[4] The LATEX3 Project. The xtemplate package.
Available from CTAN, macros/latex/contrib/
l3packages/xtemplate.dtx.

[5] Emit Taste. Macro for formatting
names (initials or full name). http:

//tex.stackexchange.com/q/57636/5049,
2012.

⋄ Clemens Niederberger

Am Burgrain 3

71083 Herrenberg

Germany

contact (at) mychemistry dot eu

http://www.mychemistry.eu/

The xtemplate package: An example

276 TUGboat, Volume 33 (2012), No. 3

A patent application design flow in LATEX

and LYX

Peter J. Pupalaikis

Abstract

I describe a design flow for beautiful and consistently
formatted U.S. patent applications using our favorite
typesetting tools LATEX and LYX along with a newly-
created LATEX class file and an accompanying LYX
layout file.

1 Introduction

The patent process is often thought of as a thing of
mystery cloaked in arcane terminology and rules. It is
also thought to be very expensive. This is surprising
because these thoughts are often held by inventors
who are performing in highly technical fields where
research itself is expensive. It turns out that the
patent process is actually fairly straightforward and
can be relatively inexpensive when the inventor takes
an active role. It is helpful to stay grounded in some
simple concepts:

• The patent process is one that preferably ends
with a document describing certain intellectual
property rights.

• The property rights obtained are the rights to
exclude others from practicing the claims.

• In exchange for these rights, an inventor is obli-
gated to disclose the best way he knows how to
practice an invention.

• The document containing the disclosure is the
patent application.

• In order to obtain patent protection, an inven-
tion must be novel, unique, and useful.

Some information that many are surprised to know:

• Anyone may file a patent application.
• With sufficient effort and narrowing of claims
scope, a patent can almost always be obtained.

• The actual protection granted by a patent is
discovered during litigation.

I have made some rather broad statements here.
While anyone can file an application, it’s advisable to
get help from an attorney. The process of narrowing
the scope of claims during prosecution can provide
for a patent with very limited usefulness to the patent
owner. Finally, a poorly written application can lead
to poor protection and as I said, the quality of the
protection is found out too late.

I have been inventing and patenting for about
twenty years now. When I started out, I knew next
to nothing about the patent process. The process (at
medium to large companies) from an inventor’s per-

spective is to fill out a patent disclosure form. This
is a form that describes the invention and is used
to supply necessary information to a patent attor-
ney. These forms are very common at big companies.
Then, a few months after supplying this information
and a few discussions with an attorney, a patent ap-
plication arrives. That’s the theory anyway. I found
my early patenting experiences very difficult and un-
satisfying. It was a painful process of transmission
of highly technical information from inventor to an
(albeit technically trained) attorney and legal infor-
mation from attorney to inventor. Over time, I found
that the choices with this process are between expen-
sive, time consuming and low (or at least unclear)
quality on the one hand and very expensive, very
time consuming with reasonable quality on the other.

My goal, therefore, was to lower expense and
effort and improve quality. This led to the creation
of patent application drafts and culminated in the
creation of tools for improving this flow. Today, I
write all of my patent applications myself in a form
ready for filing. My application is not filed until
a patent attorney has cleaned it up and rewritten
the claims after many discussions. I’ve discovered
that getting a higher quality patent disclosure into
the hands of a patent attorney is the right way to
ensure that money spent on legal fees is spent wisely.
Working with me, the attorney concentrates on using
her time and legal knowledge to get me the right
protection for the right price.

No matter your opinions, training or systems
for drafting patent applications, it is clear that the
process benefits extremely from improved tools for
producing the application itself. Improved tools can
solve many of the mechanical problems with patent
drafting and can ensure consistently generated appli-
cations. This article is about how LATEX and its more
user-friendly cousin LYX can be used to streamline
the patent application process.

2 Patent writing tools

After my first frustrating experiences of rewriting
patent applications, my first attempts to improve the
process began with efforts at better patent disclosures
using well-known word processing tools from well-
known software companies. Using these tools, I
would provide a disclosure filled out under the same
headings as the patent application. Over time, I
learned the intent of each section of the application
and after each patent was filed, I compared what I
provided to what ended up in the attorney-generated
application and honed my skills; this culminated in
the Knuthian leap of controlling the final output
and properly formatting and typesetting the final

Peter J. Pupalaikis

TUGboat, Volume 33 (2012), No. 3 277

application. This is where I ran into difficult tool
problems. Let me outline some of them:

1. The major problem—drawings! The patent of-
fice has rather arcane rules about drawings and
specific standards for drawings. One require-
ment is that drawings contain elements that
are annotated (i.e. a numbered arrow or line
on the drawing pointing to an element) where
the drawing-element name and accompanying
number are used within the patent application
to refer to the element. Despite looking bad,
this is a cross-referencing nightmare as no tools
(other than LATEX, eventually) could be made
to use variable names that get replaced with
numbers in both the drawings and the patent
specification.

2. Drawing and drawing-element name and number
agreement. The problem is that the drawing-
element name and the number must be consis-
tent. If I refer to widget [23] in my specification,
there had better be a drawing with a line point-
ing to the widget element and it had better be
numbered with 23. Keeping the name of the ele-
ment consistent and matching the number was a
problem. Also, it would be nice if the next time
I refer to element 23, I call it the same thing.

3. Figure numbers. There is one section in an ap-
plication where the drawings are to be described
in order. Most cross-referencing tools get the
number right, but cannot place the drawing de-
scription in the correct order and cannot make
the number agree with the description.

Other problems include:

1. The formatting capabilities of various word pro-
cessors, believe it or not, are too flexible. One
can edit the application, change the fonts, styles,
headers, whatever one wants. They’re flexible
while missing key features.

2. Have you ever tried to get drawings in the right
place using the world’s most popular word pro-
cessor? Enough said.

3. Consistency of claim language and support in
the specification.

I was finding that in some cases it was nearly impos-
sible to control the format of the final application
the way I wanted. When I saw the paralegal at my
company cut out a drawing I made and tape it onto
a sheet of paper to get the drawings right, I deter-
mined that enough was enough. I set out to solve
these cross-referencing and formatting problems.

All of the above problems benefit from a pro-
grammatic approach; an approach with variables

\documentclass[english]{uspatent}

...all front-matter definitions ...

\include{Drawings}% figure information

\maketitle

\patentSection{Field of the Invention}

\patentParagraph text ...

\patentSection{Cross Reference to Related

Applications}

\patentParagraph text ...

\patentSection{Background of the Invention}

\patentParagraph text ...

\patentSection{Objects of the Invention}

\patentParagraph text ...

\patentSection{Summary of the Invention}

\patentParagraph text ...

\patentDrawingDescriptions

\patentSection{Detailed Description of the

Preferred Embodiments}

\patentParagraph text ...

\patentClaimsStart

...

\patentClaimsEnd

\patentSection{Abstract}

\patentParagraph text ...

\patentDrawings

\end{document}

Figure 1: LATEX Patent Application Structure

and macros that can be used for cross-referencing,
consistency of language, and consistency of format.

3 Patent writing in LATEX

Anyone reading this TUGboat article is likely to be
acquainted with LATEX, so I’ll dive right in. The
solutions to some of the previously mentioned prob-
lems are solved through the incorporation of vari-
ous macros and page settings into a LATEX class file
uspatent.cls. The class finally developed and pub-
lished is based on the memoir class. The declaration
of this class appears at the top of the LATEX patent
application file as shown in figure 1. Here you can
see the layout of the document, which includes:

• various front-matter material. These are macros
which define the title, inventor name, assignee
information, patent attorney information, etc.
These assignments are used in header, footer
and title page creation.

• inclusion of the drawings file (which I will talk
about in a bit).

• various sections of the patent which will be prop-
erly formatted via the \patentSection macro
and where each paragraph is preceded by the
\patentParagraph macro that causes the para-
graphs to be numbered.

A patent application design flow in LATEX and LYX

278 TUGboat, Volume 33 (2012), No. 3

\figureDefinition{VisioDrawing}

\figureExtension{pdf}

\figureDescription{example drawing made in Visio}

\annotationDefinition{Widget}

\annotationName{widget}

\annotationDescription{a widget in the drawing}

\figureDefinition{TpXDrawing}

\figureExtension{tpx}

\figureCaption{PRIOR ART}

\figureDescription{example drawing made in TpX}

\annotationDefinition{input}

\annotationName{input}

\annotationDescription{the input}

\annotationDefinition{output}

\annotationName{output}

\annotationDescription{the output}

\annotationDefinition{mathProcessor}

\annotationName{math processor}

\annotationDescription{math processor on left}

Figure 2: Drawing definitions in LATEX

• a patent claims area (which is actually just an
enumerated environment).

• the \patentDrawingDescriptions macro that
automatically emits the description of the draw-
ings.

• the \patentDrawings macro that automatically
emits the drawing pages.

The drawings file contains a list of drawings and
annotations, as shown in figure 2. Here you see a
list of macros that will define everything about the
figures and annotations. Each figure’s information is
listed, in order starting with a \figureDefinition

macro that defines the name of the file and how it
is referenced from within the application. It is as-
signed a number from an internal counter. This is
followed by a \figureExtension macro that defines
its extension and the \figureDescription macro
which provides a concise description. Usually patent
drawings do not contain captions, but one can be op-
tionally provided using the \figureCaption macro.
You might be wondering why I didn’t use a multiple
argument macro. I found it difficult to remember
the order of the arguments but more importantly,
macros which have multiple arguments cannot be
used within LYX.

After each figure definition its annotations are
listed, each one beginning with a call to the macro
\annotationDefinition. This specifies the name
used to reference the annotation within the document.
The macro also assigns a unique annotation number
from an internal counter. Each annotation defini-
tion is followed by calls to \annotationName and
\annotationDescription. The name is the word
associated with the element that you want printed in
your document when you refer to it. The description

is a longer description that helps find the annotation
in the drawing and is used with drawing packages
that cannot make use of LATEX cross-referencing. I
will explain its use further when I discuss the Anno-
tation List section.

The figure and annotation definitions can ap-
pear inline if you want, but it gets very long and
bothersome to see all these definitions when you are
editing the application so it’s better to include them
in a separate file. After the drawings file is processed,
it enables the following features:

• the figures and annotations can be referred to
using several macros:

– \referencePatentFigure expands to the
formatted patent figure (e.g. FIG 2.).

– \annotateWithName is the normal way to
reference the annotations in the application
and maintain agreement between element
name and number. It expands to the an-
notation name and formatted annotation
number joined (e.g. widget [3]).

– \annotate expands to the formatted anno-
tation number (e.g. [3]). It is used when the
name and number would appear awkward
(e.g. . . . is connected to the two widgets [3]
and [4]).

– \annotationNumberReference is used in
drawings to point to the drawing elements.
LATEX friendly drawing formats (like TikZ)
can be made to draw the correct number
pointing to a drawing element.

• The \patentDrawingDescriptions macro ex-
pands into a section that automatically prints a
section that looks like:

Brief Description of the Drawings

For a more complete understanding of the invention,

reference is made to the following description and

accompanying drawings, in which:

FIG. 1 is aaaa;

. . .

FIG. x is bbbb; and

FIG. y is cccc.

Here the figure’s descriptions are the exact text
in the descriptions provided, match the figure
numbers in order, and are even punctuated prop-
erly according to how the patent office would
like to see them.

• The \patentDrawings macro expands into a
section that brings in all of the drawings and
places them appropriately on numbered pages.
If the \annotationNumberReference macro is
used and the drawings have been produced with
a LATEX friendly tool (like TpX) and/or in a

Peter J. Pupalaikis

TUGboat, Volume 33 (2012), No. 3 279

. . . front-matter. . .

Include: Drawings.lyx

Field of the Invention

text . . .

Cross Reference to Related Applications

text . . .

Background of the Invention

text . . .

Objects of the Invention

text . . .

Summary of the Invention

text . . .

—BRIEF DESCRIPTION OF THE DRAWINGS—

Detailed Description of the Preferred

Embodiments

text . . .

—START OF PATENT CLAIMS—

. . .

—END OF PATENT CLAIMS—

Abstract

text . . .

—PATENT DRAWINGS—

Figure 3: LYX Patent Application Structure

LATEX friendly format (like TikZ), then the an-
notations are also numbered properly. I also
include a printing mode switch via the macro
\setPrintingModeDraft. Among other things,
this macro causes an Annotation List section
to precede the drawing pages. This section
is not meant for filing; it lists all of the fig-
ures, their names, annotations, and their names
and descriptions. This is so that they can be
matched up with the drawings to ensure that
the right numbers are in the right place. I
also provided this for users who use drawing
tools that are not LATEX friendly and do not
allow the referencing of the annotation with the
\annotationNumberReference macro. These
users must manually place the numbers on the
drawing using the information in the annotation
list after finishing writing the application.

Figure 4: LYX Custom Environments

Figure 5: LYX Custom Insets

A patent application design flow in LATEX and LYX

280 TUGboat, Volume 33 (2012), No. 3

\def\annotationDefinition#1{%

\expandafter\ifx\csname anonum#1 \endcsname\relax

\global\advance\@annotationnumber by 1

\expandafter\edef\csname anoele \the\@annotationnumber\endcsname{#1}%

\expandafter\edef\csname anonum#1 \endcsname{\the\@annotationnumber}%

\expandafter\edef\csname anofignum \the\@annotationnumber\endcsname{\the\@annotationfigurenumber}%

\else % error handling here

\fi}

\def\annotationDescription#1{\expandafter\def\csname anodesc \the\@annotationnumber\endcsname{#1}}

\def\annotationName#1{\expandafter\def\csname anotext \the\@annotationnumber\endcsname{#1}}

\def\annotationReference#1{[\thinspace\annotationNumberReference{#1}\thinspace]}

\def\annotationNameAndReference#1{\annotationTextReference{#1}~\annotationReference{#1}}

\def\annotationDescriptionReference#1{\csname anodesc \annotationNumberReference{#1}\endcsname}

\def\annotationTextReference#1{\csname anotext \annotationNumberReference{#1}\endcsname}

\def\annotationNumberReference#1{\csname anonum#1 \endcsname}

\def\annotationListVariableName#1{\csname anoele #1\endcsname}

\def\annotationListText#1{\csname anotext #1\endcsname}

\def\annotationListDescription#1{\csname anodesc #1\endcsname}

\def\annotationListFigureNumber#1{\csname anofignum #1\endcsname}

Figure 6: Annotation Macros in LATEX

4 Patent writing in LYX

LYX has been written about in many TUGboat ar-
ticles, but briefly, it is a front-end for LATEX. LYX
is a WYSIWYM editor, i.e. “What You See Is What
You Mean”. LYX takes the guesswork out of what
equations will look like in the end, removes some of
the verbosity of LATEX from the user, and can be
used to limit and target the formatting capability
that the user has (he can always enter raw LATEX
in the end, so the full capability of LATEX is never
completely out of reach).

With a properly written layout file, LYX at-
tempts to mimic to some degree what the document
will mostly look like. With the uspatent.layout

file that goes along with the uspatent.cls LATEX
class file, it provides the patent writing capability
through the use of environments and custom insets.
A typical LYX patent application looks much like the
analogous LATEX application, only the formatting
mimics that of the final PDF and the user can choose
not to see any LATEX code, as shown in figure 3. After
the LATEX explanation, I think this figure does not
need much explanation.

The environments are accessed in LYX using a
drop-down box in the upper left corner of the ed-
itor. The customized environment list for patent
applications is shown in figure 4. Here we see all of
the environments for the front-matter, patent sec-
tions, patent paragraphs, claims and the drawings
and annotations. Mostly, the use of these environ-
ments saves on typing the LATEX macros and shows
some sort of indication on the screen that the macro
arguments are in that environment. Even more im-
portant, it restricts the user’s choice of formatting.

The custom insets are how all of the references
are made to claims, figures and annotations as pre-
viously described. This is shown in figure 5. These
put small boxes inline with the text that can be
expanded to show the arguments. Here you see the
addition of an Acronym custom inset (which uses the
LATEX acro package) which is also useful in patent
applications.

5 A few TEX tricks

The main tricks used in dealing with the figures and
annotations are based on the use of \csname.1 I
want to explain the mechanics here because they
might be useful for solving other similar problems.
Please refer to the TEX listing in figure 6.

First, a brief summary of these macros:

• The first three macros are Assignment

macros: \annotationDefinition,
\annotationDescription, and
\annotationName refer to the definition
of an annotation.

• The next five macros are Referencing

macros and are suffixed by
“Reference”: \annotationReference,
\annotationNameAndReference,
\annotationDescriptionReference,
\annotationTextReference, and
\annotationNumberReference provide
reference of an annotation by a VarName.

• The last four macros are List macros
and are prefixed by “annotationList”:

1 Amy Hendrickson, “The wonders of \csname”, TUG 2012,

Boston MA; TUGboat 33:2, pp. 219–224, http://tug.org/

TUGboat/33-2/tb104hendrickson.pdf.

Peter J. Pupalaikis

TUGboat, Volume 33 (2012), No. 3 281

\annotationListVariableName,
\annotationListText,
\annotationListDescription, and
\annotationListFigureNumber provide
reference to an annotation by Number. The
reason they are called List macros is because
they are most useful for generating an
annotation list.

The annotation is defined by first using the macro
\annotationDefinition, where the argument sup-
plied becomes the VarName for the annotation. In
figure 6 you can see that an annotation counter is
advanced and two new control sequences are defined.
One control sequence is anoele followed by the an-
notation counter value. It is assigned to VarName.
The other control sequence is anonum followed by
VarName. It is assigned to the annotation counter
value. These two assignments allow one to obtain
the VarName given an annotation number and to
obtain the annotation number given the VarName.
The key List and Referencing macros are such that:

\annotationListVariableName{Number}=VarName

\annotationNumberReference{VarName}=Number

The macro \annotationDescription defines a
control sequence named anodesc followed by the an-
notation counter value. Similarly, \annotationName
defines a control sequence anotext followed by the
annotation counter value. In this way, given an anno-
tation number, it is easy to find the VarName, and
the description and text name associated with an an-
notation through the use of the List macros provided.
When we generate the annotation list in the draft
mode patent application, we simply loop over the
annotation numbers and list all of this information.

The Referencing macros are used within the
patent application and within drawings. They are
used to reference the annotation number, a formatted
number (e.g. [Number]) and the annotation text that
goes with that number. The annotation text is an in-
teresting example because the \annotationName as-
sociated the text with the annotation number and we
are referencing this text with the VarName. If you ex-
amine the \annotationTextReference macro, you
see that the \annotationNumberReference macro
is used to obtain the Number associated with the
VarName supplied and this Number is used in con-
junction with the associated anotext to form the
control sequence that defines the text. In this man-
ner, any of the annotation control sequences that
define the annotation can be formed from either the
annotation Number or VarName.

6 Summary and future plans

I’ve presented a method, using the uspatent.cls

file in LATEX and the uspatent.layout file in LYX,
for typesetting patent applications that produce con-
sistent and good looking results. Look for these
files along with a patent writing guide on CTAN at
http://ctan.org/pkg/uspatent. There are a num-
ber of things I’d like to improve in future versions.
Some of these are:

• Usage of the aux file so that the figure and
annotation definitions can go anywhere in the
document (currently they need to go at the top
before they are referenced).

• Elimination of dependence on the memoir class.
The memoir class is great but heavy-handed for
this application. I make use of very little of this
class’s capability and know that I can remove it
and make use of a few smaller packages.

• I’d like to become more adept at my usage of
\csname, which I still haven’t quite mastered.

• I’d like to add better error handling and unde-
fined reference handling capability so that users
don’t get a cryptic (LA)TEX error message when
things fail. Currently, if an undefined annota-
tion is referred to, it simply doesn’t print; this
is obviously a poor way to handle this type of
error.

• I was too lazy to figure out how to parse the
figure names to extract the extension.

• I’d like to eventually develop an offline piece
of software for managing drawings and annota-
tions. While the tools provided here fix some
of the most difficult problems and are a step
in the right direction, I know of many more
ways to improve the patent writing process. A
small step in this direction would be a drawing
package that can import a PDF and, through a
graphical interface, add TikZ code that draws a
line pointing to drawing elements and the macro
that expands to the element number.

This has been a fun and fruitful experience and is my
first contribution to CTAN and the LATEX community.
I hope to make many more in the future!

Happy TEX patenting!

⋄ Peter J. Pupalaikis

Ramsey, NJ USA

pete_pope (at) hotmail dot com

http://mysite.verizon.net/

petepope/id6.html

A patent application design flow in LATEX and LYX

282 TUGboat, Volume 33 (2012), No. 3

Page style tricks with scrpage2

Markus Kohm

Abstract

For the fourth edition of the KOMA-Script book I’ve
used a special style for the page header, in which the
page number is separated by a small black bar from
the running head and moved out into the margin.
This was accomplished by using the KOMA-Script

package scrpage2. Although the KOMA-Script book
was created using a KOMA-Script class, use of the
scrpage2 package is not limited to those classes. It
may also be used with several other classes, e.g., the
standard classes.

1 Issue

Kohm and Morawski (2012) was produced using a
layout with a long, narrow text column and a rel-
atively wide, and heavily used, column for margin
notes. For this design, the default page style of
KOMA-Script would have been problematical. On
the one hand, the page header with running head
aligned to the outer edge of the text area would have
accented the text column too much. On the other
hand, the page number, if aligned to the outer edge
of the text area at the foot of the page, would have
seemed lost in space; this might even have caused
the page proportions to seem wrong.

It would usually be suggested to extend the
page header across the entire text and margin note
columns, aligning the running head text to the outer
edge of the margin note column. Similarly, the footer
should also extend across both columns. But on
pages with few margin notes, the page number at
the outer edge of the margin note column would look
lost. To avoid squeezing the page number into the
lower outside corner of the page, the bottom margin
would have to be very large.

To avoid such problems, the page header and
footer are often separated from the rest of the page
by horizontal lines. These rules form a kind of frame.
Personally I don’t like this, because such frames op-
tically constrict the page body. Also, the book al-
ready contains several elements with frame effects,
e.g., tables, syntax frames, figures of pages, and all
of those may be close to the page head or foot. Such
a concentration of horizontal lines is best avoided.

Because of this, I’ve decided not to use horizon-
tal lines below the head or above the foot. The foot
should in any case remain empty, to avoid the prob-

Editor’s note: First published in Die TEXnische Komödie

3/2012, pp. 17–21; translation by the author and
Barbara Beeton.

lem with the page numbers. So the pagination must
be somewhere in the head. But where? Moving the
page number from the foot to the head only moved
the problem.

I reject page numbers at the inner margin. I
think that the design of a page layout is not only
about the appearance, but also about utility. If one
is searching for a page based on the table of contents
or an index, or even a cross reference, the page num-
ber is the object of the search. Placing it in the inner
margin or the gutter makes it nearly useless; some-
where in the outer margin is much better, so one
doesn’t need to open the book completely to find
the number. Then the search will be much faster.

2 Solution

The final choice was a classic design with the title on
the inside, and the page number on the outside of the
running head. Because of the prominent border for
margin notes, heavily used also for figures and tables
or their captions, the page number was aligned not
at the edge of the text, but at the outer edge of the
margin note column.

Of course, the margin note column isn’t always
occupied; on some pages this column is empty, and
sometimes the main text is even indented on the
left. On such pages, the page number may seem
a bit lost. However, as mentioned earlier, I didn’t
want to accentuate the header with a horizontal rule.
Instead, I introduced a somewhat heavier vertical
rule to the inside of the page number, as shown in
figure 1.

To implement this heading, first the package
scrpage2 is loaded, and the page style scrheadings
activated. This page style is configured to set the
running head text flush to the inner edge of the main
text area. In addition, the page number is aligned
to the outer edge of the margin note column, even
on plain pages, which will be used, e.g., for starting
new chapters. The footer is configured to be empty:

\usepackage{scrpage2}

\pagestyle{scrheadings}

\clearscrheadfoot

\ihead{\headmark}

\ohead[\pagemark]{\pagemark}

Note that scrpage2 uses the optional argument of
commands like \ohead to configure the page style
scrplain, the plain page style used together with
scrheadings.

After this, the pagination routine is redefined to
add the vertical rule beside the page number, distin-
guishing between odd and even pages:

\renewcommand*{\pagemark}{%

\usekomafont{pagenumber}%

Markus Kohm

TUGboat, Volume 33 (2012), No. 3 283

88 Kapitel 3. Die Hauptklassen scrbook, scrreprt, scrartcl

Achtung! Es ist gar nicht so einfach einen Fülltext zu finden, der problemlos
umbrochen werden kann und somit wirklich als Fülltext in Frage
kommt. Nur gut, dass hier nicht allzu viele Zeilen gesetzt werden
müssen, sonst gäbe das am Ende noch ein Problem.

Figure 1: Page head used in Kohm and Morawski (2012)

\ifodd\value{page}\pnumbar\enskip\fi

\thepage

\ifodd\value{page}\else\enskip\pnumbar\fi

}%

\newcommand*{\pnumbar}{%

\raisebox{0pt}[\ht\strutbox][\dp\strutbox]{%

\rule[-\dp\strutbox]

{1.5pt}

{1.1\baselineskip}%

}%

}

So printing the rule beside the page number isn’t
part of the definition of the page style itself, but part
of the definition of the pagination macro \pagemark.
The height, alignment, and width of the rule were
determined by experiment. The rule has been set
to the height and depth of a normal text line using
\raisebox; this ensures proper alignment with the
page number and running head text.

Last but not least the header has been enlarged
to span not only the text area but also the mar-
gin note column. To make sure that recalculation
of the page area will also adjust the width of the
header, the \AfterCalculatingTypearea hook of
the typearea package has been used, with the com-
mand \recalctypearea activating the adjustment.

\AfterCalculatingTypearea{%

\setheadwidth[0pt]{%

\dimexpr\textwidth

+\marginparsep

+\marginparwidth\relax

}%

}%

\recalctypearea

If you don’t use the typearea package from KOMA-

Script, you may omit \AfterCalculatingTypearea
and \recalctypearea; just use \setheadwidth di-
rectly and avoid further changes to the page area.

3 Usage with standard page areas

I’ve already mentioned that Kohm and Morawski
(2012) uses a special page area with a wide margin
note column. Optically this will be part of the type
area and of the margin. But what about when using
a standard layout without margin notes or only some
small margin notes? Would the same page header
definition blend well in this case? See figure 2 for an
example.

In my opinion, the distance from the page num-
ber to the left edge of the text area is too large. An
alternative would be to align the page number at the
inner edge of the margin column instead of the outer
edge. Figure 3 shows an example of this suggestion.

Only a small change to the \pagemark com-
mand is needed to implement this alternative:

\renewcommand*{\pagemark}{%

\usekomafont{pagenumber}%

\ifodd\value{page}%

\makebox[\marginparwidth][l]

{\pnumbar\enskip\thepage}%

\else

\makebox[\marginparwidth][r]

{\thepage\enskip\pnumbar}%

\fi

}

4 More modifications

The page head shown is suitable for double-sided
printing. For single-sided printing the distinction
between odd and even pages may be dropped; in this
case only the variant for right-hand (odd) pages is
needed.

The running head can be aligned not only to the
inner edge of the text area but alternatively to its
outer edge. To do so, remove the \ihead commands
from the first listing and extend the \ohead com-
mand appropriately. Alternatively you may substi-
tute the commands \rohead and \rehead:

\lehead[\pagemark]{%

Page style tricks with scrpage2

284 TUGboat, Volume 33 (2012), No. 3

88 Kapitel 3. Die Hauptklassen scrbook, scrreprt, scrartcl

Es ist gar nicht so einfach einen Fülltext zu finden, der hier problem-
los umbrochen werden kann und somit wirklich als Fülltext in Frage
kommt. Nur gut, dass hier nicht wirklich viele Zeilen gesetzt werden
müssen, sonst gäbe das am Ende noch ein Problem.

Figure 2: Page head of figure 1 in combination with a standard layout

88 Kapitel 3. Die Hauptklassen scrbook, scrreprt, scrartcl

Es ist gar nicht so einfach einen Fülltext zu finden, der hier problem-
los umbrochen werden kann und somit wirklich als Fülltext in Frage
kommt. Nur gut, dass hier nicht wirklich viele Zeilen gesetzt werden
müssen, sonst gäbe das am Ende noch ein Problem.

Figure 3: Alternative alignment of the page number with respect to figure 2 in
combination with a standard layout

\makebox[\marginparwidth][l]{\pagemark}%

\hspace{\marginparsep}\headmark

}

\rohead[\pagemark]{%

\headmark\hspace{\marginparsep}%

\makebox[\marginparwidth][r]{\pagemark}%

}

If you want to change only the width, height or
depth of the rule beside the page number, you just
have to change the \pnumbar command; neither the
pagination command nor the page header definition
needs to be changed.

Of course, you may also move the page numer
to the page footer as is the default for the KOMA-

Script classes. To do so, you don’t need to change
the command \pagemark, but only the usage of this
command in the configuration of the page styles.

5 Concluding remark

In this article you’ve been told how to use scrpage2

to alter the layout of the page header and footer.

You’ve seen behind the curtain of making design de-
cisions. An implementation of the desired design has
been shown, one that has been used for a real book
project.

Alternatives for different margin settings have
been explicated and suggestions for implementing
some of them have been given. Finally, some further
possibilities have been offered for changing design or
implementation.

References

Kohm, Markus, and J.-U. Morawski. KOMA-Script.
Lehmanns Media, Berlin, 4th edition, 2012.

⋄ Markus Kohm
Freiherr-von-Drais-Straße 66
68535 Edingen-Neckarhausen
Germany
komascript (at) gmx dot info

http://www.komascript.de

Markus Kohm

TUGboat, Volume 33 (2012), No. 3 285

CrafTEX: Applying TEX, MetaPost, and
friends in crafts

Mari Voipio

Everything started because of my job as a documen-
tation manager in high-tech industry: when the word
processor gave up on our big fat instruction manual
and the purpose-built software wasn’t within budget,
we ended up with ConTEXt. The transition period
wasn’t easy, but in time I learned to appreciate this
software that does not make assumptions about what
I’m attempting to do.

Thus, when I suddenly found myself with a
textile craft book to be translated and prepared for
printing, I thought of ConTEXt. Life happened and
the booklet is still sitting on my desk waiting for
its turn, but in the meantime I have learned many
other things about TEX-based systems and started
to exploit their potential in crafts.

The experience has been mind-blowing! I come
up with new implementations almost weekly, al-
though I don’t usually try things out until I have a
real need for them. I am not a programmer, but I
realize that a computer is especially useful in reduc-
ing the tedious repetitiveness of the planning stages.
Nothing can ever prepare a crafter to what happens
when you play with real yarn and real paper and
glue, but the “what if that’s lighter blue” and “I
guess this is the wrong font here” process can be
significantly sped up by computer simulation.

I don’t feel complete until I’ve shared my knowl-
edge with others. I don’t get many face-to-face op-
portunities to do that, so I decided to go online:
http://www.lucet.fi. I haven’t had the energy
to fight with WordPress about the printing styles,
so instead I’m planning to do printer-friendly PDF

instructions with ConTEXt and MetaPost.
Besides enhancing my creativity, I also use Con-

TEXt to deal with the boring but necessary parts of
having my own little craft business, e.g. for creating
price lists and business cards. This migration is still
very much in process, but eventually everything will
be done with ConTEXt and possibly MetaPost, with
as few different style definitions as possible.

1 Plain vanilla typesetting

It may seem obvious to many readers that TEX can
be used to typeset craft-related documents just as
well as anything else. However, to me it has been
a new world where vector graphics can be inserted
as is and the layout is mainly limited by my own
skill, not by what far-away programmers thought I’d
need the software for. While shedding 20 years worth
of WYSIWYG workarounds and reverse engineering

this type of bookmarks are common

in paintings, used in Bibles and prayer

books as well as by learned men in

study.

A detail of The Vision of St Augustin by

Vittorio Carpaccio 1502

The medieval and Renaissance man-

uscripts very seldom had numbered

pages. If numbering existed, it got cut

off when the manuscript was bound.

Thus, to refer to a certain place in

a book, the learned men and pi-

ous women of the period often used

multiple-strand ribbon bookmarks that

were either fastened directly to the top

of the book binding or loose, fastened

onto an anchor - a button, a knot, a

fabric bolster - on top. The bottom

ends were finished with e.g. beads or

tassels.

This far only some 30 medieval or Re-

naissance bookmarks are known, the

delicate ribbons preserved by the man-

uscript they were used in. However,

Figure 1: Documentation card for a historical

bookmark.

has not been easy, I now find ConTEXt much more
versatile than anything I’ve had before, doubling as
a word processor and tool for desktop publishing.

Thus far I’ve used TEX, mainly ConTEXt, to
typeset three kinds of documents: documentation
on pieces I’ve created, instructions on how to do
something, and little odds and ends necessary to my
tiny craft business.

Documentation is an integrated part of my craft-
ing. I feel that telling the story behind an item
adds to its value. A hobby of mine is historical
re-enactment, and there it is important to “justify”
the existence of an item by explaining the historical
context, usually with literary and visual references.
Even a small item can illustrate history and bring it
close, e.g. a bead-decorated multi-strand bookmark
illuminates an era when page numbers were a rarity
and books were stored flat rather than upright.

Instructions are all about sharing the knowledge
one has gained. Instructions on paper can seldom
fully replace hands-on training, but I always try to
include both written instructions and graphics as
different people prefer different versions. Nowadays I
try to complement the instruction sheets with online
videos, but I’d rather not count on the moving pic-
ture; living with slightly dodgy Internet connections
has taught me to value downloadable instruction files!

The business end of my typesetting is the newest
addition to my TEXing and also the one that saves me
the most time: judicious use of layers and imposition
suddenly makes perfect tags and labels much easier
to achieve than it ever was with word processors. As
I attend a variety of craft-related events, I used to
have several different price lists, one “medieval”, one
“old-fashioned” and one “modern” (with man-made
materials only appearing in the third one). Now I can
fairly easily maintain just one price list from which

CrafTEX: Applying TEX, MetaPost, and friends in crafts

286 TUGboat, Volume 33 (2012), No. 3

3

La

Lb

Lc

Ld

Ra

Rb

Rc

Rd

Third step: through one and pickup reversed.

Put left index ƌnger La through

the loop on the left middle ƌnger

Lb and hook the lowermost shank

on the right from below and pull it

through to left (pickup reversed).

Tighten the braid by pulling your

hands apart.

La

Lb

Lc

Ld

Ra

Rb

Rc

Rd

Fourth step: shift down.

Shift the loops on the right hand

down by one ƌnger to free up the

right index ƌnger Ra. Start from

the beginning.

Figure 2: An instruction page for a broad lace.

I pick whatever is needed for a given event, without
dealing with (e.g.) tedious mail merge functions.

2 Scrapbooking and cardcraft

My handwriting was never great to start with, and
I’m badly out of practice since switching to comput-
ers over 20 years ago. Thus, when I have a reason to
make a greeting card, I resort to typesetting every-
thing on computer, so I only need to sign the card
after printing. I’ve managed to create these texts in a
word processor or vector drawing program—depend-
ing on what was available—but ConTEXt has made
the process much easier to control. This especially
applies when the card is of unusual size, e.g. because
I’ve messed up with a punched border and cut it off
to save the rest of the card; changing the ConTEXt
code to reflect this is much faster than fiddling with
text boxes in a word processor file.

Sometimes it can be hard to come up with a
suitable picture for a card. I wanted to express
my condolences and support to a friend whose long-
awaited baby was stillborn, but the available cards
were either too somber and dark or otherwise inap-
propriate. In the end I resorted to the “poetry for all
occasions” section in my bookshelf, and found a beau-
tiful Finnish poem on a child resting on soft green
moss, gently rocked by the wind, a poem that wasn’t
too “heavy” to remember this little one. When I
had found the text, the rest of the card grew out of
it: looking for and finding a (free) rainy background,
trimming the text by tearing the edges, applying it
with glue dots on blue card.

Figure 3: An example business order.

Figure 4: Condolences card.

I like using printed texts because I can get a new
one if I mess it up in the assembly stage—but this
card turned out to be one of those rare specimens
where everything went right on the first go. As
this was the first time I had tried using background
texture, the learning curve was steep and bumpy as
always, but definitely worth the effort. Not only was
I content with how this card turned out (figure 4), I
now have a template that can be tweaked to become
any type of card with a background graphic and a
text on top of it. Another poem, another background,
a different edge treatment, e.g. a lace edge punch,
and the card will look totally different with very
little effort.

Mari Voipio

TUGboat, Volume 33 (2012), No. 3 287

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

Figure 5: Tablet weaving of a heart braid pattern:

simulation, threading chart, and turning sequence.

3 Tablet weaving

Tablet weaving or card weaving is an ancient tech-
nique for weaving patterned ribbons. It is a compli-
cated technique due to the structure of the braid:
the most common weaving tablet is a square with a
hole for thread at each corner, and each card can be
threaded either from the left or right, although all
threads in a given card need to come from the same
direction. During the weaving process the tablets are
turned a quarter round away or toward the weaver to
get a new shed (space for the weft), and one can ei-
ther turn the whole pack together or split the tablets
and turn them to different directions. All this makes
for a fairly complex structure—and then there are
additional techniques to further manipulate warp
and weft threads.

When I originally learned tablet weaving, I was
taught to plan my braids on squared paper. However,
I soon found out that it was very easy to forget one of
the variables, and those mistakes tended to be costly:
it could take me three hours to thread a simple warp
and start weaving, only to find out that the pattern
wasn’t at all what I wanted. I’m not the first one
who thought about using computer as shortcut, and
for several years I used open source software that
had its features and limitations, but worked—only
in Windows. When I changed over to Macs I had
to come up with a different solution. For a while
I used Inkscape to draw pattern simulations, but
the oblique “stitch” turned out to be a bit hard to
place accurately and in general I got tired of all the
repetitive clicking and the work involved every time
I wanted to change something. This was enough
incentive to try to implement MetaPost instead.

For the simplest tablet weaving patterns I just
make a simulation graphic for myself and follow it
when threading the tablets. However, a threading
chart makes the process of creating a warp a bit
faster, especially if thread counts are included. For
patterns where tablets turn separately, a turning

Figure 6: A page from my Helsinge Book.

chart is also needed. In mine I mark the deviating
tablets with a darker background, as in the heart
ribbon that was inspired by Valentine’s Day (figure 5).
I chose to weave this in evenly and tightly spun
pearl cotton to ensure clean lines, but I was still
surprised by how well it turned out compared with
the simulation.

4 Historical (re)creation

Another of my favorite braiding techniques is finger-
loop braiding, where loops of yarn are held on the
fingers of both hands (usually not the thumbs) and
manipulated by switching them from finger to finger
through or past each other. This technique is sur-
prisingly well-documented in 15th and 17th century
English manuscripts that have been transcribed by
several researchers. By now I remember the simplest
braiding sequences, but need cheat sheets for the
more complicated ones. Because modern books are
frowned on at some of the events I go to, I decided to
create a Renaissance-style fingerloop braiding “recipe
book” to show demonstration spectators and to jog
my memory.

Thus, my “Helsinge Book of Braids and Laces”
(named in period style after the place where it was
created) is typeset in ConTEXt with the Lucida Open-
Type calligraphy and blackletter fonts, and printed
on sturdy off-white parchment paper (figure 6). Sam-
ple braids are attached with a few sewing stitches
through the paper. I chose this approach for two
reasons: I wanted to make the book easy and cheap

CrafTEX: Applying TEX, MetaPost, and friends in crafts

288 TUGboat, Volume 33 (2012), No. 3

to replace if it gets rained on (for example); and
I wanted to be able to add new braiding recipes
anywhere in the book so I can keep related braids
together instead of having to add them to the end
of the book in the order I find or create them. Cur-
rently there are only six A5 pages of recipes in my
printed copy and many samples are missing, but the
project is constantly growing, spurred by the positive
interest that my little booklet has received wherever
I’ve shown it.

5 Other ideas

One idea leads to another, and the possibilities seem
endless. In tablet weaving I need charts for double-
faced weave and brocade, and a lot of automation
to omit the most tedious stages of pattern planning.
I could also use weaving drafts and especially simu-
lation graphics for rigid heddle, inkle and backstrap
weaving and even my small “real” weaving loom. I
am also learning Japanese braiding techniques and
recently found a book with beautiful patterns, but
instruction charts that just don’t parse for me, so I
have to rework them using a system I can understand.

In other textile crafts I’m itching to try my hand
at quilting, as MetaPost will be handy in playing
with shapes and color. I should also be able to create
cutting plans and even cutting patterns for many
medieval and Renaissance items of clothing, another
task I’m used to doing on gridded paper. As there are
several common fabric widths and shrinkage depends
on the fiber, the preliminary cutting plans often
have to be remade after the fabric is purchased and
washed; this should be at least less smudgy with
MetaPost, if not less work.

I also want to learn to create interactive PDFs
from my instruction sheets. When I’ve gotten more
practice in integrating MetaPost in ConTEXt docu-
ments, I hope to be able to add all types of fancy
frames around my texts and pictures as well. The
combination of MetaPost and ConTEXt also allows
for fitting text into shapes and clipping text and
graphics to shapes.

Besides paper and fibre, I also play with beads.
When I string a necklace, it typically has a pattern
where two colors and/or shapes and/or sizes of beads
are combined. I think this could be simulated to some
extent by placing objects on an oval path of appro-
priate diameter or length. There are so many factors
to be taken into account that MetaPost will never
be able to substitute a real tactile beading board
and a real strung necklace, but a quick simulation
should show whether something will be pleasing to
my eye and if so, what amounts of, say, 6 mm and

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

A

B

C

D

1 2 3 4 5 6 7 8 9 10

Figure 7: Testing a design theme and variations.

4 mm beads I need for the project. Again, playing
with color is faster virtually; in real life, it takes a
while to pick out all 50 red beads and put 50 blue
in the vacated slots, while on the computer it is a
matter of a quick round of find and replace—or
replace all, if one is feeling courageous.

6 Why TEX and friends?

Recently my games with MetaPost and (Con)TEX(t)
have attracted quite a bit of curiosity both within
the ConTEXt community and among the braiders, so
I often have to explain why I’ve made this choice.
The main aim of the whole exercise is to shorten or
entirely avoid the most repetitive and tedious stages
of crafting to free up time and energy for creativity.
If changing a color scheme on a braid takes three
minutes instead of 30, I can try out a lot more color
schemes in the same amount of time. When I go
into that mode, I don’t want technical issues to hold
up the flow of new ideas. (See a design theme and
variations in figure 7.)

I’m sure there is existing commercial or open
source software for everything I use, and usually
learning to use just that software would be faster
and easier. The flip side of the coin is that dedi-
cated software is (at best) good at doing what it
was intended to do, but it can often be expensive,
or restricted to just one operating system, or good
at the basics but hopeless at an advanced level. As
I’m interested in a wide variety of crafts, I need
something that is as versatile as possible and the
ConTEXt suite in combination with MetaPost and
TEX/ConTEXt code ticks all the boxes for me. I hope
to write more articles in the future going into more
of the TEXnical and MetaPost-ish details.

⋄ Mari Voipio

mari dot voipio (at) lucet dot

fi

http://www.lucet.fi

Mari Voipio

TUGboat, Volume 33 (2012), No. 3 289

MayaPS: Maya hieroglyphics with (LA)TEX

Bruno Delprat and Stepan Orevkov

Abstract

We present a system for hieroglyphical composition
of ancient Maya texts, to be used for their palaeog-
raphy, the production of dictionaries, epigraphical
articles and textbooks. It is designed on the base of
TEX and PostScript using the Dvips interface, and
includes a set of Maya fonts.

The ancient Mayan writing system is very par-
ticular: base writing signs attach to each other from
all four sides (left, right, top, bottom), and are also
rotated and rescaled. This cannot be produced with
TEX’s usual tools.

For example, we can type:
\maya{li.AM2 u.TUN/CHU uj.UJ.ki death.KIMI/la}

to obtain

', $.) %+ (& "- (Dresden codex).

1 Introduction

! !
The present package MayaPS is designed for edit-
ing the palaeography of ancient Maya hieroglyphi-
cal texts using TEX or LATEX and Dvips. The PhD
dissertation [1] and a previously published Spanish
language symposium communication [2] are typeset
using it. MayaPS is available from http://picard.

ups-tlse.fr/~orevkov.

To get the above Maya word ! !xib (male),

we typed:

\mayaSize{2cm}\maya{422.422}

As another example, to get
*
#) #katun (calendar

cycle of 20 years), we input:

\maya{(023.153.023):220} \emph{katun} (calen...

2 Structure of the ancient Maya script

2.1 General principles

The ancient Maya logo-syllabic writing has been in
use in Central America’s Southern Mexico, Guate-
mala, Belize, Honduras and Costa Rica for more
than 1300 years, from the 3rd century ad to the
mid-16th century, when Spaniards forbade its use
and burned Maya books on religious and political
grounds.

This impressive civilization left rich inscriptions
on monuments, ceramics and divinatory almanacs.
They constitute nevertheless a small volume of avail-
able texts: three surviving manuscripts (the Dres-
den, Madrid and Paris codices) and about a thou-
sand short inscriptions. Maya texts are now largely
deciphered, with a variable degree of reliability.

The writing system comprises more than 500
base signs called glyphs. Since the end of the 19th

century, Western scholars have set up catalogues
of Maya hieroglyphics with different encoding num-
bers, the most popular being the Thompson Cata-
logue [11].

Figure 1: Dresden codex page 30b(2) & text
palaeography with translation below

"8 1
400/010.030

6

5

/
+176/204.031

27
117.260

'4 #
133/111.023

tsel-ah lakin chac-xib kabil

Was stand-
ing

East red man sweet

<
423/515

; (
530.112

3: 0
515/504.013

$9
026.401

cehel-uah; Chac hanal u-bool

deer tamal god Chac meal its tribute

MayaPS: Maya hieroglyphics with (LA)TEX

290 TUGboat, Volume 33 (2012), No. 3

Ancient Maya words are composed by attach-
ing together primitive (non-decomposable) glyphs,
in a way rather similar to how Chinese characters
are composed. Composed primitive glyphs are re-
scaled so that they harmoniously fill a rectangle of
a fixed size (called a cartouche by Mayanists). The
cartouches are placed in a regular way on a page.
Maya manuscript texts are organized in blocks of
2 to 16 cartouches which constitute as many sen-
tences, often followed by associated numbers, dates
and eventually a picture. According to the number
of cartouche spaces available on the almanac page
to write a short or long sentence, the scribe would
squeeze in or spread out writing signs among the
cartouches to avoid empty boxes and obtain a nice-
looking page layout.

2.2 Glyph types and orientations

In the ancient Maya writing system, there are two
types of primitive glyphs called central elements and
affixes. Usually the shape of central elements is
closer to square whereas affixes are narrower.

Central elements always appear in the same ori-
entation but affixes turn so that they stick to other
glyphs by their long side, following a general orien-
tation rule.

Complete glyphic cartouches are made up of
one to five basic signs or glyphs. Thompson [11] has

shown that affixes, like / ni, present rotation

patterns and symmetries, around a central element,

such as 6 KIN, whose orientation is fixed.

T116 " ni T87 ! te

Through analysis of the Maya codices, we have
determined that affix patterns follow a definite rule.

For example, > te (tree) is an affix and it usu-

ally attaches to a central element like this: >@
@

>
@ > >@ . So, there are five standard ori-

entations for each affix: when it is single and when
it attaches from the left, from the right, etc.

In the Dresden Codex we find the following cor-
responding cartouche compositions:

> >C
?
=)

>
B >2 >A

Affixes are generally syllabic value signs which
can combine together or with a central element to
write a Maya word. Central elements are generally

of a logographic nature, corresponding to a mor-
pheme or a word, and read globally; for example

6 KIN (sun, day).

A complete glyphic cartouche often corresponds
to a lexical entry with preceding and following gram-

matical affixes as in 6 /KIN-ni (sun, day), but

it can also in some cases correspond to two words if
they are short, or more rarely otherwise to a part of
an expression spelled over two cartouches.

2.3 Glyph composition into cartouches

For the composition of glyphs the following stan-
dard notation is used in the historical and linguistic

literature on ancient Maya: if A and B

are two glyphs (primitive or not), then A.B and A:B

encode the glyphs A B and
B

A

; for exam-

ple: 204.031 6 /and 204:031 /6 . To control

the order of composition, one can use parentheses in
the same way as in mathematical formulas. For ex-

ample, both A.B:C and A.(B:C) stand for A
C

B

but (A.B):C stands for
C

A B

; thus: 026.172/023

$ #G and (154.123)/306 DFE (in glyph codes, ‘/’

means the same as ‘:’).

3 Description of MayaPS

3.1 Main features

The text cartouches ! !and *#) #that we used

above are composed of these primitive glyphs:

! #) *
MayaPS does not consider any grammatical func-
tion or linguistic meaning of primitive glyphs. They
are just graphical elements which are the elementary
bricks of Maya typesetting, like letters in European
languages.

As should be clear already, each primitive glyph
is referred to by its code (more specifically called the
glyph code). The glyph codes for the above are 422,
023, 153, and 220. In general, a glyph code is any se-
quence of digits 0. . . 9 and letters a. . . z, A. . . Z. The
encoding system is rather flexible. For example, af-
ter the command \mayaDefine{A9z}{422} you can

type maya{A9z} to get ! .

Any formula of this kind is allowed by MayaPS,
even something like this:

Bruno Delprat and Stepan Orevkov

TUGboat, Volume 33 (2012), No. 3 291

A
A

A
A

A
A A

A

A

A

A

A

HHHHHHH
H

H
H

H
H

The picture on the right hand side (a fantasy writing
cartouche, as there is no such glyph in ancient Maya
writing) is printed by the command

\maya{322.322:(322.322:(322.322:(322.322:(322.

322:(322.322)))))}

The type of each glyph (affix or central) and the
five default orientations for each affix are written
in the font file. Orientation can be changed with
modifiers -|+*? whose meaning is:

H
322

H
-322

H
|322

H

+322

H

*322
H

?322

The modifiers can be composed together yielding:

H
322

H

*322

H
-*322

H

+-*322

H
?+-*322

H

|?+-*322

Let us discuss again the glyph
*
#) #. We see

that the primitive glyph 023 occurs here in two dif-

ferent ways: # and #. Moreover, in N
##

5
P

it occurs twice horizontally. MayaPS automatically
chooses the orientation of each primitive glyph of
the affix type according to “orientation rules” for-
mulated by the first author after a careful analy-
sis of ancient manuscripts. Of course, these rules
have exceptions, but it is easy to handle them. For
example, if you type \maya{422.222/024}, you ob-

tain ! IQ (the default orientation), but if you type

\maya{-422.410}, you obtain
!

M.
A more representative example is the palaeog-

raphy of page 22c of the Dresden Codex, due to the
first author:

& "-
047.276/010

%+
034.233

$ #G
026.172/023

4
T

532/133

W
910

Y
812

& "-
047.276/010

T4
532.133

$ #G
026.172/023

J+
505.233

Y
912

X
811

! !
422.422

& "-
047.276/010

$L K

S
026.076.453/072

R
O

510/303

V
909

U
807

To obtain this, we typed:

\mayaC{ % \mayaC = glyphs with input codes

047.276/010 034.233 026.172/023 532/133 910 812

047.276/010 532.133 026.172/023 505.233 912 811

422.422 047.276/010 026.076.453/072 510/303 909

807}

MayaPS permits the support of multiple fonts.
In this paper we use mostly the font codex created
using the tools mentioned in §4.1, but another style
glyph set gates has been implemented based on the
same glyph codes, for example:

codex font: ',
111.274

gates font: !"
111.274

MayaPS provides a tool to add or replace glyphs
in existing fonts and a tool for making new fonts.

3.2 Substitutions (ligatures)

A list of substitutions is associated with each Maya
font. As we mentioned in the introduction, a new
substitution s1 → s2 can be defined by the com-
mand \mayaDefine{s1}{s2} where s1 and s2 are
any strings (chains of characters). Substitutions are
applied to the arguments of glyph drawing macros.
They are applied non-recursively. Some substitu-
tions can be predefined in a Maya font. Three types
of substitutions are predefined in the font ‘codex’:

(1) Ligatures. One or several affixes or central
elements can be melded inside a central element or,
more frequently, inside a head figurative element in-
stead of being simply attached to it, forming a liga-
ture as a single bound form. For example, when you

type \maya{070:349}, you obtain \ 353 rather

than [
Z
070:349 because of the predefined sub-

stitution (ligature) 070:349→ 353. Here we typed
\maya{070:(349)} to print the non-ligatured form.
The ligature was not applied because ‘070:349’ is
not a substring of ‘070:(349)’.

As another frequent ligature example you have:

373 ^ Cacau D7c (2), that decomposes into sim-

pler glyphs: 369<023/023>. The operator <...> in-

dicates that both affixes 023 ## are placed in the

centre of 369] .

Within Maya texts, both forms—melded into
a ligature (single glyph code), and separately drawn
(2–3 glyph codes)—are equivalent and may consti-

tute orthographical variants, e.g.: \ and [
Z
.

Our catalogue includes around 100 ligature glyphs.

(2) Thompson codes. The basic glyph codes
in the font ‘codex’ are based on glyph numbers of

MayaPS: Maya hieroglyphics with (LA)TEX

292 TUGboat, Volume 33 (2012), No. 3

the Evreinov catalogue [3], from which font draw-
ings were derived. However, many specialists are
more familiar with glyph codes in Thompson’s cata-
logue [11]. Due to predefined substitutions T1→ 026

$, T2→ 410 M etc., those codes can be used

also for text input.

(3) Phonetic values. Reconstituted phonetic
values in the Maya language can also be used to ease
text input. Phonetic values of affixes are conven-

tionally written in lowercase letters: a→ 050 ` ,

aj→ 044 = , ak→ 506
_
etc. ; for central el-

ements uppercase letters are used: AT→ 200 a ,

BA→ 213 c , BA2→ 212 b

As with Thompson codes, predefined substitu-
tion tables permit the use of multiple character input
methods, analogous to Chinese character computer
input with either pinyin (PRC’s official romaniza-
tion), cangjie (decomposition into graphic keys) or
dianbaoma (Chinese telegraph codes).

4 Maya fonts

4.1 Font creation mechanism

A MayaPS font is an ASCII text file with the ex-
tension .mpf. Its structure is rather flexible. It is
described in detail in [8]. It has several sections of
PostScript code (a header and glyph definitions) [6]
separated by lines starting with %@. TEX macros
use these marks to select needed sections for includ-
ing them into ‘mayaps.tmp’ (see §7.1). Substitution
rules (see §4.2) have the form %L@ s1 s2.

There is a tool (involving a special vectorizer
‘cotrace’) for creating MayaPS fonts out of mono-
chrome bitmaps. The fonts supplied with MayaPS
are made with it.

When MayaPS fonts created with this tool are
used, they generate Type 1 fonts [5] in the result-
ing ps file. As Type 1 Maya fonts are used, the
resulting pdf document after conversion is consid-
erably smaller than the intermediate ps file. Only
definitions for those font signs used in the text are
included, and just once.

The \mayaAddGlyph macro allows for inclusion
of a new glyph from an eps file but we do not rec-
ommend using it too frequently because it rapidly
increases the resulting ps and, especially, pdf files.

4.2 Currently available fonts

To date, three extensive Maya script fonts and a
partial Olmec script font have been produced by the
first author.

The font ‘codex’ was designed primarily from
drawings of the Evreinov glyph catalogue [3] and is
the one used up to now in this article.

The font ‘gates’ is derived from the lead cast
font designed by William Gates in the 1930s for his
book [4], and has been implemented based on the
same glyph codes as for font ‘codex’. For example,
the beginning of the above quote from the Dresden
Codex printed in the font ‘gates’ looks like:

-&
451.452

) %%

026.314/(314)

!"
111.274

+ (0
047.276/010

3
913

2
810

(we typed \gates and then, just copied the same
codes used above for a text in the ‘codex’ style).

The font ‘thompson’ was made based on the
Thompson catalogue [11] drawings, where the origi-
nal Txxx codes from the catalogue are implemented,
showing that glyph codes in different fonts can be
independent.

A correspondence ligature table, included in the
font, supports glyph input using Evreinov-derived
codes in a text displayed in the ‘thompson’ font, as
shown:

&+
T24.T1047a

$#
!

T1.T19:T59a

", '
T58a.T1026.T103

% (*
T15.T736a:T140

)
XVIn

Similar correspondence ligature tables are in-
cluded in the ‘codex’ and ‘gates’ fonts for glyph
input using Thompson codes and phonetic reconsti-
tuted values, for example:

!"
T24.T1047a

111.274

) #
$

T1.T19:T59

026.144:056

'/ ,
T58.T1026.T103

505.233.112

+ (0
T15.T736a:T140

047.276:010

4
XVIn

916

!"
li.AM2

)1.
u.TUN/CHU

*/ ,
uj.UJ.ki

+ (0
death.KIMI/la

The font ‘olmeca’ is derived directly from draw-
ings of La Mojarra stella [7] of the 2nd century AD

and from the Tuxtla tablet. It represents a partial
set of Olmec glyphs, which were composed in verti-
cal texts without rotation of affixes.

" ! # $
Bruno Delprat and Stepan Orevkov

TUGboat, Volume 33 (2012), No. 3 293

5 Principles we tried to follow

5.1 Length optimization

Suppose you already have a ps file (produced by
TEX/Dvips [9]) in an alphabetic language and you
include ancient Maya glyphs into it. Then MayaPS
adds to the ps output only:

• MayaPS header (7 Kb);

• definitions of primitive glyphs (0.5–3 Kb per
glyph for ‘codex’);

• about 60 bytes for each occurrence of each com-
posed glyph.

MayaPS includes the definitions of only those prim-
itive glyphs which are effectively used in the text.
Each definition is included only once even if the
primitive glyph is used many times. This property
holds after conversion from ps to pdf, because Type
1 fonts are used for primitive glyphs (as usual, the
size of pdf generally lies between the sizes of ps.gz
and ps).

5.2 Simplicity of installation and no need
of support

To use MayaPS, it is enough to copy a few files into
any directory (folder) ‘visible’ by TEX, for example,
the directory where the tex file is. In particular,
no extra font in the usual sense is needed (a typical
beginner’s problem is how to make TEX ‘see’ a new
font).

The algorithm to draw a composed glyph is im-
plemented in the PostScript language [6], and fea-
tures of Dvips [9] are used for calling it from a TEX
file via a \special macro (this is why MayaPS does
not work with pdfTEX). So, TEX, Dvips, and Post-
Script are needed. Nothing else is used in MayaPS.

The only exception is the tool for creating new
MayaPS fonts (mpf files) where C programs are used,
but the font file format is described and it is easy
to make an mpf file out of a Type 1 font (detailed
instructions are given in reference [8]).

6 A few words about the implementation

6.1 Interaction between TEX
and PostScript

A glyph code (example: 111.+176/111 for ' '

5

) is

passed to the ps output by the Dvips command:

\special{"M(111.+176/111) w h d E}

where w × h is the cartouche size and d is the font
descriptor (an integer number). Dvips literally in-
cludes the argument of \special{" } into the ps

file and the task of drawing the composed glyph is
delegated to a PostScript interpreter. The glyph

drawing subroutine E is defined in the header in-
cluded to the ps file by the Dvips command:

\special\{header:mayaps.tmp}

(see [9]; §5 for more detail).

Before issuing the command \special{"M...E},

all primitive glyph names are extracted from the
glyph code and checked to see if their definitions are
already included into the header mayaps.tmp. The
token list \output is extended so that at the end
of each page the definitions of all newly-appeared
glyphs are copied from mpf files to mayaps.tmp.

6.2 Substitution mechanism

In earlier versions of MayaPS, the substitution mech-
anism was implemented by creating for each substi-
tution s1 → s2 a macro whose name (control se-
quence) contains s1 and whose expansion is s2.

Then, for each substring of each composed glyph,
the corresponding macro was checked for existence
by this command:

\ifx\csname ... \endcsname\relax

However, this command leaves the tested control
sequence in TEX’s memory forever. As a result,
TEX’s usual capacity (60000 control sequences) was
exceeded when the thesis [1] exceeded 300 pages.

The new substitution mechanism creates the
tree of initial subwords of left hand sides of all substi-
tutions. Now the number of control sequences used
does not exceed the size of this tree.

Acknowledgments. The idea to use the Post-
Script language rather than TEX for drawing com-
posed glyphs belongs to Ilya Zakharevich. The TEX
part of MayaPS is inspired by epsf.tex (by Tom
Rokicki) and even some code is taken from there.
Our glyph numbering system is adapted from the
Evreinov catalogue [3], as are most codex font draw-
ings. Glyph drawings for the gates font are taken
without modification from William Gates’ [4] Dres-
den Codex palaeography.

Another attempt to adapt (LA)TEX for ancient
Native-American languages that concerned Olmec
writing was done in [10], using a very different ap-
proach from ours.

References

[1] B. Delprat. Le codex de Dresde: Paléographie
et traduction comparée d’un almanach
maya du 15e siècle. Thèse de doctorat,
Institut National des Langues et Civilisations
Orientales, Paris, n.p. (thèse en cours).

[2] B. Delprat and S. Orevkov. mayaTEX – un
sistema de composición tipográfica de textos

MayaPS: Maya hieroglyphics with (LA)TEX

294 TUGboat, Volume 33 (2012), No. 3

jerogĺıficos mayas para la computadora. In
XXI Simposio de investigaciones arqueológicas
en Guatemala, Guatemala de la Asunción,
23–27 July 2007.

[3] E. V. Evreinov, Yu. G. Kosarev, and
V. A. Ustinov. Primenenie elektronikh
vychislitel′nykh mashin v issledovanii
pis′mennosti drevhikh maiya [The Use of
Electronic Computing Machines Applied
to Research on Ancient Maya Writing].
Akademia nauk SSSR [Academy of Sciences of
the USSR], Novosibirsk, 1969. 4 vols.

[4] William E. Gates. The Dresden Codex
reproduced from the tracings of the
original colorings and finished by hand. In
Maya Society Publication, number 2. The
Maya Society at the Johns Hopkins University,
Baltimore, 1932.

[5] Adobe Systems Inc. Adobe Type 1 Font
Format. File T1Format.pdf available on
http://www.adobe.com.

[6] Adobe Systems Inc. PostScript Language
Reference Manual. Files plrm.pdf and
plrm2.pdf available on http://www.adobe.

com.

[7] Martha J. Macri and Laura M. Stark. A
Sign Catalog of the La Mojarra Script.
Pre-Columbian Art Research Institute, San
Francisco, 1993.

[8] Stepan Orevkov. MayaPS: Typing Maya with
TEX/LATEX. Reference manual. available on
http://picard.ups-tlse.fr/~orevkov.

[9] T. Rokicki. Dvips: A DVI-to-PostScript
Translator. File dvips.pdf included
in most TEX distributions, available on
http://www.ctan.org.

[10] A. Syropoulos. Typesetting Native American
languages. Journal of Electronic Publishing,
8(1), 2002.
http://www.press.umich.edu/jep.

[11] J. E. S. Thompson. A Catalogue of Maya
Hieroglyphs. Univ. Oklahoma Press, 1962.

⋄ Bruno Delprat
INALCO & SeDyL-CNRS, 7, rue

Guy Môquet
94801 Villejuif cedex
France
brunodelprat (at) club-internet

dot fr

http://celia.cnrs.fr/Fr/Labo/

Delprat.htm

⋄ Stepan Orevkov
Institut de mathématiques de

Toulouse, Université Paul
Sabatier

31062 Toulouse
France
orevkov (at) math dot ups-tlse

dot fr

http://www.math.univ-toulouse.

fr/~orevkov/mayaps.html

Bruno Delprat and Stepan Orevkov

TUGboat, Volume 33 (2012), No. 3 295

Experiences with Arabic font development

Sherif S. Mansour, Hossam A.H. Fahmy

Abstract

This is a report of our experiences attempting to use
a new font, AlQalam, for the Arabic script within
TEX. Then we want to make use of the new features
introduced in LuaTEX to build our context analy-
sis and line breaking engines to achieve a complete
functional font package. We describe the challenges
of producing high-quality Arabic fonts in general
and what AlQalam has introduced to meet Arabic
script requirements. We also describe the problems
we faced trying to figure out how to use a new right-
to-left font within TEX, what approaches we used
to debug the font and some debugging results. This
remains work in progress.

1 Arabic script and Naskh style

The Arabic alphabet is used to write many languages
in many places around the world. Also, Arabic is of
great importance to Muslims (about a quarter of the
world’s population), as it is the liturgical language
of Islam.

The most distinctive features of the Arabic al-
phabet are that it includes 28 letters and is written
from right to left in cursive style, i.e., many or all
letters in a word are connected.

Arabic has six major writing styles: Kufi, Thu-
luth, Naskh, Riq’aa, Deewani, and Ta’liq. Naskh
style is the most commonly used for printing, in
both traditional texts such as the Muslim Holy Book
(the Qur’an) as well as contemporary publications.

2 Challenges in producing high-quality

Arabic fonts

The main challenge of producing high-quality Arabic
fonts is that Arabic calligraphy is an art. The rules
to follow when composing Arabic texts have great
flexibility in choosing different variations of letter
forms and constructing complex ligatures. These
variations and ligatures add an aesthetic touch to
the script and also justify the text as needed.

Every Arabic letter may have four basic forms
depending on its location in the word: initial, medial,
final, and isolated. Fig. 1 shows the different forms
of the “Baa” letter as an example. Every letter form
may have different variations to be used depending
on the preceding or succeeding letter. Fig. 2 (taken
from [8]) for example shows the different variants of
the forms of “Baa”. The first shape (starting from
the right side of the first line) is the isolated “Baa”
form variant. The second, third and sixth shapes

Figure 1: From right to left: initial, medial, final, and

isolated forms of “Baa”

Figure 2: Letter “Baa” form variations

are initial form variants of “Baa” when rising letters
like “Alef” precede it, letters like “Jeem” precede it
and letters like “Seen” precede it, respectively. The
fourth and fifth shapes are medial form variants of
“Baa” when letters like “Haa” and letters like “Raa”
precede it respectively. The seventh shape is the
general medial form variant of “Baa” and the last
shape is a final form variant of “Baa”.

Fig. 3 shows a part of Mushaf Al-Madinah (The
Holy Qur’an—Madinah print) [1] as a rich example
of the usage of different combinations of variations
with different elongations. This printing, like most
printings of the Qur’an, was hand-written by a cal-
ligrapher and is not typeset. Computer typesetting
(and to a large extent also traditional mechanical
typesetting) are well behind what a calligrapher can
produce for such complex texts.

The underlined shapes represent the same Ara-
bic letter, which is “Kaf”. Notice the different forms
used depending on the location of the letter in the
word and notice that some forms have different vari-
ations depending on the elongation requirements for
line breaking, text justification and preceding or suc-
ceeding letters.

3 The font AlQalam and its features

Several trials were performed to produce high-quality
Arabic fonts. One of them was a project named
AlQalam (“The Pen” in Arabic), started in 2005 un-
der the co-author’s supervision [3]. AlQalam’s target
was to simulate an Arab calligrapher’s pen for Naskh
style (as used to typeset the Qur’an printing, for ex-
ample). AlQalam then might be used in typesetting
any traditional texts as well as any generic publi-

Experiences with Arabic font development

296 TUGboat, Volume 33 (2012), No. 3

Figure 3: An example from surat Hud: forms of Kaf

cations (including scientific ones) in the languages
using the Arabic script.

At first, AlQalam grew out of modifications to
ArabTEX [4]. Modifications were mainly intended
to respond to the specific needs of typesetting the
Qur’an such as adding pause signs, some additional
diacritics (marks used as phonetic guides) and the
abilities to stack them on top of each other, scale
them and correctly position them on the word. Also,
some modifications to the pen used were made to
improve the shape of some letters and symbols.

In 2008, a new font project for AlQalam was
started [7]. That font is meta-designed such that each
character is described by a number of parameters to
allow the creation of many variants that connect with
the surrounding characters correctly. Those variants
may be different in shape and in their amount of elon-
gation. Starting from this period many modifications
were made and new features added.

AlQalam’s font features up till now:

1. All font shapes are meta-designed using META-
FONT to enable greater flexibility while joining
glyphs together and provide smoother letter ex-
tensions.

2. It contains the generic four different forms of
Arabic letters (initial, medial, final, and iso-
lated).

3. It also contains different parameterized shapes
for letter forms (the main source of the form
variants is Mushaf Al-Madina).

4. It is based on the concept of primitives (reusable
glyphs). For example, Fig. 4 shows the Waw
head primitive (the small circle). This Waw
head is reused in combination with the body
(skeleton) of letter “Baa” to produce the letter
“Faa”. Also, the “Waw” head can be reused in
combination with the body of the letter “Noon”
to produce the letter “Qaf”.

5. The font supports vertical placement of glyphs:
Various ligatures have been added to the font

Figure 4: The “Waw” head primitive

Figure 5: Vertical placement of glyphs

Figure 6: Kerning

Figure 7: Joining glyphs with smooth, dynamic

kashidas

Figure 8: Static fixed length kashidas

Figure 9: Parameterized diacritics

to support complex vertical placement combina-
tions as shown in Fig. 5.

6. Kerning: Borders of letter boxes have been ad-
justed to support kerning as shown in Fig. 6.

7. Joining glyphs with kashidas: the kashida is the
most widely used glyph to join letters. AlQalam
implements the kashida as a dynamic smooth
glyph, as shown in Fig. 7 [2]. This is preferable
to the current standard fonts that implement
the kashida as a static fixed length glyph, as
shown in Fig. 8.

8. Parameterized diacritics: A complete set of pa-
rameterized diacritics that can be elongated ac-
cording to the width of the associated letter is
available, as shown in Fig. 9.

9. Mathematical symbols: AlQalam is one of three
fonts that have a complete set of Arabic math
symbols at the time of writing. (The other

Sherif S. Mansour, Hossam A.H. Fahmy

TUGboat, Volume 33 (2012), No. 3 297

Figure 10: Set of Arabic mathematical equations

typeset with AlQalam

Figure 11: Character boxes approach

two fonts are RyDArab [5] and Mathfont [6].)
Examples for Arabic equations generated using
AlQalam are shown in Fig. 10.

4 Calling the different shapes of a letter

Testing of individual shapes was done along with the
development of the font letter forms, form variants,
mathematical symbols, etc. Once the basic develop-
ment was finished, testing of the letters’ positions
against the baseline and against each other when
included in the same word was needed. In addition,
there was a need to perform checks for missing forms,
to assure smooth joins between letters and correct
kerning.

This drove us to call the METAFONT letters
under TEX to debug the font. To do that, two ap-
proaches were possible:

1. Define the character’s borders through boxes,
similar to the Latin script, and define a char-
acter for each shape and with fixed elongation
as shown in Fig. 11. This approach, by defini-
tion, must have a finite number of characters in
the font at the end. Such a finite, i.e. limited,
number of characters means that we must use
only a limited set of values for the parameters of
each character. So, while debugging we used for
example only the “Noon” form shown in Fig. 12
despite the font’s capability to generate elon-
gated shapes of this form as shown in Fig. 13.

2. Using LuaTEX’s embedded Lua and METAPOST

engines to call the correct shape with the suit-
able elongation value. The main advantage of
this approach is that we will be able to benefit

Figure 12: Isolated form of the letter “Noon” without

elongation

Figure 13: Isolated form of the letter “Noon” with

different elongation values

from all the font features. But lacking experi-
ence in this approach made us think that we
should postpone using it to the next phases, as
more time will be needed to debug it.

Hence we started with the first approach to com-
plete the current debugging phase. Meanwhile we will
learn about the possibilities of calling METAPOST

from within LuaTEX in order to generate dynamic
fonts in the future.

5 Problems found during font debugging

As expected, some bugs appeared when using the
font under TEX. If we take a look at Fig. 14 we can
easily notice the bugs, from right to left as follows.
The first and fifth cross signs mark a kerning bug
with the letter “Waw” as it appears too far from
the succeeding letter. The second and fourth signs
mark bad joins of letter “Ain”. Also the letter shape
itself needs some modifications as marked by the
third sign. More bad joins appear between letters
“Qaf” and “Sad” and letters “Lam” and “Dal” as
marked by the sixth and ninth signs. The seventh
sign marks a missing letter that should be added to
the font package. The eighth sign marks a mistake
in specifying the border of letter “Alef” that caused
it to be too close to the succeeding letter.

We have worked on fixing these bugs and many

Experiences with Arabic font development

298 TUGboat, Volume 33 (2012), No. 3

Figure 14: Font state at an early debugging phase

Figure 15: Font state after fixing bugs

others that appeared in turn, to get to a state with
the font that made us ready to move to the next
step (despite having very few joining bugs as shown
in Fig. 15). This is implementing the multi-layer
context analysis algorithm to make using the font
more user friendly, by automatically choosing the
suitable letter forms and form variants instead of the
user having to do so manually.

6 Work in progress and future work

First, adding context analysis via LuaTEX’s embed-
ded Lua and METAPOST engines: This will enable
calling the suitable METAFONT form with the suit-
able elongation parameters according to context.
Multi-layer context analysis is expected, as a ba-
sic layer would be needed to choose the suitable form
of the letter according to its preceding or succeeding
letter, and a second layer would construct ligatures,
correctly update the positions of the diacritics and
associated symbols and also control the elongation
parameters according to the text justification require-
ments. We are currently working on implementing
the first layer.

Second, implementing a new line breaking algo-
rithm with a new penalty system that supports usage
of elongation, ligatures, form variants in addition to
spacings when taking the breaking decisions [2]. A
dialogue between METAPOST and TEX about word
widths and line width requirements is expected. This
will be performed through the usage of LuaTEX’s
callbacks feature to override the main algorithm.

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA,
1986.

[2] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2):137–146, January
2007.

[3] Hossam A. H. Fahmy. AlQalam for
typesetting traditional Arabic texts. TUGboat,
27(2):159–166, January 2007.

[4] Klaus Lagally. ArabTEX—Typesetting
Arabic with vowels and ligatures. In Jǐŕı
Zlatuška, editor, EuroTEX ’92: Proceedings
of the 7th European TEX Conference, Prague,
Czechoslovakia, September 14–18, 1992,
Proceedings of the European TEX Conference,
pages 153–172, Brno, Czechoslovakia,
September 1992. Masarykova Universita.

[5] Azzeddine Lazrek. RyDArab—Typesetting
Arabic mathematical expressions. TUGboat,
25(2):141–149, 2004.

[6] Mathfont. http://mhafiz.deyaa.org/

mathfont.html.

[7] Ameer M. Sherif and Hossam A. H. Fahmy.
Meta-designing parameterized Arabic fonts for
AlQalam. TUGboat, 29(3):435–443, January
2008.

[8] Ahmad Sabry Zayed. Ahdath Al-turuq Leta‘leem
Al-khotot Al-‘arabiya [New methods for learning
Arabic calligraphy]. Maktabat ibn-Sina, Cairo,
Egypt, 1990.

⋄ Sherif S. Mansour, Hossam A.H. Fahmy

Electronics and Communications Dept.

Faculty of Engineering, Cairo University

Egypt

sherif.s.mansour (at) gmail dot com

hfahmy (at) alumni dot stanford dot edu

Sherif S. Mansour, Hossam A.H. Fahmy

TUGboat, Volume 33 (2012), No. 3 299

The fonts we choose

Boris Veytsman

One of the most important choices a book designer
makes is the selection of the font for the body text.
This decision defines the general “look and feel” of
the future book and influences all other decisions.

How should a designer select the font? There
is considerable lore about the suitability of certain
fonts for certain kinds of books. Often the choice is
based on “physiological” considerations: it used to
be commonly held that serifed fonts are better for
continuous reading, or that fonts with high contrast
are suitable for textbooks, etc. However, recent
studies (Morris, Aquilante, Yager, and Bigelow, 2002;
Legge and Bigelow, 2011; Akhmadeeva, Tukhvatullin,
and Veytsman, 2012) show that human brains are
very good in accommodating to the differences in
font sizes and shapes, and the ease of reading is more
or less the same across the wide variety of fonts as
long as the font is reasonable.1 Thus the choice of
body font might be less determined by the physiology
of reading than used to be thought.

Does this mean that the choice is unimportant?
In my opinion, not at all. Indeed, there are no “phys-
iological reasons” to choose a formal suit over sweat-
pants (actually sweatpants might be more comfort-
able). Nevertheless a person coming to a fine dinner
in sweatpants (or, for that matter, to a gym in white
tie) is wrong: the costume sends a wrong message.

What kind of message does a font send? Eva
Brumberger (2003a, 2003b) made a series of interest-
ing studies on this subject. She asked participants
to look at several typefaces2 and estimate on a scale
from 1 to 7 the applicability of such characteristics
as “Cheap”, “Cold”, “Confident”, “Sloppy”, etc.3

She found that the fonts have stable “personae”: for
example Black Chancery is “elegant”, Arial is “direct”
and Comic Sans is “friendly”.

Even more interesting was another experiment:
Brumberger gave the participants texts typeset with
different typefaces and asked them to comment about
the appropriateness of the chosen font for the given
text and score the texts against the same character-

1 Some typefaces and font sizes are difficult to read, but
those were never intended for continuous reading.

2 Adler, Arial, Bauhaus MD BT, Black Chancery,
Casablanca Antique Italics, Comic Sans MS,
Counselor Script, Courier New, Garamond, Harrington,
Lucida Sans Italic, Lydian BT, Square 721 BT,
Times New Roman, Van Dijk.

3 The full list: Cheap, Cold, Confident, Dignified,
Elegant, Feminine, Formal, Friendly, Inviting, Loud,
Masculine, Playful, Pretentious, Professional, Relaxed,
Scholarly, Serious, Sloppy, Straightforward, Warm.

istics. The participants were “clear and consistent”
about the proper or improper choice of the body
font. Did the properties of the typefaces color the
readers’ impression about the text? The answer is
complicated. There was no statistically significant
dependence of the reported text properties on the
font, with one important exception. Namely, the per-
ceived “seriousness” of the text strongly (p < 0.004)
depended on the typeface chosen, with Times New
Roman giving the text the strongest aura of serious-
ness and Counselor Script, a calligraphy font, having
the strongest opposite effect. The effect depended
on the texts themselves as well as on the gender and
demography of the participants.

These results mean that a font does send a mes-
sage to a reader, and on at least one scale (serious-
ness) it influences the message of the text.

Recently Errol Morris (2012a, 2012b) published
a two-part series in a New York Times blog follow-
ing an unusual experiment designed by Benjamin
Berman. Morris asked his readers to tell whether
they agree or disagree with a certain paragraph about
the danger of Earth colliding with a kilometer-sized
asteroid. Unbeknownst to them, the paragraph was
presented to each viewer in one of five different fonts,
chosen randomly: Baskerville, Computer Modern,
Georgia, Helvetica, Comic Sans and Trebuchet. The
answers were recorded with the font chosen.

While this experiment, as Morris himself readily
recognizes, lacks the controlled environment of a true
scientific study (the participants are self-selected, we
do not know their demographics, etc.), the sheer
number of answers (45 thousand!) makes the result
very interesting.

Berman classified the positive responses with
five points for “strongly agree”, three points for “mod-
erately agree” and one point for “slightly agree”, and
similarly for the negative responses. In Figure 1 we
show the difference between the agreement and dis-
agreement levels as defined by Berman’s scores. This
quantity can be interpreted as the overall measure
of the readers’ attitude toward the statement.

As seen from the figure, the reader’s attitude
depends on the font chosen. The most persuasive
typeface turned out to be Baskerville, with Com-
puter Modern being a close second, while the least
persuasive one was, as expected, Comic Sans. Due
to the large number of participants the confidence
in the result is high (p < 0.0068). This result makes
the CERN decision to announce the discovery of the
Higgs boson using, of all fonts, Comic Sans, even
more mysterious (Morris, 2012a).

One can argue that “trustworthiness” of the text
is directly related to its perceived “seriousness”, so

The fonts we choose

300 TUGboat, Volume 33 (2012), No. 3

4500 5000 5500 6000 6500 7000

Baskerville

•

Computer Modern

•

���������

•

�������

•

Helvetica

•

��������	

•

Figure 1: Level of trust in a statement presented in
the given typeface (from the data in Morris, 2012a).

the results of experiments by Brumberger and Morris
corroborate each other.

Another important conclusion is that fonts af-
fect the reader’s attitude towards the text. This
is noteworthy for students who want better grades
for their homework, and for their professors who
want positive reviews of their scientific papers and
research proposals. Errol Morris mentions a blog
entry by Phil Renaud who noted a marked difference
between his grades depending on the font of the essay.
Since Computer Modern, the default typeface of TEX,
scored high in this test, TEX users should probably
rejoice: we made a good choice of the typesetting
system and might expect to reap some benefits from
it. By the way, neither study looked into the effects
of such typographic features as good justification,
hyphenation, line and page breaking. It is not too far
fetched to suggest that these niceties might also add
a point or two to the final grade or to the probability
that a proposal gets a good review.

What causes this effect of a typeface on the
reader’s trust? I can only offer my own guess. Since
this paper is typeset in Computer Modern, I hope
you can believe it.

I do not think there is an inherent property of
a typeface to be “trustworthy”. Rather, our attitude
towards it is determined by our background and pre-
vious experiences. The same is true for other cultural
artifacts, such as clothes. Today we consider tuxedo
to be formal dress (Errol Morris compares the for-
mality of Baskerville to that of a tuxedo). However,
it was originally (in the first half of the 19th cen-
tury) casual dress, as opposed to the formal tailcoat.
A smoking jacket was intended for smoking cigars
in a relaxed manner, as different from a strict and
scripted dinner. Thus the messages of a tuxedo then
and now are completely different. Therefore there is
nothing “inherently formal” in a tuxedo. We perceive
it as formal today because we are accustomed for

it to be worn on formal occasions. Its message is
conditioned by our experiences.

I think the same is true for typography. We trust
a text set in a certain typeface because we have read
other trustworthy texts typeset in it. Baskerville
has been used for good books for many years, which
might explain its effect on the reader. The trust in
Computer Modern might be caused by the fact that
many well-educated readers of New York Times have
read mathematics textbooks typeset in TEX and this
typeface — and mathematics usually does not lie.

If this is true, then we as TEX users not only
benefit from our software, but also have a certain
responsibility towards the community. People give
us a little bit of extra trust because other authors,
who wrote in TEX with Computer Modern in the
past, did a good job. I think we owe it to them to
continue this tradition.

The TEXbook (Knuth, 1994) ends with the fa-
mous exhortation, “Go forth now and create mas-

terpieces of the publishing art!” It seems that we
ought to add to it the qualifier, which DEK proba-
bly considered self-evident, “And let the contents of
these masterpieces be honest and true!”

Acknowledgement I am grateful to Barbara Bee-
ton who brought the blog entry by Errol Morris to
my attention and suggested that I write this essay.

References

Akhmadeeva, Leyla, I. Tukhvatullin, and B. Veytsman.
“Do serifs help in comprehension of printed text? An
experiment with Cyrillic readers”. Vision Research 65,
21–24, 2012.

Brumberger, Eva R. “The Rhetoric of Typography:
The Persona of Typeface and Text”. Technical

Communication 50(2), 206–223, 2003a.

Brumberger, Eva R. “The Rhetoric of Typography: The
Awareness and Impact of Typeface Appropriateness”.
Technical Communication 50(2), 224–231, 2003b.

Knuth, Donald Ervin. The TEXbook. Computers &
Typesetting A. Addison-Wesley Publishing Company,
Reading, MA, 1994. Illustrations by Duane Bibby.

Legge, Gordon E., and C. A. Bigelow. “Does Print Size
Matter for Reading? A Review of Findings from
Vision Science and Typography”. J. Vision 11(5)(8),
1–22, 2011.

Morris, Errol. “Hear, All Ye People; Hearken, O Earth
(Part One)”. New York Times Opinionator, 2012a.
http://opinionator.blogs.nytimes.com/2012/08/08/

hear-all-ye-people-hearken-o-earth.

Morris, Errol. “Hear, All Ye People; Hearken, O Earth
(Part Two)”. New York Times Opinionator, 2012b.
http://opinionator.blogs.nytimes.com/2012/08/08/

hear-all-ye-people-hearken-o-earth-part-2.

Morris, R. A., K. Aquilante, D. Yager, and C. Bigelow.
“Serifs Slow RSVP Reading At Very Small Sizes But
Don’t Matter At Larger Sizes”. In SID 2002, San Jose,

CA: Digest of Technical Papers, pages 244–247. The
Society for Information Display, 2002.

Boris Veytsman

TUGboat, Volume 33 (2012), No. 3 301

Using TEX Gyre Pagella OpenType Math

Herbert Voß

Abstract

With X ELATEX and/or LuaLATEX one can use Open-
Type, TrueType, and/or Type 1 fonts in his docu-
ments. The isolated world of (LA)TEX fonts is now
history. However, the number of available mathe-
matical fonts which corresponds to the possible text
fonts is still very small. This brief note is an exam-
ple of using the TEX Gyre Pagella OpenType font,
including math.

1 Introduction

With the 2012 release of TEX Live another free Open-
Type math font has become available: Pagella (Pala-
tino) Math from the TEX Gyre project (http://www.

gust.org.pl/projects/e-foundry/tex-gyre), co-
ordinated by GUST, the Polish TEX user group. This
is an important step forward toward completing this
longstanding work.

The following example shows an arbitrary com-
position of text and mathematical characters (from
Stephen Hartke’s document at http://ctan.org/

pkg/free-math-font-survey). Both text and math
are taken from the Pagella OpenType font.

Theorem 1 (Residue Theorem). Let ǚ be analytic
in the region � except for the isolated singularities
Ǖ1, Ǖ2, … , Ǖ�. If � is a closed rectifiable curve in �
which does not pass through any of the points Ǖ�

and if � ≈ 0 in � then

1
2�ǭ ∫

�
ǚ =

�

∑
�=1

Ǡ(�; Ǖ�)Res(ǚ ; Ǖ�).

AΛΔ∇BCDΣEFΓGHIJKLMNOΘΩ℧PΦΠΞQRST
UVWXYΥΨZ 1234567890
Ǖ�ǖ�Ǘ�ǘ�Ǚ��ǚ ��Ǜ�ℎℏℏ�ǭ׌Ǯ׍ǝ�Ǟℓ�ǟǠ���ǡ����℘Ǣ��
ǣ Ǥ ǥǦ��ǧ��Ǩ�ǩ��Ǫ�ǫ�Ǭ ∞ ∝ ∅∅dð

2 Loading the fonts

Using OpenType and TrueType fonts with X ETEX or
LuaTEX requires a bit of setup, usually done auto-
matically at installation. In general, one can have
the font files saved in his local or main TEX tree, the
local or main system font directory. For Windows
there is only one main directory, e. g. c:\\windows\

fonts. On GNU/Linux, one can also have font files
saved in his home directory.

While X ETEX uses the system fontconfig pro-
grams to find a font file, LuaTEX uses its own font
handling which creates a font list otfl-names.lua.

Editor’s note: First published in Die TEXnische Komödie

3/2012, pp. 71–72; translation by the author.

The name is a little bit misleading because it also
lists the TrueType fonts (with extension .ttf).

3 X ELATEX

X ETEX uses the config file fonts.conf from the sys-
tem fontconfig. This is in general not available
on Windows; thus, TEX Live and MiKTEX provide a
fonts.conf for use there. Listing all available fonts
with corresponding directories can be done by run-
ning the program fc-cache in a terminal:

fc-cache -v > xetex-font-search.log

(The TEX Live manual has more details about font
configuration.)

4 LuaLATEX

As already mentioned, LuaTEX uses its own file to
find where the font files are saved. If a font defined
in a document isn’t found in that list, LuaTEX cre-
ates a new list to be sure that newly saved font files
are also found. If one uses several new font files it
is simpler to run the program mkluatexfontdb by
hand before running the TEX document.

5 Using the fonts

There is in general no difference between X ELATEX
and LuaLATEX when it comes to defining the fonts in
a document:

\usepackage{fontspec}

\usepackage{unicode-math}

[...]

\defaultfontfeatures{Ligatures=TeX}

\setmainfont[

BoldFont=texgyrepagella-bold.otf,

ItalicFont=texgyrepagella-italic.otf,

BoldItalicFont=texgyrepagella-bolditalic.otf]

{texgyrepagella-regular.otf}

\setmathfont{texgyrepagella-math.otf}

\setsansfont [...]

With such font definitions we get PDF output
with embedded fonts as shown here (truncated):

$ pdffonts beispiel.pdf

name type

------------------------------------ -----------

GOKAFU+TeXGyrePagella-Regular-Identity-H CID Type 0C

OCZARV+TeXGyrePagella-Bold-Identity-H CID Type 0C

PHLUTA+TeXGyrePagella-Italic-Identity-H CID Type 0C

XEYJEO+TeXGyrePagella-BoldItalic-Identity-H CID Type 0C

...

⋄ Herbert Voß
herbert (at) dante dot de

Using TEX Gyre Pagella OpenType Math

302 TUGboat, Volume 33 (2012), No. 3

OpenType math font development:
Progress and challenges*

Ulrik Vieth

Abstract

A main reason for the development of the LuaTEX
and X ETEX engines has been to provide support for
Unicode and OpenType font technology, which im-
plies support for Unicode math and OpenType math
as well. One important ingredient is the develop-
ment of full-featured OpenType math fonts, which
are needed to replace traditional math fonts. In this
paper, we review recent progress in OpenType math
font development as well as the many challenges
faced by font developers of OpenType math fonts.

1 Introduction

In this paper, we will discuss technical details of
OpenType math font development, so we will as-
sume that readers have some familiarity with the ba-
sic concepts of Unicode math and OpenType math
font technology.

When we speak about Unicode math, we re-
fer to an effort that was undertaken between 1998
and 2002 by a group of scientific and technical pub-
lishers to get math symbols and alphabets accepted
into the Unicode standard. As a result of this ac-
tivity, hundreds of math symbols as well as dozens
of math alphabets have been added to Unicode, and
have become part of the official standard ever since
Unicode 3.2 was released in 2002 [1, 2].

From a technical point of view, Unicode math is
nothing special, just a convenient term for a subset
of Unicode that is relevant for typesetting math.

When we speak about OpenType math, we re-
fer to an extension of the OpenType font format [3]
that was developed by Microsoft when they intro-
duced support for math typesetting in Office 2007
[4, 5]. As a result of this, a new optional MATH

table has been added to the OpenType font format,
which is used to store all the additional information
needed for proper typesetting of math, such as font
metric parameters controlling the spacing of math
as well as additional lookup mechanisms of glyph
variants [6, 7].

From a technical point of view, OpenType math
does represent an extension of the OpenType font
format, but it uses a well-defined extension mecha-
nism, so the optional MATH table will only be seen

* First submitted for publication in the Proceedings of the
5th ConTEXt Meeting 2011 (to appear). Updated and revised
for BachoTEX 2012. Updated and revised again for TUGboat.
Reprinted with permission.

by typesetting engines which happen to know about
math, while other engines will safely ignore it.

Finally, it is helpful to understand how Uni-
code math, OpenType math, fonts and typesetting
engines work together.

Unicode math, by itself, only defines the en-
coding of mathematical input. It does not define
any semantics of how a math formula is arranged or
spaced. That is a matter left to the font technology
(OpenType) and the typesetting engine (LuaTEX or
X ETEX or MS Office).

In Unicode, each math symbol is usually repre-
sented only once, regardless of how many sizes may
be needed for proper typesetting. Letters of math
alphabets are the exceptions: since a font change in
math usually also conveys a different meaning, each
variation of a letter has a separate slot.

OpenType, as a font technology, provides the
glyphs and metric information for mathematical out-
put. OpenType math fonts are encoded based on
Unicode, but they can extend beyond the scope of
Unicode by taking advantage of the private use area.

Where Unicode math defines only a single slot
for each symbol, OpenType math provides lookup
mechanisms for multiple sizes of glyph variants or
glyph substitutions for constructed symbols.

Where Unicode math does not define any pro-
visions for the semantics of math, OpenType math
provides a table to store the font metric information
controlling the spacing, but leaves interpretation of
these parameters to the typesetting engine.

In the end, it all depends on having an Open-
Type math-capable typesetting system to take ad-
vantage of the information in OpenType math fonts
and to properly arrange math formulas.

When OpenType math was first introduced, MS

Office 2007 was the only available OpenType math
engine, but both X ETEX and LuaTEX have since im-
plemented OpenType math capabilities [8, 9].

While X ETEX provides only a partial implemen-
tation, LuaTEX aims to provide a full-featured Open-
Type math engine. (As of 2012, work on improv-
ing math typesetting in X ETEX has been ongoing,
so hopefully both engines will eventually be able to
produce the same quality of math typesetting.)

2 Progress in OpenType math fonts

When OpenType math was introduced, only a single
math font was available: Cambria Math, which was
developed by Tiro Typeworks on behalf of Microsoft
and bundled with MS Office 2007. In some sense,
the situation was reminiscent of the early days of
TEX, when Computer Modern was the only available
math font in METAFONT format.

Ulrik Vieth

TUGboat, Volume 33 (2012), No. 3 303

In recent years, several more OpenType math
fonts have been added, so by the time of writing the
first revision of this paper (September 2011) we had
at least 4 math fonts available as released versions:

• Cambria Math, by Tiro Typeworks on behalf
of Microsoft [11],

• Asana Math, by Apostolos Syropoulos [12],

• XITS Math, by Khaled Hosny, derived from the
STIX fonts [13, 14],

• Latin Modern Math, by the GUST e-foundry
[15, 16] (released in June 2011).

In the meantime, several additional choices of math
fonts that were under development have been com-
pleted and released as well:

• Minion Math, by Johannes Küster [17],

• Lucida Math, by Khaled Hosny on behalf of
TUG, designed by Bigelow & Holmes [18, 19]
(released in March 2012),

• TEX Gyre Pagella Math, by the GUST e-foundry
[20] (released in June 2012),

• TEX Gyre Termes Math, by the GUST e-foundry
[20] (released in October 2012).

Finally, two more math font projects are under de-
velopment or have been announced:

• Neo Euler, by Khaled Hosny on behalf of DANTE,
designed by Hermann Zapf [21, 22],

• Maxwell Math, by Tiro Typeworks [23].

Given all these recent and ongoing font projects,
we now have OpenType math font support for a
number of popular text typefaces, such as Latin
Modern, Times, Palatino, Lucida Bright, and Min-
ion, although some of these are non-free, but subject
to the usual industry proprietary licensing.

In some sense, the situation is now reminiscent
of the early days of PostScript font support for TEX,
when choices of math fonts were still very few, but
several popular typefaces were already supported.

An interesting note is that these fonts have been
developed by relatively few teams and individuals:
Tiro Typeworks (Cambria, Maxwell), the GUST e-
foundry (Latin Modern, TEX Gyre), and Khaled
Hosny (XITS (with STIX), Neo Euler, Lucida), in
addition to the solo efforts by Johannes Küster (Min-
ion Math), and Apostolos Syropoulos (Asana Math).

We may conclude that OpenType math font de-
velopment remains a very challenging task, that has
been mastered by only a few.

3 References for OpenType math

Before we consider the challenges faced by font de-
velopers of OpenType math fonts, it may be worth-

while to consider the question: What is the basis for
OpenType math font development?

First, there is a specification of the OpenType
MATH table, developed by the Microsoft typogra-
phy group. The specification is officially considered
experimental and is available only on request, so it
has remained unpublished for years, despite the fact
that it has been widely adopted as a de facto stan-
dard by typesetting engines and font tools.

Next, there is a reference implementation of an
OpenType math font, Cambria Math, developed by
Tiro Typeworks on behalf of Microsoft. This font is
widely available, and can be viewed with font editors
such as FontForge, making it easily possible to study
how it is constructed and what it contains.

Finally, there is a reference implementation of
an OpenType math typesetting engine, namely MS

Office, developed by the Microsoft Office group. Un-
like the specification, which is at least somewhat
open, the reference implementation is completely
closed and off-limits, so it is impossible to see how
the specification is actually implemented.

Given this scenario, developers of OpenType
math fonts or engines face the problem of determin-
ing what defines the reference behavior and what
may be needed to make their fonts behave correctly
with different typesetting engines.

First, the OpenType math specification may
not be perfect, leaving some gray areas open to ques-
tions or interpretations. For example, there is hardly
any description when to apply italic correction.

Next, the reference OpenType math font may
not be perfect either. For example, it may have
some incorrect parameter settings, which may con-
fuse some engines when interpreting the parameter
values literally.

Finally, the reference OpenType math engine
may not be perfect either. For example, it may
have interpreted the specification in certain ways,
or it may have included some workarounds to patch
certain problems in the reference font.

In LuaTEX, the implementation of the math en-
gine has followed the specification as much as possi-
ble, but in case of doubt, it has chosen to follow the
reference implementation. OpenType math fonts
developed and tested with LuaTEX should work with
MS Office equally well, although they may not work
quite as well with earlier versions of X ETEX.

4 OpenType math development challenges

Development of OpenType math fonts is challenging
for many reasons. Besides the inherent complexity,
the size of the project is also a factor. Typical exam-
ples of OpenType math fonts may include between

OpenType math font development: Progress and challenges

304 TUGboat, Volume 33 (2012), No. 3

1500 and 2500 symbols or letters, not counting size
variants or optical design sizes. Besides technical is-
sues and design issues, achieving some level of com-
pleteness is already a challenge by itself.

4.1 Completeness of math symbols

Unicode math defines thousands of math symbols
in all. However, developers of OpenType math fonts
can choose what to implement and will typically im-
plement only a subset of the most important sym-
bols, accepting some level of incompleteness.

Most OpenType math fonts include a common
subset, comparable to what is in traditional TEX
math fonts based on 7-bit or 8-bit encodings, but
very few OpenType math fonts will provide the com-
plete set of math symbols defined in Unicode.

At the moment, XITS Math is the most com-
plete of all available OpenType math fonts, because
it is based on the STIX fonts [24], which have taken
nearly a decade to design and review all the glyphs.

At the other end of the spectrum, Neo Euler
is the least complete of all OpenType math fonts,
which is understandable given that Euler always had
to rely on borrowing symbols from other fonts.

All the other available OpenType math fonts
rank somewhere in between these extremes, with
each of Asana Math, Lucida Math, and Minion Math
providing some ranges of additional symbols that go
beyond the scope of Cambria Math. By comparison,
Latin Modern Math is still far less complete.1

One important factor to consider when convert-
ing TEX math fonts to OpenType format is that a
number of macros need to be replicated by designed
symbols. This will include symbols such as triple
dots, double and triple integrals, negated or stacked
symbols, arrows with hooks or tails, long arrows,
over- and underbraces.

In the end, how much incompleteness can be
tolerated depends on actual usage. If you are us-
ing only basic math, the symbol coverage of any
available font will suffice, but if you need some spe-
cial notations, it may be worthwhile to check to see
which fonts provide the required symbols.

Probably the best reference of Unicode math
symbols for various OpenType math fonts can be
found in the documentation of the unicode-math

package [25].

4.2 Completeness of math alphabets

Unicode math defines more than a dozen shapes of
math alphabets:

1 However, the updates of Latin Modern Math and TEX
Gyre Math in October 2012 have made them much more com-
plete than their original releases.

• 4 shapes of a serif alphabet (regular, italic, bold,
bold italic), each including Latin and Greek,

• 4 shapes of sans-serif (regular, italic, bold, bold
italic), some including Latin and Greek,

• 2 shapes of Script/Calligraphic (regular, bold),
each including upper- and lowercase,

• 2 shapes of Fraktur/Blackletter (regular, bold),
each including upper- and lowercase,

• 1 shape of open face or Blackboard bold (regu-
lar), also including upper- and lowercase.

Once again, developers of OpenType math fonts can
choose what to implement and will typically imple-
ment a common subset of the most important alpha-
bets, but will not necessarily provide all the shapes.

Except for Neo Euler, which has only an upright
shape by design, most fonts include at least 4 shapes
of the main serif alphabet, but the completeness of
other math alphabets varies considerably.

Some fonts may not include any sans-serif at all,
some may include only an incomplete range of sans-
serif (only Latin, no Greek), some may be missing
bold Script and Fraktur, and some may be miss-
ing lowercase Script or lowercase and numerals in
Blackboard Bold.

Besides missing some alphabets, some fonts may
also provide some additional alphabets, such as an
alternative italics, or a different style of Script or
Calligraphic. Typically, these alphabets will have to
be accessed via OpenType features using numbered
stylistic sets.

As mentioned above, how much incompleteness
is tolerable depends on your usage. If you are type-
setting physics, you may well be interested in having
a bold sans-serif alphabet for typesetting tensors,
but you may need them only a few times in a series
of books. In such cases, you may ask if you really
need Greek for tensors, or if you can do with Latin
only. And if you do need Greek for tensors, you may
ask if you really need lowercase Greek, or if you can
do with uppercase Greek only.

Depending on your requirements, your choices
of math fonts providing the required alphabets may
be limited, or you may be able to avoid the limita-
tions. Finally, you may also consider substituting
another font for certain math alphabets.

Taking advantage of stylistic sets or range sub-
stitutions depends on support by macro packages,
but such features are already provided (for LATEX)
by the unicode-math and fontspec packages (on
top of luaotfload) [26, 27, 28, 29].

4.3 Choosing typefaces for math alphabets

Unicode math combines a number of different shapes
of math alphabets into a single font, including a

Ulrik Vieth

TUGboat, Volume 33 (2012), No. 3 305

matching serif and sans-serif typeface, a Script or
Calligraphic, a Fraktur or Blackletter, a Blackboard
bold, and a typewriter design (which we will ignore).

In the case of comprehensive font families, such
as Latin Modern or Lucida, the choice of matching
typeface designs will be obvious, as there is already
a set of serif, sans-serif, and other font shapes that
have been designed to be used together.

In other cases, however, choosing a set of match-
ing typeface designs leads to a non-trivial design
question: What is the proper choice of a sans-serif
to be combined with a given serif font?

For a Times-like serif font (as in XITS Math),
Arial or Helvetica may be an obvious choice of a
sans-serif font (although this is debatable), but what
should be used with Palatino or Euler? Should the
sans-serif be another Hermann Zapf design (such
as Optima)? What should be used with Minion?
Should the sans-serif be another Adobe design (such
as Myriad)? Or should it be something entirely
different?

Should the sans-serif be a matching design with
similar characteristics or should it be a contrasting
design? How much similarity is needed to achieve
consistency? How much contrast is needed to make
individual letters clearly distinguishable?

Answers to such fundamental design questions
may not be clear or obvious, but at some point font
designers or developers will have to make a choice,
or choose not to make a choice.

In some cases, such as for Minion Math or Neo
Euler, decisions have been deliberately left open,
leaving the fonts incomplete without any sans-serif
alphabets. In other cases, such as for Asana Math
(derived from pxfonts and cbgreek), decisions seem
to have been taken based on what was available or
which sans-serif fonts offered a suitable set of Greek
besides Latin.

Besides the choice of sans-serif, similar design
decisions may arise for the choice of Script, Calli-
graphic, Fraktur, or Blackboard Bold designs.

For Script, Calligraphic, or Fraktur, there seems
to be considerable agreement among different font
designers regarding the typical look of these shapes.
Several different fonts seem to be very similar in
the overall style, although each is still different in
its individual design, as was discussed in a separate
article by Michael Sharpe [30].

For Blackboard Bold, however, some very differ-
ent approaches have been favored by different de-
signers. In some cases, such as Cambria Math or
Minion Math, the Blackboard Bold design is derived
from an open face version of the main serif font. In
other cases, such as XITS Math, Lucida Math, and

Latin Modern Math, the Blackboard Bold is a very
different style (typically sans-serif), which may be
unrelated to the main sans-serif font.

4.4 Choices of Script (Calligraphic)

Design choices of Script alphabets fall into several
groups, being fairly similar within a group. One
group favors a very embellished style of Script:

XITS Math � Ђ� ੃੄ ੅ ੆ੇੈਗ਼ਜ਼ੜ

Asana Math �Ȏ�ݚݙݘ ݱݰݯݝݜݛ
Lucida Math �Ÿ�؂؃؄װׯ׮׭׬׫
TG Termes �ℬ�ਖ਼ਗ਼ਜ਼ ੜ੝ਫ਼ੳੴੵ

Another group favors a restrained style of Script:

Cambria Math �ℬ�ࣲࣳࣴ ࣶࣵࣷईउऊ
LM Math �ℬ�ഉഊഋ

Neo Euler �ℬ�ǩǪǫ

TG Pagella �ℬ�ਖ਼ਗ਼ਜ਼ ੜ੝ਫ਼ੳੴੵ

Finally, several fonts also provide a Calligraphic as
an alternative to Script (usually for uppercase only):

XITS Math �ℬ�໗໘໙ (StylisticSet=1)
Lucida Math �ℬ�ை௉ொ (StylisticSet=4)

It is noteworthy that Latin Modern Math currently
does not provide the traditional Calligraphic style
from Computer Modern as an alternative set, but
that might be added in the future.

4.5 Choices of Fraktur (Blackletter)

Design choices of Fraktur alphabets are also similar
among different fonts:

XITS Math ઑ઒ЃતથϿ દધનઽાિ

Asana Math ަާȏ޺޹ℨߔߓߒ޽޼޻
Cambria Math िीℭ॒॓ℨ॔ॕॖ५६७
TG Termes મયℭૅ૆ℨ ૈૉ૊૟ૠૡ
TG Pagella મયℭૅ૆ℨ ૈૉ૊૟ૠૡ
LM Math ඎඏℭඥඦℨ ඨඩඪ඿වශ

Neo Euler ȆȇℭșȚℨțȜȝȲȳȴ

In this case, LM Math, TG Pagella, and Neo Euler
are all based on the same design of Euler Fraktur,
whereas TG Termes is based on another source.

The only exception is Lucida Math, which fea-
tures a completely different style of Blackletter:

Lucida Math ًٌٍضصشℨسزŹؠ؟

This may be seen as a example that not every Black-
letter font is equally well suited for use in math.

4.6 Choices of Blackboard Bold

Design choices of Blackboard Bold alphabets again
fall into multiple groups. One group favors a serif
design which is derived from the main serif font:

OpenType math font development: Progress and challenges

306 TUGboat, Volume 33 (2012), No. 3

Cambria Math ८९ℂℕ�ԶԷℝॿঀℤঁংঃૣ૤૥
Asana Math ੪੫੬ߪߩߨℤߧߦℂℕ�Ǿǿℝߖߕ
Minion Math র঱ℂℕ�҇҈ℝুূℤ ਀ਁਂ
TG Termes ਁਂℂℕ�ਐ਑ℝਘਙℤ ਛਜਝ ৷৸৹

TG Pagella ਁਂℂℕ�ਐ਑ℝਘਙℤ ਛਜਝ ৷৸৹

Another group favor a sans-serif design which may
be unrelated to the main sans-serif font:

XITS Math ીુℂℕ�ϴϵℝ૑૒ ℤ ૓૔૕ ൕൖൗ

Lucida Math َُℂℕ�ŭŮℝٟ٠ℤ
LM Math ಷಸℂℕ�ೆೇℝ೎೏ℤ ೑೒೓ ಭಮಯ

Finally, the designs of individual letters can vary
significantly among different math fonts, and are an
additional consideration in font choice. For exam-
ple, some users may have fairly strong preferences
regarding such details as to whether the stem or the
diagonal of the letter ’N’ is double-struck.

4.7 Design issues of math alphabets

Besides the high-level design questions regarding the
choice of matching typefaces for math alphabets to
be assembled in an OpenType math font, there also
some low-level design questions regarding the glyph
shapes of individual typefaces.

In particular, we may ask: How should an up-
right Greek look, and how should a bold sans-serif
Greek look compared to a bold serif Greek?

Unicode defines a number of math alphabets,
many of which are supposed to come with a complete
set of Latin and Greek for upper- and lowercase.
This applies to all 4 shapes of the main serif typeface
and to 2 out of 4 shapes of sans-serif.

4.8 Design of upright Greek alphabets

Unlike Unicode math, traditional TEX math fonts
did not provide a complete set of Greek in all shapes.

Whereas uppercase Greek, just like uppercase
Latin, came in several different shapes, including
serif and sans-serif versions, lowercase Greek was
only available in italics and bold italics.

As it turns out, creating an upright version of
lowercase Greek by removing the slant while reusing
the same designs of the italic version (as for Latin
Modern Math) does not guarantee good results.

Comparing the results to other designs clearly
shows that some letters in the unslanted Greek ap-
pear unbalanced, in particular for γ, ν, π, ϵ.

LM Math (upright = unslanted)

ཤཥསཧεཀྵཪཫཬ཭཯཰ཱིοཱིུςཱུྲྀཷϕིེཻϵϑφϱϖ

ၽၾၿႀ�ႂႃႄႅႆႈႉႊႋ�ႌႍ�ႎႏ႐�ႋ႓႔�����

Cambria Math (upright = designed)ȽȾɀɁɂɃɄɅɇɈɉμɋɌɍɎɏςσɒɓԄɌɗɘϵϑԑɔԒԅ߮ߵߴ߳߱߰ߦ߶߭߬��ߩߨߧߦߥߤߣߢߡߠߟߞߝߜߛߚߙ߷߸

Obviously, font projects aiming for good results will
need to take glyph design of individual math alpha-
bets seriously, at which point a skilled font designer
may be needed in addition to a font developer work-
ing on the technical aspects of font assembly.

4.9 Design of sans-serif Greek alphabets

Besides the design of upright Greek letter shapes,
the design of sans-serif Greek alphabets may pose
another challenge to font developers.

Strictly speaking, lowercase Greek letter shapes
do not have serifs at all, so whether a Greek typeface
design matches the look of a serif or sans-serif largely
depends on matching the typical proportions and
the typical stroke thickness of such fonts.

Usually, a sans-serif design exhibits a uniform
stroke thickness, whereas a serif design exhibits con-
trast between thin or thick strokes, but the amount
of contrast may vary between different fonts.

For the purposes of typesetting physics, letters
from serif and sans-serif alphabets may be used next
to each other to distinguish between different types
of entities (vectors or tensors) by subtle differences
in font shape (serif or sans-serif).

If the serif font exhibits a high contrast (as in
the case of XITS Math), it is easy to tell apart from
a sans-serif font, but if the serif font has a fairly
uniform thickness itself (as in the case of Lucida
Math), it becomes difficult to tell which one is which.

Lucida Math

ࠔࠓࠊࠑࠐࠏࠍࠌࠂࠒࠉࠈࠇࠆࠅࠄࠃࠂࠁࠀ߿߾߽߼߻ߺ߹߸߷߶ߵ
ࢆࢅࡼࢃࢂࢁࡿࡾࡴࢄࡻࡺࡹࡸࡷࡶࡵࡴࡳࡲࡱࡰ࡯࡮࡭࡬࡫ࡪࡩࡨࡧ

XITS Math

ವಶಷಸಹ಺಻಼ಽಾಿೀುೂೃೄ೅ೆೇೈ೉೒ೂೌ್೏೐೑ೊ೓೔

ഩപഫബഭമയരറലളഴവശഷസഹഺ഻഼ഽെശീുൃൄ൅ാേൈ

Depending on the characteristics of the font, design
of a clearly distinct sans-serif Greek may depend on
more factors than just stroke thickness and may also
require further adjustments to glyph shapes.

4.10 Technical issues regarding font metrics

Finally, besides achieving completeness and finding
solutions to various design issues, there remain some
technical issues to consider.

Most notably, there is an important difference
in how glyph metrics are stored in OpenType math
fonts as opposed to traditional TEX math fonts, and
how those glyph metrics are interpreted in Open-
Type math engines following the reference behavior,
such as LuaTEX (as opposed to X ETEX).

In traditional TEX fonts, the actual glyph width
used to be represented by the combination of the
nominal width and the italic correction, but in Open-

Ulrik Vieth

TUGboat, Volume 33 (2012), No. 3 307

Type fonts, the italic correction is disregarded, and
only the nominal width is taken into account.

When converting traditional TEX math fonts
to OpenType, it becomes necessary to adjust the
glyph metrics to match the interpretation in Open-
Type math engines to ensure proper rendering in
LuaTEX, while sacrificing the rendering in current
versions of X ETEX. (As of 2012, work on improv-
ing math typesetting in X ETEX has been ongoing,
so hopefully both engines will eventually adopt the
same interpretation of glyph metrics.)

In recent developments, several font projects
besides Cambria Math have adopted the OpenType
interpretation of glyph metrics, such as Lucida Math
and XITS Math, while others such as Latin Modern
remain to be revised. Hopefully, other font projects
will eventually follow to ensure consistent behavior
when switching between different OpenType math
fonts or different typesetting engines.

5 Conclusion

In this paper, we have reviewed recent progress in
OpenType math font development as well as the
many challenges faced by font developers of Open-
Type math fonts, including completeness of math
symbols and math alphabets, design issues, and tech-
nical issues regarding the glyph metrics.

While significant progress has been made in re-
cent years, resulting in recent or upcoming releases
of several important OpenType math font projects,
math font development remains a challenging task
and more work remains to be done on developing
new fonts or improving existing fonts.

References

[1] Barbara Beeton: Unicode and math, a
combination whose time has come: Finally!
TUGboat, 21(3), 174–185, 2000.
http://tug.org/TUGboat/tb21-3/

tb68beet.pdf

[2] Barbara Beeton, Asmus Freytag, Murray
Sargent: Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

[3] Microsoft Typography: OpenType
specification, version 1.6, 2009.
http://www.microsoft.com/typography/

otspec/

[4] Murray Sargent: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/

2006/09/13/752206.aspx

[5] John Hudson, Ross Mills: Mathematical
Typesetting: Mathematical and scientific
typesetting solutions from Microsoft.
Promotional Booklet, Microsoft, 2006.
http://www.tiro.com/projects/

[6] Ulrik Vieth: Do we need a Cork math font
encoding? TUGboat, 29(3), 426–434, 2008.
Reprinted in MAPS, 38, 3–11, 2009.
http://tug.org/TUGboat/tb29-3/

tb93vieth.pdf

http://www.ntg.nl/maps/38/02.pdf

[7] Ulrik Vieth: OpenType Math Illuminated.
TUGboat, 30(1), 22-31, 2009.
Reprinted in MAPS, 38, 12–21, 2009.
http://tug.org/TUGboat/tb30-1/

tb94vieth.pdf

http://www.ntg.nl/maps/38/03.pdf

[8] Jonathan Kew: X ETEX Live.
TUGboat, 29(1), 151–156, 2008.
http://tug.org/TUGboat/tb29-1/tb91kew.

pdf

[9] Taco Hoekwater: Math in LuaTEX 0.40.
MAPS, 38, 22–31, 2009.
http://www.ntg.nl/maps/38/04.pdf

[10] Hans Hagen: Unicode Math in ConTEXt.
MAPS, 38, 32–46, 2009.
http://www.ntg.nl/maps/38/05.pdf

[11] Tiro Typeworks: Projects — Cambria Math.
http://tiro.com/projects.html

[12] Apostolos Syropoulos: Asana Math Font.
http://www.ctan.org/pkg/asana-math

[13] Khaled Hosny: XITS Fonts.
http://www.ctan.org/pkg/xits

http://github.com/khaledhosny/xits-math

[14] STIX Consortium: STIX Fonts.
http://www.ctan.org/pkg/stix

http://www.stixfonts.org/

[15] GUST: e-foundry.
http://www.gust.org.pl/projects/

e-foundry

[16] GUST: The lm-math font package.
http://www.ctan.org/pkg/lm-math

[17] Johannes Küster: Minion Math 1.020.
http://typoma.de/en/fonts.html

[18] Ulrik Vieth, Mojca Miklavec: Another
incarnation of Lucida: Towards Lucida
OpenType. TUGboat, 32(2), 169–176, 2011.
http://tug.org/TUGboat/tb32-2/

tb101vieth.pdf

[19] Karl Berry: Lucida OpenType fonts available
from TUG. TUGboat, 33(1), 11, 2012.

OpenType math font development: Progress and challenges

308 TUGboat, Volume 33 (2012), No. 3

http://tug.org/TUGboat/tb33-1/

tb103lucida.pdf

[20] GUST: The tex-gyre-math font package.
http://www.ctan.org/pkg/tex-gyre-math

[21] Khaled Hosny: Neo Euler Font.
http://github.com/khaledhosny/

euler-otf

[22] Hans Hagen, Taco Hoekwater, Volker RW
Schaa: Reshaping Euler: A collaboration with
Hermann Zapf. TUGboat, 29(3), 283–287,
2008. http://tug.org/TUGboat/tb29-2/

tb92hagen-euler.pdf

[23] Tiro Typeworks: Fonts — Maxwell Math.
http://tiro.com/fonts.html

[24] Barbara Beeton: The STIX Project: From
Unicode to fonts. TUGboat, 28(3), 299–304,
2007. http://tug.org/TUGboat/tb28-3/

tb90beet.pdf

[25] Will Robertson: Symbols defined by
unicode-math. http://mirror.ctan.org/

macros/latex/contrib/unicode-math/

unimath-symbols.pdf

[26] Will Robertson: Unicode mathematics in
LATEX: Advantages and challenges.
TUGboat, 31(2), 211–220, 2010.
http://tug.org/TUGboat/tb31-2/

tb98robertson.pdf

[27] Will Robertson: The unicode-math package.
http://www.ctan.org/pkg/unicode-math

http://github.com/wspr/unicode-math

[28] Will Robertson: The fontspec package.
http://www.ctan.org/pkg/fontspec

http://github.com/wspr/fontspec

[29] Khaled Hosny et al.: The luaotfload

package.
http://www.ctan.org/pkg/luaotfload

http://github.com/khaledhosny/

luaotfload

[30] Michael Sharpe: Math alphabets and the
mathalpha package. TUGboat, 32(2), 164–168,
2011. http://tug.org/TUGboat/tb32-2/

tb101sharpe.pdf

⋄ Ulrik Vieth

Stuttgart, Germany

ulrik dot vieth (at) arcor dot de

Ulrik Vieth

TUGboat, Volume 33 (2012), No. 3 309

From drawn to filled paths

Linus Romer

Abstract

While drawing given paths by pens is one ability of
METAFONT, it is filled paths, the so-called outlines,
which play the key role in workaday typefaces such
as Computer Modern. The following article shows
in short the relationship between drawn and filled
paths.

a given path

draw fill

path is used as a
route for a pen

path is used as an
outline of a shape

1 Construction of the letter “o”

For the sake of simplicity, this article concentrates
on one exemplary shape: The letter “o”. It is quite
natural to divide this construction problem into four
analogous parts, one of them highlighted below. Let
us call such a part an arc. We will only look at the
highlighted arc that connects the left side with the
top of the “o”.

arc

a

b

We assume that we already know the beginning and
the end of the arc as well as the widths a and b. The
shape of the arc is then essentially determined by
the shape of the path in the middle of the arc:

1

2

The shape of this path could be verbalized as follows:
“Leave point 1 in upwards direction and make a nice
curve to point 2, such that it would leave there
traveling rightwards”. The translation to META-
FONT is much less redundant:

z1{up} ... z2{right};

With this midpath one can imagine already roughly
the final shape of the arc. There are now several
approaches that lead to the desired arc. The next
sections present you six techniques that are available
in the current METAFONT84 or were part of the old
METAFONT78. Obsolete commands and methods of
METAFONT78 are marked with a dagger (†).

2 Drawing with fixed elliptical pens

This primitive approach comes from the idea that
one lets a pen glide over the given midpath. For
every point on the path, the same shape is drawn
on the surface (therefore “fixed”). In most cases one
uses elliptical shaped pens.

1

2

a

b

For the shown arc, the width and the height of the
ellipse must correspond to a and b respectively.

pickup pencircle xscaled a yscaled b;

draw z1{up} ... z2{right};

The figure reveals already a big problem that can
occur in this method: The final height of the arc at
point 2 can become larger than b. However, if the
diameter of the ellipse is smaller than the radius of
curvature, one can use this method confidently. Put
more simply, this means that only “big” pens lead
to critical cases.

From drawn to filled paths

310 TUGboat, Volume 33 (2012), No. 3

radius of curv. radius of curv.

uncritical case critical case

Donald E. Knuth used a fixed elliptic pen for all
letters of the METAFONT logo:

As you can see, the used pen is nearly circular (the
ellipses have flattening factor of only 0.1).

3 Double drawing with circular pens†

In METAFONT78 there was no direct way to fill con-
tours. Instead, Knuth defined in [1] ddraw†, a pre-
decessor of the filldraw command (see section 5).
With ddraw† (for double drawing) one could simulate
the filling–in of certain contours by stroking inside
the contour several times.

11l 1r

2
2l

2r

To get our arc filled with ddraw†, we do not look at
the midpath but rather apply its description on the
points to the left and right and get the two outlining
side paths.

z1l{up} ... z2l{right};

z1r{up} ... z2r{right};

These side paths are now drawn with a normal circu-
lar pen (called cpen† in [1]). Of course, one has to
shift the starting and ending points of these paths
by the amount of the pen radius to get the correct
borders.

The exact filling–in then works with a suffi-
ciently large number of interpolated paths. The
arc shown above clearly does not contain sufficiently
many interpolated paths. METAFONT78 made sure
that this could not happen in most cases. Neverthe-
less, if it happened for complicated paths one could
increase the so-called safety factor†, which allowed
more overlapping curves but also consumed more
computational power.

4 Drawing with variable width pens

For more convenient coding, Knuth defined in [1]
a high–level command based on ddraw†. With this
mechanism, METAFONT78 could vary the pen width
while drawing along a path.

† hpen;

† draw |a|1{0,1} ... |a’|2{1,0};

1

2

a

b

a
′

This kind of generalized drawing was only allowed
for special pens. For our arc I have used an elliptical
pen with fixed height b but variable horizontal width
(called hpen†). Every drawing command with hpen†

or its vertical counterpart vpen† became automati-
cally translated to a ddraw† command, as detailed
in [1].

The old Computer Modern base file at [3] indi-
cates that Knuth gave up this approach around 1982:
The obsolete darc† macro for drawing two connected
arcs is still based on drawing with variable width
pens, whereas the replacement arc macro directly
uses ddraw†.

5 Filling and drawing the outlines

The whole ddraw† construction was somewhat cum-
bersome and inefficient, but there was no proper
filling command available at that time in META-
FONT78. The page description language PostScript,
which supports the filling of contours, entered the
community not before 1984. Knuth implemented
a method to fill contours for the upcoming META-
FONT84 and described the method in [4] and its
implementation in [5]. Since then ddraw† has been

Linus Romer

TUGboat, Volume 33 (2012), No. 3 311

replaced by filldraw (filling and drawing at the
same time).

11l 1r

2
2l

2r

As with ddraw†, the lines which outline our arc are
shifted a bit, filled as well as drawn.

filldraw z1l{up} ... z2l{right}

-- z2r{left} ... z1r{down} -- cycle;

The string -- stands for straight paths and cycle

for returning to the starting point.

6 Penstroking

For me, penstroke is the connecting link between
the pen world and the outline world.

Double drawing or filldrawing with circular pens
does not much depend on the size of the circular pens
as long as they are much smaller than the radius of
curvature. One can also make these circular pens
infinitely small which alters the outlining contours to
infinitely thin curves. The idea behind penstroke

is the following: Corresponding points on the left
and right part of the path are connected like a helix
by straight and infinitely thin lines to fill the area
in between. These lines may also be understood
as pens with finite width and zero height, so-called
razor pens.

11l 1r

2

2l

2r

The advantage of such penstroking over ddraw† and
filldraw is that you do not have to worry about
problematic pen offsets. In addition, vertices are now
sharp and no longer rounded by circular pens.

Internally, penstroke is translated to a filling
command. You can tell METAFONT to

penstroke z1e{up} ... z2e{right};

and according to [4] METAFONT automatically does

fill z1l{up} ... z2l{right}

-- z2r{left} ... z1r{down} -- cycle;

So you can think in pen terms and do outline filling at
the same time, which is a big relief for programming.

7 Filling the outlines

Of course, you can directly use the more complex
fill command:

fill z1l{up} ... z2l{right}

-- z2r{left} ... z1r{down} -- cycle;

This makes sense when you want to design outlines
that can hardly be understood as penstrokes (e.g.
serifs).

11l 1r

2

2l

2r

8 Close relatives

The methods that we have just seen in sections 3
through 7 are very similar to each other. I will try to
point out their relationships in the following table:

high–level
command

low–level
command

✲

✻

outlining pen = 0 outlining pen > 0

fill filldraw

(ddraw†)

penstroke draw with variable
width pens†

9 Computer Modern and pens

Computer Modern is the family of typefaces used by
default by TEX and was first written using META-
FONT78. The source was published in [2]. Knuth
thereafter completely rewrote Computer Modern for
METAFONT84. So the statement “Computer Mod-

ern is based only on pens” is surely true for the
old sources, as METAFONT78 did not have any true
filling of contours. For the current sources I claim:
“Computer Modern Roman is a typeface based mainly
on outlines. Pens are additionally used to soften ver-
tices.”

From drawn to filled paths

312 TUGboat, Volume 33 (2012), No. 3

Let us look at the letter “G” of Computer Mod-

ern Roman to understand this claim better:

I have marked the several parts with their names and
the way they are “painted” in the output. You can
see that there is no standalone draw command used
here. Note that unfill is just a special case of fill
with white instead of black colour. The singular
purpose of the filldraw command here is to make
vertices rounded. In theory, this could also be solved
by a more complex filling command.

Most parts of the huge Computer Modern family
are based mainly on outlines. There are, however,
also some parts which use pens exclusively:

The calligraphic uppercase letters (like the “T ” here)
are for instance created from paths that are traced
by a rotated elliptic pen. Mathematical symbols (like
the “∃” here) often make use of circular pens.

10 Conclusion

No matter whether you prefer drawn or filled paths,
METAFONT can handle both. In any case the signifi-
cance of METAFONT lies not in the power of pens but
in its ability to parametrize fonts in large generality.

References

[1] Donald E. Knuth. TEX and METAFONT:

New directions in typesetting. American
Mathematical Society, 1979.

[2] Donald E. Knuth. The Computer Modern family

of typefaces. Stanford University, 1980.

[3] Donald E. Knuth. cmbase.mf. http:

//www.saildart.org/CMBASE.MF[MF,SYS]1,
1982.

[4] Donald E. Knuth. The METAFONTbook.
Addison–Wesley, 1986.

[5] Donald E. Knuth. METAFONT: The Program.
Addison–Wesley, 1986.

⋄ Linus Romer
Hirzlistrasse 3
Uznach, 8730
Switzerland
linus.romer (at) gmx dot ch

Linus Romer

TUGboat, Volume 33 (2012), No. 3 313

Glisterings

Peter Wilson

Catching fire, taking hold

All that glisters leaves you cold

No-one is near, no-one will hear

Your changeling song take shape

In Shadowtime.

Shadowtime, Siouxsie and the Banshees

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Twixt the optimist and pessimist

The difference is droll:

The optimist sees the doughnut

But the pessimist sees the hole.

Optimist and Pessimist,

McLandburgh Wilson

1 Cutout windows

While winnowing my shelves and piles of books,
journals, magazines, paper, etc., in anticipation of a
move from the US to the UK I came across a TUG-

boat article by Alan Hoenig [2] in which he provides
TEX code for creating an open window in the middle
of a paragraph. An example of a paragraph with a
cutout is in Figure 1. This was produced by:

\input{cutsty.tex}

\window{2}{0.4\textwidth}{0.25\textwidth}{5}

This paragraph is set within the ...

...in a minipage in a \TUB\ \texttt{figure*}).

\endwindow

I tried out the code as given but found that it
needed a tweak here and there to improve the spac-
ing. Here is my version of Alan’s code for rectangu-
lar cutouts, which can be used in both TEXed and
LATEXed documents.1 Most of my changes to the
code are changes of name and argument specifica-
tion to make it acceptable to both TEX and LATEX.

% cutsty.tex Based on Alan Hoenig,

% ‘TeX Does Windows --- The Conclusion’,

% TUGboat 8:2, pp.211-215, 1987

First some counts, lengths, and boxes are needed (I
have used cut as the start of each of these names to
try and avoid clashes with other code):

\newcount\cutlines \newcount\cuttoplines

\newdimen\cutlftside \newdimen\cutrtside

\newtoks\cuta

\newcount\cutn

1 Alan also gave code for creating arbitrary shaped holes.

\newbox\cutrawtext \newbox\cutholder

\newbox\cutwindow \newbox\cutfinaltext

\newbox\cutaslice \newbox\cutbslice

\newdimen\cuttopheight

\newdimen\cutilgvs % glue or shift

The main user commands are \window and the ac-
companying \endwindow. The first of these takes
four arguments as:
\window{〈top-lines〉}{〈left〉}{〈right〉}{〈cut-lines〉}
where 〈top-lines〉 is the number of lines before the
window cutout, 〈left〉 is the width of the text at the
left of the window and 〈right〉 the width of the text
at the right, and 〈cut-lines〉 is the number of lines
used for the window (i.e., the height of the window).
The macro gets a \parshape for the forthcoming
text, gets and applies any vertical shift, opens a box
for the text and then applies the \parshape.

\def\window#1#2#3#4{%

\cuttoplines=#1\relax

\cutlines=#4\relax

\cutlftside=#2\relax

\cutrtside=#3\relax

\cuta={}%

% calculate the \parshape spec

\parshapespec

% reset the these arguments

\cuttoplines=#1\relax

\cutlines=#4\relax

% calculate and apply any vertical shift

\cutshift \vskip-\cutilgvs

% start a box for collecting the text

\setbox\cutrawtext=\vbox\bgroup

\parshape=\cutn \the\cuta}

The text, in the form of a single paragraph with
a constant \baselineskip is put between the two
\...window commands; in the case of LATEX you
can, but don’t need to, use a window environment
instead.

The general scheme is to use a specially shaped
paragraph which effectively splits the text into three
sets of lines; those before the cutout; those that will
form the cutout; and the rest. The lines forming
the cutout are short while the others are full length.
An example is shown in Figure 2. The final output
is assembled from the top set of lines, the cutout
lines combined in pairs, and the remainder. The
final form of a paragraph with a cutout is shown in
Figure 3.

\def\endwindow{%

\egroup % end \box\cutrawtex

\parshape=0 % reset parshape

\computeilg % find ILG using current font

\setbox\cutfinaltext=

\vsplit\cutrawtext

to\cuttoplines\baselineskip

Glisterings

314 TUGboat, Volume 33 (2012), No. 3

This paragraph is set within the window environment. There are limitations on the
window arguments and text. There must be at least one line of text above the window
and if the number of lines spec- ified for the opening
exceeds the available lines then the text after the window

environment will be moved down by an amount corre-
sponding to the excess. A window will not extend into a
second paragraph. The environ- ment is effectively a
box and will not break across a page boundary. There should be enough space at
the left and right of the window for a few words on each side (don’t try to make either
of these zero in an attempt to have a window opening to the margin). There is usually
not enough width to put a significant window into a column on a two-column page
(this has been set in a minipage in a TUGboat figure*).

Figure 1: A generated window

If you have to have a cutout in a narrow col-
umn keep the words short. Use one or two or
maybe one or more
extra letters so that
they may fit into the
available area with-
out too much odd
spacing. If the words
are hyphenatable this will help a lot as then a long
one may be cut into two short bits.

Figure 2: Split window lines

\cuttopheight=\cutlines\baselineskip

\cuttopheight=2\cuttopheight

\setbox\cutholder=

\vsplit\cutrawtext

to\cuttopheight

% \cutholder contains the narrowed text

% for window sides. Slice up \cutholder

% into \cutwindow

\decompose{\cutholder}{\cutwindow}

\setbox\cutfinaltext=\vbox{%

\unvbox\cutfinaltext\vskip\cutilgvs

\unvbox\cutwindow%

\vskip-\cutilgvs\unvbox\cutrawtext}%

\box\cutfinaltext}

A \parshape is used to specify quite general
paragraph shapes [3, Ch. 14] or [1, Ch. 18]. Its 2n+1
parameters specify the indentation and length of the
first n lines in the following paragraph which must
start immediately (no empty line after the parame-
ters). The first parameter is n followed by n pairs
of indentation and line length values. In general:

\parshape n i1 l1 i2 l2 . . . in ln

If there are more than n lines then the specification
for the last line (in ln) is used for the rest of the
lines in the paragraph.

\parshapespec calculates the \parshape pa-
rameters to generate a paragraph with 〈top-lines〉

If you have to have a cutout in a narrow col-
umn keep the words short. Use one or two or
maybe one or more extra letters so that
they may fit into the available area with-
out too much odd spacing. If the words
are hyphenatable this will help a lot as then a long
one may be cut into two short bits.

Figure 3: Assembled window lines

full lines followed by 〈cut-lines〉 of length 〈left〉 al-
ternating with 〈cut-lines〉 of length 〈right〉.

\def\parshapespec{%

\cutn=\cutlines \multiply \cutn by 2

\advance\cutn by \cuttoplines

\advance\cutn by 1\relax

\loop

\cuta=\expandafter{\the\cuta 0pt \hsize}

\advance\cuttoplines -1\relax

\ifnum\cuttoplines>0\repeat

\loop

\cuta=\expandafter{\the\cuta

0pt \cutlftside 0pt \cutrtside}%

\advance\cutlines -1\relax

\ifnum\cutlines>0\repeat

\cuta=\expandafter{\the\cuta 0pt \hsize}}

An example paragraph at this stage of the pro-
cess is in Figure 2.

The \decompose{〈narrow〉}{〈split〉} command
takes a box 〈narrow〉 and for each pair of lines puts
the first at the left and the second at the right of
the box {〈split〉}. That is, it converts pairs of lines
into single lines with text at the left and the right
with a space between.

\def\decompose#1#2{%

% loop over the windowed lines

\loop\advance\cutlines -1

% get a pair of lines

\setbox\cutaslice=\vsplit#1 to\baselineskip

\setbox\cutbslice=\vsplit#1 to\baselineskip

% split into the two sides

Peter Wilson

TUGboat, Volume 33 (2012), No. 3 315

\prune{\cutaslice}{\cutlftside}

\prune{\cutbslice}{\cutrtside}%

% assemble into one line

\setbox#2=\vbox{\unvbox#2\hbox

to\hsize{\box\cutaslice\hfil\box\cutbslice}}%

\ifnum\cutlines>0\repeat}

For the example in Figure 2 the \decompose

macro converts the 6 narrow lines into the 3 cutout
lines shown in Figure 3.

\prune{〈vbox〉}{〈width〉} is used to prune the
glue that TEX puts at the end of a short \parshape

line. It takes a \vbox containing a single \hbox,
\unvboxes it, cancels the \lastskip and puts it in
a box of 〈width〉 wide; a \strut is needed to keep
the spacing consistent.

\def\prune#1#2{%

\unvbox#1

\setbox#1=\lastbox % \box#1 is now an \hbox

\setbox#1=\hbox to#2{\strut\unhbox#1\unskip}}

\cutshift calculates the amount that the win-
dowed paragraph must be raised, which is half a
\baselineskip for each windowed line. (This is my
addition).

\def\cutshift{%

\cutilgvs=\cutlines\baselineskip

\cutilgvs=0.5\cutilgvs}

\computeilg computes the interline glue in the
windowed paragraph. This is the last macro so finish
the file with an \endinput.

\def\computeilg{%

\cutilgvs=\baselineskip

\setbox0=\hbox{(}

\advance\cutilgvs-\ht0

\advance\cutilgvs-\dp0}

\endinput

Artwork or text may be placed in the cutout.
How to do that is a very different problem and
one that I am not

?
intending to address

here, but zero-sized pictures and headers
or footers come to mind [4]. Perhaps
solutions will have been published by the time this
article appears.

Since the preceding was first written, the cutwin

package [5] has appeared which lets you create vari-
ously shaped cutouts and place things in the result-
ing window.

References

[1] Victor Eijkhout. TEX by Topic, A TEXnician’s

Reference. Addison-Wesley, 1991. ISBN
0-201-56882-9. Available at http://www.

eijkhout.net/tbt/.

[2] Alan Hoenig. TEX does windows — the
conclusion. TUGboat, 8(2):211–215, 1987.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[4] Peter Wilson. Glisterings: Ornaments.
TUGboat, 32(2):202–205, 2011.

[5] Peter Wilson and Alan Hoenig. Making
cutouts in paragraphs, 2010. Available on
CTAN in macros/latex/contrib/cutwin.

⋄ Peter Wilson

20 Sovereign Close

Kenilworth, CV8 1SQ

UK

herries dot press (at)

earthlink dot net

Glisterings

316 TUGboat, Volume 33 (2012), No. 3

Stubborn leaders and juggling boxes:

A slightly unusual table of contents

Boris Veytsman

Abstract

A macro for typesetting an unusual table of contents
is introduced. The history of development of this
macro is described in detail showing the refinement
of requirements and refactoring of the code. The TEX
boxes, their measuring and inspection are discussed.

1 Introduction

Many publishers that accept manuscripts in TEX or
LATEX put their styles on CTAN; see the (certainly in-
complete) list at http://www.ctan.org/keyword/

publishers. However, when a journal uses TEX in-
ternally, there are also macros not publicly released.
These macros are used in typesetting covers, journal
title pages, issue and volume tables of contents, in-
dices etc. They are specific to the journal. Without
major changes they can be used only by the people
who want to create another one with exactly the
same look and feel. For some reason this practice
is frowned upon by the publishers. Still, sometimes
the tricks in these macros might be of interest to
TEXnicians. Thus extracting them and publishing
separately seems to be worth doing.

I recently released the package (Veytsman, 2012)
for typesetting articles for the journal Res Philo-

sophica, http://www.resphilosophica.org. I also
wrote a package to typeset the covers and technical
information for the journal. In this article I describe
a somewhat non-trivial macro used in the table of
contents of the journal.

An important (maybe the most important) part
of the work of a programmer is the understanding of
the requirements. Thus I would like to tell the history
of this macro: how it was designed and re-designed
after studying the samples.

2 The problem and a näıve solution

The entries of the journal’s table of contents were
typeset like the ones in Figure 1: the article title,
then the dots connecting the entry to the page num-
ber, following by the page number itself, and the au-
thors on the next line in italics. The dots are called
leaders in TEX. LATEX has a nice macro \dotfill

which makes infinitely stretchable leaders.1 With
this macro our TEX source looks like this:

1 While most of our code works in plain TEX, we do use

some LATEXisms like \dotfill, \itshape, etc., which are easy

to emulate in other formats.

Article title . 5
A. U. Thor

Figure 1: A simple TOC entry

Article title . 5
A. U. Thor

A very very very very very very long article
title . 9
A. N. Other

Figure 2: Failure of the näıve solution

% #1 is the title, #2 is the author(s)

% #3 is the page number

\def\settocentry#1#2#3{\par

#1\space\dotfill\space#3\par

\textit{#2}\par\medskip}

\parskip=0pt\parindent=0pt

\settocentry{Article title}{A. U. Thor}{5}

The problem is solved!
Unfortunately, it is not so simple. What hap-

pens if the article title is very long? The result is
shown in Figure 2. The leaders start from the second
line of the title, separating it from the author, which
just does not look right. This situation occurs not
infrequently because the width of the journal pages
is rather small (6 in.).

An examination of the samples showed that the
designer wanted (1) the title and the authors to
occupy no more than 60% of the text width, and
(2) the leaders to always start from the first line of
the entry, even if the title occupied two or more lines.
Of course, there are some arguments against this
design. One can object to the fact that the title is
“broken” by the leaders. On the other hand, the eye
looking for a title or authors moves in the vertical
direction and probably disregards the intervening
leaders, so this objection might not be too strong
after all. Anyway, this was the design which I was
given to implement.

3 A less näıve solution

A less näıve idea is the following. Let us typeset
the title in a box of certain width, say \entrywidth,
with the baseline at the first line. If it occupies one
line, we throw away the box and use the solution
from the previous section. However, if it occupies
two or more lines (which we can check by measuring
its depth), we align it with the leaders and page
number.

To make our code simpler, let us split the main
macro into two parts: setting the title and setting
the authors. We also put the page into a global

Boris Veytsman

TUGboat, Volume 33 (2012), No. 3 317

Article title . 5
A. U. Thor

A very very very very very
very long article title

. 9

A. N. Other

Figure 3: A less näıve solution

\articlepage to be used by the \setarticletitle
macro—mostly to avoid cluttering the definitions:

\def\settocentry#1#2#3{%

\gdef\articlepage{#3}%

\setarticletitle{#1}\par

\setarticleauthors{#2}\par\medskip}

To set the article title we put it in a \vtop box
\titlebox. Since it is \vtop, the baseline of the
box coincides with the baseline of the first line, and
to check the presence of the second line we need to
measure its depth rather than height. Also, we add
\strut at the end of the box to keep the distance
between the lines uniform:

\newdimen\tocboxwidth

\tocboxwidth=0.6\textwidth

\newbox\titlebox

\def\setarticletitle#1{\par

\setbox\titlebox=\vtop{%

\hsize=\tocboxwidth\relax

#1\strut\par}%

\ifdim\dp\titlebox<\baselineskip\relax

% the box is one line long, forget it

#1\space\dotfill\space\articlepage

\else % The box has more than one line

\vtop{\hsize=\textwidth\leavevmode

\box\titlebox\space\dotfill

\space\articlepage}%

\fi}

We also set the authors in a box of the same width:

\def\setarticleauthors#1{%

\vtop{\hsize=\tocboxwidth

\strut\itshape#1\strut}}

Is our problem solved? Unfortunately not. First,
titles are usually no more than two lines long. There-
fore it would be better to typeset them ragged right.
Second, often the article title is split at the logical
break, for example, after a colon. Therefore we can
expect an input like this:

\parskip=0pt\parindent=0pt\raggedright

\settocentry{Article title}{A. U. Thor}{5}

\settocentry{A very very very very

longwinding article

title}{A. N. Other}{9}

\settocentry{The state of the art:\\

Article title . 5
A. U. Thor

A very very very very
longwinding article title

. 9

A. N. Other

The state of the art:
New developments and
results

. 21

C. O. R. Respondent

Figure 4: Failure of the less näıve solution

New developments and results}%

{C. O. R. Respondent}{21}

As seen in Figure 4, this input breaks our TOC. The
leaders start at the end of the box, leaving an ugly
gap. Note that if not for the leaders, our solution
would be perfect: the page numbers are aligned with
the first lines of the titles.

4 The current solution

Whenever I hit a wall in my TEX hacking, I try to
find a clue in the book by Eijkhout (2007). This
worked for me again. In §5.9.6 there I found a nice
trick using \lastbox. This command deletes the
last box from the vertical list and makes it available
for inspection and retypesetting. If we apply this
command iteratively, we “pick apart” the list line by
line until we hit the top. Eijkhout used it to typeset
the lines in a paragraph in a way that depended on
their natural width. He put the paragraph in a box,
and then inspected each line starting from the last
one, re-typesetting if necessary (see also Eijkhout,
1990).

This trick provides the solution to our problem.
Indeed, let us typeset the title in a box of width
\tocboxwidth. Then let us pick this box apart, mov-
ing the lines into another box. When we hit the last
line from the bottom (i.e. the first line from the top),
we break this line and re-typeset it with the leaders
and the page number.

There are two additional problems to be solved.
First, a vertical list has not just boxes, but also glue
and penalties. Eijkhout found that he needs to put
\unskip and \unpenalty in his loop after getting
the last box. LATEX \raggedright adds additional
skips to the lines, so after some meditation over
the kernel code and trials I put there a longer in-
cantation with one \unpenalty and three \unskips.
Second, how do we know that we have hit the top
line? The only way to find it is on the next itera-
tion of the loop, where \lastbox returns an empty

Stubborn leaders and juggling boxes: A slightly unusual table of contents

318 TUGboat, Volume 33 (2012), No. 3

box. Thus we need to postpone moving the line to
the result until we inspect the next one. Therefore
the final algorithm includes four boxes: \trialbox
to initially typeset the title, \resultbox to put the
result in, \lastlinebox for the line read last, and
\prevlinebox for the previously read line. The al-
gorithm is the following:

1. We typeset the title into a \trialbox.

2. On each iteration of the loop we take the last line
of this box and put it in the box \lastlinebox.

3. If this box is empty, we have hit the top. Then
we break \prevlinebox, add leaders and page
number and put on the top of \resultbox.

4. Otherwise we put \prevlinebox in \resultbox,
put \lastlinebox in \prevlinebox and repeat
the loop.

A final note before we start going into the code: when
we add vertical boxes, we need to check first whether
they are empty, otherwise we introduce unwanted
vertical space.

The \setarticlemacro creates \trialbox and
then typesets the \resultbox:

\newbox\trialbox

\newbox\resultbox

\newbox\lastlinebox

\newbox\prevlinebox

\def\setarticletitle#1{%

\setbox\trialbox=\vtop\bgroup

\hsize=\tocboxwidth\relax

\strut#1\strut\par\getlastline\egroup

\box\resultbox}

The heart of our algorithm is the \getlastline
macro. It implements iteration in a very TEXish way:
by recursively calling itself.

\def\getlastline{%

% Reading the last line

\global\setbox\lastlinebox=\lastbox

\ifvoid\lastlinebox % We hit the top;

% construct the

% result and

% finish

\global\setbox\resultbox=\vtop

\bgroup\hsize=\textwidth

\hbox to \textwidth

{\unhbox\prevlinebox

\unskip\unpenalty\space

\dotfill\space\articlepage}%

\ifvoid\resultbox\else

\box\resultbox\fi

\egroup

\else % We did not hit the top yet

\unskip\unpenalty\unskip\unskip

Article title . 5
A. U. Thor

A very very very very . 9
longwinding article title

A. N. Other

The state of the art: . 21
New developments and
results

C. O. R. Respondent

Figure 5: The current solution

\ifvoid\prevlinebox\else

\global\setbox\resultbox=\vtop

\bgroup

\box\prevlinebox

\ifvoid\resultbox\else

\box\resultbox\fi

\egroup

\fi

\global\setbox\prevlinebox

\box\lastlinebox

{\getlastline}% Recursion!

\fi}

The results are shown in Figure 5. As one can see,
now the leaders behave correctly.

5 Conclusion

Our article shows how TEX boxes provide a rich en-
vironment for a rather complex typesetting problem.
The \lastbox command is a powerful tool which
can be used for many non-trivial tasks.

References

Eijkhout, Victor. “Unusual Paragraph Shapes”.
TUGboat 11, 51–53, 1990. http://www.tug.
org/TUGboat/tb11-1/tb27eijkhout.pdf.

Eijkhout, Victor. TEX by Topic. Lulu, 2007.
http://eijkhout.net/texbytopic/

texbytopic.html.
Veytsman, Boris. Typesetting Articles for Res

Philosophica, 2012. http://mirror.ctan.org/
macros/latex/contrib/resphilosophica.

⋄ Boris Veytsman

School of Systems Biology &

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman

TUGboat, Volume 33 (2012), No. 3 319

TheTreasure Chest

This is a list of selected new packages posted to
CTAN (http://ctan.org) from August to October
2012, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

CTAN remains as vibrant and important to the
TEX community as it has ever been, but the TUG-

boat editors have received no feedback on this column
in many years, and electronic notifications of CTAN

updates are now widespread and (of course) much
more timely. So, if you find this column useful, please
drop us a line; otherwise, we will likely drop it in
future issues.

⋄ Karl Berry
tugboat (at) tug dot org

http://tug.org/ctan.html

biblio

francais-bst in biblio/bibtex/contrib

Two natbib-compatible styles for standard French
bibliography typesetting.

mkbib in biblio/bibtex/utils

GTK+ BibTEX bibliography creator.

fonts

biolinum-type1 in fonts

(pdf)LATEX support for the Biolinum fonts.

hacm in fonts

The alphabet of the constructed language Arka.

* lm-math in fonts

Latin Modern OpenType math font.

libertine-type1 in fonts

(pdf)LATEX support for the Linux Libertine fonts.

graphics

hobby in graphics/pgf/contrib

Hobby’s algorithm for generation of Bezier curves,
for PGF/TikZ.

jmakepdfx in graphics/pgf/contrib

Java interface to Ghostscript for conversion of PDF

to PDF/X.

setdeck in graphics/pgf/contrib

Provides LATEX commands to typeset cards from
the game set.

smartdiagram in graphics/pgf/contrib

Create smart diagrams from lists of items.

svg in graphics

Include .svg files made by Inkscape.

tikzposter in graphics/pgf/contrib

Making posters with TikZ.

info

examples/Presentations_en in info

Examples from the book Presentations with LATEX

by Herbert Voß.

latex-sciences-humaines in info

French book about LATEX and humanities, 270 pp.

macros/generic

catcodes in macros/generic

Deal with category code switching.

langcode in macros/generic

Adjust language-dependent settings.

plainpkg in macros/generic

Support for making generic packages.

macros/latex/contrib

abraces in macros/latex/contrib

Generalized constructions similar to \overbrace and
\underbrace.

actuarialangle in macros/latex/contrib

Typeset nice looking “angles” in present value of
an annuity symbol.

adhocfilelist in macros/latex/contrib

Shell script to output a list of LATEX \Provides...

contents, possibly filtered according to various criteria.

bohr in macros/latex/contrib

Create Bohr models of atoms.

calcage in macros/latex/contrib

Calculate age in years (based on datenumber).

chkfloat in macros/latex/contrib

Check for floats too far from their origin.

counttexruns in macros/latex/contrib

Count how often a LATEX document is compiled.

designcon in macros/latex/contrib

Tools for developing DesignCon conference papers
using LATEX and LYX.

eledform in macros/latex/contrib

Formalize textual variants in critical editions.

* eledmac in macros/latex/contrib

Successor to ledmac and ledpar.

exsheets in macros/latex/contrib

Create exercises or questionnaires, with solutions.

macros/latex/contrib/exsheets

320 TUGboat, Volume 33 (2012), No. 3

filedate in macros/latex/contrib

Access and compare info and modification dates.

fnumprint in macros/latex/contrib

Typeset a number as a word or Arabic numerals.

* imakeidx in macros/latex/contrib

Package for producing multiple indexes.

libertine in macros/latex/contrib

Compatibility package for existing documents to use
biolinum-type1 and libertine-type1.

loops in macros/latex/contrib

Generic looping macros.

ocgx in macros/latex/contrib

Use PDF feature ‘Optional Content Groups’ (OCG)
without JavaScript.

physics in macros/latex/contrib

Typesetting equations in vector calculus and linear
algebra via Dirac notation.

pkuthss in macros/latex/contrib

Template for dissertations at Peking University.

pxcjkcat in macros/latex/contrib

Change CJK category settings in upLATEX.

resphilosophica in macros/latex/contrib

Class for typesetting articles for the journal
Res Philosophica.

scrjrnl in macros/latex/contrib

Class to typeset diaries or journals.

ulthese in macros/latex/contrib

LATEX class to prepare theses for the Université Laval,
Québec.

uspatent in macros/latex/contrib

LATEX class and LYX layout files to support writing
US patent applications.

venndiagram in macros/latex/contrib

Create Venn diagrams with TikZ.

macros/latex/contrib/biblatex-contrib

biblatex-caspervector in m/l/c/biblatex-contrib

biblatex support for Chinese LATEX users.

biblatex-publist in m/l/c/biblatex-contrib

biblatex support for publication lists.

biblatex-trad in m/l/c/biblatex-contrib

biblatex support for traditional BibTEX styles:
plain, abbrv, unsrt, alpha.

oscola in m/l/c/biblatex-contrib

biblatex support for the Oxford Standard for the
Citation of Legal Authorities.

macros/plain

plipsum in macros/plain/contrib

‘Lorem ipsum’ paragraphs generator for plain TEX,
with many f-ligatures.

Book review: PSTricks: Graphics and

PostScript for TEX and LATEX

Boris Veytsman

Herbert Voß, PSTricks: Graphics and PostScript

for TEX and LATEX. UIT Cambridge, 2011. 928 pp.
Paperback, US$64.99. ISBN 9781906860134.http:
//www.uit.co.uk/BK-PSTricks.

Many years ago when I was a student at the Theoret-
ical Physics department of Odessa University, USSR,
I regularly both praised and cursed Introduction to

the Theory of Quantum Fields by N.N. Bogolyubov
and D.V. Shirkov. This was a large volume (over five
hundred pages) covering many topics not described
anywhere else. It was one of the most essential books
for students at that time. On the other hand, it was
plagued by typos, misspellings and outright errors.
You could not just take a formula from this book and
apply it for your work. You needed to find a pencil, a
thick stack of blank sheets and follow the derivation,
correcting authors’ mistakes and getting the right
answer after much toil and sweat. According to an
urban legend, when the authors taught the course
on Quantum Fields, every student was required to
present a newly found error in the textbook to get
a passing grade—a Soviet variation of the famous
DEK’s checks.

I recalled this experience when I’ve read the
new book by Herbert Voß. The book describes
PSTricks—an immensely capable system of graph-
ics combining the power of TEX and PostScript.
While many people nowadays use TikZ (an alter-
native system), PSTricks remains the strongest one,
in my opinion. The beautiful examples throughout
the book and on the PSTricks home page (http:
//tug.org/PSTricks/main.cgi/) demonstrate the

TUGboat, Volume 33 (2012), No. 3 321

vast possibilities of this system. Today PSTricks can
be easily used to produce PDF files, which used to
be one of the most important advantages of TikZ.

Unfortunately, the official manual of PSTricks
is rather old, and documentation for many impor-
tant parts of the system is dispersed among multiple
guides for individual packages. Moreover, some of
the documentation remains available only in French
or German, which is frustrating for many users.

This book strives to be a comprehensive guide
to the complex world of PSTricks. The author de-
scribes in detail the base system and spends some
time on the contributed packages, in a style resem-
bling the LATEX Companion series of books. For
some packages, such as pst-geo, this book provides
English documentation for the first time ever (after
the time spent with pst-geo I feel I almost can read
French). This book will be useful for both novices
and experts. Herbert Voß is the leading developer of
PSTricks, and his knowledge of the system is unsur-
passed. I am an old user of PSTricks (full disclosure:
the book mentions a contributed package co-authored
by me), but even for me some of the chapters were
eye-openers, like the very thorough description of
three-dimensional plotting, or the detailed discussion
of pscustom objects.

PSTricks, despite its long history, is still being
actively developed, so the information in the printed
book quickly becomes obsolete (as mentioned above,
Herbert himself contributes to the obsolescence of his
manual). At the moment I am writing this review,
the PSTricks web site announces several updates
made just two days ago. Nevertheless a book like
this is important: it serves as a compass in the
ocean of documentation. In many cases even the fact
that a package solving some problem exists can be
pivotal. Thus buying this book is a good investment
for anybody working with PSTricks.

Unfortunately the comprehensiveness and indis-
pensability are not the only common features be-
tween Graphics and PostScript for TEX and LATEX

and Introduction to the Theory of Quantum Fields.
Like the latter book, the former has too many typos
for the user’s comfort. Typos in a mathematical
formula are rather nasty; typos in a program code
can also be very bad. I started to list the typos
for this review, but soon found out there were just
too many of them in the book. There was an effort
to crowd-source the proofreading of the manuscript:
the volunteers from the pstricks mailing list got a
chapter each to find the typos (another full disclo-
sure: I worked on proofreading Appendix A), but
this obviously did not work as well as a professional
copy editor would. Even the book index has prob-

lems: on page 886 LATEX packages are indexed under
“Pakete”.

In many cases the language of the book might
be improved, and sometimes I could not figure out
the meaning of the author’s text.

The style of the book is uneven. Well written
chapters coexist with somewhat haphazard texts.
Sometimes the commands are used in the examples,
but explained only several pages later, if ever. For
example, the code on page 174 uses \pst@@@vlabel
and \pst@@@hlabel macros which are not explained
anywhere in the text. The book is illustrated by
extensive examples. Sometimes the code for these ex-
amples is printed in the book; sometimes the reader is
referred to the web site. The same can be said about
the typographic style of the book: some chapters
use marginal notes, some not. Some use “dangerous
bend” symbols, some not. This might be expected
in a collection of chapters by different authors, but
a monograph should have some stylistic uniformity.

The book could be improved by a chapter intro-
ducing PostScript language for the beginners. The
book does include a list of PostScript commands in
Appendix B—a useful resource but by no means
suitable as the first reading about the subject. The
knowledge of PostScript is not necessary for the basic
usage of PSTricks, but is helpful for the advanced
tricks. Appendix D on PDF would probably be bet-
ter as a chapter—with the extended discussion of
transparency and other PDF-related features.

There are probably many other improvements
that could be made to this book.

The urban legend mentioned in the beginning of
this review says that at some point Bogolyubov and
Shirkov collected the writeups of their students and
used them for the corrected edition of their book.
I do not know whether this is true. However, the
fourth Russian edition on my shelf today has many
fewer typos and mistakes than the early ones.

This book by Herbert Voß has had five editions
in German. This is the first English one. I wish
the author would make a new edition correcting the
problems I’ve described. However, even now this
is the most definitive English book on PSTricks—
albeit very frustrating at times.

⋄ Boris Veytsman

School of Systems Biology &

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: PSTricks: Graphics and PostScript for TEX and LATEX

322 TUGboat, Volume 33 (2012), No. 3

Book review: Just My Type: A book

about fonts

David Walden

Simon Garfield, Just My Type: A book about fonts.
Gotham Books, 2011. 356 pp. Hardcover, US$27.50.
ISBN 9781592406524. (Also in paperback.)

I was excited when I heard about the book Just My

Type. I have become increasingly interested in fonts
as I have worked with TEX over the past 15 years,
and in the past several years I have checked a couple
of dozen books about type, type design, and type
designers out of libraries and skimmed through them.
Thus, when this book was published, I immediately
bought a copy thinking it would be neat to read a
book that written for a lay audience. As I initially
dipped into the book, reading sections here and there,
I enjoyed what I read. However, when I tried to read
the book carefully cover to cover to do this review,
my appreciation of the book wavered. It was hard
going—too much information with too little logical
connection over the book’s approximately 350 pages.

The book is a collection of essays (an introduc-
tion and 22 chapters averaging a little under 14 pages
each) with titles such as:

• Legibility vs Readability
• Baskerville is Dead (Long Live Baskerville)
• Can a Font be German or Jewish
• Pirates and Clones

Interleaved among the chapters are a dozen so-called
“FontBreaks”, each three or so pages long and named
after a font or class of fonts, for example

• Gill Sans
• Mrs Eaves & Mr Eaves

• Moderns, Egyptians, and Fat Faces
• The Interrobang

However, any of the chapters or FontBreaks may
have information about fonts, font design, font de-
signers, use of fonts, theories of fonts, and so on. The
FontBreaks are also essays, albeit shorter than the
chapter essays; and there is really no thread that ties
these 35 chapter and FontBreak essays together or
orders them in some logical way.

Thus, I think the book will appeal most to
people who don’t have time or interest in pushing
through a continuous coherent text and rather only
seek to read one short type-related story at a time.
It may be ideal for bedtime reading.

For me, with my modest but non-trivial back-
ground with and about fonts, some of the book’s sto-
ries recapitulated what I already knew (e.g., about
Helvetica from watching Gary Hustwit’s documen-
tary movie titled Helvetica). Some of the chapters
added to what I already knew (e.g., more about the
history of ampersands). Some of the chapters were
on topics entirely new to me (e.g., the Type Archive
founded and directed by Sue Shaw in South London—
I want to visit this place). I also was tickled to read
for the first time about the logo of the Beatles band.
In a chapter titled “The Serif of Liverpool”, we learn
about the origin of this logo text with its capital
B followed by small caps with a long descender on
the T:

As is typical in all of the book’s chapters, this chapter
then goes on to other topics related to the initial
theme of the essay— in this case, other famous logos
in the rock world.

The book contains scads of specimens of different
typefaces and fonts. The excerpt in figure 1 from the
book’s copyright page explains a bit about the fonts
used. In that text, the words “Univers 45 Light”,
“Albertus”, and “Zeppelin II” are set in the mentioned
font. (The rest of the paragraph is in Sabon.) The
mentioned samples of “more than 200 other fonts”
throughout the book are mostly only a word or two
long—the name of the mentioned font, as here.

This display of type specimens throughout the
book is impressive as a compositing feat (imagine
having to make so many fonts available to one’s
typesetting system for a single project). However,
it lacks organization (and comparable samples of
full alphabets) making it not so useful in terms of
serving as a specimen book. The book does have
an index (not always available in books written for
lay readers), and this allows one to go from a font
name to one or more book pages which may include
a sample of the font.

David Walden

TUGboat, Volume 33 (2012), No. 3 323

Figure 1: Fragment from copyright page of the book (magnified).

The book also includes a three page bibliogra-
phy of relevant books and a two page list of Internet
resources. It would have been nice for a reader in-
terested in digging deeper into the content of any
of the essays if the book cited the relevant biblio-
graphic items via footnotes or end notes from the
main text. However, this is one more book where
the designer (or publisher’s marketing department)
apparently couldn’t allow such research aids lest they
damage the book’s popularity. (I would think that a
bibliography could include page references back to
the main text that would to some extent provide the
useful links without cluttering the main text with
those unpopular superscript reference numbers.)

Two aspects of the book appear to be included
to add graphical pizazz that I think fail to achieve
a purpose in terms of providing usable informa-
tion. There is a periodic-table layout of fonts inside
the front and back covers of the book, taken from
squidspot.com/Periodic_Table_of_Typefaces.

html. However, the author (or book designer) didn’t
include enough information to make this chart useful
to me. Then there is a foreword by Chip Kidd that is
apparently supposed to show in a flashy way (2 pages
of text, 14 pages of graphics, not much explanation)
the use of a lot of different fonts. However, the fore-
word doesn’t connect well with the rest of the book.
Perhaps the foreword would have impressed me more
if I had ever before heard of Chip Kidd (Wikipedia
suggests he is a well-known graphic designer). Or
it might have said more to me if I already had a
well-developed eye for graphic design.

As mentioned above, the book would have ap-
pealed to me more if there was some logical thread
that flowed through the book, although I can imag-
ine that was hard for the author to figure out given
the many disparate topics he touches upon. Overall
the book is an impressive effort given (it seems) that
the author is more of a journalist writing books on
a variety of non-fiction topics (simongarfield.com
) than a long-time expert in the world of fonts. I
can imagine that going from an interest in the topic
through the study to write an entire book on the

topic would have been a pretty educational exercise,
and the author has chosen a nice subset of what he
learned as stories to include in the book.

Perhaps one thread of continuity could have
been the author telling us more about his background
with type and how he pursued the information in
this book. How much did he already know, how did
he learn more, and what mental map did he have
in mind as he wrote the book? I know that the
author is supposed to keep himself out of the story,
but including some information about his journey
in collecting the information for this book might
provide an interesting side story that would draw
the reader along through the book (and perhaps give
the reader some greater global mental picture of the
world of type).

In any case, the book is what it is. I will put it
on my book shelf as an informal adjunct to the few
other (more formal) books on type I own and the
others I will continue to get from the library from
time to time. (In fact, there is little overlap between
Just My Type and the two books I already have on
my shelf, Bringhurst’s The Elements of Typographic

Style and Felici’s The Complete Manual of Typogra-

phy.) No doubt I will dip into Just My Type again
occasionally to recall an interesting anecdote or use
it as a potential one-shot resource (using the book’s
index) when looking up something about fonts before
consulting more specialized books.

My recommendation for others in the TEX world
who may have about the same level of typeface ex-
pertise/non-expertise that I have is to borrow the
book from your public library first to see how you
feel about it. Then buy it for your own library of
books on fonts and their history and use if you think
it will be a useful addition, or buy it to give as a gift
to friends and relatives who are naive on the subject
of typefaces. It does contain a lot of fascinating
information for the right reader.

⋄ David Walden
walden-family.com/texland

Book review: Just My Type: A book about fonts

324 TUGboat, Volume 33 (2012), No. 3

Abstracts

Les Cahiers GUTenberg issue 56 (2011)

Les Cahiers GUTenberg is the journal of GUTenberg,
the French-language TEX user group (www.gutenberg.
eu.org).

This issue is the proceedings of the fourth Con-
TEXt meeting and third TEXperience meeting, jointly
published with NTG (as MAPS no. 43) and CSTUG

(as Zpravodaj no. 2–4/2011).

Ján Kula and Pavel Stř́ıž, Preface; p. 69

Arthur Reutenauer, Mobile TEX: Porter TEX
pour l’iPad [Mobile TEX: Porting TEX to the
iPad]; pp. 84–90

The article presents the achievement of Richard
Koch, amongst other things the author of TeXShop
and MacTEX developer, who has successfully com-
piled and used TEX on Apple’s iPad.

Luigi Scarso, Jouer avec Flash depuis ConTEXt
MkIV [Playing with Flash in ConTEXt MkIV];
pp. 91–101

The article presents one of the approaches to
embedding Flash animations in a PDF file using Con-
TEXt MkIV and the Lua language running in the
background.

Luigi Scarso, MicroTalk— pdfsplit;
pp. 102–115

MicroTalk is a short and technical paper that
shows some unusual, hopefully useful, ideas under
the rubric “figure to code”. The main topic is always
typographic programming in ConTEXt and Lua. A
bit of Lua code, the \clip macro and Leptonica
extensions are the ingredients for this recipe to cook
a \pdfsplit macro that tries to split a PDF into
parts as the \vsplit does with \vboxes.

Ulrik Vieth, Expériences de typographie
OpenType math avec LuaLATEX et X ELATEX
[Experiences typesetting OpenType math with
LuaLATEX and X ELATEX]; pp. 116–126

Compares OpenType math typesetting in two
common TEX engines these days, LuaLATEX and
X ELATEX. The differences in the outputs are pre-
sented as red-blue layering of the PDF files.

Taco Hoekwater and Hartmut Henkel,
LuaTEX 0.60; pp. 127–133

[Published in TUGboat 31:2.]

Taco Hoekwater, LuaTEX 0.63 : référence
[LuaTEX 0.63 short reference]; pp. 134–139

John Haltiwanger, Subtext: Une proposition
de grammaire procédurale pour préformater
les documents multisupports [Subtext: A
proposed procedural grammar for a multi-output
pre-format]; pp. 140–146

The article brings some thoughts and notes on
typesetting for multi-output pre-format from the
single source code.

Willi Egger, Redistribuer les pages [Arranging
pages]; pp. 147–156

There is still much to be considered until we can
hold a finished book in our hands, after the content
is ready. In this article an overview on possible page
arrangement schemes is presented. Although Con-
TEXt already has a considerable range of possibilities
built-in, more arrangement schemes will be added in
the near future, making ConTEXt even more versatile.

Libor Sarga, Guide TEX it: difficiles débuts de
la composition pour des non-compositeurs [Guide
TEX it: Uneasy beginnings of typesetters from the
perspective of non-typesetters]; pp. 157–165

The article describes the process of typesetting a
proceedings in TEX from the perspective of prospec-
tive typesetters along with challenges and obstacles
encountered and solved during the work. Focused on
the problems of generating a desired table of contents
and captions of graphic objects, it further lists mi-
nor annoyances and tricks used to solve them. Also
described is a field-proven electronic content man-
agement and synchronization system for different file
versions utilized while working on the project in a
decentralized fashion.

Jan Přichystal, Composition des tables et
listes, et autres nouvelles fonctions de TEXonWeb
[Typesetting of tables and lists and other new
features in TEXonWeb]; pp. 166–169

This article describes new features in TEXonWeb.
TEXonWeb is a web application which allows using
the (LA)TEX typesetting system without needing its
installation on a local computer. One of the most im-
portant characteristics of this application is to help
beginners to start working with (LA)TEX. It offers
them many tools, such as table and list wizards, to
ease their first steps.

Timothy Eyre, ConTEXt pour les zines
[ConTEXt for zines]; pp. 170–180

The article describes the design of the New Es-

capologist magazine, our motivations for using Con-
TEXt, some of the typographical features of the mag-
azine and my experiences with using the ConTEXt
Mark II macro package.

TUGboat, Volume 33 (2012), No. 3 325

Hans Hagen, La technologie hybride de ConTEXt
MkIV [ConTEXt MkIV hybrid technology];
pp. 182–300

The paper presents development, new features
and tools of LuaTEX and ConTEXt MkIV.

Tomáš Hála, Les épreuves dans la pratique
éditoriale et leur implémentation dans un système
TEX [Marking proof-sheets in publishing practice
and its implementation in the TEX system];
pp. 301–308

This paper deals with ways of marking proof-
sheets in publishing practice. Four possible solutions
are shown and discussed. Three of them are based on
existing macros (page style \headings), or packages
(fancyhdr.sty, zwpagelayout.sty); the fourth is
original and specific, and contains a new style for
LATEX— thproof.sty.

Karel Ṕı̌ska, Les fontes avec des tables
OpenType complexes [Fonts with complex
OpenType tables]; pp. 309–332

The paper presents development of complex
OpenType fonts. Sample fonts cover Czech and
Georgian handwriting with pervasive letter connec-
tions.

To begin, general principles of “advanced ty-
pography” are shown—complex metric data rep-
resented by OpenType tables (GSUB and GPOS)—
and compared with the ligature and kerning tables
in Metafont.

Then the history of OpenType font production
is described—approaches, tools and techniques. Cru-
cial problems, critical barriers, attempts and ways
to reach successful solutions, are discussed and sev-
eral tools for font creation, testing, debugging and
conversions between various text and binary formats
are demonstrated. Among these tools are, for exam-
ple, AFDKO, VOLT, FontForge, TTX, and Font-TTF.
Their features, advantages, disadvantages, and also
cases of possible incompatibilities (or maybe errors)
are illustrated. Finally, use of OpenType fonts in
TEX world applications is presented: X ETEX and
LuaTeX (ConTEXt MkIV), the programs supporting
reading and processing OpenType fonts directly.

[Received from Thierry Bouche.]

ArsTEXnica #14 (October 2012)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (http://www.guit.sssup.it/).

Gianluca Pignalberi, Editoriale [From the
editor]; p. 5

Jean-Michel Hufflen, Beyond BibTeX;
pp. 7–14

This article is related to the production of bibli-
ographies for documents typeset by means of LATEX
or ConTEXt. We explore some recent ways to go be-
yond what is allowed by BibTEX. Then we explain
why the programs mlbiblatex and mlbibcontext

seem to us to be promising.

Ivan Valbusa, La forma del testo umanistico: la
classe suftesi [Classical text shape: The suftesi
class]; pp. 15–30

This article analyzes the main aspects that arise
when typesetting a humanistic text, from the choice
of font and layout to the style of titles and text ele-
ments (even making use of philosophical reflections).
It also introduces the tools for typesetting provided
by the suftesi class.

Claudio Beccari and Heinrich Fleck, Una
classe per comporre un dizionario [A class for
composition of a dictionary]; pp. 31–40

In this article we describe the history, the de-
velopment, and the most relevant characteristics of
classes dictionarySCR and xdictionarySCR, that
allow to typeset, by pdfLATEX and X ELATEX respec-
tively, thematic dictionaries in a variety of disciplines.

Enrico Gregorio, LATEX3: un nuovo gioco per i
maghi e per diventarlo [LATEX3: A new game for
becoming a wizard]; pp. 41–47

We shall examine, by means of examples, some
of the functions provided by the LATEX3 kernel. In
particular, we shall focus on the usage of the sequence
variable type and show something about the l3keys
module.

Claudio Beccari, Un pacchetto per il controllo
del codice fiscale italiano [A package to check the
Italian personal fiscal code number]; pp. 48–52

The Italian Fiscal Code is a special string that
encodes personal identity data; it may be issued
only by the State Administrative Offices, but when a
document is being written a piece of software should
be available to check the correctness of the encoded
string, in particular it must control the final check
letter for coherence with the remaining data.

Roberto Giacomelli, Grafica ad oggetti con
LuaTEX [Object-oriented graphics with LuaTEX];
pp. 53–71

In this paper we will make an attempt to mea-
sure the TEX user advantages and efficacy of an ob-
ject oriented language, the programming paradigm
recently added to the TEX world by the new type-
setting engine LuaTEX. A case study was developed
writing a new graphic object library in Lua, based on
the PGF package, carried in a source TEX file with a
small and simple package.

Luigi Scarso, MFLua: Intrumentation of
METAFONT with Lua; pp. 72–81

[Published in TUGboat 32:2.]

Agostino De Marco, Gestione ‘quasi
automatica’ dei valori numerici in esempi di
calcolo ed esercizi svolti [Managing numbers in
calculation examples and exercises]; pp. 82–94

In this paper I will show some techniques to
manage numbers for facilitating the preparation of
calculation examples or worked-out exercises. This
is a well-known problem for authors of scientific
textbooks. When they want to include a gallery
of examples with calculations in their book it is of
utmost importance to adopt a strategy designed to
limit both typographic and conceptual errors. The
techniques shown here handle numeric values which
are produced outside the typesetting process with ex-
ternal software tools. Finally, similar techniques are
mentioned that use LuaLATEX or the package l3fp.

Grazia Messineo and Salvatore Vassallo, Il
pacchetto esami per la creazione di prove scritte
[The package esami to generate written exams];
pp. 95–103

We present the package esami which extends
some useful properties of the exerquiz and probsoln
LATEX packages to produce databases of exercises in
a collaborative way, and to produce exams.

Grazia Messineo and Salvatore Vassallo,
Test online di matematica: il Progetto
M.In.E.R.Va [Online math test: The M.In.E.R.Va
project]; pp. 104–112

We present the packages esami-online, to cre-
ate online exams with automatic corrections, and
minerva, to create sets of exercises for high school
students.

Matteo Fadini, Stemma codicum con LATEX
[Stemma codicum with LATEX]; pp. 113–122

During preparation of a critical edition, it is nec-
essary to draw the stemma codicum, i.e. the graphical
representation of the lineage relationships of the tex-
tual transmission through the linkage of manuscripts

and prints. There is no specific package designed
to draw the stemmata. Nevertheless it is possible
to adapt the packages usually employed for gener-
ative syntax trees in linguistic studies. This paper
discusses two cases: syntree, a user-friendly pack-
age, and xytree, a more complex yet more powerful
package. The analysis limits the description to the
useful functions for drawing stemmata codicum.

Jerónimo Leal and Gianluca Pignalberi,
Composizione di uno stemma codicum con
TikZ [Stemma codicum typesetting with TikZ];
pp. 123–131

While LATEX has very good packages to typeset
a more or less complex stemma codicum, TikZ al-
lows one to achieve results at least as good, without
requiring harder notational complexity.

Claudio Vincoletto, Alcuni stralci sul
Computer Bodoni [Bits and pieces about
Computer Bodoni]; pp. 131–137

The Computer Modern font source may be con-
veniently modified in order to obtain a new version
of a Bodoni type nearer to the original one.

[Received from Gianluca Pignalberi.]

326 TUGboat, Volume 33 (2012), No. 3

The PracTEX Journal 2012-1

The PracTEX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/
pracjourn. All articles are available there.

Lance Carnes, Editorial—LATEX in the IT world
Editor’s introduction to the issue.

Editors, Feedback from readers

Brian D. Beitzel, Formatting Sweave and LATEX
documents in APA style

[Also published in TUGboat 33:1.]

Dimitrios Ververidis, Daniel Schneider and
Joachim Köhler, The Vocal Tract LATEX package

VocalTract.sty is a package to visualize the
vocal tract. A vocal tract is manipulated by a vector
of articulation parameters according to S. Maeda’s
model. Animation can be achieved by providing a
sequence of vectors over time, e.g. from Matlab. An
embedded sequence of vectors in VocalTract.sty

for certain German phonemes allows for a sequence
of phonemes animation when no vector is available.

TUGboat, Volume 33 (2012), No. 3 327

Han Lin Shang, Writing posters with
beamerposter package in LATEX

The beamerposter package in LATEX is an excel-
lent tool for the creation of posters. There are several
options available using the beamerposter package
when writing a poster in LATEX. Here, I would like
to present some of these options associated with the
beamerposter package. I shall introduce the basics
and some useful companion packages that make a
poster look neat and nice.

Jim Hefferon, Seeing stars
MetaPost is a great tool for line art. We walk

through creating a rate one-to-five graphic with it,
highlighting some of its advantages over a mouse-
driven graphics tool.

Luca Merciadri, TEX in the eBook era
There are many advantages to reading eBooks,

and their usage is ever-increasing. There are those
who prefer traditional printed books, but there is
also a growing audience whose lifestyle and taste is
suited to eBooks. We discuss some advantages of
using eBooks, and creating them with LATEX. We
continue by explaining technical aspects that might
improve and help you with your LATEX eBook. We
end with a short discussion about the PDF file format
and its use with eBook documents.

Hongbin Ma, Easy-to-use Chinese MTEX Suite
Although there are many free and commercial

TEX collections and distributions, Chinese TEXers
still have many difficulties in TEXing Chinese doc-
uments. Some of the problems Chinese TEX users
confront with TEX distributions are: the huge size,
complex structure, nontrivial installation and config-
uration, lack of a full-featured Chinese editor, and
lack of other needed add-ons. These difficulties may
prevent many people from becoming TEXers or TEX
experts. Motivated by these issues and many other
practical demands, the author and several friends
developed an easy-to-use and easy-to-learn Chinese
MTEX Suite, which is a green, compact, free, conve-
nient, pragmatic and powerful TEX distribution with
many add-ons and unique features which are seldom
available in other TEX distributions. The developers
of MTEX have made continuous efforts to make this
software more powerful and suitable for TEXers, pro-
grammers, teachers, and scientists. This article gives
a brief introduction to the MTEX suite, including
its motivation, main features, installation, usage in-
structions, kernel, default editor (SciTE LATEX IDE),
and other add-ons.

Yossi Gil, Bashful writing and active documents
Computerized typesetting still relies on meta-

phors drawn from the letterpress printing domain
and is still concerned largely with the production of
documents printed on paper. Active documents is an
emerging technology by which the product of com-
puterized typesetting is more than an aesthetically
pleasing composition of letters, words and punctua-
tion characters broken into lines and pages. An active
document offers modes of interaction with its reader,
while the document itself may change its content in
response to events taking place in the external world.
Bashful documents, the concept proposed by the
bashful package, and discussed in this article, ex-
tend the user interaction offered by active documents
to the time of the document creation. For example,
the author of a textbook on computer programming
may use bashful to automatically include in the text
a transcript of a demonstration program, that is a
precise replica of the program’s execution at the time
the document was authored. When writing a report
on an important experiment, a scientist may employ
bashful to automatically execute the experiment,
whenever the report’s text is run through LATEX, and
even include the experiment’s results in the output
document.

Rayans Carvalho and Francisco Reinaldo,
Documenting ITIL processes with LATEX

Many companies have evolved with the imple-
mentation of the Information Technology Infrastruc-
ture Library (ITIL), using the best practices and
processes to achieve practical results. Good practice
suggests what to do, but at the same time raises
doubts about how to do it and which tools to use
to get better work performance in ITIL. Noting
these facts, this article presents a LATEX-based pro-
cesses and services documentation tool, as suggested
by ITIL.

Lars Madsen, Avoid eqnarray!
[Published in TUGboat 33:1.]

Editors, Ask Nelly
Customizing lists?; Producing logos?

Editors, Distractions: guitar chords; font quizzes

Editors, Book review: LATEX and Friends by
Marc R.C. van Dongen

328 TUGboat, Volume 33 (2012), No. 3

Letters

PUB and pre-TEX history

Don Knuth

I recently learned of an excellent web resource that
strongly deserves to be better known: Some years
ago, Larry Tesler put up

http://www.nomodes.com/pub_manual.html

which tells the story of PUB—which was my own
introduction to computer typesetting. I did the first
several errata collections for TAOCP with PUB, some
time before I had learned that good typography was
also possible, if pixels got small enough.

On that page he shows the original PUB manual
on the left and gives extended annotations on the
right . . . at least at the beginning. He tells me that
he would be glad to annotate further if encouraged
by readers to do so.

Please tell TUGboat readers of this work at
your earliest opportunity!

Cordially,

⋄ Don Knuth

http://www-cs-faculty.stanford.edu/~knuth

TUG 2013

34th annual meeting of the TEX Users Group

Graduate School of Mathematical Sciences

University of Tokyo

Tokyo, Japan

October 23–26, 2013

http://tug.org/tug2013

2012

Nov 9 “Letterpress: something to say”,
St. Bride Library, London, England.
stbride.org/events

Nov 9 – 10 13. IBG-Jahrestagung in München,
“Das E-Book. Herausforderung und
Chance für die Buch- und Verlagswelt”,
Internationalen Buchwissenschaftliche
Gesellschaft, München, Germany.
www.buchwiss.de

Nov 10 –
May 19

Exhibit: “Geletterd & geleerd [Literate &
Learned]. Brill: 330 Years of Typography
in the Service of Scholarship”,
Museum Boerhaave, the Dutch National
Museum for the History of Science
and Medicine, Leiden, Netherlands.
www.museumboerhaave.nl/english/

exhibitions/literate-learned

Nov 13 “Crafty types”, St. Bride Library,
London, England. stbride.org/events

Dec 7 “A Short History of Type”, lecture by
Frank Romano, Museum of Printing,
North Andover, Massachusetts.
www.museumofprinting.org

Dec 14 “A Short History of Printing”, lecture by
Frank Romano, Museum of Printing,
North Andover, Massachusetts.
www.museumofprinting.org

2013

Jan 15 Conference,“The Design of
Understanding”, St Bride Library,
London, England. stbride.org/events

Mar 7 – 9 Typography Day 2013, Indian Institute
of Technology. Guwahati, Assam, India.
www.typoday.in

Mar 6 – 8 DANTE Frühjahrstagung and 48th

meeting, Justus-Liebig-Universität,
Gießen, Germany.
www.dante.de/events/DANTE2013.html

Mar 11 TUGboat 34:1, submission deadline
(regular issue)

May 1 TUG election: nominations due.
tug.org/election

TUGboat, Volume 33 (2012), No. 3 329

Calendar

Jun 5 – 12 The 5th International Conference on
Typography and Visual Communication
(ICTVC), “Against lethe . . . ”, University
of Nicosia, Cyprus. www.ictvc.org

Jun 10 –
Aug 2

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on type,
bookmaking, printing, and related topics.
www.rarebookschool.org/schedule

Jun 27 – 29 Ladies of Letterpress Conference,
Mt. Pleasant, Iowa.
www.letterpressconference.com

Jul 8 TUGboat 34:2, submission deadline
(regular issue)

Jul 16 – 19 Digital Humanities 2013, Alliance of
Digital Humanities Organizations,
University of Nebraska–Lincoln.
dh2013.unl.edu

Jul 18 – 21 SHARP 2013, “Geographies of the Book”,
Society for the History of Authorship,
Reading & Publishing, University
of Pennsylvania, Philadelphia.
www.library.upenn.edu/exhibits/

lectures/SHARP2013

Jul 21 – 25 SIGGRAPH 2013, “Left Brain + Right
Brain”, Anaheim, California.
s2013.siggraph.org

Sep 10 – 13 ACM Symposium on Document
Engineering, Florence, Italy.
www.doceng2013.org

Sep 26 – 27 The Eleventh International Conference
on the Book, Universität Regensburg
Universitätsbibliothek,
Regensburg, Germany
booksandpublishing.com/the-conference

TUG2013

Tokyo, Japan.

Oct 23 – 26 The 34th annual meeting of the
TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2013

Status as of 1 November 2012

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: texnical.designs (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

330 TUGboat, Volume 33 (2012), No. 3

TEXConsultants

Moody, Trent

1981 Montecito Ave.
Mountain View, CA 94043
+1 650-283-7042
Email: trent.moody (at) ymail.com

Construction of technical documents with
mathematical content from hand written (or partially
formatted) sources. Delivered documents will be .tex

and .pdf files produced with TEX or/and LATEX.
Delivered documents can be publication ready
manuscripts, macro libraries for modular document
development, or mathematical libraries for document
reuse.

I am an independent contractor with a PhD
in mathematical physics from the University of
California, Santa Cruz.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc., with highly competitive prices.
I provide consultation in building business models &
technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled

Shanmugan, R. (cont’d)

various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sharma, Ganesh Kumar

A - 251 / 1, Opposite Primary School,
Shastri Nagar, Delhi 110052, India
+91 9810748682, 9013121611
Email: ganeshsharma (at) yahoo.com

I am a Master of Computer Applications (MCA)
degree holder. I am well versed with MetaPost, HTML,
MathML, Java, CSS, PHP, Unix shell scripting, C++,
TikZ, Gnuplot and PostScript etc.

As a consultant and service provider, I am handling
LATEX and X ELATEX composition to technical
illustration, editorial services for: project management
of conference proceedings; class/style files creation for
LATEX publications; a full management service for
journals including correspondence with authors and
issue make-up, including manuscript Preparation
(pagination / composition, copy editing and proof
reading), scanning and graphics designing, origination
from handwritten manuscript or use of author-supplied
code (TEX or word processor), and author support; the
supply of HTML, PDF files (including hyperlinks
and bookmarks) and other coding for electronic
publication. I can typeset the books in Sanskrit and
Hindi languages using LATEX very well.

Currently, I am giving editorial services to many
universities, reputed publishers and multinational
companies, research groups etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

TUGboat, Volume 33 (2012), No. 3 331

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about seventeen years of experience
in TEX and thirty years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.latexcopyeditor.net

http://www.editingscience.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

332 TUGboat, Volume 33 (2012), No. 3

2013 TEX Users Group election

Barbara Beeton
for the Elections Committee

The positions of TUG President and six members of
the Board of Directors will be open as of the 2013
Annual Meeting, which will be held in October 2013
in Japan.

The directors whose terms will expire in 2013:
Kaja Christiansen, Jonathan Fine, Steve Grathwohl,
Jim Hefferon, Klaus Höppner, and David Walden.

Continuing directors, with terms ending in 2015:
Barbara Beeton, Karl Berry, Susan DeMeritt, Michael
Doob, Taco Hoekwater, Ross Moore, Cheryl Ponchin,
Philip Taylor, and Boris Veytsman.

The election to choose the new President and
Board members will be held in Spring of 2013. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition
in accordance with the TUG Election Procedures.
Election . . . shall be by written mail ballot of the
entire membership, carried out in accordance with
those same Procedures.” The term of President is
two years.

The name of any member may be placed in
nomination for election to one of the open offices
by submission of a petition, signed by two other
members in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2013 will be
expected to be paid by the nomination deadline.)
The term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via http://tug.org/election.

Along with a nomination form, each candidate
must supply a passport-size photograph, a short
biography, and a statement of intent to be included
with the ballot; the biography and statement of intent
together may not exceed 400 words. The deadline for
receipt of nomination forms and ballot information
at the TUG office is 1 May 2013. Forms may be
submitted by FAX, or scanned and submitted by
e-mail to office@tug.org.

Ballots will be mailed to all members within 30
days after the close of nominations. Marked ballots must
be returned no more than six (6) weeks following the
mailing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of
the election should be available by early June, and will
be announced in a future issue of TUGboat as well as
through various TEX-related electronic lists.

2013 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2013
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2013 Annual Meeting,
October 2013

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (forms
submitted by FAX or scanned and submitted by e-mail
will be accepted). Nomination forms and all required
supplementary material (photograph, biography and per-
sonal statement for inclusion on the ballot) must be
received in the TUG office no later than 1 May 2013.1

It is the responsibility of the candidate to ensure that this
deadline is met. Under no circumstances will incomplete
applications be accepted.

� nomination form

� photograph

� biography/personal statement

TEX Users Group FAX: +1 815 301-3568
Nominations for 2013 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

1 Supplementary material may be sent separately from the

form, and supporting signatures need not all appear on the

same form.

TUGBOAT Volume 33 (2012), No. 3

Introductory

240 Barbara Beeton / Editorial comments
• typography and TUGboat news

328 Don Knuth / PUB and pre-TEX history
• note about an early computer typesetting program by Larry Tesler

241 Markus Kohm / KOMA-Script comes of age
• informal history of KOMA-Script’s first eighteen years

239 Steve Peter / Ab epistulis
• Lucida OpenType; DVD; new printings from Knuth; in memoriam: Dan Carr and Bill Hill

245 Christina Thiele / Almost 30 years of using TEX
• reflections on the TEX world through the years at a small typesetting house

263 Thomas Thurnherr / Changing the font size in LATEX
• document-wide and local methods for changing font size

299 Boris Veytsman / The fonts we choose
• essay on the importance of font choices

285 Mari Voipio / CrafTEX: Applying TEX, MetaPost, and friends in crafts
• scrapbooking, cardcraft, tablet weaving, historical (re)creation, and more

Intermediate

319 Karl Berry / The treasure chest
• new CTAN packages, August–October 2012

265 Robert Fuster / The calculator and calculus packages: Arithmetic and functional calculations inside LATEX
• extensive new packages for mathematical computations, including functions and derivatives

276 Peter Pupalaikis / A patent application design flow in LATEX and LYX
• support for creating US patent application, especially the required drawings

302 Ulrik Vieth / OpenType math font development: Progress and challenges
• survey of available OpenType math fonts and technology

301 Herbert Voß / Using TEX Gyre Pagella OpenType Math
• example of loading an OpenType math font in X ETEX and LuaTEX

Intermediate Plus

289 Bruno Delprat and Stepan Orevkov / MayaPS: Maya hieroglyphics with (LA)TEX
• flexible PostScript-based system for typesetting Maya

282 Markus Kohm / Page style tricks with scrpage2
• custom page styles for LATEX, with examples from KOMA-Script

295 Sherif Mansour and Hossam Fahmy / Experiences with Arabic font development
• development and debugging of the Metafont-based AlQalam Arabic script

272 Clemens Niederberger / The xtemplate package: An example
• illustrating the concept of the LATEX3 xtemplate with an example

313 Peter Wilson / Glisterings
• cutout windows

Advanced

309 Linus Romer / From drawn to filled paths
• sequence of examples of ‘o’ using all pen and outline methods

316 Boris Veytsman / Stubborn leaders and juggling boxes: A slightly unusual table of contents
• methodology of a macro for leaders at the top of a box

Contents of other TEX journals

326 The PracTEX Journal: Contents of issue 2012-1

324 Les Cahiers GUTenberg : Contents of issue 56 (2011)
(simultaneously published as MAPS 42 (2011) and Zpravodaj 2–4/2011)

325 ArsTEXnica: Contents of issue 14 (2012)

Reports and notices

328 TUG 2013 announcement

320 Boris Veytsman / Book review: PSTricks: Graphics and PostScript for TEX and LATEX
• review of this reference on PSTricks by Herbert Voß, the principal maintainer

322 David Walden / Book review: Just My Type: A book about fonts
• review of this book of varied essays on fonts by Simon Garfield

330 TEX consulting and production services

238 Institutional members

329 Calendar

332 Barbara Beeton / TUG 2013 election

