
TUGBOAT

Volume 32, Number 3 / 2011

TUG 2011 Conference Proceedings

TUG 2011 242 Conference program, delegates, and sponsors

245 Barbara Beeton / TUG 2011 in India

Resources 248 Stefan Kottwitz / TEX online communities—discussion and content

Education 251 Kannan Moudgalya / LATEX training through spoken tutorials

Electronic

Documents

257 Alan Wetmore / e-Readers and LATEX

261 Boris Veytsman and Michael Ware / Ebooks and paper sizes: Output routines

made easier

266 Rishi T. / LATEX to ePub

269 Manjusha Joshi / A dream of computing and LATEXing together: A reality

with SageTEX

272 Axel Kielhorn / Multi-target publishing

278 S.K. Venkatesan / On the use of TEX as an authoring language for HTML5

281 S. Sankar, S. Mahalakshmi and L. Ganesh / An XML model of CSS3 as

an XLATEX-TEXML-HTML5 stylesheet language

Typography 285 Boris Veytsman and Leyla Akhmadeeva / Towards evidence-based typography:

Literature review and experiment design

Bibliographies 289 Jean-Michel Hufflen / A comparative study of methods for bibliographies

LATEX 302 Brian Housley / The hletter class and style for producing flexible letters and

page headings

309 Didier Verna / Towards LATEX coding standards

Abstracts 329 TUG 2011 abstracts (Bazargan, Crossland, Radhakrishnan, Doumont,

Mittelbach, Moore, Rishi, Skoupý, Sojka, Wujastyk)

LATEX 331 LATEX Project Team / LATEX news, issue 20

333 Brian Beitzel / The meetingmins LATEX class: Hierarchically organized meeting

agendas and minutes

335 Igor Ruiz-Agundez / Collaborative LATEX writing with Google Docs

339 Peter Wilson / Glisterings: Verbatim arguments; Cut off in its prime

342 Luca Merciadri / Some LATEX2ε tricks and tips (IV)

Software & Tools 345 Paul Isambert / TEX as you like it: The interpreter package

349 Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski / PARCAT—

Applying TEX in industry

Fonts 357 Dave Crossland / TUG Libre Font Fund, Google Web Fonts, and Kickstarter

Book Reviews 358 Boris Veytsman / Book review: Bodoni, Manual of Typography—

Manuale tipografico (1818)

359 Boris Veytsman / Book review: LATEX and Friends

Hints & Tricks 361 Karl Berry / The treasure chest

Abstracts 362 ArsTEXnica: Contents of issues 11–12 (2011)

363 Die TEXnische Komödie: Contents of issue 3/2011

364 The PracTEX Journal : Contents of issue 2011-1

Advertisements 365 TEX consulting and production services

TUG Business 366 TUG institutional members

News 367 Calendar

368 TUG 2012 announcement



TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2011 dues for individual members are as follows:
Ordinary members: $95.
Students/Seniors: $65.

The discounted rate of $65 is also available to citi-
zens of countries with modest economies, as detailed
on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and the
TEX Users Group, as well as providing a discounted
group rate and other benefits. For further informa-
tion, see http://tug.org/instmem.html or contact
the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2011 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be repro-

duced, distributed or translated without the authors’ permis-

sion.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and dis-

tribute verbatim copies without royalty, in any medium, pro-

vided the copyright notice and this permission notice are pre-

served.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Jonathan Fine
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Philip Taylor
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: December 2011]

Printed in U.S.A.



2011 Conference Proceedings

TEX Users Group

Thirty-second Annual Meeting

River Valley Technologies

Trivandrum, Kerala, India

October 19–21, 2011

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 32, NUMBER 3 • 2011

PORTLAND • OREGON • U.S.A.



TUG2011: TEX in the eBook era
Trivandrum Kerala India

October 19–21, 2011

Sponsors

TEX Users Group River Valley Technologies DANTE e.V. Spoken Tutorials CSTUG

with assistance from individual contributors. Thanks to all!

Bursary committee

Steve Peter, chair Jana Chlebikova Bogus law Jackowski Alan Wetmore

Conference committee

Kaveh Bazargan Karl Berry Krishna GS Robin Laakso CV Radhadkrishnan

With thanks to Namboodiri of RVT for the drawings.

Participants

Pavneet Arora, Bolton, Canada

Kaveh Bazargan, River Valley Technologies

Barbara Beeton, American Mathematical Society

Dave Crossland, Wimborne, UK

Jean-luc Doumont, Principiae

L. Ganesh, TNQ Books and Journals

Steve Grathwohl, Duke University Press

Brian Housley, GCCS GmbH

Jean-Michel Hufflen, University of Franche-Comté

Anu Jexline, Mathematical Sciences Publishers

Manjusha Joshi, Pune, India

Jestin Joy, Rajagiri School of Engineering and

Technology

Stefan Kottwitz, Germany

Reinhard Kotucha, Germany

Chandrashekhar Kumar, Bangalore

Suresh Kumar, SPi Global

Vinoth Kumar S, Scientific Publishing Services

Alagu Lakshmanan, Scientific Publishing Services

Saravanan M, SPi Global

S. Mahalakshmi, TNQ Books and Journals

Bob Margolis, Hampshire, UK

Frank Mittelbach, LATEX3 Project

Rajiv Monsurate, Tamilnadu

Kannan Moudgalya, IIT Bombay

Ross Moore, Macquarie University

K. Murali, Transforma Pvt Ltd

Ilangovan N, Scientific Publishing Services

Josy Pullockara, Indian Institute of Science

CV Radhakrishnan, River Valley Technologies

Thomas Ratajczak, German Federal Armed Forces

Rishi, River Valley Technologies

Chris Rowley, LATEX3 Project

Sukumar Sankar, TNQ Books and Journals

M. Sankaran, Transforma Private Ltd

Neeraj Saxena, Aptara

Johny Sebastian, Aptara

Karel Skoupý, Lingea & River Valley Technologies

Alistair Smith, Sunrise Setting Ltd

Petr Sojka, Masaryk University

Paulo Ney de Souza, BooksInBytes

Henrikas Stankus, VTEX

Vytautas Statulevicius, VTEX

Sehar Tahir, Aptara

B. Thiagarajan, TNQ Books and Journals

Sigitas Tolušis, VTEX

Suki Venkat, TNQ Books and Journals

Didier Verna, EPITA R & D Laboratory

Boris Veytsman, George Mason University

David Walden, E. Sandwich, MA

Alan Wetmore, US Army Research Laboratory

Dominik Wujastyk, Austria



TUG2011—program and information

Wednesday

October 19
8:30 am registration

9:30 am Barbara Beeton, TEX Users Group Welcome

9:35 am Ross Moore, Macquarie University Further advances toward Tagged PDF for mathematics

10:10 am Rishi, River Valley Technologies Creating magical PDF documents with pdfTEX

10:45 am break

11:20 am CV Radhakrishnan, River Valley Tech. TEX4ht—A Swiss army knife for TEX

12:15 pm Karel Skoupý, Lingea Data structures in ε-TEX

12:30 pm lunch

1:40 pm Kaveh Bazargan, River Valley Tech. Why TEX is more relevant now than ever

2:15 pm Alan Wetmore, US Army Research

Laboratory

e-Readers and LATEX

2:40 pm break

3:15 pm Boris Veytsman and Michael Ware,

George Mason Univ. and

Brigham Young Univ.

Ebooks and paper size: Output routine hacking

made easy

3:50 pm Rishi Automated generation of ePub from LATEX

4:25 pm q&a

Thursday

October 20
9:35 am Jean-Michel Hufflen, University of

Franche-Comté

A comparative study of methods for bibliographies

10:10 am Brian Housley, GCCS GmbH Making a package for flexible letter & page headings

10:45 am break

11:20 am Didier Verna, EPITA R & D Lab. Toward LATEX coding standards

11:55 pm Frank Mittelbach, LATEX3 Project LATEX3 architecture

12:30 pm lunch

1:40 pm Dave Crossland, Wimborne, UK Freeing fonts for fun and profit

2:15 pm Boris Veytsman & Leyla Akhmadeeva,

Bashkir State Medical University

Towards evidence-based typography: Experiment design

2:40 pm break

3:15 pm Karel Skoupý Typesetting fancy multilingual phrase books

with LuaTEX

3:50 pm Dominik Wujastyk, Austria Typesetting Sanskrit in various alphabets:

X

E

LATEX, TEC files, hyphenation, and even XML

4:25 pm q&a

Friday

October 21
9:35 am Pavneet Arora, Canada Typesetting with masonry

10:10 am Jean-luc Doumont, Principiae Integrating TEX and PDF seamlessly in pdfTEX

10:45 am break

11:20 am Sukumar Sankar, S. Mahalakshmi and

L. Ganesh, TNQ Books and Journals

An XML model of CSS3 as an XLATEX-TEXML-

HTML5 stylesheet

11:45 am S.K. Venkatesan, TNQ On the use of TEX as a general markup language

for HTML5

12:05 pm Kannan Moudgalya, IIT Bombay LATEX training through spoken tutorials

12:30 pm lunch

1:40 pm Stefan Kottwitz, Germany Bringing together TEX users online: From Usenet to

Web 2.0 and beyond

2:15 pm Manjusha Joshi, India A dream of computing and LATEXing together: A reality

with SageTEX

2:40 pm break

3:15 pm Petr Sojka, Masaryk University Why TEX math search is more relevant now than ever

3:50 pm Dominik Wujastyk, Austria My father’s book: Typesetting and publishing

a family memoir

≈ 4:30 pm end



244 TUGboat, Volume 32 (2011), No. 3

(Drawings courtesy of Namboodiri of River Valley Technologies.)



TUGboat, Volume 32 (2011), No. 3 245

TUG 2011 in India

Barbara Beeton

For the second time (the first was in 2002), the TUG

annual conference was held in Kerala, India. Since
I wasn’t able to attend the first one, this was an
exciting new experience.

The principal accommodations were in a hotel
just off the beach near Trivandrum. The view to-
ward the shore was quite enchanting, and the waves,
which built up across the entire expanse of the In-
dian Ocean, made me wonder why there weren’t any
surfers—but that isn’t the Indian way.

The conference itself took place in the facilities
of River Valley Technologies, an interesting coach
ride inland. (On the way, one unexpected sight
was the iconic “dangerous bend” sign “in the wild”!
Thanks to Reinhard Kotucha, a photo was obtained
and forwarded to Don Knuth as a souvenir.) The
buildings and grounds of River Valley have been
designed and constructed to be minimally depen-
dent on external utilities while providing an inviting
and accessible workplace. The garden provides fresh
fruit and vegetables for the canteen, and water is col-
lected from rain, stored, used and recycled. “Natu-
ral” air conditioning is provided by broad roof over-
hangs and open windows for air circulation; only the
conference room, directly under the roof, requires
powered air conditioning. The River Valley web site
(http://river-valley.com/new-office-campus)
has photos and a good description of the facilities,
and it is well worth viewing.

A TUG conference isn’t just location. The real
attraction is seeing old friends, making new ones,
and learning what has been going on in the TEX
world. This year’s conference wasn’t a large one, but
it was interesting. The theme, eBooks, is a “hot”
topic these days, and one of my goals was to find
out what tools are available right now that can be
applied to the Math Society’s books to make them
available in electronic form. (Interest has even been
expressed in the possibility of putting this material
onto small devices such as cell phones and PDAs;
my conclusion is that this isn’t going to happen very
soon—not even if a magnifying glass is supplied à la
the compact OED.) The consensus seems to be that
things are looking up with respect to moderate-sized
e-readers, but the situation is still far from ideal.

Several talks captured my attention in particu-
lar. I don’t mean to slight any of the others; in fact,
all the talks had something important to say, and we
are fortunate that they are available on video: http:
//river-valley.tv/conferences/tug-2011.

Alan Wetmore’s demonstration of several ac-
tual e-book devices was a real eye-opener. While
text looked quite good, and this paper-and-ink devo-
tee can even see an attraction for some situations,
the math still needs work. Watching a display equa-
tion pour down the side of the screen like honey from
a pitcher must be seen to be believed.

The problem of communicating published math
to readers with impaired vision is a thorny one. Ross
Moore has been working for several years on tech-
niques for converting LATEX files to tagged PDF.
Adobe has apparently said that they will accept
MathML, and now that PDF is an international stan-
dard, the goal should be to hold them to that im-
plied promise. More work is needed, but this ap-
pears to be an achievable goal.

For decades, I’ve used the “light box” technique
to determine whether two allegedly identical pages
really are the same. Rishi described what I would
call a “virtual light box” that overlays two PDF

pages so that any small variation glares out from the
screen. Using this technique, River Valley has cut
its need for printed proof from four sheets per page
to one sheet per four pages. (You do the arithmetic.)
It really is magic, and I want a copy; it seems to be
available now from the river-valley.com site.

Dominik Wujastyk’s talk about designing, type-
setting and publishing his father’s memoirs was a
touching lesson in what can be done by someone
with real interest in a project, but very little fund-
ing. The result, passed around through the audi-
ence, is a fine example that aspires to Don Knuth’s
exhortation to create beautiful books.

More contemporary in flavor are the multilin-
gual phrase books created by Karel Skoupý. Very
colorful, they are well designed, well organized, and
I would really enjoy using them if I understood the
languages involved.

This issue is a composite— talks for which pa-
pers were delivered along with other, regular arti-
cles. We’ve done this before, and expect to do it
again when conditions warrant, so that delays are
kept to a minimum. A final note: Although Axel
Kielhorn did not attend the meeting, his article was
so close to the topic that it seemed appropriate to
include it among the talks.

Thanks to Kaveh, Radhakrishnan and Krishna
for their kind invitation to hold the conference at
River Valley, and to everyone else involved in making
everything work so well.

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org



246 TUGboat, Volume 32 (2011), No. 3

Photos courtesy of: Vytas Statulevicius,

Jean-luc Doumont, Sehar Tahir,

Frank Mittelbach and Vidhya GS.

Boris Veytsman, Leyla Akhmadeeva.

Suresh Kumar, Saravanan M, Rajiv Monsurate.

Chandrasekhar Kumar, Vidhya, Stefan Kottwitz,

Manjusha Joshi, Leyla Akhmadeeva, Sehar Tahir,

Barbara Beeton, Kaveh Bazargan, Johny Sebastian.

Radhakrishnan CV, Kaveh Bazargan, Neeraj Saxena.

Lunch in the River Valley canteen.

Krishna.

Vidhya, Brian Housley.



TUGboat, Volume 32 (2011), No. 3 247

Ross Moore.

Jean-luc Doumont.

Petr Sojka.

Jean-Michel Hufflen.

Barbara Beeton, Ross Moore, Paulo Ney de Souza.

Sigitas Tolusis and wife, Renata, on an elephant ride.

Post-conference back-water tour.

Vidhya and Radhakrishnan.



248 TUGboat, Volume 32 (2011), No. 3

TEX online communities—discussion

and content

Stefan Kottwitz

Abstract

On the Internet there are various platforms where
TEX users meet for discussion. In this article, such
systems will be compared with a particular focus on
usability and content development.

1 Introduction

It all began in the 1980s with mailing lists such
as texhax,1 and Usenet. Around 1990, the Usenet
group comp.text.tex1 emerged, and continues to-
day to be a place where TEX hackers gather.

On the continuously developing Internet, TEX
user groups created mailing lists, and built home
pages and software archives. Web forums turned up
and lowered the barrier for beginners and occasional
TEX users to get support.

Today, TEX’s friends can also follow blogs and
news feeds, and take part in vibrant question and
answer sites.

These various systems offer different features,
which make some particularly useful for discussion
and others useful for information look-up and content
creation.

2 Classic discussion systems

2.1 Mailing lists

Subscribers to mailing lists discuss a certain topic via
email. The topic can be broad, such as TEX in gen-
eral, or very specific, such as a particular LATEX2ε
package. The list’s server receives emails from sub-
scribers and reflects them to all other subscribers.

Mailing lists have the advantage that they can
be used on every device with a mail client, so are ac-
cessible on tablets and smartphones, and even offline,
just going online during receiving and sending.

However, there are caveats:

• Following a general (LA)TEX list can be difficult
because of high traffic.

• Subscribing to quite a few specialized lists can
be overwhelming.

• If a user doesn’t know yet which package might
solve his problem, it may be hard to find the
right list.

Focused mailing lists are great for organizations,
developers, and authors, but less so for a casual user.

A well known example of a mailing list for gen-
eral TEX questions and discussion in English lan-

1 Reviewed by Jim Hefferon in “Which way to the forum?”,

TUGboat 32:2, 2011

guage is texhax.2 It has been online since the
1980s, has hundreds of subscribers and offers a public
archive.

About 50 further lists, most dealing with a spe-
cific topic, can be found on the TUG home page.3

There are further specialized TEX mailing lists
hosted by various providers.

2.2 Usenet groups

Usenet is a discussion system on the Internet, dis-
tributed by thousands of servers world wide. It
emerged around 1980. In Usenet, articles are logically
organized in hierarchies of subjects and arranged in
threads. It can be accessed via a dedicated news-
reader client or can be accessed via web interfaces,
such as Google Groups or mail gateways.

The first TEX group comp.text.tex4 was estab-
lished about 1990, and it is still active today with
about 1000 posts each month. Its language of discus-
sion is English, but there are further groups in other
languages, including de.comp.tex.tex5 in German
since 1992, fr.comp.text.tex6 in French since 1992
and es.comp.lenguajes.tex in Spanish since 1996
(although the latter is not used any more).

Usenet has some advantages— it is distributed
on many thousands of servers, and is thus redundant
which makes censoring hardly possible. Furthermore,
it has been around many years and a lot of experi-
enced users participate. However, though the Usenet
as a whole is structured, the TEX group itself has no
further structuring, except thread subjects.

There are feature-rich dedicated Usenet clients,
although many people also use it via Google Groups.
This brings us to a potential problem—some nice
features depend on Google Groups:

• How could we access the comp.text.tex archive
if Google stops providing it? Remember, Deja
News stopped the original Usenet search service
in 2001, before the archive was sold to Google
who reopened it.

• How could we access it via the web if Google
Groups disappears?

3 Web based communication

3.1 Blogs, feeds and aggregators

There are various blogs maintained by users, user
groups and companies. They offer knowledge and
news, though they can be hard to find and follow.
Feed aggregators provide a solution for this problem.

2 http://lists.tug.org/texhax
3 http://lists.tug.org
4 http://groups.google.com/group/comp.text.tex
5 http://groups.google.com/group/de.comp.text.tex
6 http://groups.google.com/group/fr.comp.text.tex

Stefan Kottwitz



TUGboat, Volume 32 (2011), No. 3 249

They offer convenient access by aggregating posts
of dozens TEX blogs into one list, which can be
read online or via a feed. Two are outstanding,
texample.net7 and planet.dante.de.8 Both offer
a chronological list of posts from most TEX blogs.

3.2 Web forums

A web forum is an HTML-based discussion forum
on the Internet, usually hosted on one server, un-
like Usenet. Forum posts are logically organized
into categories and subcategories and arranged in
threads, usually chronologically. The forum can na-
tively be accessed via web browser on any Internet
capable computer, thus also on tablets and smart
phones. Posts can make use of markup such as
HTML, BBCode or Markdown, and LATEX syntax-
highlighting is usually available. Web forums support
file attachments and inline images, useful for display-
ing TEX and LATEX output.

Web forums are usually moderated, and thus
are spam-free and afford some measure of quality
control.

latex-community.org9 is a well frequented web
forum1 for TEX and LATEX, covering all topics. It has
been online since Jan 20, 2008. At this writing, it has
7673 registered users and 14,087 threads containing
52,762 posts are available for browsing and via the
forum search feature. The forum is organized into 5
categories with 38 subforums.

In addition to LATEX-specific web forums, there
are also various LATEX subforums on many technology
and math/science discussion sites.

Another LATEX forum is golatex.de,10 though
it is in German. An outstanding feature is its LATEX
wiki, which uses the GNU Free Documentation Li-
cense.

A challenge—building a knowledge base

Besides communication—how can we improve the
content of online TEX resources? This means reli-
able archiving, good searching and browsing access,
quality measuring, elimination of redundancies, and
cross-linking.

3.3 Q&A sites and advanced web

applications

So-called Q&A web sites are specialized in strict ques-
tion & answer format. They are intended both for
experts and for general user support. Like web fo-
rums, such sites are hosted on a server or server farm.

7 http://www.texample.net/community/
8 http://planet.dante.de
9 http://www.latex-community.org

10 http://www.golatex.de

The complete archive is stored as a database enriched
with extra information such as quality scores, content
related tags and links to related information.

tex.stackexchange.com,11 now also known as
TEX.SX,1 is a TEX-dedicated site on the network of
Stack Exchange Q&A sites. These sites offer a very
dynamic web interface with assisted editing, tooltips,
good search and browsing features. The site’s con-
tent is free under the CC BY-SA license;12 regular
database dumps are freely available for download on
clearbits.net.13

TEX.SX has been publicly online since Novem-
ber 11, 2010. Today there are 7,300 registered users,
more than 11,000 questions, and about 20,000 an-
swers, and it is quickly growing.

In August 2011, Stack Exchange Inc. became
an institutional member of the TEX Users Group,
initiated by TEX.SX.

Compared to other systems, TEX.SX offers some
outstanding features:

Tagging: Questions can be marked by one or several
tags. This allows browsing by subject, filtering,
feed subscribing, and more search features.

Voting: Users can vote posts up or down. So the
best solution (or at least the most popular) will
be displayed at the top, most easy to see.

Reputation system: Users earn reputation score
if other users vote up their posts. This allows
community moderation: the more reputation
the more moderation features are available for
the user.

Community edits: All posts can be edited by all
users, either directly by users with high reputa-
tion score, or by edit suggestions which need to
be confirmed. This improves quality: mistakes
can be corrected and answers can be improved.

Duplicate control: When a user creates a ques-
tion, possible duplicates are suggested. Users
can flag existing duplicates. This leads to the
best solution, with an automatic FAQ system.

Database exploring: The database dump can be
browsed by SQL queries online.14 This provides
statistical features; complex queries can filter
and connect content and attributes.

Open API: Programmers have developed applica-
tions for various special purposes, and for An-
droid and iOS.

Meta site: There is a companion Q&A site with
similar features, where users can discuss mod-
eration, usage and any questions about the site

11 http://tex.stackexchange.com
12 http://creativecommons.org/licenses/by-sa/3.0/
13 http://www.clearbits.net
14 http://data.stackexchange.com

TEX online communities—discussion and content



250 TUGboat, Volume 32 (2011), No. 3

Mailing lists Usenet Web forums Q&A

Usability

Reading, writing X X X X

Markup, inline graphics X X

Attachments X X X X

Commenting, annotating X

Deleting own posts X X

Community deleting X

Editing own posts X X

Community editing X

Interfaces

Native web access X X

Articles, blogs X X

Tool-tips X

Assisted editing X

Feeds X X X

Twitter posts X

Chat X

Statistics X

Open API X X

Availability

Redundancy X

Archive on server X X X X

Full public archive X X

Quality

Accepted solutions X

Community voting X

Duplicate elimination X

Automatic FAQ extraction X

Community edits X

Moderation

By moderators X X

By the community X

Mod election by community X

Meta & moderation site X

Content

access

Full text search X X X X

Topic categories X X

Quality sorting X

Database queries X

Filtering by

Topics X X

User-defined terms X

Consensus score X

User score X

Table 1: Feature comparison of online systems

and how it works. This keeps the focus of the
main site on TEX-related content.

Chat site: A chat with features closely related to
the main TEX site allows free discussion of more
complex problems.

4 Comparing systems

Table 1 shows which features are available on which
systems, for mailing lists, Usenet groups, web forums,
and Q&A sites. It is a rough comparison based on the
mentioned TEX examples for each platform. Some
points are debatable though. For example, on the
Usenet authors may cancel messages, though on the
distributed network this is clearly not reliable, and
today there are web gateways for non-web services
such as Usenet and mailing lists.

Conclusion

For discussion, Usenet groups, mailing lists, and web
forums are great. On Q&A sites, mixing discussion
with content is undesirable, however there are sepa-
rate discussion sites and chats as companions to the
main site.

For content building and for developing TEX
knowledge bases, dedicated sites with a proper free
license are recommended.

⋄ Stefan Kottwitz

Hamburg, Germany

stefan (at) texblog dot net

http://texblog.net

Stefan Kottwitz



TUGboat, Volume 32 (2011), No. 3 251

LATEX training through spoken tutorials

Kannan M. Moudgalya

Abstract

Spoken Tutorials, a combination of screencast and
voice over, are meant for self-learning of free and
open source software (FOSS) systems. The pedagogy
involved in creating spoken tutorials for LATEX is ex-
plained. A checklist, instructions for conductors and
activity-based instructions for learners, along with
the spoken tutorial are what is needed to conduct the
two hour SELF FOSS Study Workshops. As one finds
out during the workshop how to learn from these
tutorials, one can complete the learning at home if
two hours are insufficient.

This method of learning has been shown to be
effective. As it allows the conducting of these work-
shops without the domain experts, this methodology
is scalable: we expect to conduct 500 workshops in a
period of six months. The students are trained free
of cost. The honorarium expenses for the conductors
of these workshops work out to Rs. 25 per student
per software package.

1 Introduction

A spoken tutorial is a an audio-video tutorial that
explains an activity performed on the computer. An
expert explains the working of the software by demon-
strating it on the screen, along with a running com-
mentary. Screencast software makes a movie of the
entire activity, both the screen and the spoken part.
This movie is the spoken tutorial. It is of ten minutes
duration. One can reproduce the commands shown
in the tutorial side by side and thus use it as an
effective instructional tool.

We have been using this methodology to create
a series of tutorials in open source software families,
such as LATEX, Scilab, GNU/Linux, ORCA, Python,
LibreOffice and PHP/MySQL. We have selected the
duration of a typical spoken tutorial to be about ten
minutes long. Although only a small topic can be
covered in ten minutes, by stringing them together,
one can come up with study plans that are capable
of teaching advanced topics as well.

Our approach involves the creation of a script
before creating the video. It is possible to translate
the script into other languages and use them for
dubbing, while screen shots continue to be in English.
For example, see a tutorial with Tamil audio at [1].
This will help those who are weak in English, while
not compromising on the employability.

Spoken tutorials can also be used to bridge the
digital divide: topics such as buying train tickets on-

line, locating low cost agricultural loans, and locating
information on first aid and primary health care can
be covered. One target audience for a spoken tutorial
is a remote child, working alone at midnight without
anyone to help her.

As the spoken tutorials are created for self-
learning, it is possible to conduct workshops even
without domain experts. This allows scaling up work-
shops using additional instructional methodologies.

The above mentioned points have been explained
in [4]. The motivation behind this effort is available
at [6]. An early work in this area is [3].

The initial part of this article focuses on cre-
ation of spoken tutorials on LATEX and Xfig. The
rest of this paper is devoted to the methodology of
conducting workshops using these tutorials.

2 Creation of LATEX Spoken Tutorials

We created the first few Spoken Tutorials in early
2007 to teach LATEX to our students. We had just
completed a textbook [2]. Had we not used LATEX, it
would have taken several more years to complete it.
We wanted our students also to benefit from LATEX.
We also wanted to contribute something back to the
community. We created the following tutorials:

1. What is compilation (9:17)
2. Letter writing (8:19)
3. Report writing (16:14)
4. Mathematical typesetting (24:46)
5. Equations (23:42)
6. Tables and figures (25:12)
7. Bibliographies (8:20)
8. Inside story of bibliographies (24:44)
9. LATEX on Windows (27:20)
10. Updating MiKTEX on Windows (15:31)
11. Beamer (34:00)

The numbers inside the brackets indicate the time du-
ration in minutes and seconds. Although we wanted
the tutorials to be 10 minutes long, some of them
turned out to be longer. In those days, we did not
have a method to estimate the length of a spoken
tutorial before it was made. The original tutorial
on bibliography was longer than we wanted, so we
renamed it as the “inside story” and re-did a shorter
one lasting only 8:20.

In order to make LATEX available to Windows
users, we made tutorials 9 and 10 in the above list.
As our group had not used LATEX on Windows, we
had to learn it first before making a tutorial. Finally,
we created the spoken tutorial on Beamer. We now
insist on LATEX-created slides to accompany all new
spoken tutorials.

Block diagrams are an important requirement
for any scientific writing. For this purpose, we cre-

LATEX training through spoken tutorials



252 TUGboat, Volume 32 (2011), No. 3

ated: introduction to Xfig (12:38), feedback diagram
in Xfig (12:02) and mathematics in Xfig (15:20). The
last tutorial explains a procedure to embed mathe-
matical formulae in figures, using Xfig and LATEX.

There are a few reasons for not using a special-
purpose LATEX editor for Unix systems:

1. We wanted to teach LATEX in the most pris-
tine form, without getting bogged down by the
editor’s details.

2. There is a good amount of effort involved in
learning any special-purpose LATEX editor.

3. As we don’t use one, it would have taken a
considerable amount of our time and effort to
explain the working of a specialised editor.

4. As Unix users are reasonably comfortable with
the terminal, our approach would not create
much difficulty.

The situation is quite different for a Windows
user, who is generally not comfortable in working
with the terminal. As most of our audience use
Windows, we did not mind putting in some effort in
learning a specialised LATEX editor for Windows and
creating tutorials 9 and 10 above.

All the spoken tutorials on LATEX explain a three
step process: 1) Creating a source file with an editor;
2) Compiling the source with pdflatex; 3) Viewing
the resulting PDF file with a PDF browser.

The recorded area was divided to simultane-
ously show the editor, terminal and the PDF browser.
These three were arranged in a non-overlapping man-
ner in the early tutorials, such as letter writing,
mathematics and equations. In the letter writing
tutorial, a given source file was explained along with
an illustration of the effects of changes in the com-
mands. In the tutorial on Beamer presentations,
however, additional commands and text were copied
from another file and the effects demonstrated. A
screen shot of this is shown in Fig. 1.

Showing three or four non-overlapping windows
made the fonts small. This was addressed in the
Xfig tutorial, where the overlapping requirement was
done away with, so as to achieve large font sizes.
A screen shot of this is shown in Fig. 2. In all of
the above, only a small portion of the Desktop was
recorded to keep the recording size small.

All the tutorials mentioned above are available
at http://spoken-tutorial.org, along with all
the required source, style, bst and PDF files.

Spoken tutorial is based on demonstrations. We
want a learner to reproduce whatever is shown in
the tutorial. As it is active learning, it is effective.
To ensure that this happens, we insist that 75% of
every tutorial is devoted to demonstrations and not

more than 25% is concerned with theory. These
limits generally work well in all except perhaps the
first tutorial in a series. To solve this problem, we
recommend that the introductory tutorial be created
after all other tutorials in the series are completed.
Armed with these tutorials, one can also make the
introductory tutorial consist of 75% demonstrations
by playing these tutorials. This strategy has been
followed in creating [6].

3 Workshops using Spoken Tutorials

Spoken tutorials are created for self-learning. These
are also available for free download. Although one
can learn from these tutorials without any external
assistance, organised workshops are the most effective
way if we want to train a large number of people in
a short time.

Ours differ from conventional workshops in many
ways: instructional material, conduct of the work-
shop, time duration of the workshop and the conduc-
tor of the workshop, to name a few. We will explain
these in detail now.

3.1 Instructional material

In order to conduct the workshops one needs the spo-
ken tutorials and the associated files, as mentioned
earlier. One can download these from our website
free of cost. If required, we also provide them on CDs,
once again free. In addition to these, we provide the
following three documents:

A checklist that has to be completed the day
before the workshop is conducted. This forces the
organiser of the workshop to verify for every PC (a)
that the spoken tutorials and resource files are copied;
(b) that the software to be taught in the workshop is
installed correctly; (c) whether the headphones are
working; (d) whether the spoken tutorial can be seen
and heard through the headphones. In case of online
tests, the organiser should also check the working of
the Internet. A copy of such a list is given in Fig. 3.

The second document is the instruction sheet
for the conductor of the workshop. This important
activity is covered in detail in the next section.

The rest of this section is devoted to the third
document, which contains instructions to the learners.
This instruction sheet is meant to be used with the
spoken tutorials. We have reproduced the initial part
of the instruction sheet meant for learning LATEX on
GNU/Linux system in Fig. 5.

These instruction sheets are for self-learners. In
view of this, the initial part of the instructions are
activity based, or equivalently contain verbs. For
instance, the first few instructions have the following

Kannan M. Moudgalya



TUGboat, Volume 32 (2011), No. 3 253

Figure 1: Two files, terminal, PDF browser shown in non-overlapping fashion in the Beamer Spoken Tutorial [5]

Figure 2: Overlapping of Emacs editor, terminal, and Xfig allows the use of large fonts [7]

LATEX training through spoken tutorials



254 TUGboat, Volume 32 (2011), No. 3

Can log These can be separated in 2 PCs, possibly in 2 rooms
PC Is the PC into PC? PC for spoken tutorial PC for test
No. booting? (if FOSS Spoken Tut. Plays in Audio Internet

applicable) loaded? copied? VLC? works? works?
PC 1
PC 2
...
PC 50

Figure 3: A sample checklist to be completed before starting a SELF FOSS Study Workshop

Getting Started

1. 04:17: Perform the following calculations on the
scilab command line:

phi =

√

5 + 1

2
psi =

√

5− 1

2
Find 1/phi and 1/psi

2. 6:06: Verify Euler’s identity: Is eπi + 1 close to
zero? Compare with cos(π) + i · sin(π)

Figure 4: Assignments with timing for the Getting

Started Spoken Tutorial on Scilab

verbs: click, locate, copy, open, gedit, right click, etc.
Theory is introduced only slowly.

These instructions are based on the time when
a certain activity has to be carried out. For exam-
ple, the instructions numbered 7, 8 and 9 in Fig. 5,
respectively, are supposed to be carried out at 1:57,
2:04 and 3:04 min.

There could be instructions to point out the dif-
ference in the activity. For example, the instruction
at 3:04 says not to invoke the command skim, but to
use evince. This methodology can also be used to
correct minor mistakes, if any, in the spoken tutorial.

These instructions are detailed. For example, in
the invocation of evince there is a space before the
ampersand (&) symbol to help emphasize it. Nor-
mally, such detailed instructions are unnecessary for
Unix users. But for Windows users who may not
know the difference between a terminal and an editor
and the concept of background jobs, the instructions
need to be detailed.

Finally, there are assignments that need to be
done at a specific time. This is clear from a sam-
ple assignment question of a Scilab spoken tutorial
workshop, given in Fig. 4.

3.2 Conductor of the workshop

We do not need a domain expert to conduct these
workshops. In a large country like India, one may

have to conduct these workshops in thousands of
places. It would be difficult to get domain experts
to even visit such a large number of places, let alone
lecturing in these workshops.

We insist that the conductor of the workshop
not answer any domain-dependent questions. There
are two reasons for this:

1. We are not sure about the capability of the
conductors of these workshops. We definitely
do not want them to give wrong answers.

2. Answering domain-dependent questions could
take up a lot of time. As a result, a conductor
may not be able to handle more than a few stu-
dents. It would be impossible even for an expert
to answer all the questions of twenty students,
the recommended ratio in our methodology.

The students are supposed to follow the steps exactly
as given in the instruction sheet and the spoken
tutorial. Two types of difficulties can arise:

1. If the students have difficulty in following any in-
struction, the conductor of the workshop should
point out the mistake made by the student. If
the mistake is a serious one, the conductor could
even ask the student to start the tutorial from
scratch. As the tutorials are short, one will not
have to spend a lot of time in repetition.

2. It is possible for a student to try out some
changes of their own. They can do this so long
as they do not encounter any problems. If they
experience any difficulty, they are recommended
to go to the next tutorial. The idea is that there
are enough things (that work) to learn, before
trying something of one’s own.

To handle these two difficulties, the conductor of
the workshop need not be a domain expert. As
a corollary, a person who is trained to conduct a
workshop on a topic (say, LATEX), can conduct a
workshop on another topic (say, Scilab) also.

The procedure indicated above suggests a defi-
nite set of things to learn during the workshop. The
learner may not have the freedom to learn whatever

Kannan M. Moudgalya



TUGboat, Volume 32 (2011), No. 3 255

Spoken Tutorial Based LATEX
Workshop on Linux

Spoken Tutorial Team
IIT Bombay
5 August 2011

First tutorial: What is Compilation?

These detailed instructions are intended mainly for Win-
dows users, who may have to use GNU/Linux for learning
LATEX. GNU/Linux users will already know most of this.

1. Click the Places button in the top left hand corner
and then click the Home Folder. The folder that
opens is called your home folder.

2. Please locate the folder LaTeX Workshop that
is available on the desktop. The sub-folder
01-compilation contains the following files that
you need for this tutorial: hello.tex and
compiling.mov.

3. Please copy hello.tex from this folder to your home
folder.

4. Open the terminal using the command Ctrl-Alt-t,
by pressing all these three keys simultaneously.

5. Open the file that you copied above into the editor
using the command

gedit hello.tex &

Do not forget the symbol ampersand (&) at the
end of the command, obtained by pressing shift 7.
Please leave spaces exactly as given above.

6. Right click on compiling.mov, point the cursor on
Open With and select VLC Media Player. Now lis-
ten to this spoken tutorial.

7. As shown in the video at 1:57min, compile from the
terminal the file hello.tex using the command

pdflatex hello.tex

Note that pdflatex is one command. Please do not
leave a space between pdf and latex.

8. Pause the video at 2:04min. You should now be able
to give the command pdflatex hello.tex and get
a file hello.pdf. If there is any difficulty in this
step, please listen to the tutorial from 1:57min to
2:04min once again.

9. The video talks about a PDF viewer called skim at
3:04min.

• Please do not attempt to use skim—it is not
available on GNU/Linux.

You have to use the PDF viewer evince instead.
Give the following command from the terminal to
open the PDF file:

evince hello.pdf &

Once again, do not forget the & symbol in the above
command.

Figure 5: A sample of instructions for a SELF FOSS

Study Workshop on LATEX. To make it suitable for
self-study, all initial instructions are activity based.

they want. But there are enough new things to learn
in any case during the course of the workshop. This
topic is explained further in the next section.

3.3 Duration of the workshop

We recommend a duration of two hours for these
workshops. A workshop typically has about ten spo-
ken tutorials. In a two hour period, one can learn four
tutorials. More importantly, students will figure out
how to learn from spoken tutorials. Thus, students
can learn the remaining tutorials on their own.

So, why do we restrict the workshop to two
hours? There are many reasons for this:

1. This will allow the same facility to be used for
other workshops or for other people or both.

2. As our workshops are conducted free of cost,
it is not clear how many students are really
interested in the workshop. We do not want
to host any uninterested students longer than
absolutely necessary.

3. The students who are interested in appearing
in the online exams have to necessarily com-
plete the tutorials on their own. This improves
the quality of learning and hence can indeed
help provide better learning than conventional
workshops.

4. In government supported training programmes,
not only do the students pay nothing, but there
are organisational expenses as well. For example,
the conductors of the workshop have to be paid
an honorarium for their time and effort. Such
expenses are reduced by minimising the work-
shop duration. If any workshop is conducted for
a longer period, there are also demands for a
break and financial support for refreshments.

Not all students who undergo the two hour workshops
have computers at home. So, if a college wants to
offer their premises for learning, we have no objection.
We tell them, however, that such sessions are not a
part of our training programme.

A comment about the quality of learning in
the two hour workshop is in order. In the previous
section, the highly regimented procedure of the work-
shop has been discussed. Although no green field
type of learning is possible, in no other method can
one learn in two hours:

1. how to write letters using LATEX,

2. how to write reports,

3. writing mathematics and equations, and

4. and introduction to presentations using Beamer.

We guarantee all of the above in a two hour workshop.
The two hour workshops discussed above are

called Spoken Tutorial based education and learning

LATEX training through spoken tutorials



256 TUGboat, Volume 32 (2011), No. 3

through Free FOSS Study Workshops or SELF FOSS

Study Workshops. The word Free in the above de-
notes free of cost, unlike the word free that comes in
FOSS, which denotes freedom.

As mentioned earlier, the students who undergo
training through these workshops do not pay any-
thing. As of now, we actually spend about Rs. 500
for every twenty students as honorarium expenses
for the organisers. Thus, the cost of training one stu-
dent on one software package is Rs. 25. We are now
planning to do away with this honorarium expense.

The SELF FOSS Study Workshops have been
extremely effective and also popular. In a workshop
on GNU/Linux conducted in an engineering college
in Alwar, Rajasthan, by their own student volunteer,
the average marks went up by 85% after the work-
shop, although the post workshop test was tougher
than the pre-workshop test. As a matter of fact,
every student passed the second test and received a
certificate of completion.

4 Conclusion and future work

This article has presented an instructional methodol-
ogy for conducting large number of FOSS workshops
on software systems, such as LATEX, Scilab, Python,
PHP/MySQL and GNU/Linux. Using this scalable
method, we expect to conduct about 500 workshops
in a period of six months, with an average number
of participants in each workshop of about 50.

Although the current workshops are organised
only for college students, we hope to extend them to
secondary schools as well. We will pursue this activ-
ity as soon as instructional material on LibreOffice
is ready. Office seems to be the most important
software for schools.

A more interesting question is whether it is pos-
sible to create instructional material to teach LATEX
for school students. It is likely that the methodology
of conducting the workshop will work for schools also.
What is not clear, however, is whether a special type
of instructional material has to be created exclusively
for schools.

We also desire to teach more advanced topics on
LATEX to the students who successfully complete the
basic training explained in this work. This requires
more spoken tutorials. We hope to get help from the
TEX community for this purpose.

Finally, it will be useful to create more rigorous
evaluation methods to check the efficacy of learning.
At present, we use only multiple choice questions. It
is not clear how to administer exams to check the
LATEXing capability of the large number of students
who may take the exam. To preserve scalability, we
need automatic evaluation methods.

References

[1] Tamil dubbing: T. Vasudevan and
Priya. Report Writing in LATEX,
Seen on 4 Nov. 2011. Video available
at http://spoken-tutorial.org/
How-to-write-a-Report-using-LaTeX-Tamil.

[2] K. M. Moudgalya. Digital Control. John Wiley
& Sons Ltd., Chichester, 2007.

[3] K. M. Moudgalya. Spoken tutorials. In
Technology for Education, T4E 2009, pages
17–23, Bangalore, August 2009. IEEE.

[4] K. M. Moudgalya. Spoken Tutorial:
A Collaborative and Scalable Education
Technology. CSI Communications, 35(6):10–12,
September 2011. Available at http:
//spoken-tutorial.org/CSI.pdf.

[5] K. M. Moudgalya. Presentation using LATEX
and Beamer, 3 November 2009. Video available
at http://spoken-tutorial.org/Latex_
beamer_english.

[6] K. M. Moudgalya. What is a Spoken
Tutorial, 8 March 2011. Video available at
http://spoken-tutorial.org/What_is_a_

Spoken_Tutorial.

[7] K. M. Moudgalya. Embedding Maths
in Xfig, 9 Feb. 2011. Video available at
http://spoken-tutorial.org/Xfig_

Feedback_Diagram_with_Maths.

⋄ Kannan M. Moudgalya
Dept. of Chemical Engineering
IIT Bombay, Powai
Mumbai 400 076, India
kannan (at) iitb dot ac dot in

http://spoken-tutorial.org

Kannan M. Moudgalya



TUGboat, Volume 32 (2011), No. 3 257

e-Readers and LATEX

Alan Wetmore

Abstract

2011 has seen many e-readers arrive on store shelves;
a new generation of “touch screen” devices that in-
clude the Nook Simple Touch, Kobo eReader Touch,
and a higher resolution iRiver Story HD. They all
have the capability of loading user created content,
so the question arises: how well can they support
my legacy documents? The answer just might be,
surprisingly well. After we understand the capabili-
ties and some of the limitations we will explore how
we can re-purpose older documents and prepare new
LATEX documents for use with these e-readers.

1 Introduction

There are lots of new e-reader machines this year.
I’ve been trying out three: a Nook, a Kobo, and
an iRiver. When I was invited to give a talk at the
conference I decided to tell you about some of things
I discovered as I explored using these machines.

I have been interested in e-readers for a while,
but they all seemed to make it nearly impossible to
bring your own documents to them. Recently there
have been advances on more direct support of e-
readers published in the latest TUGboat by William
Cheswick [1] and Hans Hagen [2] as well as papers at
this conference by Boris Veytsman and Rishi. Based
on all of this work I am looking forward to seeing
some truly powerful capabilities arriving soon.

How we can use them: collect our legacy doc-
uments; carry our class notes; read a manual while
working away from the computer or in the field; ex-
pand our markets, . . .

1.1 A quick tour of the machines

Common elements are:

Size Height and width similar to a medium sized
paperback book, but quite thin.

Screen a touch screen for selecting and navigating.
About 6×8 inches (150×200 mm); either 600×
800 or 768 × 1024 pixels. In 1991 these were
fair to good resolutions for a PC or low-end
workstation. There were a lot of 1024× 768 X
terminals out there.

Bezels surrounding the screen, giving us a way to
hold the reader without obscuring the text as
well as a convenient place for the buttons that
navigate the menus and page through the docu-
ment.

Buttons at least a power switch, often page turning
buttons, sometimes a keyboard.

Syncing usually through a USB cable to a PC, some-
times via wireless to their proprietary “Book-
store”. Usually there is also a program for our
computer that manages our purchases on the
device but the memory of the e-reader can also
appear as an external disk with folders where
we can copy our own files.

Memory expansion usually done through a re-
movable microSD card (SD in the iRiver). We
can copy files onto the card when the e-Reader
is tethered via USB and the microSD card shows
up as another drive, or the card can be removed
from the reader and loaded and modified using
a standard card reader.

“Bookstores” are a universal feature, everyone
wants to “sell” you books, magazines, and any-
thing else they can think of. Some bookstores
make it easier than others to get the books you
create on the “shelf”.

Speed is one of the main things that affects our ex-
perience; how “snappy” is the menu navigation,
how long does it take to process our document
and display it so we can start reading, and how
quickly and smoothly can we “turn the pages”?
All three seem acceptable to me.

Library organization All of the readers organize
your “Library” and let you sort the display by
author or title. In addition there is usually a
search function that includes author, title, and
keywords from the metadata.

Navigation The readers all make it easy to page
through a book using swipes on the touchscreen
and or dedicated page turning buttons. In addi-
tion they have additional capabilities for jump-
ing to particular pages.

Document formats While all of the readers can
deal with quite a few formats we will concentrate
on just two—ePub and PDF. ePub because
it is usually the best supported format; it is
what everyone but the Kindle sells in their store.
PDF because we have large legacy document
collections and produce them as a matter of
course. ePub has extensive support in the read-
ers for bookmarking and note taking to support
our reading.

How can we make ePub? There are two ways;
first by passing through an HTML intermediary,
and second by processing a PDF file. In both
cases we can use a tool called calibre to make
the conversion to ePub.

1. LATEX  HTML  ePub

LATEX2HTML (LATEX)  HTML

calibre (HTML)  ePub

e-Readers and LATEX



258 TUGboat, Volume 32 (2011), No. 3

I haven’t explored this route very much,
but it could be a feasible solution. The
drawback is that the conversion to HTML

is not particularly robust with respect to
using arbitrary LATEX package files to en-
hance our documents.

2. LATEX  PDF  ePub

PDFLATEX (LATEX)  HTML

calibre (PDF)  ePub

This approach is discussed further in sec-
tion 3.3.

2 PDF metadata

Metadata in PDF files is used by the e-readers to
fill out author information in the list of documents
available. You can use a PDF manipulator such as
Acrobat or you can include the information directly
using the hyperref package when you create your
PDF file with PDFLATEX.

\usepackage[%

bookmarks=true% style guide

,pdfauthor={Alan Wetmore}%

,pdfcreator={pdfLaTeX article.cls}%

,pdfkeywords={e-Readers,TUG2011}%

,pdfsubject={e-Readers}%

,pdftitle={e-Readers and LaTeX}%

]{hyperref}

3 The most important features

3.1 Standards compliance

It turns out that even though PDF and ePub are rea-
sonably well defined “standards”, e-readers are not
particularly consistent with how they consume and
display these files. When we feed these devices the
same files, they can produce substantially different
displays and they expose different navigation and
viewing options for us to use when we explore and
consume our documents.

3.2 Legacy PDF files

Many of us have large collections of PDF files that
we have accumulated over the years. The older ones
were of course generated without regard to reading
on anything other than paper, A4 or letter-size for
the most part, or on our computer screens. Many of
our gizmos and gadgets now ship with nothing more
than an abbreviated “Quick Start Guide”; sometimes
with a CD in the package with a longer manual, some-
times with or without a hint that there is a longer
manual hidden somewhere on a manufacturer’s web
site that we can download. In section 4, we’ll explore
a recently published textbook to see how well we can
read it on the various e-readers.

3.3 Converting PDF to ePub with calibre

One popular and powerful tool for converting be-
tween the various e-book formats is calibre [5]. This
is a free and open source e-book library management
application; it is much more than conversion soft-
ware. In addition to organizing documents on your
computer, it interfaces with your reader device when
you plug it in, and then copies your documents to
and fro.

calibre doesn’t extract a lot of structure in-
formation from PDF files, and so doesn’t generate
particularly good ePub files as a result. My exper-
iments suggest that this is not yet a very fruitful
path; perhaps the poppler library is now ready to
be used to improve this.

Alternatively, LATEX2HTML might well be a bet-
ter starting point for generating ePub format docu-
ments.

3.4 Generating new PDF files

We will want to see what options we have for type-
setting new PDF files to be used with our e-readers.
In section 6 we’ll take a look at what a couple of very
simple choices with some standard packages can do
for us.

4 Exploring a textbook

We will be using the text Principles of Uncertainty [3]
by Joseph P. Kadane of Carnegie Mellon University.
This is a large (499 pages) textbook of a traditional
size; it was produced by our friend Heidi Sestrich
using LATEX. It is also available as a PDF file from
the author’s web site.

4.1 The original document

The original document was typeset on US letter (8.5
× 11 inch) size paper with margins and crop marks
for the final production size of approximately 6 by
9 inches. It was typeset with pdfTEX using LATEX
and hyperref. There is plenty of moderately high
level mathematical notation involved to exercise the
e-reader’s rendering engines. All of the readers suc-
cessfully load the book and allow us to read it, with
varying degrees of flexibility and robustness. I’ll be
concentrating on Chapter 4 of the book; the demon-
strations are viewable on the river-valley.tv web
site with the conference videos.

4.2 Nook

As for PDF files, loading and viewing a PDF file looks
great at first; the full page is displayed on the screen
with mathematics intact. However, when you zoom
in for a closer look, things quickly break down. The
zoom control uses the same seven font size buttons

Alan Wetmore



TUGboat, Volume 32 (2011), No. 3 259

as the ePub viewer, but— instead of zooming—the
Nook adjusts the font size and reflows the document.
Plain text doesn’t fare too badly, but mathematics is
very corrupted, with the layout destroyed and many
missing symbols.

During the conference Ross Moore supplied some
“tagged pdf” files with demonstrations of mathemat-
ics; when loaded onto the Nook all the mathematics
in these survived the zooming tests. This might be
one route to PDF files which are usable on all of the
devices.

4.3 Kobo

When viewing PDF files, a double tap to the screen
zooms the image to 200%; there are also seven zoom
levels available through a slider control. When the
image is zoomed, you can drag it around the screen
to change the viewport, with an overview widget that
shows which part of the page you are on. Unfortu-
nately there is no simple page advance mechanism in
zoomed mode, e.g., tapping at the margins doesn’t
advance the page. You must drag the image to ex-
pose either a left or right margin or activate the more
complete navigation widget, or double tap again to
return to full page mode and then tap at the margin.

4.4 iRiver

The original test document didn’t display at all well,
appearing as broken pages with overlong lines. How-
ever, the version cropped to the text box appeared
correctly with mathematics intact. The iRiver has
a zoom control for PDF files that sort of works; al-
ternatively, one of the buttons brings up a rotate
menu allowing the image to rotate 90◦ to landscape
mode that expands the width of the image to fill
the wider screen by applying a one-third magnifica-
tion. For a well-crafted document this will usually
be enough zoom to make out the details of sub- and
super-scripts.

5 Idiosyncrasies of the devices

5.1 Nook

One interesting thing about the Nook is the simple
ability to load and use your own images for screen-
savers. I’ve loaded mine with a collection of iconic
TUG images and meeting posters.

5.2 Kobo

After copying files to the SD card memory, when
you eject the memory card from the computer, the
Kobo spends some time “processing” the files. It is
likely that this includes scanning for meta-data and
rebuilding the list of books.

5.3 iRiver

The iRiver doesn’t have a touch screen, instead it
has lots of buttons arranged mostly as a QWERTY

keyboard plus a few more navigation and control
keys. It also uses full size SD cards instead of the
microSD format that the other devices use.

6 Generating new PDF files

As promised, we will now explore what happens
as we process some text with a couple of options.
The first thing we will do is use the 12pt option to
get larger text as the starting point on the device.
This should reduce the need for magnifying text that
caused problems for the Nook, while maintaining
maximum compatibility with LATEX packages and
options.

First we will use the geometry package to choose
our “paper” size.

6.1 Letter paper size

Using the geometry package to see where things go,
we start with the standard 8.5 by 11 inch papersize.
We are also using the margin=1in option. This re-
sults in 95 character lines and oversize margins that
waste considerable screen space.

6.2 The screen option

Adding the screen option from the geometry pack-
age generates output for a 4× 3 screen ratio, which
matches our screen rotated 90◦. It uses a 225 mm
by 180 mm papersize. This results in 100 character
lines.

6.3 An epaper option

Setting the papersize to 100 mm by 125 mm results
in 54 character lines. This is the final choice for the
epaper option. The following line can be added to
the internal database in the package file to add our
new epaper option.

\@namedef{Gm@epaper}#1{%

\Gm@setsize{#1}(100,125){mm}}%

%for e-readers

And for a final consideration, we’ll increase the mar-
gins to 2mm. Until the geometry package has been
updated with a suitable epaper option we can use
the following in our preamble.

\usepackage[%

papersize={100mm,125mm},%

margin=2mm,%

includeheadfoot%

]{geometry}

e-Readers and LATEX



260 TUGboat, Volume 32 (2011), No. 3

7 The future

We can expect more generations of these devices
in the next few years. Will they have better PDF

engines? We can hope. We can also hope that
software updates to the current machines improve the
PDF engines. Maybe they will make use of internal
PDF links so our table of contents and cross references
will work.

Will MathML be accepted into a future revision
of ePub? Probably, but will it actually be supported
by the readers? That is a much less certain outcome.

Will searching within a document be improved?
The current capabilities are simply too slow for
searching through reference materials, and without
live links in the index, that doesn’t really offer much
of an option.

While e-readers seem to be popular for best
sellers and light reading, they don’t as yet replace
real textbooks or the more robust PDF capabilities
of real computers or powerful tablets. But perhaps
they are more suited to consuming smaller chunks
of material on the order of individual lessons from
the Khan Academy [4].

References

[1] Cheswick, William: iTEX—Document

formatting in an ereader world, TUGboat 32:2,
2011, 158–162. http://tug.org/TUGboat/
tb32-2/tb101cheswick.pdf.

[2] Hagen, Hans: E-books: Old Wine in New

Bottles, TUGboat 32:2, 2011, 152–158. http:
//tug.org/TUGboat/tb32-2/tb101hagen.pdf.

[3] Kadane, Joseph P.: Principles

of Uncertainty, CRC Press, 2011.
http://uncertainty.stat.cmu.edu.

[4] Khan Academy. http://www.khanacademy.
org.

[5] Schember, John: Calibre Quick Start Guide.
http://calibre-ebook.com/about.

⋄ Alan Wetmore

US Army Research Laboratory

alan dot wetmore (at) gmail dot com

Alan Wetmore



TUGboat, Volume 32 (2011), No. 3 261

Ebooks and paper sizes: Output routines

made easier

Boris Veytsman and Michael Ware

Abstract

The idea of a book being a collection of pages is so
ingrained that modern electronic book readers often
try to faithfully reproduce this feature—up to elabo-
rate simulations of page turns. However, traditional
pages are not necessary and often inconvenient in
electronic books. It is often easier to scroll the text
than to turn the pages, and text reflowing makes
the use of folios a rather strange way to refer to the
position inside a text.

We argue that it is more natural to paginate
electronic books according to their logical structure,
when a “page” corresponds to a sectional unit of
the book. This leads to rather long pages, with the
height of the page depending on the length of the
corresponding unit.

We discuss how to implement these pages in TEX
and provide a basic introduction to output routines
in TEX for a beginning TEXnician. We also provide
exercises for a slightly more advanced reader.

1 Introduction

TEX-based systems have been creating high-quality
electronic books (ebooks) for decades, with PDF be-
coming the dominant format in recent years. While
there are many macro packages that optimize TEX’s
PDF output for electronic reading (with links, etc.),
the basic paradigm of TEX-produced ebooks is still
very much tied to the ideas of a physical book—the
document is formatted into a series of identically-
sized pages with the position of floating environments
and graphics adjusted so as to avoid the page breaks.
This type of ebook works well both in print and
on screens that are similar in size to a piece of pa-
per. However, the proliferation of mobile devices
with small screens presents a new opportunity and
challenge for ebook creators.

Typical PDF pages cannot be displayed in their
entirety on small screens. To read a full-page doc-
ument on a smartphone, one has to zoom in until
the text is sufficiently large, and then pan around
through the document. This makes for a difficult
reading experience, and has caused ebook creators
to largely abandon fixed-layout schemes like PDF

in favor of reflowable formats such as HTML. This
“just-in-time” layout strategy allows the page layout
software to adjust the font size to a readable level
and the line width so that one only has to scroll in
one direction to view all of the text.

Current reflow schemes work well for documents
that are primarily text-based, but they typically
have limited support for technical documents with
an abundance of equations and figures. Since equa-
tions and figures are a critical part of a technical
text, the current generation of ebook readers does
not provide a workable solution for most technical
documents. Some progress has been made in browser-
based HTML with technologies such as MathJax (see
http://www.mathjax.org/) and we may eventually
have a dedicated ebook reader that uses TEX as its
layout engine (Bazargan, 2009). However, it seems
likely that we will continue to use PDF documents
for some time for technical ebooks, so the question
remains: how can TEX-created documents be opti-
mized for a smooth ebook reading experience?

To make these issues more concrete, consider
the layout of the textbook pages shown in Fig. 1.
This is a typical textbook layout, with figures in
the margins near the referring text, footnotes at the
bottom of each page, and headings atop each page
to give the reader information about their location
in the text. These features make for an easy reading
experience on paper or on a large screen, but can get
in the way when viewed on even a moderately sized e-
reader such as an iPad. In this reading environment,
a reader needs to scroll horizontally to view figures,
and the flow of the text is interrupted on each page
to show the footnotes and header information.

Since a PDF document has a fixed layout,1 it
is necessary to choose the page size parameters in
advance in a way that works for the intended screen
size. An obvious first approach is to make the TEX
page size match the size of the intended reading
device and minimize the margins around the text
(Cheswick, 2011). However, this has some drawbacks.
As the page size gets smaller, it becomes increasingly
difficult to lay out non-text elements such as figures
and larger equations. Since the pages can be quite
small, there are a lot of page breaks, TEX’s float
placement routines tend to leave many pages with
awkward white space, and the floats are far from the
referring text.

A better approach is to make the pages fit the
target screen width, but be very tall relative to the
intended screen size. Each logical division of the text
(say, a section) is placed on its own page. In this sce-
nario, figure placement and equation layout are easy
for TEX, since the page breaks essentially disappear.
The reader can view the full width and scroll verti-
cally through the content of a section, and flipping

1 One can reflow the text portion of a document in newer

PDF specifications, but images do not reflow.

Ebooks and paper sizes: Output routines made easier



262 TUGboat, Volume 32 (2011), No. 3

26 Chapter 1 Electromagnetic Phenomena

1.1 Gauss’ Law

Origin

  

Figure 1.1 The geometry of

Coulomb’s law for a point charge

The force on a point charge q located at r exerted by another point charge q ′

located at r′ is

F = qE(r) (1.5)

where

E (r) =
q ′

4πǫ0

(

r− r′
)

|r− r′|3
(1.6)

This relationship is known as Coulomb’s law. The force is directed along the

vector r− r′, which points from charge q ′ to q as seen in Fig. 1.1. The length or

magnitude of this vector is given by
∣

∣r− r′
∣

∣ (i.e. the distance between q ′ and q).

The familiar inverse square law can be seen by noting that
(

r− r′
)/∣

∣r− r′
∣

∣ is a unit

vector. We have written the force in terms of an electric field E (r), which is defined

throughout space (regardless of whether a second charge q is actually present).

The permittivity ǫ0 amounts to a proportionality constant.

The total force from a collection of charges is found by summing expression

(1.5) over all charges q ′
n associated with their specific locations r′n . If the charges

are distributed continuously throughout space, having density ρ
(

r′
)

(units of

charge per volume), the summation for finding the net electric field at r becomes

an integral:

E (r) =
1

4πǫ0

∫

V

ρ
(

r′
)

(

r− r′
)

|r− r′|3
d v ′ (1.7)

This three-dimensional integral4 gives the net electric field produced by the

charge density ρ distributed throughout the volume V .    

Origin

  

Figure 1.2 The geometry of

Coulomb’s law for a charge dis-

tribution.

Gauss’ law (1.1), the first of Maxwell’s equations, follows directly from (1.7)

with some mathematical manipulation. No new physical phenomenon is intro-

duced in this process.5

Derivation of Gauss’ law

We begin with the divergence of (1.7):

∇·E (r) =
1

4πǫ0

∫

V

ρ
(

r′
)

∇r ·

(

r− r′
)

|r− r′|3
d v ′ (1.8)

The subscript on ∇r indicates that it operates on r while treating r′, the dummy

variable of integration, as a constant. The integrand contains a remarkable mathe-

matical property that can be exploited, even without specifying the form of the

4Here d v ′ stands for d x′d y ′d z′ and r′ = x′ x̂ + y ′ ŷ + z′ ẑ (in Cartesian coordinates).
5Actually, Coulomb’s law applies only to static charge configurations, and in that sense it is

incomplete since it implies an instantaneous response of the field to a reconfiguration of the

charge. The generalized version of Coulomb’s law, one of Jefimenko’s equations, incorporates

the fact that electromagnetic news travels at the speed of light. See D. J. Griffiths, Introduction

to Electrodynamics, 3rd ed., Sect. 10.2.2 (New Jersey: Prentice-Hall, 1999). Ironically, Gauss’ law,

which can be derived from Coulomb’s law, holds perfectly whether the charges remain still or are in

motion.

1.2 Gauss’ Law for Magnetic Fields 27

charge distributionρ
(

r′
)

. In modern mathematical language, the vector expression

in the integral is a three-dimensional delta function (see (0.52):6

∇r ·

(

r− r′
)

|r− r′|3
≡ 4πδ3

(

r′− r
)

≡ 4πδ
(

x ′
−x

)

δ
(

y ′
− y

)

δ
(

z ′
− z

)

(1.9)

A derivation of this formula is addressed in problem P0.13. The delta function

allows the integral in (1.8) to be performed, and the relation becomes simply

∇·E (r) =
ρ (r)

ǫ0

which is the differential form of Gauss’ law (1.1).

      

Figure 1.3 Gauss’ law in integral

form relates the flux of the elec-

tric field through a surface to the

charge contained inside that sur-

face.

The (perhaps more familiar) integral form of Gauss’ law can be obtained by

integrating (1.1) over a volume V and applying the divergence theorem (0.11) to

the left-hand side:
∮

S

E (r) · n̂ d a =
1

ǫ0

∫

V

ρ (r) d v (1.10)

This form of Gauss’ law shows that the total electric field flux extruding through a

closed surface S (i.e. the integral on the left side) is proportional to the net charge

contained within it (i.e. within volume V contained by S).

Example 1.1

Suppose we have an electric field given by E = (αx2 y3x̂ +βz4 ŷ)cosωt . Use Gauss’

law (1.1) to find the charge density ρ(x, y, z, t ).

Solution:

ρ = ǫ0∇·E = ǫ0

(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

(αx2 y3x̂ +βz4 ŷ)cosωt = 2ǫ0αx y3 cosωt

❈❛r❧ ❋r✐❡❞r✐❝❤ ●❛✉ss ✭✶✼✼✼✕✶✽✺✺✱ ●❡r✲
♠❛♥✮ ✇❛s ❜♦r♥ ✐♥ ❇r❛✉♥s❝❤✇❡✐❣✱ ●❡r✲
♠❛♥② t♦ ❛ ♣♦♦r ❢❛♠✐❧②✳ ●❛✉ss ✇❛s ❛
❝❤✐❧❞ ♣r♦❞✐❣②✱ ❛♥❞ ❤❡ ♠❛❞❡ ❤✐s ✜rst s✐❣✲
♥✐✜❝❛♥t ❛❞✈❛♥❝❡s t♦ ♠❛t❤❡♠❛t✐❝s ❛s ❛
t❡❡♥❛❣❡r✳ ■♥ ❣r❛❞❡ s❝❤♦♦❧✱ ❤❡ ♣✉r♣♦rt✲
❡❞❧② ✇❛s ❛s❦❡❞ t♦ ❛❞❞ ❛❧❧ ✐♥t❡❣❡rs ❢r♦♠
✶ t♦ ✶✵✵✱ ✇❤✐❝❤ ❤❡ ❞✐❞ ✐♥ s❡❝♦♥❞s t♦ t❤❡
❛st♦♥✐s❤♠❡♥t ♦❢ ❤✐s t❡❛❝❤❡r✳ ✭Pr❡s✉♠✲
❛❜❧②✱ ❋r✐❡❞r✐❝❤ ✐♠♠❡❞✐❛t❡❧② r❡❛❧✐③❡❞ t❤❛t
t❤❡ ♥✉♠❜❡rs ❢♦r♠ ✜❢t② ♣❛✐rs ❡q✉❛❧ t♦
✶✵✶✳✮ ●❛✉ss ♠❛❞❡ ✐♠♣♦rt❛♥t ❛❞✈❛♥❝❡s
✐♥ ♥✉♠❜❡r t❤❡♦r② ❛♥❞ ❞✐✛❡r❡♥t✐❛❧ ❣❡♦♠❡✲
tr②✳ ❍❡ ❞❡✈❡❧♦♣❡❞ t❤❡ ❧❛✇ ❞✐s❝✉ss❡❞ ❤❡r❡
❛s ♦♥❡ ♦❢ ▼❛①✇❡❧❧✬s ❡q✉❛t✐♦♥s ✐♥ ✶✽✸✺✱
❜✉t ✐t ✇❛s ♥♦t ♣✉❜❧✐s❤❡❞ ✉♥t✐❧ ✶✽✻✼✱ ❛❢✲
t❡r ●❛✉ss✬ ❞❡❛t❤✳ ■r♦♥✐❝❛❧❧②✱ ▼❛①✇❡❧❧
✇❛s ❛❧r❡❛❞② ✉s✐♥❣ ●❛✉ss✬ ❧❛✇ ❜② t❤❛t
t✐♠❡✳ ✭❲✐❦✐♣❡❞✐❛✮

1.2 Gauss’ Law for Magnetic Fields

In order to ‘feel’ a magnetic force, a charge q must be moving at some velocity (call

it v). The magnetic field arises itself from charges that are in motion. We consider

the magnetic field to arise from a distribution of moving charges described by a

current density J
(

r′
)

throughout space. The current density has units of charge

times velocity per volume (or equivalently, current per cross sectional area). The

magnetic force law analogous to Coulomb’s law is

F = qv×B (1.11)

6For a derivation of Gauss’ law from Coulomb’s law that does not rely directly on the Dirac delta

function, see J. D. Jackson, Classical Electrodynamics 3rd ed., pp. 27-29 (New York: John Wiley,

1999).

Figure 1: Some typical pages of a textbook formatted for paper printing. (See http://optics.byu.edu/)

to the next “page” moves to the next logical division
of the text. This layout has the added benefit of get-
ting rid of many old typography problems, such as
widows, orphans, badly placed floating material, etc.

However, since the text of each section is of a
different length while TEX maintains a fixed page
length, each page has white space at the bottom that
a user must scroll through. It would be nice if TEX
provided a way to make each page just the right size
for its content, and fortunately it does.

Figure 2 shows the same text as Fig. 1 formatted
using the “tall page” approach described above. The
figures have been moved inline with the text using
some straightforward modifications to the margin
figure macros, and the width of the text is now
appropriate for full-width viewing on a tablet device.
The informational header is still retained at the top
of the page and the footnotes appear at the bottom,
but they no longer interrupt the flow of the text. Now
the reader can view the full content of this section
of the textbook simply by scrolling vertically. To
view the next section of the book, the reader simply
moves to the next “page” of the ebook.

With some planning, it is very reasonable to
design a document class that can be converted from a
traditional paper layout like Fig. 1 to an ebook layout
like Fig. 2 with a single command switch.2 This
allows an author to easily provide multiple layouts

2 For example, the code that made the example pages in

Figs. 1 and 2 is available at optics.byu.edu.

that are appropriate for both paper and on-screen
reading. To do this, it is necessary to understand
how paper size is treated in TEX.

2 Paper length in TEX

It might be surprising for a beginning TEXnician
to learn the extent to which the “classical” TEX
cares about actual paper dimensions: namely, it
does not care about them at all—and does not even
know about them. Of course, paper dimensions
are mentioned in many TEX macro packages— for
example, LATEX geometry package (Umeki, 2010),
but in many cases they are just used to calculate the
dimensions of the text area.

One can argue that this feature corresponds
to the rôle of TEX as a compositor: in a classic
printing shop a compositor puts words into a matrix,
but the choice of the paper on which the imprint
on was done by another artisan. A more prosaic
explanation is that the printers used during the time
TEX was written had no means to change the paper
dimensions, so it made little sense to control them
in a typesetting program.

DVI drivers, however, could deal with paper size,
for example, through the use of PostScript commands
as arguments of \specials in dvips. Since pdftex is
both a TEX engine and a (PDF) driver, it has com-
mands \pdfpageheight and \pdfpagewidth, which
deal with paper dimensions directly. In this section

Boris Veytsman and Michael Ware



TUGboat, Volume 32 (2011), No. 3 263

Chapter 1 Electromagnetic Phenomena 9

1.1 Gauss’ Law

The force on a point charge q located at r exerted by another point charge q ′

located at r′ is

F = qE(r) (1.5)

where

E (r) =
q ′

4πǫ0

(

r− r′
)

|r− r′|3
(1.6)

This relationship is known as Coulomb’s law. The force is directed along the

vector r− r′, which points from charge q ′ to q as seen in Fig. 1.1. The length or

magnitude of this vector is given by
∣

∣r− r′
∣

∣ (i.e. the distance between q ′ and q).

The familiar inverse square law can be seen by noting that
(

r− r′
)/

∣

∣r− r′
∣

∣ is a unit

vector. We have written the force in terms of an electric field E (r), which is defined

throughout space (regardless of whether a second charge q is actually present).

The permittivity ǫ0 amounts to a proportionality constant.

Origin

  

Figure 1.1 The geometry of

Coulomb’s law for a point charge

The total force from a collection of charges is found by summing expression

(1.5) over all charges q ′
n associated with their specific locations r′n . If the charges

are distributed continuously throughout space, having density ρ
(

r′
)

(units of

charge per volume), the summation for finding the net electric field at r becomes

an integral:

E (r) =
1

4πǫ0

∫

V

ρ
(

r′
)

(

r− r′
)

|r− r′|3
d v ′ (1.7)

This three-dimensional integral4 gives the net electric field produced by the

charge density ρ distributed throughout the volume V .

    

Origin

  

Figure 1.2 The geometry of

Coulomb’s law for a charge dis-

tribution.

Gauss’ law (1.1), the first of Maxwell’s equations, follows directly from (1.7)

with some mathematical manipulation. No new physical phenomenon is intro-

duced in this process.5

Derivation of Gauss’ law

We begin with the divergence of (1.7):

∇·E (r) =
1

4πǫ0

∫

V

ρ
(

r′
)

∇r ·

(

r− r′
)

|r− r′|3
d v ′ (1.8)

The subscript on ∇r indicates that it operates on r while treating r′, the dummy

variable of integration, as a constant. The integrand contains a remarkable mathe-

matical property that can be exploited, even without specifying the form of the

charge distributionρ
(

r′
)

. In modern mathematical language, the vector expression

in the integral is a three-dimensional delta function (see (0.52):6

∇r ·

(

r− r′
)

|r− r′|3
≡ 4πδ3

(

r′− r
)

≡ 4πδ
(

x ′
−x

)

δ
(

y ′
− y

)

δ
(

z ′
− z

)

(1.9)

A derivation of this formula is addressed in problem P0.13. The delta function

allows the integral in (1.8) to be performed, and the relation becomes simply

∇·E (r) =
ρ (r)

ǫ0

which is the differential form of Gauss’ law (1.1).

      

Figure 1.3 Gauss’ law in integral

form relates the flux of the elec-

tric field through a surface to the

charge contained inside that sur-

face.

The (perhaps more familiar) integral form of Gauss’ law can be obtained by

integrating (1.1) over a volume V and applying the divergence theorem (0.11) to

the left-hand side:
∮

S

E (r) · n̂ d a =
1

ǫ0

∫

V

ρ (r) d v (1.10)

This form of Gauss’ law shows that the total electric field flux extruding through a

closed surface S (i.e. the integral on the left side) is proportional to the net charge

contained within it (i.e. within volume V contained by S).

Example 1.1

Suppose we have an electric field given by E = (αx2 y3x̂ +βz4 ŷ)cosωt . Use Gauss’

law (1.1) to find the charge density ρ(x, y, z, t ).

Solution:

ρ = ǫ0∇·E = ǫ0

(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

(αx2 y3x̂ +βz4 ŷ)cosωt = 2ǫ0αx y3 cosωt

Carl Friedrich Gauss (1777–1855, German) was born

in Braunschweig, Germany to a poor family. Gauss

was a child prodigy, and he made his first significant

advances to mathematics as a teenager. In grade

school, he purportedly was asked to add all integers

from 1 to 100, which he did in seconds to the astonish-

ment of his teacher. (Presumably, Friedrich immedi-

ately realized that the numbers form fifty pairs equal

to 101.) Gauss made important advances in number

theory and differential geometry. He developed the

law discussed here as one of Maxwell’s equations in

1835, but it was not published until 1867, after Gauss’

death. Ironically, Maxwell was already using Gauss’

law by that time. (Wikipedia)

4Here d v ′ stands for d x′d y ′d z′ and r′ = x′ x̂ + y ′ ŷ + z′ ẑ (in Cartesian coordinates).
5Actually, Coulomb’s law applies only to static charge configurations, and in that sense it is

incomplete since it implies an instantaneous response of the field to a reconfiguration of the

charge. The generalized version of Coulomb’s law, one of Jefimenko’s equations, incorporates

the fact that electromagnetic news travels at the speed of light. See D. J. Griffiths, Introduction

to Electrodynamics, 3rd ed., Sect. 10.2.2 (New Jersey: Prentice-Hall, 1999). Ironically, Gauss’ law,

which can be derived from Coulomb’s law, holds perfectly whether the charges remain still or are in

motion.
6For a derivation of Gauss’ law from Coulomb’s law that does not rely directly on the Dirac delta

function, see J. D. Jackson, Classical Electrodynamics 3rd ed., pp. 27-29 (New York: John Wiley,

1999).

Figure 2: The content from the pages in Fig. 1
formatted in an “ebook friendly” layout.

\vsize=500cm

\pdfpageheight=500cm

\hrule

\vskip 1in

\centerline{\bf A SHORT STORY}

\vskip 6pt

\centerline{\sl by A. U. Thor}

\vskip .5cm

Once upon a time, in a distant galaxy called

\"O\"o\c c, there lived a computer named

R.~J. Drofnats.

Mr.~Drofnats---or ‘‘R. J.,’’ as

he preferred to be called---was happiest when

he was at work typesetting beautiful documents.

\vskip 1in

\hrule

\vfill\eject

\bye

Figure 3: Long page in plain TEX: A simple example.

we discuss how to employ these commands to set up
page height for electronic books.

We start from a simple example shown on Fig-
ure 3. It differs from the classical TEX story (Knuth,
1994) by two lines: the command \vsize=500cm tells
TEX that the “galley” is very long, and the command
\pdfpageheight=500cm sets the paper height to the
same value.

Exercise 1: Actually it is a rather poor idea to set
both these lengths to the same value. Why?

When we compile this file with pdftex, we get
a very long page with a lot of white space at the
bottom. As discussed in the previous section, we
would like to get rid of the extra white space and
make the page size fit the text. To do this we need
to set \pdfpageheight dynamically. For this would
like to know the height of the text at the moment
the page is “shipped out”. This means changing the
output routine of TEX.

3 Output routines

As TEX processes a document, it arranges a block
of material (text, equations, figures, etc.) until the
block’s size is near a predetermined target (stored in
\pagegoal), or it runs out of material. At this point,
TEX hands the collected material off to an output
routine that does some final manipulation and adds
page numbers, headers, footers, etc. to the page. The
page is then shipped out to the final document, and
TEX moves on to the next page.

Traditionally, output routines are considered
one of the hardest parts of TEX—probably because

Ebooks and paper sizes: Output routines made easier



264 TUGboat, Volume 32 (2011), No. 3

\output={\shipout\box255}

Figure 4: World’s simplest output routine.

\output={%

\pdfpageheight=\pagetotal

\advance\pdfpageheight by 2in

\shipout\box255}

\vsize=500cm

\hrule

\vskip 1in

\centerline{\bf A SHORT STORY}

\vskip 6pt

...

Figure 5: Modified plain TEX example.

they are hard. This section is intended to be a
gentle introduction. A more rigorous introduction
can be found in the book (Eijkhout, 2007), and
the comprehensive tutorial in the papers (Salomon,
1990a; Salomon, 1990b; Salomon, 1990c).

For our purposes, we need two facts about out-
put routines: first, that the output page is contained
in box 255, and second, that the current text height
is contained in the value \pagetotal. The first fact
leads to the world’s simplest output routine (Fig-
ure 4). The second one suggests the following modifi-
cation of this routine: let us set up the paper height
to \pagetotal plus 2 inches to allow for 1 inch top
and bottom margins. This leads to the modified
example shown on Figure 5. This example produces
a page of the height determined by the material on
the page—exactly what we wanted!

Of course our output routines are rather toy-
like. A self-respecting output routine should include
headers, footers, folios, footnotes, etc. We can take
plain TEX output routine and patch it with the code
setting \pdfpageheight, but here we shall leave this
as an exercise to the reader.

Exercise 2: Try to patch the plain TEX output rou-
tine in the way described above.

Instead we turn to the LATEX output routine.
It is very powerful and complex, and may look in-
timidating for a beginning (or expert) TEXnician.
Fortunately, there are packages that allow for patch-
ing this routine without looking too deeply into its
code. In this paper we will use one such package,
everyshi (Schröder, 2001). This package allows one
to add code to the LATEX output routine. Thus we
can write down our patch as shown on Figure 6.

Unfortunately, this solution has a flaw. To see
it, try to compile a file shown on Figure 7. It has

\textheight500cm

\usepackage{everyshi}

\EveryShipout{%

\pdfpageheight=\pagetotal

\advance\pdfpageheight by 2\topmargin

\advance\pdfpageheight by 2in}

Figure 6: LATEX output routine patched.

\documentclass{article}

\usepackage{everyshi,lipsum}

\pagestyle{empty}

\textheight500cm

\EveryShipout{%

\pdfpageheight=\pagetotal

\advance\pdfpageheight by 2\topmargin

\advance\pdfpageheight by 2in}

\begin{document}

\lipsum[3-5]

\pagebreak

This line has a footnote\footnote{\lipsum[6-8]}.

\lipsum[1]

And this line too\footnote{\lipsum[12]}.

\pagebreak

\end{document}

Figure 7: A LATEX file with footnotes.

rather lengthy footnotes—and the output routine
patch in Fig. 6 cuts them off!

What happens to the footnotes? It turns out
that \pagetotal is the height of the text part of
the page, and footnotes are not accounted for here.
To resolve this issue, we note that the dimension
\pagegoal keeps the height of the page minus the
height of footnotes: this is the height of the page
“accessible for the text”. Therefore the height of the
footnotes is \textheight minus \pagegoal. Once
we understand this, we can easily modify our code
as in Figure 8 to account for the footnotes.

Exercise 3: Compile the code in Figure 8 and check
that it solves our problem.

Exercise 4: Ross Moore suggested a different solu-
tion to the problem of footnotes, based on the
fact that minipages include the footnotes’ height
into the total height. Try to implement it.

Exercise 5: Change \pagebreak to \newpage in
Figure 8. What happens? Why?

Boris Veytsman and Michael Ware



TUGboat, Volume 32 (2011), No. 3 265

\documentclass{article}

\usepackage{everyshi,lipsum}

\pagestyle{empty}

\textheight500cm

\EveryShipout{%

\pdfpageheight=\pagetotal

\advance\pdfpageheight by 2in

\advance\pdfpageheight by 2\topmargin

\advance\pdfpageheight by \textheight

\advance\pdfpageheight by -\pagegoal}

\begin{document}

\lipsum[3-5]

\pagebreak

This line has a footnote\footnote{\lipsum[6-8]}.

\lipsum[1]

And this line too\footnote{\lipsum[12]}.

\pagebreak

\end{document}

Figure 8: A corrected LATEX output routine.

4 Conclusion

Using the procedure described above, one can create
well-formatted content with essentially no superflu-
ous white space. This seems an excellent approach
for producing technical electronic content where on-
the-fly layout engines will not work.

Finally, we note that the current state of PDF

viewers on mobile devices still leaves something to
be desired. For example, on the iPad, we have not
found an app that properly handles PDF links. Also,
the current generation of apps have limited ability to
control the zoom state of a page. Some require one
to scroll through a PDF vertically, and apps that let
you flip through pages with gestures typically scale
each page to fit entirely on the screen; there were
no options for fixing the page width to fit. For a
long page, this produces a thin strip of unreadable
text which then must be manually zoomed to read.
Nevertheless, these annoyances seem likely to be
fixed as new apps are continually produced.

Acknowledgements

We are grateful to Frank Mittelbach who found an
error in our code, to Ross Moore who suggested
an alternative solution for the problem of footnotes
and to other participants of TUG 2011 for many
interesting suggestions and comments.

References

Bazargan, Kaveh. “TEX as an ebook reader”.
TUGboat 30(2), 272–73, 2009. http://
river-valley.tv/tex-as-an-ebook-reader,
http://tug.org/TUGboat/30-2/

tb95bazargan.pdf.

Cheswick, William. “TEX and the iPad”. TUGboat

32(2), 158–163, 2011. http://river-valley.
tv/tex-and-the-ipad, http://tug.org/
TUGboat/32-2/tb102cheswick.pdf.

Eijkhout, Victor. TEX by Topic. Lulu, 2007.
http://eijkhout.net/texbytopic/

texbytopic.html.

Knuth, Donald Ervin. The TEXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, MA, 1994. Illustrations by
Duane Bibby.

Salomon, David. “Output Routines: Examples
and Techniques. Part I: Introduction and
Examples”. TUGboat 11(1), 69–85, 1990a.

Salomon, David. “Output Routines: Examples
and Techniques. Part II: OTR Techniques”.
TUGboat 11(2), 212–236, 1990b.

Salomon, David. “Output Routines: Examples
and Techniques. Part III: Insertions”. TUGboat

11(4), 588–605, 1990c.

Schröder, Martin. The everyshi package, 2001.
http://mirrors.ctan.org/macros/latex/

packages/ms.

Umeki, Hideo. The geometry package, 2010.
http://mirrors.ctan.org/macros/latex/

contrib/geometry.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

⋄ Michael Ware
Department of Physics and

Astronomy, N283 ESC
Brigham Young University
Provo, UT 84602
ware (at) byu dot edu

Ebooks and paper sizes: Output routines made easier



266 TUGboat, Volume 32 (2011), No. 3

LATEX to ePub

Rishi T.

Abstract

We have developed a workflow to generate ePub [1]
from a LATEX document. This workflow has two main
parts. The first part converts the document sources
in LATEX format to XML. We have been using this
part of the workflow for many years. The second
part generates ePub from the XML documents thus
created.

This workflow is completely automated and
makes use of TEX4ht, XSLT and ANT scripts.

1 Evolution of our XML-to-ePub workflow

At River Valley we have been engaged in the task
of perfecting a workflow for the generation of high
quality ePub directly from XML sources. Since we
are primarily dealing with scientific, technical, and
medical (STM) books with complex mathematical
formulae, the original sources of these contents will
invariably have been authored in TEX. As our ePub
workflow demands XML as its input, we use TEX4ht
to convert the TEX sources into XML.

Two years back, we developed an XML to ePub
filter, but before long, we were forced to abandon
it as it suffered from several deficiencies owing to
its poor design and use of inappropriate technolo-
gies for processing XML sources. One of the major
handicaps of this filter was that it required repeated
manual intervention to edit the XML sources to suit
its rigid input format. This experience forced us
to review the design of the filter from the ground
up, and develop a new one flexible enough to meet
the needs of the evolving ePub specifications, and to
be customizable enough for processing the XMLs of
different DTDs. As the future of publishing seems to
be moving more and more towards ePub, we thought
it appropriate to invest more time and effort on it.
Now the development team is happy that, at last, it
can provide a robust solution.

The latest workflow is mainly based on XSLT [2]
and ANT scripts [3]. Our main concerns about the
workflow were the following.

• It should be user-friendly.

• Even a novice developer should be able to main-
tain it.

• It should be highly customisable without modi-
fying the core area.

• It should require no manual intervention.

• It must be an XML-based and cross-platform
solution.

XML

epubPDF

Structured

TEX

Source

TEX

Figure 1: Schematic diagram of our workflow

2 Workflow

A simple schematic diagram of our workflow is given
in figure 1. It can be described as follows.

1. Create a structured TEX document from the au-
thor’s source document. Structured TEX means
a TEX document, where the details are tagged
clearly. An example of how author details are
coded is given below:

\author{%

\fnm{Rajagopal}

\snm{CV}

}

\address{%

\orgname{River Valley Technologies}

\city{Trivandrum}

\cnty{India}

}

Structuring is done with the aid of TEX4ht and
some scripts written in Vim.

2. This structured LATEX document is converted to
an XML format, which follows Elsevier’s book
DTD (book521.dtd).1 TEX4ht is used for the
TEX-to-XML conversion.

3. Next, bitmapped equations (images of equa-
tions) are created for all MathML tags. Images
are used rather than MathML tags since cur-
rent e-book readers do not support MathML

rendering.

4. Then the XSLT style sheet is applied on this
XML document and an ePub is created.

2.1 Working method

2.1.1 Input

(1) XML files, bitmapped equations, and any external
entities (such as figures) loaded in the XML files.
(2) A hub file. This is an XML file that includes the
metadata and the list of XML files that should be

1 In our experience, this is one of the best DTDs, covering

almost all types of STM content as far as a standard book is

concerned.

Rishi T.



TUGboat, Volume 32 (2011), No. 3 267

<files>

<title>Field Guide</title>

<author>Yakov</author>

<cover name="cover/cover.jpg"/>

<stylesheet name="epub-stuff/fg-spie.css"/>

<folder name="fg21"/>

<color fcolor="#238acb;" rcolor="#002395;"/>

<prelims>

<file name="prelims/cover.xhtml"/>

<file name="prelims/half-title-page.xhtml"/>

</prelims>

<file name="spiebk-fg21-b01.xml"/>

<file name="..."/>

<file name="spiebk-fg21-r01.xml"/>

...

</files>

Figure 2: An example hub.xml

converted to ePub. The files are listed in the same
order as they should be in the ePub. An example
hub.xml is shown in Figure 2.

The source files are kept in another folder inside
the working folder. In general, that folder has the
same name as the project for which the ePub is to
be generated.

All the source files can be either copied to the
project folder or can be in different subfolders inside
it. For example, one may create subfolders with
chapter numbers and copy the figures and bitmapped
equations of that particular chapter to that folder.

2.1.2 Process

To make the process simpler, we use the (GNU) make,
a utility which executes commands grouped under a
specific target in a file called makefile or Makefile.
Separate targets are declared for each function. A
single target that carries out the whole process is
also available in the Makefile. For example,

make epub

will create an ePub, validate it and display an error
log if there are any errors.

The resources of an ePub consist mainly of
XHTMLs, graphic objects and several other auxiliary
files. During debugging, if we have made any changes
in the XHTML files directly, we need again to zip the
files into an ePub format, and for this we run the
command:

make zip

A complete list of our Makefile targets is in Table 1.

Target Action

file opens makefile.in to input the
project id for which we need to
create an ePub

epub creates the ePub

hub opens the hub file

zip zips the files in an ePub format,
assuming that all the files
required for an ePub are
available

check validates the ePub

renumber renumbers the IDs

err opens the error log

view opens the ePub in Lucidor (an
ePub viewer)

ncx opens toc.ncx

opf opens content.opf

Table 1: List of targets in our Makefile

2.1.3 Files

The files toc.ncx, content.opf etc. mentioned in
the table are generated through the XSLT style sheet.
Some log files for debugging will also be generated.

3 Features

TEX to ePub through XML. The source file is a
TEX file. This is converted into an XML file through
an automated conversion process. The XML file
generated conforms to Elsevier’s book DTD. Since
the primary source is TEX, TEX4ht [5] is used for
TEX-to-XML conversion. During this process, one
gets numerous opportunities to appreciate the power
of TEX4ht and its highly configurable features for
processing complex TEX documents into XML.

Conversion using XSLT. XSLT is the style sheet
language recommended for XML and this is a declar-
ative language used for the conversion of XML doc-
uments. We carry out the conversion to the ePub
format from the XML using XSLT.

Minimal use of images. Except for complex
math formulae, all the in-line math formulae are
represented in ePubs using their HTML equivalents.
For example, we can handle H2SO4, E = mc

2 etc.,
in HTML, whereas n

√
24 and similar formulae that

do not have equivalent HTML are set as images.

Use of dvipng. For creating images of complex in-
line and multi-line formulae, we use the application
dvipng [6], and the images created look as beautiful
as they are in the DVI.

LATEX to ePub



268 TUGboat, Volume 32 (2011), No. 3

Importing XHTML files. The real data for the
ePub file comes directly from XML. However, if
one has any other information (e.g., copyright pages,
advertisements, call for papers etc.) which cannot be
coded as XML due to DTD constraints, they can be
used to create equivalent XHTML files and import
them directly.

Compatibility. We have tried our best to create
ePubs that are compatible with all e-book readers
such as iPad, NOOK, Lucidor, Firefox etc.

Cross-platform solution. Since the conversion
process uses TEX and XML technologies only, we can
very well claim that this is a cross-platform solution.

4 Challenges

Making the ePub compatible with different e-book
readers posed some challenges.

References

[1] http://en.wikipedia.org/wiki/EPUB

[2] http://en.wikipedia.org/wiki/XSLT

[3] http://ant.apache.org

[4] http://en.wikipedia.org/wiki/XML

[5] http://en.wikipedia.org/wiki/TeX4ht

[6] http://sourceforge.net/projects/dvipng

⋄ Rishi T.

River Valley Technologies

rishi (at) river-valley dot com

http://www.river-valley.com

Rishi T.



TUGboat, Volume 32 (2011), No. 3 269

A dream of computing and LATEXing

together: A reality with SageTEX

Manjusha Joshi

Abstract

Researchers search for some computational packages
to find their results. At the time when they have
the desired output, they begin worrying about how
to insert it in their LATEX document. They have to
keep track of their output, formatting and inserting
it at the appropriate places in the document.

The SageTEX package is a blessing in these sit-
uations. It calls the powerful open source maths
server Sage, to compute and embed the result into a
TEX document.

1 Sage: Math server

Sage [1] can handle numeric calculations, symbolic
calculations, and plotting 2D–3D functions.

Sage is based on the scripting language Python.
Sage is free and open source software which is in-
tended to provide an alternative to proprietary pro-
grams such as Mathematica, Matlab, Maple and
Magma.

1.1 Numerical outputs

Sage can handle multiprecision calculations.

factorial(100)

(100)! = 9332621544394415268169923885626670049
071596826438162146859296389521759999322991560
894146397615651828625369792082722375825118521
0916864000000000000000000000000

1.2 Symbolic calculations

Sage can also handle symbolic computations.∫
e
x

x dx

can be computed in Sage using this command:

integral(exp(x)*x,x)

and then the output can be inserted in the TEX
document like this:

$\sage{integral(exp(x)*x,x)}$

and the output will be generated like this: (x− 1)ex.

1.3 Graphics

Sage can produce graphics, both 2D and 3D. Fig. 1
shows a twisted torus generated in Sage.

2 Necessity of computed outputs in LATEX?

Here are a few of the places where it can be useful
to dynamically compute values from directly within
a LATEX document:

Figure 1: A twisted torus generated in Sage

• In research papers
• In questions on exams
• Answers in solution sets in a book
• E-learning systems

3 Calculations from mathematical software

Researchers may need varies types of computations.
Here is the list of related free software with the main
focus on this job:

• R: Statistics, data handling
• Scilab: Numerical Computing
• Maxima: Symbolic Computing, Graph Theory
• GAP: Abstract Algebra
• Pari-gp: Number Theory
• Singular: Commutative Algebra

Sage can integrate any of these packages. The usual
way of inserting results in a .tex file is by drawing it
with some other software and inserting it as a figure.

Here is a figure of a vector field computed and
drawn through the software Scilab [2]:

Figure 2: Exporting figure

4 Challenges

• While writing the paper first think of the places
where the author needs to insert the computed
outputs/figures.

A dream of computing and LATEXing together: A reality with SageTEX



270 TUGboat, Volume 32 (2011), No. 3

Figure 3: Generated .sage file

• In each case one needs to switch between TEX
and the software for computing, and search for
the place in the TEX file where it has been de-
cided to insert the outputs.

• While pasting calculations from other software,
the author may miss some part of the answer.
Loss of important calculated data is possible.

• Some files also may be lost, simply because the
author may forget where the different output
files have been stored, or because the software
stores them in an unknown location.

• This laborious process does not help the author
trying to compose the paper.

5 With SageTEX

While writing research papers one can insert appro-
priate examples which can be calculated or drawn
immediately by calling Sage directly from the LATEX
compiler, and then be inserted at the appropriate
places. Thus, one can maintain some orderliness in
thinking.

Pictures, calculations become part of the .tex
file. The author need not given special attention
for picture insertion, etc. Also, it is not required to
collect such files separately.

6 Work flow

To use Sage through LATEX, just use the package
sagetex in the .tex file. (Of course you need to
have Sage installed.) The sequence for compilation
is as follows:

1. Start with your file abc.tex and sagetex.sty.

2. pdflatex abc.tex which contains the usual
\usepackage{sagetex}.

3. This generates a .sage file in the same folder.

4. sage abc.sage to generate a .sout file.
An example is shown in fig. 4.

5. pdflatex abc.tex once more.

Figure 4: Generated .sout file

7 Sage commands

There are a few commands with which the document
can communicate with Sage in variety of ways.

To insert only the output from Sage, use the
command \sage{...}:

\sage{factorial(100)}

To plot a function through sage, the command
is \sageplot{...}:

\sageplot{plot(exp(x),-5,5)}

It is also possible to display Sage commands in
the .tex file as verbatim text and at the same time
pass these commands to Sage. This is done with the
sageblock environment:

\begin{sageblock}

g(x)=taylor(tan(x),x,0,10)

\end{sageblock}

After this, g(x) is known to Sage with the definition
declared in the sageblock.

Then the TEX command \sage{g(x)} will pass
the value of g(x) and the computed output will be
inserted, as in:

$$\tan(x)=\sage{g(x)}$$

7.1 Predefined graphs

Sage predefines many graphs commonly used in
graph theory. One can have complete graphs on
a given number of vertices. Here is the famous Pe-
tersen graph (fig. 5):

import sets

g=graphs.PetersenGraph()

The LATEX command to display such graphs:

\sageplot{ g.plot().show() }

Manjusha Joshi



TUGboat, Volume 32 (2011), No. 3 271

Figure 5: Petersen graph output.

7.2 Dynamic input to Sage

The input to Sage can be determined at the time of
LATEX compilation. For example, one can generate
output from Sage after collecting input with \typein:
the author can insert functions to be plotted at the
time of compilation and plot the graphs. With this,
at each compilation one can generate different graphs.
This can be useful with online exam systems, since
we want to generate different figures or randomly
generated matrices in the exam paper.

As another example, one can have a collection of
examples one of which is inserted randomly; required
calculations and figure choice will be inserted on the
fly at compilation time.

Here is an example of how one can get input
and send it to Sage at the time of compilation:

\typein[\function]{Enter function name}

Here is the graph of $\function$:

\sageplot{plot(\function, -3,3)}

With the input ‘cos’, we get the expected:

-3 -2 -1 1 2 3

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

8 Pregenerating results from Sage

For submission of a paper or book, it is not necessary
for Sage to be installed on the publisher’s systems.
The author should send the generated .sout file
along with the .tex file for publishing.

9 Installation of sagetex

The package sagetex is available on CTAN [3], and
also from http://www.sagemath.org/. Install it
either in a texmf tree or in your working document
folder.

If Sage is properly installed on the system and
available then no additional settings are required.
More installation information can be found at [4].

Also, one can use Sage remotely from the Inter-
net while still using the sagetex package to compute
and insert outputs. More details about this can be
found at [5].

References

[1] http://www.sagemath.org/

[2] http://www.scilab.org/

[3] http://mirror.ctan.org/macros/latex/
contrib/sagetex

[4] www.sagemath.org/doc/installation/
sagetex.html

[5] http://www.sagenb.org/

⋄ Manjusha Joshi

Pune, India

manjusha dot joshi (at) gmail

dot com

A dream of computing and LATEXing together: A reality with SageTEX



272 TUGboat, Volume 32 (2011), No. 3

Multi-target publishing

Axel Kielhorn

1 One road leads to one target

The usual target format of my documents was paper:
ISO A4, ISO A5 or sometimes 3,5" × 5". My workflow
led to an intermediate PDF file which was fine for
reading on the screen, especially the smaller formats.

But then mobile devices appeared. The screen
was too small to read A4 or even A5 documents. With
some effort it was possible to create a document that
was readable on one mobile device without excessive
scrolling.

Having a format that reflows according to the
size of the display with a user defined font size would
be desirable. Such a format is ePub. It is simply a
ZIP archive with a predefined structure and a few
XML files that contain the actual content. A CSS file
is used to control the appearance.

2 A detour

Luckily there is a program that reads LATEX and
writes ePub: Pandoc [5] (licensed under the GPL).

Unless the LATEX file is too complicated, Pandoc
will understand and convert it. But what is too
complicated? The easiest way to find out is to convert
a file from LATEX to LATEX and see what survives.

pandoc -r latex -t latex -o source-pd.tex

source.tex

2.1 A rough road

Pandoc uses UTF-8 encoded files. This shouldn’t be
problem for most English speakers since they usually
only use the first 127 characters of that encoding. But
that is a naïve assumption. Even English speakers
need non-ASCII characters for foreign words and
punctuation characters. LATEX offers many ways to
enter these characters, but the only way that doesn’t
cause problems is to write them as UTF-8 characters.
Thus \^o should be written as ô and \o as ø. A
small few lines of sed will help with the conversion.

3 Back to square minus one

Is LATEX really the starting point? Or should we see
LATEX as one backend and the LATEX file just as an
intermediate product?

4 An unusual direction:
Markdown instead of markup

Markdown is a markup language developed by John
Gruber [1] which looks as if no markup is present:

Editor’s note: First published in Die TEXnische Komödie

3/2011, pp. 21-32; translation by the author.

A Markdown-formatted document should be
publishable as-is, as plain text, without look-
ing like it’s been marked up with tags or for-
matting instructions.

The start of this article originally looked like
the following in Markdown:

# One road leads to one target

The usual target format of my documents was

paper: ISO A4, ISO A5 or sometimes 3,5"

$\times$ 5". My workflow led to an intermediate

file which was fine for reading on the screen,

especially the smaller formats.

But then mobile devices appeared. The screen

was too small to read A4 or even A5 documents.

With some effort it was possible to create a

document that was readable on *one* mobile

device without excessive scrolling.

This text was created from the original with:

pandoc -r latex -t markdown -o Ziele-tug.md

Ziele-tug.tex

Markdown is a very limited language. The man
page describing the language has only 16 pages. The
“Not So Short Introduction to LATEX2ε” has ten times
that number.

Converting from a complex language like LATEX
to a simple language like Markdown is difficult. Thus
it is understandable that Pandoc only interprets a
tiny amount of LATEX markup. Since it doesn’t un-
derstand TEX it uses regular expressions to parse the
file. This will require additional empty lines in some
cases where it is not required by TEX, otherwise the
parser misses sectioning commands or environments.

Therefore it is best to convert a document to
Markdown once and do all the future editing in
Markdown.

5 A new road to an old target: Generating
PDF from Markdown via LATEX

pandoc -r markdown -t latex -o source.tex

source.md

5.1 The default.latex file

The default.latex file distributed with Pandoc (in,
e.g., /usr/local/share/pandoc-X.Y/templates) is
a minimal example. With a little bit of LATEX knowl-
edge it can be customized to support the layout you
need. A version adapted for German users is included
in the supplementary material [2]. Modifications are
marked with -ak-. A more elaborate file using the
KOMA-Script class is included as well.

Axel Kielhorn



TUGboat, Volume 32 (2011), No. 3 273

To call Pandoc with a custom template, use the
command line:

pandoc -r markdown -t latex

--template=./custom.latex

-o source.tex source.md

5.2 A Shortcut

The fastest way to turn a Markdown file into PDF

is:

markdown2pdf --template=./custom.latex src.md

This will generate an intermediate LATEX file and call
pdfLATEX to create the PDF.

With the options --xetex or --luatex, you can
select a different engine. The template detects the
engine and selects the appropriate code via ifxetex

and ifluatex.

5.3 Postprocessing

The generated LATEX file is surprisingly good. It
matches files written by novice users.

Of course there may be some overfull and un-
derfull hboxes that need further attention.

6 A new target ahead: ePub

The original desire was to create an ePub file in
addition to the PDF file. The following command
will do that:

pandoc -r markdown -t epub

--epub-cover-image=cover-image.gif -s

-o Source.epub Source.md

The text will be split into separate files according
to the structure of the document. Thus it is easy to
post-process the file with an ePub editor like Sigil [6].

Version 1.8.1.2 added the option to include a
cover image (as shown above), thus reducing the
need for post-processing.

7 The road to OpenOffice

“May I have this as a Word file?” Who doesn’t know
this question? Let’s meet in the middle of the road
with a LibreOffice file.1

pandoc -r markdown -t odt

--reference-odt=./reference.odt -s

-o source.odt source.md

The file reference.odt will be used as a tem-
plate for the formatting of the document. If you
want to change the design, you should modify the
file supplied with Pandoc to make sure the internal
style names match the ones used by Pandoc.

1
Writer2LaTeX can convert LibreOffice files into LATEX.

If you get an error when opening the odt file
complaining about a corrupt file, you need to update
Pandoc—a bug prior to version 1.8.1.3 led to the
creation of invalid files when images were included.

Including images is still problematic. The im-
ages are in the final document, but they have to be
rescaled.

8 Travel preparations

A small sed program removes some markup and
converts LATEX characters to UTF-8:

s/\\LaTeX/LaTeX/g

s/\\TeX/TeX/g

s/\\ConTeXt/ConTeXt/g

s/\\begingroup//

s/\\endgroup//

s/\\^o/ô/

s/\\o/ø/

Call this program on the command line with:

sed -f tex2mdtex.sed Source.tex

>Source-clean.tex

The result can be converted to Markdown with:

pandoc -r latex -t markdown -s

-o Source-clean.md Source-clean.tex

9 Road signs

9.1 Sectioning commands

Markdown supports six hierarchy levels for sectioning
commands. The number of # signs indicates the
level. There has to be an empty line in front of the
sectioning command.

# Top level

## Second level

### Third level

#### *Important information* hidden in

the fourth level

An alternative form of sectioning commands
only supports two levels:

First Level

===========

Second and last level

---------------------

9.2 Block Quotations

Markdown uses email conventions for quoting blocks
of text. Lines starting with a > character are treated
as block quotations.

Multi-target publishing



274 TUGboat, Volume 32 (2011), No. 3

> This is a block quotation

>

> > And this is a block quotation

> > inside a block quotation.

>

>

> The > sign is only needed in the first

line of the quotation.

A special kind of quotation is a quotation from
a program. This is usually printed in a monospaced
font. If a line starts with four spaces, it is treated as
a verbatim text.

␣␣␣␣\documentclass[a4paper]{ltugboat}

␣␣␣␣\usepackage[utf8]{inputenc}

If you don’t want to indent every line, you can
use a delimited block, which begins with 3 or more
tilde (~) characters and ends with at least the same
number of tilde characters. If the code already con-
tains a row of tilde characters, use more to delimit
the quotation.

~~~~~~~~

This is a program listing

~~~~

Header preceded by tildes

~~~~

Body preceded by tildes

~~~~~~~~

9.3 Lists

There are several list types in Markdown that we
already know from LATEX:

9.3.1 The itemize list

The itemize list is started with a bullet character
(*, + or -).

* one

* two

* three

- three a

- three b

* four

If a list entry contains several paragraphs, the
paragraphs should be indented with four spaces or
one tab.

* one

* two

* three

- three a

- three b

* four

As usual, we hide important information

in the fourth item.

To be really sure, the 4 space rule is only

mentioned in the last paragraph.

9.3.2 The enumerate list

An ordered list is like a bullet list, but it starts
with an enumerator (1., (1), or i.) instead. The
enumerators need not be in the correct order, even
if that looks funny.

This kind of enumeration automatically loads
the enumerate package to get custom enumerators.
The generic enumerator #. uses the enumerators
defined by the document class and avoids loading an
additional package.

1. one

2. two

4. three

a) three a

b) three b

5. four

Hiding important information ...

9.3.3 The description list

Sadly these animals from the German lshort haven’t
made it into the English version. Therefore I will
introduce them here.

The term described is on a line of its own; the
description follows in the next lines. The description
is started with a colon or tilde, indented by one or two
spaces. A term may have multiple descriptions, and
each description may have one or more paragraphs.

Gelse

: a small animal, living east of the

Semmering, that chases tourists away.

Gemse

: a large animal, living west of the

Semmering, chased away by tourists.

A long paragraph discussing

whether it should be Gemse or Gämse.

Gürteltier

~ A medium sized animal. It only appears here

because it has a long name.

~ In Austria, Gürteltiere are usually seen

only in zoological gardens.

Axel Kielhorn



TUGboat, Volume 32 (2011), No. 3 275

---------------------------------------------------------------------

Centered Default Right Left

Header Header aligned aligned

------------- ------- ------------- ---------------------

First row 12.0 Example of a row that

spans multiple lines.

Second row 5.0 Here’s another one. Note

the blank line between rows.

----------------------------------------------------------------------

Figure 1: A multiline table

9.3.4 Numbered lists with references

Usually a new list starts with number 1. If you
want your items numbered throughout the document,
Markdown offers a special list marker that is not reset.
These list markers can be used as a reference later, or
earlier. This is comparable to the caption counters
used by LATEX, but doesn’t use the \label/\ref
mechanism and does not require a second LATEX pass.

(@Statement) Here I state something.

The statement (@Statement)

will be proved in (@Proof).

(@Proof) This is the proof.

9.4 Tables

Starting with version 1.8.1.2 Pandoc uses the ctable
package to create tables. When entering tables it
is best to use spaces instead of tabs to align the
columns. There are three kind of tables.

A simple table:

Right Left Center Default

------- ------ -------- -------

12 12 12 12

123 123 123 123

ab ab ab ab

Table: A simple table

The table header and the table rows must be
written on one line. The alignment is defined by the
dashed line below the header.

• If the dashed line is flush with the header text
on the right side but extends beyond it on the
left, the column is right-aligned.

• If the dashed line is flush with the header text
on the left side but extends beyond it on the
right, the column is left-aligned.

+------------+---------+----------------------+

| Fruit | Price | Advantages |

+============+=========+======================+

| Bananas | $3.14 | - built-in wrapper |

| | | - bright color |

+------------+---------+----------------------+

| Oranges | $2.82 | - cures scurvy |

| | | - tasty |

+------------+---------+----------------------+

Figure 2: A grid table

• If the dashed line extends beyond the header
text on both sides, the column is centered.

• If the dashed line is flush with the header text
on both sides, the default alignment is used (in
most cases, this will be left).

A table must be terminated by an empty line.
You can provide a caption starting with the

string Table:, or just the character :. Any Table

and the colon will be removed from the output. The
caption may appear either before or after the table.
When a caption is used, the table will be set in a
table environment, otherwise it will appear in the
body text.

Multiline tables allow headers and table rows
to span multiple lines of text. The rows must be
separated by empty lines. An example is shown in
figure 1.

A grid table is shown in figure 2. The cells may
contain arbitrary block elements, including lists.

9.5 Title

Information about the title, author and publication
can be given at the beginning of the file.

% Multi-target publishing

% Axel Kielhorn

% TUGboat Volume vv

Multi-target publishing



276 TUGboat, Volume 32 (2011), No. 3

Long titles may be broken into several lines.

% Viele Ziele\

(Multi-target publishing)

% Axel Kielhorn

Babel Fisch (Trans.)

% TUGboat Volume vv

The \ in the first line will be translated to \\

in the LATEX output.

9.6 Footnotes

A footnote consists of two parts, the footnote marker
and the footnote text.

This is a footnote marker[^1]

and this is another footnote[^fussnote]

[^1]: Here is the footnote text

[^fussnote]: This footnote is slightly longer.

It contains a second paragraph.

9.7 Inline formatting

Italic text is surrounded by one * or _. Bold text is
surrounded by two * or _. If you want to emphasize
only a part of a word, you have to use * because _

is often used as part of a name.

This text was emphasized _with underlines_

and this *with asterisks*.

For __bold text__ you need **two** characters.

Superscripts are surrounded by ^, subscripts by
~ characters:

H~2~O is water, 2^10^ is 1024.

2^2^^2^ is 2^22^.

The output of the last line may be unexpected,
but note that these are text super- and subscript
commands, not math commands.

9.8 Math(s)

Inline math is surrounded by $ characters. It is
processed by LATEX, thus everything allowed in LATEX
is permitted.

$2^{2^2} != 2^{22}$

When using a different output format, the result
depends on the capabilities of that format.

Display math can be entered as raw LATEX.

9.9 Raw LATEX

Everything between a \begin and an \end will be
copied verbatim to the LATEX output and ignored in
all other formats.

9.10 Raw HTML

Markdown was designed to create HTML. Therefore
it is possible to include raw HTML, which will be
ignored by non-HTML based formats.

9.11 Links

It is not surprising that a language designed to create
web pages supports hyperlinks. Everything included
between angle brackets is considered a link.

<http://johnmacfarlane.net/pandoc/>

A link may appear in a paragraph.

Documentation may be found on the [pandoc

web site](http://johnmacfarlane.net/pandoc/).

9.12 Pictures

A picture is included by providing a link to that
picture and starting that link with a !.

![A blue picture](blau.jpg "Blue picture")

If the picture appears on a line of its own, it
will be set in a figure environment and the text in
the square brackets will be used as a caption text.
Otherwise, it will be included in the body text.

The ![red square](rot.png "red square") appears

in the body text.

There is no way to scale pictures, they need to
be in the correct size and resolution. This causes
problems when the same picture is used for the web
(72 dpi) and printing (300 dpi).

10 Next exit: ConTEXt

Pandoc is able to generate ConTEXt files. This is an
easy way to convert LATEX files to ConTEXt.

With a filter module, ConTEXt is able to directly
process Markdown by calling Pandoc with parts of
the document. See the Pandoc Extra Wiki [4] for
details.

11 Large documents . . .

The default settings for Pandoc is to create a docu-
ment without section numbers and without a table
of contents. This is fine as long as you write a short
document, but when the size exceeds a few pages it
would be better to have the sections numbered and
a short overview over the contents:

pandoc -r markdown -t latex --number-sections

-o md-test.tex md-test.md

numbers the sections, and with

pandoc -r markdown -t latex --toc

-o md-test.tex md-test.md

a table of contents will be generated. Of course you
can combine the options.

Axel Kielhorn



TUGboat, Volume 32 (2011), No. 3 277

12 . . . to full books

When you use the report, book, or memoir class,
Pandoc will use the \chapter command as the high-
est sectioning level. It doesn’t know about more
exotic classes, like scrbook. If you want to use these,
you have to request the chapters yourself:

pandoc -r markdown -t latex --chapters

-o md-test.tex md-test.md

You can split the source text into several files
and combine them when calling pandoc. This isn’t as
elaborate as the \include mechanism in LATEX, but
considering the speed of current computers, there is
little need for \include/\includeonly. For a very
long document you have to call Pandoc with a very
long command line.

pandoc -r markdown -t latex

--number-sections --toc

--template=./report.latex

-o md-test.tex

md-test-intro.md

md-test-ch1.md

md-test-ch2.md

md-test-ch3.md

13 Conclusion

With Pandoc, it is straightforward to create PDF

files with LATEX without knowing anything about
LATEX. All of the TEX processing can be hidden
by using markdown2pdf and the various options in
a shell script (or batch file). For example, I wrote
an engine file for TeXShop that calls markdown2pdf
instead of TEX. “That’s too difficult” is no longer a
reason not to use LATEX.

Pandoc, or rather the Markdown language, has
its limitations. If you need several kinds of foot- or
endnotes, several bibliographies or lots of math, Pan-
doc is certainly underpowered. But if you don’t need
these features, Pandoc is an easy way to write struc-
tured documents without a high learning threshold.

The main work goes into the design of the
template files, which should be created and main-
tained by a LATEX expert.

14 Acknowledgements

This article originally appeared in the journal Die

TEXnische Komödie [3], in German; the translation
here is by the author. Some text used in this article
is copied from the Pandoc–Markdown man page.

15 Appendix: Supplementary material

The following are included in the supplementary
material you can download from the TUG server [2]:

md-test-tug.md The examples from this article.

md-test-tug.tex Converted LATEX.

md-test.pdf Set with pdfLATEX.

md-test.epub Converted to ePub.

tex2mdtex.sed A sed script to make general LATEX
documents palatable to Pandoc.

pandoc.pdf Pandoc man page.

pandoc-markdown.pdf Man page describing the
Markdown syntax used in Pandoc.

markdown2pdf.pdf markdown2pdf man page.

engines A folder with engine files for TeXShop.
(They will be in the next official release.)

⋄ Axel Kielhorn

Lesumstraße 10

D-27283 Verden

Germany

A dot Kielhorn (at) web dot de

References

[1] John Gruber. Daring Fireball: Markdown,
2004. http://daringfireball.net/projects/
markdown/.

[2] Axel Kielhorn. Supplementary material,
2011. http://tug.org/TUGboat/tb32-3/

tb102kielhorn-supp.zip.

[3] Axel Kielhorn. Viele Ziele—Multi-Target
Publishing. Die TEXnische Komödie, 3:21–32,
2011.

[4] John MacFarlane. Pandoc Extras, 2011.
http://github.com/jgm/pandoc/wiki/

Pandoc-Extras.

[5] John MacFarlane. Pandoc—About pandoc, 2011.
http://johnmacfarlane.net/pandoc/.

[6] Strahinja Marković. Sigil—A WYSIWYG ebook

editor, 2011. http://code.google.com/p/

sigil/.

Multi-target publishing



278 TUGboat, Volume 32 (2011), No. 3

On the use of TEX as an authoring language

for HTML5

S.K. Venkatesan

Abstract

The TEX syntax has been fairly successful at mark-
ing up a variety of scientific and technical literature,
making it an ideal authoring syntax. The brevity
of the TEX syntax makes it difficult to create over-
lapping structures, which in the case of HTML has
made life so difficult for XML purists. We discuss
S-expressions, the TEX syntax and how it can help
reduce the nightmare that HTML5 markup is going
to create. Apart from this we implement a new syn-
tax for marking up semantic information (microdata)
in TEX.

1 Introduction

The brevity of TEX syntax has made it fairly success-
ful at marking up a variety of scientific and techni-
cal literature. On the one hand, modern markup
languages such as (X)HTML and XML have ver-
bose syntax which is not only difficult to author
but also produces non-treelike structures such as
overlapping structures that need to be checked for
well-formedness. On the other hand, TEX and its
macros are difficult to parse and validate, compared
to XML with a DTD or schema. Many XML versions
of TEX have been proposed such as TEXML [3] and
XLATEX [5] that are intrinsically close to (LA)TEX.
The main advantage of such a system is that one
can introduce a validator using a DTD or schema to
check the syntax before passing it to the TEX engine.

However, XML syntax is difficult to author and
in fact is prone to producing overlapping structures
that need to be avoided for it to be well-formed,
and as a result these XML versions have not become
popular for authoring. In this article, we propose
something that is quite the reverse, i.e., TEX as an
authoring syntax for both XML and HTML.

2 TEX, S-expressions and XML

Let us look at the following TEX code:

\title[lang=en]{Title of

a \textit{plain} article}

The same code in a Lisp-like S-expression would be:

(title (@ (lang="en")) ("Title of a ")

(italic "plain") ("article"))

or if one would like to treat elements and attributes
in the same way:

(title (@lang="en") ("Title of a ")

(italic "plain") ("article"))

The difference between the above two S-expressions
is that the former introduces a deliberate asymmetry
between attributes and elements, whereas the latter
treats attributes on a par with elements. However,
both S-expressions can be considered as an improve-
ment on XML as they allow further nesting within
attributes. The corresponding XML code would be:

<title lang="en">Title of

a <italic>plain</italic> article</title>

In both TEX and XML syntax, further nesting of
structures is not possible within attributes, which
makes TEX ideal for authoring XML or HTML5.

There are further similarities between the TEX
and SGML/HTML syntaxes. Attribute minimization
used in HTML, like not quoting attribute values, is
very much practiced in TEX syntax, more as a rule
rather than the exception; e.g.,

\includegraphics[width=2cm]{myimage.gif}

Unlike SGML/HTML, TEX typically uses a comma
as the separator between attributes, instead of the
word-space used in SGML/HTML. TEX also uses
complete skipping of attribute values, similar to the
commonly used HTML code: <option selected>.
Quite like TEX, HTML also has the practise of shrink-
ing multiple spaces to a single space. All of these
similarities make it clear that authoring HTML in
TEX would be an ideal proposition.

3 Overlapping markup in HTML

Since HTML is marked up by humans, there tend
to be many situations with overlapping elements or
other eccentric markup which do not confirm to a
well-formed SGML or XML syntax. Consider the
HTML markup:

<p>Text with <i>unique <b>and</i>

strong formatting</b> issues</title>

A utility like HTML Tidy [6] or TagSoup [1] can
convert this into well-formed markup such as:

<p>Text with <i>unique </i><b><i>and</i>

strong formatting</b> issues</title>

However, it is not always clear what should be
done with such a non-standard markup. The HTML5
specification defines clearly how such a non-standard
markup should be interpreted [7] but the HTML

implementations in browsers currently deal with it
differently from each other.

W3C has been insisting for some time that the
next generation of markup should be XML-compliant
like XHTML+MathML+SVG profiles, with other in-
tricacies such as namespaces. However, more than
99% of HTML pages in the wild are invalid, accord-
ing to the HTML4 DTD or schema. This being the

S.K. Venkatesan



TUGboat, Volume 32 (2011), No. 3 279

case, W3C gave up on the idea of an XML solution
and moved on to HTML5 with added elements and
features, such as MathML, SVG and video, audio and
additional microdata elements.

Given the experience with HTML4, it can be
safely predicted that the more features one adds
to HTML, the greater the scope for non-standard
markup such as overlaps and entanglement that can
create a great deal of difficulty for browsers and
users.

We will consider here, e.g., Microsoft’s interpre-
tation of MathML in HTML5. Microsoft has been
pushing for certain agenda in MathML3 (although
I must say with great relief that much of it has not
been accepted by the MathML committee). Based on
their own experience with OML, a subset of OOXML

markup, they would like to add formatting features in
MathML such as bold, italic and paragraph elements
inside MathML. Consider the following markup:

<math><b><mi>r</mi></b>=<mfenced><mi>x</mi>

<mi>y</mi></mfenced></math>

the corresponding pure MathML coding would be:

<math><mi mathvariant="bold-italic">r</mi>

<mo>=</mo><mfenced><mi>x</mi>

<mi>y</mi></mfenced></math>

Mixing elements from different namespaces is
one of the side effects one can expect in HTML5. It
is not clear if MathML elements could be included
within SVG elements or vice versa. One can expect
such new non-standard markups to be created that
will be quite difficult for browsers to handle.

New elements such as <section> have been in-
troduced, so one can expect more confusion:

<section><h2>Section title</h2>

<section><h1>Another section title</h1>

</section>

</section>

The intended meaning of <h1> or <h2> is not clear
from the above markup, and you could say either ‘I
mean what I say’ or ‘I say what I mean’, with our
own impressionistic interpretations.

In this article we do not want to convey the
impression that everything about HTML5 is out of
the wild west; rather, it is a rich arena that needs
to be authored carefully, because there are so many
pitfalls. In fact, HTML5 introduces new features like
MathML, SVG, video and audio features that are
essential for further enrichment of basic content [4].
The important reason for using a TEX-like system is
that it doesn’t allow one to see the output if there
are errors in the code and one can only produce
well-formed code.

4 TEX as an input format for HTML5

In this section we would like introduce LATEX environ-
ment for authoring HTML5. Many of these features
have been introduced before, say, e.g., in XLATEX
and other concepts.

4.1 Main structural elements

of the document

HTML5 has introduced new content elements that
bring it closer to the standard LATEX classes. We
propose the following TEX macros.

No. HTML LATEX Description

1 <article>#1 \begin{article}

</article> #1 article
\end{article}

headings:
2 <h1>#1</h1> \Ha{#1} —level one
3 <h2>#1</h2> \Hb{#1} —level two
4 <h3>#1</h3> \Hc{#1} —level three
4 <h4>#1</h4> \Hd{#1} —level four
5 <p>#1</p> \p{#1} paragraph
6 <span>#1</span> \s{#1} text span

4.2 Simple formatting elements

We propose the following TEX macros for HTML

formatting elements:

No. HTML LATEX Description

1 <b>#1</b> \B{#1} bold
2 <i>#1</i> \I{#1} italic
3 <b><i>#1</i></b> \BI{#1} bold-italic
4 <tt>#1</tt> \M{#1} text
5 <sup>#1</sup> \sp{#1} superscript
6 <sub>#1</sub> \sb{#1} subscript

4.3 MathML elements

We propose the following TEX macros for MathML

formatting elements:

No. MathML LATEX Description

1 <mrow>#1</mrow> {#1} grouping
2 <mi>#1</mi> {#1} variables
3 <mo>#1</mo> {#1} operators
4 <mn>#1</mn> {#1} numbers
5 <mtext>#1</mtext> \mbox{#1} monospace
6 <mfrac>#1#2</mfrac> \frac{#1}{#2} fraction
7 <msup>#1#2</msup> {#1}^{#2} superscript
8 <msub>#1#2</msub> {#1} {#2} subscript
9 <mover>#1#2</mover> {#1}^{#2} over
10 <munder>#1#2</munder> {#1} {#2} under

On the use of TEX as an authoring language for HTML5



280 TUGboat, Volume 32 (2011), No. 3

No. SVG LATEX Description

1 <circle cx="#1" cy="#2" r="#3" \circle[x=#1,y=#2,r=#3 circle
style="stroke:#4; s=#4,sw=#5,f=#6]

stroke-width:#5;fill:#6;"/>

2 <ellipse cx="#1" cy="#2" rx="#3"

ry="#4" style="stroke:#5; \ellipse[x=#1,y=#2,rx=#3, ellipse
stroke-width:#6;fill:#7;"/> ry=#4,s=#5,sw=#6,f=#7]

3 <rect x="#1" y="#2" width="#3"

height="#4" style="stroke:#5; \rect[x=#1,y=#2,w=#3, rectangle
stroke-width:#6;fill:#7;"/> h=#4,s=#5,sw=#6,f=#7]

Table 1: Proposed TEX macros for SVG formatting elements.

No. Microdata LATEX Description

1 itemscope \s[is=on] top element that indicates
descendants are in scope

2 itemtype \s[it=http:// property URL

data-vocabulary.org/Person]

3 itemid \s[iid=p0312] unique ID of the person
4 itemprop \s[ip=name] name of the person
5 itemref \s[ir=http:// reference URL

www.ctan.org/pub/article]

Table 2: Proposed TEX macros for HTML5 microdata.

4.4 SVG elements

We propose the TEX macros in table 1 for SVG for-
matting elements. These can be implemented using
LATEX graphics packages such as TikZ [2].

4.5 Microdata attributes

Since microdata (semantic) attributes can be added
to any of the basic HTML elements, we need to be
able to add attributes to any of the HTML5 TEX
macros as well. Table 2 shows how these microdata
attributes for <span> element are indicated using
TEX macro \s defined in §4.1.

5 MuLTiFlow

We have created a WYSIWYG editor for authoring
HTML5, released under the GPL v3 license. It can
be installed either as a Firefox addon or as a stand-
alone program. The project is hosted at http://

sourceforge.net/projects/multiflow and is also
available through the Firefox addon network. At
present this editor uses HTML5 and UTN28 markup
for authoring complex equations, but it will use the
proposed TEX syntax for authoring HTML5 from
version 1.1 onwards.

References

[1] John Cowan, TagSoup: A SAX parser in Java
for nasty, ugly HTML,
http://home.ccil.org/~cowan/tagsoup.

[2] Andrew Mertz and William Slough, Graphics
with PGF and TikZ, TUGboat 28:1 (2007),
91–99, http://tug.org/TUGboat/tb28-1/
tb88mertz.pdf.

[3] Oleg Parashchenko, TEXML: Resurrecting
TEX in the XML world, TUGboat 28:1 (2007),
5–10, http://tug.org/TUGboat/tb28-1/
tb88parashchenko.pdf.

[4] Mark Pilgrim, HTML5: Up and Running, Dive
into the Future of Web Development, O’Reilly
Media, 2010.

[5] John Plaice and Yannis Haralambous, XLATEX,
a DTD/schema which is very close to LATEX,
TUGboat 24:3 (2003), 369–376, http://tug.
org/TUGboat/tb24-3/haralambous.pdf,
http://omega.enstb.org/xlatex.

[6] Dave Raggett, HTML Tidy,
http://tidy.sourceforge.net.

[7] W3C, HTML5 Working draft,
http://www.w3.org/TR/html5/introduction.

html#syntax-errors.

⋄ S.K. Venkatesan
TNQ Books and Journals
Chennai, India
skvenkat (at) tnq dot co dot in

S.K. Venkatesan



TUGboat, Volume 32 (2011), No. 3 281

An XML model of CSS3 as an
XLATEX-TEXML-HTML5 stylesheet language

S. Sankar, S. Mahalakshmi and L. Ganesh

Abstract

HTML5 [1] and CSS3 [2] are popular languages for
Web development. However, HTML with CSS is
prone to errors and difficult to port, so we pro-
pose an XML version of CSS that can be used as
a standard for creating stylesheets and templates
across different platforms and pagination systems.
XLATEX [3] and TEXML [4] are some examples of
XML that are close in spirit to TEX that can benefit
from such an approach. Modern TEX systems like
X ETEX and LuaTEX use simplified fontspec macros
to create stylesheets and templates. We use XSLT

to create mappings from this XML-stylesheet lan-
guage to fontspec-based TEX templates and also to
CSS3. We also provide user-friendly interfaces for
the creation of such an XML stylesheet.

1 Comparison of OpenOffice and
CSS stylesheets

Nowadays, most modern applications have imple-
mented an XML package format including an XML

implementation of stylesheets: InDesign has its own
IDML [5] (InDesign Markup Language) XML package
format and Microsoft Word has its own OOXML [6]
format, which is another ISO standard format. As
they say ironically, the nice thing about standards is
that there are plenty of them to choose from. How-
ever, instead of creating one more non-standard for-
mat, we will be looking to see how we can operate
closely within current standards. Below is a sample
code derived from OpenOffice document format:

<style:style style:name="Heading_20_1"

style:display-name="Heading 1"

style:family="paragraph"

style:parent-style-name="Heading"

style:next-style-name="Text_20_body"

style:default-outline-level="1"

style:class="text">

+<style:font-face

style:name="Adobe Caslon Pro Bold"

svg:font-family="’Adobe Caslon Pro Bold’"

style:font-family-generic="roman"

style:font-pitch="variable" />

<style:text-properties fo:font-size="115%"

fo:font-weight="bold"

style:font-size-asian="115%"

style:font-weight-asian="bold"

style:font-size-complex="115%"

style:font-weight-complex="bold" />

</style:style>

-<style:style style:name="Heading_20_2"

style:display-name="Heading 2"

style:family="paragraph"

style:parent-style-name="Heading"

style:next-style-name="Text_20_body"

style:default-outline-level="2"

style:class="text">

<style:font-face style:name="Arial"

svg:font-family="Arial"

style:font-family-generic="swiss"

style:font-pitch="variable" />

<style:text-properties fo:font-size="14pt"

fo:font-style="italic"

fo:font-weight="bold"

style:font-size-asian="14pt"

style:font-style-asian="italic"

style:font-weight-asian="bold"

style:font-size-complex="14pt"

style:font-style-complex="italic"

style:font-weight-complex="bold" />

</style:style>

The equivalent CSS style is listed below:

heading1{

font-family: Adobe Caslon Pro Bold;

font-size:14pt;

font-style: normal;

font-variant: normal;

font-weight: bold;

line-height: 16pt;

text-align: left;

color: black;

background-color: none;

text-decoration: none;

text-transform: normal;

}

heading2{

font-family: Arial;

font-size:14pt;

font-style: italic;

font-variant: normal;

font-weight: bold;

line-height: 16pt;

text-align: left;

color: black;

background-color: none;

text-decoration: none;

text-transform: normal;

}

When comparing the above two style coding
standards, the Cascading Style Sheet (CSS) is a sim-
ple and straightforward formulation without complex
namespaces, additional attributes and other details
which are not mandatory to form a style.

An XML model of CSS3 as an XLATEX-TEXML-HTML5 stylesheet language



282 TUGboat, Volume 32 (2011), No. 3

1.1 Advantages of CSS style patterns

• CSS is simple to author.

• CSS makes it possible for the entire style and
layout to be abstracted out of the HTML, so the
HTML has only the content.

• Different stylesheets can be used for different me-
dia without the user having to explicitly choose
one; e.g., printers, desktop monitors and other
smaller portable devices.

• Implementing CSS is straightforward for the
HTML engines.

1.2 Disadvantages of CSS style patterns

While new additions to CSS3 provide a stronger,
more robust feature-set for layout, CSS is still at
heart a styling language (for fonts, colours, borders
and other decoration), and not a layout language
(for blocks with positions, sizes, margins, and so on).
These limitations mean that creating fluid layouts
generally requires hand-coding of CSS.

2 Introducing the Cascading Style Sheet
Markup Language (CSSML)

SASS [7] is a meta-language on top of CSS that is
used to describe the style of a document clearly and
structurally, with more power than flat CSS. SASS

provides a simpler, more elegant syntax for CSS and
also implements various features that are useful for
creating manageable stylesheets.

SASS is an extension of CSS3 and provides sev-
eral useful features which can handle nested rules,
common variables, etc. However, it is not an XML

model and cannot be validated using a DTD/schema.
We will introduce here the Cascading Style Sheet

Markup Language (CSSML), an XML version of CSS
that can be used as a standard for creating stylesheets
and templates across different platforms and pagi-
nation systems. It is also an extension of CSS3 to
handle nested rules as in SASS, and can be validated
using DTD/schema.

We also hope CSSML will eventually evolve to
circumvent all the current limitations in CSS and
XSL-FO, especially the rules of placement of figures
and tables in multi-column layout of text. However,
we want to keep the CSSML as a clean data model
by not introducing a scripting language on top of it
as is the case with SASS.

3 Definition of CSSML

In general, our Cascading Style Sheet Markup Lan-
guage (CSSML) specifies style format details in a
well-structured XML format. The style names used
in CSSML are similar to CSS; the only difference is

that the style names are defined as XML tag elements.
Here is an example to explain the difference between
CSS and CSSML style coding:

CSS: font-family: Adobe Caslon Pro Bold;

CSSML: <font-family>Adobe Caslon Pro Bold

</font-family>

The main advantage of the CSSML tag pattern
is that we can validate the CSSML document using
XML Schema or XML DTD which is not possible in
CSS. We can write our own XML DTD/schema to
validate the CSSML document as follows:

• Elements and attributes that must/may be in-
cluded, and are permitted in the structure.

• The structure as specified by a regular expres-
sion syntax.

• How character data is to be interpreted, e.g. as
a number, a date, etc.

However, creating the CSSML document is not
as simple as creating CSS. CSSML needs XML tagging
for all the data, and the user needs to wrap all the
details with appropriate XML elements. To avoid
such difficulties, we have provided a user interface to
create CSSML automatically with appropriate XML

elements.

4 Namespaces

In this section we compare namespaces in CSSML,
CSS, and XML.

4.1 CSSML

<styles xmlns="http://www.tnq.co.in/CSSML">

<namespace prefix="html"

value="http://www.w3.org/1999/xhtml"/>

<namespace prefix="tux"

value="http://www.tnq.co.in/TUX"/>

<html:p>

<style><text-color>yellow</text-color></style>

</html:p>

<tux:p>

<style><text-color>blue</text-color></style>

</tux:p>

</styles>

4.2 CSS

@namespace html "http://www.w3.org/1999/xhtml";

@namespace tux "http://www.tnq.co.in/TUX";

html|p { display: block; color: yellow; }

tux|p { display: block; color: blue; }

4.3 XML

<?xml version="1.0"?>

<?xml-stylesheet href="xml.css"?>

<article

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns:tux="http://www.tnq.co.in/TUX">

S. Sankar, S. Mahalakshmi and L. Ganesh



TUGboat, Volume 32 (2011), No. 3 283

<html:p>This is some text</html:p>

<tux:p>This is another text</tux:p>

</article>

4.4 Sample CSSML coding

<styles xmlns="http://www.tnq.co.in/CSSML"

xmlns:tux="http://www.tnq.co.in/TUX">

<tux:section1>

<style>

<font-family>lmmono10-regular</font-family>

<font-url>http://www.ctan.org/tex-archive/

fonts/lm/fonts/opentype/public/lm/

lmmono10-regular

</font-url>

<font-size unit="pt">11</font-size>

<font-style>normal</font-style>

<font-variant>normal</font-variant>

<font-weight>Bold</font-weight>

<font-face>lmmono10.otf</font-face>

<line_height unit="pt">13.2</line_height>

</style>

<tux:section-label id="B12">

<style>

<text-indent unit="pt">6</text-indent>

<rule-color>black</rule-color>

<text-transform>normal</text-transform>

<vertical-align>bottom</vertical-align>

</style>

</tux:section-label>

<tux:section-title1 id="B13">

<style>

<text-indent unit="in">0</text-indent>

<text-align>justify</text-align>

<word-break>hyphenate</word-break>

<column-span>all</column-span>

<vertical-align>bottom</vertical-align>

</style>

</tux:section-title1>

</tux:section1>

</styles>

5 CSSML to CSS3 conversion

CSSML provides a more elegant syntax for CSS and
implements various features that are useful for creat-
ing stylesheets and LATEX templates. CSSML allows
us to use formatting, nested rules, inline imports,
etc., all with CSS compatibility. XSLT is used to
transform the CSSML XML to CSS format or to a
LATEX class file using the fontspec package.

5.1 Formatting

<tux:paragraph

xmlns:tux="http://www.tnq.co.in/TUX">

<style>

<font-name>Times</font-name>

<font-size unit="pt">11</font-size>

<line_height unit="pt">13</line_height>

<text-indent unit="pt">11</text-indent>

</style>

</tux:paragraph>

@namespace tux "http://www.tnq.co.in/TUX";

tux|paragraph { font-family: Times;

font-size: 11pt;

line-height: 13pt;

text-indent: 11pt; }

5.2 Nesting

<tux:section1>

<style>

<font-family>Times</font-family>

<font-size unit="pt">11</font-size>

<font-weight>Bold</font-weight>

<line_height unit="pt">12</line_height>

</style>

<tux:section-label id="B12">

<style>

<text-indent unit="pt">6</text-indent>

</style>

</tux:section-label>

<tux:section-title id="B13">

<style><text-align>left</text-align></style>

</tux:section-title>

</tux:section1>

@namespace tux "http://www.tnq.co.in/TUX";

tux|section1 { font-family: Times;

font-size: 11pt;

line-height: 12pt;

font-weight: bold; }

tux|section1>tux|section-label

{ text-indent:6pt; }

tux|section1>tux|section-title

{ text-align:left; }

5.3 Selecting nodes

XPath is used to select nodes instead of CSS selectors.
Here are some examples of CSS to XPath mappings:

CSS selectors XPath pattern

h1p h1//p (matches any p element
that is a descendant of an h1

element)

h1>p h1/p (matches any p element
that is a child of an element h1)

p:first-child *[1]/self::p (matches element
p when p is the first child of its
parent)

h1+h2 h1/following-sibling::*[1]

/self::h2 (matches any h1

element immediately preceded
by an element h2)

An XML model of CSS3 as an XLATEX-TEXML-HTML5 stylesheet language



284 TUGboat, Volume 32 (2011), No. 3

The above table just provides a rough idea of how it
is done, and by no means provides an exhaustive list
of all CSS3 selectors.

6 CSSML to TEX font conversion

We use the fontspec package for font definitions.
This package allows users of X ETEX or LuaTEX to
load OpenType fonts in a LATEX document. No font
installation is necessary, and font features can be se-
lected and used as desired throughout the document.

X ETEX and LuaTEX also allow fonts to be loaded
by file name instead of font name. When you have
a very large collection of fonts, you will sometimes
not wish to have them all installed in your system’s
font directories. In this case, it is more convenient
to load them from a different location on your disk.

6.1 Font declaration example

In CSSML:

<font-group>

<font-family>Times</font-family>

<font-style-1>Times CG</font-style-1>

<font-style-2>Times-Bold</font-style-2>

<font-style-3>Times-Italic</font-style-3>

<font-style-4>Times-BoldItalic</font-style-4>

<font-style-5>Times-BoldSC</font-style-5>

</font-group>

Using fontspec in LATEX:

\fontspec[

BoldFont = Times-Bold.otf,

ItalicFont = Times-Italic.otf,

BoldItalicFont = Times-BoldItalic.otf,

SmallCaps = Times-BoldSC.otf,

]{Times.otf}

6.2 Paragraph style example

In CSSML:

<tux:paragraph>

<style>

<font-name>Times</font-name>

<font-size unit="pt">11</font-size>

<line_height unit="pt">13</line_height>

<text-indent unit="pt">11</text-indent>

</style>

</tux:paragraph>

Using fontspec in LATEX:

\def\normalsize{%

\fontsize{11}{13}%

\fontspec{Times}%

\paraindent=11\p@

}

6.3 Section heading style example

In CSSML:

<tux:section1>

<style test="section1">

<font-family>Times</font-family>

<font-size unit="pt">11</font-size>

<line-height unit="pt">13</line-height>

</style>

<tux:section-label>

<style test="section1">

<font-variant>Bold</font-variant>

</style></tux:section-label>

<tux:section-title>

<style test="section1">

<text-align>center</text-align>

<margin-top unit="pt">12</margin-top>

<margin-bottom unit="pt">6</margin-bottom>

</style>

</tux:section-title>

</tux:section1>

In LATEX:

\newcommand\section{\@startsection

{section}%

{1}%

{\z@}%

{-12\p@ \@plus -2\p@ \@minus -2\p@}%

{6\p@}%

{\centering\fontsize{11}{13}%

\selectfont\bfseries}%

}

References

[1] http://www.w3.org/TR/html5.
A vocabulary and associated APIs for
HTML and XHTML. W3C Working Draft,
25 May 2011.

[2] http://www.w3.org/TR/2011/
REC-css3-selectors-20110929.
Selectors Level 3. W3C Recommendation,
29 September 2011.

[3] http://omega.enstb.org/xlatex.
A DTD/schema which is very close to LATEX.

[4] http://getfo.org/texml. An XML syntax
for TEX.

[5] http://blogs.adobe.com/indesignsdk/
category/idml. IDML for representing
InDesign content.

[6] http://xml.openoffice.org/general.html.
OpenOffice.org XML file format.

[7] http://sass-lang.com. Syntactically
Awesome Stylesheets.

⋄ S. Sankar, S. Mahalakshmi and L. Ganesh

TNQ Books and Journals

Chennai, India

sankar (at) tnq dot co dot in

S. Sankar, S. Mahalakshmi and L. Ganesh



TUGboat, Volume 32 (2011), No. 3 285

Towards evidence-based typography:

Literature review and experiment design

Boris Veytsman and Leyla Akhmadeeva

Abstract

During several centuries of typography many rules
have been developed purporting to ensure better
legibility and readability of printed copy. However,
modern experimental research questions the absolute
importance of these rules.

In this paper we provide a short review of the
existing literature and discuss an experimental design
for the work we are planning to perform.

1 Introduction

Typography is both a science and an art with sev-
eral hundred years of history—or, if we count its
ancestor, calligraphy, with several thousand years
of history. A beginning typographer faces a large
amount of knowledge and rules (see, e.g. [8]): for
example, that serifed fonts improve readability of
body texts, while sans serif is good for advertising
and posters; that we know the optimal number of
words per line and lines per page, etc. Some of these
rules are æsthetic ones, while some are purported to
reflect the neurophysiology of reading. With respect
to the latter, we can ask, how do we know what we
know? The fact that sometimes these recommen-
dations are contradictory—even when offered by
one great typographer (compare Tschichold in [36]
and [37]!)—adds to the confusion.

The situation here may resemble the history of
medical science (and art!). Centuries of practical
medicine resulted in a vast number of rules and
methods of cure (see a fascinating medical book of the
1600–1700s [16]). Some of them we now know to be
reasonable, like the use of diuretics for lowering blood
pressure. Some, like purging, have much narrower
applicability than was assumed in the past. Some
rules turned out to be ineffective or even harmful,
like the unrestrained use of bloodletting. Modern
evidence-based medicine tries to use a more scientific
approach to these rules, putting empirical knowledge
in a more formal framework [18].

In this talk we discuss the applicability of an
evidence-based approach to typography. While it is
difficult to measure the beauty of the book page, we
can measure the readability and the understandabil-
ity of the text and their dependence on the fonts, type
area dimensions and other typographic parameters.
This area has been actively developing in the last
decade. The modern studies question the widespread
notions of classical typography such as the use of

serifed fonts [3,6,32], the mix of minuscule and majus-
cule letters in body texts [4, 33], text layout [15, 40],
x-height [25] and other factors [14, 27, 35]. This re-
search was stimulated by the challenges presented by
new technologies [6, 17, 21, 24, 34], the use of type in
messages and signage [12,19,20,38,39] and special sit-
uations like texts for low vision readers [2,4,32], drug
information leaflets and other medical data [7,13,29].

An overwhelming majority of published studies
deals with English texts, while there are some works
on Arabic [1], Chinese [22], Japanese [5, 21] and Ko-
rean [23] typography. We could find no comparable
research on Cyrillic scripts and text perception by
Russian readers.

Our group works on a large scale study of the
neurophysiology of reading for Russian subjects. We
plan to collect a database of readability and under-
standability as dependent on typographic parameters
for Cyrillic texts. In this paper we provide the litera-
ture review and discuss the setup of the experiments.

2 The ecological hypothesis and

its consequences

The easiest things to measure for the psychophysiol-
ogy of reading are legibility [31] and readability [26]:
the abilities to distinguish between the letters and to
read words without errors. There are many studies
that try to correlate these metrics with the typog-
raphy of the text. Some of the results might be
surprising for practitioners: for example, it seems
that uppercase text is more readable than lower-
case [4, 33] and it is not clear whether serifs improve
legibility or not [3, 6, 30]. One should keep in mind,
however, that a font is a collection of features, and
when one compares, for example, Times with Ar-
ial, one does not compare just a serifed font with a
sans serifed one: many other features are different
between these fonts, and the comparisons have too
many confounding factors. It is interesting that one
study [28] suggested the use of METAFONT to have a
better control of font features for such comparisons.

The study of the influence of font size on the
legibility and readability is more straightforward.
In the recent work [25] a methodical study of such
comparisons leads to the following result: legibility
suffers when the fonts are too small (x-height smaller
than about 4 pt) or too large (x-height larger than
about 40 pt), but between these limits lies the “fluent
reading range” where the ease of reading largely does
not depend on the size. After studying fonts in the
old and new copy the authors find that the most of it
lies in this zone. Thus they formulate the ecological

hypothesis:

Towards evidence-based typography: Literature review and experiment design



286 TUGboat, Volume 32 (2011), No. 3

. . . [F]luent reading is restricted to a broad
but limited range of print sizes. The essential
claim of our ecological hypothesis is that print
sizes in most contemporary and historical pub-
lications fall within this fluent range [25].

The hypothesis is formulated for font sizes only. It
has a quasi-Darwinian origin: a publisher that sys-
tematically makes copy outside of the fluent range
would probably go out of business. Interestingly,
there are some texts that are not meant to be read:
for example, the (in)famous small print in legal con-
tracts and drug inserts. In many cases this print is
obviously outside the fluent range. This fact proba-
bly corroborates the ecological hypothesis.

While the authors of [25] do not discuss other
typographic features, it seems reasonable to assume
that they follow the pattern of font sizes: the typogra-
phy of the historical and contemporary publications
lies in the fluent range for a reader with normal or
correctable vision.

Does this mean that typography does not matter
at all?

Some experiments show that such a conclusion is
unwarranted. Lewis and Walker [27] studied the per-
ception of text as a function of the font it is typeset in.
They used the standard (in psychology) technique of
measuring the reaction time for signals: for example,
a person is asked to press one button when she sees
the word “strong” on the screen, and another button
when she sees the word “weak”. When the word
“strong” appears in bold and “weak” in light weight,
the reaction was significantly faster than in the oppo-
site case. Experiments by Brumberger [9–11] show
that the font influences the impressions about the
author formed by the readers. This might show that
typography might be important for other metrics of
reading, besides readability or legibility. This might
be very important because the aim of a book is not
just to be read without errors: it should convey some
message to the reader.

3 Proposed experimental setup

In the proposed experiment we study the influence
of typography on the long term effect of texts on the
example of Russian typography. The subjects are
students of Bashkir State Medical University with
normal or corrected vision, fluent Russian speakers.
They are given short texts in Russian about history
of neurology typeset with different fonts and layouts.
We are going to use TEX for layout and METAFONT

to change the font parameters.1

1 There are several high quality free Cyrillic fonts in META-

FONT format to enable such study.

The subjects are asked to read the texts and
answer questions about them in writing. After this
the texts and the answers are collected.

In one to two weeks the students are again asked
to answer the questions about the texts. The differ-
ence between the number of errors in the first and
the second battery of questions can be used as the
metrics to study the influence of typography on the
rate of long term effect of the texts.

4 Conclusions

The modern research has shown that some typo-
graphic rules of the past are evidently not grounded
in legibility and readability requirements. It is still
not quite clear, however, how and whether more
subtle things such as text impression and long term
effects depend on a work’s typography.

We propose a study of how typography influ-
ences the way the text is remembered. Such study
might be of interest to the publishers of textbook
and study materials, especially for Cyrillic script.

References

[1] I. M. Al-Harkan and M. Z. Ramadan.
Effects of pixel shape and color, and matrix
pixel density of Arabic digital typeface on
characters’ legibility. Int. J. Ind. Ergon.,
35(7):652–664, July 2005.

[2] A. Arditi. Adjustable typography: An
approach to enhancing low vision text
accessibility. Ergonomics, 47(5):469–482, April
2004.

[3] A. Arditi and J. Cho. Serifs and font legibility.
Vision Res., 45(23):2926–2933, 2005.

[4] A. Arditi and J. Cho. Letter case and text
legibility in normal and low vision. Vision

Res., 47(19):2499–2505, September 2007.

[5] M. Ayama, H. Ujike, W. Iwai, M. Funakawa,
and K. Okajima. Effects of contrast and
character size upon legibility of Japanese text
stimuli presented on visual display terminal.
Opt. Rev., 14(1):48–56, January–February
2007.

[6] M. L. Bernard, B. S. Chaparro, M. M. Mills,
and C. Halcomb. Comparing the effects
of text size and format on the readibility
of computer-displayed Times New Roman
and Arial text. Int. J. Hum.-Comput. Stud.,
59(6):823–835, December 2003.

[7] L. Bix, H. Lockhart, S. Selke, F. Cardoso,
and M. Olejnik. Is x-height a better indicator
of legibility than type size for drug labels?
Packag. Technol. Sci., 16(5):199–207,
September–October 2003.

Boris Veytsman and Leyla Akhmadeeva



TUGboat, Volume 32 (2011), No. 3 287

[8] R. Bringhurst. The Elements of Typographic

Style. Hartley & Marks, Publishers, Vancouver,
BC, Canada, 2004.

[9] E. Brumberger. The rhetoric of
typography: Effects on reading time,
reading comprehension, and perceptions of
ethos. Technical Communication, 51(1):13–24,
2004.

[10] E. R. Brumberger. The rhetoric of typography:
The awareness and impact of typeface
appropriateness. Technical Communication,
50(2):224–231, 2003.

[11] E. R. Brumberger. The rhetoric of typography:
The persona of typeface and text. Technical

Communication, 50(2):206–223, 2003.

[12] P. J. Carlson and A. Holick. Maximizing
legibility of unlit freeway guide signs
with Clearview font and combinations of
retroreflective sheeting materials. In Traffic

Control Devices, Visibility, and Rail-Highway

Grade Crossings 2005, number 1918 in
Transportation Research Record, pages 26–34.
National Academy Press, 2005.

[13] A. Chubaty, C. A. Sadowski, and
A. G. Carrie. Typeface legibility of
patient information leaflets intended for
community-dwelling seniors. Age & Ageing,
38(4):441–447, July 2009.

[14] A. Coronel-Beltran and J. Alvarez-Borrego.
Comparative analysis between different font
types and letter styles using a nonlinear
invariant digital correlation. J. Modern Optics,
57(1):58–64, 2010.

[15] M. dos Santos Lonsdale, M. C. Dyson, and
L. Reynolds. Reading in examination-type
situations: The effects of text layout on
performance. J. Res. Read., 29(4):433–453,
November 2006.

[16] T. Dover. The Ancient Physician’s Legacy

to his Country: Being what he has collected

himself, in Fifty-eight Years Practice: Or,

an Account of the several Diseases incident

to Mankind, Described in so plain a Manner,

That any Person may know the Nature of his

own Disease, Together with several Remedies

for each Distemper, faithfully let down,

Designed for the Use of all Private Families.
Henry Kent, London, 1742.

[17] M. C. Dyson. How physical text layout affects
reading from screen. Behav. Inf. Technol.,
23(6):377–393, November–December 2004.

[18] A. S. Elstein. On the origins and development
of evidence-based medicine and medical
decision making. Inflamm. Res., 53
(Suppl. 2):S184–S189, August 2004.

[19] J. L. Gabbard, J. E. Swan, and D. Hix. The
effects of text drawing styles, background
textures, and natural lighting on text
legibility in outdoor augmented reality.
Presence, 15(1):16–32, February 2006.

[20] P. M. Garvey, K. N. Chirwa, D. T. Meeker,
M. T. Pietrucha, A. Z. Zineddin, R. S.
Ghebrial, and J. Montalbano. New font and
arrow for national park service guide signs.
In Traffic Control Devices, Visibility, and

Rail-Highway Grade Crossings 2004, number
1862 in Transportation Research Record,
pages 1–9. National Academy Press, 2004.

[21] S. Hasegawa, K. Fujikake, M. Omori, and
M. Miyao. Readability of characters on mobile
phone liquid crystal displays. Int. J. Occup.

Saf. Ergon., 14(3):293–304, 2008.

[22] D.-L. Huang, P.-L. P. Rau, and Y. Liu. Effects
of font size, display resolution and task type
on reading Chinese fonts from mobile devices.
Int. J. Ind. Ergonomics, 39(1):81–89, January
2009.

[23] Y.-K. Kong, I. Lee, M.-C. Jung, and Y.-W.
Song. The effects of age, viewing distance,
display type, font type, colour contrast and
number of syllables on the legibility of Korean
characters. Ergonomics, 54(5):453–465, 2011.

[24] D.-S. Lee, K.-K. Shieh, S.-C. Jeng, and I.-H.
Shen. Effect of character size and lighting
on legibility of electronic papers. Displays,
29(1):10–17, January 2008.

[25] G. E. Legge and C. A. Bigelow. Does print
size matter for reading? A review of findings
from vision science and typography. J. Vision,
11(5)(8):1–22, 2011.

[26] G. E. Legge, D. G. Pelli, G. S. Rubin, and
M. M. Schleske. Psychophysics of reading—I.
Normal vision. Vision Research, 25(2):239–252,
1985.

[27] C. Lewis and P. Walker. Typographic
influences on reading. British J. Psychol.,
80:241–257, 1989.

[28] L. Liu and A. Arditi. Apparent string
shortening concomitant with letter crowding.
Vision Research, 40(9):1059–1067, 2000.

Towards evidence-based typography: Literature review and experiment design



288 TUGboat, Volume 32 (2011), No. 3

[29] M. A. Mackey and M. Metz. Ease of reading
of mandatory information on Canadian food
product labels. Int. J. Consumer Studies,
33(4):369–381, July 2009.

[30] M. S. McCarthy and D. L. Mothersbaugh.
Effects of typographic factors in
advertising-based persuasion: A general
model and initial empirical tests. Psychology &

Marketing, 19(7–8):663–691, 2002.

[31] L. Reynolds. Legibility studies— their
relevance to present-day documentation
methods. J. Doc., 35(4):307–340, 1979.

[32] E. Russell-Minda, J. W. Jutai, J. G. Strong,
K. A. Campbell, D. Gold, L. Pretty, and
L. Wilmot. The legibility of typefaces for
readers with low vision: A research review.
J. Vis. Impair. Blind., 101(7):402–415, July
2007.

[33] J. E. Sheedy, M. V. Subbaram, A. B.
Zimmerman, and J. R. Hayes. Text legibility
and the letter superiority effect. Hum. Factors,
47(4):797–815, Winter 2005.

[34] I.-H. Shen, K.-K. Shieh, C.-Y. Chao, and D.-S.
Lee. Lighting, font style, and polarity on visual
performance and visual fatigue with electronic
paper displays. Displays, 30(2):53–58, April
2009.

[35] M. V. Subbaram, J. E. Sheedy, and J. R.
Hayes. Effects of font type, smoothing, and
stroke width on legibility. Invest. Ophthalmol.

Vis. Sci., 45(Suppl. 2):4354, April 2004.

[36] J. Tschichold. The Form of the Book. Essays

on the Morality of Good Design. Hartley &
Marks, Point Roberts, Washington, 1991.

[37] J. Tschichold. The New Typography. University
of California Press, Berkeley and Los Angeles,
CA, 1998.

[38] B. R. Ullman, G. L. Ullman, C. L. Dudek,
and E. A. Ramirez. Legibility distances
of smaller letters in changeable message
signs with light-emitting diodes. In Traffic

Control Devices, Visibility, and Rail-Highway

Grade Crossings 2005, number 1918 in
Transportation Research Record, pages 56–62.
National Academy Press, 2005.

[39] J. H. Wang and Y. Cao. A human factors
study on message design of variable message
sign. Int. J. Ind. Eng.—Theory Appl. Pract.,
10(4):339–344, December 2003.

[40] D. Wendt. Improving the legibility
of textbooks—effects of wording and
typographic design. Vis. Lang., 16(1):88–93,
1982.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

⋄ Leyla Akhmadeeva

Bashkir State Medical University

3 Lenina Str. Ufa, 450000, Russia

la (at) ufaneuro dot org

Boris Veytsman and Leyla Akhmadeeva



TUGboat, Volume 32 (2011), No. 3 289

A comparative study of methods

for bibliographies

Jean-Michel Hufflen

Abstract

First, we recall the successive steps of the task per-
formed by a bibliography processor such as BibTEX.
Then we sketch a brief history of the successive meth-
ods and fashions of processing the bibliographies of
(LA)TEX documents. In particular, we show what is
new in the LATEX2ε packages natbib, jurabib, and
biblatex. The problems unsolved or with difficult
implementations are listed, and we show how other
processors like Biber or MlBibTEX can help.
Keywords Bibliographies, bibliography proces-
sors, bibliography styles, Tib, BibTEX, MlBibTEX,
Biber, natbib package, jurabib package, biblatex pack-
age, sorting bibliographies, updating bibliography
database files.

Introduction

As mentioned at the beginning of “ ‘Bibliography
Generation”, the 13th chapter of The LATEX Com-
panion’s Second Edition [35], the items of a printed
document’s bibliography may be composed manually,
but this method is not recommended, since the result
may not be reusable within another context. Indeed,
bibliography layouts are very diverse: a publisher
may require that authors’ names are written in ex-
tenso as far as possible, whereas another prefers for
first names to be abbreviated using only initials, etc.
So the best way to deal with bibliographies is the use
of bibliography database files, containing the whole
information about bibliographical items. These data-
base files are searched by a bibliography processor,
which builds ‘References’ sections for printed or on-
line documents.

As we recall below, BibTEX [38] was unrivalled
for a long time as the bibliography processor used
in conjunction with the LATEX word processor. Now
the landscape is changing and other comparable pro-
grams have come out. So this article aims to focus
on the directions taken by BibTEX and its possible
successors. In [19], we compared the programming
languages used to design bibliography styles, con-
trolling bibliographies’ layout. The present article’s
purpose is different: we are interested in the evolu-
tion of some successive bibliography processors used
in conjunction with LATEX, this evolution still being
in progress. First, in Section 1, we delineate the
tasks to be performed by such a bibliography proces-
sor. We also explain the requirements for how such a
program should be updated. Then Section 2 sketches

the features of these successive bibliography proces-
sors. Finally, a synthesis is given in Section 3. As
mentioned above, the present article only covers bib-
liography processors used in conjunction with LATEX,
it is complemented by [25] about bibliography proces-
sors used in conjunction with ConTEXt [11], another
format built out of TEX. Reading this article only
requires basic knowledge about LATEX and BibTEX.
Of course, the short descriptions we give hereafter
do not aim to replace the complete documentation of
the corresponding tools. Readers interested in typo-
graphical conventions for bibliographies can consult
[4, Ch. 10] and [7, Ch. 15 & 16].

1 Tasks of a bibliography processor

In this section, we summarise the tasks to be per-
formed by a bibliography processor such as BibTEX.
Along the way, we give the terminology used through-
out this article. Then we point out the features that
are still unsolved or with difficult implementations.
Of course, a bibliography processor works in conjunc-
tion with a text processor such as LATEX or ConTEXt,
denoted by ‘the word processor’ in the following.

End-users can use bibliography database files,
containing bibliographical entries. The main role
of a bibliography processor is to extract the biblio-
graphical references of a document from these entries.
According to BibTEX’s standard use, bibliographical
entries (resp. references) are stored in .bib (resp. .bbl)
files. Let us notice that in some documents, there
is no ‘References’ section, but rather bibliographical
references are given as footnotes wherever they are
cited. In other words, bibliographical references exist
as resources and are intended to be typeset — so the
bibliography processor must build them as process-
able by the word processor—possibly as a section
or sparsely. Sometimes there are several ‘References’
sections, because each chapter of an important book
has its own bibliography, or a unique bibliography is
divided into several rubrics.

When several bibliographical references are to
be grouped into a section, some bibliographies are
unsorted, that is, the order of items must be the order
of first citations of these items throughout the docu-
ment. In practice, most bibliographies are ‘sorted’,
most often according to first the authors’ names,1

second the dates: in such a case, it is up to the bib-
liography processor to perform this sort operation.
Let us mention that the ‘standard’ sort given above
is not universal: we personally were in charge of

1 . . . or editors’ names, when there is no author, for ex-
ample, for a conference’s complete proceedings.

A comparative study of methods for bibliographies



290 TUGboat, Volume 32 (2011), No. 3

the publication list of our laboratory — the LIFC2 —
when the activity report was written according to the
directives given by the AERES:3 we had to sort this
list first by research teams, second by categories,4

third by years decreasingly, fourth by authors’ names
increasingly, fifth by months decreasingly.

Each bibliographical entry is supposed to be
accessible from a citation key, that is, citation keys
must be non-ambiguous. Source texts written by
end-users only contain citation keys to point to bibli-
ographical resources, whereas results typeset by the
word processor deal with bibliographical keys. It is
up to the bibliography processor to build a mapping
between citation and bibliographical keys. These
bibliographical keys depend on the system chosen;
as an example, they are positive natural numbers in
the number-only system. Sometimes, bibliographical
keys are built from the first letters of authors’ names,
followed by the year and possibly by a letter; so does
BibTEX’s alpha bibliography style. In some other
systems—e.g., the author-date or author-number
system — some parts of an entry can identify it obvi-
ously: cf. [4, Ch. 10] or [35, Ch. 12] for a survey about
these systems. Let us mention that the alpha bib-
liography style belongs to the number-only system,
rather than the author-date one, because bibliograph-
ical keys are univoque — like natural numbers — and
atomic in the sense that you cannot divide them
into an author and year parts. In other words, they
actually work like natural numbers, up to an isomor-
phism.

Given a document, rules governing the layout of
bibliographical references and citations, including or-
dering bibliographical items in a ‘sorted’ ‘References’
section, comprise a bibliography style.

What we have expressed above could have been
put down when BibTEX was designed and put into
action, in the 1980s. Since that time, some addi-
tional requirements have appeared. First, the charac-
ter encoding that was most commonly used at that
time and for a long period was ASCII,5 7-bit based.
Later, some 8-bit extensions—such as Latin 1 or
Latin 26 —allowed some additional characters used
in non-English languages to be included. Then a

2 Laboratoire d’Informatique de l’université de Franche-

Comté.
3 Agence d’Évaluation de la Recherche et de l’Enseigne-

ment Supérieur , that is, ‘agency evaluating research and
university courses’.

4 That is, articles in well-known international journals
and in other international journals, articles in journals having
‘national’ scope, papers in conferences, etc.

5 American Standard Code for Information Interchange.
6 More details about these encodings can be found in [35,

§ 7.5.2].

universal character encoding, Unicode [43], was de-
signed, including some formats7 —such as UTF-8
and UTF-16 — that allow the complete set of Unicode
characters to be represented by byte or double-byte
sequences. A modern bibliography processor should
be able to deal with all these different encodings,
in particular UTF-8, which is becoming more and
more common. Another point related to multilin-
guism may be viewed as a particular case of software
localisation. Let us give an example about person
names: first names are usually put before last names
in most languages written with the Latin alphabet;
as a counter-example, that is not the case for the
Hungarian language, where last names come first; a
style suitable for bibliographies of documents written
in Hungarian should take this point into account. Re-
garding the document’s language, some information
included in bibliographical entries should be included
or discarded. For example, a transliteration of titles
of works in Russian written with the Cyrillic alpha-
bet may be of interest for a document in English,
but would be useless for a document in Russian.

A modern bibliography processor should gen-
erate source texts for word processors that typeset
documents to be printed — as mentioned above — but
should also be able to build bibliographies for online
documents. Besides, let us recall that for several
years, the XML8 metalanguage has become a central
formalism for data interchange in general and for
production process of documents in particular. In
other words, a bibliography processor should be able
to deal with languages using XML-like syntax—a
good example is XSL-FO9 —and languages for the
Web, such as (X)HTML.10

Last but not least, a bibliography processor for
(LA)TEX source texts should be able to deal with bib-
liography database (.bib) files written according to
BibTEX’s format, because of backward compatibil-
ity. As proof of this program’s success, there is a
huge number of such files in end-users’ directories.
However, that may be also viewed as legacy. Any-
way, if another format for bibliographical entries was
adopted, a converter from .bib files into this new
format would be needed.

7 ‘UTF’ stands for ‘Unicode Transformation Format’.
8 EXtensible Markup Language. Readers interested in an

introductory book to this formalism can consult [41].
9 EXtensible Stylesheet Language —Formatting Objects.

This XML dialect aims to describe high-quality output prints.
See [40] for an introduction to it.

10 (EXtensible) HyperText Markup Language. XHTML

is a reformulation of HTML —the original language of Web
pages—using XML conventions. [36] is a good introduction
to these languages.

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 291

%A Mike Newton

%T Resurgence

%I Worldwide Library

%S Don Pendleton’s Mack Bolan

%N 141

%D |APR| 2011

%K additional key

Figure 1: Example using the Refer format.

2 A little bit of history

2.1 Early attempt

As far as we know, the first bibliography processor
was Refer, used with the troff11 text processor, al-
ready present within the first versions of the Unix

system [2]. As shown in Fig. 1, the Refer format
for bibliographical entries—used within .ref files—
is line-oriented. Unlike BibTEX’s format, it does
not provide explicit information about entry types,
such as article, book, . . . Such information is to be
determined dynamically, when entries are processed.
A similar bibliography processor for TEX source files
using this Refer format has been developed: Tib [1];
it seems that Tib has been used mainly for Plain
TEX source texts. Tib was written in C [28]; like
Refer, it is a preprocessor in the sense that the source
text Tib processes may contain incomplete citations,
surrounded by ‘[.’ and ‘.]’:

... see [.mack bolan resurgence.], ... (1)

and such citations are replaced by bibliographical
keys within the result built by Tib:

... see \Lcitemark Newton\Citebreak

2011\Rcitemark, ...

‘.[]’ at the beginning of a line within the source text
processed by Tib is replaced within the result by
the source text for the ‘References’ section. Fig. 1’s
entry would appear inside such a section as shown in
Fig. 2. It can be seen that such a reference uses some
TEX commands introduced by Tib to memoize values
associated with fields. Then the \Refformat com-
mand formats the complete reference. Tib provides
some styles to customise this operation. Likewise,
Tib allows citation keys to be numbers or alpha-
like keys, and provides additional commands such
as \Lcitemark and \Rcitemark to control citation
keys’ layout.

11 Several steps are needed to make clear this name’s ety-
mology. One of the first text formatting programs was runoff —
for ‘I’ll run off a document’ — written in the mid-1960s. When
this program was adapted in 1969, the new name was abridged
in ‘roff’. Further reimplementations of roff were called ‘nroff’ —
for ‘Newer ROFF’—and ‘troff’— for ‘Typesetter ROFF’.
There is a modern version of this program, groff, provided
by the GNU (Gnu’s Not Unix) project. The groff package
includes a new version of Refer.

{\Resetstrings%

\def\Loccittest{}\def\Abbtest{}%

\def\Capssmallcapstest{}\def\Edabbtest{}%

\def\Edcapsmallcapstest{}\def\Underlinetest{}%

\def\NoArev{0}\def\NoErev{0}\def\Acnt{1}%

\def\Ecnt{0}\def\acnt{0}\def\ecnt{0}%

\def\Ftest{ }\def\Fstr{10}%

\def\Atest{ }\def\Astr{Mike Newton}%

\def\Ttest{ }\def\Tstr{Resurgence}%

\def\Itest{ }\def\Istr{Worldwide Library}%

\def\Stest{ }%

\def\Sstr{Don Pendleton’s Mack Bolan}%

\def\Ntest{ }\def\Nstr{141}%

\def\Dtest{ }\def\Dstr{April 2011}%

\Refformat}

Figure 2: Reference generated by Tib.

When Tib processes the argument of an incom-
plete citation, it truncates each word to 6 characters,
and looks for a unique entry including all these trun-
cated words as prefixes. For example, the entry given
in Fig. 1 matches since it includes the three words
‘mack’, ‘bolan’, ‘resurg’, given in (1). You can use
keys at the lines labelled by %K—values associated
with this field are not printed out in references—
but in practice, many Tib users put authors’ names
and significant words of a title in incomplete cita-
tions. Symbols can be defined: in Fig. 1, we use
this feature as a workaround that allows the month
information to be put or not, depending on the value
associated with the APR symbol. Let us notice that
Tib can produce sorted bibliographies: when you call
Tib, you can specify a first field for a primary sort
key, a second field for a second sort key, and so on.
However, only lexicographical sorts are possible: for
example, 2 comes after 1999! Of course, this point is
not very important in practice because years coming
from ‘actual’ bibliography database files are often
close to each other; it is rare to include entries for
documents written in the 1st and 20th centuries, but
in such a case, the sort operation would fail.12 In
addition, let us recall that values associated with %D

fields are supposed to be dates. From a theoretical
point of view, some accurate encoding would allow
complete dates — years, months, days — to be sorted
but this operation is quite tedious and in practice,
only years are used.

2.2 BibTEX’s age

The first edition of the LATEX manual included an
introduction to BibTEX; [32, App. B] reads:

12 This error disappears if ‘2’ is replaced by ‘0002’ in the
values associated with the %D field. But that causes ‘0002’ to
be printed in the generated document processed by (LA)TEX,
so it is an imperfect workaround.

A comparative study of methods for bibliographies



292 TUGboat, Volume 32 (2011), No. 3

@BOOK{newton2011,

AUTHOR = {Mike Newton},

TITLE = {Resurgence},

SERIES = {Don Pendleton’s Mack Bolan},

NUMBER = 141,

PUBLISHER = {Worldwide Library},

TOTALPAGES = 320,

MONTH = apr,

YEAR = 2011}

Figure 3: Example using BibTEX’s format.

Once you learn to use BIBTEX, you will find
it easier to let BIBTEX make your reference
list than to do it yourself. [. . . ]

The BibTEX program was written in the WEB system,
used to program TEX’s kernel.13 In fact, BibTEX
was initially designed to work in conjunction with
the SCRIBE word processor14 [42]. That is why the
markup of .bib files is introduced with an ‘@’ sign:
this convention originates from SCRIBE.15 Fig. 3 is
the specification, for BibTEX, of the entry given in
Fig. 1 in the Refer format.

For many years, BibTEX has been intensively
used and was unrivalled as the bibliography processor
associated with LATEX. In comparison with Refer or
Tib, BibTEX is not a preprocessor: users keep the
same source text before and after running BibTEX.
To cite Fig. 3’s entry, just put:

\cite{newton2011}

inside your source text, as mentioned in any LATEX
manual. In the typeset result, the ‘References’ sec-
tion appears where a \bibliography command has
been put down within the source text.16 In fact,
given a source (.tex) file, BibTEX never reads it, and
only parses the corresponding auxiliary (.aux) file
generated by LATEX in order to store information
about cross-references17 [35, § 12.1.3]. BibTEX is a
very robust program, very suitable for bibliographi-
cal entries concerning works written in English, and
whose authors or editors have English or American
names. As a proof that BibTEX is widespread, you
can find a huge number of .bib files on the Web.
In addition, there are many bibliography database

13 A recent description of the capabilities of this WEB

system, related to literate programming, is [30].
14

SCRIBE influenced LATEX’s design by introducing the no-
tion of document style, the ancestor of the notion of LATEX2ε’s
document class.

15 . . . and is still followed by Texinfo, the program used to
typeset the GNU project’s software manuals [6].

16 . . . in most of BibTEX’s bibliography styles. A counter-
example will be given in § 2.4.

17 Let f be a file name without suffix, ‘bibtex f ’ is equiva-
lent to ‘bibtex f.aux’.

\documentclass{article}

\usepackage{natbib}

\begin{document}

\citep{newton2011} is a thriller. The Albanian

Mafia is powerful, as mentioned by

\citeauthor{newton2011}.

\bibliographystyle{plainnat}

\bibliography{mb} % That is, Fig. 3.

\end{document}

Figure 4: Example using the natbib package.

\documentclass{article}

\usepackage{jurabib}

\jurabibsetup{titleformat=italic}

\begin{document}

\citetitleonly{newton2011} is a thriller. The

Albanian Mafia is powerful, as mentioned by

\cite{newton2011}.

\bibliographystyle{jurabib}

\bibliography{mb}

\end{document}

Figure 5: Example using the jurabib package.

management tools based on the .bib format, some
graphical, as reported in [35, § 13.4] and [44, § 9.1].

As mentioned in [35, § 12.1.2], the number-only
system is the default method supported by standard
LATEX, even if bibliographical keys may be identifiers,
as in the alpha bibliography style. After some at-
tempts [35, § 12.3.1], the author-date system has been
implemented successfully by the natbib package — as
well as a simplified version of the author-number
system [35, §§ 12.3.2 & 12.4]—used in conjunction
with accurate bibliography styles. In particular, this
package provides an interface with references, in that
some commands — e.g., \citeauthor, \citeyear—
can get access to particular fields. An example is
given in Fig. 4, and typesetting it looks like this:

[Newton, 2011] is a thriller. The Albanian
Mafia is powerful, as mentioned by Newton.

A more complete interface is provided by the jurabib

package [35, § 12.5.1], implementing the author-date
and short-title systems. The example given in Fig. 5
results in:18

Resurgence is a thriller. The Albanian Mafia
is powerful, as mentioned by Newton.

(2)

Such an approach is possible since the \bibitem
command’s optional argument—giving a citation

18 In fact, jurabib’s \citetitleonly command, used in
Fig. 5, uses the contents of the SHORTTITLE field if it is available,
the contents of the TITLE field otherwise [35, pp. 719–720].

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 293

\bibitem[Newton(2011)]{newton2011} Mike Newton.

\newblock \emph{Resurgence}.

\newblock Number 141 in Don Pendleton’s Mack

Bolan. Worldwide Library, April 2011.

\end{document}

Figure 6: Reference for the natbib package.

key [35, § 12.1.2]— is structured. This structure
remains light for the natbib package (cf. Fig. 6), be-
comes heavy for the jurabib package (cf. Fig. 7).

As we can see in Fig. 7 about a reference built
by a bibliography style suitable for the jurabib pack-
age, the text following a \bibitem command and
its argument is marked up with LATEX commands.
In fact, such a reference inside a bibliography is not
directly formatted by the jurabib bibliography style,
but this operation is deferred to LATEX, since these
commands are defined within the jurabib package.
For example, the \bibtfont command is used for
books’ titles.19 As another example, the \bibnf

command applies to five arguments representing the
components of a person name— in extenso and ab-
breviated — and controls the layout of such a name.
Here is the default layout of a reference built by the
jurabib bibliography style:

Newton, Mike: Resurgence. Worldwide
Library, April 2011, Don Pendleton’s
Mack Bolan 141

Considering a name of an author, if you want the
last name to be typeset using small capitals, followed
by the first name surrounded by parentheses when
the von and Junior parts are absent, just redefine
the following commands:

\renewcommand{\biblnfont}[1]{\textsc{#1}}

\renewcommand{\bibfnfont}[1]{\textrm{#1}}

\renewcommand{\jbNotRevedNoVonNoJr}{%

\biblnfmt{\jbLast} %

(\bibfnfmt{\jbCheckedFirst})}

BibTEX has some drawbacks, even if they are
solved by workarounds. In fact, since BibTEX has
been mainly used for texts to be processed by LATEX,
users get used to put LATEX commands inside values
associated with BibTEX fields. That idea is quite
good, but the problem is that BibTEX’s conventions
are not LATEX’s. As a simple example, you can write
‘Pierre V\’{e}ry’ within a LATEX source text, but
you must put:

AUTHOR = {Pierre V{\’{e}}ry}

19 As shown by Fig. 7, this \bibtfont command is used
when the reference is typeset. If you want to customise the
titles’ layout when they appear throughout your text, use the
titleformat option of the jurabib package or the \jurabibsetup

command, as shown in Fig. 5.

\bibitem[{Newton\jbdy {2011}}{}%

{{0}{}{book}{2011}{}{}{}{}%

{Worldwide Library\bibbdsep {} 2011}}%

{{Resurgence}{}{}{2}{}{}{}{}{}}%

]{newton2011}

\jbbibargs {\bibnf {Newton} {Mike} {M.} {} {}}

{Mike Newton} {au}

{\bibtfont {Resurgence}\bibatsep\ \apyformat

{Worldwide Library\bibbdsep {} \aprname\ 2011}

\numberandseries {141}{Don Pendleton’s Mack

Bolan}} {\bibhowcited} \jbdoitem

{{Newton}{Mike}{M.}{}{}} {} {} \bibAnnoteFile

{newton2011}

Figure 7: Reference for the jurabib package.

within a .bib file, especially if you would like to use
the alpha bibliography style, as explained in [35,
pp. 768–769]. Another example, given in [35, p. 767]:

AUTHOR =

{Maria {\MakeUppercase{de} La} Cruz}

in order for the group ‘De La’ to be recognised as
the name’s particle— that is, the von part, w.r.t.
BibTEX’s terminology—even though it does not
begin with a downcase letter, as in BibTEX’s conven-
tions. In fact, this group’s initial uppercase letter
will be typeset by LATEX by means of the predefined
command \MakeUppercase. From a general point of
view, inserting LATEX commands inside such values
is not recommended for .bib files shared by several
users or put on the Web, especially if these com-
mands belong to particular packages or should be
user-defined. Besides, such commands may be mis-
understood by other formats or programs related to
TEX, e.g., ConTEXt or LuaTEX [12]. Finally, these
commands complicate the conversion of .bib files into
HTML pages.20

Of course, these drawbacks have appeared only
recently in relation to the date of BibTEX’s first
version. However, a modern version of a format
for bibliography database files cannot ignore them.
As another drawback, BibTEX — like Tib — provides
only lexicographical sorts, as reported in [18], though
at least end-users can choose their own sort keys.
Last but not least, BibTEX’s bibliography styles
(.bst files) are written using bst [37], an old-fashioned
language using postfixed notations and based on
manipulating a stack.

2.3 BibTEX’s successors

The BibTEX program has remained stable for more
than a decade. A new version (1.0) has been an-
nounced in [39], but is not available yet. Other

20 An example of such a converter is BibTEX2HTML [9].
Other comparable tools are listed in [44, § 9.2].

A comparative study of methods for bibliographies



294 TUGboat, Volume 32 (2011), No. 3

programs, which have come out quite recently, may
be viewed as BibTEX’s successors, in the sense that
they behave like BibTEX: they use .bib files, look
into .aux files. Some aim to replace the bst language
of BibTEX by another programming language, more
modern.

2.3.1 Programs based on BibTEX

In this section, we consider the programs that do
not actually replace BibTEX, because their source
files are revisions of BibTEX’s, or they need BibTEX
when they run.

Whereas BibTEX’s original version, written by
Oren Patashnik, can only deal with ASCII texts,
BibTEX8 [35, § 13.1.1] is a revision of BibTEX that
allows end-users to store .bib files using 8-bit codes
such as Latin 1 or Latin 2. However, you have to
use the same encoding for all the .bib files parsed
when you order BibTEX8 to run. In other words, you
cannot build a ‘References’ section by using a .bib file
encoded in Latin 1 and a second encoded in Latin 2.
In addition, BibTEX8’s capacity can be enlarged by
means of options, whereas the same operation on
BibTEX needs source files to be recompiled.

BibTEXu is another revision of BibTEX, compat-
ible with UTF-8 and integrating sort routines coming
from the ICU21 library. BibTEXu is briefly described
in [44, § 4.3].

We include Bibulus [46] in this section because
Bibulus needs BibTEX whenever it runs. Bibulus
includes the bib2xml bibliography style — written us-
ing the bst language—which converts the selected
entries into an XML-like format. Then such XML

files are processed by a program written using Perl.22

Whereas BibTEX’s bibliography styles written using
bst are monolithic programs— identical parts are
copied verbatim from a style onto another — the fea-
tures of Bibulus’ bibliography styles are controlled
by arguments of the \bibulus command:

\usepackage{bibulus}

\bibulus{

ignorevon,cite=alpha,punctuation=/,

authorfont=\sc}

to be put in a LATEX document’s preamble.

2.3.2 Complete reimplementations

These programs aim to replace BibTEX, that is, pro-
vide the same service. They are ‘complete’ reimple-
mentations in the sense that they do not use source
files of the BibTEX program. Three allow a .bst

21 International Components for Unicode.
22 Practical Extraction and Report Language. A good

introduction to this language is [45].

(book

(@ (id "newton2011") ...)

(author (name (personname (first "Mike")

(last "Newton"))))

(title "Resurgence")

(publisher "Worldwide Library") (year "2011")

(month (apr)) (number "141")

(series "Don Pendleton’s Mack Bolan")

(totalpages "320"))

Figure 8: SXML format used by MlBibTEX.

bibliography style to be run. BibTEX++ [8] and cl-
bibtex [31] compile it to functions written using their
implementation language, Java [26] for the former,
ANSI23 Common Lisp [10] for the latter. This is
provided as a compatibility mode; users are encour-
aged to develop new bibliography styles using these
implementation languages.

MlBibTEX24 [14] is written using the Scheme
functional programming language [27] and allows a
.bst bibliography style to be interpreted [15]. You can
write a bibliography style using Scheme, as we did in
[23]; another choice is to use nbst,25 a language close
to XSLT,26 the language of transformations used for
XML documents [41, Ch. 6]. In fact, when MlBibTEX
parses a .bib file, the result can be viewed as an XML

document, formatted using SXML27 conventions [29],
as shown in Fig. 8. MlBibTEX provides syntactical
extensions for .bib files, described in [14]. Most are
related to MlBibTEX’s features about multilinguism,
others ease the specification of person names [16], as
shown in Fig. 9.

There is a big difference between BibTEX and
MlBibTEX: the latter performs a more precise analy-
sis of .bib files. When a field name is not recognised, a
warning message is emitted.28 That may be viewed
as an advantage: if you type ‘EDITORS = ...’ in-
stead of ‘EDITOR␣ = ...’ inside an entry of type
@INPROCEEDINGS, MlBibTEX will warn you whereas
BibTEX will silently ignore that field. This feature
may also be viewed as a drawback: if you specify a
MONTH field, the associated value must be a symbol
among jan, feb, . . . , dec. Otherwise, MlBibTEX
stops with an error message. This convention may
appear as too restrictive,29 but MlBibTEX can sort

23 American National Standard Institute.
24 MultiLingual BibTEX.
25 New Bibliography STyle.
26 eXtensible Stylesheet Language Transformations.
27 Scheme implementation of XML.
28 . . . but this is just a warning message; the corresponding

information is not lost.
29 If some information about the day of the month is rele-

vant for an entry, some manuals — e.g., [35, § 13.2.3] — recom-
mend to include it into the MONTH field. From our point of view,

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 295

@BOOK{cussler2000,

AUTHOR = {Clive Cussler with Paul Kemprecos},

TITLE = {Blue Gold},

SERIES = {Numa},

PUBLISHER = {Pocket Books},

YEAR = 2000}

AUTHOR = {first => Maria, von => De La,

last => Cruz}

AUTHOR = {Henry Rider Haggard, abbr => H. Rider}

AUTHOR = {John L White, abbr => J. L}

AUTHOR = {org => Word Wide Web Consortium,

sortingkey => W3C}

Figure 9: Syntactical extensions for author names
provided by MlBibTEX.

w.r.t. month names30 whereas BibTEX’s standard
bibliography styles do not. To perform such an op-
eration, month names must be recognised. Likewise,
when years are to be sorted, MlBibTEX applies a
numerical sort whereas Tib and BibTEX sort years as
strings, as mentioned above. So the value associated
with a YEAR field must be an integer;31 otherwise,
an error message is emitted.32 Let us end with men-
tioning that MlBibTEX’s library provides powerful
functions for language-defined lexicographical sorts
[17, 18] and numerical ones. In particular, MlBibTEX
allows successive order keys to be chained easily.33

As mentioned above, MlBibTEX has been suc-
cessfully used to process the bibliography of our

these two values—months and day numbers—are subject
to sort. So mixing them seems to us to be bad technique,
unless a precise format is defined, as done within the biblatex

package’s DATE field (cf. § 2.4). Another solution could be the
introduction of a DAY field.

30 This information is optional, but MlBibTEX addresses
that by means of the function <month-position; the Scheme
expression (<month-position T default-value) returns the
month’s rank if T is an SXML subtree containing month infor-
mation, default-value if this information is not supplied. So
this default value—which is an integer, in practice—allows
us to sort any entry regarding this function’s results.

31 Negative values, for years BCE, are allowed.
32 More precisely, the standard fields subject to additional

check are AUTHOR, EDITOR, YEAR, MONTH, and PAGES.
33 Let us consider a simple example with two person names

whose last names are l0, l1, and first names are f0, f1. The
expression:

(<english? l0 l1 (lambda () (<english? f0 f1)))

yields #t (resp. #f), the true (resp. false) value, if l0 comes
before (resp. after) l1 w.r.t. the lexicographic order in English.
If l0 and l1 are equal, the third argument is called. That
is, if last names are equal, the comparison focuses on first
names. This third argument of MlBibTEX’s order relations
is optional and defaults to (lambda () #f), as for a strict
order relation, that is, irreflexive. MlBibTEX’s functions like
<english? are case-sensitive by default—uppercase letters
take precedence — another optional argument allows users to
customise this behaviour.

@AUTHOR{mb141a, NAME = {Mike Newton}}

@CONFERENCE{tug,

SHORTNAME = {TUG},

LONGNAME = {{\TeX} Users Group Conference},

[YEAR = 2008] ADDRESS = {Cork}, MONTH = jul,

[YEAR = 2011]

ADDRESS = {Trivandrum}, MONTH = oct}

Figure 10: Extensions recognised by CrossTEX.

laboratory’s activity report. As explained in [21],
this bibliography had to conform with very precise
requirements that were not implemented in any bib-
liography style of BibTEX and would be tedious to
program using BibTEX’s language. MlBibTEX has
been also used to populate the official French site for
Open Archives, HAL,34 as reported in [22, 23, 24].
MlBibTEX can handle (LA)TEX commands that pro-
duce accented letters, and it can deal with .bib files
using Latin 1 encoding. A future version is planned
with other encodings such as Latin 2 or UTF-8.

CrossTEX [3] is written in Python [34] and im-
plements a kind of object-oriented paradigm about
bibliography database (.xtx) files. Such files look
like .bib files, but everything is an object, defined
by a key and some fields. More precisely, CrossTEX
extends the cross-reference mechanism of BibTEX.
For example, we can define an author as shown in
Fig. 10 and use it to specify Fig. 3 more concisely:

@BOOK{newton2011, AUTHOR = mb141a, ...}

The initial entry type library of CrossTEX ex-
tends BibTEX’s by other object

definitions such as @AUTHOR. Some objects are
new entry types, such as @PATENT. Fig. 10 also gives
an example of conditional fields, depending on a
field’s value. CrossTEX can be used as a replacement
of BibTEX — in which case only basic BibTEX’s bib-
liography styles have been implemented — and it also
provides a converter from .xtx files into .bib ones and
into pages using HTML.

2.4 The biblatex package

Let us recall that the .bbl files suitable for the jurabib

package contain texts marked up with LATEX com-
mands (cf. Fig. 7), that is, formatting ‘References’
sections is deferred to LATEX. The biblatex pack-
age and bibliography style [33] go further with this
approach, as shown in Fig. 11. In this framework,
BibTEX is used only to sort bibliographical items and
generate labels. A variant of our example is shown
in Fig. 12 using the biblatex package. The result
looks like the same example with the jurabib package:

34 Hyper-Article en Ligne, that is, ‘hyper-article on-line’.

A comparative study of methods for bibliographies



296 TUGboat, Volume 32 (2011), No. 3

\entry{newton2011}{book}{}

\name{author}{1}{}{%

{{}{Newton}{N.}{Mike}{M.}{}{}{}{}}%

}\list{publisher}{1}{{Worldwide Library}}

\strng{namehash}{NM1}

\strng{fullhash}{NM1}

\field{number}{141}

\field{series}{Don Pendleton’s Mack Bolan}

\field{title}{Resurgence}

\field{month}{04}

\field{year}{2011}

\endentry

Figure 11: Reference for the biblatex package.

cf. (2). We can notice commands interfacing the
fields of a reference, such as:

\citeauthor \citetitle \citetitle*35

Only one bibliography style — biblatex — is used with
the biblatex package; thus, the \bibliographystyle
command is not given. The \bibliography com-
mand must be included in the document’s pream-
ble,36 and just specifies the .bib files to be searched
in order to build the bibliography.37 Inserting the
‘References’ section within the document is done by
the \printbibliography command.

If you would like to make a source text generated
by biblatex.bst conform to a particular bibliography
style, you can redefine some LATEX commands intro-
duced by the biblatex package. For example:

\renewcommand{\mkbibnamelast}[1]{%

\textsc{#1}}

\DeclareFieldFormat[book]{number}{\##1}

The former allows last names of people to be typeset
using small capitals; the latter puts a ‘#’ sign just be-
fore the contents of the NUMBER field for a book. You
can organise the elements of a particular entry type,
e.g., \DeclareBibliographyDriver{book}{...}.

Such technique may lead to a great number of
redefinitions; so a better method is to customise the
layout of a bibliography by means of the biblatex

package’s options. In fact, using this package is

35 Within the biblatex package, the \citetitle command
behaves like jurabib’s \citetitleonly command (cf. Foot-
note 18), p. 292), whereas the \citetitle* command always
puts the TITLE field’s value, even if a short title is present.

36 We used TEX Live 2010 for our examples. The man-
ual of biblatex’s next version [33, § 3.5.1] specifies that the
\bibliography command has been deprecated and replaced
by the \addbibresource command [33, § 3.5.1]. More gener-
ally, notice that biblatex’s development is still in progress, so
some details may be slightly out of date. The same remark is
suitable about the Biber program (cf. § 2.5).

37 In BibTEX’s ‘standard’ bibliography styles, this com-
mand serves two purposes: specifying .bib files, and the place
where the bibliography is to be typeset (cf. § 2.2). In some
styles for which references are only typeset as footnotes, the
\nobibliography command may be used instead [35, § 12.5].

\documentclass{article}

\usepackage{biblatex}

\bibliography{mb}

\begin{document}

\citetitle*{newton2011} is a thriller. The

Albanian Mafia is powerful, as mentioned by

\citeauthor{newton2011}.

\printbibliography

\end{document}

Figure 12: Example using the biblatex package.

analogous to using Bibulus (cf. § 2.3.1), in the sense
that a bibliography style is built by assembling its
features as options of this package, according to the
syntax ‘key=value ’.38 A rich library of styles is
provided. For example:

\usepackage[style=authoryear,abbreviate=false,%

uniquename=init,firstinits]{biblatex}

puts the author-date system into action, does not
abbreviate keywords such as month names, assumes
that author and editor names can be determined us-
ing last names only, and retains only the initial letters
of authors’ first names within the ‘References‘ section.
In fact, the style option is the union of two ‘subop-
tions’, e.g., ‘style=authoryear’ is equivalent to:

bibstyle=authoryear,citestyle=authoryear

bibstyle controls the layout of ‘References’ sections,
whereas citestyle applies to citations throughout the
document. The former (resp. latter) refers to a .bbx

(resp. .cbx) file. Even when the inputenc package is
used, you can handle .bib files encoded differently by
specifying the bibencoding option for biblatex. You
can also specify keys for the sort operation, by means
of mnemonics: ‘sorting=nyt’ causes bibliographical
items to be sorted w.r.t. authors’ names, year, title.
This option defaults to ‘sorting=nty’. Notice that
only ASCII code order is used for sorting if .bib files
are searched by means of BibTEX. An unsorted
bibliography is produced by ‘sorting=none’.

Many additional fields are recognised, for ex-
ample, SUBTITLE, for a work’s subtitle, in addition
to its title. You can use the standard fields YEAR

and MONTH, or replace them by the DATE field, which
allows the specification of date ranges:

DATE = {2011-10-19/2011-10-21}

The specification of fields recognised by biblatex use
types : for example, AUTHOR is a name list, SUBTITLE
and TITLE are literals. Some types are described
by means of regular expressions, e.g., the date type.

38 If a key k is given without a value, this is equivalent to
‘k=true’.

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 297

@BOOKINBOOK{robeson1983b,

AUTHOR = {Kenneth Robeson},

TITLE = {Death in Silver},

BOOKTITLE = {Doc Savage #26–27},

PAGES = {1–133},

PUBLISHER = {Bantam Books},

YEAR = 1983,

MONTH = nov}

Figure 13: Nonstandard type recognised by biblatex.

Additional entry types can be handled, for exam-
ple, @BOOKINBOOK, for items originally published as
a standalone book and reprinted in collected works
of an author (cf. Fig. 13). BibTEX’s cross-reference
mechanism has been extended [33, § 2.4.1].

Last but not least, biblatex’s options encompass
some features that have been implemented in sepa-
rate packages. More precisely, the packages bibtopic,
bibunits, chapterbib, and multibib [35, § 12.6], allowing
multiple bibliographies within the same document
are replaced by the environments refsection and
refsegment [33, § 3.5] or by using filters [33, § 3.10];
similarly, the babelbib package [13], providing support
for multilingual bibliographies should be replaced by
the babel option [33, § 3.1.2].

2.5 The Biber program

Roughly speaking, if you use the biblatex package in
conjunction with BibTEX, you go on using the latter
for tasks it does not perform satisfactorily.39 In par-
ticular, that is true about sorting, since BibTEX’s sort
procedures do not meet present requirements for mul-
tilinguism, as mentioned in § 1. So a new bibliogra-
phy processor, Biber [5], written using Perl, has been
developed. It aims to replace BibTEX for biblatex

users;40 it does not replace BibTEX wholly, since it
only generates .bbl files for biblatex. The use of Biber
is specified with the backend option of biblatex:41

\usepackage[backend=biber]{biblatex}

Such an order causes a .bcf42 configuration file—
using XML-like syntax—to be built. Let f be a
file name without suffix, the command ‘biber f ’ is
equivalent to ‘biber f.bcf’. An example of such a
.bcf file is given in Fig. 15.

The Biber program is able to deal with the
full range of the UTF-8 encoding as well as partial
encodings such as Latin 1 or Latin 2. However,
several encodings for several .bib files cannot be used

39 . . . although some points are improved with BibTEX8.
40 The Biber program is tightly coupled with the biblatex

package: if you install both, pay attention to take compatible
versions. See also Footnote 36, p. 296.

41 The other values allowed for this option are bibtex (by
default), bibtex8, bibtexu.

42 Biblatex Control File.

\DeclareSortingScheme{aeres}{

\sort{presort}\sort[final]{sortkey}

\sort[direction=descending]{

\field{sortyear}\field{year}}

\sort{

\name{sortname}\name{author}\name{editor}}

\sort[direction=descending]{

\field{month}\literal{00}}}

Figure 14: Specification of an order relation
for Biber.

for the same job, as in BibTEX8. biblatex and Biber
are tightly coupled; some biblatex options are only
available if Biber is used.

For example, ‘sorting=aeres’ allows you to use
the successive keys given in Fig. 14 by means of the
\DeclareSortingScheme command, usable only if
the backend is Biber, and to be put in a document’s
preamble: this sorting scheme partly implements the
order relation used to sort the bibliography for the
LIFC’s activity report, as mentioned in § 1.

In fact, biblatex may use additional fields for
sorting: the first pass is controlled by the PRESORT

field; some fields only used for sorting—such as
SORTNAME, SORTYEAR, SORTTITLE— take precedence
over the corresponding fields for ‘actual’ informa-
tion—that is, AUTHOR or EDITOR, YEAR, and TITLE.
In particular, this feature is useful when these fields
are marked up— in which case some alternative in-
formation without markup can be used for sorting —
or when a prefix of the title has to be dropped.43

The construct ‘\sortname[final]{...}’ over-
rides all subsequent \sort commands if the corre-
sponding field is available. As shown in Fig. 14, the
sort process stops if the SORTKEY field is available.
Within the \sort command’s argument, the three
commands \name, \field and \literal— they cor-
respond with the types recognised by the biblatex

package (cf. § 2.4) — give the fields to be considered
in turn. We also see that the \literal command is
used as a fallback when a field is not available: here,
entries without MONTH information are to be placed
after all the comparable entries with this information.

A language-dependent collation can be used by
Biber for sorting: ‘sortlocale=de’. Like BibTEX,
BibTEX8, and BibTEXu, the Biber program does not
perform numerical sorts, it only sorts lexicographi-
cally. Sorts are case-sensitive by default, but can be
case-insensitive. As in BibTEX, additional fields are
ignored silently.

3 A point of view

Let us be honest: we cannot be fully objective since

43 This modus operandi is not specific to Biber, it is imple-
mented within BibTEX’s biblatex bibliography style.

A comparative study of methods for bibliographies



298 TUGboat, Volume 32 (2011), No. 3

<?xml version="1.0" encoding="UTF-8"?>

<bcf:controlfile version="0.9" xmlns:bcf="https://sourceforge.net/projects/biblatex">

<bcf:options component="biber" type="global"> <!-- Biber options -->

<bcf:option type="singlevalued">

<bcf:key>bibencoding</bcf:key><bcf:value>ascii</bcf:value>

</bcf:option> ...

<bcf:option type="singlevalued">

<bcf:key>inputenc</bcf:key><bcf:value>ascii</bcf:value>

</bcf:option> ...

</bcf:options>

<bcf:sorting type="global"> <!-- Sorting spec -->

<bcf:sort order="1">

<bcf:sortitem order="1" substring_side="left" substring_width="2">presort</bcf:sortitem>

<bcf:sortitem order="2">mm</bcf:sortitem>

</bcf:sort>

<bcf:sort order="2"><bcf:sortitem order="1" final="1">sortkey</bcf:sortitem></bcf:sort>

<bcf:sort order="3">

<bcf:sortitem order="1">sortname</bcf:sortitem><bcf:sortitem order="2">author</bcf:sortitem>

<bcf:sortitem order="3">editor</bcf:sortitem><bcf:sortitem order="4">translator</bcf:sortitem>

<bcf:sortitem order="5">sorttitle</bcf:sortitem><bcf:sortitem order="6">title</bcf:sortitem>

</bcf:sort>

<bcf:sort order="4">

<bcf:sortitem order="1">sorttitle</bcf:sortitem><bcf:sortitem order="2">title</bcf:sortitem>

</bcf:sort>

<bcf:sort order="5">

<bcf:sortitem order="1">sortyear</bcf:sortitem><bcf:sortitem order="2">year</bcf:sortitem>

</bcf:sort> ...

</bcf:sorting>

</bcf:controlfile>

Figure 15: Example of a .bcf file.

we are MlBibTEX’s author. Nevertheless, we recall
that this program has been successfully used to build
the publication list of our laboratory’s activity report
[21], and to export this publication list to an open
archive site [22, 23, 24]. This list approximately con-
tained more than 500 items. We were able to detect
all the typing mistakes in BibTEX’s field names.44

Moreover, during this work, we noticed that many
entries being of type @ARTICLE included a PUBLISHER

field. Of course, scientific journals are often published
by a professional publisher, but BibTEX’s standard
bibliography styles do not deal with this information,
which is ignored, pure and simple. Roughly speak-
ing, the people who specified such information in .bib

files—the editors of a conference’s proceedings or
a journal’s publisher, these two mistakes have been
reported many times — probably did not know that
it would never be put down in any standard bibli-
ography style, that is, they probably would never
learn that by using ‘old’ BibTEX. So checking all the
fields of an entry may be very useful and MlBibTEX
is unrivalled for this task: it has the advantages and

44 For example, ‘EDITORS’ instead of ‘EDITOR’, as mentioned
in § 2.3.2.

drawbacks of a non-permissive program. By the way,
adding supplementary checks is easy.45 Also, the
executable file mlbibtex2xml allows MlBibTEX to
be used as a converter from .bib files into XML-like
ones.46 In particular, that simplifies the production
of HTML pages.

Anyway, we do not deny this program’s draw-
backs: it is currently unable to deal with encodings
other than pure ASCII and Latin 1; we plan to im-
prove that in the next version. Besides, the interface
is rudimentary: on the one hand, MlBibTEX’s kernel
is highly customisable,47 on the other hand, writing
some functions using Scheme in order to assemble el-
ementary parts is often needed, apart from standard

45 For example, when we exported .bib files to HAL [22], a
specific format was required for the ADDRESS field, and addi-
tional check was added easily.

46 Metadata for HAL are expressed using an XML dialect
[22]. To convert a .bib file into something suitable for HAL,
first we produce an XML file according to our internal format,
then a second step — the transformation into HAL’s format —
is delegated to an XSLT processor.

47 Probably more so than Biber regarding the order rela-
tions used for sorting, including language-dependent order
relations. The same, writing new functions to label references
in .bbl files is easier.

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 299

use, in which case the executable file mlbibtex fits
well. That can be viewed as an advantage: end-users
can get the full power of a programming language.
In fact, programming such drivers for MlBibTEX is
not very difficult, though we admit that this may
restrict the number of potential end-users.

An objective point is that BibTEX’s successors
have implemented many extensions, often incom-
patible. These numerous extensions are the proof
that this activity domain — looking for some ‘better
BibTEX’— is productive. Anyway, some of these
projects may not pursue the same goal: for example,
CrossTEX aims to reduce information redundancy as
far as possible by an inheritance mechanism, whereas
MlBibTEX focuses on multilingual aspects.48 But
the same notion may be implemented differently. For
example, some BibTEX bibliography styles use an ad-
ditional field for the total number of a book’s pages.
Often this field is named TOTALPAGES— e.g., within
the jurabib bibliography style — but the tools related
to biblatex know this information as PAGETOTAL. Like-
wise, some styles deal with a DAY field, in addition
to the fields YEAR and MONTH.49 A namesake field
is internally used by the biblatex package, but the
bibliography style does not recognise it as an ‘actual’
BibTEX field within .bib files; it is not recognised by
Biber, either. These examples—the fields DAY and
TOTALPAGES, there are others—show that the .bib

format should be refined regarding the modern tools
dealing with such files. That could lead to some con-
vergence among such extensions and allow end-users
to experiment with more bibliography processors in
compatible ways.

There is a big problem with refining the .bib

format: is it sufficient to add new fields, or do we
have to extend the syntax of values associated with
fields? Obviously, the creators of biblatex and Biber,
working in tandem, have chosen not to extend val-
ues’ syntax, so a kind of meta-information has been
included in configuration files, possibly redefined by
end-users. For example, we give an extract of Biber’s
default configuration file— biber.conf —in Fig. 16.
These three regular expressions50 express that pre-
fixes—sequences of two lowercase letters before a
punctuation sign, as ‘al-’ in ‘al-Hassan’ — and dia-

48 However, we studied an extension of the cross-reference
mechanism in order to specify translations without information
redundancy [20]. This feature’s implementation, planned
for MlBibTEX’s next version, is not finished yet; it uses a
TRANSLATOR field, as in jurabib and biblatex.

49 For example, the styles ‘apa. . . ’ used by the American
Psychology Association. See also Footnote 29, p. 294.

50 The syntax of regular expressions used within the Perl
language—Biber’s implementation language— is briefly de-
scribed in [45, Ch. 5].

<nosort>

type_name \A\p{L}{2}\p{Pd}

type_name [\x{2bf}\x{2018}]

type_title \AThe\s+

</nosort>

Figure 16: Configuration of Biber (extract).

critics—e.g., the ‘ ῾ ’ sign in ‘ ῾Ησίοδος ’—are not
considered when person names are sorted; also, the
sequence ‘The␣’ at the beginning of a title is to be
ignored during the sort operation.

These examples are quite convincing since un-
capitalised prefixes of person names are generally
ruled out before sorting, the ‘ ῾ ’ sign is only used
in Greek51 and does not have any influence on sort-
ing; concerning the word ‘The’, we do not know
a language other than English where this word is
used . . . but who knows, after all?52 This informa-
tion about prefixes to be dropped is handled by
Biber in a language-independent way, which might
be error-prone from our point of view. Anyway, here
is another example: the abbreviation of first names.
In French, digraphs should not be cut away, as shown
in the first two examples:

Philippe −→ Ph. (French)
Christian −→ Ch. (French)

— −→ Chr. (German)
Henry Rider Haggard −→ H. Rider Haggard

The first name ‘Christian’ also exists in German
and is abbreviated differently in this language.53

The last example recalls that some person names
retain the middle name when they are abbreviated.
Even if some general information may be stored in
general configuration files, it seems to us that we
have to enrich .bib files’ syntax in order to add such
information about abbreviating first names.54

Finally, let us remark that MlBibTEX may be
used as is with the biblatex bibliography style: an
advantage is that .bib files with enriched syntax for
person names can be used now with this style. Some
adaptation of MlBibTEX could make it very suitable
for this style— e.g., static check of the DATE field—
and some adaptation of the bibliography style could
take as much advantage as possible of MlBibTEX’s

51 More precisely, this sign—the rough breathing —de-
noted an aspirate in ancient Greek and has disappeared in
modern Greek since 1981.

52 Accented versions of this word exist: ‘thé’ for ‘tea’ in
French, and in the Vietnamese name Hàn Thế Thành, as Karl
Berry reminds me. The unaccented word might also exist in
another language; who could affirm the contrary?

53 In fact, German friends told us that this point is de-
batable. However, we personally saw this abbreviation in a
German book.

54 See Fig. 9 for how MlBibTEX addresses such information.

A comparative study of methods for bibliographies



300 TUGboat, Volume 32 (2011), No. 3

Advantages Drawbacks

BibTEX Very stable; very robust; many .bib files in use. Old-fashioned language for bibliography styles;
lack of support for Unicode and multilinguism.

CrossTEX Bibliography database files are more concise. Lack of suitable bibliography styles.

Biber UTF-8 supported; better backend for biblatex. Quite slow, only usable with biblatex.

MlBibTEX Useful check, possibly user-defined; powerful sort
procedures; enriched syntax for person names.

Interface should be improved.

Table 1: Bibliography processors for LATEX: our synthesis.

multilingual features. Likewise, an additional op-
tion ‘[backend=mlbibtex]’ could take advantage of
MlBibTEX’s sort procedures.

4 Conclusion

The result of our synthesis is summarised in Table 1.
As mentioned above, a bibliography processor usable
with LATEX should be able to deal with a huge number
of extant .bib files. That is a kind of inertia: an effi-
cient parser for .bib files is difficult to write because
this syntax is old-fashioned. But recent implemen-
tations using various programming languages have
shown that this difficulty can be overcome. Now the
biblatex package seems to raise much interest within
the LATEX community. But this package shows that a
bibliography processor more powerful than BibTEX
is needed. Maybe biblatex will be the future standard
for bibliographies typeset with LATEX. Nevertheless,
we think that the .bib format should be enlarged
into a new format accepted by most of BibTEX’s
possible successors. So the extensions developed by
these programs should remain compatible as far as
possible. We personally plan to orient MlBibTEX’s
further development towards this direction.

Acknowledgements

Thanks to Barbara Beeton and Karl Berry for pa-
tiently waiting for and then proofreading this article.

⋄ Jean-Michel Hufflen
LIFC — University of Franche-Comté
16, route de Gray
25030 Besançon Cedex, France
jmhufflen (at) lifc dot univ-fcomte dot fr

http://lifc.univ-fcomte.fr/home/~jmhufflen

References

[1] James C. Alexander: Tib: A TEX Bibliographic
Preprocessor. Version 2.2. mirror.ctan.org/
biblios/tib/tibdoc.tex. 1989.

[2] Steve R. Bourne: The Unix System.
Addison-Wesley. 1983.

[3] Robert Burgess and Emil Gün Sirer:
“CrossTEX: A Modern Bibliography Management

Tool”. TUGboat, Vol. 28, no. 3, pp. 342–349. In
Proc. TUG 2007. 2007.

[4] Judith Butcher: Copy-Editing. The Cambridge
Handbook for Editors, Authors, Publishers. 3rd

edition. Cambridge University Press. 1992.

[5] François Charette and Philip Kime: Biber:
A Backend Bibliography Processor for biblatex.
Version biber 0.9 (biblatex 1.6). August 2011.
http://biblatex-biber.sourceforge.net.

[6] Robert J. Chassell and Richard M. Stallman:
Texinfo. The GNU Documentation System.
Version 4.13. http://www.gnu.org/software/

texinfo. September 2008.

[7] The Chicago Manual of Style. The University of
Chicago Press. The 14th edition of a manual of
style revised and expanded. 1993.

[8] Fabien Dagnat, Ronan Keryell, Laura
Barrero Sastre, Emmanuel Donin de Rosière

and Nicolas Torneri: “BibTEX++: Towards
Higher-Order BibTEXing”. TUGboat, Vol. 24, no. 3,
pp. 472–488. EuroTEX 2003, Brest, France. June
2003.

[9] Jean-Christophe Filliâtre and Claude Marché:
The BIBTEX2HTML Home Page. June 2006.
http://www.lri.fr/~filliatr/bibtex2html/.

[10] Paul Graham: ANSI Common Lisp. Series in
Artificial Intelligence. Prentice Hall, Englewood
Cliffs, New Jersey. 1996.

[11] Hans Hagen: ConTEXt, the Manual. November
2001. http://www.pragma-ade.com/general/

manuals/cont-enp.pdf.

[12] Hans Hagen: “The Luafication of TEX and
ConTEXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114–123. April 2008.

[13] Harald Harders: “Multilingual Bibliographies:
Using and Extending the babelbib Package”.
TUGboat, Vol. 23, no. 3–4, pp. 344–353. 2002.

[14] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
TUGboat, Vol. 24, no. 2, pp. 249–262. July 2003.

[15] Jean-Michel Hufflen: “BibTEX, MlBibTEX and
Bibliography Styles”. Biuletyn GUST, Vol. 23,
pp. 76–80. In BachoTEX 2006 conference. April
2006.

[16] Jean-Michel Hufflen: “Names in BibTEX and
MlBibTEX”. TUGboat, Vol. 27, no. 2, pp. 243–253.

Jean-Michel Hufflen



TUGboat, Volume 32 (2011), No. 3 301

TUG 2006 proceedings, Marrakesh, Morocco.
November 2006.

[17] Jean-Michel Hufflen: “Managing Order
Relations in MlBibTEX”. TUGboat, Vol. 29, no. 1,
pp. 101–108. EuroBachoTEX 2007 proceedings.
2007.

[18] Jean-Michel Hufflen: “Revisiting Lexicographic
Order Relations on Person Names”. In: Proc.
BachoTEX 2008 Conference, pp. 82–90. April
2008.

[19] Jean-Michel Hufflen: “Languages for
Bibliography Styles”. TUGboat, Vol. 2008, no. 3,
pp. 401–412. TUG 2008 proceedings, Cork, Ireland.
July 2008.

[20] Jean-Michel Hufflen: “Specifying Translated
Works in Bibliographies”. ArsTEXnica, Vol. 6,
pp. 93–97. In GUIT 2008 meeting. October 2008.

[21] Jean-Michel Hufflen : Classe superreport

— Manuel d’utilisation. Mars 2010. http:

//lifc.univ-fcomte.fr/home/~jmhufflen/

superreport/superreport-readme.pdf.

[22] Jean-Michel Hufflen: “Using MlBibTEX
to Populate Open Archives”. In: Tomasz
Przechlewski, Karl Berry, Gaby Gic-Grusza,
Ewa Kolsar and Jerzy B. Ludwichowski,
eds., Typographers and Programmers: Mutual
Inspirations. Proc. BachoTEX 2010 Conference,
pp. 45–48. April 2010.

[23] Jean-Michel Hufflen : Utilisation du
convertisseur .bib −→ HAL. Octobre 2010.
http://lifc.univ-fcomte.fr/home/~jmhufflen/

superreport/.

[24] Jean-Michel Hufflen: “From Bibliography
Files to Open Archives: The Sequel”. In: Karl
Berry, Jerzy B. Ludwichowski and Tomasz
Przechlewski, eds., Proc. EuroBachoTEX 2011
Conference, pp. 61–66. Bachotek, Poland. April
2011.

[25] Jean-Michel Hufflen: “Bibliography Tools and
ConTEXt/LuaTEX”. To appear in Proc. ConTEXt
meeting 2011. September 2011.

[26] Java Technology. March 2008. http://java.sun.

com.

[27] Richard Kelsey, William D. Clinger, and
Jonathan A. Rees, with Harold Abelson,
Norman I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5 Report

on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7–105. August 1998.

[28] Brian W. Kernighan and Dennis M. Ritchie:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

[29] Oleg E. Kiselyov: XML and Scheme. September
2005. http://okmij.org/ftp/Scheme/xml.html.

[30] Donald Ervin Knuth and Silvio Levy: The
CWEB System of Structured Documentation.
Addison-Wesley, Reading, Massachusetts. 1993.

[31] Matthias Köppe: A BIBTEX System in Common
Lisp. January 2003. http://www.nongnu.org/

cl-bibtex.

[32] Leslie Lamport: LATEX: A Document Preparation
System. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1986.

[33] Philipp Lehmann: The biblatex Package:
Programmable Bibliographies and Citations.
Version 1.6. 29 July 2011. http://ctan.org/pkg/

biblatex.

[34] Alex Martelli: Python in a Nutshell. 2nd edition.
O’Reilly. July 2006.

[35] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

[36] Chuck Musciano and Bill Kennedy: HTML

& XHTML: The Definitive Guide. 6th edition.
O’Reilly & Associates, Inc. October 2006.

[37] Oren Patashnik: Designing BIBTEX Styles.
February 1988. Part of the BibTEX distribution.

[38] Oren Patashnik: BIBTEXing. February 1988. Part
of the BibTEX distribution.

[39] Oren Patashnik: “BibTEX 1.0”. TUGboat, Vol. 15,
no. 3, pp. 269–273. September 1994.

[40] Dave Pawson: XSL-FO. O’Reilly & Associates,
Inc. August 2002.

[41] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[42] Brian Keith Reid: SCRIBE Document Production
System User Manual. Technical Report, Unilogic,
Ltd. 1984.

[43] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley. November
2006.

[44] Herbert Voß: Bibliografien mit LATEX. Lehmans
Media, Berlin. 2011.

[45] Larry Wall, Tom Christiansen and Jon
Orwant: Programming Perl. 3rd edition. O’Reilly
& Associates, Inc. July 2000.

[46] Thomas Widman: “Bibulus—a Perl/XML

Replacement for BibTEX”. TUGboat, Vol. 24, no. 3,
pp. 468–471. EuroTEX 2003, Brest, France. June
2003.

A comparative study of methods for bibliographies



302 TUGboat, Volume 32 (2011), No. 3

The hletter class and style for producing

flexible letters and page headings

Brian Housley

Abstract

A package, hletter, is presented which permits the
user to specify easily, with the aid of self-defined
key-words, letters (with a logo and/or private) and
headings. The heading may include a footer and
the letter provides commands to include a scanned
signature, two signees and works with the merge

package. It illustrates using zero width boxes and
converting lengths into counts.

1 Introduction

Your first thoughts are probably “Not another LATEX
letter package” but, maybe, this package does offer
something extra and useful. The idea came from my
secretary who wrote the minutes of various commit-
tee meetings, prepared regulations in three languages,
wrote letters on behalf of the committees, etc. The
objective was, at first, to have one package which
would produce headers in the various languages for
the departments, committees, etc., and the letter was
an easy extension. Of course, since she is a LATEX
fan, she should also have the possibility of writing
private letters (for me as well). The main ideas for
the package are:

• Permit the user to specify key-words which, to-
gether with the default or specified language,
invoke various styles of the heading.

• With letters one may define an option to produce
a private letter, i.e., one with no logo but a from-
address.

• The header is always centred, at the top of A4
paper.

• Ensure the to-address is centred in a C5/C61

window envelope.

• Use a style file to produce headings as for letters
with a horizontal rule underneath.

• The text for the heading together with the footer
is produced by key-words dependent on a user
defined option.

• A command \closingtwo may be used to pro-
duce letters with two signees.

• The merge package by Graeme McKinstry [3]
works.

• A scanned signature may be used—which is
especially useful with merge letters.

1 I would have supported the North American stationery

sizes but I have no access to such envelopes, etc.

2 The general design

The files used are shown in figure 1 where the shaded
files should be provided by the user. The package
loads the packages graphicx and ifthen.

hhead.sty

hletter.cls

logosignature user images

hsetup.sty

hlete.clo

hletf.clo

hletg.clo

✻

❄

hdefine.clo

user
definitions

✁
✁
✁
✁

✁✁☛

❄

✁
✁✕
✁
✁

❆
❆❯
❆
❆

❅
❅■

�
�✠

Figure 1: Files used in producing letters and headings

The function of the files are:

hletter.cls The class definition file, based upon
the standard LATEX letter class [2]. It redefines
various commands and defines new ones (see
later).

hhead.sty The package to produce the headings at
the top of a page. Include \usepackage{hhead}
in the preamble and the command \heading is
defined to produce the heading(s).

hsetup.sty The file which does most of the work
and defines the command to produce the head-
ings and which reads in the files hdefine.clo
and hlet〈lng〉.clo where lng is specified in the
class or style options (default is English).

hdefine.clo The user file which defines key-words
for the various headings.

hlet〈lng〉.clo The user file which defines the fields
for the heading where lng is the letter e, f or
g for the languages English (actually British),
French and German.

logo The image file to produce the logo.

signature A scanned signature which may be used
in the letter(s).

3 Fields used in the header

Figure 2 shows the commands which define the text
where the command is shown. Also there is a com-
mand \centrepos{n} where n is a length specifying
the offset of the centre text from the middle of the
paper. The default is 10mm and it may be negative.

If a header alone is being produced then it will
have a horizontal rule below of a default width of
180mm. With the command \barlength one may

Brian Housley



TUGboat, Volume 32 (2011), No. 3 303

Figure 2: How most of the fields are defined

change this length, even making it 0mm. If the logo
is very high then the header height will be increased
accordingly.

4 The layout of the header

Obviously the header for a letter is different from
a simple header but both are produced using the
picture environment and in both cases the origin of
the picture has to be the same.

The header must be in the centre of the paper
and the offset from the beginning of the text is cal-
culated when the heading is produced. Thus any
dimension changes the user may make are taken into
account.

4.1 Horizontal positioning

The solution is to space horizontally and then make
a LATEX picture of zero width as shown in figure 3.

4.2 Vertical positioning

For letters the header stretches to the bottom of the
to-address box (for a C5/6 envelope) and is 91mm
from the top of the paper. For the simple header
(using the package hhead) the bottom of the header

1′′

1′′

\pagewidth✛ ✲

✲✛\oddsidemargin

\textwidth✛ ✲
❄

✻y = \topmargin+ \headheight

+ \headsep

s

x✛ ✲















the picture

Figure 3: We see that x = .5\pagewidth − 1′′

− \oddsidemargin

is 41mm from the top of the paper but this may be
increased if the logo is large.

4.2.1 The letter

As seen in figure 3 we need to calculate h = 91mm−
1′′ − y and if this value is negative then a warning
“top margin seems to be too large” is issued. This

The hletter class and style for producing flexible letters and page headings



304 TUGboat, Volume 32 (2011), No. 3

can only happen if the text area is lower than the
to-address box.

The variable h is a length variable and is stored
as scaled points but for the picture we need a counter
which depends on \unitlength. Thank goodness,
TEX is very accommodating and we set a counter to
the length h and then divide by \unitlength. The
value is truncated but I think a header to within
1mm is sufficiently accurate and one could modify
the package to use a unitlength of 0.1mm if one
wishes more accuracy.

The command \begin{picture}(0,h)(0,-41)

is used to produce the picture containing the header.

4.2.2 A simple header

Here the value calculated is h = 46mm− 1′′ − y and
again we divide by unitlength. If the height of the
logo is large then the value of the offset of the rule
under the header is increased and the picture must
be higher and the lower left of the picture is set to a
negative value.

If the document is in twocolumn format then
the command \twocolumn is used to ensure that the
header spans the two columns.

5 The user files

hdefine.clo Defines the names to select the various
type of headings, together with a sequentially
increasing integer. An example is:

\logo{GCCS}

\newoption{private}{1}

\newoption{signit}{2}

\newoption{bruni}{3}

\newoption{test}{4}

As shown, the logo may also be specified in this
file to provide a default which may be changed
in the hlet files. The file hsetup.sty simply
defines a new option which, if used, sets a global
counter:

\newcommand*{\newoption}[2]{%

\DeclareOption{#1}%

{\global\hltype=#2}%

\typeout{*** Option #2 has name #1}}

and types out the option and value in the log file.
Originally the package generated the number
automatically but early users wanted to specify
the numbers themselves and cut and paste the
define file as comments in the next files.

hlet〈lng〉.clo For each of the languages English,
French and German which are supported (one
could add more) the user must provide a file
which defines the fields for the options used in
hdefine.clo. The structure is shown in figure 4.

% Letter options for English

\ifcase\hltype

% case = 0 (no user option)

definitions for default case

\or % case = 1 (private)

\address{...

defining an address gives a private letter

...}

\or % case = 2 (signit)

definitions for signit option

\or % case = 3 (bruni)

definitions for bruni option

\else

% all other cases (should not be used)

\addressA{?} \addressB{?} \addressC{?}

\extraA{Telephone: ?}

\extraB{Telefax: ?} \extraC{eMail: ?}

\fi

Figure 4: Structure of definitions file for English in
hlete.clo

the logo The command \logo[ht]{〈file〉} sets the
logo file. If the optional height is not specified,
24mm is used. This command may be used in
the definition file and/or in the hlet file(s).

signature file A scanned signature may be inserted;
particularly useful for merge letters. Define the
file with the command \sign[ht]{〈file〉}. If ht
is not specified, it will be 15mm high.

6 Creating a letter

Assuming that the define file and the hlet files have
been created, one makes a letter in the usual LATEX
way but with a few additional commands. The class
hletter is used with options for the point size, lan-
guage (default English) and maybe one of the user
options defined in hdefine.clo to select the required
letter type.

6.1 Short summary of the letter commands

\signature The single argument is the name under
the closing signature. Separate multiple lines
with \\.

\address The from-address and, when used, makes
a private letter without a logo. Separate multi-
ple lines with \\.

\reference If used the argument is set centred un-
der the opening for English and above, left jus-
tified, otherwise.

letter environment Starts the letter and the ar-
gument is the to-address.

\date The date to be printed under the header.

\opening This command has an optional argument
which, when used, is placed in typewriter font

Brian Housley



TUGboat, Volume 32 (2011), No. 3 305

at the top right of the letter, e.g.,
\opening[{[DRAFT]}]{Dear Voltaire,}.

\closing The argument is the closing text above
the signature. Terminate multiple lines with \\.

\closingtwo Supplies the closing text which is cen-
tred above two signatures. The \signature

command should contain two names, each line
separated with an ‘&’ as in a tabular (which it
is), e.g.:

\signature{Dr.~A. Boss & Mr.~B. Bitt

\\ CEO & CIO}

\closingtwo{Yours Faithfully,}

\encl A list of enclosures; multiple lines separated
with \\.

\cc A list of persons who are to receive copies of
the letter; multiple lines separated with \\.

7 Creating simple headings

In the document prologue one loads the package
hhead with any optional argument such as language
and a user option. A header is produced with the
command \heading, which has an optional argument
which if used will be printed at the top right of
the page. If heading is used more than once in a
document then a cleardoublepage is issued and the
page count is reset.

8 Merge or form letters

The package merge from Graeme McKinstry works
well with this letter package. It reads a file of {to-
address, opening} pairs which are used to create a
letter which is addressed to many recipients. When
TEX reads from an external file it honours grouped
lines; i.e., to enter the address over many lines in the
merge file (new lines terminating with \\) enclose
the address in {...}. The package uses a tabular to
set the to-address so these brackets, if present, must
be removed. Fortunately The TEXbook [1] (as usual)
provides the answer and the to-address is produced
with these, at first look, rather strange commands:

\def\dotoaddress#1{%

\setbox0\hbox{\expandafter\cmda#1}%

\ifnum\myc=1\settoaddress{#1}\else

\expandafter\settoaddress#1\relax\fi}

\def\settoaddress#1{\global\setbox\addrbox

\hbox{\begin{tabular}{@{}l@{}}#1\end{tabular}}}

\newcount\myc

\def\cmda#1{\global\myc=0 \cmdb#1\end}

\def\cmdb#1{\ifx#1\end \let\next=\relax

\else \global\advance\myc by1 \let\next=\cmdb

\fi \next}

Thus the creation of the address file is very easy and
readable.

To make it a little easier, a small modification
to merge.sty has been made so that after the first
address pair one can insert a % as the first character
of a line. The modified version is called mergeh.sty.

9 Examples

In these examples, the extent of the contents of
the picture are shown together with its origin to
illustrate what is happening. The file hdefine.clo
was as shown in section 5.

Ex. 1 The LATEX file contained:

\documentclass[11pt,english]{hletter}

\begin{document}

\signature{Sir Frederick Treves\\

Sergeant-Surgeon to His Majesty the King}

\reference{Impressions of the journey from

Vevey to Lausanne}

\date{Lausanne, le 15 septembre 1922}

\begin{letter}{M. Francois Marie Arouet \\

6, rue du Grand Ch\^{e}ne \\

\textbf{Lausanne} \\

Switzerland}

\opening[{[COPY]}]{Dear Voltaire,}

...

\closing{I remain, Sir,\\yours Truly,}

\vfill

\cc{All Smiths in London

\\ Mademoiselle S. Curchod}

\encl{Tourist guide to Switzerland.

\\ Plan of Cully.}

\end{letter}

\end{document}

and the default (value=0) in the file hlete.clo
specified:

\addressA{Largitzenstrasse 15}

\addressB{CH--4056 Basle}

\addressC{Switzerland}

\extraA{Telephone: +41 (61) 345 78 90}

\extraB{Telefax: +41 (61) 345 78 92}

\extraC{eMail: info@gccs.com}

\bottomL{Bank: VCT Unterwil, CH--4220

Unterwil/BL}

\bottomR{Account: 322--956123.02R}

The truncated output is shown in figure 5. The
example would be improved if the logo was some-
what larger, e.g., \logo[36mm]{GCCS}.

Ex. 2 Here the commands used were:

\documentclass[11pt,german,bruni]{hletter}

\begin{document}

\signature{Dr.~C. Featherstonehaugh &

Dr.~A. Beauchamp \\ CEO & CIO}

\reference{Impressions of Lausanne}

\date{Lausanne, le 15 septembre 2008}

\begin{letter}{Sir F. Treves, Bart.,\\

\textbf{Vevey.}\\

The hletter class and style for producing flexible letters and page headings



306 TUGboat, Volume 32 (2011), No. 3

Figure 5: The letter using the defaults (Ex. 1).

Switzerland}

\opening[\textsc{[draft]}]{Sir,}

...

\closingtwo{Yours Faithfully,}

\vspace{2cm}

\cc{All Smiths ... S. Curchod}

\encl{Tourist guide ... Cully.}

\vfill

\end{letter}

\end{document}

The file hletg.clo for the option bruni :

% case = 3 (bruni)

\addressA{Der Glockenturm}

\addressB{Hauptstrasse 54}

\addressC{Upper Throgmortondale}

\extraA{Telefon: +44 187 3546}

\extraB{Telefax: +44 187 3547}

\extraC{email: bruni@songs.flat.ac.uk}

\centreA{Songs written \& sung}

\centreB{Loudness no problem}

\centreC{Flats \& sharps used}

\centreD{\rule[.5ex]{16mm}{1pt}} % a rule

\centreE{Notes sometimes used}

\centreF{Spears may be hurled}

\centrepos{-10mm}

% fancy footer:

\bottomL{$\ast\ast\ast\ast\ast$}

\bottomC{Lullabies ... our speciality}

\bottomR{$\ast\ast\ast\ast\ast$}

\sign[10mm]{signat}

\logo[50mm]{Bruennhilde}

\DeclareFixedFont{\newfa}{OT1}

{phv}{m}{n}{12pt}

\DeclareFixedFont{\newfc}{OT1}

{phv}{m}{sl}{10pt}\or

This contained a larger logo, two signees, a
rather special footer and it also changed the de-
fault fonts \newfa and \newfc. The font \newfa

Figure 6: First part of the Bruennhilde letter and the
double closing (Ex. 2).

is used for \addressA and \centreA; \newfb is
used for address and centre B and C; all the
other fields use \newfc.

The output is shown in figure 6. The \sign

command is ignored for two signees.

Ex. 3 This example is a simple heading for a two
column document. The bruni option is used
again and the document used the commands:

\documentclass[11pt,a4paper,twocolumn]

{article}

\usepackage[german,bruni]{hhead}

\begin{document}

\setlength{\columnseprule}{.4pt}

\barlength{\textwidth}

\heading[\textsc{confidential}]

Note that the commands to specify the header
may be placed in the definition file, the hlet file
or in the document itself. The result is shown
in figure 7.

Ex. 4 An example of using the slightly modified
merge package contains the commands:

\documentclass[11pt,english,signit]{hletter}

\usepackage{mergeh}

\signature{A. Nother\\Head of Batology Dept.}

\date{Lausanne, le 15 septembre 2008}

\begin{document}

\reference{Impressions of the journey from

Vevey to Lausanne}

\begin{merge}{testmerge.dat}

between Vevey and Lausanne

Brian Housley



TUGboat, Volume 32 (2011), No. 3 307

Figure 7: A heading for Bruennhilde (Ex. 3).

..

unfortunately the suggestion is unfounded.

\closing{Yours Sincerely,}

\vfill

\cc{All Smiths ... S. Curchod}

\encl{Tourist guide ... Cully.}

\end{merge}

\end{document}

and part of the address file testmerge.dat is
shown below.

{Professor Alfred B. Colquhoun\\

Tittlebat Research Centre\\

\textbf{Isle of Skye}\\

Scotland}

Dear Prof.~Colquhoun,

% old Coony

{Mr.~A. Miller\\

23a, Council Flats\\

Park Lane\\

\textbf{London WC1}}

Dear Archibald,

% first Miller

Dr.~V. M\"{u}ller\\ Langstrasse 15

\\ \textbf{3012 Bern}

Dear Vee,

%

%{Mr.~A. Nother\\

% 123 High street\\

% \textbf{Nether Poppleton}\\

% Nr. York\\ England}

%Hello Alf,

%% Skip alf today

{Viscountess Elizabeth

Featherstonehaught-Cholmondeley\\

Cathedral Close\\

\textbf{Winchester}}

My Dearest Elizabeth,

%

{Sir Archibald Bloggs\\

Jones Old Yard\\

Gasworks Lane\\

\textbf{Throgmortendale}}

Howdy Sir Archie,

% NOTE:

% Comments are allowed between addresses

% but NOT before the first address

% and NO BLANK LINES!

The address of the viscountess gives a class warn-
ing, ‘** Address too wide for window **’.

Ex. 5 A private letter used the commands:

\documentclass[10pt,private,french]{hletter}

\begin{document}

\signature{} % do not used closing name

\reference{Impressions of Lausanne}

\date{Lausanne, le 15 septembre 2008}

\begin{letter}{Sir F. Treves, Bart.,\\

\textbf{Vevey.}\\

Switzerland}

and here hletf.clo contained:

% case = 1 (private)

The hletter class and style for producing flexible letters and page headings



308 TUGboat, Volume 32 (2011), No. 3

Figure 8: A private letter (Ex. 5).

\address{Rue principal 15\\

\textbf{CH-4056 B\^ale}\\

La Suisse\\[1ex]

\small Tel: +41 61 322 6382\\

\small Fax: +41 61 383 8148\\

\small Mobile: +41 76 337 4207\\

\small eMail: brian.smith@epfl.ch}

\or

and the result is shown in figure 8.

10 Possible future changes

The first version was called gletter (for the company
GCCS), h was the next letter so maybe a future
version will be called iletter.

One change which has been suggested is to make
the dimensions of the headers easier to specify rather
than changing values in the package. Also, the po-
sitioning of the text and logo should be more flexi-
ble. I also wish to sort out the present confusion in
the package between the babel options english and
british. At the moment specifying english invokes
british which is really not correct. The reason for
the mix is that english was originally used and then

it was requested that I also include british—but I
was rather lazy!

The support of North American stationery was
planned but depends on when and if I acquire samples
of the writing materials.

⋄ Brian Housley
GCCS GmbH, Switzerland
brian dot housley (at) gccs dot ch

References

[1] Donald E. Knuth, The TEXbook, 15th ed.,
Addison-Wesley, 1989, ISBN-10: 0201134489.

[2] Leslie Lamport, LATEX: User’s guide &

reference manual, 2nd ed., Addison-Wesley,
1994, ISBN-10: 0-201-52983-1.

[3] Graeme McKinstry, Form letters, TUGboat 8
(1987), no. 1, 60–61, (macros revised 6
September 1988).

Brian Housley



TUGboat, Volume 32 (2011), No. 3 309

Towards LATEX coding standards

Didier Verna

Abstract

Because LATEX is only a macro expansion system, the
language does not impose any kind of good software
engineering practice, program structure or coding
style. Maybe because in the LATEX world, collabo-
ration is not so widespread, the idea of some LATEX
coding standards is not so pressing as with other
programming languages. Over the years, however,
the permanent flow of personal development experi-
ences contributed to shaping our own taste in terms
of coding style. In this paper, we report on all these
experiences and describe the programming practices
that have helped us improve the quality of our code.

1 Introduction

If the notion of coding style is probably almost as
old as computer science itself, the concern for style
in general is even older. An interesting starting
point is the book “The Elements of Style” [16], first
published in 1918 (the fourth edition appeared in
1999). This book is a style guide for writing Ameri-
can English and has been a source of inspiration for
similar books in computer science later on. It is in-
teresting to mention the fact that this book has been
virulently criticized since its very first publication.
Although generally considered as a reference book,
the authors were also accused of being condescending
in tone and of having only a very partial view on
what proper American English should be. This is
already a strong indication that talking about style,
whether in natural of programming languages, can
be quite controversial. Indeed, a style, in large part,
is a matter of personal taste before anything else.
Consequently, what is considered to be good style by
one person can legitimately be viewed as bad style
by another person.

The first book on style in programming lan-
guages was published in 1974 (a second edition ap-
peared in 1978) and was entitled “The Elements of
Programming Style” [8], as an explicit reference to
its aforementioned predecessor. Although this book
was not dedicated to one programming language in
particular, it was still largely influenced by the few of
that time. Since then, numerous books on program-
ming style appeared, many of them focusing on one
specific language, and being entitled “The Elements
of XXX Programming Style” to follow the tradition.
This includes recent languages such as C#.

\relax
\keepcool
\takeiteasy

- Readability
- Maintainability

- Robustness
- Reliability

- Portability
- Extensibility
- Intercession

Figure 1: The coding standards many-festos

1.1 The coding standards many-festos

If one looks at the rationale behind most coding
styles, the intended purpose is always to

help programmers read and understand
source code, not only their own, but that of
others.

An interesting paragraph from the introductory sec-
tion of the GNU Coding Standards [15] reads as
follows:

Their purpose is to make the GNU system
clean, consistent, and easy to install. This
document can also be read as a guide
to writing portable, robust and reliable
programs.

From these widely accepted views on the notion of
coding style, we can draw three different points of
view on the subject, as depicted in figure 1.

Human From the human point of view, using a
proper coding style helps to improve the readability
of source code, and as a corollary, its maintainability.

Software From the software point of view, using
a proper coding style helps to make the program
more robust and reliable. Note that there is a subtle
but important difference between robustness and
reliability. Reliability means that the program should
do what it is expected to do. Robustness means that
the program should handle unexpected situations as
gracefully as possible.

Man-in-the-middle Third and last, the interme-
diate point of view is at the interface between hu-
mans and programs (note the plural). In this regard,
the GNU Coding Standards mention the question of
portability. This is essentially due to the fact that
the GNU project mostly deals with C code, for which
portability is indeed an important problem. This,

Towards LATEX coding standards



310 TUGboat, Volume 32 (2011), No. 3

however, is much less of a concern to us because prac-
tically all LATEX programs are inherently portable
(TEX itself being mostly a virtual machine). A much
more important question for us is the question of
extensibility and more generally, intercession.

By extensibility, we mean to answer the follow-
ing question: given a package that does almost what
a specific user wants, is it possible to make this
package provide the requested functionality without
modifying its internal implementation? If the an-
swer is yes, then the package (or at least one of its
functionalities) can be said to be extensible. In this
context, one of the purposes of a coding style is to
help provide more, and better extensibility.

Unfortunately, full extensibility is only a utopia
because ultimately, the specific desires of a user are
completely unpredictable. In such situations, a pack-
age may need to be internally modified. This is
what we call “intercession”. The terminology comes
from the more general field of so-called “reflexive”
languages [10, 14]. Roughly speaking, a reflexive
language provides the ability to reason about the
program itself (procedural reflection) or even the
language itself (behavioral reflection). Reflection is
usually decomposed into “introspection” (the ability
to look at yourself) and “intercession” (the ability
to modify yourself).

While extension is usually a matter of user–
package interaction, intercession is usually due to
inter-package interactions. In the LATEX world, we
can identify three major sources of intercession.

1. LATEX core modification: a package needs to
modify LATEX itself in order to provide the re-
quired functionality.

2. Package inter-compatibility: a package needs to
co-exist with another package, and this requires
modifications in either or both of them.

3. Package conflict: two (or more) packages inter-
cede on the same piece of code but in different
ways, or one package modifies some code and
another package is not made aware of these mod-
ifications. In both cases, compilation breaks.

Every LATEX user faces the “package conflict night-
mare” one day or another [19], to the point that this
is probably the major gripe against it these days.
Consequently, we would hope that a proper coding
style addresses this issue, for example by providing
design patterns for graceful inter-package compati-
bility handling.

1.2 Consistency

One final keyword that appears quite a lot in discus-
sions on coding style is “consistency”. Given the fact

that there is much personal taste in a coding style,
consistency means that the exact coding style that
you decide to use is actually less important than the
fact of sticking to it. A person not familiar with your
coding style can probably get used to it, provided
that it is used consistently in the whole source code,
and that for example, similar situations are identifi-
able as such because the same idioms are used in all
of them.

1.3 30 years and no style?

Since more or less official coding standards seem to
exist for many programming languages and commu-
nities, one can’t help but wonder why, after 30 years
of existence, the LATEX community still doesn’t have
any. Several reasons come to mind.

1.3.1 Learning by example

LATEX is not a real programming language. It is not
even a macro expansion system. LATEX is a library : a
macro layer written on top of TEX. Because of that,
the purpose of LATEX can be anything you might want
to do related to typography, which can eventually be
expressed in terms of TEX. Consequently, it is im-
possible to write “The LATEX programming language”
book and in fact, this book doesn’t exist. The things
that such a book would have to describe are infinite:
they depend on every user’s goal. Note that the
LATEX Companion [12] is not a LATEX programming
book. For the most part, it describes some of the
core functionalities, plus a lot of package features.

This explains why learning by example is an
important process in the LATEX community. It is
quite easy to backtrack from a particular feature to
the way it is done: you just need to look at the im-
plementation. As a result, many LATEX programmers
(especially newcomers) start by actually looking at
what other people did before us, copy-pasting or im-
itating functionality until they reach a satisfactory
level of understanding. In doing so, they also implic-
itly (and unconsciously) inherit the coding style (or
lack thereof) of the code they are getting inspiration
from. This behavior actually encourages legacy (the
good and the bad) and leads to a very heterogeneous
code base.

1.3.2 Lack of help

Because it is only a macro library, LATEX is not a
structured language but a very liberal one. By pro-
viding such paradigms as object-oriented, functional,
logic, declarative programming, etc., traditional lan-
guages provide support for some “elements of style”
by construction: the choice of a specific program-
ming paradigm already imposes a particular design

Didier Verna



TUGboat, Volume 32 (2011), No. 3 311

on your program. On the other hand, when you
program in LATEX, you are essentially on your own.
You don’t get any help from the language itself.

For the same reason (lack of structure), get-
ting help from your favorite text editor is even more
complicated. Even theoretically simple things such
as indentation can be an editor’s nightmare. In-
denting within braces in a traditional language is
relatively simple: it’s a matter of syntactic analysis.
But suppose that you want to indent the contents
of \if<whatever> conditionals in (LA)TEX. First,
this is not a syntactic construct but a macro call.
Next, the closing \fi may be difficult to spot: it
may be the result of the expansion of another macro
for instance. Worse, its precise location may also
depend on a dynamic (run-time) context! This shows
that in general, it is impossible to get even simple
things right without doing a full semantic analysis
of the program, which itself may not even suffice.
In a powerful development environment such as the
combination of (X)Emacs [3] /AUC-TEX [1], you will
typically need to indent the first line of a conditional
by hand, and the rest will follow by simply hitting
the tab key. If, on the other hand, you let the editor
do everything, you end up with a broken indentation
layout scheme.

1.3.3 Lack of need

A survey conducted in 2010 [19] shows that LATEX
is mostly a world of dwarfs. In the TEX Live 2009
distribution, the average size of a package is 327 lines
of code, the median being 134. Admittedly, very few
people would feel the need for a proper coding style,
when it comes to maintaining just a few hundred lines
of code. In addition to that, it seems that LATEX suf-
fers from an anti-social development syndrome: most
packages are single-authored and maintained, which
leads to the same kind of consequences. When no
interaction is required between people, establishing
a set of coding standards for working on a common
ground is a far less pressing issue.

On the other hand, imagine the difference with
an industrial language in which millions of lines of
code would be maintained by a team of hundreds of
developers. The need for coding standards is obvious.
Unfortunately, if you consider the LATEX code base
on CTAN—[2], it is a huge one, only maintained in
a completely independent and uncontrolled fashion.

1.4 30 years and almost no style. . .

Claiming that there is no coding style for LATEX turns
out to be a slight exaggeration. By looking closely
enough, we can spot a few places where the question
is indeed addressed.

1.4.1 Tools

TEX itself provides some facilities for stylish pro-
gramming. The equivalence between blank lines and
\par encourages you to leave more room in your text,
therefore improving its readability. TEX also con-
veniently ignores blanks at the beginning of lines,
a crucial behavior when it comes to indenting your
code without leaving spurious blanks in the generated
output.

A number of packages (e.g. calc and ifthen)
provide additional layers of abstraction on top of the
LATEX kernel, therefore providing structure where it
was originally lacking. More abstraction means im-
proved readability. Some packages like record even
go as far as providing data structures or program-
ming paradigms coming from other, more traditional
programming languages. Of course, the difficulty
here is to be aware of the existence of such packages.

1.4.2 Conventions

A number of coding conventions have existed for a
long time now, including in the LATEX kernel itself.
The use of lowercase letters for user-level macros
and mixed up/downcase for extension names (e.g.
\usepackage vs. \RequirePackage) is one of them.
The special treatment of the @ character in macro
names effectively allows one to make a clear distinc-
tion between internal and external code.

It is worth mentioning that LATEX itself does
not fully adhere to its own conventions (we see here
a typical effect of legacy). For example, the macro
\hbox is not supposed to be used externally, and
hence should have been named with an @ character
somewhere. Conversely, a better name for \m@ne

would have been \MinusOne.

1.4.3 Documentation

The LATEX Companion contains some advice on style.
Section 2.1 describes how document files should be
structured and Section A.4 does the same for package
source code (as we will see later, we disagree with
some of the advice given there). It also mentions
some of the development tools that help making
source code more structured and modular (e.g. doc,
docstrip, ltxdoc).

Some of these packages are described at length,
although this does not count as style advice: only
mentioning their existence counts, the rest is tech-
nical documentation. Modulo this remark, it turns
out that the amount of style advice provided in the
Companion is extremely limited: it amounts to less
than 1% of the book.

Towards LATEX coding standards



312 TUGboat, Volume 32 (2011), No. 3

1.5 The need for coding standards

Even though we can explain the lack of LATEX coding
standards, and even though some people certainly
don’t feel any need for them, we still think that they
would be a valuable addition to the LATEX world,
especially in a much more developed form than what
we have described in the previous section. Some
important reasons for this are provided below.

Learning by good example We have seen ear-
lier how LATEX encourages “learning by example”.
Obviously, the existence of coding standards would
help filter out poor quality code and have people
learn mostly by good example only.

Homogeneity We have also seen how a plethora
of small packages with no coding style, or author-
specific ones only, contributes to make LATEX a very
heterogeneous world. This is the point at which it
is important to make a distinction between coding
style and coding standards. A coding style can be
seen as a set of personal tastes and habits in terms
of programming. A coding standard, by extension,
should be defined as a coding style which multiple
people agree to conform to.

In spite of the anti-social aspect of LATEX devel-
opment, that is, even if independent package develop-
ers rarely talk to each other, we know that the very
high level of intercession in LATEX implies that devel-
opers are forced to read and understand other peo-
ple’s code. In that context, it becomes apparent that
having more-or-less official coding standards would
make it easier for people to read and understand
others’ code. Homogeneity facilitates interaction.

One important problem here is that a consensus
never comes without any concession. Coming up
with coding standards that would satisfy everyone
is highly unlikely, given the importance of personal
taste, even if those coding standards leave room for
some degree of flexibility. The question that remains
open is hence the following: to what extent would
people agree to comply with coding standards that
diverge from their own habits or preferences, if it is
for the greater good of the community?

Intercession There are many other reasons why
having coding standards would be a plus. Inter-
cession is another very important one. The way a
particular package handles a particular typesetting
problem only affects itself: both the problem and the
solution are localized. The situation is however very
different when it comes to intercession. The way a
particular package handles an extension or a conflict
(for example by applying dynamic modifications to
another package or to the LATEX kernel) does affect
the outside world. As a consequence, one would ex-

pect coding standards to help clean up the current
“intercession mess” by providing a set of rules, per-
haps even some design patterns [4, 5, 6, 7, 9, 13] for
intercession management. Intercession would become
much less of a problem if every package handled it
in the same way.

1.6 Coding style levels

Coding standards are supposed to help with writing
better code, although we need to clarify what we
mean by “better”. In our personal development
experience, we have identified four abstraction levels
at which it is interesting to consider the notion of
style. These four levels, which we are going to explore
in the next sections, are the following.

1. Layout (low). At the layout level, we are in-
terested in code formatting, indentation, macro
naming policies, etc.

2. Design (mid). The design level deals with im-
plementation: how you do the things that you do.
This is where we address software engineering
concerns such as modularity, encapsulation, the
potential use of other programming languages’
paradigms, etc.

3. Behavior (high). The behavior level is con-
cerned with functionality as opposed to imple-
mentation: what you do rather than how you do
it. At this level, we are interested in user inter-
faces, extension, intercession (notably conflict
management), etc.

4. Social (meta). Finally, the social level is a meta-
level at which we consider human behavior in
the LATEX community. Notions like reactivity
and open development are examined.

1.7 Target audience

In the LATEX world, it is customary to distinguish
the document author, writing mostly text, from the
package author (or LATEX developer) writing mostly
macros. Those two kinds of audience slightly over-
lap, however. By providing automatically generated
text (e.g. language-dependent), the package author
is a bit of a document author. By using packages,
fixing conflicts between them and providing personal
macros in the preamble, the document author is also
a bit of a LATEX developer. While this paper is mostly
targeted at the package developer, many concerns
expressed here (most notably at level 1: layout) are
also very important for the document author.

2 Level 1: Layout

In this section, we explore the first level of style,
dealing with visual presentation of source code and
lexico-syntactic concerns such as naming conventions.

Didier Verna



TUGboat, Volume 32 (2011), No. 3 313

2.1 Formatting

One very important concern for readability is the way
you visually organize your code. Most of the time,
this boils down to a simple question: how and where
do you use blanks. This question is more subtle to
address in LATEX than in other, more syntactically
structured languages. We have identified four rules
which contribute to better formatting.

2.1.1 The rules

Rule #1: Stay WYSIWYG’ly coherent

LATEX (or TEX, for that matter) has bits of pseudo-
WYSIWYG behavior. The fact that a blank line ends
a paragraph is one of them. There are also some
commands whose effect can be directly simulated in
your source code (or document). In such situations,
it is probably a good idea to do so.

The two most prominent examples of this are
the \\ and \par commands. Since \\ effectively
ends the current line, we find it reasonable to do
so in the source file as well. Put it differently: we
find it confusing when a \\ command is immediately
followed by text or code that produces text. The
same goes for \par, with an additional remark: we
have seen code in which \par is followed by some
text, with the explicit intention of beginning a new
paragraph. Although ending a paragraph can, in
some circumstances, be equivalent to beginning the
next one, this use of \par is extremely confusing
because the its semantics are precisely to end the
current paragraph.

Tabular-like environments are another situation
in which it can be nice to mimic the actual output
layout. Although it requires a fair amount of work,
probably without the help of your favorite text edi-
tor, aligning the various tab commands or columns
separators across rows helps readability. If, as we
do, you prefer to remain within the bounds of 80
columns, a compromise may be necessary between
both constraints.

Rule #2: Be “spacey” in math mode

Surprisingly enough, it seems that many people for-
get that spaces don’t count in math mode. This is a
good opportunity to take as much room as you want
and make your equations easier to read. Consider
the following two alternatives. This:

$ f(x) = f(x-1) + f(x-2) $

is probably better than this:

$f(x)=f(x-1)+f(x-2)$

Rule #3: One “logical” instruction per line

This rule may be a wee bit fuzzier than the previous
ones. By “logical”, we roughly mean something (a

code sequence) which makes sense as a whole. In tra-
ditional programming languages, a logical instruction
is generally a function call along with its arguments,
or an operator along with its operands. In LATEX,
the situation is more complicated, notably because
of the throes of macro expansion.

Perhaps it is simpler to make this point by pro-
viding some examples. We assume here that our
logical instructions are small enough to fit on one
line, the idea being to avoid putting two of them
next to each other.

\hskip.11em\@plus.33em\@minus.07em

This line constitutes only one logical instruction be-
cause the sequence of macros and quantities define a
single length.

{\raggedleft\foo\bar baz\par}

Here, the flushing instruction applies until the clos-
ing brace (assuming the paragraph ends before the
group), so it would be strange, for instance, to go
to the next source line after \bar. Note however
that for longer contents, not fitting on one line only,
we would probably go to the next line right after
\raggedleft, so that the formatting instruction(s)
are distinct from the text to which they apply.

In the same vein, it would be unwise to split
things like \expandafter\this\that, conditional
terms such as \ifx\foo\bar, and more generally,
everything that can be regarded as an argument to
what precedes.

Rule #4: Indent all forms of grouping

This rule is probably the most obvious, and at the
same time the most important, when it comes to
readability. All forms of grouping should have their
contents indented so that the beginning and end of
the groups are clearly visible. It seems that indent-
ing by 2 columns is enough when you use a fixed
width font, whereas 4 or 8 columns (or a tab) are
necessary otherwise. In general however, using tab
characters for indentation is inadvisable (notably in
document sources, but sometimes in package sources
as well). Tabs can be dangerous, for instance, when
you include code excerpts that should be typeset in
a special way.

In LATEX, grouping can occur at the syntactic
level with group delimiters ({}, []) or math modes
($ and \(\), $$ and \[\]), and also at the semantic
level (\bgroup / \egroup, \begingroup / \endgroup
or even \makeatletter / \makeatother). Your fa-
vorite text editor will most likely help you indent at
the syntactic level, but you will probably need to
do some manual work for semantic grouping. In the
case of Emacs for example, manually indenting the
first line below a call to \makeatletter is usually

Towards LATEX coding standards



314 TUGboat, Volume 32 (2011), No. 3

1 %% Original version:

2 \def\@docinclude#1 {\clearpage

3 \if@filesw \immediate\write\@mainaux{\string\@input{#1.aux}}\fi

4 \@tempswatrue\if@partsw \@tempswafalse\edef\@tempb{#1}\@for

5 \@tempa:=\@partlist\do{\ifx\@tempa\@tempb\@tempswatrue\fi}\fi

6 \if@tempswa \let\@auxout\@partaux \if@filesw

7 \immediate\openout\@partaux #1.aux

8 \immediate\write\@partaux{\relax}\fi

9 % ... \fi :-(

10

11 %% Reformatted version:

12 \def\@docinclude#1{%

13 \clearpage

14 \if@filesw\immediate\write\@mainaux{\string\@input{#1.aux}}\fi

15 \@tempswatrue

16 \if@partsw

17 \@tempswafalse

18 \edef\@tempb{#1}

19 \@for\@tempa:=\@partlist\do{\ifx\@tempa\@tempb\@tempswatrue\fi}%

20 \fi

21 \if@tempswa

22 \let\@auxout\@partaux

23 \if@filesw

24 \immediate\openout\@partaux #1.aux

25 \immediate\write\@partaux{\relax}%

26 \fi

27 % ... \fi :-)
Figure 2: The virtues of proper formatting

enough to have the subsequent ones follow the same
indentation level automatically. But then again, you
will also need to manually unindent the closing call
to \makeatother.

As an illustration of both rules #3 and #4,
consider the code in figure 2 in both original and
reformatted form. In each case, ask yourself: to
which conditional does the upcoming \fi belong?
This point clearly demonstrates the importance of
indentation. Line 14 contains an example of what
we called a “logical” instruction, although a longer
one this time. The contents of the conditional is a
single instruction to write something in the auxiliary
file immediately. Also, since there is no \else part
in this conditional and the whole line doesn’t exceed
80 columns, we chose to keep it as a one-liner. The
same remark can be made for line 19.

2.1.2 Formatting of syntactic groups

In the case of syntactic groups, various policies can
be observed regarding the position of the braces (this
is also true in other programming languages). The
case of an environment definition could be formatted
as follows, as is done on several occasions in the
LATEX standard classes:

\newenvironment{env}

{\opening\code

\opening\code}

{\closing\code

\closing\code}

We find this kind of formatting somewhat odd and it
doesn’t seem to be used so frequently anyway. The
conspicuous amount of indentation can be disturbing,
and it is also a bit difficult to visually distinguish
the opening argument from the closing one.

A more frequent way of formatting this would
be more or less as in a piece of C code, as follows:

\newenvironment{env}

{%

\opening\code

\opening\code

}

{%

\closing\code

\closing\code

}

This kind of formatting is admittedly more readable,
although the two nearly empty lines between the
opening and the closing arguments may be considered
somewhat spurious. Some people hence take the

Didier Verna



TUGboat, Volume 32 (2011), No. 3 315

\newcommand\text{%

\@nextentry

\noalign\bgroup

\gdef\@beforespace{...}%

\@ifstar{\@stext}{\@text}}

\newcommand\@text[1]{%

\gdef\@nextentry{}%

\egroup% end of \noalign

\multicolumn{3}{@{}p ... \\}}

\newcommand\@stext{%

\gdef\@nextentry{\egroup\\\par}%

\egroup% end of \noalign

\multicolumn{3}{@{}p ...} ...}

Figure 3: Inter-macro indentation

habit of joining those two lines as follows:

\newenvironment{env}

{%

\opening\code

\opening\code

}{%

\closing\code

\closing\code

}

Other people choose a more compact formatting
by closing a group, and possibly opening the next
one on the same line, as follows:

\newenvironment{env}{%

\opening\code

\opening\code}{%

\closing\code

\closing\code}

Again, this leads to quite compact code that
makes it difficult to visually distinguish the opening
argument from the closing one. In such a case, a
possible workaround is to introduce comments, also
an opportunity for documenting the macro’s proto-
type (imagine that in a text editor with fontification,
you might also have different colors for code and
comments):

\newenvironment{env}{%

%% \begin{env}

\opening\code

\opening\code}{%

%% \end{env}

\closing\code

\closing\code}

2.1.3 Inter-macro indentation

The case of semantic grouping introduces an addi-
tional level of complexity because groups may be
opened and closed in different macros (worse: the

opening and closing instructions may themselves be
the result of macro expansion). When possible, it is a
good idea to preserve the amount of indentation cor-
responding to the current group nesting level, even if
the group in question is not syntactically apparent.

Consider for example the code in figure 3 taken
from the CurVe class [17]. The \text command calls
\noalign, but the argument passed to \noalign

(enclosed in \bgroup/\egroup) starts here and ends
in either \@text or \@stext. You can see that this
group’s indentation level is preserved across all three
macros.

2.1.4 Exceptional situations

No rule goes without exception. Sometimes, and for
the greater good, one might be tempted to go against
the established rules. Here are two examples.

Consider the following call to \@ifnextchar:

\@ifnextchar[%] syntax screwup!

{\@dothis}{\@dothat}

The left square bracket, which is in fact the first
argument of \@ifnextchar, confuses Emacs because
it thinks it’s the opening of a group, and expects
this group to be closed somewhere. In order to
compensate for this problem, we usually virtually
close the fake group by putting a right square bracket
within a comment on the same line. This forces us,
however, to provide the “then” and “else” arguments
to \@ifnextchar on the next line, something that
we would normally not do.

Another exceptional situation is the case of
empty macro arguments, where we prefer to stay
on the same line rather than consuming another one
just for an empty pair of braces, as illustrated below:

\@ifundefined{#1note}{}{%

\@fxpkgerror{a short explanation}{%

a longer one}}

2.1.5 Corollary

As a corollary to the rules described in this section,
it is essential to note that the % character is your
“worst best friend”. A very important problem when
writing macros (and even documents) is the risk of
spurious blank spaces. When you indent your code
properly, many blanks are inserted, which are not
supposed to appear in the final document. TEX helps
you with that in several ways: spaces are eaten after
a control sequence, consecutive blanks are treated as
only one (this includes the newline character), and
leading / trailing spaces are discarded on every line.

That alone, however, is not sufficient for a liberal
indentation scheme. In the previous examples, we
have seen many places (notably after braces) where

Towards LATEX coding standards



316 TUGboat, Volume 32 (2011), No. 3

it is required to create an end-of-line comment with
the % character, so that the final newline character is
not taken as a textual one (see for example figure 3
on the previous page).

In that sense, the % character is your best friend.
It is also your worst friend because determining the
exact places at which an end-of-line comment is re-
quired is far from trivial. There are even cases where
it could be necessary after opening an environment
in a final document! In any case, when there are
blanks in your source that you know you don’t want
in the output, and you’re unsure whether TEX will
skip them on its own, you can safely always insert a
comment character at the end of the line.

2.2 Naming

The second concern we want to address in this section
is that of naming schemes. Naming conventions are
obviously important for readability, but also for back-
ward compatibility. Once you get a name, it’s for life.
Starting with bad naming conventions can become
a major headache, both for your clients (using your
API) and yourself (maintaining your own code).

2.2.1 The rules

Rule #1: Use prefixes

Because LATEX lacks a proper notion of module, pack-
age, or even namespace, the use of a specific prefix
for every package that you write should be a rule of
thumb. For example, our FiXme [18] package uses fx
as a prefix, which means that every command (but
see rule #3) starts with those two letters.

The choice of the prefix is also important. In
theory, the prefix that would guarantee a minimal
risk of name clash between packages would be the
full package name. In practice however, this can
lead to very long macro names, cumbersome to type.
Therefore, a trade-off must be made between the
prefix length and its uniqueness (a possible idea is to
start by removing the vowels). fx for example has
the defects of its qualities: it is practical because it
is very short, but the risk of collision with only two
letters is not negligible.

Once you have chosen a prefix, it is also im-
portant to stay consistent and stick to it. Recently,
we discovered that for some obscure (and forgotten)
reason, our FiNK package uses a prefix of fink for
its user-level commands, but only fnk for its internal
ones. This is not only rinadvisable but also unneces-
sary since LATEX already provides the @ character con-
vention for making such a distinction (cf. rule #3).

One situation where the prefix rule should prob-
ably be relaxed is the case of classes (as opposed to
styles). Classes, by definition, are mutually-exclusive

and perform similar, very general tasks, although
in different ways. It would hence be silly to have
to name similar things differently (imagine for in-
stance that the sectioning commands were named
\artsection, \rprtsection and \bksection!). On
the other hand, the risk of collision is still high, pre-
cisely because of the broad spectrum of class func-
tionality. This problem has already befallen us in
the CurVe class, which provides a \text macro, also
implemented (to do something different) by siunitx

and probably other packages. \text is the perfect
example of a very poor choice of name because it
is far too general and doesn’t really mean anything.
This demonstrates that choosing a pertinent, unique
and concise name for a macro is an important but
tricky exercise.

Rule #2: Use postfixes

In a very analogous way, there are situations in which
the use of a postfix may be a good idea in order to
avoid name clashes, although this time not with other
packages, but with yourself. LATEX provides a number
of concepts, loosely related to data types or struc-
tures, such as counters and saveboxes. Unfortunately,
the provided interfaces are rather inconsistent.

In some situations like counters, you are only
required to provide a name, and LATEX constructs the
underlying, opaque macros with a specific naming
scheme. What’s more, you are not supposed to
use those macros explicitly. Suppose for example
that you want to maintain a counter of “items”.
There is no need to name this counter myitemscount
because the standard interface makes things perfectly
readable without the postfix:

\newcounter{myitems}

... \value{myitems} % not a very good name

... \stepcounter{myitems}

Besides, the risk of name clash is minimal because
under the hood, LATEX has used a specific and hope-
fully unique naming scheme for naming the counter
macro (\c@myitems).

Suppose now that you want to save your items
in a box. In that case, you are requested to provide
a macro name yourself, and choosing \myitems is
for sure a bad idea because that name is too general
(there is no indication that you’re talking about the
box of them, and not the number, list or whatever
else of them). What you need to do, therefore, is
decide on a specific naming scheme for boxes, just
as LATEX does under the hood for counters. Using a
box postfix appears to be a good solution:

\newsavebox\myitemsbox

... \savebox\myitemsbox{...}

... \sbox\myitemsbox{...}

Didier Verna



TUGboat, Volume 32 (2011), No. 3 317

Of course, there is some naming redundancy in this
code, but that is what you get from an interface that
is not as opaque as it should be.

If you are developing a package (as opposed
to a document) and want to maintain an internal

list of items, you may also be tempted to follow
LATEX’s own convention for, say, counters, and call
your macro \b@myitems or something like that. We
advise against that, however, because it conflicts with
the prefix rule described previously, and also because
it would make your code less readable (remember
that you need to use the macro explicitly, not just
the “name of the thing”).

Finally, note that the ultimate solution to this
kind of problem would be to develop another, prop-
erly abstracted layer on top of the original one, in
which the actual macro names are never used explic-
itly, and standardize on it. . .

Rule #3: Obey the Companion

The LATEX Companion provides some advice on nam-
ing in section A.1. Modulo a substantial amount of
legacy code, LATEX itself tries to adhere to the nam-
ing conventions described there so it is a good idea
to honor them in your packages as well. For starters,
you are invited to name your external macros with
lowercase letters only, and reserve a mixture of lower-
case and uppercase names for extension APIs. FiXme,
for example, follows this convention by providing
an end-user command named \fxuselayout, and
at the same time an equivalent command named
\FXRequireLayout for theme authors.

The other important and well known naming
convention adopted by LATEX is the use of an @ char-
acter in internal macro names. By turning this char-
acter into a letter (category code 11) only internally
and in packages, LATEX effectively prevents the docu-
ment author from using such macros directly (one
would have to intentionally enclose a call to an @-
macro within \makeatletter / \makeatother).

Third-party packages should obviously follow
this convention in order to separate internal from
external macros. Package authors should however
do a better job at naming internal macros than
LATEX itself (again, we see here the effect of a long
legacy). The LATEX kernel seems to enjoy making
fun of the @ character, using it in place of different
vowels (e.g. \sixt@@n or \@filef@und) and with no
apparent rationale in terms of number and position
(e.g. \@input, \@@input but \@input@).

Although we underst@nd how this c@n be fun, it
is better for readability to keep a more systematic ap-
proach to naming internal macros. Typically, we find
that using the @ character is useful in two situations:

\DeclareRobustCommand\fxnote{%

%% ...

\@ifstar{%

%% \fxnote*

\@ifnextchar[%]

{\@fxsnote{#2}}

{\@@fxsnote{#2}}}{%

%% \fxnote

\@ifnextchar[%]

{\@fxnote{#2}}

{\@@fxnote{#2}}}}

\long\def\@fxsnote#1[#2]#3#4{%

%% ...

\@@fxsnote{#1}{#3}{#4}}

\long\def\@@fxsnote#1#2#3{%

\implement\me}

Figure 4: Nesting levels

• as a prefix to indicate an internal implementa-
tion of an external functionality,

• as a word separator.

For example, the current (language-dependent)
value for the “List of FiXme’s” section name is stored
in a macro named \@fxlistfixmename (an accept-
able alternative would be \fx@listfixmename).

In some situations, the implementation of a par-
ticular feature may go through different levels of
indirection. In such cases, we like to use multiple @
characters to give an indication of the current imple-
mentation level. Figure 4 illustrates this. The macro
\fxnote supports an optional * postfix as well as a
regular optional first argument provided in square
brackets. The implementation goes through a first
sub-level that detects the presence of a * charac-
ter (\@fxnote / \@fxsnote), plus another sub-level
which handles the presence of an optional argument
(\@@fxnote / \@@fxsnote).

A final example is the case of “polymorphic”
macros (see section 3.3 on page 319), that is, macros
whose implementations depend on some context. As
mentioned earlier, the @ character can be used to
separate words. For instance, FiXme has a macro
named \@@@fxnote@early. This macro is polymor-
phic in the sense that its actual implementation
varies according to the document’s draft or final
mode. The two corresponding effective implemen-
tations are named \@@@fxnote@early@draft and
\@@@fxnote@early@final.

2.2.2 Exceptional situations

From time to time, the naming rules exhibited in
the previous section may be bypassed for the sake of

Towards LATEX coding standards



318 TUGboat, Volume 32 (2011), No. 3

readability. Here are three typical situations where
exceptions are in order.

Conforming to de facto standards LATEX it-
self has some naming conventions that may impact
a package or even a document author. Lists are one
such case. For example, the behavior for the list of fig-
ures depends on two macros named \listoffigures

and \listfigurename. FiXme supports its own
list facility, and for the sake of coherence, provides
analogous macros named \listoffixmes (instead
of \fxlist or some such) and \listfixmename (in-
stead of \fxlistname). Following the usual conven-
tion makes it much easier for your users to remember
your own API.

Another example is that of conditionals. All

conditionals in (LA)TEX are named \if〈something〉.
So here again, given that you need to implement
mycondition, it is better to name your conditional
\ifmycondition than \myifcondition.

Forced exceptions There are times where LATEX
itself will force you to depart from your own rules,
although this is seldom critical. The case of counters
is one of them. When creating a counter for myitems,
LATEX creates a macro named \c@myitems which is
not how you would have named this macro. However,
this is not such a big deal because in general, you
don’t need to use this macro directly.

A slightly more intrusive exception is when
LATEX requires that you implement a specific macro,
following its own naming scheme. For instance, sup-
porting a list of FiXme’s involves implementing a
macro named \l@fixme. The l@ prefix is LATEX’s
choice, not ours.

Finally, if you implement an environment named
myenv, LATEX will eventually turn this into a macro
named \myenv and another one named \endmyenv.
Here again, the names are LATEX’s choice, not yours.
And by the way, it is unfortunate that the envi-
ronment opening macro is not named \beginmyenv

instead of just \myenv because it means that you
can’t have both a command and an environment
with the same name. In the FiXme package, we
use a nice naming trick for this kind of situation:
environments corresponding to macros are prefixed
with “a” or “an”. For example, there is a macro
named \fxnote and the corresponding environment
is named anfxnote. This contradicts our own nam-
ing conventions but it makes the actual environment
usage as readable as if it were plain English:

\begin{anfxnote}

...

\end{anfxnote}

3 Level 2: Design

In this section, we explore the second level of style,
dealing with design considerations such as modularity
and other programming paradigms. From a more
practical point of view, design here is concerned with
how to implement a particular feature, rather than
the feature itself.

3.1 Rule #1: Don’t reinvent the wheel

3.1.1 Feature libraries

In many programming languages, so-called “stan-
dard libraries” provide additional layers of function-
ality, typically functions that perform useful and
frequently needed treatments. Browsing CTAN [2]
clearly demonstrates that LATEX is no exception to
this rule. People have created packages for making
slides, curricula vitae, split bibliographies, tables
that span across several pages, etc.

When you develop a package, it is important,
although not trivial, to be aware of what’s already
existing in order to avoid reinventing the wheel. For
instance there are currently at least half a dozen dif-
ferent solutions for implementing key-value interfaces
to macros (keyval, xkeyval, kvoptions, pgfkeys,
etc.). This is very bad because each solution has its
own strengths and weaknesses, so the choice of the
most appropriate one for your personal needs can be
very complicated and time-consuming (in fact, there
might not even be a best choice).

One rule of thumb is that when you feel the need
for implementing a new functionality, someone most
probably had the same idea before you, so there is
a good chance that you will find a package doing
something close to what you want. In such a case, it
is better to try and interact with the original author
rather than to start over something new on your
own. Doing this, however, also requires some rules in
terms of social behavior (cf. section 5 on page 326).

3.1.2 Paradigm libraries

Furthermore, in the LATEX world the notion of stan-
dard library goes beyond common functionality: it
goes downwards to the language level. TEX was not
originally meant to be a general purpose program-
ming language, but TEX applications today can be
so complex that they would benefit from program-
ming paradigms normally found in other languages.
Because of this, there are packages that are meant
to extend the language capabilities rather than pro-
viding a particular (typesetting) functionality. The
two most prominent examples of this are calc and
ifthen. These packages don’t do anything useful
in terms of typesetting, but instead make the pro-

Didier Verna



TUGboat, Volume 32 (2011), No. 3 319

grammer’s life easier when it comes to arithmetic
calculations or conditional branches. Another one,
called record, even goes as far as providing data
structures for LATEX.

It is always a good idea to use these packages
rather than doing things at a lower level, or re-
inventing the same functionality locally. The more
abstract your code, the more readable. The LATEX

Companion advertises some of them (notably calc

and ifthen). Of course, the difficult thing is to be-
come aware of the existence of such packages (CTAN

contains literally thousands of packages).

3.2 Rule #2: Duplication/Copy-paste is evil

This rule is well-known to every programmer, al-
though the “evilness” threshold may be a bit subtle
to calculate. It is also interesting to provide some
insight on the distinction we make between “dupli-
cation” and “copy-paste”. The two examples below
will shed some light on these matters.

3.2.1 Duplication

Consider the case of FiXme which uses the xkeyval
package for defining several layout-related package
options. The bad way of doing it would be as follows:

\define@key[fx]{layout}{morelayout}{...}

\define@cmdkey[fx]{layout}{innerlayout}{...}

\define@key[fx]{envlayout}{envlayout}{...}

This is bad because the [fx] optional argument (the
prefix in xkeyval terminology) is duplicated in every
single call to the xkeyval package (and it is rather
easy to forget).

This is a typical case where duplication should
be abstracted away in order to avoid redundancy. We
can improve the code by providing wrappers around
xkeyval as follows:

\newcommand\@fxdefinekey{\define@key[fx]}

\newcommand\@fxdefinecmdkey{\define@cmdkey[fx]}

\@fxdefinekey{layout}{morelayout}{...}

\@fxdefinecmdkey{layout}{innerlayout}{...}

\@fxdefinekey{envlayout}{envlayout}{...}

It should be noted that this new version is actu-
ally longer than the previous one. Yet, it is clearer
because more abstract. Using such wrappers is like
saying “define a FiXme option”. This is more abstract
than “define an option which has an fx prefix”.

Note also that in this example, two “layout”
options are defined. One could hence be tempted to
abstract the layout family, for example by providing
an \@fxdefinelayoutkey command. We decided
not to do this but it could be a legitimate choice.
This is an illustration of the flexibility and perhaps
also the difficulty there is to decide on the exact
“evilness duplication threshold” mentioned earlier.

3.2.2 Copy-paste

Consider again the case of FiXme which defines sev-
eral Boolean options. For each Boolean option foo,
FiXme also provides a corresponding nofoo option,
as a shortcut for foo=false. E.g. the langtrack /
nolangtrack option can be defined as follows:

\@fxdefineboolkey{lang}{langtrack}[true]{}

\@fxdefinevoidkey{lang}{nolangtrack}{%

\@nameuse{fx@lang@langtrack}{false}}

Defining the silent / nosilent option can be
lazily done by copy-pasting the previous code and
only modifying the relevant parts (the option and
family names):

\@fxdefineboolkey{log}{silent}[true]{}

\@fxdefinevoidkey{log}{nosilent}{%

\@nameuse{fx@log@silent}{false}}

This way of doing things obviously screams for ab-
straction. It is better to make the concept of “ex-
tended Boolean” explicit by providing a macro for
creating them:

\newcommand*\@fxdefinexboolkey[3][]{%

\@fxdefineboolkey{#2}{#3}[true]{#1}

\@fxdefinevoidkey{#2}{no#3}{%

\@nameuse{fx@#2@#3}{false}}}

\@fxdefinexboolkey{lang}{langtrack}

\@fxdefinexboolkey{log}{silent}

3.3 Rule #3: Conditionals are evil

This rule may sound surprising at a first glance,
but experience proves that too many conditionals
can hurt readability. In fact, this is well known
in the object-oriented community. After all, object-
orientation is essentially about removing explicit con-
ditionals from code.

There are two main reasons why conditionals
should be avoided whenever possible.

• First, too many conditionals, especially when
they are nested, make the program’s logic diffi-
cult to read.

• Second, the presence of multiple occurrences of
the same conditional at different places is a form
of duplication, and hence should be avoided.

One particular design pattern that helps a lot in
removing explicit conditionals is to centralize the
logic and use polymorphic macros. This is explained
with the following example.

Figure 5 on the next page implements a macro
\doeverything, the behavior of which depends on
whether the document is in draft or final mode. This
macro is in fact decomposed in three parts: the “do
this” part, a middle part (left as a comment) and a
final “do that” part. Because the same conditional

Towards LATEX coding standards



320 TUGboat, Volume 32 (2011), No. 3

\newif\ifdraft

\def\doeverything{%

\ifdraft

\dothis\this\way

\else

\dothis\this\other\way

\fi

%% ...

\ifdraft

\dothat\that\way

\else

\dothat\that\other\way

\fi}

\DeclareOption{draft}{\ifdrafttrue}

\DeclareOption{final}{\ifdraftfalse}

\ExecuteOptions{final}

\ProcessOptions

Figure 5: Conditional duplication

branch clutters the code in two different places, the
three-step nature of this macro is not very apparent.

A better and clearer implementation of the same
functionality is proposed in figure 6. Here, the two
mode-dependent parts of the \doeverything macro
are explicitly implemented in different macros, with
a postfix indicating in which mode they should be
used. In the \doeverything macro, the three parts
are now clearly visible. This new version of the macro
is obviously much more concise and readable. The
important thing to understand here is that when
you read the code of \doeverything, you are in fact
not concerned with implementation details such as
how \dothis and \dothat vary according to the
document’s mode. It is more important to clearly
distinguish the three steps involved.

Finally, you can also note that the logic involving
conditionals is centralized at the end, where the
actual draft or final options are processed. As a
side note, the \ifdraft conditional is not needed
anymore and the total amount of code is smaller in
this new version. This time, clarity goes hand in
hand with conciseness.

You may still be wondering what we meant by
“polymorphic macros”. Although slightly abusive,
this term was coined because of the resemblance of
this design pattern with object-oriented polymor-
phism, encountered in virtual methods à la C++ or
generic functions à la Lisp. The macros \dothis

and \dothat are polymorphic in the sense that they
don’t have a regular implementation (in other words,
they are only virtual). Instead, their actual imple-
mentation varies according to some context.

\def\dothis@draft{\this\way}

\def\dothis@final{\this\other\way}

\def\dothat@draft{\that\way}

\def\dothat@final{\that\other\way}

\def\doeverything{%

\dothis

%% ...

\dothat}

\DeclareOption{draft}{

\let\dothis\dothis@draft

\let\dothat\dothat@draft}

\DeclareOption{final}{

\let\dothis\dothis@final

\let\dothat\dothat@final}

\ExecuteOptions{final}

\ProcessOptions

Figure 6: Centralized logic

3.4 Rule #4: Be modular

Modularity is another final principle which is rather
obvious to follow, although it is perhaps even more
crucial in LATEX than in other programming lan-
guages. Modularity affects all levels of a document,
from the author’s text to the packages involved.

At the author’s level, it is a good idea to use
LATEX’s \include command and split your (large)
source files into separate chunks. When used in
conjunction with \includeonly, compilation may
be considerably sped up by making LATEX process
only the parts on which you are currently working.

From a package development perspective, mod-
ularity is important at different levels. In terms of
distribution, the docstrip package is an essential
component in that it allows you to split your source
code into separate files, provides conditional inclu-
sion and (and perhaps most importantly) lets you
generate separate distribution files from a centralized
source. This is important because splitting a package
across different files allows you to subsequently load
only the relevant ones. Less code loaded into LATEX
means reduced memory footprint and improved per-
formance. Imagine for instance if Beamer had to
load every single theme every time it is run!

At a lower level, the modularity principle dic-
tates that it is better to have 10 macros of 10 lines
each rather than one macro of 100 lines. Every pro-
grammer knows this but perhaps LATEX programmers
don’t realize that this is even more critical for them.
There is indeed one LATEX-specific reason for keeping
your macros small. That reason is, again, interces-

Didier Verna



TUGboat, Volume 32 (2011), No. 3 321

sion. Since other package developers may need to
tweak your code for compatibility reasons, it is bet-
ter to let them work on small chunks rather than big
ones.

To illustrate this, let us mention the case of
CurVe in which, at some point, we decided to sup-
port the splitbib package. In order to do so, we
needed to override some parts of splitbib’s macro
\NMSB@writeentry. This macro was originally 203
lines long. After dead branch removal, that is, after
cutting out pieces of code that we knew would never
be executed in the context of CurVe, we ended up
with 156 lines that needed to be imported into CurVe,
only to modify 5 of them. Our modifications conse-
quently involve only 3% of the code that needed to
be imported. One can easily imagine how bad this is
in terms of maintainability. We need to keep track
of potential modifications on 203 lines of splitbib
just to make sure our 5 keep functioning correctly.

4 Level 3: Behavior

In the previous section, we claimed to be more con-
cerned with how to implement particular features,
rather than the features themselves. In this section,
we focus on features through the lens of behavior.
What we are interested in is the impact of your pack-
age features on the people that may interact with it.

4.1 Rule #1: Be user-friendly

The first category of people who will interact with
your package is its end users. Hopefully, you belong
to this category as well. There is, however, one major
difference between you and other users: you know the
package much better than they do, since you wrote it.
Being user-friendly means doing everything possible
to make your package easy to use. This can mean
many different things, but two important aspects are
documentation and backward compatibility.

4.1.1 Documentation

Nowadays, the vast majority of LATEX packages comes
with documentation. The combination of doc, ltxdoc
and docstrip, by allowing for literate programming,
has greatly helped the community in this respect.
Nevertheless, there remains a huge difference between
documentation and good documentation.

The difficulty in writing good documentation is
to put yourself in the position of the casual user—
which you are not because you know the package
so well already. Thinking from a user perspective is
probably the most difficult thing to do, but it can
also be a very rewarding experience (we will get back
to this later).

One of the major pitfalls to avoid when writing
documentation is forgetting that a user manual is not
the same thing as a reference manual. Just doing lit-
erate programming is not enough. Documenting your
macros around their implementation is not enough.
The casual user is not interested in the brute list of
commands, nor in the internals of your package. The
casual user wants an overview of the package, what it
is for, what it can do, what it can’t, probably a quick
start guide describing the entry points and the de-
fault behavior, with examples. Only then, when the
major concepts are understood, you may delve into
complexity and start talking about customization,
additional but less important features, and so on.

A good user manual will sacrifice sufficiency
to the benefit of gradualness and redundancy. You
shouldn’t be afraid of lying by omission to the readers.
It is for their own good. They don’t want to be
overwhelmed by information. A typical hint that you
are reading a bad manual is when the documentation
starts with the full list of package options. There
is no point in introducing an option dealing with
a concept that the reader does not understand yet
(that would be a reference manual). Another hint is
when a manual starts referring to another package
(that it happens to use internally) and assumes that
the reader knows everything about it already. The
end user shouldn’t have to read two or three other
manuals to understand yours, especially if in the end,
they will never use those other packages directly.

Why, as we said earlier, can it be rewarding to
write a good manual? Because writing documenta-
tion is in fact a feedback loop. The difficult thing,
again, is to put yourself in the position of someone
who knows nothing about the things you are going
to talk about, and ask yourself: “what do I need
to say first?” If you can do that, you will discover
that many times, the answers to that question reveal
design flaws in your package, its design or its APIs.
Things that a casual user would want to do but can’t,
things that should be simple to do but aren’t, de-
fault behavior that shouldn’t be by default, concepts
that are not apparent enough, not distinct enough,
names that are not sufficiently self-explanatory. Etc.
other words, writing or improving the quality of your
manual often helps you improve the quality of your
code, and vice-versa.

4.1.2 Backward compatibility

Documentation is an important feature. Backward
compatibility is another. Users can get very frus-
trated when a package breaks their documents from
one version to another, or more generally, when a
document doesn’t compile anymore after a couple

Towards LATEX coding standards



322 TUGboat, Volume 32 (2011), No. 3

of years. This was in fact a concern that Donald
Knuth had in mind at the very beginning of TEX
and which had a considerable influence on the design
of the LATEX Project Public License [11], the LPPL.

Maintaining backward compatibility often goes
against the “greater good”. The natural evolution of
a design might require a complete change of API, or
at least an important amount of hidden trickery in
order to stay compatible with the “old way”. That
is why it is all the more important to take great care
with the design right from the start.

Just as in the case we made for modularity, the
very high level of intercession in LATEX makes back-
ward compatibility an even more important concern.
Because other developers will interfere with your
code in order to fix compatibility or conflict prob-
lems between your package and theirs, the changes
you make in your internals will affect them as well.
So it turns out that backward compatibility is not
only a surface concern, but also something to keep in
mind even when working on the inner parts of your
code. In the LATEX world, nothing is really private. . .
Of course, you may decide not to care about that,
pretending that it’s the “other guy’s responsibility”
to keep up to date with you, as he’s the one who
messes up with your code. But this is not a pro-
ductive attitude, especially for the end user of both
packages. In that regard, the following excerpt from
hyperref’s README file is particularly eloquent:

There are too many problems with varioref.

Nobody has time to sort them out. Therefore

this package is now unsupported.

In order to balance this rather pessimistic dis-
course, let us mention two cases where the burden of
backward compatibility can be lightened. The first
is the case of packages focused on the development
phase of a document. FiXme is one of them. As it is
mostly dedicated to handling collaborative annota-
tions to draft documents, the cases where you would
want to keep traces of it in a finished document are
rare. Under those circumstances, we would not care
about backward compatibility in FiXme as much as in
other packages. For a document author perspective,
it is very unwise to upgrade a LATEX distribution in
the middle of the writing process anyway. . .

When you decide that backward compatibility is
too much of a burden, it is still possible to smooth the
edges to some extent. Here is an idea that we are go-
ing to use for the next major version of CurVe: change
the name of the package, possibly by postfixing the
(major) version number. In our case, the current
version of CurVe (the 1.x series) will be declared dep-
recated although still available for download, and

\ExecuteOptionsX[my]<fam1,...>{opt1=def1,...}

\ProcessOptionsX*[my]<fam1,...>

\newcommand*\mysetup[1]{%

\setkeys[my]{fam1,...}{#1}}

\newcommand\mymacro[2][]{%

\setkeys[my]{fam1,...}{#1}%

...}

Figure 7: xkeyval programming example

the next version will be available in a package named
curve2. This way, former CurVe documents will still
compile in spite of backward incompatible changes
to the newest versions.

Even if you do so, as a convenience to your users,
it might still be a good idea to decorate your manual
with a transition guide from one version to the next.

4.1.3 Key-value interfaces

We mentioned already the importance of feature
design and the effect it can have on backward com-
patibility. The case of key-value interfaces is a typical
example. Implementing package or macro options
in a key=value style is a feature that every package
should provide nowadays.

Key-value options are user-friendly because they
are self-explanatory and allow you to provide a flexi-
ble API in a uniform syntax. It is better to have one
macro with two options and 5 values for each rather
than 25 macros, or 5 macros with 5 possible options.

As usual, the difficulty is in knowing all the exist-
ing alternatives for key-value interface, and choosing
one. For that, Joseph Wright wrote a very useful
paper that might help you get started [20]. Once
you get used to it, programming in a key-value style
is not so complicated.

Figure 7 demonstrates how easy it is to empower
your package with key-value options both at the
package level and at the macro level with xkeyval.
Assuming you have defined a set of options, you can
install a default behavior with a single macro call
to \ExecuteOptionsX, and process \usepackage op-
tions with a single call to \ProcessOptionsX. Sev-
eral packages provide a “setup” convenience macro
that allows you to initialize options outside the call
to \usepackage, or change the default settings at
any time in the document. As you can see, such a
macro is a one-liner. Similarly, supporting a key-
value interface at the macro level is also a one-liner:
a single call to \setkeys suffices.

In order to understand how key-value interfaces
provide more flexibility and at the same time make

Didier Verna



TUGboat, Volume 32 (2011), No. 3 323

backward compatibility less of a burden, consider one
of the most frequently newbie-asked questions about
LATEX: how do I make a numbered section which
does not appear in the table of contents (TOC)? The
general answer is that you can’t with the standard
interface. You need to reprogram a sectioning macro
with explicit manipulation of the section counter, etc.

We know that \section creates a numbered
section which goes in the TOC. We also know that
\section* creates an unnumbered section that does
not go in the TOC. Finally, the optional argument
to \section allows you to provide a TOC-specific
(shorter) title. So it turns out that there’s no stan-
dard way to extend the functionality in a backward-
compatible way, without cluttering the syntax (either
by creating a third macro, or by providing a new set
of options in parentheses for instance). In fact, two
macros for one sectioning command is already one
too many.

Now imagine that key-value interfaces existed
when \section was designed. We could have ended
up with something like this:

% Number and TOC:

\section{Title}

% TOC-specific title:

\section[toctitle={Shorter Title}]{Title}

% Unnumbered and not in the TOC:

\section[numbered=false]{Title}

Obviously here, we intentionally reproduce the
same design mistake as in the original version: as-
suming that unnumbered also implicitly means no
TOC is suboptimal behavior. But in spite of this de-
ficiency, when somebody wanted a numbered section
not going in the TOC, we could have added a new
option without breaking anything:

\section[toc=false]{Title}

What’s more, we could also handle the opposite
request for free: an unnumbered section still going
in the TOC:

\section[numbered=false,toc=true]{Title}

4.2 Rule #2: Be hacker-friendly

The second category of people who will interact with
your package is its “hackers”, that is, the people that
may need to examine your code or even modify it
for intercession purposes. Of course, you are the
first person to be in this category. Being hacker-
friendly means doing everything possible to make
your package easy to read, understand and modify.
Note that as the first person in this category, you
end up doing yourself a favor in the first place. Be-
ing hacker-friendly can mean many different things,

including concerns that we have described already,
such as modularity. In this section we would like
to emphasize some higher level aspects, notably the
general problem of code organization. In our experi-
ence, we find that organizing code in a bottom-up
and feature-oriented way works best.

4.2.1 From bottom to top

Organizing code in a bottom-up fashion means that
you build layers on top of layers and you organize
those layers sequentially in the source file(s). The
advantage in being bottom-up is that when people
(including yourself) read the code, they can rely on
the fact that what they see only depends on what
has been defined above (previously). Learning seems
to be essentially an incremental process. Reading
is essentially a sequential process. Being bottom-up
helps to conform to these cognitive aspects.

The bottom-up approach is sometimes confused
with the design of a hierarchical model in which one
tries to establish nested layers (or rings) of function-
ality. These are different things. For example, not all
problems can be modeled in a hierarchical way and
trying to impose hierarchy leads to a broken design.
Sometimes, it is better to be modular than hierar-
chical. Some concepts are simply orthogonal to each
other, without one being on top of the other. The
bottom-up approach allows for that. When you have
two orthogonal features to implement, you can just
write them down one after the other, in no particular
order. The only rule is that one feature depends only
on the preceding, or more precisely, a subset of the
preceding.

As a code organization principle, the bottom-up
approach will also inevitably suffer from a few ex-
ceptions. Any reasonably complex program provides
intermixed functionality that cannot be implemented
in a bottom-up fashion. Macro inter-dependency (for
instance, mutual recursion) is one such case. Another
typical scenario is that of polymorphic macros (cf.
figure 6 on page 320): you may need to use a poly-
morphic macro at a time when it hasn’t been \let

to its actual implementation yet. Those exceptions
are unavoidable and are not to be feared. A short
comment in the code can help the reader navigate
through those detours.

4.2.2 Feature-oriented organization

In terms of code organization, the second principle
to which we try to conform is arranging the code by
feature instead of by implementation. This means
that we have a tendency to think in terms of “what it
does” rather than “how it does it” when we organize
code sections in source files. In our case, this is a

Towards LATEX coding standards



324 TUGboat, Volume 32 (2011), No. 3

relatively recent change of perspective which, again,
comes from the idea of putting oneself in the “hacker”
position. When people need to look at your code,
they are most of the time interested in one particular
feature that they want to imitate, extend, modify
or adapt for whatever reason. In such a situation,
acquiring an understanding of the feature’s inner
workings is easier when all the code related to that
feature is localized at the same place in the source.

To illustrate this, we will intentionally take an
example which may be controversial: the case of
internationalization. The CurVe class has several fea-
tures which need to be internationalized: rubrics
need a “continued” string in case they extend across
several pages, bibliographic sections need a “List of
Publications” title, etc. In CurVe 1, the code is al-
ready organized by feature, except for multi-lingual
strings which are all grouped at the end, like this:

%% Implement rubrics

%% ...

%% Implement bibliography

%% ...

\DeclareOption{english}{%

\continuedname{continued}

\listpubname{List of Publications}}

\DeclareOption{french}{%

\continuedname{suite}

\listpubname{Liste des Publications}}

%% ...

These days, we find this unsatisfactory because the
code for each feature is scattered in several places.
For instance, the \continuedname macro really be-
longs to the rubrics section and hence should not ap-
pear at the end of the file. This kind of organization
is indeed implementation-oriented instead of feature-
oriented: we grouped all multi-lingual strings at the
end because in terms of implementation, the idea is
to define a bunch of \<whatever>name macros.

In CurVe 2, we will take a different approach, as
illustrated below:

%% Implement rubrics

\newcommand*\continuedenglishname{%

continued}

\newcommand*\continuedfrenchname{%

suite}

%% ...

%% Implement bibliography

\newcommand*\listpubenglishname{%

List of Publications}

\newcommand*\listpubfrenchname{%

Liste des Publications}

%% ...

\DeclareOption{english}{%

\def\@currlang{english}}

\DeclareOption{french}{%

\def\@currlang{french}}

%% ...

After that, using the appropriate “continued” string
is a matter of calling

\csname continued\@currlang name\endcsname

This new form of code organization has several ad-
vantages. First, all the code related to one specific
feature is now localized in a single place. Next, it con-
forms better to the bottom-up approach (no forward
reference to a multi-lingual string macro is needed).
Finally, and perhaps unintentionally, we have im-
proved the flexibility of our package: by implement-
ing a macro such as \@currlang, we can provide
the user with a means to dynamically change the
current language right in the middle of a document,
something that was not possible before (language
processing was done when the package was loaded).

Earlier, we said that this example was taken
intentionally because of its controversial nature. In-
deed, one could object here that if someone wants
to modify the multi-lingual strings, or say, support a
new language, the first version is better because all
internationalization macros are localized in a single
place. It is true that if you consider internation-
alization as a feature, then our very own principle
would dictate to use the first version. This is simply
a demonstration that in general, there is no single
classification scheme that can work for all purposes.
However, we think that this argument is not really
pertinent. If you would indeed want to modify all
the multi-lingual strings, you would open the source
file in Emacs and use the occur library to get all
lines matching the regular expression

^\\newcommand\*\\.+name{

From the occurrence buffer, you can then reach every
relevant line directly by hitting the Return key. This
is really not complicated and in fact, could be more
good programming advice: know your tools.

4.3 Rule #3: Use filehook for intercession

The final behavioral rule we would like to propose
in this section deals more specifically with the inter-
cession problem. We recently came up with a design
pattern that we think helps smooth the implementa-
tion of inter-package compatibility.

4.3.1 Standard tools

The first thing we need to realize is that in general,
the standard LATEX tools are too limited.

Didier Verna



TUGboat, Volume 32 (2011), No. 3 325

\@ifpackageloaded allows you to detect when
a package has been used or required, and possibly
take counter-measures. However, this is only a cu-

rative way of doing things: it only lets you provide
post-loading (a posteriori) code. What if you need
to take precautionary measures instead?

\AtBeginDocument allows one to massively de-
fer code execution until the beginning of a document,
that is, after every package has been loaded. This
is obviously a very gross granularity. For example,
it doesn’t provide any information on the order in
which the packages have been loaded, something that
might be needed even for post-preamble code.

Consider for example the following scenario:

• Style S calls \AtBeginDocument{\things}
• Class C loads style S

And ask yourself the following question: how does
class C intercede on \things? There is no simple
way to sort this out with the standard LATEX tools.

4.3.2 filehook

Like probably almost every package developer, we
have fought against these problems for years with
intricate and obfuscated logic to fix inter-package
compatibility. We think however that the very recent
appearance of Martin Scharrer’s filehook package
is (should be) a crucial component in cleaning up
the current intercession mess.

The filehook package provides pre- and post-
loading hooks to files that you input in every pos-
sible way (\include’d files, packages, even class
files). Thanks to that, one can now handle inter-
cession in a context-free way, which is much better
than what was possible before. For example, you
can take both a priori and a posteriori counter-
measures against any package, without even knowing
for sure if the package is going to be loaded at all.
This notably includes the possibility of saving and
restoring functionality, much like what OpenGL does
with its PushMatrix / PopMatrix or PushAttrib /
PopAttrib functions (although OpenGL uses real
stacks for this).

Eventually, the existence of filehook allowed
us to come up with a particular design pattern for
intercession management that can be summarized as
follows. So far, this pattern works (for us) surpris-
ingly well.

• First of all, start by writing your code as if
there were no intercession problem. In other
words, simply implement the default behavior
as usual, assuming that no other package would
be loaded.

• Next, handle compatibility problems with pack-
ages, one at a time, and only locally: use pre-
and post-hooks exclusively to do so.

• Remember that hook code is only potential :
none of it will be executed if the correspond-
ing package is not loaded.

• Also, note that getting information on pack-
age loading order is now trivial if you use
\@ifpackageloaded in a pre-hook.

• Avoid using \AtBeginDocument for intercession,
unless absolutely necessary; for instance, if you
need to take a counter-measure against a pack-
age that already uses it. Again, in such a case,
calling \AtBeginDocument in a post-hook will
allow you to plug in the relevant code at exactly
the right position in the \@begindocumenthook
chain.

4.3.3 Bibliography management in CurVe

To provide a concrete example of these ideas, let us
demonstrate how recent versions of CurVe handle com-
patibility with various bibliography-related packages.
A summarized version is given in figure 8 on the
following page. Roughly speaking, what this code
does is:

• install the default, CurVe-specific behavior first,
• step back if bibentry is loaded,
• merge with multibib,
• step back before splitbib and re-merge after-
wards,

• render hyperref inoperative.

Knowing where we came from, that is, how this
logic was done before filehook, it is amazing how
readable, clear, concise, and in fact simple, this new
implementation is. We cannot be sure how striking
this will be for the unacquainted reader, but in case
it is not, you are invited, as an exercise, to try an
implement this only with the standard LATEX macros
(hint: it is practically impossible).

Earlier, we claimed that filehook would allow
us to program in a context-free way. Let us explain
now what we meant by that. First of all, note that
because we use hooks exclusively to plug our inter-
cession code, the five special cases could have been
implemented in any order in the CurVe source file.
We can move the five blocks around without modify-
ing the semantics of the program. This is what we
mean by being “context-free”: the current dynamic
state of the program has no effect on the code we
put in hooks. Another instance of context freedom
is in the specific case of hyperref. The important
thing to notice here is that we save (and restore)
whatever state we had just before loading hyperref.

Towards LATEX coding standards



326 TUGboat, Volume 32 (2011), No. 3

%% Step 1: implement the default bibliographic behavior

%% ...

%% Backup LaTeX’s original macros and replace them by our own:

\let\@curveltx@lbibitem\@lbibitem

\def\@curve@lbibitem[#1]#2{...}

\let\@lbibitem\@curve@lbibitem

%% ... do the same for \@bibitem, \bibitem etc.

%% Step 2: special cases

%% Bibentry. Restore standard definitions because bibentry just inlines

%% bibliographic contents.

\AtBeginOfPackageFile{bibentry}{

\let\@lbibitem\@curveltx@lbibitem

...}

%% Multibbl. Merge its definition of \bibliography with ours.

\AtEndOfPackageFile{multibbl}{

\def\bibliography##1##2##3{...}}

%% Splitbib.

%% Before: restore standard definitions because ours are only used as part of

%% the \endthebibliography redefinition.

\AtBeginOfPackageFile{splitbib}{

\let\@lbibitem\@curveltx@lbibitem

...}

%% After: Modify \NMSB@writeentry and re-modify \endthebibliography back.

\AtEndOfPackageFile{splitbib}{

\def\NMSB@writeentry##1##2##3##4##5,{...}%

\def\endthebibliography{...}}

%% Hyperref. Currently, we don’t want hyperref to modify our bibliographic

%% code, so we save and restore whatever bibliographic state we had before

%% hyperref was loaded.

\AtBeginOfPackageFile{hyperref}{

\let\@curveprevious@lbibitem\@lbibitem

...}

\AtEndOfPackageFile{hyperref}{

\let\@lbibitem\@curveprevious@lbibitem

...}

Figure 8: Intercession management

In other words, here again we don’t need to know our
exact context (the specific definition for the macros
involved). We just need to save and restore it. And
again, it is impossible to do that without the abil-
ity to hook code before and after package loading—
which filehook now provides.

5 Level 4: Social

This section, shorter than the others, addresses a final
level (or rather, a meta-level) in coding standards:
the social level. Here, we are interested in how the

human behavior may affect the LATEX world and in
particular the development of packages. We only
provide two simple rules, and a rather unfortunate,
but quite illustrative story.

We mentioned in the introduction the anti-social
development syndrome that LATEX seems to suffer
from. In our opinion, this behavior is what leads
to wheel-reinvention (cf. section 3.1 on page 318)
and hence redundancy (for instance, the existence of
half a dozen packages for key-value interfaces). In
an ideal world, the situation could be improved by
following the two simple rules described below.

Didier Verna



TUGboat, Volume 32 (2011), No. 3 327

5.1 Rule #1: Be proactive

The first rule of thumb is to permanently try to trig-

ger collaboration. Package development frequently
comes from the fact that you are missing a particular
functionality. However, there is little chance that
you are the first person to miss the functionality in
question. Therefore, the first thing to do is to look
for an existing solution instead of starting your own.
By the way, we know that it is fun to start one’s
own solution. We have done that before, but it is
nothing to be proud of!

Once you find an already existing solution (and
you will, most of the time), it will probably not be an
exact match. You will feel the need for implementing
a variant or an extension of some kind. Here again,
don’t take this as an excuse to start your own work,
and don’t keep your work for yourself either. Try to
be proactive and trigger collaboration: contact the
original author and see if your ideas or your code
could be merged in some way with the upstream
branch. This is the first key to avoid redundancy.

5.2 Rule #2: Be reactive

Of course, this can only work if there is a response
from the other side. And this is the second rule of
thumb: if collaboration is proposed, accept it. Main-
taining a package should be regarded as a certain
responsibility towards its users. People frequently es-
cape from their maintenance responsibility by hiding
behind the free software banner (free as in freedom
and/or as in beer). This is of course legitimate but
also abused to the point of leading to the anti-social
syndrome we have been discussing.

Being reactive means reviewing and accepting
patches from other people in a reasonable time frame
(for some definition of “reasonable”). It also means
listening to other people’s suggestions and implement-
ing them within the same reasonable time frame. We
understand that this is not always possible, but when
you feel that there is some kind of pressure on you,
there is also an alternative: trust people and open

the development. Use a version control system (VC)
of some kind. Put your code on github or a similar
place and let people hack on it. The advantage to
using a VC is that it is always possible to revert to
an earlier state in the history of the package.

5.2.1 FiNK and currfile

We realize these considerations may be somewhat ide-
alistic. In order to illustrate why they are important
anyways let us tell a short story.

Sometime in 2010, we were contacted by Martin
Scharrer, the author of filehook, about another
package of his named currfile. This package main-

tains the name of the file currently being processed
by LATEX. Martin was inquiring about a potential
cross-compatibility with FiNK, one of our own pack-
ages, which does exactly the same thing.

We answered politely with the requested infor-
mation and continued the email conversation for a
little while, not without a wee bit of frustration how-
ever. Why yet another package for this? Wasn’t
FiNK good enough? Couldn’t its functionality have
been extended rather than duplicated?

Interestingly enough, we were recently sorting
out some old mail when we dug up a message from
this very same Martin Scharrer, providing a patch
against FiNK in order to ground it onto filehook.
This message was one year and thirty eight weeks old.
Of course, we had completely forgotten all about it.
In terms of time frame, one year and thirty eight
weeks is way beyond “reasonable”. So much for being
reactive, lesson learned, the hard way. . .

6 Conclusion

In this paper, we addressed the notion of LATEX cod-
ing standards. We started by analyzing the reasons
why no such thing seems to exist as of yet. In short,
the lack of coding standards for LATEX can be justi-
fied by a mostly anti-social development syndrome,
a not so pressing need for them in the view of the
developers and the lack of help and support from the
usual text editors. We however demonstrated that
having a set of coding standards would be extremely
beneficial to the community. First, they would help
make the most of a programming language that is
far less structured than the more casual ones. Next,
they would also help in terms of code homogeneity
and readability, both key components in collabora-
tion. This is especially important in LATEX because
even if intentional collaboration is not so widespread,
there is a very frequent form of forced collaboration,
which is intercession (inter-package compatibility and
conflict management).

We then reported on our own development expe-
rience and proposed a set of rules and design patterns
that have helped improve our own code over the years.
Those rules were organized in four different abstrac-
tion levels: layout (formatting and naming policies),
design (modularity and other programming para-
digms), behavior (interfaces and intercession man-
agement) and finally the meta-level (social behavior).

We don’t expect that everyone would agree to
every one of these rules, as we know that a coding
style is above all a matter of personal taste. In
fact, a coding style is important, but it is even more
important to stick to it, that is, to stay coherent with
yourself. Developing a coding style is also a matter of

Towards LATEX coding standards



328 TUGboat, Volume 32 (2011), No. 3

keeping the problem in mind permanently, not unlike
a daemonized process running in the background of
one’s head. Every time you write a line of code, you
need to ask yourself, “is this the proper way to do
it?” This also means that a coding style may be
a moving target, at least partially. It will evolve
along with the quality of your code. Finally, one
should remember that there can be no rule without
exceptions. Knowing when to escape from your style
for the greater good is as important as conforming
to it.

The ideas, rules and design patterns proposed
in this article are those that work best for us, but
our hope is that they will also help you too. Many
other ideas have not been tackled in this paper, both
at the level of the document author and at the level
of the package developer. Much more could be said
on the matter, and if there is enough interest in the
community, maybe it is time for an “Elements of
LATEX Programming Style” book which remains to
be written. Perhaps this article could serve as a basis
for such a book, and we would definitely be willing
to work on such a project.

References

[1] AUC-TEX. http://www.gnu.org/s/auctex.

[2] The comprehensive TEX archive network.
http://www.ctan.org.

[3] The XEmacs text editor.
http://www.xemacs.org.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture, volume 1. Wiley, 1996.

[5] Frank Buschmann, Kevlin Henney, and
Douglas C. Schmidt. Pattern-Oriented

Software Architecture: A Pattern Language

for Distributed Computing, volume 4.
Wiley, 2007.

[6] Frank Buschmann, Kevlin Henney, and
Douglas C. Schmidt. Pattern-Oriented

Software Architecture: A Pattern Language

for Distributed Computing, volume 5.
Wiley, 2007.

[7] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] B.W. Kernighan and P.J. Plauger. The

Elements of Programming Style.

McGraw-Hill, 1974.

[9] Michael Kircher and Prashant Jain.
Pattern-Oriented Software Architecture:

Patterns for Resource Management, volume 3.
Wiley, 2004.

[10] Patty Maes. Concepts and experiments in
computational reflection. In OOPSLA. ACM,
December 1987.

[11] Frank Mittelbach. Reflections on the
history of the LATEX Project Public License
(LPPL)—A software license for LATEX and
more. TUGboat, 32(1):83–94, 2011. http:

//tug.org/TUGboat/tb32-1/tb100mitt.pdf.

[12] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley.
The LATEX Companion, second edition.
Addison Wesley, 2004.

[13] Douglas C. Schmidt, Michael Stal,
Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture:

Patterns for Concurrent and Networked

Objects, volume 2. Wiley, 2000.

[14] Brian C. Smith. Reflection and semantics
in Lisp. In Symposium on Principles of

Programming Languages, pages 23–35.
ACM, 1984.

[15] Richard M. Stallman. The GNU coding
standards. http://www.gnu.org/prep/

standards.

[16] William Strunk Jr. and E.B. White. The

Elements of Style. W.P. Humphrey, 1918.

[17] Didier Verna. The CurVe class. http:

//www.lrde.epita.fr/~didier/software/

latex.php#curve.

[18] Didier Verna. The FiXme style. http:

//www.lrde.epita.fr/~didier/software/

latex.php#fixme.

[19] Didier Verna. Classes, styles, conflicts:
The biological realm of LATEX. TUGboat,
31(2):162–172, 2010. http://tug.org/

TUGboat/tb31-2/tb98verna.pdf.

[20] Joseph Wright and Christian Feuersänger.
Implementing key–value input: An
introduction. TUGboat, 30(1):110–122,
2009. http://tug.org/TUGboat/tb30-1/

tb94wright-keyval.pdf.

⋄ Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre Cedex
France
didier (at) lrde dot epita dot fr

http://www.lrde.epita.fr/~didier

Didier Verna



TUGboat, Volume 32 (2011), No. 3 329

TUG 2011 abstracts

Editor’s note: Many of the conference presentations
are available at http://www.river-valley.tv in
video form, thanks to Kaveh Bazargan and River
Valley Technologies.

Kaveh Bazargan

Why TEX is more relevant now than ever

TEX is around 30 years old, and was conceived and writ-
ten before the advent of laser printers, personal com-
puters, PostScript and of course the Internet. At that
time the idea of WYSIWYG document editing was just a
futuristic idea. When people jumped on the WYSIWYG

bandwagon, it was predicted that old technologies such
as TEX which used mark-up for text would disappear in
time. The advent of the Internet brought mark-up to
the attention of the public. Somehow it was acceptable
again. The recent move to the semantic web and HTML5
has brought renewed attention to mark-up and the need
for clear structure in text. I suggest that we have gone
full circle and now realise that mark-up is everything.
And TEX, which has the most readable and minimalist
mark-up, might just be the best tool today for structured
documentation.

Dave Crossland

Freeing fonts for fun and profit

Google Web Fonts (http://www.google.com/webfonts)
has published hundreds of libre fonts during the past year,
at an accelerating pace. Dave Crossland has been driving
this through consultancy for Google, and presents his
personal opinion about the past, present and future of
libre fonts— showcasing the latest designs, designers and
tools. (Please note that this talk is entirely the personal
opinion of Dave Crossland, and does not represent the
views of Google, Inc., in any way.)

CV Radhakrishnan

TEX4ht—A Swiss army knife for TEX

There are several technologies to translate LATEX sources
into other markup formats like HTML, XML and MathML.
TEX4ht assumes a premier position among them owing
to the fact that it makes use of the TEX compiler for
translation, which helps to assimilate any complex author
macros used in the document. This talk provides an
overview of how to configure TEX4ht to output custom
markup needed by users. More online at http://www.

cvr.cc/tex/tex4ht.

Jean-luc Doumont

Integrating TEX and PDF seamlessly in pdfTEX

In its ability to generate graphical elements, TEX is basi-
cally limited to horizontal and vertical black rules. Ex-
tended versions such as pdfTEX add color options and,
especially, the possibility to draw more freely on the page
by inserting raw code (PDF code in the case of pdfTEX).
Still, these two coding environments—TEX and PDF—
are too often regarded as disjoint. It would be nice to
integrate them seamlessly, for example, to use in PDF

code a color or a dimension assigned or calculated in TEX.
This presentation points out the challenges of such a con-
sistent and transparent TEX–PDF integration, proposes a
set of solutions, and illustrates how these solutions help
create graphs flexibly or design pages consistently on a
grid.

Frank Mittelbach

LATEX3 architecture

This talk discusses the architecture of LATEX3, starting
with the initial ideas dating back to the early ’90s. Using
an example covering the whole production cycle it is
shown that several different roles with different require-
ments are needed to turn some draft initial manuscript
into a final product. The purpose of the LATEX3 archi-
tecture is to provide adequate support for these different
needs and to resolve or at least mediate conflicts between
them.

While the basic building blocks of this architecture
were identified long ago, an initial implementation in 1992
showed that it was impossible to use them in practice due
to limitations in the processing power of the underlying
engines at the time. Furthermore, several ideas that were
toyed with at the time—though not wrong as such—
were immature and not fully thought through. As a result
the project gave up on the broader redesign and instead
focused on producing a consolidated LATEX version largely
based on the architecture of LATEX 2.09. This fairly
successful endeavor, labeled LATEX2ε, is still the current
standard LATEX.

So why is it still relevant? Basically because the
drivers and goals that led to the new architecture are
issues that haven’t been successfully resolved by other
typesetting systems. The difference from the situation
from the ’90s is that processing power in the underlying
engine has increased so much that it has become feasible
to implement this architecture in TEX (or rather one
of its successors). The other reason is that since then
further work has been undertaken, refining many of the
initially immature ideas. The result is a coherent vision
for a future typesetting system based on the principles
of TEX and LATEX but moving them to the next level.

The talk discusses the separation of concerns as
propagated by the architecture: between logical struc-
ture, design layer and the coding and implementation
support. At the same time it is shown that for high-
quality results this separation needs to be accompanied
by built-in support for formatting adjustments and how
this is supported by the architecture.

For design support the architecture provides two
major complementary concepts: templates and context
management. The use of design templates offers abstrac-
tions from which real designs can be derived through
customization of parameters. The second approach is
a general concept for managing design variations based
on actual element relationships within a document. For
each concept, the theory is discussed and a short live
demonstration is given.



330 TUGboat, Volume 32 (2011), No. 3

Ross Moore

Further advances toward Tagged PDF for mathematics

This is the 3rd presentation on on-going efforts to de-
velop the ability to generated Tagged PDF output using
pdfTEX, in conjunction with other software tools. In this
talk I’ll show how recent improvements to Adobe Reader
and Adobe Acrobat Pro software have increased the use-
fulness of Tagged PDF documents, containing a MathML

description of TEX-typeset mathematical content.
In particular, by careful specification of the words

to be “Read Out Loud”, mathematical content can be
conveyed quite effectively to the visually impaired. Also,
using Adobe’s Acrobat Pro as the PDF browser, the
ability to export to XML means that a fully marked-up,
with MathML for the mathematics, version of the PDF

document’s contents can be obtained from the same file
that displays the high-quality typeset visual appearance.

Examples will be shown of diverse mathematical
content, generated automatically from standard LATEX,
along with suitably generated MathML descriptions.

Rishi

Creating magical PDF documents with pdfTEX

PDF has a rich specification, but Adobe Distiller does not
exploit all these specifications. We’ll demonstrate how
pdfTEX can create useful PDF files that are difficult or
impossible to create using other technologies. Examples:
PDFs showing differences in two TEX source files; PDFs
with useful pop-up tools; a simple but useful composite
PDF for comparing two nearly identical PDF files.

Karel Skoupý

Typesetting fancy multilingual phrase books with LuaTEX

We used TEX for typesetting a series of phrase books
with a fancy graphical design. Each book contained the
same content for a different language pair. There were
several dozen of them semi-automatically generated, and
thanks to the way that the language data was organized
and thanks to TEX as a typesetting engine this process
was very time and cost-effective.

We have developed interesting TEX macro modules
and used many advanced features of pdfTEX and LuaTEX
to meet the challenges raised by the graphical design and
by some non-Latin script languages. We will show the
general structure and discuss some interesting problems
and their pdfTEX/LuaTEX solutions.

Karel Skoupý

Data structures in ε-TEX

To construct macro packages, TEX is used as a program-
ming language. Unlike general programming languages it
lacks complex data structures. We present the experience
of providing record and array data structures and the
supporting operations using ε-TEX features. They were
successfully applied in real projects for parametrization
and as a base for a special table module involving complex
dimension calculations. We will show how the abstrac-
tion level provided by more powerful data structures can
simplify and unify TEX low-level code.

Petr Sojka

Why TEX math search is more relevant now than ever

TEX is around 30 years old, and was conceived and writ-
ten before the advent of MathML, not to mention the
Internet. At that time the idea of indexing and searching
mathematics was just a futuristic idea. When people
jumped on the Google bandwagon, it was predicted that
old technologies such as TEX mark-up for math would
disappear in time (it is not used for tokenization and
indexing properly). The advent of the Internet and W3C

brought mark-up and global search to the attention of
the public. Somehow it was acceptable again. The recent
move to the semantic search and MathML has brought
renewed attention to the need of unambiguous canonical
math representation in texts.

As part of the project of building the European
Digital Mathematics Library (http://www.eudml.eu) we
have designed and implemented a math search engine,
MIaS (http://nlp.fi.muni.cz/projekty/eudml/mias).
It currently indexes and searches more than 160,000,000
formulae originally written by authors in TEX in their
scientific papers. We will present the system and will
discuss the ways towards a global math search engine
based on the TEX math notation.

Dominik Wujastyk

My father’s book: Typesetting and publishing

a family memoir

In 2010, I typeset a 650-page book of memoirs, political
essays, and biographical sketches written by my 97-year-
old father. The book is in the Polish language, and was
published by the University of Lublin. For the design
and typesetting I made choices that stylistically echoed
my father’s life-long links with Malta and Poland. Due
to financial restrictions at the University of Lublin, I
worked out a cost-effective pathway for printing and
distribution using an American web-based printing and
distribution service. The final result is of a high standard,
and has been gratifyingly well received by all parties.
Some niggles remain, however, regarding publicity and
distribution. In this paper, I shall describe my choices
and discoveries in producing my father’s book.

Dominik Wujastyk

Typesetting Sanskrit in various alphabets:

X

E

LATEX, TEC files, hyphenation, and even XML

The X ETEX extended TEX engine provides a wealth of so-
phisticated features, and meets many of the longstanding
needs of people working with multilingual or multi-script
texts. I shall describe the use of X ELATEX for typeset-
ting Sanskrit, with both Roman- and Devānagar̄ı-script
inputs, and Roman- and Devānagar̄ı-script outputs. I
shall describe the complexities of getting differently hy-
phenated Sanskrit in different scripts. Finally, I shall
offer an example of a free IBM XML tool that uses a
X ELATEX TEC file to auto-convert Sanskrit between Ro-
man and Devānagar̄ı for screen display via HTML. If all
this sounds a bit messy, it is. But the results are some-
times quite amazing, and open up exciting possibilities
for the beautiful printing of Indian texts.



TUGboat, Volume 32 (2011), No. 3 331

LATEX News
Issue 20, June 2011

Scheduled LATEX bug-fix release

This issue of LATEX News marks the first bug-fix release
of LATEX 2ε since shifting to a new build system in 2009.
Provided sufficient changes are made each year, we
expect to repeat such releases once per year to stay in
sync with TEX Live. Due to the excitement of TEX’s
25-th birthday last year, we missed our window of
opportunity to do so for 2010. This situation has been
rectified this year!

Continued development

The LATEX 2ε program is no longer being actively
developed, as any non-negligible changes now could
have dramatic backwards compatibility issues with old
documents. Similarly, new features cannot be added to
the kernel since any new documents written now would
then be incompatible with legacy versions of LATEX.

The situation on the package level is quite different
though. While most of us have stopped developing
packages for LATEX 2ε there are many contributing
developers that continue to enrich LATEX 2ε by
providing or extending add-on packages with new or
better functionality.

However, the LATEX team certainly recognises that
there are improvements to be made to the kernel code;
over the last few years we have been working on
building, expanding, and solidifying the expl3

programming layer for future LATEX development. We
are using expl3 to build new interfaces for package
development and tools for document design. Progress
here is continuing.

Release notes

In addition to a few small documentation fixes, the
following changes have been made to the LATEX 2ε code;
in accordance with the philosophy of minimising
forwards and backwards compatibility problems, most
of these will not be noticeable to the regular LATEX user.

Font subsets covered by Latin Modern and TEX

Gyre The Latin Modern and TEX Gyre fonts are a
modern suite of families based on the well-known
Computer Modern and ‘PostScript 16’ families with
many additional characters for high-quality multilingual
typesetting.1

1See their respective TUGboat articles for more information:

http://www.tug.org/TUGboat/tb24-1/jackowski.pdf

http://www.tug.org/TUGboat/tb27-2/tb87hagen-gyre.pdf

Information about their symbol coverage in the TS1

encoding is now included in textcomp’s default font
definitions.

Redefinition of \enddocument Inside the definition
of \end{document} the .aux file is read back in to
resolve cross-references and build the table of contents
etc. From 2.09 days this was done using \input without
any surrounding braces which could lead to some issues
in boundary cases, especially if \input was redefined by
some package. It was therefore changed to use
LATEX 2ε’s internal name for this function. As a result,
packages that modify \enddocument other than through
the officially provided hooks may need to get updated.

Small improvement with split footnotes in

ftnright If in the first column there is more than a
full column worth of footnote material the material will
be split resulting in footnotes out of order. This issue is
now at least detected and generates an error but the
algorithm used by the package is unable to gracefully
handle it in an automated fashion (some alternatives for
resolving the problem if it happens are given in the
package documentation).

Improvement in xspace and font-switching The
xspace package provides the command \xspace which
attempts to be clever about inserting spaces
automatically after user-defined control sequences. An
important bug fix has been made to this command to
correct its behaviour when used in conjunction with
font-switching commands such as \emph and \textbf.
Previously, writing

\newcommand\foo{foo\xspace}

... \emph{\foo} bar baz

... \emph{\foo}, bar baz

would result in an extraneous space being inserted after
‘foo’ in both cases; this has now been corrected.

RTL in multicol The 1.7 release of multicol adds
support for languages that are typeset right-to-left. For
those languages the order of the columns on the page
also needs to be reversed—something that wasn’t
possible in earlier releases.

The new feature is supported through the commands
\RLmulticolcolumns (switching to right-to-left

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2011, all rights reserved.



332 TUGboat, Volume 32 (2011), No. 3

typesetting) and \LRmulticolcolumns (switching to
left-to-right typesetting) the latter being the default.

Improve French babel interaction with varioref

Extracting and saving the page number turned out to
be a source of subtle bugs. Initially it was done through
an \edef with a bunch of \expandafter commands
inside. This posed a problem if the page number itself
contained code which needed protection (e.g., pr/4080)
so this got changed in the last release to use
\protected@edef. However, that in turn failed with
Babel (bug report/4093) if the label contained active
characters, e.g., a “:” in French. So now we use (after
one failed attempt pr/4159) even more \expandafter

commands and \romannumeral trickery to avoid any

expansion other than what is absolutely
required—making the code in that space absolutely
unreadable.

\expandafter\def\expandafter#1\expandafter{%

\romannumeral

\expandafter\expandafter\expandafter

\z@

\expandafter \@cdr

\romannumeral

\expandafter\expandafter\expandafter

\z@

\csname r@#2\endcsname\@nil}%

Code like this nicely demonstrates the limitations in the
programming layer of LATEX 2ε and the advantages that
expl3 will offer on this level.



TUGboat, Volume 32 (2011), No. 3 333

The meetingmins LATEX class: Hierarchically

organized meeting agendas and minutes

Brian D. Beitzel

Abstract

Many professionals (including faculty in higher ed-
ucation) must at least occasionally document the
happenings of group meetings. Although a few dif-
ferent LATEX classes are available for this purpose,
the meetingmins class is simple and straightforward
and most importantly, allows for a hierarchical orga-
nization of minutes using standard LATEX \section

commands. An agenda function is also available.

1 Introduction

Faculty in higher education and other professionals
are often expected to compose a written record of
group meetings. In addition, the agenda for these
meetings is sometimes expected to be circulated in
advance. A few LATEX classes are available for format-
ting meeting minutes. Some are simple; others (I’m
looking at you, minutes) are extraordinarily powerful
but rather complicated. To the best of my knowledge,
none integrates an agenda function.

The meetingmins class (http://ctan.org/pkg/
meetingmins) takes a middle-of-the-road approach,
providing a flexible document structure yet including
all of the basics needed to chronicle the typical meet-
ing. It is based on Jim Hefferon’s mins class (http:
//tug.org/pracjourn/2005-4/hefferon/), which
has a one-level (non-hierarchical) document structure.
In departmental meetings at academic institutions,
faculty report back from departmental committees as
well as various institution-wide committees. Thus a
hierarchical document structure (with each commit-
tee report being subordinate to either the department
or the institution) is required to adequately represent
the structure of the meeting.

2 Basic features

The nuts and bolts are all here, via commands in the
document preamble: the group’s name, meeting date,
members present, members absent, and guests. The
absentee and guest lines are not printed if they are
not needed. There is also a \nextmeeting command
that can be included at the end of the document to
display the next meeting date. See the meetingmins

documentation for details.
There are no pre-established sections within the

body of the document; simply call the \section

command in the standard way to create sections
such as Announcements, Old Business, etc., titled
and sequenced as you desire. Numbered items are

available within any section by using an environment
named items.

3 Distinctive features

3.1 Using \section commands

to establish hierarchy

To transparently represent the hierarchical structure
of the document, the standard LATEX \section com-
mands are used (down to \subsubsection). The
document structure is then visually conveyed through
the use of indentation and other formatting. More
detail and examples are provided in the meetingmins

documentation.

3.2 Agenda

Even the powerful minutes class does not support
the creation of meeting agendas, so the lowly meet-

ingmins steps in to fill the gap. To create an agenda,
specify the agenda option when the class is loaded.
The printed document will contain a skeleton agenda,
titled “Agenda for 〈date〉” underneath the commit-
tee/department name. Numbered items of business
will also be printed if they have not been suppressed
(see next section).

3.3 Hidden items

Agenda items can be suppressed from being printed
by using the hiddenitems environment (in place
of the items environment). No need to give away
the surprise announcement before the meeting! The
hiddenitems environment can be used in any sec-
tion of the document. When the agenda option is
removed from the \documentclass line to produce
the minutes of the meeting, all items in hiddenitems

environments will be printed; there is no need to alter
environment names.

3.4 Chair’s agenda

How many meetings have you attended (or led) in
which you asked, “Who is missing?” With the chair’s
agenda, that question is moot. Specify the chair

option (instead of agenda—don’t use both) and a
handy list of members will be printed at the top of
the agenda, complete with checkboxes beside each
name to facilitate taking attendance. And there
are no surprises on the chair’s agenda; hiddenitems
environments are printed for easy reference by the
chair throughout the meeting.

4 Sample documents

The meetingmins documentation includes complete
samples for (a) an agenda containing some hidden
items; (b) a chair’s agenda; and (c) the meeting

The meetingmins LATEX class: Hierarchically organized meeting agendas and minutes



334 TUGboat, Volume 32 (2011), No. 3

Department of Instruction

Agenda for October 5, 2011

Announcements

Committee Reports

College-wide Committees

Library

Curriculum

Department Committees

Personnel

Assistant Professor Search

Old Business

1. Approve minutes from the September 7 meeting.

New Business

1. Discuss class schedules for next semester.

2. Discuss research plans for next semester.

Department of Instruction

Chair’s Agenda for October 5, 2011

Members: ❧ B. Smart (Chair), ❧ B. Brave, ❧ D. Claire, ❧ B. Gone

Announcements

1. The chair is retiring.

2. The dean is coming today to announce the chair’s replacement.

Committee Reports

College-wide Committees

Library

Curriculum

1. There is widespread interest in reforming the curriculum.

2. Unfortunately, no one seems interested in participating on the curriculum reform
committee.

Department Committees

Personnel

Assistant Professor Search

Old Business

1. Approve minutes from the September 7 meeting.

New Business

1. Discuss class schedules for next semester.

2. Discuss research plans for next semester.

Next Meeting: Wednesday, November 2, at 3:00

Figure 1: Example participant and chair’s agenda.

minutes. Users are encouraged to consult and modify
these samples for their own use.

4.1 Example source

Here is the source for the output shown in Figure 1.
The chair’s agenda is created by replacing agenda

with chair in the first line; no other changes.

\documentclass[11pt,agenda]{meetingmins}

\setcommittee{Department of Instruction}

\setmembers{

\chair{B.~Smart},

B.~Brave,

D.~Claire,

B.~Gone

}

\setdate{October 5, 2011}

\begin{document}

\maketitle

\section{Announcements}

\begin{hiddenitems}

\item

The chair is retiring.

\item

The dean is coming today to announce

the chair’s replacement.

\end{hiddenitems}

\section{Committee Reports}

\subsection{College-wide Committees}

\subsubsection{Library}

\subsubsection{Curriculum}

\begin{hiddensubitems}

\item

There is widespread interest

in reforming the curriculum.

\item

Unfortunately, no one seems interested in

participating on the curriculum reform committee.

\end{hiddensubitems}

...

\nextmeeting{Wednesday, November 2, at 3:00}

\end{document}

⋄ Brian D. Beitzel

129 Fitzelle

SUNY Oneonta

Oneonta, NY 13825 USA

brian (at) edpsych dot net

http://www.edpsych.net/brian/

Brian D. Beitzel



TUGboat, Volume 32 (2011), No. 3 335

Collaborative LATEX writing with

Google Docs

Igor Ruiz-Agundez

Abstract

Working with LATEX documents is not an easy task
and doing it collaboratively is even harder. The
writing of an article by several authors at the same
time implies extra coordination tasks to avoid unsyn-
chronised versions, text overlapping or even loss of
information. Collaborative writing platforms (e.g.,
Google Docs) are trying to solve this issue by en-
abling synchronous online writing for regular docu-
ments. Nevertheless, to our knowledge, there is no
easy way to use this platform with LATEX papers.
Here we tailor a template and set of functions to en-
able collaborative work in LATEX using Google Docs.

1 Introduction

Collaborative working technologies are very efficient
tools. They encourage and facilitate team work. In
recent years collaborative working platforms have
become popular and their efficiency is well-proven [1].
Moreover, there are some works on collaborative
writing of LATEX documents [2, 6] but none of them
provide a working template that enables the use of
Google Docs as a writing platform.

Against this background, we introduce a tem-
plate that enables the writing of collaborative LATEX
documents. Our basic approach will be to use Google
Docs for editing, with a Makefile to update local files
and run TEX.

The remainder of this paper is structured as
follows. Section 2 introduces the requirements to
use this template. Section 3 describes the files that
are included in the template. Section 4 presents the
functions included in the Makefile. Section 5 gives a
full example of a collaborative work detailing all the
required steps. Section 6 concludes and describes
avenues for future work.

The template and functions described in this
paper are available at:
http://paginaspersonales.deusto.es/igor.ira/

private$/collaborative-latex.

2 Requirements

The use of this collaborative template requires some
background in LATEX [4], Google Docs [3], GNU Make
[5] and GNU/Linux [7]. Nevertheless, this document
aims to be self-contained and provide enough infor-
mation to start creating collaborative documents
using Google Docs. The reader will also need a user
account on Google Docs.

3 Provided files

A description of the files provided in this collabora-
tive LATEX writing template:

• template.pdf: This paper itself.

• CHANGELOG: Tracking of the different versions,
detailing the changes between them.

• TODO: Ideas for future improvements.

• /template/: A folder that contains an exe-
cutable example of this template.

• /template/Makefile: A Makefile that contains
all the executable commands to enable collabo-
rative LATEX writing. This file content will be
detailed in Section 4.

• /template/time-machine/: A folder that con-
tains a daily backup of the work.

• /template/figures/: A folder that contains
the figures of this paper.

• /template/src/: A folder that contains the
source code of this paper.

• /template/template.tex: The LATEX source
for this document.

• /template/template.bib: The BibTEX source
for the references of this document.

4 Makefile description

Description of the Makefile configuration parameters:

• FILE_TEX: Name of the main TEX file.

• DATESTAMP: Syntax of date stamp for backups.

• ACCOUNTTYPE: Account type used to authenti-
cate in Google Docs.

• EMAIL: Email account that identifies the author
on Google Docs. It must have access to the
shared document.

• PASSWD: The password associated to the pre-
vious user’s email. If the user has the 2-step
verification system enabled, an authorized ap-
plication password is required.

• SERVICE: The type of service to use in Google
Docs. It must be set to writely.

• SOURCE: Source domain of the request.

• TEX_GOOGLE_DOCS: TEX file resource identifier
in Google Docs. In order to find the value of
this resource, open the collaborative working
document in Google Docs, copy and paste the
document URL from your browser, and extract
the resource id from the URL as in the following
example:

Sample document URL: https://docs.google.
com/document/d/123XX123XX/edit?hl=en_GB#

Resource id for this document: 123XX123XX.

Collaborative LATEX writing with Google Docs



336 TUGboat, Volume 32 (2011), No. 3

• BIB_GOOGLE_DOCS: BibTEX file resource identi-
fier in Google Docs. This resource id is found
in the same way as with TEX_GOOGLE_DOCS.

Next, we describe the Makefile functions (targets):

• all: Default execution function for the Makefile.
Set to latex.

• latex: Compiles the document using latex, bib-
tex and dvipdfm. Performs a daily backup of
the work. If working with indexes, a makeindex

line can be uncommented.

• pdflatex: Compiles the document using pdfla-

tex and bibtex. Otherwise like latex.

• rtf: Compiles the document using latex, bibtex
and latex2rtf. Otherwise like latex.

• view: Opens the generated PDF file with the
evince document viewer.

• clean: Cleans all the temporary working files
generated in a compilation. It is used before
each compilation in order to avoid possible errors
from previous failed compilations.

• update: Update collaborative working docu-
ments, both TEX and BibTEX files, from the
Google Docs version. This function overwrites
your local files with the ones from Google Docs!
Make sure you upload all your changes to the
online version before executing it.

5 Collaborative working example

We are going to enumerate the steps required to
perform a collaborative writing piece using this tem-
plate:

1. Open a Google Docs document with extension
.tex; we’ll use template.tex for our example.
Get the associated document resource as de-
scribed in Section 4. Set the Makefile parameter
TEX_GOOGLE_DOCS to this value. See Figure 1
for an example of editing in Google Docs.

Figure 1: TEX file editing in Google Docs

2. Similarly, open a Google Docs document with
extension .bib; we’ll use template.bib. Get
the associated document resource id as described
in Section 4. Set the Makefile parameter BIB_
GOOGLE_DOCS to this value.

3. Set the other Makefile parameters as detailed in
Section 4 with your personal configuration.

4. Give some initial content to template.tex in
Google Docs. It is worth mentioning that the
document will require an extra line at the be-
ginning of the text. This extra line aims to
avoid character encoding problems that may
occur when importing the document with the
Makefile. This first line will be automatically
cleaned. We recommend setting this line to
‘%Keep this line in Google Docs’, to remind
authors that they must not delete it.

5. Give some initial content to template.bib in
Google Docs. As in the case of the TEX file,
this document will require an extra line in the
beginning on Google Docs for the same reason.
We recommend the same convention.

6. From your shell, run make update in the tem-
plate folder to get the TEX and BibTEX docu-
ments from Google Docs.

7. Run make to compile the document, or make la-

tex, make pdflatex, or make rtf to perform differ-
ent compilations and obtain the corresponding
output file formats.

8. Run make view to open the generated pdf doc-
ument with the evince document viewer.

It is important to edit the files as stored on Google
Docs and not the local copies. Otherwise, there
would not be any collaboration between the authors
and you could lose your contributions to the doc-
uments when updating your local files from your
colleagues’ work.

If at some point you cannot access Google Docs
(e.g., you do not have Internet access), however, we
can only recommend working locally and committing
your changes online as soon as possible.

6 Conclusions

This article aims to provide a collaborative LATEX
writing context in Google Docs. It describes the
requirements to start creating collaborative docu-
ments using this template, the provided files, the
parameters and functions, and gives a full execution
example.

Future work will focus on supporting various
TEX files seamlessly; that is, with no need to edit
the Makefile. In this way, documents that are split
among different Google Docs files would update and

Igor Ruiz-Agundez



TUGboat, Volume 32 (2011), No. 3 337

compile automatically. If other collaborative writ-
ing platforms emerge, their support could also be
included in this collaborative LATEX template.

⋄ Igor Ruiz-Agundez

DeustoTech, Deusto Institute of Technology,

University of Deusto

Unibertsitate etorbidea 24

Bilbao, 48007

Basque Country

igor dot ira (at) deusto dot es

http://http://paginaspersonales.

deusto.es/igor.ira/

References

[1] C. Clegg, P. Waterson, and N. Carey. Computer
supported collaborative working: Lessons from
elsewhere. Journal of Information Technology,
9(2):85–98, 1994.

[2] S. Dekeyser and R. Watson. Extending
Google Docs to collaborate on research papers.
University of Southern Queensland, Australia,
23:2008, 2006. Retrieved March 2011, Citeseer.

[3] Google. Google Docs—Online documents,
spreadsheets, presentations, surveys, file
storage and more. http://docs.google.com.

[4] T. Oetiker, H. Partl, I. Hyna, and E. Schlegl.
The Not So Short Introduction to LATEX2ε.
2011. http://mirrors.ctan.org/info/

lshort.

[5] Richard M. Stallman, Roland McGrath,
and Paul D. Smith. GNU Make. http:

//www.gnu.org/software/make/manual.

[6] Wikibooks. LATEX/Collaborative Writing of
LATEX Documents. http://en.wikibooks.org/
wiki/LaTeX/Collaborative_Writing_of_

LaTeX_Documents.

[7] Wikipedia. GNU/Linux naming controversy.
http://en.wikipedia.org/wiki/GNU/Linux_

naming_controversy.

A Appendix: Makefile template

1 # Makefile

2 # Author: Igor Ruiz-Agundez

3 # Affiliation: DeustoTech, Deusto Institute of

Technology, University of Deusto

4 # Version: v.1.0

5

6 ###

7 # TEX configuration

8 ###

9 # Name of the main TEX file to work with

10 FILE_TEX=template

11

12 ###

13 # Backup configuration

14 ###

15 # Syntax of the date stamp for the backups

16 DATESTAMP=‘date +’%Y-%m-%d’‘

17

18 ###

19 # Authentication parameters

20 ###

21 # Account type that is used to authenticate in

Google Docs

22 ACCOUNTTYPE=GOOGLE

23

24 # Email account that identifies the author on Google

Docs. Must have access to the collaborative

document.

25 # EMAIL=your-email-with-google-account

26 EMAIL=your-email-with-google-account

27

28 # The password associated to the previous user’s

email. Note that if the 2-step verification

system is enabled an authorized application

password is required.

29 # PASSWD=your-password

30 PASSWD=your-password

31

32 # The type of service to use in Google Docs. It must

be set to writely:

33 SERVICE=writely

34

35 # Source domain of the request

36 SOURCE=deusto.es

37

38 ###

39 # Google Docs resource ids

40 ###

41 # To get the resource ids:

42 # Open the document with Google Docs

43 # Copy and paste the document URL from your browser

44 # Example:

45 # https://docs.google.com/document/d/123XXX123XXX/

edit?hl=en_GB#

46 # In this example, the resource id is:

47 # 123XXX123XXX

48

49 # .tex file resource id

50 TEX_GOOGLE_DOCS=123XXX123XXX

51

52 # .bib file resource id

53 BIB_GOOGLE_DOCS=123XXX123XXX

54

55

56 ###

57 # make execution functions

58 ###

59

60 all: latex

61

62 latex: clean

63 latex ${FILE_TEX}.tex

64 # Uncomment makeindex runs if needed:

65 # makeindex ${FILE_TEX}.nlo -s nomencl.ist -o ${

FILE_TEX}.nls

66 # makeindex ${FILE_TEX}

67 bibtex ${FILE_TEX}

68 latex ${FILE_TEX}.tex

69 latex ${FILE_TEX}.tex

70 dvipdfm ${FILE_TEX}.dvi

71 # Backup tex, bib and generated pdf files

72 # There is one backup per day

Collaborative LATEX writing with Google Docs



338 TUGboat, Volume 32 (2011), No. 3

73 mkdir -p time-machine/${DATESTAMP}

74 cp ${FILE_TEX}.tex time-machine/${DATESTAMP}/${

FILE_TEX}.tex

75 cp ${FILE_TEX}.bib time-machine/${DATESTAMP}/${

FILE_TEX}.bib

76 cp ${FILE_TEX}.pdf time-machine/${DATESTAMP}/${

FILE_TEX}.pdf

77

78 pdflatex: clean

79 pdflatex ${FILE_TEX}.tex

80 # Uncomment makeindex runs if needed:

81 # makeindex ${FILE_TEX}.nlo -s nomencl.ist -o ${

FILE_TEX}.nls

82 # makeindex ${FILE_TEX}

83 bibtex ${FILE_TEX}

84 pdflatex ${FILE_TEX}.tex

85 pdflatex ${FILE_TEX}.tex

86 pdflatex ${FILE_TEX}.tex

87 # Backup tex, bib and generated pdf files

88 # There is one backup per day

89 mkdir -p time-machine/${DATESTAMP}

90 cp ${FILE_TEX}.tex time-machine/${DATESTAMP}/${

FILE_TEX}.tex

91 cp ${FILE_TEX}.bib time-machine/${DATESTAMP}/${

FILE_TEX}.bib

92 cp ${FILE_TEX}.pdf time-machine/${DATESTAMP}/${

FILE_TEX}.pdf

93

94 rtf: clean

95 latex ${FILE_TEX}.tex

96 # Uncomment makeindex runs if needed:

97 # makeindex ${FILE_TEX}.nlo -s nomencl.ist -o ${

FILE_TEX}.nls

98 # makeindex ${FILE_TEX}

99 bibtex ${FILE_TEX}

100 latex ${FILE_TEX}.tex

101 latex ${FILE_TEX}.tex

102 latex2rtf ${FILE_TEX}.tex

103 # Backup tex, bib and generated rtf files

104 # There is one backup per day

105 mkdir -p time-machine/${DATESTAMP}

106 cp ${FILE_TEX}.tex time-machine/${DATESTAMP}/${

FILE_TEX}.tex

107 cp ${FILE_TEX}.bib time-machine/${DATESTAMP}/${

FILE_TEX}.bib

108 cp ${FILE_TEX}.pdf time-machine/${DATESTAMP}/${

FILE_TEX}.rtf

109

110 view:

111 # Open the pdf document with evince

112 evince ${FILE_TEX}.pdf &

113

114 clean:

115 # Cleaning ${FILE_TEX} related files...

116 ls ${FILE_TEX}.* | grep -v \.tex$ | grep -v \.bib$

| grep -v \.ltx$ | xargs rm -fv

117 # Cleaning other tex related files if applicable...

118 rm -fv *log *aux *dvi *lof *lot *bit *idx *glo *bbl

*ilg *toc *ind *blg *out *nlo *brf *nls *pdf

119 # Cleaning in subdirectories *.aux files...

120 find . -regex ’.*.aux’ -print0 | xargs -0 rm -rfv

121 # Cleaning in subdirectories *.log files...

122 find . -regex ’.*.log’ -print0 | xargs -0 rm -rfv

123 # Cleaning in subdirectories *.bbl files...

124 find . -regex ’.*.bbl’ -print0 | xargs -0 rm -rfv

125 # Cleaning in subdirectories *.blg files...

126 find . -regex ’.*.blg’ -print0 | xargs -0 rm -rfv

127 # If there are other generated files, add the

previous command again with the proper

extension

128

129

130 update:

131 # Create temporary file with the POST request

configuration

132 # Uses the authentication parameters of this

Makefile

133 echo "POST /accounts/ClientLogin HTTP/1.0\nContent-

type: application/x-www-form-urlencoded\n\

naccountType=${ACCOUNTTYPE}&Email=${EMAIL}&

Passwd=${PASSWD}&service=${SERVICE}&source=${

SOURCE}" > credentials.txt

134

135 # Perform the authentication

136 # Credentials are defined in Makefile

137 # and temporally store in updater/credentials.txt

138 wget -O clientLogin.txt --no-check-certificate --

post-file=credentials.txt "https://www.google.

com/accounts/ClientLogin" >/dev/null 2>&1

139

140 # Remove client login information (for security

reasons)

141 rm credentials.txt

142

143 ##

144 # Get the TEX document

145 ##

146

147 # Get the document indicated by the first parameter

148 wget --header "Authorization: GoogleLogin auth=‘cat

clientLogin.txt | grep Auth | sed "s#Auth=##"

| xargs echo -n‘" "https://docs.google.com/

feeds/download/documents/Export?docID=${

TEX_GOOGLE_DOCS}&exportFormat=txt" -O temp.txt

149

150 # The first line of the downloaded line contains

not valid characters

151 # Remove first line of the downloaded document

152 sed 1d temp.txt > ${FILE_TEX}.tex

153 # Remove the temp file

154 rm temp.txt

155

156 ##

157 # Get the BIB document

158 ##

159

160 # Get the document indicated by the first parameter

161 wget --header "Authorization: GoogleLogin auth=‘cat

clientLogin.txt | grep Auth | sed "s#Auth=##"

| xargs echo -n‘" "https://docs.google.com/

feeds/download/documents/Export?docID=${

BIB_GOOGLE_DOCS}&exportFormat=txt" -O temp.txt

162

163 # The first line of the downloaded line contains

not valid characters

164 # Remove first line of the downloaded document

165 sed 1d temp.txt > ${FILE_TEX}.bib

166 # Remove the temp file

167 rm temp.txt

168

169 # Remove client login information (for security

reasons)

170 rm clientLogin.txt

Igor Ruiz-Agundez



TUGboat, Volume 32 (2011), No. 3 339

Glisterings

Peter Wilson

. . . Cloath’d all in glistering coats, which

made a shew . . .

Poems and Fancies, Margaret Cavendish

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

Sir, I have found you an argument,

but I am not obliged to find you an

understanding.

Samuel Johnson

1 Verbatim arguments

I have been reminded recently that one problem with
verbatim material is that it cannot be used in an ar-
gument to a regular command (or environment). For
example to typeset something in a framed minipage

the obvious way is to use the minipage as the argu-
ment to the \fbox macro:

\fbox{\begin{minipage}{0.97\columnwidth}

Contents of framed minipage

\end{minipage}}

This works well until the contents includes some
verbatim material and then you get nasty messages,
even though it appears to be wrapped inside the
minipage.

However, we can put material into a box, de-
clared by \newsavebox, and output the typeset con-
tents later on via \usebox. This is how the framed
text below was processed.

This is the definition of the framedminipage envi-
ronment which lets you put verbatim text into a
frame. All this is set within a framedminipage to
show that it does work.

\newsavebox{\minibox}

\newenvironment{framedminipage}[2][c]{%

\begin{lrbox}{\minibox}

\begin{minipage}[#1]{#2}}%

{\end{minipage}\end{lrbox}

\fbox{\usebox{\minibox}}}

I used 0.97\columnwidth as the width of the en-
vironment like this:
\begin{framedminipage}%

{0.97\columnwidth}

...

An lrbox is an environment form of a \savebox
(or \sbox) and we can use it to solve the framed
minipage problem. The code displayed above, af-
ter getting a new save box (\minibox) defines a
framedminipage environment which is used just like
a regular minipage, including the optional position-
ing argument. It starts by opening an lrbox envi-
ronment, then a minipage environment. At the end
it closes the minipage and lrbox environments and
then typesets an \fbox whose argument is the saved
box the contents of which have already been typeset,

verbatims and all.

In The TEXbook, page 363, there is code for a
\footnote macro that can take verbatim material
in its argument. Knuth says that it is subtle and
requires trickery, and I don’t understand it, but here
is the essence, in the form of a one argument macro
I’ve called \verbtext. I’m not sure, though, about
the location of the \color@... macros as there was
nothing comparable in Knuth’s original code

\makeatletter

\long\def\verbtext{\vtintro\futurelet\next\vte@t}

\def\vte@t{\ifcat\bgroup\noexpand\next

\let\next\vt@@t

\else \let\next\vt@t\fi \next}

\def\vt@@t{\bgroup\aftergroup\vtend\let\next}

\def\vt@t#1{%

\color@begingroup

#1\vtmid

\color@endgroup}

\let\vtintro\relax

\let\vtmid\relax

\let\vtend\relax

\makeatother

The macros \vtintro and \vtend are called before
and after the argument is read and you can try and
define them to do something you think is useful.
Defining \vtmid may, on occasion, be helpful.

So, here is an example of the \verbtext com-
mand, which can take verbatim text as part of its
argument.

\verbtext{‘The argument to \verb?\verbtext?

can include \verb?\verb? text.’}

‘The argument to \verbtext can include \verb text.’
The following code is a simple example of using

\vtintro and \vtend to specify a small caps font.

\makeatletter

\newcommand*{\fred}[1][\@empty]{Frederick%

\ifx\@empty #1\else\ #1\fi}

\makeatother

\def\vtintro{\begingroup\scshape}

\def\vtend{\endgroup}

\verbtext{The macro \verb?\fred[III]?

produces \fred[III], while

\verb?\fred? results in \fred.}

Glisterings



340 TUGboat, Volume 32 (2011), No. 3

The macro \fred[III] produces Freder-

ick III, while \fred results in Frederick.

Actually this could have been done as easily as:

{\scshape\verbtext{...}}

without bothering to redefine \vtintro and \vtend,
but perhaps you may come across occasions when
they can help in solving a particular problem.

Wickedness is always easier than virtue; for

it takes a short cut to everything.

Samuel Johnson

2 Cut off in its prime

Changing the subject, there was a question posed
on comp.text.tex asking if there was any way of
cutting a long text short, such as after two or three
lines.

Donald Arseneau’s truncate package [1] is avail-
able for truncating text to a specified width. By
default . . . (\ldots) is typeset at the end of the
truncated text to indicate that something is missing.
For instance

\truncate{0.9\columnwidth}{The

\texttt{truncate} package provides a macro

for cutting off text so that it does not

exceed a given length.}

will result in:
The truncate package provides a macro for . . .

However, in response to the query Donald came
up with a vertical equivalent to \truncate which he
called \vtruncate [2], as follows:

\newsavebox\descbox

\newsavebox\partialbox

\newcommand{\vtruncate}[2]{%

\setbox\descbox\vbox{{#2\par}}%

\setbox\partialbox\vsplit\descbox to #1\relax

\vtop{\unvbox\partialbox}%

% or use

% \par\unvbox\partialbox

}

The first argument is the vertical space and the
second is the text.

Will Robertson also responded, but with an envi-
ronment, cutlines, that would truncate its contents
if it exceeded a certain height [3]. His definition was:

\makeatletter

\newbox\cut@desc

\newenvironment{cutlines}[1][2]{%

\@tempcnta=#1\relax

\setbox\cut@desc\vbox\bgroup

\parskip=0pt}{%

\egroup

\vsplit\cut@desc to \@tempcnta\baselineskip}

\makeatother

The argument is the number of lines (default 2).
I tried both of these, and found potential prob-

lems with each:

1. The text argument to \vtruncate could not
include any verbatim material (but this might
not be of any concern).

2. If the number of lines specified for the cutlines
environment was more than the lines in the
original text, then the text was padded out with
blank lines to make up the specified number.

3. In both cases the final truncated text was not
always the specified height, but it was always to
within plus or minus a line. However cutlines
seemed to be more precise than \vtruncate.

4. The truncated text ends up in a box that cannot
be split across a page boundary.

After some fiddling around1 I came up with code
for a truncate environment that was a mixture of
Donald’s and Will’s code that seemed to avoid the
first two of the four problems, and possibly the third
as well. The fourth potential problem is inherent in
all the proposals.

\newsavebox\descbox

\newsavebox\partialbox

\newlength{\vcutl}% for the limit height

\newlength{\Vcutl}% height of full text

\newenvironment{vcutlines}[1][2\baselineskip]{%

\setlength{\vcutl}{#1}%

\setbox\descbox\vbox\bgroup

\parskip=0pt\relax

}{%

\egroup

\Vcutl=\ht\descbox

\advance\Vcutl \dp\descbox

\setbox\partialbox\vsplit\descbox to

\vcutl\relax

\vtop{\unvbox\partialbox}

\ifdim \vcutl<\Vcutl \vtruncont \fi}

\newcommand*{\vtruncont}{\noindent\strut\ldots}

In the following examples, the test text is:

{\itshape

Donald Arseneau created the \verb?\vtruncate?

command and Will Robertson the

\verb?cutlines? environment to truncate text

if it requires more than a specified height.

This is an example, though, of the new

\verb?vcutlines? environment --- a merge

of Donald’s and Will’s work.}

which does include a little verbatim material.
Let’s give vcutlines a whirl with a limit of 20

lines (i.e., [20\baselineskip]).

1 Quite a lot in fact.

Peter Wilson



TUGboat, Volume 32 (2011), No. 3 341

Donald Arseneau created the \vtruncate com-

mand and Will Robertson the cutlines environ-

ment to truncate text if it requires more than a spec-

ified height. This is an example, though, of the new

vcutlines environment — a merge of Donald’s and

Will’s work.
And now the same text but with a limit of 3

lines (i.e., [3\baselineskip]).

Donald Arseneau created the \vtruncate com-

mand and Will Robertson the cutlines environ-

ment to truncate text if it requires more than a spec-
. . .

If the text is truncated, as in this example, then
the environment finishes by calling the \vtruncont
macro which by default outputs a final line consist-
ing simply of . . . (i.e., \ldots) to indicate that the
original text continued. A comparison of the height
of the original text with the specified height is used
to decide if there was truncation.

You can change \vtruncont to typeset a differ-
ent marker, or simply

\renewcommand*{\vtruncont}{}

to not do anything.

Here’s a repeat of the last example:
Donald Arseneau created the \vtruncate com-

mand and Will Robertson the cutlines environ-

ment to truncate text if it requires more than a spec-

ified height. This is an example, though, of the new
However eliminating the marker this way seems

to lead to a slight problem with the spacing after the
end of the environment. Defining instead

\renewcommand*{\vtruncont}{\noindent}

Donald Arseneau created the \vtruncate com-

mand and Will Robertson the cutlines environ-

ment to truncate text if it requires more than a spec-

ified height. This is an example, though, of the new

Gives better spacing after the environment, as
shown between this and the example immediately
above.

References

[1] Donald Arseneau. truncate.sty truncate text
to a specified width, 2001. mirror.ctan.org/
macros/latex/contrib/truncate.

[2] Donald Arseneau. Re: How to limit/cut
off text after a number of lines? Post to
comp.text.tex newsgroup, 16 July 2008.

[3] Will Robertson. Re: How to limit/cut
off text after a number of lines? Post to
comp.text.tex newsgroup, 16 July 2008.

⋄ Peter Wilson

12 Sovereign Close

Kenilworth CV8 1SQ, UK

herries dot press (at)

earthlink dot net

Glisterings



342 TUGboat, Volume 32 (2011), No. 3

Some LATEX2ε tricks and tips (IV)

Luca Merciadri

1 Introduction

As usual, in this article we shall give some LATEX
hints:

1. How to box an equation in an align (or its
align* brother),

2. How to write a standard but elegant title page,

3. How to write text above and below an image,

4. How to modify spacing between lines,

5. How to write a left brace in a subequations

environment.

2 Boxing an equation in an
align-like environment

In [3], I wondered how I could box an equation in an

align-like environment. Mr. Lars Madsen gave me
the solution, also in [3], so thanks to him.

2.1 Example

Here is the seductive example of what you might
want to achieve:

A = B

A = B

= C

2.2 Code

The solution is to use the calc, and (evidently)
the amsmath package too. Then, one can define
\Aboxed like this:

\makeatletter

\newcommand\Aboxed[1]{%

% syntax: \Aboxed{ left & right }

\@Aboxed#1\ENDDNE}

\def\@Aboxed#1&#2\ENDDNE{%

% idea: get the left and right part

% typeset them in a \boxed AFTER an ‘&’

% and pull it backwards

% but in order to get the horizontal

% placement to work we need to set

% some appropriate space to the left

% of the ‘&’

\settowidth\@tempdima{$\displaystyle#1{}$}%

\setlength\@tempdima

{\@tempdima+\fboxsep+\fboxrule}

% \global does not always mix well

% with \setlength

\global\@tempdima=\@tempdima

\kern\@tempdima

&

\kern-\@tempdima

\boxed{#1#2}%

}

\makeatother

This can then be used in a document, like this:

\begin{align*}

\Aboxed{A&=B}\\

A&=B\\

&=C

\end{align*}

If one wants to box an entire equation complex, the
empheq package is a good choice.

3 A standard title page

The title page is the first page that will be seen on
your document, so it has a strong influence on the
(potentially future) reader. Doing it with care is a
good but difficult thing.

3.1 Example

One can define a standard, but elegant, title page
like the one which follows. (It has been scaled to
TUGboat’s column width. Vertical spaces will ad-
just appropriately.)

YOUR UNIVERSITY

The name of your book
– in 1 pages, with 2 tables –

FirstName1 LastName

City, Country

August 31, 2011

1FirstName.LastName@provider.domain

Luca Merciadri



TUGboat, Volume 32 (2011), No. 3 343

This is purely homemade, so I’m open to any
suggestion(s) or remarks. This is a title page that
I use for many booklets. For example, a slightly
modified version of this can be found as the title
page of [4]. I invite you to take a closer look at this
title page.

Peter Wilson has developed a collection of title
pages which can be found at [6]. This collection is
worth reading.

3.2 Code

Here is the code which produced the expected title
page.

\begin{titlepage}

\begin{center}

% Upper part of the page

\textsc{\LARGE YOUR UNIVERSITY}\\[1.5cm]

\includegraphics[width=0.50\textwidth]{img/%

your_university_logo.eps}\\[1cm]

% Title

%\HRule \\[0.4cm]

\rule{\textwidth}{1pt}\par

\vspace{0.50cm}

{\huge \bfseries The name of your book\\ %

\Large -- in \ref{TotPages} pages,

with \AbsTables ~tables --}\\[0.4cm]

\rule{\textwidth}{1pt}\par

%\HRule \\[1.5cm]

\vfill

% Author

\Large{\textsc{FirstName\footnote{%

\href{mailto:FirstName.LastName@

provider.domain}{FirstName.LastName%

@provider.domain}}} LastName}

\vfill

City, Country

\vfill

% Bottom of the page

{\large \today}

\end{center}

\end{titlepage}

This can be put in your document, assuming the
hyperref, totpages, and graphicx packages have
been loaded before, having also defined \AbsTables.
If \AbsTables is 1, you can use the ifthen package
to modify “tables” to “table” automatically. (In the
memoir class, the totpages package is not necessary,
as lastpage and lastsheet are already defined.)

4 Text below an image

4.1 Example

One might appreciate being able to write this:

What could I say about it?
. . .

. . .Well, I won’t say any-
thing about it!

Figure 1: A caption

4.2 Code

This is achieved thanks to the following code, com-
ing from [1].

\begin{figure}[!ht]

\centering

\parbox{0.25\linewidth}{%

Any Text that you want above \ldots\\%

[\smallskipamount]

\includegraphics[width=0.2\textwidth]%

{myuniv.eps}\\[\smallskipamount]

\ldots or below the image.

}

\caption{A caption}\label{fig:label1}

\end{figure}

5 Modifying spacing between lines

Many universities require double spacing to provide
examiners with room for annotations. This can be
achieved easily thanks to the setspace package [5].

5.1 Example

With normal spacing, we get

Maecenas dui. Aliquam volutpat auctor lorem.
Cras placerat est vitae lectus. Curabitur massa lec-
tus, rutrum euismod, dignissim ut, dapibus a, odio.
Ut eros erat, vulputate ut, interdum non, porta eu,
erat. Cras fermentum, felis in porta congue, velit
leo facilisis odio, vitae consectetuer lorem quam
vitae orci. Sed ultrices, pede eu placerat auctor,
ante ligula rutrum tellus, vel posuere nibh lacus
nec nibh. Maecenas laoreet dolor at enim. Donec
molestie dolor nec metus. Vestibulum libero. Sed
quis erat. Sed tristique. Duis pede leo, fermentum
quis, consectetuer eget, vulputate sit amet, erat.

With \doublespacing, we get

Some LATEX2ε tricks and tips (IV)



344 TUGboat, Volume 32 (2011), No. 3

Maecenas dui. Aliquam volutpat auctor lorem.

Cras placerat est vitae lectus. Curabitur massa lec-

tus, rutrum euismod, dignissim ut, dapibus a, odio.

Ut eros erat, vulputate ut, interdum non, porta eu,

erat. Cras fermentum, felis in porta congue, velit

leo facilisis odio, vitae consectetuer lorem quam

vitae orci. Sed ultrices, pede eu placerat auctor,

ante ligula rutrum tellus, vel posuere nibh lacus

nec nibh. Maecenas laoreet dolor at enim. Donec

molestie dolor nec metus. Vestibulum libero. Sed

quis erat. Sed tristique. Duis pede leo, fermentum

quis, consectetuer eget, vulputate sit amet, erat.

5.2 Code

You need only include the setspace package and
then select \singlespacing, \onehalfspacing or
\doublespacing.

6 Writing a left brace in a
subequations environment

6.1 Example

One may want a result like this:











a1(x) = b1

a2(x) = b2

a3(x) = b3

(1a)

(1b)

(1c)

6.2 Code

This is achieved easily thanks to the inclusion of the
empheq package, with the following code:

\begin{subequations}

\begin{empheq}[left=\empheqlbrace]{align}

a_1(x) &= b_1\\

a_2(x) &= b_2\\

a_3(x) &= b_3

\end{empheq}

\end{subequations}

Thanks to Mr. Heller for this trick [2].

⋄ Luca Merciadri

University of Liège

Luca.Merciadri (at) student dot ulg dot

ac dot be

http://www.student.montefiore.ulg.ac.be/

~merciadri/

References

[1] Donig, Thorsten. Giving source URL in Figure
environment. LATEX Community (Forum), 2009.
http://www.latex-community.org/forum/

viewtopic.php?f=44&t=5587.

[2] Heller, Martin and Maciel, Rui. Left brace on
a subequations environment? comp.text.tex
discussion), 2010.

[3] Madsen, Lars, Merciadri, Luca. How can I use
\boxed{} in align environment? comp.text.tex
discussion, 2010.

[4] Merciadri, Luca. Can a passive house be
the solution to our energy problems, and
particularly with solar energy?, 2008. Travail
de fin d’études (secondaire); http://hdl.
handle.net/2268/19645.

[5] Talbot, Nicola. Writing a Thesis in LATEX:
hints, tips and advice, 2010. http://uk.tug.

org/wp-content/uploads/2009/01/talbot_

slides.pdf.

[6] Wilson, Peter. Some Examples of Title Pages,
2010. http://ctan.org/pkg/titlepages.

Luca Merciadri



TEX as you like it: The Interpreter package

Paul Isambert

Introduction

This article presents the Interpreter package for Lua-
TEX, designed to preprocess input files on the fly so
that the user can map any syntax to proper TEX and
type documents with the language s/he finds more
convenient.

This is not a comprehensive description of In-
terpreter, but only highlights of its functionality; the
documentation accompanying the package on CTAN

remains the ultimate reference, and contains a com-
plete explanation of an interpretation file.

Motivations

Despite loving TEX, I’ve always hated typing back-
slashes and braces for some reason (for one, they’re
rather badly placed on a French keyboard). At least,
the latter can often be avoided thanks to delimited
arguments, but unless one is willing to define a new
character with catcode 0 (something I find almost
counterintuitive) or to venture into the dangerous
world of active characters, backslashes cannot be
avoided.

Also, I’ve always found TEX source files (mine
and others’s) quite unreadable. The likes of \macro
and \com{mand} disturb the normal flow of reading.
This became more striking still when I started using
the Vim editor. Unlike most text editors, Vim’s doc-
umentation is made of plain text files meant to be
read in the editor itself (this is also true of Emacs);
thus one can remain in the same working environ-
ment and above all browse the help files as one usu-
ally browses some code. If only one could read TEX
source files so easily!

All in all, what I wanted was to type TEX source
in a syntax unrelated to TEX—a lightweight markup
language like Markdown or the syntax used for wikis.
Without LuaTEX, the only solution (as far as I know)
is to use some script to convert a file into proper TEX
(thus creating another file), something I’ve never
tried. With LuaTEX, things change: if you want to
preprocess a file on the fly before feeding it to TEX,
you can do it, just hook into the open_read_file

callback!*

* This is the reason why Interpreter doesn’t work

with ConTEXt, in which the callback is frozen. ConTEXt

does have modules to process some non-TEX languages,

but I’m not aware of a general solution for any language

the user might want to define.

TUGboat, Volume 32 (2011), No. 3 345

Working principles

The basic mechanism behind Interpreter is quite
simple; you have a master file in which you input
the file(s) to be preprocessed with:

\interpretfile{〈lang〉}{〈file〉}

where 〈lang〉 points to an external file containing
the interpretation (explained in the following sec-
tion). Then Interpreter uses the open_read_file

callback to control how the lines of 〈file〉 are to be
fed to TEX. This callback is passed a string rep-
resenting the file to read and should return a table
with two entries: reader, a function called whenever
TEX wants a line, and (optionally) close, a function
executed when the end of the input file is reached.
The simplest implementation of reader is to read
a line of the input file and return it to TEX; be-
fore that, however, one can also modify that line or
read others (and perhaps modify them too), which
is exactly how Interpreter works. Some practical
examples: one can ask Interpreter to change ‘some
*bold* text’ into ‘some \bold{bold} text’ or

=========================

=== A section heading ===

=========================

into

\section{A section heading}

or to surround with verbatim macros any material
indented with ten spaces, and stop interpreting it at
once (so the material is really left verbatim).

Defining simple patterns

As already mentioned, \interpretfile will look for
an external file matching its first argument; more
precisely, if that argument is e.g. lang, then the file
should be called i-lang.lua. It contains all the re-
placements that will take place to convert the input
file; as the extension indicates, the language is Lua.
The main function is interpreter.add_pattern(),
which takes a table defining a pattern to be searched
for and replaced with something else. Not surpris-
ingly, one of the entries is pattern; another is re-
place; and Interpreter will try to find all material
matching the former and replace them with the lat-
ter.

For instance, the following will replace /text/

with \italic{text}:†

† Since the function’s single argument is a table, Lua

allows the parentheses to be omitted; e.g. myfn({mytab})

and myfn{mytab} are equivalent in such cases. The same

is true for strings: myfn"mystr" works in the same cir-

cumstances.

TEX as you like it: The Interpreter package



interpreter.add_pattern{

pattern = "/(.-)/",

replace = "\\italic{%1}"

}

The reader will notice that Lua’s magic characters
are used, and (.-) thus means ‘capture the shortest
possible sequence made of any number of matching
characters’, and not a dot followed by a minus sign
between parentheses. To denote a magic character
itself, one should prefix it with %; thus if one wanted
to use stars instead of slashes, the pattern should be
%*(.-)%*, because the star is a magic character (see
the Lua reference manual for the list of magic char-
acters). Alternatively, Interpreter has a function
interpreter.nomagic() which reverses the magic:
no character is magic unless prefixed with %, ex-
cept that ... means the magic (.-). For exam-
ple, interpreter.nomagic("*...*") is equivalent
to "%*(.-)%*".

I’ve mentioned captures, and indeed replace

makes use of them: %1 refers to the first (and in this
case, only) capture of pattern. This follows the
behavior of Lua’s string.gsub(), since ultimately
Interpreter uses that function to make the replace-
ment. Accordingly, replace can be a string, as is
the case here, but also a table (and the entry re-
turned is the one with the first capture, or the entire
match if there is no capture, as its key) or a func-
tion (to which the captures, or the entire match, are
passed as arguments).

Now Interpreter will search all lines for the spec-
ified pattern and use the replacement if a match
occurs; a limitation (and security) is that matches
must be contained in a single line. For instance, the
following material will be left untouched:

This will /not be

put/ in italics.

To span several lines, two solutions are possible.
First, one can redefine the pattern to match a sin-
gle slash, which is converted to \italics{ or } de-
pending on a conditional. To do this, one can use a
function in replace:

local italic

local function makeitalic ()

if italic then

italic = false

return "}"

else

italic = true

return "\\italic{"

end

end

346 TUGboat, Volume 32 (2011), No. 3

interpreter.add_pattern{

pattern = "/",

replace = makeitalic

}

The second solution, sounder and more general, will
be explained in the next section.

Before turning to more advanced topics, a word
of caution: Interpreter does not define TEX macros
as \italic or \bold or \section. They are used
here because their meaning is clear, but one should
obviously use macros defined elsewhere. In other
words, Interpreter simply manipulates strings and
has nothing to do with typesetting.

Handling paragraphs

Simple patterns are fine as far as they go, but some-
times manipulating input line by line doesn’t suffice.
For instance, suppose you want to turn

1. First item.

2. Second item.

3. Third item.

into something like

\list

\item First item.

\item Second item.

\item Third item.

\endlist

Converting a string of digits followed by a dot at
the beginning of a line into \item is easy enough.
However, how should \list and \endlist be added
to the material?

Such a situation is the reason why Interpreter
manipulates paragraphs instead of lines. Instead of
fetching a line, converting it according to the defined
patterns, and returning it to TEX, Interpreter col-
lects an entire paragraph, does all the conversions,
and only then passes it line by line to TEX. In the
meantime new lines might have been added.

For Interpreter a paragraph is anything up to
and including the first line matching completely the
pattern stored in interpreter.paragraph, where
‘matching completely’ means that if the material
matching the pattern is removed from the line, the
line is empty. By default, interpreter.paragraph
is defined as %s*, i.e. a paragraph is marked by a
line containing at most spaces.

To manipulate paragraphs, one should define a
pattern with a call entry. This should be a func-
tion, and it will be executed as follows:

function (paragraph, line, index, pattern)

The first argument is the entire paragraph where the
match occurred. It is represented as a table with nu-

Paul Isambert



merical indices; line is the index of the line where
the match occurred, so that paragraph[line] re-
turns a string representing that line; index is the
position in that string where the match was found;
finally, pattern is the entire table which has been
defined with interpreter.add_pattern.

Our situation with lists could be solved like this:

local item = "^%s*%d+%.%s*"

local function makelist (paragraph)

for n, l in ipairs(paragraph) do

paragraph[n] = string.gsub(l, item,

"\\item ",1)

end

table.insert(paragraph, 1, "\\list")

table.insert(paragraph, "\\endlist")

end

add_pattern{

pattern = item,

call = makelist

}

The following will happen: when Interpreter spots a
string of one or more digits followed by a dot at the
beginning of a line (spaces notwithstanding), it calls
the makelist function. This functions searches for
the same pattern in all the lines of the paragraph
and replaces it with \item; also, it inserts new lines
with \list and \endlist at the beginning and the
end of the paragraph.

This example used only the first argument of
the call function. As a more complicated case us-
ing all four arguments, let’s solve the question of
defining /.../ as a marker for italics possibly span-
ning several lines. Basically, the solution is identical
to the one shown in the previous section: the first
slash should be turned into \italic{ and the sec-
ond into }. But, as already mentioned this solution
will be sounder, because the conversion will be done
if and only if a pair of slashes is found (so that a
slash on its own isn’t modified), and also more gen-
eral, because the same function will be used for all
similar patterns.

local match,gsub = string.match,string.gsub

local function markup (par, line, index,

pattern)

local patt = pattern.pattern

local rep = "\\" .. pattern.replace .. "{"

if match(par[line], patt, index+1) then

par[line] = gsub(par[line], patt, rep, 1)

par[line] = gsub(par[line], patt, "}", 1)

else

local n = line+1

while par[n] do

if match(par[n], patt) then

TUGboat, Volume 32 (2011), No. 3 347

par[line] = gsub(par[line], patt,

rep, 1)

par[n] = gsub(par[n], patt, "}", 1)

return

else

n = n+1

end

end

return index+1

end

end

interpreter.add_pattern{pattern = "/",

call = markup, replace = "italic"}

interpreter.add_pattern{pattern = "%*",

call = markup, replace = "bold"}

interpreter.add_pattern{pattern = ’"’,

call = markup, replace = "quote"}

Given a pattern, the markup function looks for an-
other occurrence of this pattern in the same line or
in the following lines of the paragraph. Only if the
search succeeds does the replacement happen. Then
we specify patterns so /text/ will be replaced with
\italic{text}, *text* with \bold{text}, and fi-
nally "text" with \quote{text}.

Two things should be remarked upon in the
code above. First, the line return index+1 at the
end of the function instructs Interpreter to resume
its search for patterns at the next position in the
current line; without it, the search would start again
at the same position where the pattern was found.
This return statement occurs if no matching char-
acter was found, i.e. if the pattern was launched
on a lonely slash (or star or double quote). Thus
that character was not converted, and if the search
were to start again at the same position, Interpreter
would find the same character, and enter a loop.

Second, the patterns store the macro to be used
in the replace field. That is totally arbitrary: the
table making up the pattern can contain any field.
Here the replace entry can be used because if a
pattern has both call and replace, the latter is ig-
nored (i.e. the mechanism described in the previous
section doesn’t apply).

Bells and whistles

As said in the introduction, this paper is not a com-
plete manual for Interpreter. Here I’ll mention a few
other bits of functionality.

First and foremost, the search for patterns is
done according to an order. Each pattern belongs to
a class, as specified by the class entry in the pattern
table (this entry defaults to the number recorded in

TEX as you like it: The Interpreter package



interpreter.default_class), and classes are ap-
plied one after the other in ascending order; patterns
belonging to the same class are ordered by length
and are applied from longer to shorter.

One of the reasons why classes are important
is so input can be protected, i.e. prevent Interpreter
from converting some lines or an entire paragraph.
For instance, consider a pattern denoting verbatim
material. It will launch a call function to add some-
thing like \verbatim and \endverbatim as the first
and last lines. In addition, it should call the func-
tion interpreter.protect(), to stop Interpreter
from manipulating the current paragraph, i.e. other
patterns won’t be searched for and replaced, as ex-
pected for verbatim material. Such a pattern should
belong to the very first class, so that it is executed
before all the others; otherwise, protection would be
only partial.

Another way to protect input, this time locally,
is to record a pair of strings as left and right mark-
ers such that the enclosed material shouldn’t be
touched. The function interpreter.protector()

does this; e.g. after interpreter.protector(’"’),
material between double quotes will be left intact (if
the function is called with only one argument, it is
used for both the left and right markers).

Interpreter allows you to mix different syntaxes,
or rather, it has no notion of well-formedness for the
language you define. Thus usual TEX commands can
be used in the middle of an interpreted file. One
convenient trick is to define an easy syntax to add
new patterns to the file being read. For instance,
with

interpreter.add_pattern{

class = 1,

pattern = "^DEF%s*(.-)%s*=%s*(.+)",

replace = function (pat, rep)

interpreter.add_pattern{

pattern = pat,

replace = rep}

return ""

end

}

simple new patterns can be created as follows:

DEF pattern = replacement text

I let the reader check that it works properly.

Input files that look like main files

One of Interpreter’s limitations is that it works only
on input files: it can’t work with a main file di-
rectly fed to TEX. The reason for this is that it uses

348 TUGboat, Volume 32 (2011), No. 3

the open_read_file callback which, as its name im-
plies, concerns \input and \read (\interpretfile
ultimately boils down to \input).

The main file could be manipulated with the
process_input_buffer callback, but this isn’t as
flexible as open_read_file, and most importantly
it doesn’t attach to a specific file. Yet one can have
the impression to work on the main file by invoking
LuaTEX as follows (this works for plain TEX; LATEX
users should adapt accordingly):

luatex -jobname=〈file〉
\input interpreter

\interpretfile{〈language〉}{〈file〉}
\bye

The important point is to set -jobname to the input
filename, so the relevant output files (the PDF, log,
etc.) are created with the proper name. It might be
wise to set -output-directory to the file’s direc-
tory too, but that is not necessary.

Of course, one can also input other files besides
Interpreter. It might also be interesting to use a
Lua initialization script, an alternative I won’t in-
vestigate here.

Conclusion

LuaTEX keeps changing my TEX world every day:
new horizons, new solutions, a new language. With
Interpreter, even my usual TEX source doesn’t look
the same! I’m even working on a document where
unmarked macros represent themselves, i.e. \macro
is turned to \string\macro.

One thing I do not know is whether Interpreter
would be convenient to process something like XML;
not using that language, I haven’t tried to create
an interpretation file for it, and I wonder whether
Interpreter would be up to the task or would rather
get in the way. If the reader finds a solution, just
let me know!

⋄ Paul Isambert

zappathustra (at) free dot fr

Postscript: Just before this article went to press, Inter-

preter was rewritten with the Gates package. None of

what is said here needs updating, since Interpreter hasn’t

changed on the surface, but its implementation now al-

lows deep hacking, because it is made of small logical

steps that can be externally controlled. Details can be

found in the new version’s documentation and general

principles in the documentation for Gates.

Paul Isambert



TUGboat, Volume 32 (2011), No. 3 349

PARCAT — Applying TEX in industry

Wiktor Dziubiński, Marcin Woliński and
Grzegorz Murzynowski

Abstract

PARCAT is highly sophisticated software for man-
aging a companyǶs product database and producing
a printed catalogue alongside an online shop web
site in an automated way. To produce the printed
catalogues PARCAT employs XƎLATEX.

In this article we present PARCAT in general
and its TEX back-end, describing some of its features
in more detail:

• fitting tables to the column width,
• catalogue layouts,
• modularisation of the code,
• system of the layout parameters.

1 Introduction

The PARCAT system is a complex database appli-
cation whose primary purpose is to comprehensively
manage descriptions of products. Descriptions can
be given in any language or in several languages.
The main distinctive feature of the program is the
ability to typeset a catalogue fully automatically.
The generated catalogue can be passed to the print-
ing houses in PDF format without any additional
treatment. In addition to generating PDF files, PAR-

CAT also prepares files ready for use on web sites.
Due to this feature the system can be used as the
base tool for managing product descriptions.

Another distinctive and, we dare say, revolu-
tionary feature of PARCAT is its ability to generate
several language versions of a catalogue into a single
PDF with each language version on a separate layer,
which in the printing house can correspond to one
black plate, with no need to prepare separate full
CMYK plates for each language.

2 History

PARCAT was developed for a large trade company
operating for 20 years on the market of electronic
components. For over a dozen years Transfer Mul-
tisort Elektronik (TME), the company in question,
has been publishing the catalogue of its products,
in 2011 reaching eight language versions containing
about 1800 pages each. The catalogue was made by
using CorelDraw software which took approximately
five weeks for one language version, excluding the
preparation of images. On its web site, the company
also presented the same data from the catalogue now

This article is a combination of articles from the BachoTEX
2010 and the EuroTEX 2011 proceedings.

in the form of HTML files prepared without any au-
tomation. Thus it became obvious that the dynamic
development of the company would be limited with-
out tools to manage product descriptions.

PARCAT has been developed continuously since
early 2008. After its successful deployment in TME

it was decided to continue the development of the
software and to try to prepare a universal version
which could be useful for other companies as well.

2.1 The structure of a catalogue

Figure 1: Main structure window in PARCAT

In connection with the need to store very large
amounts of information, the idea of creating descrip-
tions of individual products was taken from the pre-
vious manual composition. It is based on a cata-
logue divided into parts (e.g., semiconductors, tools,
electrical and installation equipment, etc.), which
are divided into chapters, and chapters are divided
into sections. Frames, assigned to sections, are the
smallest (and indivisible) part of the catalogue. A
list of products featuring such information as man-
ufacturer, summary description and prices is im-
ported from the sales system. There is no need to
enter symbols manually, which could pose a serious
problem for such large quantities of products (tens
of thousands and more).

2.2 Frames

The concept of a frame is the foundation of the
system. It systematises the management of large
amounts of products, facilitates the editing of data,
making of amendments and also simplifies the data
management for a large number of users. A frame
is assigned to a section and can describe any num-
ber of products (in particular, one product). It is
good if the products are a homogeneous group which

PARCAT — Applying TEX in industry



350 TUGboat, Volume 32 (2011), No. 3

Figure 2: Frame editor in PARCAT

can be described by means of common characteris-
tics. Thus, for example, it is possible to assign to
one frame a whole series of resistors with a power
of 0.25W in the SMD0608 housing (housing, power,
manufacturer, maximum voltage are common fea-
tures for all these resistors, and resistance — differ-
ent for each resistor — is the distinguishing feature),
or three universal hammers made by one manufac-
turer which vary in weight and the length of the
shaft, but other characteristics (e.g., material, prop-
erties, applications) are the same. In addition, a
frame features several permanent elements, such as
frame title, overall picture, text description.

2.3 Parameters

The description of products is mainly based on user-
defined parameters. This solution primarily ensures
the consistency of generated descriptions and sig-
nificantly reduces the costs of translation since the
fields associated with a given parameter are trans-
lated only once. There are various types of param-
eters: text, single or multiple choice, several nu-
meric options, as well as those allowing assignment
of graphical objects.

2.4 Construction of tables

Parameters in a frame are automatically divided
into two groups. The first group contains those pa-
rameters whose values are the same for all products
in the frame, called common parameters. The pa-
rameters which have different values for individual
products belong to the second group, called distin-
guishing parameters.

Clearly the method of data presentation for both
groups should be different. The common parame-
ters (Fig. 3) can be associated with their values and

Figure 3: Different presentations of common product
parameters

Figure 4: Different presentations of distinguishing
product parametrs

listed one under another. They can also be pre-
sented as a list with bullets. In general, since the
common parameters relate to all products in the
frame by definition, a list of respective products does
not need to be specified.

The distinguishing parameters (Fig. 4) must be
correlated with a list of products, thus showing pre-
cisely the products to which they apply.

Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski



TUGboat, Volume 32 (2011), No. 3 351

Figure 5: HTML and PDF previews in PARCAT

By default, PARCAT shows a simple text form
for the common parameters and a table for the dis-
tinguishing parameters. However, the user has a
number of tools to change the look of these tables,
their order, the order of parameters inside the table,
the font size in the table, the position of pictures
around the table and many other aspects of the cre-
ated description. By modifying the construction of
tables, the user can adjust the appearance of the
frames to their needs and present the data in the
most readable way.

2.5 Translation

The list of languages used for product descriptions
is not fixed and can be dynamically changed during
work on a particular catalogue. All texts present in
the system will be automatically marked for trans-
lation into a newly added language.

PARCAT features a complex panel for transla-
tion management. It indicates the exact number of
phrases which require translation into a given lan-
guage, and each phrase will be translated only once.
It allows you to select those sections of a catalogue
to be translated. Generated orders are sent to trans-
lators for whom a special application is prepared to
facilitate their work. It is very important that the
translators always see the full context of translation,
even if they need to translate only one phrase. This
allows for translation quality at the highest level.
After the translator finishes work, their order is im-

ported into the database, after verification steps to
eliminate mistakes and improve the quality of trans-
lation further.

2.6 Graphics

All graphical elements in the program are stored as
a pair of PDF files (ready for printing, CMYK with
a cut out background) as well as JPG, GIF, etc. (for
Internet use). The system features a mechanism al-
lowing users to order the preparation or editing of
graphic element. In this way, users without the abil-
ity to use graphics programs can still manage graph-
ics. Orders along with the comments are sent to
other users with permission to edit graphics (graphic
designers). After the image processing is done, the
user who sent the order is able to accept changes or
request new ones.

2.7 Preview

The possibility of previewing a frame at any stage of
its creation (in particular, with the graphics still not
accepted!), even without saving changes, is a very
important feature of the system (Fig. 5). What is
more, the preview in a freely chosen language or lan-
guages is created immediately and shows the frame
exactly as it will look in print (with accurate pagi-
nation) or when connected to a web site, along the
lines of WYSIWYG.

A true and fast preview is vital in extensive
publications of over 1000-page catalogues. It makes

PARCAT — Applying TEX in industry



352 TUGboat, Volume 32 (2011), No. 3

it possible for all users of the program to assist in
the preparation of material, eliminating the compli-
cated, time consuming and discouraging intermedi-
ate stage which is usually ǳthe preparation of the
previewǴ in traditional composition systems. Fur-
thermore, the instantaneously generated preview al-
lows users to quickly find both factual and graphical
errors.

In addition to the frame preview it is possible
to prepare a preview of a section, chapter or part of
a catalogue. This allows you to check portions of a
catalogue without the need to process all the mate-
rial. It also enables easy monitoring of the number
of pages in the forthcoming catalogue, which is im-
portant for ordering at the printing houses. The
composition of a single chapter is no longer instan-
taneous, but it takes only a few minutes to compose
tens of generated pages. Therefore these previews
can also be generated as necessary.

All these features translate into a significant,
if not revolutionary, way to shorten the time users
must spend to prepare the catalogue material.

2.8 Typesetting of a catalogue

After preparing and checking all the material you
can proceed to a catalogue composition. A gen-
erated PDF file features cropmarks and trimboxes,
which makes it suitable for submission to the print-
ing houses without additional modifications.

Multi-lingual typesetting with replacement of
only the black colour plate is a strategic function of
PARCAT. The system provides the ability to com-
pose a catalogue where the data in all languages cho-
sen in the process of composition can be found in one
output file. This means that the texts in each of the
languages are inserted into the same spaces main-
taining the common position of illustrations and the
same page breaks. Every language is placed on a
separate layer, which allows you to have a preview
or trial print for the given language. In addition,
each language layer is composed by means of its own
additional colour (the spot colour), which facilitates
the work of the CTP studio before the preparation
of printing plates. This method of printing, with
replacement of the black plate, allows us to achieve
enormous financial savings. The more language ver-
sions of a catalogue and the more catalogue pages,
the more savings.

3 Under the hood: TEX in PARCAT

The typesetting in PARCAT is done using LATEX
with the XƎTEX engine and a highly customised doc-
ument class. Since we have to cope with text in sev-
eral languages written in Latin and Cyrillic scripts,

we eagerly switched to using Unicode. In this con-
text XƎTEX with its UTF-8 input and its ability to
use multilingual OpenType fonts provided a com-
fortable working environment.

TEX, being a batch processor, plays its role as
a typesetting back-end for PARCAT very well. It
is fast enough to provide almost instantaneous pre-
view of selected frames. The user can also be prac-
tically certain that the result shown for a separate
frame will be identical in a complete chapter. We
think that in some aspects we have reached the edge
of TEXǶs abilities, e.g., with respect to rearranging
the language variants. Some of these manipulations
would perhaps be easier in LuaTEX. We will proba-
bly investigate this possibility in the future.

Typesetting product catalogues is a rather atyp-
ical use of LATEX, so we had to solve quite a few
TEXnical problems, the most important being the
handling of language variants. This comprises com-
bining several streams of text in one source file; over-
laying language variants in such a way that page-
breaking and picture positions are the same in all
variants, and finally outputting all the variants of
the text to the same PDF file using the ǳoptional
content groupsǴ feature of the PDF format, with a
separate spot colour for each language.

3.1 Tables

One major issue was handling the tables presenting
parameters of the products being offered, an impor-
tant part of the catalogues. Some of these tables
are long, spanning up to about 20 pages. They con-
tain headers repeating at the top of each column
and should be typeset in a two-column arrangement.
Unfortunately, standard LATEX packages (multicols

and longtable, supertabular, etc.) do not handle such
a combination. We developed a specialised solution
in which page breaking is done by the multicols pack-
age. The package was slightly modified to carry the
headers for the table in TEX marks (we used the
ε-TEX ability to create new mark classes).

The column widths are automatically set to fit
a table to the column width. A typical table in
question consists of a body containing some param-
eter values, usually decimal numbers, and a header
naming those parameters, sometimes with very long
contents.

The original class hacks the tabular environ-
ment so that it measures its columns and performs
a trial setting of a table. There are at most three
trials:

• without line breaking,
• with line breaking, at every allowed blank (not

at ~Ƕs),

Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski



TUGboat, Volume 32 (2011), No. 3 353

Figure 6: A table justified with the original algorithm (left) and the ǳmore subtleǴ version (right)

• with line breaking, at any allowed point (includ-
ing word hyphenations).

In some not-so-extreme cases the result appears
as in Fig. 6, left. The table consists of narrow col-
umns and large ǳcolumn-glueǴ at the right filling the
width to \columnwidth.

LetǶs underline that making this work fully au-

tomatically is quite an achievement, as anyone who
knows something of TEX would agree. But it doesnǶt
look too good compared with other tables, especially
if you know nothing of TEX, does it?

So, the next step taken is to make such a table
look as in Fig. 6, right, still fully automatically and
without changes to the source of that table (so that
no changes are necessary to the front-end software
generating it).

The desired effect is achieved by repeating trial
settings with an increasing \looseness in a sort of
\raggedright scope (turning respective cells into
p{⟨dimen⟩}), until a minimum value of \looseness

is found (or a limit of iterations reached). Then
widths of table columns are measured and applied
to the final leading.

3.2 New layouts

As the project developed and the PARCAT system
is offered to different clients, the need for new page
layouts, or rather, graphical concepts, is natural.
Samples of the layouts designed so far are shown
in Fig. 7.

They are intended not only to present different
shapes of graphical elements or placement of head-
ings, but also to illustrate the fact that all those sam-
ples are typeset from the same product data and,
moreover, the same ǳintermediateǴ TEX code.

To be more specific, PARCATǶs front-end soft-
ware (non-TEX) produces TEX code such as

{\sizevii
\begin{wykaz}{@{}lll}

\wyknaglowek{\textbf{\war{PL}{%
Symbol}\war{EN}{Symbol}\war{CZ}{Symbol}%
\war{DE}{Symbol}\war{HU}{Jelölés}} &
\najweziej{\war{PL}{Klasa wykonania}%
\war{EN}{Manufacture class}\war{CZ}{Třída
provedení}\war{DE}{Ausführungsklasse}%

\war{HU}{Kiviteli osztály}} & \najweziej{%
\war{PL}{Pokrycie styku}\war{EN}{Contact
plating}\war{CZ}{Povrch kontaktu}\war{%
DE}{Kontaktbeschichtung}\war{HU}{Érintkező
bevonata}} \\ }

...
\end{wykaz}

} % wielkosc czcionki

in a multitude of files named frame_⟨id⟩.tex. Each
file corresponds to a catalogue frame. PARCAT also
produces code like this:

\begin{multicols}{2}
...
\KeysForNextFrame {2x3=0:1/0}
\NamedInput{frame_24_1/frame_24_1.tex}

\KeysForNextFrame {2x3=1:2-1}
\NamedInput{frame_3_1/frame_3_1.tex}
...
\end{multicols}

in so-called intermediate files. \NamedInput is an
input wrapped with stacking the file name so that it
can be referred to in messages, which weǶll discuss
later (section 3.4). So, as you see, the intermediate
file inputs the frame files.

This file in turn is input by the main LATEX
document file, alongside files containing settings and
configuration data generated by the front-end of the
system.

You get all the different outputs (and more)
depending on which main file you use — on the same

intermediate and frame files!
Our intention is to keep all the templates com-

patible with one another. For example, notice the
unconditional invocation of the multicols environ-
ment in the intermediate file (the code sample above)
while only one of the examples shown in Fig. 7 is ac-
tually two-column.

Turning the multicols environment off was rel-
atively easy. (Relatively, since itǶs off only at the
main level, where \currentgrouplevel = 0.)

A bit more difficult was to reach a reasonably
simple solution for the layout introduced in the IL

template (lower left corner of Fig. 7). As you see, the
pictures are typeset on the right side of text (tables)
and the table(s) break in pages. The complication

PARCAT — Applying TEX in industry



354 TUGboat, Volume 32 (2011), No. 3

The ǳclassicǴ STE template The WZ template

The IL template, mini-toc on left page The MK template

The IL template, left page The Mod(ular) template

Figure 7: Samples of the PARCAT templates’ output

Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski



TUGboat, Volume 32 (2011), No. 3 355

is that the picture is not boxed with adjacent text
(which would kill the flexibility of \vskips) but put
in a ǳsmashedǴ box preceding the text, and proper
page breaking (i.e., forbidding breaks until subse-
quent text at least reaches the height of the picture)
is ensured by a local change to \pagegoal.

The template presented in the lower right cor-
ner of Fig. 7 (Mod), is quite distinct from all the
others. It positions a logical frame in a geometric
frame consisting of some number of modules sensu

graphico, i.e., rectangles of a grid. The grid on the
illustration is 2× 3.

This template is under construction. Our goal
is to make it typeset a frame in a proper shape ac-
cording to free space left on page. So far it type-
sets frames in a ǳgreedy multicolumnǴ shape, either
ǳvertical-firstǴ or ǳhorizontal-firstǴ by default or in
a shape specified by a key. For instance, the middle
frame of the example has (in the optional argument
of the ramka environment) a key 2x3=1:1, which
means that on the 2× 3 grid it should be put in two
horizontally adjacent rectangles.

The keys are handled by the pgfkeys package by
Till Tantau, which I find much easier to learn than
xkeyval, thanks to the path-like structure of the keys.

Although in this article we present illustrations
in grayscale, real templates allow colours, of course.
Moreover, all the colours are adjustable by the end
user. But that belongs to the next story:

3.3 Changing the layout parameters

3.3.1 ParcatColours

The PARCAT templates provide a straightforward
mechanism for setting colours. The end user doesnǶt
have to define the colour of each graphical element
separately but is given a set of colour variables that
are initialised hierarchically.

This mechanism is realised with the commands
\NewParcatColor and \SetParcatColor, whose
names are self-explanatory. These commands use
the mechanisms of colour definition of the xcolor

package, so a very wide range of assignments, re-
assignments, mixing and shading is available.

In most of the templates the basic colour is
nadroz, a legacy name derived from ǳnadrozdziałǴ,
ǵsuper-chapterǶ in Polish. Other colours are tints of
it by default. There are also colours (colour names)
for the distinctive frame of inserted advertisements,
for the backgrounds of pictures and so on.

A nearly parallel mechanism handles other pa-
rameters such as dimensions of graphical elements,
values of Boolean switches, etc.

3.3.2 ParcatParameters

The main commands are:

• \NewParcatParameter,
• \SetParcatParameter,
• \RenewParcatParameter and
• \OldParcatParameter.

These commands not only declare or set PAR-

CAT parameters but also put them on checklists to
issue an error message if a parameter isnǶt set at
the point of \AtBeginDocument (which we discuss
in section 3.4).

The first three names are self-explanatory. The
last serves to include standard (LA)TEX parameters
in PARCATǶs checklists (with the information about
their types). E.g., parcat.cls has a declaration
specifying \parindent as a value of type dimen:

\OldParcatParameter\parindent

\dimen[0pt]

This allows the standard \parindent to be specified
with \SetParcatParameter in a settings_...tex

file. It doesnǶt have to be set because the optional
argument sets it to 0pt by default.

Among the available parameter types are dimen,
count, skip, and the corresponding \dimexpr, \nu¦

mexpr, \glueexpr to denote a proper text for the
respective ε-TEX primitives, and \edim.

This last item stands for ǵevaluated \dimexprǶ,
where evaluation (\the-expansion) of the expression
is performed \AtBeginDocument.

As with ParcatColors, \edims are organised in
a sort of inheritance hierarchy.

3.4 PARCAT messages

As mentioned earlier, PARCATǶs TEX back-end gen-
erates information, warning and error messages in
an XML format, which is intended for parsing by
the front-end PARCAT software to provide informa-
tion to the end user, who most probably is not ac-
quainted with TEX.

In particular, such messages are issued if some
parameters are not set while they should be, or if
an attempt is made to assign a parameter value not
appropriate for it. As an example, the parcat.cls

class declares

\NewParcatParameter\TitleOnBg

\boolean[true]

which means the only allowed values for the param-
eter are (case-insensitive) true and false. But sup-
pose the settings_...tex file contains a typo:

\SetParcatParameter\TitleOnBg{fals}

Then TEX outputs an error message:

PARCAT — Applying TEX in industry



356 TUGboat, Volume 32 (2011), No. 3

!

<ParcatError>

<ParcatErrorFile>settings_Modular.tex

</ParcatErrorFile>

<ParcatErrorLine>108

</ParcatErrorLine>

<ParcatErrorForDummies>

The only values suitable for ***\TitleOnBg***
are ***true*** and ***false***
while you gave ***fals***.

</ParcatErrorForDummies>

<ParcatErrorForTeXies>

</ParcatErrorForTeXies>

</ParcatError>

.

Type H <return> for immediate help.

...

l.108 \SetParcatParameter\TitleOnBg{fals}

The XML is subsequently parsed by the front-end
programme to be presented to the user in a nice
form.

3.5 Modularisation of the code

Another goal of redesigning the code was to make
it suitable for new clients, who would want not all
the layouts in any possible configuration but only
a few or even just one. It was immediately evident
that dividing the code responsible for distinct parts
of the templates into separate files (modules) would
be a good idea.

For that purpose we created a mechanism based
on these three commands:

• \DeclareParcatModules,
• \ProvideParcatModule and
• \LoadParcatModule.

The last two names are self-explanatory, given
that a module (sensu programmatico) is much like
a LATEX macro package or a document class options
file. But why is the first in plural? It is because
from the very beginning of the operation (Operation
Divide et Impera ;-) ) it was clear to us that there
would be more than one module (variant) for each
logical part of a template.

And indeed, so far there are about 10 modules
of page layout, 6 modules of headings, 3 modules of
index, 5 modules of frames, 3 modules of tables, &c.

We intend to keep the modules compatible with
one another, e.g., any of the frame modules can work
with any of the table modules (as far as logically pos-
sible). The tests performed so far seem to confirm
that such a condition is preserved.

Not the least in preserving that compatibility
is the manner of writing the code: all in one source
file (using the gmdoc package, with an abundance of
commentary) and generating the working files with
docstrip directives.

But what about that ǳindustryǴ in the title?

— one may ask.
Our clients are companies with large product

bases. To mention just one of them, its printed
catalogue for the year 2011 is over 1700 A4 pages
in thousands of copies in each of eight languages.
That is industry and being able to handle it with
(XƎ)TEX makes us proud.

Another and probably not the least aspect of
the ǳindustrial strengthǴ of PARCATǶs TEX back-
end is its flexibility for the different needs of different
clients, achieved with modularisation and variation
of the parameters.

The PARCAT project is developing dynamically
and dedicated to treating every client individually so
hopefully thereǶll be many new features to present
in the future.

More information about the PARCAT project
can be found at www.parcat.eu.

⋄ Wiktor Dziubiński
w.dziubinski at parcat (dot) eu

⋄ Marcin Woliński
wolinski at gust (dot) org (dot) pl

⋄ Grzegorz Murzynowski
g.murzynowski at parcat (dot) eu

Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski



TUGboat, Volume 32 (2011), No. 3 357

TUG Libre Font Fund, Google Web Fonts,

and Kickstarter

Dave Crossland

Google Web Fonts provides a catalog containing hun-
dreds of libre-licensed fonts (http://www.google.
com/webfonts). The team recently began support-
ing a funding experiment for libre-licensed fonts, in
which TUG plays a key part, using Kickstarter.

Kickstarter.com is a popular service for funding
all kinds of creative projects. It works by setting out
a vision for a project and a target amount of money
to raise within a set time period. As the clock counts
down, people who want to see the project succeed
can pledge donations. Their money is only spent if
enough other people also contribute and the target
amount is reached by the end of the campaign period.
Successfully funded projects often raise more than
their target.

Each month there are many typeface designs pro-
posed to the Google Web Fonts team for publication,
and financial support. The team has a budget and
can’t support everything; even with the best quality
proposals, it can be hard to decide about those that
are quite similar to ones already published. Perhaps
the best judge of which web fonts the public wants
to use is the public. So I invited the designers of
three recent proposals to try out Kickstarter, so we
could see how it might work for font projects.

First is Marcello Magalhaes’s Folk, which trans-
forms the vernacular lettering of Sao Paulo into a
font. Already popular as a web font, it has been used
by The Independent Film Channel and Mozilla—but
it only included an uppercase set of glyphs, and not
all the symbols and accents that Google Web Fonts
requires. For this project, Marcello is completing the
font to the Basic Latin character set used by Google
Web Fonts, and has designed a poster to go with the
new release that was offered as a reward.

Next is Fast Brush Script. This is the working
name for a font by Pablo Impallari. Pablo’s first
font, Lobster, is one of the most popular Google
Web Fonts, having been served over 2 billion times.
Pablo is offering a very unusual reward—choosing
the name. Normally the name of a font is sacred
to the designer, but Pablo is opening up the op-
portunity for corporate patronage of his work. The
development name of ‘Fast Brush Script’ reflects the
core concept of the typeface. This font was in a
very early development stage when it was announced
on Kickstarter, with only the lowercase letters fully

prototyped. Pablo offered the current development
version on his Kickstarter project page.

Finally there is Montserrat, an extremely high
quality sans serif text typeface by Julieta Ulanovsky.
Advanced substantially during her studies at the pres-
tigious University of Buenos Aires’ Masters degree
in Typeface Design, the design revives the historical
type of the Montserrat neighbourhood where Juli-
eta lives and works. This genre of type has been
a popular trend in recent years and this typeface
in particular stands out with its excellent quality.
Setting it apart are the set of alternative caps, which
add a little fun to a very functional text typeface.

Folk and Fast Brush Script just made their fund-
ing targets with a lot of help from the Google Web
Fonts team. But in the final few days of the fund-
ing drive, Montserrat was chosen for highlighting in
Kickstarter’s weekly email newsletter to its users,
and placed on the Kickstarter home page. It went
on to raise nearly double the target amount!

Folk Fast Brush Montserrat

Kickstarter uses Amazon Payments to handle
the financial transactions involved in its projects.
This service will only pay out to bank accounts held
in the USA. Since all the designers (so far) live in
South America, the TUG Libre Font Fund enabled
them to make use of the service. In return, I hope
you will be able to make use of these fonts.

This approach to funding is ongoing; please feel
free to peruse and/or contribute to the past and
current projects at http://fundwebfonts.appspot.
com. At this writing, highlighted projects seeking
funding include Euphoria Script (self-explanatory),
Exo Sans (a contemporary geometric design), and
Open Educational Resources for Typography (a free
typography/font learning resource, à la Wikipedia).

(Disclaimer: I am currently working as consul-
tant for Google on their Web Fonts project. This
article is entirely my personal opinion and does not
represent the views of Google, Inc., in any way.)

⋄ Dave Crossland

dave (at) lab6 dot com

http://tug.org/fonts/

librefontfund.html

TUG Libre Font Fund, Google Web Fonts, and Kickstarter



358 TUGboat, Volume 32 (2011), No. 3

Book Reviews

Book review: Bodoni, Manual of
Typography—Manuale tipografico (1818)

Boris Veytsman

Giambattista Bodoni, Manual of Typography—
Manuale tipografico (1818). Stephan Füssel, editor.
Taschen, 2010. 1208 pp. Hardcover, US$69.99.
ISBN 978-3-8365-0553-6

One of the aims of Unicode is to make possible
and relatively straightforward to create, for example, an
English text with quotes in German, Arabic, Hebrew,
and many other languages. A typesetter understands,
however, that it is not enough to have a uniform digital
representation of the “letters”: one also should have a
font (or collection of fonts) with letterforms for all these
scripts. Therefore an important task for font designers is
to create fonts with large collections of glyphs for different
scripts. Only when this is done can we say that we can
make multi-language books with truly harmonious and
beautiful pages.

One may think that this task became relevant only
in recent times. Giambattista Bodoni (1740–1813) is a
great reminder that this impression is just wrong.

Typophiles may remember Bodoni for his great
Latin fonts, which still are widely used today, or for
his influential editions of classics. However, another
aspect of Bodoni’s heritage becomes increasingly more
important in today’s interconnected world: his exten-
sive work on non-Latin scripts. These scripts interested
Bodoni throughout his career. Starting at the age of
eighteen Bodoni worked with the exotica division of the
Tipografia Poliglotta Vaticana where his work spanned
Arabic, Tibetan and many other scripts. Later, in Parma,
he published a collection of bridal poems in 25 Oriental
languages with Latin translations (1775). As a mature
typographer, Bodoni published Oratio Dominica, the
Lord’s prayer in 155 languages (1806). He personally cut
55,000 matrices for his multi-language books. Bodoni
strived to combine calligraphic traditions of these scripts
with the beauty and clarity of his superb typography.

TEX users may want to take a look at GFS Bodoni
fonts (http://www.ctan.org/pkg/gfsbodoni) with full
support for Greek, Latin and math. They are included in
TEX Live and MiKTEX, as well as being available directly
from CTAN.

The book Manuale Tipografico is a major work of
the great typographer. He did not live to see it printed:
his widow Margherita and his foreman Luigi Orsi com-
pleted the edition and published it five years after the
master’s death.

The first volume of the manual contains a huge
collection of samples of Latin fonts: roman, italic and
cursive, with variants, weights, sizes. Margherita wrote
in her preface that Bodoni considered it necessary for

good typography to carry a collection of main fonts large
enough so the difference between the adjacent sizes is
not easily seen by a trained eye—a feat almost unheard
of before the advent of digital typography.

The second volume has an extensive collection of
Greek and Cyrillic fonts, along with a huge number of
other scripts: Hebrew, Tibetan, Arabic, Armenian, Cop-
tic, Georgian and many, many others (curiously enough,
black letter is also considered to be an “exotic script” and
put in the second volume as “Tedesco”, German—be-
tween “Malabarico”, Malayalam, and “Russo”, Russian).
Bodoni himself in his preface evidently takes a consider-
able pleasure in listing the fonts, carefully observing the
difference between Square Hebrew and Rabbinical He-
brew, and noting that in Arabic writing . . . the intricate

Sulsi letter is employed in frontispieces and beginning,

the hanging Tajik is very fashionable in Persia, while

Turks love the reverse Divân. The preface also contains
important musings by Bodoni about the fundamental of
typographic art.

The book also includes many pages of astronomi-
cal, mathematical and medical symbols, decorative rules,
ornaments and even musical sheets in several styles.

Besides being a huge source of invaluable informa-
tion, the book is a pleasure to read; just turning its pages
may make a great evening for a typophile.

Since its publication in 1818 the Manuale became a
very rare book. In 1965 it was reprinted in 900 numbered
copies, which, of course, immediately became a prized
rarity themselves. Thus a new mass market edition by
Taschen is a very welcome project. A well preserved
copy from Staatsbibliothek zu Berlin is reproduced here
in all its glory. For those readers who are not fluent in
Italian the book contains a booklet in a pocket glued to
the inside cover with the translation of the texts and a
very interesting preface by Stephan Füssel, director of
the Institute of the History of the Book at the Johannes
Gutenberg University of Mainz and the editor of the
publication (most of the facts about Bodoni’s biography
cited above can be found in this erudite and well-written
foreword). The book is printed on a good thick paper
and is well bound. Probably in order to keep the price
lower this edition contains both volumes of the original
Manuale in one large book (albeit with two tassels). This
makes it rather heavy (about nine pounds) and somewhat
difficult to handle. However, the binding allows one to
open the book at any place without much problem.

This book is a must for a font specialist or a ty-
pographer. Its relatively low price and beauty make it a
good addition to a library of a book lover.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2
George Mason University
Fairfax, VA 22030
USA
borisv (at) lk dot net

http://borisv.lk.net



TUGboat, Volume 32 (2011), No. 3 359

Book review: LATEX and Friends

Boris Veytsman

Marc van Dongen, LATEX and Friends, Springer,
Feb. 29, 2012, x+330pp., 145 ill., 15 in color.
Hardcover, $69.95 approx., ISBN 978-3-642-23815-4.

It is difficult to write a new and original introduc-
tory book about LATEX today. The author must
compete with a number of great books, including
freely available ones like [1]. Some these books were
written by the authors or primary developers of the
language [2–5]. Still, people have been writing math-
ematics textbooks for several thousand years, and
nevertheless new ones continue to be written.

The way one can judge introductory LATEX text-
books is similar to how figure skating is judged.
There are several “required elements” which must be
present in any book, like the explanation of LATEX
macros and workflow. There are also several “free el-
ements” like additional packages or tricks the author
chooses to include. The book can be evaluated by the
pedagogical skill with which the author performed
the “required elements”, introducing the fundamen-
tals of LATEX, and by his choice of the “free” ones.

The new book by Marc van Dongen deserves
high scores in both categories.

The first two parts of the book, Basics and Basic

Typesetting discuss the material one can expect to
find in any LATEX textbook: the organization of LATEX
documents, the language constructs, the alphabet,
etc. They are explained lucidly and well. What
distinguishes this book from many other texts is
that the author stresses the fact that LATEX is a
programming language, and therefore a LATEX file is
actually a program that instructs the computer to
create the final product: the typeset pages on paper
or on screen. This means, writes the author, that
you can use software engineering techniques such as

top-down design and stepwise refinement.

This is a very important fact, which must be ex-
plained to the students of TEX and LATEX, especially
those who are accustomed to WYSIWYG documents.
A WYSIWYG document presents itself as “the final
product” (this is a deception of sorts because, as any

experienced user can attest, “what you finally get”
is emphatically not “what you see”), while a TEX
document is best viewed as a program to produce
“the final product”. The author returns to this many
times, discussing such software engineering concepts
as maintainability applied to TEX documents. This
approach would likely be very comfortable and fa-
miliar for engineers and software developers.

The author’s use of Unix-like syntax for his
examples adds to the impression that the target
audience of the book is the people who are not afraid
of compilers and can write some code. This is a very
welcome development. Too often publishers prefer to
print computer-related books intended for “dummies”
or even “complete idiots”. While geniuses arguably
do not need introductory texts, there is a perceptible
dearth of books for the reasonably intelligent person.
LATEX and Friends is definitely one of such books,
and it makes for pleasant and useful reading.

Since The TEXbook [6], many books about TEX
discuss not only the typesetting program, but also
other aspects of typographic art and science, dis-
cussing the rules for book design and the best prac-
tices. LATEX and Friends follows this tradition, and
Bringhurst’s immortal Elements [7] is one of the
most often cited books in the text. The reader learns
many useful typographic facts, such as setting the
punctuation symbols at the border of two types in
the brighter type, the spacing in abbreviations and
initials, etc. Many people from the intended audi-
ence get their first exposure to the typography from
TEX-related books, and this one provides a good
introduction to the subject.

The author chooses PDF mode as the main way
to produce the result—probably a sensible choice
nowadays. He does discuss DVI mode as a quick way
to get a preview of the typeset pages. He obviously
prefers biblatex to the “traditional”BibTEX interface
to the bibliography. Still, a description of the natbib

package would be a useful addition to the discussion
of the author–year bibliographies.

The third part of the book discusses Tables,

Diagrams and Data Plots. It contains a detailed
introduction to the TikZ suite—probably one of
the best existing descriptions of this highly useful
package. This description alone makes the book
worth buying. The section on tables, however, is
smaller and less detailed; the reader who needs more
should probably turn to the recent book by Herbert
Voß [8] dedicated to typesetting tables in LATEX.

The fourth part of the books is called Mathe-

matics and Algorithms. The author discusses the use
of amsmath and the related packages from the Amer-
ican Mathematical Society. Again, a reader who

Book review: LATEX and Friends



360 TUGboat, Volume 32 (2011), No. 3

needs a detailed description of these packages may
want to consult the books which deal with them as
a primary topic, such as the two volumes by George
Grätzer [9, 10]. A chapter or two in a general text-
book, of course, cannot be a comprehensive descrip-
tion of these large packages. One can always argue
with the author’s choice: for example, van Dongen
discusses the split environment, but does not men-
tion multline, while I find the latter more useful
than the former. I also would argue that the only
“discussion” of eqnarray environment should be the
warning: “never use this ugly monster!” A stranger
omission happens in the discussion of variable sized
delimiters, where the author explains the usage of
\left and \right keywords for automatic sizing
(with a useful trick of \vphantom for the proper
sizing of multi-line expressions), but does not men-
tion the manual sizing with \Biggl, \Bigl, \bigl
commands and their “right” complements. The de-
scription of the listings package is rather short and
does not mention many of its useful features. On
the other hand, the discussion of the algorithm2e

package is very detailed and well written.
The fifth part of the book, Automation, deals

with the definition of new macros. It is probably
intended for a more advanced reader than the rest
of the book. The discussion of branching, loops
and switching there is rather interesting, as well as
containing some introductory remarks on the TEX
interface (as opposed to the LATEX interface).

The last part, Miscellany, includes a couple
of chapters on various topics that do not fit into
the other parts. It has a short but well written
introduction to beamer presentations, a chapter on
writing classes and packages, and a chapter on using
OpenType fonts. The chapter on writing classes
and packages is probably not as good as the famous
guide [11], and does not cover the use of .dtx file for
self-documenting code. The chapter on OpenType
fonts contains an interesting discussion of a more
esoteric topic. I wonder whether some script to
automate this, e.g., using fontinst [12,13] for some
parts of the process, would help.

The book is well typeset using the FF Nexus

font family. Unlike many other books on TEX, it has
a detailed colophon, adding to the pedagogical value
of the book. It has a good index separated into cate-
gories, and a short dictionary of typographic jargon.

This is a very useful book which can be recom-
mended as a textbook on LATEX for an introductory
course or for self-education. It has chapters inter-
esting for beginners and for experienced TEXnicians,
and will be a welcome addition to either bookshelf.

References

[1] Tobias Oetiker, Hubert Partl, Irene Hyna,
and Elisabeth Schlegl. The Not So Short

Introduction to LATEX2ε, April 2011. http:

//mirrors.ctan.org/info/lshort.

[2] Leslie Lamport. LATEX: A Document Preparation

System, second edition. Addison-Wesley
Publishing Company, Reading, MA, 1994.
Illustrations by Duane Bibby.

[3] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The

LATEX Companion. Addison-Wesley Series on
Tools and Techniques for Computer Typesetting.
Addison-Wesley Professional, Boston, second
edition, 2004.

[4] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion:

Illustrating Documents With TEX and PostScript.
Addison-Wesley Series on Tools and Techniques
for Computer Typesetting. Addison-Wesley,
Reading, MA, 1997.

[5] Michael Goossens, Sebastian Rahtz, Eitan M.
Gurari, Ross Moore, and Robert S. Sutor. The

LATEX Web Companion: Integrating TEX, HTML,

and XML. Addison-Wesley Series on Tools and
Techniques for Computer Typesetting. Addison
Wesley Longman, Reading, MA, 1999.

[6] Donald Ervin Knuth. The TEXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, MA, 1994. Illustrations by
Duane Bibby.

[7] Robert Bringhurst. The Elements of Typographic

Style. Hartley & Marks, Publishers, Vancouver,
BC, Canada, 2004.

[8] Herbert Voß. Typesetting Tables with LATEX.
Cambridge UIT, 2011.

[9] George Grätzer. Math into LATEX. Birkhäuser,
Boston, third edition, 2000.

[10] George Grätzer. More Math into LATEX. Springer,
New York, fourth edition, 2007.

[11] LATEX3 Project. LATEX2ε For Class and Package

Writers, 2006. http://mirrors.ctan.org/

macros/latex/doc/clsguide.pdf.

[12] Philipp Lehman. The Font Installation Guide,
December 2004. http://mirrors.ctan.org/info/
Type1fonts/fontinstallationguide.

[13] Alan Jeffrey, Rowland McDonnell, and Lars
Hellström. Fontinst: Font Installation Software for

TEX, December 2004. http://mirrors.ctan.org/
fonts/utilities/fontinst.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2
George Mason University
Fairfax, VA 22030, USA
borisv (at) lk dot net

http://borisv.lk.net

Boris Veytsman



TUGboat, Volume 32 (2011), No. 3 361

TheTreasure Chest

This is a list of selected new packages posted to
CTAN (http://ctan.org) from July–October 2011,
with descriptions based on the announcements and
edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

fonts

bickham in fonts

Virtual fonts for Adobe Bickham Script Pro as a
math calligraphic font.

calligra-type1 in fonts

Type 1 version of the Calligra font.
dejavu in fonts

DejaVu fonts, in TrueType and Type 1.
opensans in fonts

OpenSans fonts, in TrueType and Type 1.
persian-modern in fonts

Text fonts from the FarsiTEX project, in TrueType.
pxtxalfa in fonts

Virtual math fonts based on pxfonts and txfonts.

graphics

braids in graphics/pgf/contrib

Drawing braid diagrams with PGF/TikZ.
mpcolornames in graphics/metapost/contrib/macros

Color names from X11, SVG, Dvips, and xcolor.
tqft in graphics/pgf/contrib

Drawing topological quantum field theory (TQFT)
diagrams with PGF/TikZ.

info

biblatex/de in info/translations

German translation of biblatex documentation.
enumitem/de in info/translations

German translation of enumitem documentation.
europecv/de in info/translations

German translation of europecv documentation.
fifinddo-info in info

German HTML beamer presentation using nicetext.

macros/latex/contrib

bhcexam in macros/latex/contrib

Exam class for high school math in China.

business-research in macros/latex/contrib

LATEX class for the journal Business Research.

ghab in macros/latex/contrib

Typeset argument in a box with a decorated frame.

gitinfo in macros/latex/contrib

Support Git version control metadata in LATEX.

ifetex in macros/latex/contrib

Test whether ε-TEX is available.

keyval2e in macros/latex/contrib

Lightwight and robust facilities for managing keys.

meetingmins in macros/latex/contrib

Format written minutes of meetings.

musous in macros/latex/contrib

Style for the Department of Music at the University
of Osnabrück, Germany.

mversion in macros/latex/contrib

Tracking different versions of your LATEX document.

pagecolor in macros/latex/contrib

Macros for the current background (page) color.

quoting in macros/latex/contrib

Consolidated environment for displayed text.

realboxes in macros/latex/contrib

Read arguments to box commands as boxes rather
than macro arguments.

rviewport in macros/latex/contrib

Viewport sizes as fractions of natural image sizes.

sidenotes in macros/latex/contrib

Allow typesetting of general text in the margins for,
e.g., science textbooks.

tablefootnote in macros/latex/contrib

Support footnotes in tables.

tagging in macros/latex/contrib

Generate multiple documents from a single source.

tram in macros/latex/contrib

Support for “tram boxes”, using patterns of dots.

macros/latex/contrib/babel-contrib

russian in m/l/c/babel-contrib

Updated Russian support for Babel.

macros/latex/contrib/beamer-contrib

beameraudience in m/l/c/beamer-contrib

Assemble frames for different audiences.

support

nlatexdb in support

C#/.NET preprocessor to execute SQL queries and
format the results in LATEX.

support/nlatexdb



362 TUGboat, Volume 32 (2011), No. 3

ArsTEXnica #11–12 (2011)

ArsTEXnica is the journal of guIt, the Italian TEX
user group (http://www.guit.sssup.it/).

ArsTEXnica #11 (April 2011)

Gianluca Pignalberi, Editoriale [From the
editor]; pp. 3–4

Antonello Pilu, La creazione di una prova
d’esame [How to create an exam test]; pp. 5–14

This article will show how to realise, in a fast
and simple way, a test with LATEX2ε, using its exam
package. With this package we will be able to elab-
orate many different tests, from the easiest to the
more complex ones, always keeping the high graphi-
cal quality of LATEX2ε.

Gianluca Pignalberi, Salvatore Schirone,

Jerónimo Leal, Introduzione agli strumenti
per grecisti classici [Introduction to tools for
hellenists]; pp. 15–30

Hellenists’ work is as hard, or even harder, than
that of any other literary scholars. Thus, they need
powerful and versatile tools. This paper shows two
editors, two typesetters and some useful techniques
for this job. The authors of this paper effectively use
all of them.

Marco Crivellaro, Un dialogo tra GNU R e
LATEX: xtable e Sweave [Dialogue between GNU

R and LATEX: xtable and Sweave]; pp. 31–36
The aim of this article is to show the ways by

which R, software for statistical computation, can be
combined with LATEX for the writing of high quality
statistical reports. This article is from my experi-
ence during the writing of my thesis in marketing at
University Ca’ Foscari in Venice.

Giovanni Mascellani, Uno strumento per
gestire progetti LATEX cooperativi [A tool to
manage cooperative LATEX projects]; pp. 37–40

Using and modifying available free and open
source tools, we made a portal that students can use
to collaborate in writing notes and text with LATEX.
It also features an automatic tool that compiles the
sources and makes the PDF files easily reachable
directly from the Internet site.

Jean-Michel Hufflen, Passare da LATEX a
XSL-FO [Switching from LATEX to XSL-FO];
pp. 41–53

[Published in TUGboat 29:1.]

Claudio Beccari, La virgola intelligente [Smart
decimal separator]; pp. 54–56

The decimal fractional part of a number must be
separated from the integer part by means of a decimal

separator. ISO regulations specify a different sign for
different languages; the internal LATEX mathematical
character codes do not help treating this sign in a
simple way. Here we describe a few ways to handle
this problem.

Claudio Beccari, The unknown picture

environment; pp. 57–64
The old picture environment, introduced by

Leslie Lamport into the LATEX kernel almost 20 years
ago, appears to be neglected in favor of more modern
and powerful LATEX packages that eliminate all the
drawbacks of the original environment. Nevertheless,
it is still being used behind the scenes by a number
of other packages. Lamport announced an extension
in 1994 that should have removed all the limitations
of the original environment; in 2003 the first version
of this extension appeared, in 2004 the first stable
version was released; in 2009 it was extended with
new functionality. Nowadays the picture environ-
ment can perform similarly to most simple drawing
programs, but it has special features that make it
invaluable.

Luigi Scarso, Extending ConTEXt MkIV with
PARI/GP; pp. 65–74

This paper shows how to build a binding to
PARI/GP, a well known computer algebra system,
for ConTEXt MkIV, showing also some examples on
how to solve some common basic algebraic problems.

Eventi e novità, Events and news; p. 75

ArsTEXnica #12 (October 2011)

Gianluca Pignalberi, Editoriale [From the
editor]; p. 5

Claudio Beccari, X ELATEX and the PDF

archivable format; pp. 6–11
Up to now X ELATEX produces a final PDF out-

put file but it gets this output by transforming an
XDV (extended DVI) intermediate file. This excludes
most of the possibilities offered by pdfLATEX that,
at least since version 1.40.9, and with the help of
an extension file pdfx.sty, can directly produce a
PDF/A-1b compliant output. This paper explains
how to get through this bottleneck by resorting to
the ubiquitous Ghostscript program.

Agostino De Marco and Roberto

Giacomelli, Creare grafici con pgfplots

[How to create plots with pgfplots]; pp. 12–38
This article presents pgfplots, the package for

the creation of plots based on PGF. The user manu-
als of both these extensions of the LATEX language
are very detailed and voluminous and users are of-
ten discouraged from studying these two documents.



TUGboat, Volume 32 (2011), No. 3 363

In particular, those wishing to create high quality
graphs have a difficult time disentangling the details
of the many options and customizations. The article
suggests a practical approach: It will be shown how
a graph can be prepared by means of a correct initial
setting of axes, thus introducing the basic commands
and options. Then the way to plot curves and sur-
faces will be explained, suggesting how to possibly
customize their appearence.

Agostino De Marco and Paolo Eugenio

Cresci, LATEX nella pubblica amministrazione:
La web application FAciLE per la produzione
automatica di comunicazioni interne del Comune
di Napoli [LATEX in the public administration:
The FAciLE web application to automatically
produce City of Naples internal letters]; pp. 39–56

This article describes the web application FAciLE
in use at the administration of the City of Naples.
The application was released in March 2011. It is
integrated into the intranet software tools of the mu-
nicipality and is currently under testing. Users are
able to produce official internal communication let-
ters which comply with the City of Naples Corporate
Identity specifications. The application is designed
to be perceived as a very simple tool and presents
itself to the user as a web form for the production
of a PDF document. Behind the scenes FAciLE runs
the X ELATEX typesetting engine together with an ad
hoc parser developed in the PHP language. The key
aspect of the application is the design of a LATEX
source template based on the scrlttr2 document
class from the KOMA-script bundle.

Presentazioni da ArsTEXnica numero 11,
Presentations from ArsTEXnica no. 11; p. 57

Jean-Michel Hufflen, An introductory
presentation of XSL-FO; p. 58

This short statement aims to sketch the broad
outlines of the presentation at the guIt 2011 meeting.

[Received from Gianluca Pignalberi.]

Die TEXnische Komödie 3/2011

Die TEXnische Komödie is the journal of DANTE

e.V., the German-language TEX user group (http:
//www.dante.de). [Editorial items are omitted.]

Dominik Wagenführ, Variable Argumente in
LATEX nutzen [Using variable arguments with
LATEX]; pp. 10–20

By defining one’s own commands in LATEX, re-
occuring tasks and formats can be created easily

without having to write the same code again and
again. Another advantage is that if a change is
needed only the command itself needs to be adjusted
and not individual places inside the document. This
article shows how, with the help of xkeyval, op-
tional arguments can be used without getting lost.
The xkeyval package is an extension of the keyval

package which can be used for most examples of the
article as well. There are also other packages such
as pgfkeys and kvoptions/kvsetkeys that provide
key–value combinations for options.

Axel Kielhorn, Viele Ziele—Multi-Target
Publishing [Many targets—Multi-target
publishing]; pp. 21–32

[Translation published in this issue of TUGboat.]

Enrico Gregorio, Installation of TEX Live 2011
on Ubuntu; pp. 33–45

[Published in TUGboat 32:1]

Reinhard Kotucha, Installation nicht ganz
freier Fonts [Installation of not-completely free
fonts]; pp. 46–48

During the work on TEX Live 2005 some Type 1
fonts had been discovered which had to be removed
due to license restrictions. Although these fonts may
be used freely, the licence requires that no money
must be charged for their distribution, which cannot
be prevented during distribution on CD or DVD.
Since these fonts were accidentally available in earlier
TEX Live versions one must assume they have been
used in various documents. While discussing the
matter with Karl Berry the idea was born to provide
the fonts via network installation.

Rolf Niepraschk, Experimentelle Trennmuster
[Experimental hyphenation patterns]; pp. 49–51

In the following it is shown how the new ex-
perimental hyphenation patterns for LATEX can be
used in a document. For background and further
information please consult the respective German
documentation.

Herbert Voß, Latin Modern Math; pp. 52–60
More than once this journal has reported on

the use of mathematical fonts with (LA)TEX. The
only — more or less complete — fonts containing text-
and mathematical characters for pdfLATEX are Com-
puter Modern and kpfonts, which are limited to 256
characters per font. All other mathematical fonts
matching frequently used text fonts such as Times
Roman, Helvetica, Lucida and Palatino are not pub-
lic domain. The revision of Computer Modern led
to Latin Modern for which a complete mathematical
font, the Latin Modern Math, is available. It is part
of TEX Live 2011 and completes the available glyphs
of the Latin Modern family.



364 TUGboat, Volume 32 (2011), No. 3

Herbert Voß, LuaLATEX und Schriften
[LuaLATEX and fonts]; pp. 62–67

Depending on the operating system the number
of available fonts may be so huge that seeing an
overview may be hard. In this article we show how
a Lua function can display the available fonts of an
OpenType or TrueType font family, together with a
test string.

[Received from Herbert Voß.]

The PracTEX Journal 2011-1

The PracTEX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/
pracjourn. All articles are available there.

Issue theme: LATEXniques.

Lance Carnes, Editorial—LATEXniques
Editor’s introduction to the issue.

The Editors, News from Around
TEX and LATEX blog; Typography video blog;

Internet 20th Anniversary.

Fabien Leboeuf, LATEX patient summaries
In this article we demonstrate the LATEX tech-

niques used to produce high-quality technical re-
ports with multimedia features. At our hospital, the
analysis of biomechanical data is done by a multi-
disciplinary team and involves a large amount of
inter-related information in a variety of electronic
formats. Therefore, it is essential that there be a
user-friendly interface to present this data to the
team for analysis. In this context, LATEX was used to
create a comprehensive report, with all text, graph-
ics, and video contained in a single PDF file. We
have been using LATEX to produce this report since
2006, and have received positive feedback from the
hospital staff.

L. Garcia-Forte and C. Leon-Hernandez

and C. Rodriguez-Leon, Integrating LATEX and
Moodle questionnaires

Creating teaching material requires the genera-
tion of both static (unreactive) data-documents and
dynamic (reactive) program-documents based on dif-
ferent technologies. Teaching a subject often implies
the maintenance of a large number of both types of
documents, usually written in a variety of languages
and stored in different formats. Ergo, a natural goal
for the lecturer is to minimize the amount of work
invested during the development and maintenance
of the material. There are acceptable solutions re-
garding the transformation between formats with
the same kind of reactivity. This work discusses
the problem of integrating Moodle (an open source

learning management system) and LATEX (a docu-
ment preparation system), proposes a methodology
to pursue this goal, and presents a tool to assist in
the translation of Moodle Quiz documents to LATEX.

Ryan Higginbottom, Teaching LATEX at a liberal
arts college

This brief report describes a course I developed
for teaching LATEX to a diverse undergraduate audi-
ence. Of special note are the changes and improve-
ments I made to this class after the first time it was
taught.

Lenore Horner, LATEX teaching techniques
As first a physics professor and now a math and

physics high school teacher, my teaching materials
are always evolving and I am always looking for ways
to make this easier for myself and to avoid reinventing
the wheel (often my own wheel). Over the last three
years, LATEX has been a key part of that process.

Robert Ipanaqué Chero and Gloria Solvey

Crespo Guerrero, Tesis de pregrado en LATEX
con FcUnp class [FcUnp LATEX thesis style]

FcUnp is a LATEX class for writing the bachelor
thesis used at the Science Faculty of the National
University of Piura, Perú. The goal of FcUnp is to
provide a bachelor thesis format with a consistent
layout that conforms to the rules of the Faculty so
that students can concentrate solely on the content.
It provides a set of commands to create the cover
page, the title page, the signatures page, the dedi-
cation page and the acknowledgments page. When
required, there is another set of commands to create
the conclusions, the annexes, the appendices, and
the abstract. In addition, this class allows generating
PDF output, using either dvipdfm or directly with
pdflatex. (Article in Spanish.)

Claudio Beccari, Intelligent commas
The decimal fractional part of a number must

be separated from the integer part with a decimal
separator. The ISO regulations specify a different
sign for different languages; the internal LATEX math-
ematical character codes do their best to avoid a
simple treatment of the decimal separator. Here we
describe a few ways to handle this problem.

Lenore Horner, Speedy LATEX on the Mac
Here are the Mac-specific tools I use to make

the typesetting as fast as possible so I can spend my
time on content rather than on formatting.

The Editors, Ask Nelly
Page numbers in bibliography?; Teacher vs. stu-

dent course materials?

The Editors, Distraction: Course outline



The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our web
site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Hendrickson, Amy

Brookline, MA, USA
Email: amyh (at) texnology.com

Web: http://www.texnology.com

LATEX macro writing our speciality for more than
25 years: macro packages for major publishing
companies, author support; journal macros for
American Geophysical Union, Proceedings of the
National Academy of Sciences, and many more.

TUGboat, Volume 32 (2011), No. 3 365

TEXConsultants

Hendrickson, Amy (cont’d)

Scientific journal and e-journal design and
production.

LATEX training, at MIT, Harvard, many more
venues. Customized on site training available.

Please visit our site for samples, and get in touch.
We are particularly glad to take on adventurous
new uses for LATEX, for instance, web based report
generation including graphics, for bioinformatics or
other applications.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at) gmail.com

Web: http://www.elance.com/s/dlatchman

Proficient and experienced LATEX typesetter for books,
monographs, journals and papers allowing your
documents and books to look their possible best
especially with regards to technical documents.
Graphics/data rendered either using TikZ or Gnuplot.
Portfolio available on request.

Peter, Steve

295 N Bridge St.
Somerville, NJ 08876
+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge, and
Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam92 (at) yahoo.com

As a Consultant, I provide consultation, training, and
full service support to individuals, authors, typesetters,
publishers, organizations, institutions, etc. I support
leading BPO/KPO/ITES/Publishing companies in
implementing latest technologies with high level
automation in the field of Typesetting/Prepress,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media publishing,
etc., with highly competitive prices. I provide
consultation in building business models &



Shanmugan, R. (cont’d)

technology to develop your customer base and
community, streamlining processes in getting ROI on
our workflow, New business opportunities through
improved workflow, Developing eMarketing/E-Business
Strategy, etc. I have been in the field BPO/KPO/ITES,
Typesetting, and ePublishing for 16 years, handled
various projects. I am a software consultant with
Master’s Degree. I have sound knowledge in TEX,
LATEX2ε, XMLTEX, Quark, InDesign, XML, MathML,
DTD, XSLT, XSL-FO, Schema, ebooks, OeB, etc.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents.

From setting up entire book projects to last-minute
help, from creating individual templates, packages and
citation styles (BibTEX, biblatex) to typesetting your
math, tables or graphics— just contact me with
information on your project.

366 TUGboat, Volume 32 (2011), No. 3

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about sixteen years of experience in
TEX and twenty-nine years of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

LAMFA CNRS UMR 6140,

Amiens, France

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway



2012

Jan 27 “The Design of Understanding”,
St. Bride Library, London, England.
stbride.org/events

Jan 31 PracTEX Journal 2012-1, deadline for
submission of articles on “LATEX in the IT

world”.

Mar 7 – 9 DANTE Frühjahrstagung and

46th meeting, HTWK Leipzig, Germany.
www.dante.de/events/dante2012.html

Apr 29 –
May 3

BachoTEX2012: 20th BachoTEX
Conference, Bachotek, Poland.
www.gust.org.pl/bachotex/2012

May 1 TUG2012 presentation proposal
deadline. tug.org/tug2012

May 15 TUG2012 early bird registration
deadline. tug.org/tug2012

Jun 1 TUG2012 preprints deadline.
tug.org/tug2012

Jun 4 –
Jul 27

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on type,
bookmaking, printing, and related topics.
www.rarebookschool.org/schedule

Jun 26 – 29 SHARP 2012, “The Battle for Books”,
Society for the History of Authorship,
Reading & Publishing. Dublin, Ireland.
www.sharpweb.org

Jun 30 –
Jul 1

The Tenth International Conference
on the Book, Universidad
Abat Otiba CEU, Barcelona, Spain.
booksandpublishing.com/conference-2012

TUGboat, Volume 32 (2011), No. 3 367

Calendar

Jul 9 – 13 “Towards a Digital Mathematics Library”
(DML 2012), Bremen, Germany.
www.fi.muni.cz/~sojka/dml-2012.html

TUG2012

Boston, Massachusetts.

Jul 16 – 18 The 33rd annual meeting
of the TEX Users Group.
Presentations covering the TEX world.
tug.org/tug2012

Jul 16 – 22 Digital Humanities 2012, Alliance of
Digital Humanities Organizations,
University of Hamburg, Germany.
www.digitalhumanities.org/conference

Jul 31 –
Aug 5

TypeCon 2012, Milwaukee, Wisconsin.
www.typecon.com

Aug 5 – 9 SIGGRAPH 2012, Los Angeles, California.
s2012.siggraph.org

Aug 23 – 26 TEXperience 2012 (5th TEXperience
Conference, organized by CSTUG),
Malenovice, The Czech Republic.
katedry.osu.cz/kma/texperience2012

Oct 8 – 12 EuroTEX2012 and the sixth ConTEXt
user meeting, Breskens, The Netherlands.
meeting.contextgarden.net/2012

Oct 10 – 14 Association Typographique Internationale
(ATypI) annual conference, Hong Kong.
www.atypi.org

Status as of 29 November 2011

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.



TUG 2012
The 33rd Annual Meeting of the TEX Users Group

Presentations covering the TEX world

July 16–18, 2012 Boston, Massachusetts, USA

http://tug.org/tug2012 tug2012@tug.org

April 30, 2012—bursary application deadline

May 1, 2012—presentation proposal deadline

May 15, 2012—early bird registration deadline

June 1, 2012—preprint submission deadline

July 16–18, 2012—conference

July 30, 2012—deadline for final papers

Sponsored by the TEX Users Group and DANTE e.V.



TUGBOAT Volume 32 (2011), No. 3

Introductory

357 Dave Crossland / TUG Libre Font Fund, Google Web Fonts, and Kickstarter
• collaboration providing funding for new open/free font designs

248 Stefan Kottwitz / TEX online communities—discussion and content
• comparison of many TEX online communities and paradigms

331 LATEX Project Team / LATEX news, issue 20
• scheduled LATEX bug-fix release; continued development; release notes

251 Kannan Moudgalya / LATEX training through spoken tutorials
• conducting workshops using screencasts with voice-over

285 Boris Veytsman and Leyla Akhmadeeva / Towards evidence-based typography: Literature review
and experiment design

• review of experiments on how typography does and does not affect reading

Intermediate

333 Brian Beitzel / The meetings LATEX class: Hierarchically organized meeting agendas and minutes
• supporting agendas, hidden items, and standard sectioning in minutes

361 Karl Berry / The treasure chest
• new CTAN packages, July–October 2011

302 Brian Housley / The hletter class and style for producing flexible letters and page headings
• letters with logos, headers and footers, data merging, two signees, and more

269 Manjusha Joshi / A dream of computing and LATEXing together: A reality with SageTEX
• embedding math computation and output directly in LATEX documents

272 Axel Kielhorn / Multi-target publishing
• generating ePub, PDF, and more, from Markdown using pandoc

342 Luca Merciadri / Some LATEX2ε tricks and tips (IV)
• boxing an equation; title pages; text below an image; line spacing; left brace for subequations

335 Igor Ruiz-Agundez / Multi-target publishing
• supporting LATEX authoring in Google Docs via make

257 Alan Wetmore / e-Readers and LATEX
• reviewing the Nook, Kobo, iRiver, and especially their support for LATEX-generated PDFs

Intermediate Plus

345 Paul Isambert / TEX as you like it: The interpreter package
• minimal and arbitrary input syntax via LuaTEX

266 Rishi T. / LATEX to ePub
• description of workflow using LATEX, TEX4ht, and XML to generate ePub

281 S. Sankar, S. Mahalakshmi and L. Ganesh / An XML model of CSS3 as an XLATEX-TEXML-HTML5
stylesheet language

• recasting CSS to XML for validation, and generating TEX
278 S.K. Venkatesan / On the use of TEX as an authoring language for HTML5

• proposed TEX macros for important HTML elements
309 Didier Verna / Towards LATEX coding standards

• LATEX code quality, the programming community, and filehook

261 Boris Veytsman and Michael Ware / Ebooks and paper sizes: Output routines made easier
• avoiding physical pages when paginating for ebooks

339 Peter Wilson / Glisterings
• verbatim arguments; truncating a long text

Advanced

289 Jean-Michael Hufflen / A comparative study of methods for bibliographies
• comparison of BibTEX extensions and future directions

349 Wiktor Dziubiński, Marcin Woliński and Grzegorz Murzynowski / PARCAT—Applying TEX in industry
• printing large multi-lingual product catalogues with X ELATEX

Contents of other TEX journals

362 ArsTEXnica 11–12 (2011); Die TEXnische Komödie 3/2011; The PracTEX Journal 2011-1

Reports and notices

242 TUG 2011 conference information
245 Barbara Beeton / TUG 2011 in India
329 TUG 2011 abstracts (Bazargan, Crossland, Radhakrishnan, Doumont, Mittelbach, Moore, Rishi,

Skoupý, Sojka, Wujastyk)
358 Boris Veytsman / Book review: Bodoni, Manual of Typography—Manuale tipografico (1818)

• review of this complete reprint edition (Taschen)
359 Boris Veytsman / Book review: LATEX and friends

• review of this introduction to LATEX by Marc van Dongen
365 TEX consulting and production services
366 Institutional members
367 Calendar
368 TUG 2012 announcement


