
TUGboat, Volume 31 (2010), No. 2 211

Unicode mathematics in LATEX: Advantages
and challenges

Will Robertson

Abstract

Over the last few years I’ve been tinkering with
Unicode mathematics in X ETEX. In this paper, I
discuss Unicode mathematics in the context of LATEX
with the unicode-math package.

1 Introduction

X ETEX was the first widely-used Unicode extension
to TEX. Several years ago Jonathan Kew added
OpenType maths support to X ETEX [12] following
Microsoft’s addition of mathematics to the Open-
Type specification as they were preparing Microsoft
Word 2007. Around that time I built a prototype
implementation of a Unicode maths layer for LATEX,
called unicode-math, but with very few OpenType
maths fonts available, and other projects consuming
my time, the project lost momentum and I never man-
aged to finish the package and upload it to CTAN.

That has now changed. In the leadup to the
TUG 2010 conference I thoroughly revisited the code,
re-writing most of it in the LATEX3 programming
environment ‘expl3’. (A brief introduction to expl3
is given by Joseph Wright in [24].) Long-standing
issues were resolved and support for LuaTEX was
begun. It is now ready for greater distribution with
TEX Live 2010.

In a happy twist of fate, the STIX fonts have re-
cently been released and can be used by this package.
Details to follow.

1.1 Outline

In Sections 2 and 3, I cover the origins and nature of
Unicode mathematics, and what fonts are currently
available which use it. In Sections 4 and 5, I address
specific details of how to use Unicode maths in LATEX,
and comment on some challenges faced when doing so;
in Section 6, I present my thoughts for the possible
future of this work. Finally, in Sections 7 and 8 I
discuss some technical aspects of the package and its
development process.

2 What is Unicode maths?

Before we talk about Unicode maths, it is necessary
to discuss the computer typesetting of mathematics
from the very beginning, or at least since TEX was
first created.

2.1 Origins

TEX was designed alongside a set of text and maths
fonts, the ‘Computer Modern’ family. The original

Computer Modern maths fonts were limited by re-
strictions of the time, consisting of three separate
fonts with 128 glyphs each (for each design size).

Later, the well-known amsmath package pro-
vided a complement of glyphs designed to match
Computer Modern; these extra maths fonts extended
the repertoire of standard symbols that could be ex-
pected to be used by most mathematicians.

As well as the amsmath fonts, a (small) number
of other maths fonts were also created for TEX sys-
tems, including Lucida1 and MathTime Pro.2 Each
maths font developed generally contained a differ-
ent set of glyphs, and as a consequence of this the
developers who had to write the TEX support layer
for each font generally had to start from scratch to
implement the font encoding that bound symbols
to glyph slot numbers. This tedious process is one
factor in explaining the general dearth of maths fonts
for TEX-based systems.

2.2 The newmath encoding

In the 1990s, the Math Font Group3 was created to
design an 8-bit math font encoding [7] to alleviate
this problem of having to invent ad hoc encodings
for each new maths font. This ‘newmath’ encoding
was carefully designed to include as many maths
symbols as possible, and each symbol was assigned
a standard glyph slot. New fonts could just follow
this system, and switching maths fonts would be as
easy as switching text fonts since the newmath font
encoding would automatically know where all the
symbols were located.

The project produced a LATEX implementation
to support the ‘newmath’ encoding, but it was never
completed for a variety of reasons. While X ELATEX
and LuaLATEX are now available to access OpenType
fonts that use Unicode maths, there may be still some
interest in retaining (and finally releasing) newmath
for future large-scale maths font encoding support —
perhaps in order to support the STIX fonts and/or
the proposed Latin Modern Math font in eight-bit
LATEX [13].

2.3 Unicode maths and the STIX fonts

After newmath the attention of the Math Font Group
turned to Unicode, namely to answer the question:
‘What maths symbols have actually been used and
invented in published technical writing?’ The partic-
ulars of this phase of history have been covered by
Barbara Beeton’s report of the project at the time [2].
To sum it up very briefly, members of this project,

1 http://tug.org/lucida
2 http://www.pctex.com/mtpro2.html
3 http://www.tug.org/twg/mfg/

Unicode mathematics in LATEX: Advantages and challenges

http://tug.org/lucida
http://www.pctex.com/mtpro2.html
http://www.tug.org/twg/mfg/

212 TUGboat, Volume 31 (2010), No. 2

cosଶ𝜙 + sinଶ𝜙 = −𝑒గ
\setmathfont{Cambria Math}

$\cos^2 \varphi + \sin^2 \varphi = -e^{i\pi}$

Example 1: A minimal example of the unicode-math
package.

now known as the STIX Project, gathered together a
comprehensive list of symbols used in mathematics
from as many sources as they could find and sub-
mitted these symbols to the Unicode consortium for
addition to the Unicode specification. From their
labours, we now have a formal description of thou-
sands of glyphs that a maths font should contain and
the particulars of how those glyphs should look and
behave [4].

Having defined the symbols to appear in Uni-
code mathematics, a group of scientific publishers
commissioned a new font family to be the refer-
ence implementation for the newly specified Unicode
mathematics [3]. These STIX fonts were designed to
blend with Times New Roman which was, I believe,
(and perhaps still is) the most commonly used font
in technical publishing.

2.4 OpenType maths and the modern era

But mathematics typesetting needs more than just
glyphs. TEX itself uses a number of parameters built
into the maths fonts it uses in order to place mathe-
matics on the page in a form suitable for high-quality
typesetting, such as where superscripts should be
placed, whether delimiters should grow to encompass
the material they surround, what alternative glyph
to use for ‘big operators’ when in displaystyle rather
than textstyle, and so on. The details have been
elucidated and illustrated splendidly by Bogus law
Jackowski [11]. A system to utilise Unicode maths
must contain analogous information and use similar
algorithms to produce acceptable results.

For this purpose, Microsoft extended the Open-
Type specification to include tables of structured
information for mathematics typesetting, general-
ising and extending the original algorithms within
TEX.

OpenType maths has been described in more
detail by Ulrik Vieth both in the context of its histor-
ical development [21] and with a particular emphasis
on how the OpenType parameters correspond to
TEX’s own [23]. He has also discussed some of the
deficiencies of TEX’s mathematics engine [20], most
of which are now addressed with OpenType maths.

3 The unicode-math package

With Unicode mathematics able to encode the maths
glyphs we need, and the OpenType font format able
to store the required parameters to use the new
maths fonts, the only thing missing is the typesetting
engine to put the pieces together. Microsoft Word
2007 and 2010 contains one, and so does X ETEX and
LuaTEX. It is important to recognise that a Unicode
maths font is suitable for both Word and TEX-based
systems, which I believe will aid the adoption of the
Unicode maths approach.

The unicode-math package is an initial attempt
to write a high-level interface to Unicode maths for
LATEX documents. After loading the package, users
can write

\setmathfont{Cambria Math}

as shown in Example 1 to select Cambria Math or
any other Unicode maths font.

Readers may be familiar with the fontspec pack-
age, which is a high-level interface for loading fonts
(usually OpenType fonts) in X ELATEX and now also
LuaLATEX [18]. Where fontspec is designed for load-
ing fonts to change the text font of the document,
unicode-math allows a similar interface to select the
maths font.

Previous work in this area has been performed
by Andrew Moschou with his mathspec package for
X ELATEX. With mathspec, a text font can be loaded
to substitute the alphabetic symbols of the mathe-
matics setup — say to use Minion Pro Italic for the
Latin symbols and Porson for the Greek symbols —
but all other maths symbols are left untouched. A
similar process has been shown previously for maths
fonts in eight-bit LATEX by Thierry Bouche [5]. The
unicode-math package, by contrast, is designed to
use OpenType maths fonts that contain all glyphs
and associated information necessary to replace the
existing LATEX maths setup.

The two packages are therefore designed for dif-
ferent purposes; use mathspec if most of your maths
needs are fulfilled by a pre-existing maths package
(such as mathpazo) but you would like your maths al-
phabets to be taken from the text font; alternatively,
use unicode-math if you have an OpenType maths
font that you would like to use for typesetting all
aspects of the mathematics.

The unicode-math package almost completely
replaces LATEX’s maths setup. Control sequences are
provided to access every Unicode maths symbol, and
literal input of all such characters in the source is
also supported. Maths can be copied from another
source (such as a web page or PDF document) and
pasted directly into the LATEX document and the

Will Robertson

TUGboat, Volume 31 (2010), No. 2 213

Cambria: න
ஶ

eି௦௧𝑓(𝑡) d𝑡

Asana:
∞

e−𝑠𝑡𝑓(𝑡) d𝑡

STIX: ഖ

∞

0
e−𝑠𝑡𝑓(𝑡) d𝑡

Euler:
Ȋɕ
Θ

eɿϏϐf(t) dt

\def\laplace{\hfill$\displaystyle

\int_0^\infty \mathup e^{-st}f(t)\,\mathup dt

$\\[1ex]}

Cambria: \setmathfont{Cambria Math} \laplace

Asana: \setmathfont{Asana Math} \laplace

STIX: \setmathfont{XITS Math} \laplace

Euler: \setmathfont[math-style=upright]

{Neo Euler} \laplace

Example 2: Available OpenType maths fonts at the
time of writing.

content will be retained, albeit with some loss of its
presentational aspects (most notably subscripts and
superscripts).

With some minor exceptions, no changes to
the mathematical document source should be neces-
sary to be able to switch fonts using Unicode maths.
ConTEXt has an analogous system [14], and we have
discussed future plans for coordinating our efforts to
be consistent where possible and reduce duplication
of work between ConTEXt and LATEX.

3.1 What fonts are available?

This is all well and good, but the system doesn’t do
much good if there are no fonts to take advantage
of it. Cambria Math, by Tiro Typeworks,4 was the
first OpenType maths font released (through Ascen-
der Corp.), commissioned originally for Microsoft
Office 2007.

There are three open source OpenType maths
fonts currently available, developed using the free
font editor FontForge5 to add the OpenType maths
parameters. These fonts are:

• Apostolos Syropoulos’s Asana Math,6 which has
its origins in the ‘Pazo’ fonts, which are a clone
of Palatino with additional maths support;

4 http://www.tiro.com/projects.html
5 http://fontforge.sourceforge.net/
6 http://ctan.org/pkg/asana-math

• Khaled Hosny’s XITS Math,7 which is a fork of
the STIX fonts to include preliminary OpenType
maths layout information (XITS will eventually
be deprecated by an official release of the STIX

fonts with the same functionality); and,

• Khaled Hosny’s Neo Euler,8 which is a Unicode
re-working [10] of Hermann Zapf and Donald
Knuth’s Euler font.

These four OpenType maths fonts are shown in Ex-
ample 2, in which note the fact that the maths font
can now change part-way through a document.

Of these, XITS Math and Asana Math will both
be included in TEX Live 2010, and they can be loaded
with (respectively)

\setmathfont{xits-math.otf}

\setmathfont{Asana-Math.otf}

without any font installation necessary.
Readers may be interested in Daniel Rhatigan’s

dissertation [17] on the history of and design com-
parisons between the Times-, Euler-, and Cambria-
based maths fonts (recall that STIX is modelled after
Times).

4 Advantages

The main advantage of using Unicode maths is that it
becomes easy to switch between maths fonts. There
are some more benefits than simply standardising
the way maths fonts are loaded, however.

I suspect the most directly useful aspect of Uni-
code maths will be relieving (most of) the headache
around finding and using a particular math font
glyph. The STIX fonts are available as a fallback
font for all symbols that are part of Unicode maths.
After all, most maths symbols are geometrically ab-
stract enough that they do not need to be directly
matched with the text font.

4.1 Readable source

Unicode maths provides the ability for maths sym-
bols and characters to be input in Unicode directly
in the source file, as shown in Example 3. For exam-
ple, you may input a literal ‘α’ directly into a source
document rather than typing ‘\alpha’. A conve-
nient way to achieve this input style is to use the
auto-completion of text editors such as TeXShop and
TEXworks, in which typing a unicode-math control se-
quence and then hitting the ‘escape’ key will produce
the literal input character. Since the original control
sequence still must be typed letter-by-letter, this
technique doesn’t improve input speed, but makes
source documents far more readable and amenable

7 http://github.com/khaledhosny/xits-math
8 http://github.com/khaledhosny/euler-otf

Unicode mathematics in LATEX: Advantages and challenges

http://www.tiro.com/projects.html
http://fontforge.sourceforge.net/
http://ctan.org/pkg/asana-math
http://github.com/khaledhosny/xits-math
http://github.com/khaledhosny/euler-otf

214 TUGboat, Volume 31 (2010), No. 2

\[𝚬 = − ∇ 𝜙 − \frac{∂𝚨}{∂t} \]
\[𝚩 = ∇ × 𝚨 \]
\[∇ ⋅ 𝐃 = 𝜌 \]
\[∇ × 𝐇 − \frac{∂𝐃}{∂t} = 𝐉 \]

Example 3: Example of LATEX source using Unicode
math input with literal maths characters. Such input
can be pasted from another source or typed with the aid
of ‘smart completion’ in a text editor.

to casual editing. (Completion files for unicode-math
will be distributed with the package.)

With direct Unicode input for symbols in a
LATEX document, only small changes to the regu-
lar syntax are required to approach the simplicity
of Murray Sargent’s ‘nearly plain-text encoding of
mathematics’ [19], which can be used in Microsoft Of-
fice to achieve a TEX-like efficiency at writing maths
while obtaining a WYSIWYG view of the document.
(I personally still prefer the TEX way, however, since
you can use macros and so on to retain consistency
and give your symbols meaning.)

4.2 Mathematical alphabets

Unicode maths contains glyph slots to contain all
styled alphabetic symbols used in mathematics, in-
cluding bold, blackboard, script, etc., styles. The
complete listing is shown in Example 4. Each style
contains variations on some or all of the lowercase
and uppercase Latin and Greek characters and Ara-
bic numerals. The commands shown for switching
alphabets force each particular shape, hence their
explicit names such as bfit for ‘bold italic’; general
\mathbf and \mathsf commands are also provided to
switch to the correct upright or italic shape depend-
ing on the context (see Section 4.3 and Example 6).
Note that \mathbf is used to access bold symbols
in both Latin and Greek; this is a great useability
improvement over traditional LATEX that requires
either \boldsymbol or the bm package (or a specific
maths font package) to access bold Greek letters.

As an aside, note that the command \mathrm

from LATEX is renamed in unicode-math to \mathup

to emphasise the fact that it can be used for upright
Greek symbols as well. The old name is still provided
for backwards compatibility, of course.

As authors wish to use fonts with alphabet styles
that are not currently present in Unicode, the system
must be able to cope with the addition of new al-
phabets and new alphabet styles. The most relevant
example here is the existence in the STIX fonts of a
variety of these non-Unicode ranges, most notably
the ‘calligraphic’ style in contradistinction to the

\mathit 𝑎𝑏𝑐 𝑋𝑌𝑍 𝛼𝜉𝜃 𝛹𝛯𝛺
\mathbfit 𝒂𝒃𝒄 𝑿𝒀𝒁 𝜶𝝃𝜽 𝜳𝜩𝜴
\mathup abc XYZ αξθ ΨΞΩ 123
\mathbfup 𝐚𝐛𝐜 𝐗𝐘𝐙 𝛂𝛏𝛉 𝚿𝚵𝛀 𝟏𝟐𝟑
\mathbb 𝕒𝕓𝕔 𝕏𝕐ℤ 𝟙𝟚𝟛
\mathtt 𝚊𝚋𝚌 𝚇𝚈𝚉 𝟷𝟸𝟹
\mathsfit 𝘢𝘣𝘤 𝘟𝘠𝘡
\mathbfsfit 𝙖𝙗𝙘 𝙓𝙔𝙕 𝞪𝞷𝞱 𝞧𝞝𝞨
\mathsf 𝖺𝖻𝖼 𝖷𝖸𝖹 𝟣𝟤𝟥
\mathbfsfup 𝗮𝗯𝗰 𝗫𝗬𝗭 𝝰𝝽𝝷 𝝭𝝣𝝮 𝟭𝟮𝟯
\mathscr 𝒶𝒷𝒸 𝒳𝒴𝒵
\mathbfscr 𝓪𝓫𝓬 𝓧𝓨𝓩
\mathfrak 𝔞𝔟𝔠 𝔛𝔜ℨ
\mathbffrak 𝖆𝖇𝖈 𝖃𝖄𝖅

Example 4: Mathematical alphabets in Unicode from
the STIX fonts.

Script style: 𝒜ℬ𝒞𝒳𝒴𝒵
Calligraphic:
\setmathfont

[range=\mathscr]{XITS Math}

\setmathfont

[range=\mathcal,StylisticSet=1]{XITS Math}

Script style: \mathscr{ABCXYZ}\\

Calligraphic: \mathcal{ABCXYZ}

Example 5: Accessing the non-Unicode calligraphic
style in the STIX fonts.

‘script’ style that is included in Unicode. Example 5
shows the differences between these two styles; some
mathematicians are used to using these two alphabet
styles separately (with script letters accessed through
the mathrsfs package, for example). Here, the XITS

fonts have encoded the calligraphic shapes in the
position of the script glyphs under the OpenType
font feature ss01, which is accessed through fontspec
font features as StylisticSet=1.

In time, I believe that the calligraphic alphabet
will be incorporated into the Unicode standard, but
until then the unicode-math package must be able to
use it explicitly as an exceptional case. The system
in unicode-math for creating new alphabet styles in
this way is not completely generalised yet, but work
in this area is planned for the future (including the
addition of alphabets neither Latin nor Greek that
might be also used in a mathematical context, such
as Russian).

Will Robertson

TUGboat, Volume 31 (2010), No. 2 215

math-style=
ISO 𝑎 𝑧 𝐵 𝑋 𝛼 𝛽 𝛤 𝛯

𝒂 𝒛 𝑩 𝑿 𝜶 𝜷 𝜞 𝜩
TeX 𝑎 𝑧 𝐵 𝑋 𝛼 𝛽 Γ Ξ

𝐚 𝐳 𝐁 𝐗 𝜶 𝜷 𝚪 𝚵
upright a z B X α β Γ Ξ

𝐚 𝐳 𝐁 𝐗 𝛂 𝛃 𝚪 𝚵
french 𝑎 𝑧 B X α β Γ Ξ

𝐚 𝐳 𝐁 𝐗 𝛂 𝛃 𝚪 𝚵
Example 6: Different output styles without changing
the input source according to the math-style option.

4.3 Flexible output

The unicode-math package does not assume a one-to-
one mapping between the Unicode characters in the
source and the Unicode glyphs in the output. In fact,
the design of the maths setup, by default, is such that
there is no semantic difference between upright and
italic letters in the input source; consistent output is
achieved regardless of the style of the input source.

Claudio Beccari [1] has detailed the require-
ments of typesetting mathematics according to the
ISO standard (ISO31/XI), which requirements dif-
fer in important ways from the typical output of
LATEX mathematics. More recently, Ulrik Vieth [22]
discussed many of the details of mathematical type-
setting in the context of mathematical physics; the
features offered by the unicode-math package help to
provide the flexibility required to achieve these ideas
for any maths font available. (Packages to perform
this in classical LATEX, such as the isomath package,
require maths fonts set up with a particular encod-
ing.) As an example of the different approaches to
mathematical typesetting, Example 6 shows how doc-
uments are able to be typeset per ISO standards or
in a more classical TEX-like format without changing
the source text of the mathematics. Similarly, the
output style of bold characters can also be adjusted.

As the package can load fonts for maths glyphs
dynamically, multiple fonts and multiple styles can
be used between various characters or families or al-
phabets of characters. Example 7 shows an example
in which the maths was typed ‘as usual’, but different
glyphs and glyph ranges were assigned fonts with
different colours (grayscaled for TUGboat). This
particular example may not be very practical, but
it illustrates that the system is flexible enough to
accommodate a wide range of effects. Even single
characters within an alphabet may be chosen, such

𝐹(𝑠) = ℒ ቄ𝑓(𝑡)ቅ = න
ஶ

eି௦௧𝑓(𝑡) d𝑡

\setmathfont{Cambria Math}

\def\SET#1{\setmathfont[#1]{Cambria Math}}

\SET{range={\mathop,\mathscr}, Colour=red}

\SET{range={\equal}, Colour=00BB22}

\SET{range={\mathopen,\mathclose}, Colour=blue}

\[F(s)=\mathscr{L}\,\biggl\{f(t)\biggr\}

= \int_0^\infty \mathup e^{-st}f(t)

\, \mathup d t \]

Example 7: Hooks make it possible to use a variety of
fonts or styles — in this case, colours — for different maths
characters or families/alphabets of maths characters.

1: {𝛼, … , 𝜋, … , 𝜔}
2: {𝛼, … , π, … , 𝜔}
\setmathfont{Cambria Math}

1: $\{\alpha,\dots,\pi,\dots,\omega\}$

\setmathfont

[range={"1D70B},math-style=upright]

{Cambria Math}

2: $\{\alpha,\dots,\pi,\dots,\omega\}$

Example 8: An example of selecting a different font
for a single alphabetic glyph. The glyph slot "1D70B

corresponds to the pi symbol in the mathematical Greek
Unicode range.

as in Example 8 where the ‘π’ symbol alone is chosen
to be typeset upright.

5 Challenges

The biggest problem I can see with the advent of
Unicode maths, besides more fonts — I believe they’ll
slowly start to appear now that there are tools and
programs to support them — is educating people into
using them well.

5.1 Using the correct characters

Example 9 shows five different maths glyphs that
are all triangular, while Example 10 shows the eight
different slash-like glyphs; four in each direction.
Consider whether it’s clear, only from the description
in the tables, which ones to use in different contexts.

Without careful documentation and good edu-
cation, it may be hard for users to know which is
the ‘correct’ glyph to use in many occasions. The
markup in TEX and LATEX has generally steered to-
wards presentational aspects. But, as an example,
with five different choices for which triangle to choose,

Unicode mathematics in LATEX: Advantages and challenges

216 TUGboat, Volume 31 (2010), No. 2

Slot Command Glyph Class

U+25B5 \vartriangle 𝑥 ▵ 𝑦 relation
U+25B3 \bigtriangleup 𝑥 △ 𝑦 binary
U+25B3 \triangle 𝑥△𝑦 ordinary
U+2206 \increment 𝑥∆𝑦 ordinary
U+0394 \mathup\Delta 𝑥Δ𝑦 ordinary

Example 9: Four triangular glyphs (from the STIX fonts)
with five different uses but all with similar shapes.

Slot Name Glyph Command

U+002F Solidus 𝑥/𝑦 \slash

U+2044 Fraction slash 𝑥 ⁄ 𝑦 \fracslash

U+2215 Division slash 𝑥 ∕ 𝑦 \divslash

U+29F8 Big solidus 𝑥 ⧸ 𝑦 \xsol

U+005C Reverse solidus 𝑥\𝑦 \backslash

U+2216 Set minus 𝑥 ∖ 𝑦 \smallsetminus

U+29F5 Reverse solidus
operator

𝑥 ⧵ 𝑦 \setminus

U+29F9 Big reverse
solidus

𝑥 ⧹ 𝑦 \xbsol

Example 10: A multitude of symbols for different pur-
poses. Glyphs taken from the STIX fonts.

different authors may inadvertently choose different
(but visually similar) glyphs for the same purpose
in their mathematics. Furthermore, font designers
are going to need to carefully design these glyphs
to be consistent with the STIX fonts, which have
been designed as ‘reference material’ against which
all aspects of Unicode maths can be compared.

My feelings are that new tools will be needed to
write LATEX mathematics more semantically (which
I will talk about later in Section 6.2). But such tools
will need to be specific for each scientific field that
uses different notation. This is an open problem.

5.2 LATEX vs MathML

Mathematics represented in TEX and MathML are
really quite separate beasts, although TEX can (per-
haps obviously) be used as an engine to typeset
MathML [9, 16]. While LATEX input is designed to
be hand-written and has visual output as the pri-
mary goal, MathML is a machine-friendly (human-
unfriendly!) language to represent mathematics far
more unambiguously and verbosely. There is not

much overlap between how LATEX looks at Unicode
maths and how MathML is used, although packages
such as stex (‘semantic TEX’) wed the ideas of ‘Con-
tent MathML’ to LATEX (I briefly discuss semantic
input of maths later in Section 6.2).

MathML and LATEX often use different names
for the symbols in Unicode maths. For example,
the infinity symbol ∞ (U+221E) is \infty in TEX
and ∞ in MathML. There are very few nam-
ing conflicts, but do bear in mind that the W3C

names for maths symbols can occasionally be in-
compatible with the names used in unicode-math.
As an example, consider the two ‘set minus’ char-
acters in Example 10, which inherit their names
from Plain TEX and the amssymb package, respec-
tively. U+2216 is \smallsetminus and U+29F5 is
\setminus. However, MathML does it differently due
to a historical accident: U+2216 is referred to by ei-
ther ∖ or ∖ or a number
of other synonyms; U+29F5 is as-yet unnamed [6].
The general mismatch between these two Unicode
maths glyph naming schemes might make it difficult
to move between MathML and LATEX if one is used to
writing symbol names in MathML and starts writing
LATEX mathematics, or vice versa.

Despite the semantic advantages of Content
MathML, however, it is still not supposed to be
used as an input language for mathematics; MathML

and the language of LATEX maths are simply designed
for different things. Therefore, in practise I don’t
believe there will be any problems resulting from the
differences in glyph naming between the two.

6 Thoughts for the future

Unicode is clearly here to stay, and we are entering a
time where, for the first time, fonts for mathematics
can be built with standard OpenType font tools, and
they can be used in a variety of cross-platform envi-
ronments — from X ETEX and LuaTEX to Microsoft
Office to MathML on the web. I hope and believe
that this will herald the more profuse production of
maths fonts than we’ve seen in the past.

The unicode-math package is only the first step
for modernising the maths support in LATEX. I
consider the future of maths in LATEX to be sup-
ported by three main pillars of functionality: font
support; structural improvements to the input lan-
guage supported by advanced layout algorithms; and
‘semantic’-style input. Font support is broadly cov-
ered by the unicode-math package, which leaves two
topics to discuss below.

6.1 Layout of mathematics

For ‘structural improvements to the input language’,

Will Robertson

TUGboat, Volume 31 (2010), No. 2 217

I really mean improvements for writing the kinds of
things that the amsmath package has typically been
used for; namely, it provides high(er)-level tools to de-
scribe the layout of mathematical expressions. While
the amsmath package has been extremely popular for
many years, it is not perfect. The best candidate to
extend it is the breqn package [8], which is now main-
tained by Morten Høgholm. (breqn is completely
compatible with amsmath, thus transitioning from
one to the other is very easy.)

The breqn package’s primary features are to
simplify the input necessary over what is required for
more complex structures in amsmath; the way that
it does this is by incorporating complex algorithms
to perform automatic breaking of mathematics over
lines. This has long been regarded as impossible to
perform correctly all of the time — and while no-one
is arguing that breqn is always correct, it usually
is. When it is not, the task is done manually as is
presently the case anyway.

6.2 Semantic input of mathematics

If you look over the list of ‘TEX names’ used by
unicode-math for the Unicode maths symbols, it is
clear that the names chosen have often been cho-
sen to be descriptive rather than semantic. For ex-
ample, \doteq, \bigwedge, \smwhtsquare (‘small
white square’), and so on. This is not unique to
unicode-math; this follows the general naming scheme
for LATEX math font symbols where the name of a
symbol shouldn’t be too specific for one general use.

However, when there are clear semantics for
symbols it is generally more useful to use a semantic
input style for that piece of mathematics. For exam-
ple, with ‘a → b’ (and this is from regular LATEX),
it is clearly more sensible to write $a \to b$ rather
than $a \rightarrow b$ when we’re writing what
would be said aloud as ‘for/from a to b’. Similarly,
(and more hypothetically), writing \intersection

and \union is probably better than \cap and \cup,
respectively, in that their meaning in the former is
immediately obvious from the source document.

I am aware of two macro packages that attempt
to provide a general semantic input style for mathe-
matics in LATEX: the cool (‘content-oriented LATEX’)
package and the aforementioned stex package. As an
argument for using them, and by way of comparison
between them, consider writing an integral∫ x1

x0

f(x) dx.

In pure LATEX, we must write this in a purely pre-
sentational manner, explicitly writing subscripts and
superscripts on the integral symbol, and inserting a
manual space and upright font switch to write the

‘dx’. The LATEX source is:

\int_{x_0}^{x_1} f(x) \,\mathrm{d}x

By contrast, consider what this mathematical state-
ment actually means: a direct integral of a function
f(x) from x0 to x1. There is more detail in the type-
setting of the statement than in the mathematics of
it! In the cool package, this is written

\Integral{f(x)}{x,x_0,x_1}

In stex (the package name is cmathml for just the
mathematics component of stex), it is

\CintLimits{x}{x_0}{x_1}{f(x)}

Another pertinent example is for representing de-
rivatives. To write df

dx in LATEX requires using an
explicit fraction with more markup for the upright ‘d’:
\frac{\mathrm d f}{\mathrm d x}. The packages
cool and cmathml respectively use \D{f}{x} and
\Cddiff{x}{f}. For multiple derivatives the bene-
fits are even more obvious; \D{f(x,y)}{x,y,z} or
\Cpartialdiff{3}{x,y,z}{f(x,y)} instead of

\frac{\mathrm d^3}

{\mathrm d x\,\mathrm d y\,\mathrm d z}

f(x,y)

to obtain
d3

dxdy dz
f(x, y).

I haven’t spent much time with the more recent
cmathml package, but my experiences with writing
mathematics using the cool package have been very
positive. The additional semantics using this nota-
tion isn’t helpful from an academic sense of adding
more meaning to the document source (although
that’s also a good thing). The real benefit is that it
makes these maths constructions easier to type.

Based on the work of cool and cmathml, I believe
that standardising some of the ideas for semantic
markup of mathematics will benefit document au-
thors (many of whom, after all, use similar macros
in their own texts, albeit in an ad hoc way) and help
in the automatic translation of mathematics written
in LATEX to other markup systems like MathML, and
vice versa.

The unicode-math package will not address such
ideas directly; it is purely a system to use mathe-
matics with OpenType fonts. But as this package
becomes more mature and can be used as a solid
foundation for Unicode mathematics, then it will be
time to start thinking seriously about formalising
ideas behind ‘semantic mathematics’.

7 A technical note on alphabet remapping

In TEX and LATEX, using different fonts for alphabets
such as \mathbf and \mathscr involved setting the
‘math code’ of the ASCII Latin letters to ‘variable’

Unicode mathematics in LATEX: Advantages and challenges

218 TUGboat, Volume 31 (2010), No. 2

and simply switching the math font. This meant
that, internally, \mathbf and friends simply resulted
in a font switch, which is efficient and straightfor-
ward (although sometimes tricky to juggle with only
sixteen maths fonts in eight-bit TEX).

Unfortunately, things are not so simple with
unicode-math. Within Unicode, each alphabet style
(for bold and script and so on) is encoded in a distinct
Unicode range. For example, the italic mathemati-
cal ‘w’ accessed with w is symbol U+1D464. The
bold upright mathematical ‘w’ (\mathbf{w}) is
U+1D430. In order to switch from one to the other
using a command like \mathbf requires that the
mathcodes for all affected letters must change locally
inside its argument. This isn’t too inefficient, since
assigning \mathcodes is pretty fast, but it’s not par-
ticularly elegant. It would be easier not to support
the \mathbf{...}-style syntax at all and instead
refer to such symbols with macros, such as \mbfw for
the bold ‘w’. But we must support the switching-
style commands for backwards compatibility.

There are some alternatives to doing things this
way, but they all have trade-offs. The simplest solu-
tion would be to use X ETEX’s input mapping feature
that allows letters in the source to be transformed
into other letters before typesetting. Thus, the ‘vari-
able math code’ approach as used in LATEX could be
used for Unicode maths alphabets. However, this
system is less flexible (features such as Example 8
would be more difficult) and an alternative approach
would be required for LuaTEX.

Another approach would be to use (math-)active
characters for all maths symbols. In this approach,
ASCII letters such as ‘a’ would be active in maths
mode and expand (as if it were a macro) to a con-
struction such as

\csname mathchar_\mathstyle_a \endcsname

where \mathstyle would resolve to ‘up’ or ‘bf’ (etc.)
depending on the context and \mathchar_up_a and
\mathchar_bf_a (etc.) would be defined accordingly
with the appropriate Unicode maths glyph. This is
more efficient for font switching but less efficient (and
perhaps more fragile) when symbol remapping is not
taking place. Using active characters is the technique
used by the breqn package to do its automatic line
breaking of mathematics, and extending that system
for unicode-math would be quite logical. One way or
the other, breqn compatibility is planned for unicode-
math in the future.

Using LuaTEX for alphabet remapping (which
is how ConTEXt’s implementation works) is proba-
bly the best way to tackle this problem, but while
unicode-math is written for X ELATEX as well (and

it will continue to be for the immediate future) we
must stick with TEX-based programming solutions.

8 Experiences writing the package

Some aspects of writing the unicode-math package
have been more organised than other LATEX code
I’ve written. As more and more LATEX code is being
developed publicly in source code repositories such
as GitHub, BitBucket, and others, I would like to
discuss quickly some of the infrastructure of this
package’s development.

8.1 Cross-platform development

The fontspec and unicode-math packages are both
now targeted towards running on both X ELATEX and
LuaLATEX. Despite small differences in how certain
things are done, this generally works well for both.

Most of the code in unicode-math and fontspec
has been written (or re-written) with the expl3 pro-
gramming interface. This has proven to be a very
useable interface to numerous high-level program-
ming constructs; expl3 allows more complex ideas
to be easily realisable within the limitations of TEX
macro programming.

In this shared X ELATEX/LuaLATEX environment,
Lua code is restricted to a minimum in order to
minimise separate code branches for each engine,
as much as possible. Functions in Lua are ‘hidden’
inside TEX macros, so all of the main programming in
unicode-math resembles plain old TEX programming.
I personally find this much easier to read than mixing
Lua code and TEX macro code together.

8.2 Version control

I use the Git version control system, and for some
time I’ve been using GitHub repositories9 for most
of my public code (LATEX and otherwise). GitHub
provides free accounts for developers of open source
software, and their site includes a very functional
bug tracker/issue reporter per project. Tracking bugs
over several years is certainly no fun with email.

I’ve had many people contribute code and pro-
vide feedback through the GitHub project page, and
I highly recommend such a public development envi-
ronment for all package developers.

The main advantages to these systems, for me,
are the ease with which others can collaborate on
code or documentation writing and with how issues
can be resolved. Having a public code repository
also allows users to access historical versions of the
code, which can be important for those on legacy
systems who cannot upgrade their distributions but

9 http://github.com/wspr

Will Robertson

http://github.com/wspr

TUGboat, Volume 31 (2010), No. 2 219

need old versions of some packages that are no longer
available on CTAN in their original form.

8.3 Test suite

Inspired by the test suite available for the LATEX 2ε
and LATEX3 codebase, I implemented a test suite
for unicode-math based on a ‘visual diff’ between
the output of each test file compared to a known
‘reference’ output that had been compiled some time
beforehand. At the time of writing there are 128
tests in total, the output of which are included all
together as a separate documentation file in the
unicode-math distribution as a rather complete set
of minimal examples showing various aspects of the
package and its features.

In hindsight, using an image-based test was per-
haps not the best way to approach regression testing
with LATEX. The test scripts use ImageMagick’s
compare tool, which first discretises the PDF out-
put to a bitmap and compares the pixels between
the output and the reference. Unfortunately, due to
rounding errors this technique is prone to the occa-
sional ‘false negative’ in which the bitmap output of
a test might change by a few (very small) pixels but
there’s nothing wrong with the output of the test
itself.

An unintended benefit of this technique, on the
other hand, is that any changes in the fonts I am
using are immediately detected. This makes the
unicode-math test suite a useful way for me to see
what’s actually changing when the fonts that I use
in the test suite are updated.

However, the visual diff is slow and, as men-
tioned above, not always accurate (although it is
repeatable, at least). A more reliable and efficient ap-
proach might use \showbox and \tracingoutput to
create a detailed (textual) log of the TEX boxes gen-
erated in the output. This ‘box log’ can be checked
for differences against a normalised result produced
by a prior test run, and this is the technique used suc-
cessfully by the LATEX 2ε and LATEX3 test suites [15].

Regardless of whether it’s the most efficient or
the most reliable technique to use, the test suite is
still essential for catching bugs before I release new
versions of the package to the public. I can change
code without fear of unexpected problems in the
behaviour of the package.

9 Conclusion

It’s early days for Unicode mathematics. The work
here shows the first steps for using OpenType fonts
in LATEX for mathematics; while we have done lit-
tle to change the style of the input, there are still
clear advantages in more consistent commands and

Unicode input in the source. Being able to support
new fonts without any extra LATEX support files will
hopefully spur new efforts in building new maths
fonts. I am looking forward to seeing what happens
in the future.

I would like to thank the TEX Users Group for
supporting my attendance of the TUG2010 confer-
ence, and extend further thanks towards some people
without whom the unicode-math package couldn’t
exist: Barbara Beeton for all her work with the
STIX project and for her thoughtful correspondence;
members of the LATEX3 project for, well, everything;
Khaled Hosny and others for their work with luaotf-
load and LuaLATEX in general; all of those who have
collaborated with, enthusiastically commented on,
and especially tested the code; Jonathan Kew for
X ETEX; and Taco Hoekwater et al. for LuaTEX.

References

[1] Claudio Beccari. Typesetting mathematics
for science and technology according to
ISO31/XI. TUGboat, 18(1):39–48, 1997. http:
//tug.org/TUGboat/tb18-1/tb54becc.pdf.

[2] Barbara Beeton. Unicode and math, a
combination whose time has come — Finally!
TUGboat, 21(3):176–185, September 2000.
http://tug.org/TUGboat/tb21-3/tb68beet.

pdf.
[3] Barbara Beeton. The STIX project — From

Unicode to fonts. TUGboat, 28(3), 2007. http:
//tug.org/TUGboat/tb28-3/tb90beet.pdf.

[4] Barbara Beeton, Asmus Freytag, and
Murray Sargent III. Unicode support
for mathematics. Unicode Technical
Note 25 Version 9, Unicode, Inc., 2008.
http://www.unicode.org/reports/tr25.

[5] Thierry Bouche. Diversity in math fonts.
TUGboat, 19(2):120–134, 1998. http:

//tug.org/TUGboat/tb19-2/tb59bouc.pdf.
[6] David Carlisle and Patrick Ion. XML

entity definitions for characters. Technical
Report W3C Working Draft 21, W3C, 2008.
http://www.w3.org/TR/xml-entity-names/.

[7] Matthias Clasen and Ulrik Vieth. Towards
a new math font encoding for (LA)TEX.
Cahiers GUTenberg, 28–29, 1998. http:

//cahiers.gutenberg.eu.org/cg-bin/

article/CG_1998___28-29_94_0.pdf.
[8] Michael Downes. Breaking equations.

TUGboat, 18(3):182–194, 1997. http:

//tug.org/TUGboat/tb18-3/tb56down.pdf.
[9] Hans Hagen. MathML [in ConTEXt]. MAPS,

27:66–119, 2002. http://www.ntg.nl/maps/

27/18.pdf.

Unicode mathematics in LATEX: Advantages and challenges

http://tug.org/TUGboat/tb18-1/tb54becc.pdf
http://tug.org/TUGboat/tb18-1/tb54becc.pdf
http://tug.org/TUGboat/tb21-3/tb68beet.pdf
http://tug.org/TUGboat/tb21-3/tb68beet.pdf
http://tug.org/TUGboat/tb28-3/tb90beet.pdf
http://tug.org/TUGboat/tb28-3/tb90beet.pdf
http://www.unicode.org/reports/tr25
http://tug.org/TUGboat/tb19-2/tb59bouc.pdf
http://tug.org/TUGboat/tb19-2/tb59bouc.pdf
http://www.w3.org/TR/xml-entity-names/
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_94_0.pdf
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_94_0.pdf
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1998___28-29_94_0.pdf
http://tug.org/TUGboat/tb18-3/tb56down.pdf
http://tug.org/TUGboat/tb18-3/tb56down.pdf
http://www.ntg.nl/maps/27/18.pdf
http://www.ntg.nl/maps/27/18.pdf

220 TUGboat, Volume 31 (2010), No. 2

[10] Hans Hagen, Taco Hoekwater, and
Volker R.W. Schaa. Reshaping Euler: A
collaboration with Hermann Zapf. TUGboat,
29(2):283–287, 2008. http://tug.org/

TUGboat/tb29-2/tb92hagen-euler.pdf.

[11] Bogus law Jackowski. Appendix G illuminated.
TUGboat, 27(1):83–90, 2006. http://tug.org/
TUGboat/tb27-1/tb86jackowski.pdf.

[12] Jonathan Kew. X ETEX Live. TUGboat,
29(1):146–150, 2008. http://tug.org/

TUGboat/tb29-1/tb91kew.pdf.

[13] Johannes Küster. Newmath and Unicode.
Proceedings of EuroTEX 2005, 2005. http:

//tug.org/TUGboat/tb27-0/kuster.pdf.

[14] Aditya Mahajan. Integrating Unicode and
OpenType math in ConTEXt. TUGboat, 30(2),
2009. http://tug.org/TUGboat/tb30-2/

tb95mahajan-cmath.pdf.

[15] Frank Mittelbach. A regression test suite for
LATEX 2ε. TUGboat, 18(4):309–311, December
1997. http://tug.org/TUGboat/tb18-4/

tb57mitt.pdf.

[16] Luca Padovani. MathML formatting
with TEX rules, TEX fonts, and TEX
quality. TUGboat, 24(1):53–61, 2003. http:

//tug.org/TUGboat/tb24-1/padovani.pdf.

[17] Daniel Rhatigan. Three typefaces for
mathematics. Master’s thesis, University of
Reading, 2007. http://www.typeculture.

com/academic_resource/articles_essays/

pdfs/tc_article_47.pdf.

[18] Will Robertson. Advanced font features with
X ETEX — the fontspec package. TUGboat,
26(3):215–223, 2005. http://tug.org/

TUGboat/tb26-3/tb84robertson.pdf.

[19] Murray Sargent III. Unicode nearly
plain-text encoding of mathematics. Unicode
technical note 28, Unicode, Inc., 2006.
http://www.unicode.org/notes/tn28/.

[20] Ulrik Vieth. Math typesetting in TEX: The
good, the bad, the ugly. MAPS, 26:207–216,
2001. http://www.ntg.nl/maps/26/27.pdf.

[21] Ulrik Vieth. Do we need a ‘Cork’ math
font encoding? TUGboat, 29(3):426–434,
2008. http://tug.org/TUGboat/tb29-3/

tb93vieth.pdf.

[22] Ulrik Vieth. Experiences typesetting
mathematical physics. In Proceedings of
EuroTEX, 2009. http://tug.org/TUGboat/

tb30-3/tb96vieth.pdf.

[23] Ulrik Vieth. OpenType math illuminated.
TUGboat, 30(1):22–31, 2009. http:

//tug.org/TUGboat/tb30-1/tb94vieth.pdf.

[24] Joseph Wright. LATEX3 programming: External
perspectives. TUGboat, 30(1):107–109,
2009. http://tug.org/TUGboat/tb30-1/

tb94wright-latex3.pdf.

� Will Robertson
School of Mechanical Engineering
University of Adelaide, SA, Australia
will dot robertson (at)

latex-project dot org

Will Robertson

http://tug.org/TUGboat/tb29-2/tb92hagen-euler.pdf
http://tug.org/TUGboat/tb29-2/tb92hagen-euler.pdf
http://tug.org/TUGboat/tb27-1/tb86jackowski.pdf
http://tug.org/TUGboat/tb27-1/tb86jackowski.pdf
http://tug.org/TUGboat/tb29-1/tb91kew.pdf
http://tug.org/TUGboat/tb29-1/tb91kew.pdf
http://tug.org/TUGboat/tb27-0/kuster.pdf
http://tug.org/TUGboat/tb27-0/kuster.pdf
http://tug.org/TUGboat/tb30-2/tb95mahajan-cmath.pdf
http://tug.org/TUGboat/tb30-2/tb95mahajan-cmath.pdf
http://tug.org/TUGboat/tb18-4/tb57mitt.pdf
http://tug.org/TUGboat/tb18-4/tb57mitt.pdf
http://tug.org/TUGboat/tb24-1/padovani.pdf
http://tug.org/TUGboat/tb24-1/padovani.pdf
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://www.typeculture.com/academic_resource/articles_essays/pdfs/tc_article_47.pdf
http://tug.org/TUGboat/tb26-3/tb84robertson.pdf
http://tug.org/TUGboat/tb26-3/tb84robertson.pdf
http://www.unicode.org/notes/tn28/
http://www.ntg.nl/maps/26/27.pdf
http://tug.org/TUGboat/tb29-3/tb93vieth.pdf
http://tug.org/TUGboat/tb29-3/tb93vieth.pdf
http://tug.org/TUGboat/tb30-3/tb96vieth.pdf
http://tug.org/TUGboat/tb30-3/tb96vieth.pdf
http://tug.org/TUGboat/tb30-1/tb94vieth.pdf
http://tug.org/TUGboat/tb30-1/tb94vieth.pdf
http://tug.org/TUGboat/tb30-1/tb94wright-latex3.pdf
http://tug.org/TUGboat/tb30-1/tb94wright-latex3.pdf

	Introduction
	Outline

	What is Unicode maths?
	Origins
	The newmath encoding
	Unicode maths and the STIX fonts
	OpenType maths and the modern era

	The unicode-math package
	What fonts are available?

	Advantages
	Readable source
	Mathematical alphabets
	Flexible output

	Challenges
	Using the correct characters
	LaTeX vs MathML

	Thoughts for the future
	Layout of mathematics
	Semantic input of mathematics

	A technical note on alphabet remapping
	Experiences writing the package
	Cross-platform development
	Version control
	Test suite

	Conclusion

